A step size control algorithm for the weak
approximation of stochastic differential
equations

Dominique Kiipper, Jirgen Lehn, Andreas Rofller

Darmstadt University of Technology, Fachbereich Mathematik, Schlossgartenstr.7,
D-64289 Darmstadt, Germany

Abstract

A variable step size control algorithm for the weak approximation of stochastic
differential equations is introduced. The algorithm is based on embedded Runge-
Kutta methods which yield two approximations of different orders with a negligible
additional computational effort. The difference of these two approximations is used
as an estimator for the local error of the less precise approximation. We prove the
convergence of the proposed method with step size control by means of rooted tree
analysis. Furthermore, some numerical results are presented to demonstrate the
effectiveness of the introduced step size control method.
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1 Introduction

Ordinary differential equations (ODEs) are a well-known instrument for the
modelling of time-dependent dynamic systems. However in many fields, e.g.
in finance or physics, stochastic effects occur. These can be taken into ac-
count by stochastic differential equations (SDEs). Since analytical solutions
for SDEs are seldomly known, numerical methods have to be applied. Most
common methods use a fixed step size and thus are not able to react to the
characteristics of a solution path. Therefore in the present paper we introduce
a variable step size algorithm based on embedded stochastic Runge-Kutta
methods to work within the scope of weak approximation. Step size control
algorithms have been considered for example for strong approximation by Bur-
rage and Burrage [1], Lamba [10], Mauthner [11] and for weak approximation



by Szepessy, Tempone and Zouraris [16].

Let (2, F, P) be a complete probability space and (F;);>o a filtration which
fulfills the usual conditions. We consider the d-dimensional SDE in integral
form

X, = X, +/ a(s, X,)ds + [ b(s, X,)dW, (1.1)

to

with an initial value X;, = x¢ which is bounded in £* for p > 1 and two
measurable functions a, b : Ry xR? — R?. (W;);>0 is a one-dimensional Wiener
process which is adapted w.r.t. the filtration (F;):>o. Suppose that a and b
fulfill a Lipschitz condition and a linear growth condition. Then there exists
a unique solution process X for equation (1.1) (see e.g. [7]).

In this paper our concern is the approximation of moments or, more general,
of functionals of the solution. Therefore we consider a discretization I, =
{to,t1,...,tn} of the interval [to,T] so that 0 < ¢, < t; < ... <ty =T.
For h, = t,41 — t, let h = maxo<p<y—1 hn be the maximum step size of the
discretization. Then an approximation process (Y;)tes, converges weakly with
order p to X at time T as h — 0 if there exists a constant d, and for each
f € P (RY, R) a constant C; (independent of k) so that

|E(f(X1)) — E(f(Y1))| < Crh”.

holds for h €]0, dy[. Here c2P*Y) denotes the space of 2(p + 1)-times contin-
uously differentiable functions whose derivatives up to order 2(p + 1) have
polynomial growth [7].

2 Embedded stochastic Runge-Kutta methods

Various derivative free Runge-Kutta type methods have been developed in
recent years (see e.g. [2,9,17]). In this paper we follow the approach due to
RoBler [12-14] who developed stochastic Runge-Kutta (SRK) methods for the
weak approximation of both, It6 and Stratonovich SDEs, which can also be
applied in the case of a multidimensional Wiener process. An explicit s-stage
SRK method for calculating a numerical approximation process (Y};);cz, with
Y, = Y;, of the solution of SDE (1.1) is given by the recursive formula Yy =
and

I
Yot = Y+Zaz O gOyp, +Z( D)+ (2)\(/}7)) b, HY) (2.1)



with 2 = ¢, + Oh,, £ =t, + "k, and

HY =, +2AU ' HO) n, +ZB WMDY I,
= (2.2)
HY =Y, + Z AD o, HOY by, + Z BOY bt HY) /b,
j=1

J

fors =1,...,s and n = 0,..., N — 1. Here we use the random variables
Loy = i dW, and Lo = [0 [ dW,dW,,. We set A® = (A9), A0 =
(1) ) 1 W _ p®W _ T _ )
(AijT)a B() (B ), BB = (Bij ), ol = (i), ’Y(l) = (7’) and
YT = (4. In the following we denote by p = (pp,ps) the order of the
SRK method (2.1), where pp and ps with pp > pg indicate the order of

convergence if the SRK method is applied to a deterministic or a stochastic
differential equation, respectively. Thus, the order pg is guaranteed in any case.

