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Abstract

We study the static simple glide problem for a geometrically exact, generalized continua
of micropolar type. In contrast to linear micropolar elasticity, where the unique solution is
available in closed form we exhibit a multitude of solutions to the nonlinear problem, even
if the two fields of deformations ¢ and microrotations R can remain homogeneous. This
motivates a search for new conditions on the microrotations R which single out a unique,
physically acceptable, response.

The influence of material parameters, notably the Cosserat couple modulus p. and the
length scale L. on the response is also studied. For small Cosserat couple modulus g, > 0
we observe a pitchfork bifurcation of the homogeneous response and for vanishing internal
length and zero Cosserat couple modulus g, = 0 the Cosserat model may show highly
oscillating ”microstructure” solutions which are energetically better than the homogeneous
response. The numerical results show that even for 4 > 0 the nonlinear Cosserat model
has a quite different qualitative response than the linear model.
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1 Introduction

This note investigates the simple-glide problem for a nonlinear elastic Cosserat solid under
various boundary conditions for the microrotations and different constitutive parameters.

General continuum models involving independent rotations have been introduced by
the Cosserat brothers [6] at the beginning of the last century. Their nonlinear, geometrically
exact development has been largely forgotten for decades only to be rediscovered in a linearized
setting in the early sixties [41, 19, 1, 16, 14, 46, 47, 20, 32, 45, 48]. At that time theoretical
investigations on non-classical extended continuum theories were the main motivation [29].
Since then, the original Cosserat concept has been generalized in various directions, notably
by Eringen and his coworkers who extended the Cosserat concept to include also microinertia
effects and to rename it subsequently into micropolar theory. For an overview of these so
called microcontinuum theories we refer to [15, 13, 4, 3, 5, 21, 31, 40].

The Cosserat model includes in a natural way size effects, i.e. small samples behave
comparatively stiffer than large samples. These effects have recently received new attention
in conjunction with nano-devices. From a computational point of view, theories with size-
effect are increasingly used to regularize non-wellposed situations, e.g. shear-banding
in elasto-plasticity without hardening [27, 11, 42, 7, 9, 8]. It has been shown by the author
that infinitesimal elasto-plasticity augmented with (elastic) Cosserat effects indeed leads to a
well-posed problem [38] in contrast to classical elasto-plasticity. The mathematical analysis
establishing well-posedness for the infinitesimal strain, linear Cosserat elastic solid is presented
in [23, 12, 22, 17, 18] and in [26, 24, 25] for so called linear microstretch models. This analysis
is based on the uniform positivity of the free energy of the Cosserat solid, which in turn
implies that the Cosserat couple modulus pu,. is strictly positive. The first author has



extended the existence results for both the Cosserat model and the more general micromorphic
models to the geometrically exact, finite-strain case, see e.g. [39, 34, 35].

Despite the huge effort already spent in investigating the Cosserat model, two major problems
are still controversially discussed. These two points are: the problem of physically meaningful
boundary or side-conditions for the microrotations and the physically consistent determination
of the Cosserat parameters, notably the value of the Cosserat couple modulus u.. These open
points may be in part responsible for the fact that 1.(linear) Cosserat parameters for continuous
solids have never gained general acceptance even in the ” Cosserat community” and 2. that the
linear elastic Cosserat model has never been really accepted by a majority of applied scientists
as a useful model to describe size effects in continuous solids.

We investigate both open problems again, however, in a nonlinear framework. A major
difference to the linear setting is that we can allow to set the Cosserat couple modulus p. =
0, which is impossible in a ”true” linear Cosserat model. Even for the simplest non-trivial
problem showing Cosserat effects, namely the one-dimensional simple glide problem, we disclose
a complicated behaviour including non-uniqueness depending on p. > 0 and various boundary
conditions for the microrotations. For pu. = 0 and vanishing internal length L. = 0 e.g. it
is possible to construct solutions where the Cauchy stresses are symmetric everywhere to first
order but the solution is not homogeneous and does therefore not coincide with the classical
solution. The non uniqueness for simple glide already in the class of homogeneous solutions
necessitates the introduction of additional conditions on the microrotations which remove this
ambiguity.

We approach the simple glide problem both analytically and numerically in great detail
since we surmise that what cannot be understood in simple glide will remain open anyway. In
doing so, it is hoped that a better comprehension of the role played by the parameter u. and
the interplay with the boundary conditions can be gained. It is our working hypothesis that
the geometrically exact Cosserat model with g, = 0 can do justice to the Cosserat approach as
a viable physical model for a continuous solid which incorporates length scale effects. A zero
Cosserat couple modulus p. = 0 implies that the Cauchy-stress tensor is symmet-
ric to first order and length scale effects are of second order. This is acceptable for
continuous solids.

Our contribution is organized as follows: after the introduction we first present the geometrically
exact isotropic Cosserat model in variational form and recall the obtained existence results for
both g, > 0 and g, = 0. Second, we focus on the problem of simple glide of an infinite
layer of material under Dirichlet boundary conditions for the glide and various alternative
boundary or side conditions for the microrotations. The Euler-Lagrange equations are derived
and we show that the finite-strain model allows for three distinct homogeneous solutions
if 0 < pe < pctt, where uS™t is a value depending on the applied shear . The corresponding
shear stress response 7 is given. Next, we partially simplify the finite-strain problem and
prove the existence of a family of weak equilibrium solutions with microstructure, i.e. an
absolutely continuous, non-differentiable shear profile (for vanishing internal length L. = 0 and
zero Cosserat couple modulus p. = 0) which is energetically better than the (always possible
classical aligned) homogeneous response. Then we turn to the linear Cosserat model in simple
glide and rederive the analytical solution. The linear indeterminate couple stress-problem is also
included. Thereafter, a classical finite-strain Biot model (quadratic energy in the symmetric
stretch tensor U) is presented and specialized to simple-glide. It is shown that the shear-stress
response coincides with the finite-strain Cosserat model for specific boundary conditions.

This closes the analytical section and we turn to the numerical part where we investigate the
previous problems numerically with an eye on the influence of various boundary conditions for
the microrotations as well as the influence of the Cosserat couple modulus p. on the solution.
Further, by choosing a small internal length scale L. and by disturbing microrotations on the
edges of our sample, theoretically predicted and energetically better microstructure solutions
for simple glide can be observed. Thereafter we switch to the planar shear problem. First we
investigate the influence of boundary conditions on a two-dimensional beam structure under
shear and show that in this case the Cosserat model merely describes strong boundary layer
effects for Dirichlet boundary conditions on the microrotations. Following is a comparative



study of the linear and nonlinear planar shear problem for various parameters and boundary
conditions. We end this contribution by discussing boundary conditions on the microrotations
in the three-dimensional case and a conclusion. The notation is found in the appendix.

2 The three-dimensional Cosserat model

2.1 Problem statement in variational form

In [37] a finite-strain, fully frame-indifferent, three-dimensional Cosserat micropolar model is
introduced. The two-field problem has been posed in a variational setting. The task is to find
a pair (p,R) : @ C R®* » R® x SO(3,R) of deformation ¢ and independent microrotation
R € SO(3, R), minimizing the energy functional I,

I((pa R) = /me (RTVW) + Wcurv(RTDxﬁ) - 1_If (90) - HM(R) dv
Q

—/HN(ap) dS — [T (R)dS = min. w.r.t. (p,R), (2.1)

s Ie

together with the Dirichlet boundary condition of place for the deformation ¢ on I': . = gq
and three alternative boundary conditions for the microrotations R on T,

Ry, the case of rigid prescription,
R, = { polar(Vyp), the case of strong consistent coupling, (2.2)
no condition for R on I, induced Neumann-type relations for R on T'.

The constitutive assumptions on the densities are

Woa(0) = al| sym(@ — )| + pc | skew(D)[[? + 5 tr [sym(@ — 1)), (2.3)

g
2

Weury (R) = 2§ (1+L2|8]2)¢, U=R'F, F=Vp,

A=K DR := <RTV(R.€1),RTV(R.€2),RTV(R.Q;)) , curvature tensor,

under the minimal requirement ¢ > 1. The total elastically stored energy W = Wnp + Weury is
quadratic in the stretch U and possibly super-quadratic in the curvature £ The strain energy
Wmp depends on the deformation gradient F' = Vip and the microrotations R € SO(3,R),
which do not necessarily coincide with the continuum rotations R = polar(F'). The curvature
energy Weurv depends moreover on the space derivatives Dy R which describe the self-interaction
of the microstructure.! In general, the micropolar stretch tensor U is not symmetric and
does not coincide with the symmetric continuum stretch tensor U = RTF = VFTF. By
abuse of notation we set || sym &|| := Zle || sym &%||? for third order tensors K.

Here, Q C R? is an open domain with boundary 0Q and I' C 89 is that part of the boundary,
where Dirichlet conditions gq, Rq for deformations and microrotations or coupling conditions
for microrotations, are prescribed. I'g C 01 is a part of the boundary, where traction boundary
conditions in the form of the potential of applied surface forces Il are given with TN T'g = §.
In addition, T'¢ C 91 is the part of the boundary where the potential of external surface couples
Iy, are applied with TN T = @. On the free boundary 0Q \ {T UT's UT¢} corresponding
natural boundary conditions for (¢, R) apply. The potential of the external applied volume
force is II; and Il takes on the role of the potential of applied external volume couples. For
simplicity we assume

for the potentials of applied loads with given functions f € L2(Q,R®), M € L*(Q,M3*3), N €
L2(Ts, R3), M. € L*(Tc, MB¥3).

10bserve that B V(R.e;) # R" 04, R € s0(3,R).



The parameters p, A > 0 [MPa] are the Lamé constants of classical isotropic elasticity, the
additional parameter . > 0[MPa] is called the Cosserat couple modulus. For p. > 0
the elastic strain energy density Wmp(U) is uniformly convex in U. Moreover, for all F' €
GL*(3,R):

— —T . =T . -
Winp(U) = Wap(R' F) > min(p, pe) [|R° F — 1[|* = min(p, uc) |F — R||*

> min(p, re) Regl(fB %) IF — R||” = min(g, pc) dist* (F, O(3, R))

— min(y, 1) dist>(F, SO(3, B)) = min(u, ) || — polar(F)|
= min(p, o) U - 1. (2.5)

In contrast, for the here interesting limit case u, = 0 the strain energy density is only convex
w.r.t. U and does not satisfy the estimate (2.5).2 Despite the convexity w.r.t. U the problem
(2.1) is non convex in the joint argument (p, R).

The parameter L. > 0 (with dimension length) introduces an internal length which is
characteristic for the material, e.g. related to the grain size in a polycrystal. The internal
length L. > 0 is responsible for size effects in the sense that smaller samples may be relatively
stiffer than larger samples.> We note the coercivity of curvature

It >0 YRETE): Weur(R) >t |87, (2.6)

which is a basic ingredient of the mathematical analysis.

The non-standard boundary condition of strong consistent coupling ensures that no
unwanted non-classical, polar effects may occur at the Dirichlet boundary I'. Formally, it can
be obtained by setting u. = oo at the Dirichlet-boundary I'. It implies for the micropolar stretch
U|F € Sym and for the second Piola-Kirchhoff stress tensor S, := F~1D mep(U) € SymonT
as in the classical, non-polar case. In the following, we refer to the weaker boundary condition
U|F € Sym as weak consistent coupling. The reader should note that both weak and strong
consistent coupling boundary conditions require more smoothness than a priori implied in the
variational formulation in order to make sense mathematically.

It is of prime importance to realize that a linearization of this Cosserat bulk model with
e = 0 for small displacement and small microrotations decouples the two fields of deformation
¢ and microrotations R and leads to the classical linear elasticity problem for the deformation.*
For more details on the modelling of the three-dimensional Cosserat model we refer the reader
to [37].

2.2 The Boltzmann axiom

In the absence of external couples and for vanishing internal length scale L. = 0 taking free vari-

ations of Wy, (RTF) w.r.t. R € SO(3,R) generates an algebraic side condition (the remaining
balance of angular momentum equation). It reads

skew (Dﬁwmp {O) -UT) - 0. (2.7)

It is easy to see that this implies that the second Piola-Kirchhoff stress Sy(F,R) :=
F~'8,(F,R) = F~'Dp [me(RTF)] is symmetric. This is the Boltzmann axiom of
classical non-polar elasticity postulating that the second Piola-Kirchhoff stresses
and therefore the Cauchy stresses are symmetric. o . o

In a linearized setting, which can be obtained by writing R=1+ A+ ..., A € s0(3,R)
and ¢ = z + u(z) and neglecting higher order terms in the displacement gradient Vu and
the skewsymmetric infinitesimal microrotations A, the Boltzmann axiom implies for the
infinitesimal Cauchy stress ¢ € Sym, which in turn implies for y. > 0 that the

2The condition F € GL1(3,R) is necessary, otherwise ||[F — polar(F)||> = dist?(F,0(3,R)) <
dist?(F,SO(3,R)), as can be easily seen for the reflection F' = diag(1,—1,1).

3This is a common experimental observation.

4Thinking in the context of an infinitesimal-displacement Cosserat theory one might erroneously believe
that pe > 0 is strictly necessary also for a ”true” finite-strain Cosserat theory.



infinitesimal microrotations A € s0(3,R) coincide with the skew-symmetric part
of the displacement gradient Vu. This amounts to symmetry of the linearized strains
g=Vu-—A.

However, in the finite-strain case and for p. > 0, this consequence of the Boltzmann axiom
is not necessarily true. Consider e.g. the strain-energy density Wy,,(U) = p||symU — 1%
Then (2.7) amounts to

skew ((U +T" —21) UT) =0 & skew ((UT (- 2UT) =0. (2.8)

It is clear that for U € Sym (the classical non-polar situation of symmetric stretches), the
condition (2.7) is satisfied. However, the simple non-symmetric matrix

. 1
U=1{0
0

O =2

0
0, >0, (2.9)
1

corresponding to simple shear in e;-direction, also satisfies (2.8). Therefore, symmetry of the
Cauchy-stresses in a geometrically exact Cosserat continuum does not imply that
microrotations coincide with continuum rotations! This result might be compared with
a contradicting statement in [43, p.29]. As a consequence, when considering L. — 0 (limit for
large samples or homogeneous response) there is quite some freedom for rotations R satisfying
(2.7): they do not need to coincide with the continuum rotation polar(F)!

2.3 Classical angular momentum and indeterminacy of microrota-
tions

In a classical continuum, microrotations are absent of the formulation and remain therefore a
priori indeterminate: they cannot automatically be identified with the continuum rotations, see
Figure 3.14. The balance of angular momentum in the classical case is only a condition on the
symmetry of the Cauchy stresses. If it is intended that the yet indeterminate microrotations in
a classical continuum should nevertheless coincide with the continuum rotations, an additional
(coupling) condition must be supplied.

The apparent ambiguity of microrotations compared to continuum rotations in the finite-
strain Cosserat model with zero internal length L. = 0 suggests as well to look for additional
conditions on the microrotations (boundary conditions or side conditions), inde-
pendent of the chosen material parameters, which guarantee a unique homogeneous
equilibrium response for both fields of deformation and microrotations simultane-
ously provided a homogeneous response is possible at all. Possible candidates are the
consistent coupling condition or a first moment symmetry constraint, see Corollary
2.4. Both additional conditions determine the microrotations to coincide with continuum rota-
tions in a classical continuum model for homogeneous situations. In the Cosserat model they
imply more specifically for y. = 0 and homogeneous response that microrotations and
continuum rotations coincide. This will be a fundamental requirement for us. It should also
be noted that the additional conditions should be as weak as possible in order not to artificially
stabilize the problem.