The embedded SRK approximation Y only differs from Y in the coefficients
Q;, % ) and % ) with § = 1,...,s. Adding the approximation Yy = zy and

1
s = Yo+ S deatl®, HO) ot 3 (30 +57 G2 ) o, HY) (23)

with order p = (pp,ps) to the SRK method (2.1) of order p = (pp,ps) such
that pp < pp and ps < pg hold, yields the embedded SRK method with
order p(p) = (pp,ps)((Pp,Ds))- The associated Butcher tableau [3] is of the
following form:

FOIFTOIN: IO

A0 40| gEM®

(2.4)
ol | 07 |@T

ar | 407 15@7

Later on we will use embedded SRK methods of order p(p) = (3,2)((2,1)) for
step size control. Theorem 6.4 in [12] (Theorem 2.6.2 in [14]) yields conditions
for the coeflicients such that the method has a prescribed order of convergence.
In the following we give order conditions for weak convergence of order ps = 2



for method (2.1) (for details see [13,14])

1. afe=1 15. (A ( )(3(3)(1)6))) =0
2. 4T =0 16. ((B<3)(1) )BOY (BOVe)) = 0
3. (W2 =1 17. (B(3 ) =0

4. y0"BOWe — g 18. A0 (AOBOO ) =

5. oT(BO ey = % 19. (B<1><°>(B<3><”e)) 0

)T(B(3)(1)(B )(1)(3(3)(1) ) =0 20. 7(1)T(B(3)(1)(A(l)e)) -0

7. aT A = % 21. AT (BOVe)(ADe)) = 0

8. (’y(l)Te) (aTB(l)(O)e) = % 22. 7(2)TA(1)6 =0

9. (’y(l)Te)(’y(l)TA(l)e) = % 23. V(Q)T(B(?’)(l)(B(s)(l)e)) =0
10. AT (BOD (B®Ne)) = g 24. AT (BOWe)2 — ¢
1 00 B0V =5 2 A ABO ) =0

12. AOF (B(3 (1)(A(1)(B(1)(O)e))) =0 26 ®@TBOWe =1

13 a ( )( (1)(0) (B(3)(1)e))) — 0 27. ’Y(I)T(B(3)(1) (B(3)(1)e)2) — 0
14. A0 )T((B<3)<1> e)(AD (B!
with an s-dimensional vector e = (1,...,1)? and where the product of vectors
has to be calculated component-wise. Further define ¢ = A@¢e and ¢V =

AMe. We give two examples for coefficients of the embedded SRK method
(2.1)-(2.3) resulting from these equations:

0 0
3—2v6 1
11 2/ 1] 1 -1
11 1 6+v6 5125 35 5
204 4 10 12| 144 144 6
0 0
1] 1 1
11 1 i 1
1] 1 1
/1 0 -1 0 H+ 0 |-30
1 1 2 1 11 1 1 1 3 24
325 55 2 12|03 2 3,2)| 1 1z 35/~1 1 1|0 11
(2,1)|3 3 0| 1 00[0 0 O (2,1)[ 3 5 0[1 00/000
Table 1

Embedded SRK methods RISW1 and RISW1 with p(p) = (3,2)((2,1))



3 Step size control algorithm

We now propose an algorithm where the step size control is not based on
every single approximation path, but on the mean of all paths generated for
the Monte Carlo simulation. This approach is justified by the fact that in the
end we are interested in the approximation of the expectation of the solution
and not in a pathwise approximation. A step size control which was applied to
each single approximation path seperately was also implemented, but did not
yield as good results as the algorithm we now describe. Within each step of the
embedded SRK method (2.1)—(2.3) described in Section 2 we obtain two types
of approximations of the solution: The more precise ones Y and the less precise
ones Y. Starting from ¢, for each k = 1,..., M with the approximation values
Y, our algorithm calculates the corresponding approximations Y, and
}Afnﬂ,k with a step size h, where M is the number of different generated paths
for the Monte Carlo simulation. Then, after applying a general functional
f : R - R? to each approximation value, the algorithm provides the two
estimates for the expectations