Henceforth, we postulate therefore the

Definition 2.1 (Fundamental consistency requirement)
In homogeneous response microrotations and continuum rotations should coincide. |

2.4 Mathematical results for the Cosserat bulk problem

For conciseness we state only the obtained results for the case without external loads. It can
be shown [33]:

Theorem 2.2 (Existence for Cosserat bulk model with u. > 0)
Let Q C R? be a bounded Lipschitz domain and assume for the boundary data gq € H' (2, R?)

and Rg € Wh+P(Q,SO(3,R)). Then (2.1) with ¢ > 2 and either free or rigid prescription for



R onT admits at least one minimizing solution pair (¢, R) € H'(Q,R®) x W14(Q,SO(3,R)). ®

Using the extended Korn’s inequality, the following has been shown in [37, 35]:

Theorem 2.3 (Existence for Cosserat bulk model with p, = 0)

Let Q C R? be a bounded Lipschitz domain and assume for the boundary data ga € H'(Q,R?)
and Rq € W%9(92,S0(3,R)). Then (2.1) with ¢ > 3 and either free or rigid prescription for
R on T admits at least one minimizing solution pair (¢, R) € H'(Q,R®) x W14(Q,SO(3,R)). ®

Corollary 2.4 (First moment symmetry constraint)

The same existence results obtain for a geometrically exact first moment symmetry con-
straint fQ U dV € PSym instead of extra boundary conditions for microrotations, since the
constraint is closed under weak convergence of U. The constraint ensures that the average
Cosserat strain Kll_l Jo UV is a classical strain. [ |

3 The Cosserat model in simple glide

In order to elucidate the proposed nonlinear theory, notably the impact of boundary and side
conditions on the microrotations, and to be able to validate numerical results we consider
now the deformation of an infinite layer of material with unit height, fixed at the bottom and
sheared in ej-direction with amount v at the upper face. We impose the boundary conditions
9(z1,22,0) = (21,72,0)7, g(x1,22,1) = (z1 +7,22,23)T, 71,72 € R. The parameter v > 0 is
the amount of maximal shear at the upper face per unit length. The most general deformations
are of the form ¢(z1, %2, 73) = (21 + u(z1,23), T2, 23 + v(z1,23)7. Hence we look for energy
minimizing deformations of the form

Ty + u(wy, T3) L+ ug, (z1,23) 0 ugy(z1,73)
@(x1,$2;x3) = T2 ) VCP(l'la-'EZ;xIB) = 0 1 0 ’
x3 + v(z1,23) Vgy (Z1,23) 0 1+ wv,,(z1,23)
(3.1)
with u(z1,0) = 0, u(z1,1) = . The infinite extension in e;-direction implies that O, -

derivatives must vanish and from symmetry of the boundary conditions at the upper and lower
face, there is no reason for a displacement in es-direction either. Hence the reduced kinematics

z1 + u(z3) 1 0 o(z3)
p(r1,x2,23) = Za , Vp(z1,22,23) =F = [0 1 0 , (3.2)
T3 0 0 1

with u(0) = 0, u(1) = ~ suffices. The considered problem is therefore the exact formulation of
the simple glide in e;-direction with amount - at the upper face of a layer of material with
unit height, fixed at the bottom.

Accordingly, we assume microrotations R € SO(3,R) and corresponding infinitesimal
microrotations A € s50(3,R) of the type:

_ cosa(zsz) 0 sina(xs) _ 0 0 a(z3)

R(SEl,IL'z,JL'g) = 0 1 0 s A($1,$2,£If3) = 0 0 0

—sina(xzs) 0 cosa(zs) —a(zs3) 0 0
(3.3)

In the following we denote z3 by z. Since ||&]|? = ||R' DyR||?> = |D.R||? and
B —sina(z)a'(z) 0 cosa(x)a'(x)
DR = 0 0 0 =
—cosa(z)a'(z) 0 -—sina(r)a’(z)

IDR|]? = 2sin® a(z)(@)? + 2 cos® a(z)(@')? = 2[a' (z)|?, (3.4)



it holds that ||DeR||? = ||DcAl|? = 2 |@'(z3)/%.

We generally try only to find solutions for the microrotation angle @ : [0,1] — R satisfying
periodic boundary conditions @™ (1) = @™ (0),n € N and satisfying the symmetry
condition

1
a(l/2+2) =a(l/2-2), z€0,5], (3.5)
implying that @™ (1) = (=1)"@™(0). Thus @™ (1) = @™ (0) = 0forn =2k + 1,k € N.

Similarly, we assume periodicity for the displacement u in the form u'(1) = u/(0) and the
symmetry u'(1/2 4+ z) = u'(1/2 — z). Explicit calculation results in

o cosa(z) 0 cosa(z)-u'(z) —sina
R F= 0 1 0 ,
sina(z) 0 sina(x)-u'(z)+ cosa(x)
cosa(z) O wsnz)u g a(?'u’ (2)
—T
symR F = 0 1 0 ,
M%M 0 sina(z)-u'(z) + cosa(z)
@(z)-v'(z)—2sin@
. 0 o <o a(z)-u (:;) sin ()
skewR F = 0 0 0 . (3.6)
__cosa(z)-u'(z)—2sina(z) 0 0
2

Using a quadratic ansatz for the energy it is clear that our Cosserat model is physically mean-
ingful only for small microrotation angles &@. We apply therefore the restriction |[a| < § and
[u'| < 2 in the following.

Next we consider the first moment symmetry constraint for simple glide. It reads

1 fol cosa(z)dx 0 fol cosa(z) - u'(z) — sina@(z) dx
/ R(z)TF(z)dx = 0 1 0 € PSym. (3.7)
0

fol sina(z)dx 0 fol sina(z) - u'(z) + cosa(z) dx

Symmetry alone amounts to
1 1
0= / cosT() - u'(z) — 2sinT(z) dx = / cosa(z) [u'(x) — 2 tan ()] dx. (3.8)
0 0
Let £ € R? be an arbitrary constant vector, then positive definiteness of fol RTF dx amounts to

0< (€ ( / B P () dx) o - / (6 (Re)F(@)) £)ga e

3

1
- / (&, sym (B()TF(2)) £) s dx. (3.9)
0
For (3.9) to hold it suffices that locally sym (R(z)” F(z)) € PSym, which is true if
cosa(z) onalgurle) €PSym &
7“’5“(””2)'“ @) sin a(z) - u'(z) + cosa(x)

u'(:c)Q
4

cosa(z) >0, cosa(z)sina(z)u'(z)+ cos’az) — cos® a(x)

>0. (3.10)

! 2
The last inequality is equivalent to tana@(z) v'(z) + 1 — ﬂfL > 0. Hence if 0 < @ < § and
0 < u'(x) < 2 positive definiteness is satisfied.



3.1 The finite-strain simple glide Cosserat problem

The geometrically exact variational problem for simple glide3® with curvature exponent q = 2
is given by

1
/ pllsym R F — 1% + pe || skew B F|? + 20 L2[@ (z)? dx = min. w.rt. (u,@). (3.11)
0

u(0) =0, u(1) =~, Dirichlet boundary conditions for displacements,
a(0) =a(l) =ay, various rigid boundary conditions for microrotations,
0 = skew(R' F)o,1y & 2tana@(0) = u'(0), 2tana(1) = u'(1), |a] < =

2 b
weak /strong consistent coupling boundary conditions,

a'(0) =a'(1) =0, Neumann boundary conditions for microrotations,

1
0= / cosa(z) - u'(z) — 2sina(x) dx, first moment symmetry constraint . (3.12)
0

In terms of (u', @) the finite energy expression Whpite is given by

12 s 02— 2
Winite(u', @, @) = p | 2(cos@ — 1) + u? + % + 2(cosa — 1)sina v’
cos2au'” . , 9 21112
the| —5— —2cosasinau’ +2sin*@a | + 2u L7 @] (3.13)
9 u?  sin2au’? ,
=p|2(cosa—1)°+ > + — + 2(cos@ — 1) sinau

+ % cos’@[2tana — u']° + 2u L2[a@'|?.

Figure 3.1: Plot of the non-convex energy Wpite(u', @, @) (3.13) for u. =0 and L. = 0.

5Note that by the analytical results recalled in section (2.4) we already know that minimum energy con-
figurations in the finite-strain case exist for three types of boundary conditions: Dirichlet, pure Neumann and
Neumann with first moment symmetry constraint. In the one-dimensional case the coercivity |&’(z)|? is enough
to guarantee strong convergence of minimizing sequences of microrotations (sin ay,cos @) in the space of con-
tinuous functions due to Sobolev embedding theorems. These existence results, however, do not cover
automatically the consistent coupling condition.

6As we will see subsequently, it is a delicate matter to specify independent boundary conditions for the
microrotations @. Somehow it requires to know the solution of the boundary value problem in advance. In
this sense a classical rigid boundary condition is nothing but a first guess, perhaps useful as start value in a
numerical scheme.



Figure 3.2: Contour plot of Whnite for p. = 0 (left) and p. = p (right) with L, = 0. For
e = 0 one observes non-convexity of the local strain part of the energy (non-convex sub-
levels), while large . has a convexifying influence. Here, @, = arctan 3 and @3 = 2arctan
are the possible homogeneous microrotations for homogeneous macroscopic deformation v’ = ~
if u. = 0. Vertical lines are tangent to contour-lines in the points a; = 0, @z, as.

3.1.1 The finite-strain Euler-Lagrange equations

The equilibrium equations in the fully finite-strain case are obtained by taking free variations
w.r.t. (u,@). Balance of forces in the finite-strain case results from taking free variations
w.r.t. displacements u respecting the boundary conditions, hence

d 1
VoeCP(0,1,R) : 0= T /0 Whnite(u' (z) + t¢'(z),a(z), @ (z)) dx =

1
0= / [—pu”
0

— 2 ((cosa(z

—~

z) — p (2sin@(z) cosa@(z)a (z)u'(z) + sin® a(z) u” (z))

—sin’a(z)a'(z))

) )
— pe (—2cosa( (z) + cos® a(z)u" (z))
—2p, (—sin® a(z) @ (z) + cos” a(z) @ (z))] - pdx, (3.14)

— 1) cosa(z)a'(z

z) sina(z)a’ (z)u'

where we already performed partial integration and used the zero boundary condition for the
testfunction ¢ € C§°([0, 1], R). Balance of angular momentum is obtained from taking free
variation w.r.t. microrotation angles @. We have

Vda €C*([0,1],]0,2m)) :
0= %‘mo /0 Whnite(u' (z),@(z) + t §a(z),a (z) + t da' (x)) dx
= /0 —4p(cosa(z) — 1) sina(z) da(z) + g 2sina(z) cosa(z)u' (z)’ da

+ 2u(cosa(x) — 1) cosa(x) u'(x) da(x)

+ 2u(—sina(z) sina(z)u' (z)da(z) + 4u L2a (z)(6a)' (z) (3.15)
e (20055(”3) (2‘ SN A7) s 2) ! () — 2 cos () cos alz)da(z) u (z)

+2 sin a(x) sin a(z)da(z)u' () + 4sin a(z) cos a(z)da(z)) dx
= / " [—4 (cosa(z) — 1) sina(z) da(z) + sina(z) cos a(x)u'(w)2 da(x)
0
+ 2u(cosa(zr) — 1) cosa(zr) u'(z) da(x)

+2u(—sina(z) sina(z)u'(z)da(z) ]

10



+ pe [— cos@(z) sina(z)da(z) u' (z)° — 2 cosa(z) cos@(z)da(z) u' (z)
+ 2sina(z) sin a(z)da(z)u’ (z) + 4sin a(z) cos a(z)da(x)
—4p L2 (z)éa(z) dx + 4 L2 [@' (1) da(1) — @' (0) 6a(0)] .

Since the values da(1), da(0) can be chosen arbitrary, the last line shows that natural bound-
ary conditions for the microrotation angle & amount to @'(0) = 0, @'(1) = 0. The
complete equilibrium system in strong form reads then

0=u" [2p+ (1 — pc) cos®> @] + 2 (u — p.) sin@ cosaa’ v’
+ 2(p + i) [cos® @ — sin’ @] @ — 2pcosad force balance, (3.16)
0=pcosa (2(cosa — 1) + sinau') [u' — 2tana]

— st (—cos@ sin@ [2tana — u'] + 2) [u’ — 2tana] — 4u L2 o, torque balance.

The force balance equation (3.16), can also be written as

0=— [Tﬁnite(ul(w)aa(x))] ) Tﬁnite(ulaa) =Dy Wﬁnite(ulaa; al) )

dx

Thnite(u', @) = p (u' + sin® @u' + 2(cos@ — 1) sin@) — p. cos> @[2tana@ — u'] . (3.17)

Based on (3.16), the following estimate (independent of p. > 0) can be shown for weak solutions
of (3.16) with «' € L?((0,1),R):

1
/ [u"(s)|ds < K (14 [[a'[|2((0,1))) - (3.18)
0

Since for L. > 0 minimizers of (3.11) are weak solutions of (3.16) with v € H'((0,1),R) and
a € HY((0,1),]0,27)), estimate (3.18) implies that u € W21((0,1),R) c C*([0,1],R). Hence
u' is continuous up to the boundary and consistent coupling is justified.

Q|

Tﬁnite
. 5 a
400000 / ?
200000 : { —
(X‘Z
X /4
-200000 | Iy A“‘ W=y
~400000 15\ - 'oﬁ/ ] /oy, .
’ 45 /A ¢
15 ’ f/ &
o 1 05 0 :0‘5 \ /
151 u 5A -

Figure 3.3: 3D and contour plot of 7anite for . = 0. Force balance requires Tanite = const..
Balance of angular momentum for y. = 0 and L, = 0 requires additionally a(z) € {0,ay =

uléw) , @3 = 2arctan uléw) }.

arctan

3.1.2 Possible homogeneous solutions

Let us investigate in a first step the possible homogeneous solutions (u, @) of the coupled
system (3.16) for 0 < @ < ¥ and 0 < u' < 2. We observe that if the microrotation @ is
homogeneous, then the problem for the macroscopic displacement « is a homogeneous, strictly
convex minimization problem which implies that the homogeneous displacement u(z) = vz
is the unique solution of (3.16).” It remains to determine those homogeneous microrotation

"This homogeneous response u(x) = vz is the unique minimizer in simple glide for any strictly Legendre-
Hadamard elliptic finite elasticity formulation.

11



angles @ which are solutions of the balance of angular momentum equation. For u. = 0 equation

(3.16), corresponds for homogeneous @ to
0= —4p(cos@ — 1)sina + p sina@ cosa (u')?
(3.19)

+2p (cosa — 1) cosa@ (u') — 2u sina sina (u') .

For |u'| < 2 and for |a| < %, this equation has no solution for @ with cos@ = 0, therefore we
may divide by cos@ to obtain (in the homogeneous case: u' = ) after rearranging
(3.20)

0=[2(cosa—1) +sina(u)]-[(u") — 2 tana]

Equating again to zero the two brackets the first solution is obviously given by @ = @; = 0.