(fz n—l—l _Zfz n—l—lk and E(fz —_Zfz n—l—llc

fori =1,...,q. Then ||[E(f(Ypi1)) — E(f(Yni1))|| serves as an estimate for
the local error of the less precise approximation. For ¢ = 1,...,¢q we choose
tol; as

tol; = Atol; + max{|E(f;(Yn))|, |E(fi(Yni1))|} Rtol; (3.1)

with tolerances Atol; for the absolute and Rtol; for the relative error prescribed
by the user. We want the step size routine to accept only steps where

|E(fi(Yat1)) — E(fi n+1))| <tol, i=1,...,q, (3.2)

holds. The step size control calculates the optimal step size such that

= |1y ( (Vi) —

i—1 tOli

2

(fi(?m))) 1 (33

is fulfilled. As an estimate for the local error
err & C - hPst! (3.4)

holds with some constant C' > 0 and where pg is the order of the less precise
approximation Y, ;. Since we require err ~ 1, the optimal step size h,y; has
to be chosen such that 1 ~ C - hbs,"" is fulfilled. This implies

1\ 7+
hopt =h (—) o .

err



In the deterministic setting Hairer, Ngrsett and Wanner [6] propose a multi-
plication of A,y by a safety factor fac < 1 (e.g. fac = 0.8) to prevent strong
oscillations of the step size. To avoid a too fast growth or reduction of the step
size we also introduce factors facmax and facmin, so that the new step size
finally is calculated as

. . 1\ 75+
hpew = h - min (facmaac, max (facmm, fac- (—) )) . (3.5)

err

If err < 1 holds, the current step with step size h is accepted for all M dif-
ferent paths and the next step is calculated with the proposed step size hjeq -
However if err > 1, the current step is repeated with the new step size h,ey
for all paths.

4 Simulation of the conditional distributions of ;) and (1)

The SRK method uses the random variables I(;) and Iy 1). Since Iy ~ N(0,h)
for step size h one gets I(1y and I(11) by means of the transformation

1
Iny=vh-g and Iny = ((In)* = h) (4.1)

with a standard normal random variable g generated by some random number
generator. As we want to use a step size control algorithm, we need to simulate
random variables with a conditional distribution: In case that a step with step
size h is rejected, the algorithm has to repeat the step with a smaller step size
hnew < h. Thus the problem of simulating

T2 T2 81
I(l),tn,7'2 :/t dWs and 1(171),tn,’7'2 :/t' /t' dWdeSI

under the condition of the already known realisations of the random variables

T1 T S1
I(l)atnﬂ'l :~/t dWs and I(l,l),tn,Tl :/t dWSdW81

tn

arises, where 7y = ¢, +h and 75 = £, + Ay < 71. Since (31 can be calculated
from I(;) the problem we are going to solve in the following reduces to the
simulation of I(y)y, - given Iy, . Let t, be the current starting point for
the next approximation. If a step with step size h was tried, but rejected and
if hpew is the step size to try next the integration interval [t,, 1] degenerates
to [tn, 72| U[7, 71]. It must be pointed out that the Wiener process at the point
71 is already known, i.e. we have I(1);, » = Vh - g. Then we get the following



representation for 111y, -, and I1) 7, - [3]

Iy o N
(1)7t’n; 2 — A (4‘2)

I(l),Tz,n g

with a 2 x 2-matrix A = (a;;) and a standard normal random variable N
independent from g. For A

Va/r(([(l)ytnyTZ ’I(]-);TZ’TI )T)

(4.3)
= COU((I(l)atn;TZ’ I(l)aTZ;TI)T’ (I(l)yt’ny’r2’ I(l);T27T1)T) = AAT

holds. The object is now to determine the matrix A. The covariance matrix is
given by

hnew 0

COU((I(I),tn,Tza I(l),Tz,n)Ta (I(l),tn,’rga I(l),TQ,Tl)T) = . (44)
0 h-— hnew
Thus considering the equation
I(l)itnaTl = \/E ' g = I(l)ﬂtnaTQ + 1(1)17-257—1 (4'5)

yields the following system of equations for the elements of A:

a1 +ag =0

Q12 + Gy = vh

a%l + G%Q = hnew (4.6)
a5y + oy = h — hnew

a11021 + ai2a22 = 0

The first two equations can be derived from (4.2) and (4.5), the last three
result from (4.3) and (4.4). As a solution of (4.6) we obtain

h' - hnew 2
a1 = \/h — Pnew — % a21 = —a11

h_hnew h_hnew
GIZZI—T azQZT-

Therefore, the increments finally result from (4.2) and can be simulated as
follows:



h — hnew 2 h— hnew
1) tn 72 = \/h — hnew — % N+ (\/7 -—F)y9 (4.7)

h - hnew 2
I(l)ﬂ'n2,7n1 = _\/h’ - hnew - % N+ — .