The second solution is as = arctan % For a third solution note the two well-known relations
a a
(3.21)

. . o
sina = 2sin — cos
2 2

1
—(1 — cos@) = sin? 50

Equating to zero the first bracket in (3.20) is equivalent to
(3.22)

1
= sina = 5(1 —cosQ).

|

|

Using (3.21) on both sides, we obtain
- 2singcos— —sin2§ = z_sin% —tang (3.23)
4 2 2] 2 2 cosg - 27 )
Hence, the third solution is given by @3 = 2 arctan 3 = 2ap.
11 1/2(1-cos(@))

o

N4

sin(ct)/4

Figure 3.4: Graph for (3.22) with v = 1.

(3.24)

Altogether,
a1 =0, ay= arctan%, a3 =2 arctan%.

Each of these three possible homogeneous responses corresponds to physically distinguished

situations. For general p, > 0 it can be seen that three distinct homogeneous solutions of
it only @, survives, see Figure 3.5.

(3.16) cease to exist if . > pSit. For p. > p

12



03_6 e/ 1
W)/ 0.012
g )
0212 > 0ot ) /1
. 3(}/§0 //// |
2) s o 0.008
- / =03 0,006
0.1 e %LO=02) 04
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Figure 3.5: Solution for various p./p of the finite-strain torque-balance equation (3.16), for

homogeneous situations ' = + and applied shear v = 0.1, v = 0.2 and v = 0.3. Three
. . . — : : rit Tit _ 44922 it
distinct solutions for @ cease to exist if p. < p&™* = ps™(y) = p BV For p. > ps

only @ = arctan 7 survives as homogeneous solution. A typical pitchfork bifurcation at
pctt, This implies that in order to guarantee a unique microstructure homogeneous
response of the finite-strain Cosserat model in simple glide for arbitrary applied
shear v > 0 (large) one must take u, > p, provided no extra conditions on the
microrotations are specified! Similarly, if three homogeneous solutions should exist

for arbitrary applied shear v > 0 (small), one must take yu. = 0.

B/ u B/ u
0.8 13
: crit ] crit
] / 0.8 /
0.6 Ko (D)/ 1 : He (V) /1
] 0.6
0.4 7
1 04'_
0.2-: 021
0- T T T T 1 Y 0- T T T T T 1 Y
2 4 6 8 10 20 40 60 80 100 120

Figure 3.6: uc™/u of the finite-strain torque-balance equation (3.16), for homogeneous situa-
tions u' = v and various (large) .

3.1.3 Physical interpretation of different homogeneous response

Now we try to interpret the previously obtained non-uniqueness of the homogeneous solution
in terms of assumed substructure properties.

13
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e

2 h=1

Iy h 4

Figure 3.7: Graph for @;,as,@3. Homogeneous macroscopic deformation u(z) = vz and ho-
mogeneous microrotation @(x) = arctan 3 should constitute the classical aligned homogeneous

response.
1 &

A 2
7 &

£
4

Figure 3.8: Different possibilities of the Cosserat problem (3.16) to realize homogeneous re-
sponse. Left: Visualization of continuum deformation F (ellipsis) and microrotation @; = 0
corresponding to no rotation of the substructure. The "underwinded” case. Thinking in terms
of a granular assembly the individual grains would be non-cohesive. Middle: Assumed verti-
cal substructure (represented by broken lines) must tear up to follow this deformation. Right:
Assumed vertical beams of a substructure must bend to follow this deformation. Note that clas-
sical continuum theory does not control angular momentum for these beams (and they would

not be in angular equilibrium).

Figure 3.9: Different possibilities of the Cosserat problem (3.16) to realize homogeneous re-
sponse. Left: Visualization of continuum deformation F (ellipsis) and microrotation @s =
arctan 7. Microrotations are aligned (coincide) with continuum rotations. Note that the
continuum rotations themselves differ from the homogeneous deformation. Middle: Assumed
vertical and horizontal substructure must tear up to follow this deformation. Right: Assumed
vertical and horizontal beams of a substructure must bend to follow this deformation. Here,

beams would be in angular equilibrium.
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The right beam solution in Figure 3.9 represents the only solution in terms of a restricted in-
terpretation of the Cosserat model as a beam model, which does not tear up and which satisfies
in addition angular equilibrium in the knots. However, it has to be realized that the Cosserat
model is strictly more than a homogenized description of a beam structure, e.g.
allowing for discontinuities in the assumed beam structure and the microrotations cannot nec-
essarily be identified with the rotations of the substructure. The next picture shows that the
curvature energy acts like torsional springs between different material points: only gradients in
microrotations are taken into account.

Figure 3.10: Left: Torsional springs (with spring parameter p L? > 0) inter-connect microro-
tations in the Cosserat model (note the distinction to beams). Middle: Under gradients in
microrotation torsional springs begin to act and curvature effects take place. Right: Cosserat
theory ensures equilibrium in angular momentum for these springs.

We are faced with the question whether u. > 0 can prevent the previous tearing up as
observed in Figure 3.9. The parameter p. > 0 can be interpreted as an additional elastic spring
connecting microrotations and continuum rotations.

Figure 3.11: Left: Additional elastic springs corresponding to p. > 0 connect microrotations
with continuum rotation. Right: In simple glide this p.-connection leads automatically to the
right continuous beam solution from Figure 3.9.

Figure 3.12: Left: For u. = 0 the direct connection between microrotations and continuum
rotations does not exist. Right: In simple glide u, = 0 allows the discontinuous beam solution
from Figure 3.8 or 3.13.

15



Figure 3.13: Different possibilities of the Cosserat problem (3.16) to realize homogeneous re-
sponse. Left: Visualization of continuum deformation F (ellipsis) and microrotation @z =
2 arctan 2. The ”overwinded” case. Difficult to interpret physically. Middle: Assumed hori-
zontal substructure must tear up to follow this deformation. Right: Horizontal beams of an
assumed substructure bend to follow this deformation. Once more, these beams would not be
in angular equilibrium!

Figure 3.14: The classical continuum case in which microrotations are a priori indeterminate
because they do not explicitly appear. In order to determine the microrotations nevertheless,
one needs to supply additional constitutive requirements. We propose consistent coupling or
the first moment symmetry constraint. This determines the microrotations to coincide with the
continuum rotations for homogeneous response, the ”aligned” solution.

»
»

4

Figure 3.15: Macroscopic simple glide can be generated by different microscopic mechanisms:
here ”deck of cards solution” corresponding to plastic slip along horizontal glide planes. Dis-
locations pile up along the glide planes. The ”substructure” does not rotate at all - this would
suggest @; = 0 in the Cosserat model.
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3.1.4 Shear stress response

In the finite-strain case, we evaluate the generated tangential shear stresses 7 at the upper face
where maximal shear occurs. They are given as

Tfinite = (Sl (F(1)7R(1))'e3761)
= (R(1) (2 sym(R(1)TF(1) — 1) + 2p skew(R(1)TF(1))) .e3,e1) . (3.25)

For consistent coupling conditions, the homogeneous deformation u(z) = «y z and tan @(0)
tana(z) = 3 is always a solution and leads to a nonlinear, strictly monotone shear stress
response at the upper face with

TSRS hOm — ' (1) + psin® @(1)u' (1) + 2usina(1) (cosa(l) — 1)
= wy + psin®(arctan %) v + 2 sin(arctan %) (cos(arctan %) -1).

x
1+z2

) and arctan(z) = arccos( 1i$z)

Using the well known relations arctan(z) = arcsin(
shows

2 _
conshom _ L py® L=V (V4+7 1) 3.96
Tanite | = HYF 11 172 R e e (3.26)

180 1 cons, hom
160 1 finite

ot

0 0.1 0.2

A . . cons,hom
Figure 3.16: Difference of 7, ..~

t0 linear solution Tyman = 1. Thne |, o, = 20099.2562.

It is obvious that for the consistent coupling condition and the Neumann-problem with
first moment symmetry constraint, the homogeneous response with ”aligned” substructure is
the only possible homogeneous solution of (3.16) while the pure Neumann-response permits
three homogeneous solutions. For the finite-strain problem (3.16), at this point, we do not
know whether the classical homogeneous response for Neumann with first moment symmetry
constraint or consistent coupling condition for all g, > 0 is the only one possible or realizes
the minimum energy. It may be that inhomogeneous equilibria exist! In order to approach this
problem analytically, we investigate a simplification in the following.

3.2 The partially reduced Cosserat problem in simple glide

We consider a fourth order reduction of the energy and introduce for small microrotation
—2 —3 .
angle @ the approximations cosa@ ~ 1 — %, sina ~ @ — ;. Keeping terms up to order

four in the energy density (3.13) we get a reduced energy density expression W,eq

_ 1+a o at _ o\ a®u? 2. at
Wred(u',a,a')z,u( 5 u'+7—a3u' + 2/, 5 -@ —— +§a3u'—?

+2p L2 |? (3.27)
1 —2 —4 ! ! —2

=pu ( +2a u'” + % —a3u’> + 24, (% —a) [(% —a) - % (3u’—2§)]
+2u L2 ?.
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Figure 3.17: Contour plot of Wieq (3.27) for p. = 0 (left) and p. = p (right) with L. = 0.
Similar observation as in Figure 3.2: for u. = 0 the energy Wieq is not convex and large
ie has a convexifying influence. Close quantitative agreement of Wieq with Wapite in the
considered range of parameters. For u. = 0 possible homogeneous solutions for microrotations
are a°™ = 0, @5°™ = 7 or @™ = 1.

The minimization problem based on Wieq is coercive w.r.t. @ € L*((0,1),R) only if 3u —
dpe > 0 (u = p. excluded). In this case minimizers u € H'((0,1),R) and @ € H'((0,1),R)
exist.

3.2.1 The reduced finite-strain Euler-Lagrange equations

The corresponding equilibrium system may be obtained by free-variation of Wieq w.r.t. u
and @. The result coincides with the simplification of the two equilibrium equations in (3.16)

. . . p— =2 . p—
based on Whpite by considering the second order expansions cosa(xz) =1 — % + ..., sina =
2 )

a— %3 +...and keeping terms up to order three in the variables (u',@). The corresponding
weak consistent coupling condition is obtained by setting formally p. = oo at the boundary
and requiring that the reduced energy W, eq remains finite there. This implies the reduced
consistent coupling condition

2tan@(0) =4'(0) = 2a(0) ='(0),
2tana(l) =4'(1) = 2a(l) =d'(1), (3.28)

which coincides in fact with a simple linearization of the boundary condition.® The reduced
Euler-Lagrange equations in strong form read®
0=y 4 2p—pJ@ale’ o (—4ue = 3p) a’a' 2pca
=u - ’
p(l+a%) +pc(1-a)  pl+a) +pe(l-a%) pl+a®) +p(l-a%)

1 1 3 1 2 !
0=y (—a3 + o’ — Zazu’ — Lia”) — Ye (Zau’z + @ —atu + (% - a)) ,

2 4 3
u(0) =0, u(1) =, Dirichlet boundary conditions for displacements, (3.29)
a(0) =a(l) =ay, various rigid boundary conditions,
2@(0) = u'(0), 2@(1) =u'(1), reduced consistent coupling,
@'(0) =a'(1) =0, natural boundary conditions,

0= / 2a(z) —u'(xz)dx, reduced first moment symmetry constraint .
0

8This does not coincide with a third order approximation of the nonlinear consistent coupling condition! For
us the variational structure is primordial. The same comment applies to the reduced first moment constraint:
a simple third order reduction would be inconsistent with the possible homogeneous solutions for y. = 0 and
Le = 0.
3
gtanw:x+%+...
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Based on (3.29), and the coercivity requirement 3y —4u. > 0, the following estimate (indepen-
dent of p. > 0) can be shown for weak solutions of (3.29) with «' € L?((0,1), R):

1
/ ' (s)] ds < K (1+ @ lz(0y)) - (3.30)
0

Since for L. > 0 minimizers of (3.27) are weak solutions of (3.29) with u € H((0,1),R) and
a € H'((0,1),R), estimate (3.30) implies that v € W2!((0,1),R) C C'([0,1],R). Hence v’ is
continuous up to the boundary and consistent coupling is justified also for the reduced
model.

Observe that the ”aligned” homogeneous deformation remains a solution of the reduced sys-

tem for reduced consistent coupling and reduced first moment symmetry constraint if and only
if p. = 0.1°

Q|

0.2 ]
0.18 W

0.16
E —— reduced theory

------- finite theory

0.14 - i
0.12 3 !

0.1 --------------- b
0.08
0.06
0.04

0.02 -
] M/ 1
0 0.002 0.004 0.006 0.008 0.01

Figure 3.18: (Bifurcation diagram of homogeneous response) Solution for various p./p of the
finite-strain torque-balance equation (3.16), compared with the reduced torque-balance equa-
tion (3.29), for homogeneous situation u’ = v and v = 0.2. Choosing . &~ uc"'t shows that the
finite-strain aligned homogeneous solution @, = arctan 3 ~ 7 is not stable under approxima-
tion; this highlights again the critical influence of . > 0 on the model, compare with Figure

3.30

It seems to be natural to require that the solution of the reduced coupled boundary value
problem (3.29), notably the shear profile microrotation angle @, is in fact independent
of the shear modulus p as it is the case in classical finite-strain elasticity or linear elasticity.
This condition can only be met with p. = 0.

For p. = 0 the system of balance equations (3.29) reduces further to

2aa 3a’a’ d
0= '— ”<:>0:_r ! , o ) red — _33
1+_2u 1+a2+u dX[Ted(u(x) a(2))], Trea =p (v +@u —a%)
1_ .2 3
0= au'” — o’ - Lia", 3.31
3 T3 T ° (3:31)
u(0) =0, u(1) =, Dirichlet boundary conditions for displacements,
a(0) =a(l) =ag, various rigid boundary conditions,
2a(0) = u'(0), 2@(1) = u'(1), reduced consistent coupling,
@'(0) =a'(1) =0, natural boundary conditions,
10The factor of uc in equation (3.29), cannot be factorized w.r.t. (— —@). This means for pic > 0 that @ = J

is not anymore a homogeneous solution, see Figure 3.18.
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Figure 3.19: 3D and contour plot of 7yeq for g, = 0. Lines a; =0, @y = “7’ and @3 = u'. The
balance equations for y. = 0 and L. = 0 require 7yeq(u', @) = const. and @(z) € {0, u’éw) ,u'(z)}.
Homogeneous solutions are not necessarily unique and equilibria are not necessarily homoge-

neous!

Using (3.31), and Neumann conditions for @ implies 0 = fol S@—u)(@— %’) dx which
does not coincide with the first moment symmetry constraint. In this sense, the first moment
symmetry constraint is an independent condition.

3.2.2 Microstructure solutions for L. =0

To gain more insight, we try to construct solutions to (3.31) for the the limit case of vanishing
internal length L. = 0, disregarding the possible boundary values for @ in a first approach.
We call this the case with ”free rotations” since the curvature terms are not involved. In any
case solutions will satisfy 7yeq(u',@) = const. Let us integrate the first equation of (3.31) at
given @(z) by means of the variations of constants formula. This shows that for v’ > 0

2a(tya’ (t) T Qq=2—I 25 ()5 (s)
u'(z) =e > H'taz(”t a. (UI(O) + 730‘ a(t) efot 1432 (s) ds) dt

o 1+a%(t)
_1+a’0) [, [@®(2) —@®(0)]
= e (MO ) (332

The last equation is the integrated form of the force balance equation. This equation does
not imply that «' is continuous if @ is not! The Dirichlet boundary conditions for u imply the
additional integral condition

F1+a%(0) [@°(x) —a*(0)]
e (O e

'y—Ozu(l)—u(O):/Ol u'(x)dx:/o ) dx. (3.33)

The second (now purely algebraic) equation of (3.31) (in fact the reduced Boltzmann-axiom

(2.8))

_1—3 1_ 12 3—2 1
0= 2a +4au 4a u =

| Ql

ul
(@—u') (a - 5) , (3.34)
can be solved locally for @(z) at given u'(z). The three distinct solutions @ are given by

a(z) € {0, @, u'(z)} (cf. @1, @2, @3 in (3.24)). (3.35)

For z € (0,1), reinserting the restriction (3.35) into (3.32) shows that we have locally altogether
only two different values for v'(z) at our disposition, determined by three equations (two
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coinciding)

u'(z) insert a(z) =0
[1+@(0)]w'(0) —@°(0) = { w/(2) + Lu'(w)®  imserta(w) =¥ . (3.36)
u'(z) insert a(z) = u'(z)

Taking @(0) = 0 or @(0) = «'(0) leads to const = «'(0) = v/(z) for all z, hence the classical
macroscopic homogeneous response. In order to generate a non-trivial response we choose
u'(0), @(0) such that the left hand side is

[1+a%(0)] v (0) —@®(0) =vy+4F, &t >0. (3.37)

The value t > 0 will be determined subsequently. Satisfying now the reduced consistent
coupling condition @(0) = ”T(m in (3.37) implies that u'(0) + § u'(0)® = v+ 6% and (3.36) turns

for u'(z) into two possible conditions

u'(z) with @(z) =0
+6t = "y - 3.38
7 {u'(w) + %u'(m)3 with a(z) = = gz) (3:38)
In a first approach we determine the values of 4’ in the "symmetric” form
, v+ 6t
= , 3.39
(@) {7 o (3.39)

such that the second value u' =y — 1 is also satisfying (3.38). Therefore 6T > 0 is the unique
real solution of the equation

(y=d0")+ %(v—6+)3 =y+d". (3.40)

This equality ensures that the stress 7req is constant, while ' and @ need not be constant.
Writing 6+ = ¢t - v instead, yields equivalently

4 2
(1-c*)? = (—) ct. (3.41)
Y
+ 2 +
0.14 1 d'(y) 1 8 (7)
0.12 1 . ;
0.1 c(v) E
0.08 1 13 C+(Y)
0.06 3
0.04 § ;
0.02 v ] v
0 1 2 0 10 20 30 40 50

Figure 3.20: Graph for ¢ () and §+(v) for small v (left) and large v (right).

For v — oo we have 67 (y) — v, ct(y) = 1 and 6t = §*(y) is a monotone increasing
function of . This implies

oy J =7+t ()
wie) = {71=7—5+(7) ’ (3:42)

and notably u'(0) = v — d*(y) = 71. Now consider the four straight lines

vi(z)=mz, v(z)=mnz+(y-—m), v@) =77, @) =rr+(y-"7). (3.43)
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The lines v; and vy intersect at z = % the same for vy and vs.

A family of weak solutions of (3.31) with L, = 0 and @(0) = uléo), u'(0) = y— 6T is
given as a continuous combination of piecewise affine functions with slopes parallel
to v;,i = 1,...,4, satisfying 4(0) = 0, u(1) = «. This is the expected microstructure. The
constructed displacements u are absolutely continuous, but do not belong to H2((0,1), R).
The microstructure family and the classical aligned homogeneous solution (&' = 0, v = 0)

both satisfy

u'(m) 1+ 62 (0) (u'(O) + [631('2)_ ;263 (0)]

) and Treq(u', @) = const.,

1 +a%(z) 0)
1 1
0= 563 + Zau'2 - 2621/, (3.44)
u(0) =0, u(1) =+, Dirichlet boundary conditions for displacements,
2a(0) = 4'(0), 2a(l) =u'(1), linearized consistent coupling,
a'(0) =a'(1) =0, pure Neumann boundary conditions .
Any symmetric solution (3.5) w.r.t. = 1 must have (1) = ulél), u'(1) =y — &1 and satisfies

the linearized consistent coupling condition. Symmetry, however, is not enough to single out
a unique response. We may consider different solutions, e.g. that one which has the least
number of weak discontinuity points. It is given by

(y=6") 0<z<}-1% = 0<a<i-t
+ —
u(x) =< (y+ )z — & 3-1<3+51, @) =40 . 1-1<3+1, (345
(v=0H)z+6t L+3<z<1 7 lylce<t
showing the (expected?, sharp) S-type symmetric shear profile.!! 12
X3
Y |
> U

Figure 3.21: Left: Constructed family of equilibrium microstructure solutions (3.43) in simple
glide for . = 0, L, = 0 under reduced consistent coupling conditions and for pure
Neumann-conditions since @' (0) = @'(1) = 0. Right: Point symmetric microstructure with
least number of weak discontinuities (3.45) and expected regularized profile for L, > 0 with
linearized consistent coupling. Slopes of v; are magnified.

For this solution of the reduced formulation we evaluate the generated shear force response
at the upper face. They are

Tred = D Wrea(w'(1),@(1), @' (1)) = p (u'(1) + @ (1)u'(1) —@°(1))

=u (u'(1)+ (@) W' (1) - (@)3) . (3.46)

'The constructed solution satisfies the reduced Boltzmann axiom yet the solution does not coincide with the
classical homogeneous solution.
12Taking @ = u’ = v + 61 instead of @ = 0 will give a higher energy and is therefore excluded.
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This implies for the homogeneous and the microstructure solution (3.45), respectively

n; m 1 ns,micr
Traa "= (1427 e = p ()Y, (3.47)
with ¢t (y) € (0,1) from (3.41). This result suggests (cf. Figure 3.22) that the response with
microstructure due to free rotations is always weaker (energetically favourable) than the
still possible homogeneous response.'?

T
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Figure 3.22: Difference of 7°oshom
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Feopsmicero? - — 90049.6287.
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and Trq C T ™, = 20100 and

Whether the ”symmetric” microstructure solution represents a minimizer under reduced con-
sistent coupling conditions is not immediately clear. To investigate this let us compare the
corresponding energy levels. It holds

hom () ' o (x),a(z),a (2))dx
wa—ﬁmm(»<»<w|

_ /0 i (w (W'(2))? + %‘”)4 —a(2)? u'(x)) dx,

1 72 ,.y4 i 5 72
S PR "
L2 (y) = [ Weea(' (@), 0(0), @ (2)) dx
= / Wred(u (.’L‘), a(flf), a’(x)) dx + Wred(ul(m); Ot(ib‘), _I(x)) dx
u —'yl,az'%1 u' =72, a=0
o[ @@ Vi,
=3 [E(U () [1 - ”ul_v_ﬁ +5 5w @) ]ul:%H

RS

(wwﬂuﬂﬂq

16 + (u'(a:))ful:wﬁ) ) (3.49)

|u'=-y—5+

Figure 3.24 shows that the ”symmetric” microstructure with least number of weak disconti-
nuities energetically already beats the homogeneous solution. Let us consider also another,
geometrically different equilibrium-microstructure solution. Consider the parallelogram given
by (3.43). Choose a number n € N and subdivide the edge starting with v; in n + 1 equal parts
and subdivide the other edge consisting of a part of vs into n equal parts. Draw a correspond-
ing grid covering the parallelogram. The ”lamination” solution is a continuous curve having
alternating slopes in each box, starting and ending with slope v; = v — T, i.e. parallel to v;.

13The weak discontinuities inherent in this microstructure might be seen as a precursor to fracture. The
road to fracture starts with homogeneous solutions, which turn into smooth inhomogeneous solutions u € H?,
which degenerate into solutions with weak discontinuities w € H! \ H2, which finally fail along glide planes with
ug Whi,
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.
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Figure 3.23: Macroscopic simple glide can be generated by different microscopic mechanisms:
here periodic elastic ”lamination” of layers. The homogeneous solution is a pointwise limit of
the lamination response as the number of laminates tends to infinity. It is clear that a numerical
algorithm with L. > 0 has difficulties to find this lamination equilibrium solution for L. = 0:
the homogeneous response with curvature seems computationally to be locally stable.

The corresponding energy level of the lamination solution is given as
1
1 0) = [ Waa(w'(@),(0).0' (@) dx

= / Wriea (v (z),a(z),a (z)) dx + / Wiea (v (z),a(x), @' (x)) dx

~

—. - v—
u'=71,0=5 w=2,a=0

-1 [g(u'(m))z [1 + %”w:wﬁ 5 [y

= £ ((u«z))z [1 + %] + (w(x))fn,zw) . (3.50)

|u'=‘y—5+
In effect, as far as energy levels are concerned, all members of the ”symmetric” microstructure

response have the same energy level. We observe that the graph of the lamination solution is
pointwise arbitrarily close to the homogeneous response for n — oo.

hom 0 02 04 06 08 1 12
_ I —_— N L , L L L ) fY
80000 7 o
] icro,b -1000 Imicro,b Ihom
1 Imlcm’ red T 1 red
60000 ] red 2000
40000 -3000
] -4000
20000 -5000 e
1 lin
-6000
0 02 04 06 08 1 12 v
Figure 3.24: Left: I"™ and I;‘el:fm’l’ for various y are very close. Right: Difference of I"™ and
I;::fm’b. The microstructure response energetically beats the aligned homogeneous response!

Ihom(y = (.2) = 2005, ™ (4 = 0.2) = 2002.487592 and 2™ (y = 0.2) = 2000.

lin

The construction to obtain microstructure solutions can be generalized by giving up the ”sym-
metry”, i.e. by splitting 6 into to different values J; and J» such that v’ is allowed to take the
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two values v — §; < v + d2.1* The corresponding energy is then given as

Il,'jed — I ( 62 (ul(x))2 [1 + M] + 61 (u'(x))2 ) 7 (3.51)

5 01 + 02 16 01 + 02

lur=y—61
where > is chosen such that

(+8) = (=) + (=) (352)
replacing (3.40). The parallelogram construction in conjunction with (3.52) demands 0 < 01 < 7y
and 0 < J2. Choosing 01 and d2 appropriately it is possible to beat the homogeneous response
and be also better than the ”symmetric” microstructure. The infimum of the energy levels of
Ife 4 in the admissible range for §; and &, is given by Ij}°™ = /ﬂ;, see Figure 3.25. The infimum
energy level is realized, however, only as solution of the minimizing (non-aligned) homogeneous
Neumann problem, i.e. as u(z) = vz and @(z) = 0 or @(z) = v'(z) = 7. Both minimizing
(non-aligned) homogeneous Neumann solutions do not satisfy consistent coupling (nor the first
moment symmetry constraint). The reader should note that the microstructure solution inci-
dentally also represents an equilibrium under pure Neumann conditions (@ is constant at the
boundary). Hence, while consistent coupling allows for non-trivial equilibrium solutions it is not
stable w.r.t energy minimization! There do not exist energy minimizers for consistent
coupling with u. = 0 and L. = 0. After all, this is not surprising since the energy Wy eq
is not convex in the joint argument (u',@) and the consistent coupling condition requires a
higher level of smoothness for the evaluation of u' at the boundary than implied a priori in the
variational formulation.

1" =2005
2004
2003
2002
2001

" =2000

5,

0 . ey . .51
0.0002 0.0006 odsT\\\
-0.0002

Figure 3.25: Graphics for v = 0.2. Above: IP°™ and Ifed
(3.52) for &2 as function of §; and 7.

for various §;. Below: Constraint

Remark 3.1 (Pure Neumann conditions with first moment symmetry constraint)

For . =0 and L. = 0 it is easy to see that one has only three possible homogeneous solutions
for (3.44) of which only &y = 3 satisfies the first moment symmetry constraint. The same
holds for consistent coupling. However, both sets of additional conditions do not single out
a unique overall response: inhomogeneous equilibria exist for consistent coupling and first

4 This is not in conflict with the symmetry requirement (3.5).
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moment Symmetry constraint. For the first moment symmetry constraint, the microstructure
construction can be generalized to satisfy fol a(r)dx = 7. We cannot presently answer the
question whether for p. = 0 and L. > 0 the classical aligned homogeneous response is the
(unique? local?) minimizer for both conditions. In any case, choosing L. > 1 large will
favour a constant microrotation angle @ and should therefore provide at least a potential well
around the classical ”aligned” homogeneous response. The computational results in Figure 3.26

indicate non-trivial minimizing solutions for consistent coupling conditions.

X
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Figure 3.26: Non-trivial ”microstructure” solutions for small L. showing higher oscillations in
@ as L, gets smaller. The numerical solution is triggered by disturbing the faces with ag = 0.05
and requiring nevertheless consistent, coupling.
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Figure 3.27: Non-trivial microstructure solutions for small L. caused by disturbances on faces.
Apart from a boundary layer the numerical response is consistent with the lamination solution
in Figure 3.23. Here, Au = u(x) — v .

3.3 The linearized Cosserat problem in simple glide

Now we contrast the nonlinear development with a similar analysis of the infinitesimal linear
elastic Cosserat model with necessarily u. > 0. This problem with a view towards the descrip-
tion of boundary layer effects has already been discussed in [10]. First, we recall the variational
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formulation in the infinitesimal case:

1
/ pllsymF — 1||? + p || skew F — A||* 4+ 2p L2@' (z)|* dx = min. w.rt. (u,@),
0

u(0) =0, u(1) =+, Dirichlet boundary conditions for displacements, (3.53)
a(0) =a(l) =ay =@y, various rigid boundary conditions,
0 = (skew(F) — A) 013 & 20(0) = '(0), 2a(1) = u'(1),

linearized comnsistent coupling boundary conditions,
a'(0) =a'(1) =0, natural boundary conditions,

1
/ a(r)dx = % , linearized first moment symmetry constraint .
0

The corresponding system of balance equations is given by

u"(z) = 22 @ (z) = 2N @ (),

Mt phe
_ _ u'(z
pLia" (z) = pe (a(w) - é )> : (3.54)
u(0) =0, u(1) =, Dirichlet boundary conditions for displacements,
a(0) =a(l) =ay, various rigid boundary conditions,
2a(0) = u'(0), 2a(1) = u'(1), linearized consistent coupling boundary conditions,
@'(0) =a'(1) =0, natural boundary conditions,

1
a(z)dx = 7 , linearized first moment symmetry constraint ,
0 2

with the traditional Cosserat coupling number N2 = E"_ﬁ—u The force balance equation can
also be written as

0= lroman W/ (@), T, Toman (0,3) = (1 1) o = 2. (3.55)
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Figure 3.28: 3D and contour plot of 7gman for g, = p.

The corresponding infinitesimal energy expression Wy, in terms of ' and @ is

L ’U,I2 ’U/IZ B B _
Weman (v, @, @) = p = + pe (7 —2a-u + 2a2> +2u L2|a'|?

u'? u’ 2
=h + 2u. (5 —a) +2u L@ ?. (3.56)
Remark 3.2 (First moment symmetry constraint in the linear case)

In the linear case with u. > 0 the first moment symmetry constraint is not an independent
requirement but is a consequence of (3.54), and natural boundary conditions on @&. Ounly for the

degenerated classical linear case with u. = 0 this is a constraint which singles out the aligned
homogeneous response.

27



Inspection of (3.54) immediately shows that u € W21((0,1),R) c C*([0,1],R) ifa € H'((0,1),R),
hence consistent coupling is well defined, also for other Dirichlet-data on u.

=
ﬂg’o

T
e

X

I W

Figure 3.29: Contour plot of Wyman (3.56) for pu. = 0 (left), p. > 0 small (middle) and p. = p
(right) with L. = 0. For p. = 0 the energy Wyman is independent of @ and the microrotations
are left indeterminate. W, is uniformly convex for u. > 0. Vertical lines are tangent
to contour lines in a unique point if g, > 0. For p, = 0 but L. > 0 the microrotations are only
determined up to two integration constants. Both consistent coupling and the first moment
symmetry constraint determine @ = 7, while rigid Dirichlet-data @q = 0 sets @ = 0. Pure
Neumann conditions leave one additive constant free, as usual.

Q|
Q|
R

AN

a
0.2 — = linearized theory
1 - — finite theory
1 Y
] ;
1 y/2
0.1
L 3 arctan(y/2)
; : /
0 0.005 oo1 M

Figure 3.30: Solution for various ./ p of the linearized torque-balance equation (3.54) for homo-

geneous situations v’ = and v = 0.2. For . = 0 the microrotations @ remain indeterminate
(vertical axes).

3.3.1 Unqualified uniqueness for u. >0

The second derivative of the energy Wyman in the infinitesimal case for p. > 0 w.r.t. (v',@) is
given by

(Ow)’

DYy Waman (u', @).((8u, 5), (Su, 6)) = pu|(0u)|” + 4y |

(“;”I)Q — (0u)' da + (da)?

— oal? + 4 L?) (53 |

= 1|(Gu)'|? + pe

+4p Le|(0a)'?

using Young’s inequality we obtain (3.57)

24, _ _
> | (@)’ + pel (0u)'|* = == 1(0w)'|” + (4p1 — 2pe2) (68)” + 4p L2|(53)'|”

2
gc) |(6u)'* + 2pc (2 — €)(630)* + 4p LZ| (63)'?

2
taking 2N? = o
w+

= (B + pe —

< € < 2 yields for some positive constant ¢t > 0
C

>t |(6u)'” + ¢t (6a)* + 4p L7] (6a)'|?,
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which shows, after integration on (0,1) and using Poincare’s inequality for du, that for classi-

cal Dirichlet boundary conditions on the displacement u and for linearized consistent
coupling conditions or classical rigid Dirichlet boundary conditions or pure Neu-
mann conditions the solution (u,@) of the infinitesimal Cosserat problem is unique
for p. > 0. Since the homogeneous deformation u(z) = -z together with constant microrota-
tion angle @(x) = 7 is an equilibrium solution for consistent coupling or prescribed @g = 3 or
pure Neumann conditions on the microrotations (u. > 0), it is the unique solution coinciding
with the unique solution of the classical infinitesimal elasticity problem with shear stress at the
upper face 1y, = py. Pure Neumann or consistent coupling for the microrotations predict
therefore the ”aligned” homogeneous response if p. > 0. As for the homogeneous solution for
consistent coupling: The tangential stresses are given by

Toom = (0.e3,e1) = (2u sym(F — 1) + 2pu (skew(F — 1) — A)].es, e1) (3.58)
= (n+pe) - u'(1) = 2pe (1) = (1 + pae) - u'(0) — 2u, @(0) = pry = THEH = 7o,

In order to predict inhomogeneous response in simple glide, the linear Cosserat model needs
boundary conditions which make the previous homogeneous response impossible. This is
achieved e.g. for rigid Dirichlet conditions aq # 3.

3.3.2 Analytical solution for rigid data

In order to find the unique nontrivial solution for rigid Dirichlet conditions a(1) = @(0) = aq #
7 on the microrotations, we integrate the first equation of (3.54) and get

2 N2[a(z) — @(0)] = u'(z) — u'(0). (3.59)

Further integration of (3.59) shows
1
2 N2/ a(z) dx — 2 N%@(0) = u(1) — u(0) — u'(0) = v — u'(0), (3.60)
0

where we have used the Dirichlet boundary conditions for the displacement u. This shows
1
u'(0) =y — 2 N? / a(z) dx + 2N?ay . (3.61)
0

Reinserting into (3.59) yields

u'(z) = +2N? (a(az) - /01 a(r) dx) : (3.62)

Inserting the result for «/(z) into balance of angular momentum and rearranging yields the
linear second order differential equation

N? pe v | N?pe [
—1 _ p— [ C s C J—
a'(r) — —a(x) WI22 + T2 /0 a(s)ds. (3.63)

Differentiation w.r.t. 2 once more yields the linear third order ODE

a'(z) = —=a(2), (3.64)
The general solution of this differential equation in view of the expected point symmetry of @&
w.r.t. £ = 3 is given by!®

1

&(z) = 1 - cosh (Lﬁ[x - 5]) + By (3.65)

15Since the solution is unique anyway this symmetry assumption constitutes no loss of generality at this point.
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Since
Qg = 5(0) = Bl - cosh (%[—%]) + 62,
ag = a(l) = By - cosh (%[%}) + B2 =

B2 =g — B1 - cosh (Lﬁc[_%]) =

a(z) = [cosh (Lﬁ[m - %]) ~ cosh (%[—%1)] + A (3.66)
We calculate
T'(z) = L; cosh ( iv o — % ) , (3.67)
/Ola(x) dx = —B; cosh (Lﬁc[—% ) TR [sinh (Lﬁ[%o _ sinh (%[—% )] +a

L, . N 1 _

=20 N sinh (L_c 5]) — (31 cosh (L_c —§]> + Qg
L . N 1 N_ 1

= ﬂl |:2W sinh (L_c 5]) — cosh (L_C[_§ )

Inserting this result into (3.63) we obtain

P 2pc0g — (p+ pe)y

| 2pcomh (Lﬁc[%]) — 44, L, sinh (Lﬂc[%]) ’ (3.68)

which yields the micropolar microrotation angle

I e e ) [ SN
2 i cosh (Lﬂc[%]) — 4 L, sinh (Lﬂc[%])

The micropolar displacement for rigid Dirichlet data is given by

T z z 1
u(z) = / o' (s) ds = / (v + 2N?@(s)) ds — 2N? / ( / () dx) ds, (3.70)
0 0 0 0
which turns for ag = 0 into

PR
! cosh (Lﬂc[%]) — 2N L,sinh (Lﬂc[%]) “cosh (Lﬁ[%]) —2NL,sin (

Figure 3.31: 3-D plot of shear difference Au = u(x) — vz from (3.70) and of @(x) from (3.69)
for the linearized Cosserat problem, maximal shear v = 0.2, @g = 0.05 and various L.
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Figure 3.32: Plot of shear difference Au = u(z) — vz from (3.70) and of @(z) from (3.69) for
the linearized Cosserat problem, maximal shear v = 0.2, g = 0.05 and various L.

The tangential shear stresses for @q = 0 are given by (cf. [10, 3.17])

T:Iif;?l = (0.e3,e1) = {[2p sym(F — 1) + 2u.(skew(F — 1) — A)].e3,€1)
= (4 pe) - u' (1) = 2pca(1) = (u+ pe) - w'(0) — 2. @q
1

1— 2N L, tanh (%[%])

= (1 + pte) (fy — 2N? /01 a(z) dx> =p - (3.71)

Expansion shows that for N > 0,L. — oo (ever smaller samples)!® it results in the limit

T::f;‘lil =u (1_1?) -y = (u + pe) -y for a homogeneous deformation u(x) = vz and homoge-

. . _ igid .
neous microrotation @ = 0; the evaluated stresses 7.5, are increased due to p. > 0 and the

(incompatible) rigid boundary prescription g = 0. For 0 < N <« 1, L, > 0 we observe that
T;f;?l ~ (u+ pe) -7 and u(z) ~ yz. In this case, it can be seen that the Cosserat couple
modulus g, > 0 is in fact a measure of the influence of boundary conditions for mi-
crorotations on the solution and therefore not a material parameter.!” Similarly, it can
be shown that N — 0, L. > 0 is possible and results in the classical response 78 = i . .
Finally, N > 0, L. — 0 approaches the classical result as well. In all cases the micropolar re-
sponse for rigid Dirichlet data @4 = 0 is stiffer than the corresponding homogeneous classical

response, this is a typical boundary layer effect.

3.3.3 Only Dirichlet conditions on the microrotations @

Since we want to understand the influence of boundary conditions on the microrotations @y
better we study as well the case of Dirichlet conditions on @ only without prescribing the
macroscopic displacement. The boundary conditions are @(1) = @(0) = @g # 0 and Neumann
conditions on the displacement, which turn out to be u'(0) = 2 N?a(0) = 2 N2 @, = »'(1).18
In addition one needs to assume the normalization condition fol u(z) dx = 0.

160nly a formal limit in the linear Cosserat model: the smallest sample size should be larger than the chosen
L. > 0 of the unit cube, i.e. the smallest sample size must be larger than the smallest constituents of the
material given as unit cube. Hence, if L. has any physical meaning, we should have 0 < L. < 1.

17Consider any other independent (artificial) Dirichlet boundary condition for the microrotation angle 0 <

@(0) = a(l) = @g < 3. The solution u will produce a different shear stress response Tsrf;‘lil = pu/(1) +

2l ("’2(1) —@q) which, for different L., necessitates a modification of u. for the same material. In our example,
this inconsistency can be avoided for consistent coupling and first moment constraint but persists in the general
case.

18 Consistent coupling is only consistent with agq = 0 in this formulation.
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The system of balance equations for the linear problem reads

u"(z) = 22 @ (z) = 2N (),

Mt e
!
pLia" (z) = pe (a(m) -2 éw)) ; (3.72)
u'(0) = 2N?@(0) = 2N%@y; = /(1) Neumann boundary conditions for displacements,
a(0) =a@(l) =@y # 0, Dirichlet boundary conditions for microrotations,
1

/ u(z)dx =0, normalization condition .
0

Integrating (3.72); w.r.t. z shows
u'(z) = u/(0) + 2 N? [a(z) —@(0)] = 2N?ay + 2 N? [a(z) — aq) = 2 N?a(z) . (3.73)

Inserting this result in (3.72), leads to the homogeneous ODE

N2
pLea'(z) = pe (@(z) - N?a(z) & a'(@) = 77 alx), (3.74)
with a general solution given by
N 1

Using the boundary condition (3.72), a(1) = @y determines (1, thus

_ Qg N 1
= % cosh(=—(z — 2)). 3.76
) = sy oz - ) (3.76)
Reinserting (3.76) into (3.73) leads to
2 N2 Qagq N 1
!
= 2L Y osh(—(z - - :
u'(x) cosh(%%) cos (Lc (z 2)), (3.77)
and integrating (3.77) w.r.t. x results in
2N L.ag . N 1
) = ————— sinh(=—(z - =)) + C:. 3.78
(1) (T e = 5)) + (375)

The normalization condition for displacements fol u(z)dx = 0 shows C; = 0 and such that
finally

_2NLa N, 1
u(x)_icosh(%%)s h(LC(x 2)) (3.79)
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Figure 3.33: Analytical results for only Dirichlet conditions on the microrotations @ = 0.1,
e = p and various L.
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It can be seen that by applying rotations at the upper and lower face, the structure will
respond with nonzero displacement in general. We can interpret this result in the following
way: the structure is responding to nonzero Dirichlet conditions on the microrotation as if an
imaginary shear force had been applied. From a mechanical point of view, surface moments
m must be applied to prescribe microrotations @q # 0 and the expended outer work m - @g
causes deformation as shown in Figure 3.33. In the combined case with applied shear v and
prescribed microrotations ayg, this individual effect of the microrotations leads to an increase
or decrease of the computed shear force 7 depending on the sign of the applied rotations. In
our example ag > 0 leads to a decreasing shear force 7 and vice versa. Nevertheless, in this
example, classical shear forces on faces are zero, since 7 = (u + pe) u'(1) — 2u.@(1) = 0. The
solution for the special case N = 0, L, > 0 is easily obtained as u(z) = 0 and a(z) = 0 if
ay = 0, otherwise, no solution exists. Similarly for L, = 0, N > 0. Finally, L, = 0, N =0
yields u(z) = 0 and @ is not determined.

Looking at the reduced formulation for u. = 0 and L. = 0 we see that it does not have a
solution for @q # 0, otherwise the unique solution is u(z) = 0 and @(z) = 0.

The influence of p. on the solution of the linear problem is given qualitatively in the next
picture (g, — 0 decouples).
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Figure 3.34: Analytical results for only Dirichlet conditions on the microrotations ag = 0.1,
L. = 0.3 and various p..

3.4 The linear indeterminate couple stress model

Now we consider the infinitesimal indeterminate couple stress response in simple glide.
The variational problem is easily obtained from (3.53) by identifying a(z) = "’éw) throughout
and taking free variations w.r.t. u only. This is formally equivalent to setting p. = 0o in (3.54).
It results in the problem

1
/ p|lsymF — 1| + ng|u”(gv)|2 dx— min. wrt. u, u(0)=0,u(l)=r, (3.80)
0

0= 0" + oM, el = u(2) - p T2 (2).
The indeterminate couple stress model identifies the microrotations with the continuum rota-
tions apriori, an additional condition like the consistent coupling requirement etc. is therefore
not needed. The first moment constraint and the consistent coupling condition are satisfied a
priori. The corresponding infinitesimal indeterminate energy expression Wi, et in terms
of v’ and u" is

Winde(u'u") = & (ju'? + L2Ju"P?) , (3.81)
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and the Euler-Lagrange equation of fourth order reads

d in
=0 & 0= - [ @), u"@)] |

Dirichlet boundary conditions for displacements,
@4, various rigid conditions, (3.82)

Q -

, or natural boundary condition .

u

This equation coincides with equation (3.64) if we identify again 7I =@ and take N = 1. The
general solution of (3.82) is

w(z) = by sinh (Li[x - %]) + by cosh (Li[m - %]) bhila— D) 4b. (383)

Natural boundary conditions imply effectively u(z) = -y z as unique homogeneous solution with

pindet.hom ) o " For rigid boundary conditions on the other hand we have

shear stress response 7,

to satisfy

0 = u(0) = by sinh (Lic[—%]) + by cosh (i[—%]) + b3 (—%) + ba,

. 11 1.1 1
v = u(l) = by sinh (L_c[§]> + by cosh (L_C[i]) + b3 5 + by s
— by 1 1 by . 1 1
—(0) = 2L _ 22 Bl
2ad—u(0)—Lc COSh(Lc[ 2])+Lc h<Lc[ 2>+b3, (3.84)

2ad:u’(1)—2—1c h(—[ ]>+—s h(j_i[;])+b3,

which implies

B Lc.(2aq — ) _
"= cosh LLC[%]) — 2L sinh (LL[%])’ neh
b ~ cosh (i%i) —_4L c Qg sin L(? 3] ) b= %7 (3.85)
cosh (-[4]) — 2Le sinh (£[4])

and the unique solution of the rigid indeterminate couple stress problem for given @y is
cosh (A[g]) sinh (LLC[:C_ %]) smh( C[_%])
u(z) =7y 0 T z— L. - —
cosh <L_c[ ]) 2L, sinh (L_[i]) cosh (L_C[E]) — 2L, sinh (L—[§]
h

—2 sinh (£ [4] sinh ([ — 4]) —sinh ([~3])
‘ cosh( ’

T+

+2aq L. <_2 sinh (LL[%]) + LL cosh (LL[”’7 N %])> ‘ (3.86)

The term ulgz) does coincide with @(z) in (3.69) for N = 1. The limit L. — 0 (ever larger
samples) is possible, the solution converges pointwise in the interior (0,1) to the homo-
geneous solution, but the convergence is not uniform due to the appearance of a strong

boundary layer caused by the incompatible rigid boundary prescription. For large L. the
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solution converges to a smooth S-type shear profile.

The shear stress response for ag = 0 is given by

et sigi b 1. 1\, b 1.1
pindebrigd — /(1) — p L2u™(1) = —pL? (L_13 cosh (L—[l - 5]) + L_23 cosh (L—[l - 5]))
c c

B by 1 1) cosh (LLC[%])
= e (- g)) =0 (20) — 22csimn (£02)) 50
=p ! 7,

1—-2L.tanh (L%[%])

coinciding with the stiffer shear stress response of the infinitesimal micropolar model for N = 1.
Passage to the limit L. — oo (ever smaller samples) in the stresses is not possible for rigid
Dirichlet conditions. '® This point highlights again our understanding that boundary condi-
tions should be such that in principal homogeneous solutions remain possible. The boundary
conditions in a three-dimensional problem should not be the cause for nonhomogeneous re-
sponse.20

Figure 3.35: 3-D plot of shear difference Au = u — vz and of “7' for the indeterminate couple
stress model (3.86), maximal shear v = 0.2, @g = 0.05 and various L.

Au(x,) L=10 w(x,)/2 L=10
0.01 3
0.008 L=0.1 ?)'1121 L=0.1
o L=0.01 o]
: ' L=0.01
0.002 0.09
0 T VX,
0.002 0.8 1 0.08
-0.004 0.07 4
-0.006 0.06
-0.008 0.05 : : . . "X,
-0.01 0 0.2 0.4 0.6 0.8 17

Figure 3.36: Plot of shear difference Au = u — vy z and of “7’ for the indeterminate couple stress
model (3.86), maximal shear v = 0.2, ag = 0.05 and various L.. Curves for L. = 0.01 and
L. = 10 represent lower and upper limits. L. — 0 shows a strong boundary layer.

198ince tanhx = 2 — é + ..., for L, — oo, then Tslfnielf’“gld — 00, a severe shortcoming of the indeterminate
couple stress model due, in essence, to boundary layer stiffening. This underlines the objections of Koiter [28]
against this model.

20This principle does not apply to plates and shells where boundary conditions appear naturally by a dimen-
sional reduction process and carry physical information. In the Cosserat bulk model the boundary conditions

for microrotations are in principal unknown.
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3.5 Complement: the elastic Biot-material in simple glide

In order to complement our exposition we consider simple glide in a nonlinear classical elasticity
context. The energy of the elastic Biot material is assumed to be of the form

A 1 2
-1+ = -1)? -1 : :
/Q"‘ 17— 0P + 2 | (detf] 1)° + (det[U] ) av (3.88)
For small classical Biot-strains ||U — 1|| < 1, this is consistent with
A
/ullU—Il||2+§tr U - 12 av, (3.89)
Q
which reduces in simple glide (incompressibility) to
1 1
| wlv = wPax= [ uRTF - ujP dx
0 0
1 1
= [ WP -RPac= [ w(IFP-2FR)+3) &, (390)
0 0

where R € SO(3, R) represents now the continuum rotation, while U = VFTF is the classi-
cal symmetric stretch tensor such that 7' = RU from the polar decomposition theorem.
For the assumed kinematics in simple glide, the continuum rotation has the form

cosa(zz) 0 sina(zs)
R(.’El,xz, 1‘3) = 0 1 0 5 (391)
—sina(zz) 0 cosa(zs)
with continuum rotation angle a € [0,27). A simple calculation shows that
2 0 u'(x)
sin a(x) v R(z) S S 0 4+u(z)> 0 (3.92)
] , = + u'(x ? °
\/7/2 [ 2
T+ w®) VIFWOr g V' X

this yields

/olu (IF|I? = 2(F, R(u')) + 3) dx = /01“ (m _1>2_de. 39

Let us analyze this convex minimization problem

/01 Waiot (u'(z)) dx = /01 u |( 4 +U'($)2 — 1)2 — 1] dx — min.w.r.t. u,

u(0) =0, u(1) =~. (3.94)
The Euler-Lagrange equation is
1 ( 44 u'(z)” - 1)
V¢ e Cse([0,1],R) : / u'(z) ¢'(z) dx =0, weak form
0 4+ u'(z)?
d (\/4 T W) - 1)
— [1Biot (v (2))] =0, Tiot(u') =2 "1, strong form
dx 1+ (u)?

( I+ (W (@) — 1) ,
TBiot = 2 u'(z) | =const., integrated form
R Ve o R ¢

1 '(z)°
u'(z)- | 1- + v(@) a7y | = 0, differentiated form,
4+ u'(z)? <4+u’($)2)

u(0) =0, u(1) =1, (3.95)

36



showing that the homogeneous deformation is always a solution and hence, by strict convexity,
the unique solution with nonlinear, strictly-monotone shear stress response

Vi)

TBiot = 20 ———F—=""7 = Thnite (= H7+0(7)), (3.96)
VA +2

which coincides in fact with the shear stress response of the finite-strain Cosserat model with

weak consistent coupling evaluated for this homogeneous response in (3.26).

Finally, it should be noted that from a three-dimensional viewpoint, the used shear energy
p||U — 1||? is not quasiconvex and not Legendre-Hadamard elliptic [2] but satisfies still
the seperate convexity requirement in the principal stretches. This loss of ellipticity
is due to the continuum rotations inherent in U = RT(F) F. A more refined analysis shows
that the Baker-Ericksen inequalities (necessary for ellipticity) are violated if A; + A; < 1,
where )\; are the eigenvalues of U. The natural idea to overcome the non-ellipticity of Waiet
in a classical elasticity context is to consider its quasiconvexification. However, the analytical
form of the quasiconvex hull QWgiot (F) is not known explicitly. The Cosserat model with small
L. > 0 provides an alternative means of regularization.

Let us gather the obtained stress/strain behaviour in simple glide for small amounts of shear
v. For consistent coupling we have:

— __ .cons __ ,_indet _ micro hom hom
HY = Tlin = Tgmall = Tsmall > By = Tiin < Treq < Thnite < Tred » (397)

where 7y, < 7RO < phom o rhom }ave the same tangent in 0. For rigid Dirichlet data g = 0
we obtain
S rigid indet,rigid
BY = Tin < Tgpan < Tsman’ o (3.98)

with artificially stiffer behaviour for arbitrary small shear due to boundary layer effects.

4 Numerical treatment

In our non-linear finite element formulation we apply the consistent linearization as it has been
treated in [30, p.226] since the numerical algorithm solves locally linearized equations in the
sense of Newtons-method. Thus, we introduce the Gateaux differentiation

D{-}(a) b= 2 }(a+ b))y (4.1)

of a tensor-valued function {-}(a) at the vector a into the direction of a vector b and we use
the short notation A{-}(a, Ab) := D{-}(a) - b.

The deformation of a body Qg from reference configuration into actual configuration ; is
primarily described by a displacement field u(X,t) connecting reference coordinates X € Qg
and actual coordinates x € ; through x(¢) = X(to) + u(t) and a microrotation field @&(X, ?)
defining the microrotation tensor R. For compact notation a vector of primary unknown vari-
ables p(X,t) = {u(X,t),a(X,t)} (Lagrangean description) is introduced. In the same spirit
we define the variational vector dp(X,t) = {du(X,t),da(X,t)} and the incremental vector
Ap(X,t) = {Au(X,t), Aa(X,t)} of primary unknown variables.

The two-field variational principle reads in the quasistatic case
0=46I(p,R) =: G(p,dp). (4.2)
Local linearization of G(p, dp) at p = p gives us
LG(p,dp, Ap) = G(p,p) + AG(p,dp, Ap) (4.3)
and thus, the equation to be solved within a Newton iteration is
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For a standard isoparametric 8-node brick element with trilinear shape functions (4.4) can be

converted to a system of algebraic equations expressed in discrete nodal point vectors p, dp’
and Ap! by

<ép",K(p"),Ap’ >=— < ép',F(p") > (4.5)

During Newtons iteration process the stiffness matrix K and the nodal force vector F are gener-
ated for actual vectors p!. The result of solving (4.5) is the incremental vector Ap! of discrete
displacements u! and microrotations @’ at nodes. Note that the update of nodal displacements
u’ is simply additive uf,; = uf + Au’. For the multiplicative update of microrotations we
refer to [44]. A completely general 3D-nonlinear Cosserat formulation is available and already

used for more complicated tests as shown in Figure 4.1.

Figure 4.1: Completely general 3D-nonlinear Cosserat tests (left: torsion; right: compression
with twist and buckling).

The finite element code is validated by the analytical solutions for both the linear and
nonlinear Cosserat model. The consistent coupling boundary condition is numerically treated
by introducing a boundary layer with p. very large there - this ensures algorithmically consistent
coupling.

5 Computational results

First we specify the sample and its material parameters for the numerical investigations. Then
we vary the prescribed microrotation angle ay at upper and lower face for given shear v = 0.2.
At last the possibility and influence of various boundary conditions for microrotations @ are
discussed.

5.1 Specification of the test

As shown in Figure (5.1) the investigated sample is a squared cube with height=1, width=1 and
length=1. The material parameters are y = 1-10° and A = 1.5- 10°, internal length L. = 0.05
and curvature exponent ¢ = 6. It has been checked that the computational results for simple
glide are independent of A, as they must be in view of the kinematics which leads to det[F] = 1.

Remark 5.1 (Simple glide and torsion)

The simple glide problem is often compared with the torsion test. But an important difference
is: simple glide allows for homogeneous response for certain boundary conditions, while torsion
never does, not in the linear case nor in the nonlinear case.
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Figure 5.1: Undeformed mesh with boundaries in e;- and es- direction and deformed mesh with
axis

We block displacements in es- and e3-direction. Additionally, displacements in e;-direction
are linked in each e;-es-plane. Microrotations around e;- and esz-direction are blocked, too.
Additionally, microrotations around es-direction are linked in each ej-es-plane. Thus we simu-
late the simple glide problem.

5.2 Variation of prescribed microrotations at upper and lower face

In the following, we investigate the equilibrium solution for given shear v = 0.2 and prescribed
microrotations at upper and lower face between ag = —0.1 and @g = 0.3 as Dirichlet boundary
condition. The solution depends sensitivly on the Cosserat couple modulus p.. Four situations
with p. between 0 and p show these effects. One situation with weak consistent coupling
boundary condition and prescribed microrotations at upper and lower face is also considered.
The first moment symmetry constraint determines the unique classical solution.

5.2.1 Results for the linear elastic Cosserat model

Due to the unqualified uniqueness of the linear Cosserat model in simple glide for g, > 0 the
computational response is easily understood and serves mainly the validation of our algorithm.

shear stress t for given shear y = 0.2

20300 +
==, =0
—A—u,=0.001
20200 q He H
——u,=0.01p
/2 _
=R = U

'
T — + 1

-0.1 0 0.1 0.2 0.3
@, (prescribed microrotation angle at upper and lower face)

Figure 5.2: Shear stress 7 for various Cosserat couple modulus g,
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strain energy for given shear y = 0.2
2010

2008 ~

-0.1 0 0.1 0.2 0.3
@, (prescribed microrotation angle at upper and lower face)

Figure 5.3: Strain energy for various Cosserat couple modulus p.

curvature energy for given shear y = 0.2
1 1 } } I
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@, (prescribed microrotation angle at upper and lower face)

Figure 5.4: Curvature energy for various Cosserat couple modulus p.

total energy for given shear y = 0.2
2012 ) \ ' :
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2008 +
4

2006 1 °

>
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2002 +

2000
-0.1 0 0.1 0.2 0.3
@, (prescribed microrotation angle at upper and lower face)

Figure 5.5: Total energy of equilibrium solutions for various Cosserat couple modulus .
Remark that in the linear case, pure Neumann, consistent coupling and first moment sym-

metry constraint determine the unique aligned homogeneous response @ = 3 = 0.1, so nothing
is to be plotted here.
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5.2.2 Results for the nonlinear elastic Cosserat theory

At prescribed @y at the upper and lower face and for L. > 0 our computations suggest that the
nonlinear equilibria are unique for simple glide. For pure Neumann conditions on the rotations
we have three equilibria @; = 0, @y = arctan 3, @3 = 2arctan 7, two of them (@;,@s) minimiz-
ers. For consistent coupling the computational results suggest that the classical homogeneous
solution is the unique energy minimizer while adjacent equilibria are found. Whether this is
really the case remains open. The first moment symmetry constraint again provides only the

aligned homogeneous solution @ = arctan 3 = 0.0996687.

shear stress t for given shear y = 0.2

20300 -+
v —>—u, =0
S ——p,=0.001 p
20200 S He= 0003
¢ - HC = HC
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20100 saxy | o M
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y R ‘A\\@\ |a3
S Q \‘\
20000 ‘T N
X
S QX
AR
19900 R !
-0.1 0 0.1 0.2 0.3

o, (prescribed microrotation angle at upper and lower face)

Figure 5.6: Shear stress 7 for various Cosserat couple modulus g..

For pu, = p Figure 5.6 indicates the dramatic dependence of the shear stress 7 on the value
of the Dirichlet microrotational boundary condition @g. Only for ag = ay we obtain the same
result 7 for all situations. It is the trivial homogeneous solution and a prominent point in all
diagrams. The difference between 7, and 75 can be easily explained: the shear stress response
is given for the specific value v = 0.2, at which already nonlinear effects take place. Choosing
~ smaller, removes this difference.

strain energy for given shear y = 0.2
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A \ 73
2008 - X S 1 =0
N -1, =0.001 p
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2006 1 X A N Hem oo B
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2004 - A _ Tk ek TH
" a, A —%— consist. coupl.
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i o
i 1%
2000 ~ . '
-0.1 0 0.2 0.3

o, (prescribed microrotation angle at upper and lower face)

Figure 5.7: Strain energy for various Cosserat couple modulus p.. Herea; = 0, @ = arctan § =
0.0996687, a3 = 2@, = 0.1993373. The intersection of the parabola with the response curve
gives the possible homogeneous solutions for v = 0.2, compare with (3.5). Here, pit >
0.00496 .

For p. = 0 the strain energy Wy, reaches a minimal value of 2000 in Figure 5.7, choosing
Qg = a1 or ag = a3. For small u. or consistent coupling boundary condition the strain energy
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possesses minimal points different from @y = @2, which means inhomogeneous situations for
the microrotation field @ and consequently non-vanishing curvature energy.

curvature energy for given shear y = 0.2
17 -

-, =0
| —— 1, =0.001 p
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-0.1 0 0.1 0.2 0.3

o, (prescribed microrotation angle at upper and lower face)

Figure 5.8: Curvature energy for various Cosserat couple modulus p.. Qualitative change if .
passes pcrt!

The graph of u. = 0 with and without consistent coupling boundary condition seems to
be identical for the curvature energy. But the numerical values at @; and @3 for consistent
coupling boundary condition differ slightly from zero.

total energy for given shear y = 0.2
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o, (prescribed microrotation angle at upper and lower face)

Figure 5.9: Total energy of equilibrium solutions for various Cosserat couple modulus .

The total energy as sum of strain and curvature energy represents a flat graph around as
for comsistent coupling boundary condition with minimal points @g = 0.06 and ag = 0.14 in
the vicinity of the homogeneous response.

It can bee seen that for pure Neumann boundary conditions three equilibria exist (roughly
if pe < pt) of which two are minimizers. For p. = 0 the two minimizers are the two non-
trivial homogeneous responses corresponding to @; = 0 and @3 = 2arctan 3. Moreover, a@; = 0
corresponds to the linear response: it can easily be understood by noting that &; = 0 implies
R = 11, which then yields exactly linear elasticity for the deformation as remaining problem to
be solved in the variational context.

5.3 Dependence of @ on the Dirichlet boundary condition a4

Here we depict the response of the finite-strain Cosserat model in simple glide as far as micro-
rotations are concerned. The solution is plotted for different p. and various Dirichlet data.
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Figure 5.10: Microrotation & for various p. with L, = 0.05 and @g = 0.05 < @s.
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Figure 5.11: Microrotation & for various p. with L, = 0.05 and @g = 0.15 > @s.

In both pictures it can be seen that the qualitative behaviour of the solution depends
sensitively on whether . is bigger or smaller than pgt.
In the following we discuss the two-dimensional shear problem.

5.4 Boundary layer stiffening and identification of moduli

With a simple glide test it is not possible to specify the Cosserat couple modulus g, unambigu-
ously, since then the value of p. depends on the boundary condition for @ and the height of the
structure. In Diebels [10] e.g. a two-dimensional beam structure with height » > 0 and length
b > 0 has been numerically exposed to simple shear using the fourth-order Bernoulli-beam
theory (conceptually similar to the indeterminate couple stress model) and the correspond-
ing macroscopic (effective) shear modulus G., relating average shear force at the upper face
T=1% le 7(x1,h) dr1 versus average shear per unit height 7 = @ has been determined. It
is numerically found that G, is systematically larger than the classical shear modulus yp deter-
mined from computational tension data for the same beam structure. The difference being the
larger the smaller the height h of the beam structure. Diebels et al. propose that this systematic
deviation can be modelled with a linear Cosserat model for which then G, := pu + pe, pe > 0.
For their numerical experiment it has been assumed that the beams adjacent to the upper and
lower face are rigidly connected to the translated faces. Conceptually, the rotation of beam
elements is viewed as the microrotation in the Cosserat model and therefore, rigid Dirichlet
conditions ag = 0 lead to higher stiffness caused by micro bending moments.

The next picture shows that in a one layer honeycomb structure beams on faces rotate, but
in strong dependence of the beam cross section area A and the moment of inertia I.
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Figure 5.12: Undeformed and deformed meshes of a one layer honeycomb structure with beams
under shear loading for different ratios A/I. Results obtained from Bernoulli-beam theory.

The question arises, what kind of ratio A/I can be taken for realistic investigations. Con-
sidering a beam structure with circular members of radius r, cross-section area A = wr? and
moment of inertia I = 77*/4 leads to A/I = 4/r%. This ratio is not a dimensionless function, so
we take a squared sample cube of length 1 cm. It is not possible to talk about (one-dimensional)
beams in this sample if e.g. r > 0.2 cm, since then the simplifications provided by the Bernoulli
beam theory do not any more apply. Next diagram shows that if we assume A/I > 100, then
the corresponding radius is small enough for Bernoulli theory to apply.

A/l
400

300 1

200 1

100

4/7

0.1

T T T
0.2 0.3 0.4 0.5

Figure 5.13: Ratio A/I as function of radius r for circular cross section.

In the following, we take A/I = 1000 and compute the horizontal reaction forces on the

boundaries.

Figure 5.14: Horizontal reaction forces on boundaries (rotations free), plotted on reference

configuration.

The same test, but now with fixed rotations on boundaries.
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Figure 5.15: Up: Undeformed and deformed mesh with fixed rotations on boundaries (rigid
Dirichlet condition @4 = 0). Down: Horizontal reaction forces on boundaries (rotations fixed),
plotted on reference configuration.

The sum of horizontal reaction forces in Figure 5.15 compared to Figure 5.14 shows clearly
that fixing rotations leads to a higher stiffness by a factor 8.418/7.596 = 1.108. This effect is
especially marked in a one layer honeycomb structure and decreases with more layers (higher
sample, see Figure 5.16 and Figure 5.17), as it has been observed in [10].

Figure 5.16: Horizontal reaction forces on boundaries (rotations free), plotted on reference
configuration.

Figure 5.17: Horizontal reaction forces on boundaries (rotations fixed), plotted on reference
configuration.

Again, the sum of horizontal reaction forces in Figure 5.17 compared to Figure 5.16 shows
that fixing rotations leads to higher stiffness but now by a smaller factor 7.27/6.962 = 1.044.
Further it can be seen, that influences from the left and right border of the structure increase
with its height.
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In summary, an exhausting continuum description for the shear problem of a beam structure
does need detailed information on how beams behave at the boundary. We note: the parameter
e > 0, accounting here for the stiffness increase, is a property of the boundary value problem
(how boundary conditions are applied) but not a property of the material, as u and X are.
(From the derived analytical representation we infer that the complete solution of the linear
Cosserat problem in terms of the displacement u is a function of y, £~ N and N -L.. Consider the
same material given in different sample sizes of cubes with edge length L; > 1. Due to scaling

relations, we may transform the different sample sizes to the unit cube resulting in a modified

He
ptpe

is a dimensionless material parameter independent of size. Performlng a correspond-
ing shear experiment on each sample size we obtain best-fitting values of To/T / oy = = C; and

internal length % but identical values (v, N) by the assumption that p., hence N =

N ﬁ? = D; for every size. If the infinitesimal micropolar model would be physically consistent

this implies that N2 = C; - D;, independent?! of i. A striking consequence of this development
is that the assumed size-independent material parameter N cannot be determined
without prior knowledge of the characteristic length L. in contrast to the other
classical elastic constants y and A and vice-versa: the characteristic internal length
L. can only be determined once N is known. This is a problematic feature shared
by all micropolar models with p. > 0.

5.5 Planar shear of a long layer

Let us extend the previous computations to cover also the planar shear of a layer with unit
height. The calculations are now fully two-dimensional, displacements in es-direction remain
blocked. Of interest are the influences of u,. and of various boundary conditions. We consider
a long sample (ratio 4 : 1) with the intention to obtain a zone in the middle of the specimen
which behaves like in the simple glide test (far enough away from disturbing effects of the free
left and right edges). The next picture shows the finite element mesh in the undeformed and
deformed state, indicating different zones of deformation:

disturbance imole elid disturbance
zone simple glide zone zone

Figure 5.18: Undeformed and deformed mesh with indicated deformation-zones.

2 1

A honeycomb structure under planar shear also indicates different zones of deformation.

disturbance imole elid disturbance
Zone simple glide zone zone

SN N N N N N
\ ;oS L)
\/\/\/\/ \/\/
/ / / / /
< / / / / /
N U P U ‘/\774,

Figure 5.19: Different zones of deformation for a honeycomb structure under planar shear and
free rotations at the boundary. High inhomogeneity at left and right corners.

It is possible to obtain classical material behaviour by using the nonlinear Cosserat theory
and special material parameters. The first possibility is using g, = 0 and L. — oo (this results

217t appears as if N2 = &; - D; independent of i for different sizes is questionable.
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in constant microrotations and leads to classical linear elasticity), the second is using p. = u
and L. = 0 (evaluation of the Boltzmann-axiom shows that microrotations must coincide with
the polar decomposition of the deformation gradient, the classical geometrically nonlinear Biot
model).

macrorotation macrorotation

0.000E+00 min 0.000E+00 min
1.235E-02 1.227E-02
St.Venant-Kirchhoff linear 2470E-02 2455E-02
3.705E-02 3.682E-02
5 4.939E-02 4.909E-02
6.174E-02 6.136E-02
7.409E-02 7.364E-02
; : 8.644E-02 8.591E-02
2 1 9.879E-02 9.818E-02
1.1T1E-01 1.105E-01
1.235E-01 1.227E-01
1.358E-01 1350E-01
1.482E-01 1.473E-01
1.605E-01 1.595E-01

1.729E-01 max 1.718E-01 max

Figure 5.20: Macrorotation for classical linear elastic material (left) and nonlinear Cosserat
theory with p. = 0 and L, — oo (right) together with @q = 0. Both computations practically
coincide.

Macro- and microrotation coincide for Biot model as Figure 5.21 shows.

microrotation macrorotation
0.000E+00 min 0.000E+00 min
1.204E-02 1.204E-02
2.407E-02 2.407E-02
3.611E-02 3.611E-02
4.814E-02 4.814E-02
6.018E-02 6.018E-02
7.222E-02 7.222E-02
8.425E-02 8.425E-02
9.629E-02 9.629E-02
1.083E-01 1.083E-01
1.204E-01 1.204E-01
1.324E-01 1.324E-01
1.444E-01 1.444E-01
1.565E-01 1.565E-01
1.685E-01 max 1.685E-01 max

Figure 5.21: Macro- and microrotation for Biot model using nonlinear Cosserat theory with
e =p and L, = 0.

By using the linear Cosserat theory, we can compare our results with [10]. The next figure
clearly shows that p. influences the shape and height of boundary layers.

47



0.000E+00 min 0.000E+00 min

5.608E-03 1.284E-02
1122602 2.568E-02
1.682E-02 3.851E-02
2.243E-02 5.135E-02
2.804E-02 6.419E-02
3.365E-02 7.703E-02
3.925E-02 8.987E-02
4.486E-02 1.027E-01
5.047E-02 1.155E-01
5.608E-02 1.284E-01
6.168E-02 1.412E-01
6.720E-02 LS41E-01
7.290E-02 1.669E-01
7.851E-02 max 1.797E-01 max
0.000E+00 min 0.000E+00 min
7.254E-03 1.259E-02
1.451E-02 2.518E-02
2176502 3778E-02
2.902E-02 5.037E-02
3.627E-02 6.296E-02
4353E-02 7.555E-02
5.078E-02 8.814E-02
5.803E-02 1L007E-01
6.520E-02 L133E-01
7.254E-02 1.259E-01
7.980E-02 1.385E-01
8.705E-02 L511E-01
9.430E-02 1.637E-01
1.016E-01 max 1.763E-01 max
crit 0.000E+00 min 0.000E+00 min
He=He 9.397E-03 He=H 1.239E-02
— 1.879E-02 2.477E-02
L.=005 2819E-02 3716802
3.759E-02 4.955E-02
4.699E-02 6.194E-02
3 5.638E-02 7.432E-02
6.578E-02 8.671E-02
2 1 — 7.518E-02 9.910E-02
a’d free 8.457E-02 1.115SE-01
9.397E-02 1.239E-01
1.034E-01 1.363E-01
1.128E-01 1.486E-01
1.222E-01 1.610E-01
1.316E-01 max 1.734E-01 max

Figure 5.22: Microrotation @ for linear Cosserat theory, various boundary conditions and various
te- The microrotations remain throughout positive.

The Nonlinear computation gives us the possibility to set u. = 0. In this case it is interesting
to note that microrotations become non-trivial solutions @ # @; at left and right edges. The
behaviour in the middle of the specimen is consistent with our previous results from simple
glide tests.
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-5.456E-02 min 0.000E+00 min

=0 4.681E-02 He=H 1276E-02
LC =0.05 -3.906E-02 LC =0.05 2.552E-02
33102 3.820E-02
2356E-02 5.105E-02
& -1581E-02 6.381E-02
-8.058E-03 7.65TE-02
3.076E-04 8.934E-02
2 1 aﬂ =0 7.442E-03 1.021E-01
1519E-02 1.149E-01
2294E-02 1.276E-01
3.069E-02 LAO4E-01
3.844E-02 LS31E-01
4.619E-02 L659E-01
5.394E-02 max 1.787E-01 max
-1.367E-02 min _ 0.000E+00 min
-7.298E-03 He=H 1.244E-02
-9.255E-04 LC =0.05 2.487E-02
5.447E-03 3731E-02
1LI82E-02 4.974E-02
1.819E-02 6.218E-02
2457E-02 7461E-02
3.004E-02 = : 8.705E-02
3731E-02 271 - 9.948E-02
4.369E-02 ,=0.0 L119E-01
5.006E-02 1.244E-01
5.643E-02 1.368E-01
6.280E-02 1.492E-01
6.918E-02 L617E-01
7.555E-02 max 1.741E-01 max
-0 -1.942E-01 min 0.000E+00 min
He= -1.740E-01 1.214E-02
-1.537E-01 2.428E-02
-1335E-01 3.643E-02
-LI33E-01 4.857E-02
9.301E-02 6.071E-02
1277602 7.285E-02
5.253E-02 8.499E-02
-3.220E-02 9.713E-02
-1.20SE-02 LO93E-01
8.187E-03 1.214E-01
2.843E-02 1.336E-01
4.867E-02 1ASTE-01
6.891E-02 1.578E-01
8.915E-02 max 1.700E-01 max

Figure 5.23: Microrotation @& for nonlinear Cosserat theory, various boundary conditions and
various p.. Observe that for yu. = 0 microrotations may become negative. This effect shows
the relative freedom microrotations have when choosing p. = 0.

Negative values in microrotations do not imply that macrorotations become also negative!
On the contrary, observe that negative microrotations lead to an increasing positive value in
macrorotations along edges (compare with Figure 5.26). This shows that microrotations are not
necessarily a structural object (like the rotation of beam elements) but rather hidden (internal
variables) acting where the material responds inhomogeneously.

microrotation macrorotation

-1.942E-01 min _ 0.000E+00 min
~1.740E-01 u=0 1.257E-02
-1537E-01 L =0.05 2513E-02
-1.335E-01 © 3.770E-02
-1.133E-01 5.027E-02
-9.301E-02 6.284E-02
-7.277E-02 7.540E-02
-5.253E-02 = 8.797E-02
-3.229E-02 2 1 — 1.005E-01

o free -1.205E-02 @ free LI31E-01
8.187E-03 1.257E-01
2.843E-02 1.382E-01
4.867E-02 1.508E-01
6.891E-02 1.634E-01
8.915E-02 max 1.759E-01 max

Figure 5.24: Micro- and macrorotation for nonlinear Cosserat theory, u. = 0 and Neumann
boundary conditions.

Now we investigate the numerical behaviour around the critical value of u, = pctt.
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crit 0.000E+00 min

0.000E+00 min
l’lC< HC 5.945E-03 6.678E-03
L,=0.05 1I89E-02 1.336E-02
— 1.783E-02 2.004E-02
2.378E-02 2.671E-02
2.972E-02 3.339E-02
3.567E-02 4.007E-02
2 4.161E-02 4.675E-02
4.756E-02 5.343E-02
%= 0.05 5.350E-02 6.011E-02
5.945E-02 6.678E-02
6.539E-02 7.346E-02
7.134E-02 8.014E-02
7.728E-02 8.682E-02

8.323E-02 max 9.350E-02 max

Figure 5.25: Microrotation @ for nonlinear Cosserat theory, boundary condition @y = 0.05 and
pe around pS™t. Qualitative change of response, consistent with the analytical and numerical

results for simple glide.

In both Figure 5.23 and Figure 5.25 it can be seen, that microrotations for small y. tend to
zero in the middle of the sample: the non-aligned @; solution from simple glide.

At last we present the solution for p. = 0 and consistent coupling boundary condition.

microrotation macrorotation

-8.012E-03 min 0.000E+00 min
He=0 6.889E-05 He=0 1.244E-02
LC =0.05 8.150E-03 Lc =0.05 2.488E-02
_ 1623E-02 . 3732E-02
= 2.431E-02 4.976E-02
a 3.239E-02 6.220E-02
2 ——— 4.047E-02 7.464E-02
B 4.855E-02 g g 8.708E-02
B B 5.663E-02 2 . . 9.952E-02
consistent coupling TR0 consistent coupling L 10E01
7.280E-02 1.244E-01
8.088E-02 1.368E-01
8.896E-02 1.493E-01
9.704E-02 1.617E-01

1OSIE-01 max 1.742E-01 max

Figure 5.26: Microrotation @ for nonlinear Cosserat theory and consistent coupling. Observe
that macrorotations remain positive throughout!

Microrotation and shear difference Au = u —y x3 at left free edge show the inhomogeneous
situation at free boundaries.

XS
——pun.=0 i
pe=0.004
ri 0.8
ope=pd
U=
—*— consist. coupl| 0.6

0.2

Py
# T 08 T

-0.30 -0.20 -0.10 0.00 0.10 0.20

_l

Figure 5.27: Plot of @ for nonlinear Cosserat theory at left free edge for various p..
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——u.=0

1o =0.004

it
He = He

U =N

—— consist. coupl]

=G0 : . . . . . Au
-0.001 0.000 0.001 0.002 0.003 0.004 0.005 0.006

Figure 5.28: Plot of shear difference Au = u — yz3 for nonlinear Cosserat theory at left free
edge for various p.. Precise measurements of the edge-profile of an actual sample in a shear
experiment might be of use in determining boundary conditions and parameters for the Cosserat
model.

5.6 Discussion of boundary conditions for microrotations

We have seen that the highly non-unique response in the geometrically exact case necessitates
to discuss and define boundary or side-conditions for microrotations, if these microrotations are
supposed to represent independent degrees of freedom within the boundary value problem.

For the choice of pu. = p the microrotation angles @ are coupled with the continuum rota-
tions nearly one to one (through a strong elastic spring with elasticity constant u.) in both the
linear and the nonlinear problem. Thus, the prescription of additional independent boundary
conditions on the microrotations @ in this case affect the solution in a doubtful way. A decrease
of the shear stress 7 as represented in Figure 5.6 excludes the principle of local effects, which
a boundary condition should have according to St.Venant’s principle. In effect, the linear
analysis following (3.71) shows that u. > 0 in the simple glide problem is rather a measure of
the influence of Dirichlet boundary conditions for microrotations on the displacement solution!
This effect becomes the weaker the smaller we chose p.. Further, the solution for small u. of-
fers two minimal points for @ and simultaneously causes an inhomogeneous microrotational field.

The consistent, coupling boundary condition has no marked minimum for @, as it is the case
for g = p. This indicates that a (nearly?) homogeneous solution can be found by the numerical
algorithm, but neighbouring solutions with lower potential might be found as well, as suggested
by the ”laminate” microstructure solution in the partially simplified reduced problem (3.50).
The consistent coupling condition is well-suited for smooth equilibrium solutions, however, it
fails to be stable under energy minimization for L. = 0 as has been argued in (3.52).

It still remains to find a boundary condition on the microrotations (or side-condition) which
ensures that minimizers to homogeneous boundary conditions on the deformation are homo-
geneous within the body and coincide with the classical solution. A candidate, allowing for
existence results in the finite-strain case could be the first moment symmetry constraint

/ T(w)dV = / 7 (2)F(z) dV € PSym,
Q Q
which translates into
1
0= / cosa(z) -u'(z) — 2sina(z)dx, 0<a< g, 0<d(z) <2,
0

for simple glide. It singles out the preferred aligned homogeneous solution, also in the degenerate
linear Cosserat case with . = 0 and L. > 0. The computational handling of this nonlocal
condition seems to be technically challenging, here we have implemented it through a penalty
formulation.
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5.7 Boundary and side conditions for microrotations under L. — oo

Let us switch back to the three-dimensional problem. If we consider L. — oo (arbitrary small
structures) then the variational problem determines the microrotations R automatically to be
constant in the limit.

In this case the classical rigid Dirichlet condition (at some part of the boundary T' C 99)
implies R = Rq = 1l and the remaining variational problem for the deformation ¢ is precisely
linear elasticity. The limit L. — oo for other rigid Dirichlet data R4 is only possible for a
constant prescription of Ry.

The consistent coupling condition turns for L. — oo into
const. = R = polar(Vip(z)), =z €T,

which requires that the orthogonal part of Vip at the boundary T" be constant. This can become
a source of inconsistency if non-homogeneous Dirichlet conditions for ¢ are prescribed. For
homogeneous boundary conditions ¢(x) = B.z, with a constant matrix B € GL™ (3, R) one has
R = polar(B) and the deformation response in the interior will be p(z) = B.z, due to strict
convexity of the formulation w.r.t. F' = Vip at given constant microrotation R.

Computationally, we have implemented a consistent boundary layer requirement, i.e. re-
quiring R(x) = polar(Vip(z)) in a thin boundary layer adjacent to I' by setting p. very high in
this layer and otherwise u, = 0. However, this condition has a similar problem as the original
formulation.

For pure Neumann conditions the constant microrotation R = const. is not uniquely de-
termined, as has already be seen in the simple glide problem if 0 < u. < p¢™. Note again that
this fundamental indeterminacy is not a problem related to p. = 0.

For pure Neumann conditions in conjunction with first moment symmetry con-
straint we obtain for a constant microrotation R

_ Y o [Pv@@D
/ R(2)TVp(z)dV =R / V(z)dV = R Div (p2(2)1) | dV=R p(z) @M dS.
@ @ ¢ \Div (ps(z) 1) o9

Assume that
det/ Vip(z) dV = det/ p(z) ®MdS > 0.
Q a0

The symmetry constraint requires

RT/ o(z) ® #dS € PSym.
(19

According to the polar decomposition theorem this defines R € SO(3, R) uniquely for all bound-
ary conditions on ¢ as

— 1
R = polar (—/ p(r) ® ﬁdS) ,
12 Jaq

compare to [49, Lem4.4] for a similar condition for the pure Neumann problem in classical
nonlinear elasticity. Hence the first moment symmetry constraint seems to remain a useful
condition also in the limit L, — oo.

It is also possible to relax the first moment symmetry constraint into a symmetry con-
dition in one connected boundary layer I';, C (2, adjacent to I'. We may require

U(z)dV € PSym.
Tn
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This condition is already enough to provide a unique aligned homogeneous response and is
stable under minimization. Computationally, the smaller h > 0, the simpler its implementation
by a penalty formulation.

Finally, the weakest possible condition fixing the microrotations R for homogeneous situa-
tions is given by arbitrarily choosing one point zo € Q U int(I') and demanding that U(zq) €
PSym. For a quadratic problem in the deformation gradient, elliptic regularity ensures that
Vip(xo) exists classically. The problem, however, is to choose xg.

6 Conclusion and further direction of research

We have presented an exhaustive treatment of the simple glide problem for both linear and
nonlinear Cosserat models.

The linear Cosserat model extremely over-simplifies the response. Insight gained for the
linear Cosserat model is of not much help in the finite-strain setting, this can already be seen
by the pitchfork bifurcation diagram in conjunction with our FEM-calculations. It is shown,
that the solution of the boundary value problem depends sensitively on u. when p,. passes ut.
This feature is not related to u. = 0, but occurs already for small positive u. > 0. The stability
of solutions of the nonlinear problem as a function of IL—“ is therefore highly intricate.

The exceptional role played by assuming a strictly positive Cosserat couple modulus p. > 0
can already be appreciated for simple homogeneous situations: both consistent coupling and the
first moment symmetry constraint have the power to enforce a unique homogeneous response in
simple glide. This is automatically implied in the nonlinear case by taking p. > u, which is often
assumed when using the Cosserat model as a regularization device. In the linear case, already
pe > 0 suffices for this purposes. This may explain, why the necessity to define additional
conditions on the microrotations has been systematically overlooked in the linear framework,
since uniqueness is automatically ensured.

Our analytical and computational development for simple glide clearly shows that taking
e = 0 is possible and has its merits: it is closer to classical elasticity, does not provide
for unqualified uniqueness, excludes unphysical stiffening effects for small samples, allows to
determine the internal length scale L. independent of shear moduli and it has motivated the
introduction of additional conditions on the microrotations. Moreover, a positive parameter
e > 0 is rather a property of the boundary value problem (how boundary conditions are
applied) but not a property of the material, as yu and X are, see the discussion in sect. 5.4.
In this sense, we provide an answer to the question of Cosserat parameters: the assumption
of a positive Cosserat couple modulus p. > 0 is not necessary, at best, it is a structural
parameter. That this modulus must be zero viewed as a material parameter is also the result
of investigations of the first author on linear Cosserat models in torsion and bending [36].

The nonlinear Cosserat model may have a microstructure response in the classical limit of
very large samples L. — 0. This is exemplified by looking at the finite-strain reduced problem
in section 3.2.2 and underlined by the numerical results in Figure 3.27. If the internal length is
large enough, these highly oscillating solutions are effectively ruled out.

If the Cosserat model should do more than account for boundary layer effects, the need of
specifying new boundary conditions is apparent. The different proposed additional conditions
on the microrotations all have the power to provide for a unique classical aligned homogeneous
response independent of material parameters. Moreover, they do not lead to boundary stiffening
effects. The restricted setting of simple glide and planar shear, however, does not allow us to
draw a unanimous conclusion as to which is the preferable one.

The consistent coupling condition has the advantage of being a (local) boundary condition,
but the disadvantage of needing a numerical scheme which respects C'-continuity in a neigh-
bourhood of the Dirichlet-boundary. Moreover, the boundary value problem should guarantee
C'-continuity of the deformation. This may not always be the case but is true in our setting
of simple glide.

The first moment symmetry constraint in the bulk does not need C'-continuity but repre-
sents a nonlocal condition, which is difficult to implement.
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It is also possible to impose the first moment symmetry constraint only in the interior of
the Dirichlet-boundary at the surface. This is a weaker condition than consistent coupling but
still needs C'-continuity in a neighbourhood of the Dirichlet-boundary to make sense.

By requiring the first moment symmetry constraint, however, only in a boundary layer
adjacent to the Dirichlet-boundary it seems to be possible to combine the advantages of the
previous conditions without the disadvantages: the last condition is more or less local and does
not need C'-continuity, hence suited for standard FEM-implementation. This is our tentative
answer as far as boundary conditions for microrotations are concerned: the microrotations must
be coupled in some sense or other to the deformation gradient, but never locally, as would be
implied by taking p. > 0!

In the near future we will provide evidence for the convenient behaviour of finite-strain
Cosserat models for large scale three-dimensional problems within the new boundary conditions.
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Notation

Let O C R? be a bounded domain with Lipschitz boundary 0Q and let T be a smooth sub-
set of Q) with non-vanishing 2-dimensional Hausdorff measure. For a,b € R® we let (a,b)ps
denote the scalar product on R® with associated vector norm ||a|Zs = (a,a)gs. We denote
by M2*3 the set of real 3 x 3 second order tensors, written with capital letters and by T(3)
the set of all third order tensors. The standard Euclidean scalar product on ME*? is given
by (X,Y)ysxs = tr[XY7T], and thus the Frobenius tensor norm is || X||*? = (X, X)ypxs-
In the following we omit the index R®, MP*3. The identity tensor on M?*3 will be denoted
by 1, so that tr[X] = (X,1). We let Sym and PSym denote the symmetric and posi-
tive definite symmetric tensors respectively. We adopt the usual abbreviations of Lie-group
theory, i.e., GL(3,R) := {X € M?*3 |det[X] # 0} the general linear group, SL(3,R) :=
{X € GL(3,R) |det[X] = 1}, O(3) := {X € GL(3,R) | XTX = 11}, SO3,R) := {X €
GL(3,R) | XTX = 11, det[X] = 1} with corresponding Lie-algebras s0(3) := {X € M?*? | XT =
—X} of skew symmetric tensors and sl(3) := {X € ME*3 |tr[X] = 0} of traceless tensors. We
set sym(X) = (X7 4+ X) and skew(X) = 1(X — XT) such that X = sym(X) + skew(X). The
set PSym denotes positive definite symmetric matrices. For X € M2*? we set for the deviatoric
part devX = X — 1 tr[X] 1l € sI(3) and for vectors {,n € R” we have the tensor product
(6 ®mn)ij = &nj. The operator axl : s50(3,R) — R? is the canonical identification. We write
the polar decomposition in the form F' = RU = polar(F)U with R = polar(F') the orthogo-
nal part of F. For a second order tensor X we define the third order tensor h = D, X (z) =
(V(X(z).€1), V(X (z)-€2), V(X (x).e3)) = (h1,5%,h3) € ME*3 x MP*3 x ME*3. For third order
tensors h € T(3) we set [|h]|> = 30, [|h¥]|? together with sym(h) := (symb',sym b, sym h?)
and tr[h] := (tr [h*],tr [h?],tr [H®]) € R®. Moreover, for any second order tensor X we define
X -h:= (X', Xp%, Xh%) and h- X correspondingly. Quantities with a bar, e.g. the micropolar
rotation R, represent the micropolar replacement of the corresponding classical continuum
rotation R. In general we work in the context of nonlinear, finite elasticity. For the total
deformation ¢ € C*(Q,R?) we have the deformation gradient F = Vi € C(Q,M**3) and we
use V in general only for column-vectors in R®. Furthermore, S;(F) and S2(F) denote the
first and second Piola Kirchhoff stress tensors, respectively. The first and second differential
of a scalar valued function W (F) are written DpW (F).H and D2W (F).(H, H), respectively.
Sometimes we use also dx W (X) to denote the first derivative of W with respect to X. We
employ the standard notation of Sobolev spaces, i.e. L2(), H2(Q), H2?(2), which we use in-
differently for scalar-valued functions as well as for vector-valued and tensor-valued functions.
Moreover, we set || X |l = sup,cq [|X(2). For X € C*(2,M**?) we define Curl X(z) and
Div X (x) as the operation curl and Div applied row wise, respectively. For h € T(3) we define
Divh = (Divh!|Divh?| Divh®)" € MB*3. We define HI*(Q,T) := {¢ € H-*(Q) | ¢} = 0},
where ¢, = 0 is to be understood in the sense of traces and by C§°(2) we denote infinitely
differentiable functions with compact support in 2. We use capital letters to denote possibly
large positive constants, e.g. Ct, K and lower case letters to denote possibly small positive con-
stants, e.g. ¢T,dt. The smallest eigenvalue of a positive definite symmetric tensor P € PSym
is abbreviated by Amin(P). Finally, w.r.t. abbreviates with respect to.
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