>=
%'
S
Q
S
N}

5 Convergence

In order to prove the convergence of the SRK method with step size control
we need a representation of the exact solution of SDE (1.1) and of the nu-
merical solution as well. Since Taylor expansions are much more complex in
the stochastic than in the deterministic setting we use the rooted tree theory
instead to handle this task in an easier way (for details see [12,14,15]). In the
following we briefly sketch the rooted tree theory for the autonomous version
of the Ité SDE (1.1). Let t be an S-tree (stochastic tree) with { = I(t) nodes.
We choose the set of colors for the nodes as A = {7,0}, where 7 = @ s
called a deterministic and ¢ = QO a stochastic node. The set of all such trees
is denoted by T'S. Figure 1 shows some examples for S-trees.

AN

tos.1 ti1 3 tos.18 t2.5.29

Fig. 1. Examples for S-trees

For an S-tree t let d(t) denote the number of deterministic and s(t) the
number of stochastic nodes. Then the order p(t) of the tree t is defined by
p(t) = d(t) + 5s(t). For some of the examples in Figure 1 the order is calcu-
lated as p(tos1) = 0.5, p(t13) = 1.0 and p(tes515) = 2.5. We get a represen-
tation of t through [tq,...,ty]or{t1,...,t,} if the tree is formed by joining
the subtrees t1,...,t) each with a single branch to a common node of type
T or o, respectively. Recursive application of the described technique leads to
t1_1 =T, t13 = {O’} and t2529 = {[O’, 0']} We define ’y(t) =1if l(t) =1 and
v(t) = ( )IT, v(t;) if 1(t) > 1. Thus we obtain y(ti1) = 1, y(tas18) = 4
and y(t2529) = 12. The cardinality of t is denoted by «(t) and is equal to 1
for each S-tree in Figure 1 (see [12,14] for details).

For every rooted tree t there exists a corresponding elementary differential
which is defined recursively by F(7)(z) = a(x) and F(o)(z) = b(z) for single



nodes and by

aN(z) - (F(t1)(@),..., F(t))(z)) fort=[ti,..., t)]

bV (2) - (F($1)(2), ..., Ft2)(x)) fort = {t,...,t\} (5:1)

F(t)(z) = {

for trees with more than one node. Here ¢ and b define symmetric linear
differential operators, that means the subtrees t{,...,t, can be chosen in an
arbitrary order. For ease of notation we drop the argument x and thus obtain
for the Jth component of the examples F(t11)” = a’, F(t13)” = ¥ %_, 22 b¥

azK
and F(t2.5_29)‘] = E(;(,L,M 1 gz; 83?56;{1"1 bL bM (see [12 14 15])

Since the Taylor expansion of the numerical solution contains the coefficients
of the SRK method, we define a coefficient function ®g. Therefore we make
use of the notation

20 = ah, 700 = gOp, 70O = g0
1
2 =4Oy + 7(2)(1_}’;) 700 — A4Op  z00 — pe® [

n

Then ®4 assigns an elementary weight to every tree t recursively by

I

RN O) it = [t ..t
2s(t) = {zﬂ L OOt 6= b, 62}

where 7 = [(}], o = {0} with U®)(()) = e, and

§) (t) = O, O (t) it = [ta,...,t]
R PAGLY I, W () ift = {t;,...,t\}

for k = 0,1 withe = (1,...,1)" and ®5(@) = 1. The product of vectors in the
definition of U(*) is defined by component-wise multiplication.

In the following proposition we give a weak convergence result for the se-
quence of approximations calculated by the SRK method with an arbitrary
step size control. Without loss of generality we assume V(I)Te = 1 for the
coefficients in (2.4).

Proposition 5.1 Let the coefficients of the SRK method (2.1) satisfy the 28

conditions for a method converging weakly with order 2.0. Assume 7(1)T6 =1
and let f : R — R satisfy a Lipschitz condition. Then the SRK method (2.1)
yields approximations converging to the solution of SDE (1.1) in the weak
sense, as long as the maximum step size converges to 0, even if the discretiza-
tion points are not stopping times.



Proof. As a first step we prove that an SRK method (2.1) of weak order
2.0 is also a method of strong order 1.0. Therefore we show at first that
the method converges strongly with order 1.0: Consider the stochastic rooted
trees tos51 = 0, t1.1 = 7 and t13 = {o} with order p(t) < 1.0. Then, applying
Corollary 5.6 from [12] (Corollary 2.5.9 in [14]), the Taylor expansion of the
Jth component of the SRK method (2.1) for ¢ = ¢y + h is given by

YtJ :Xt{ﬁL Z a(t)*y(t)@s(t)F(t)(Xto)J

(TS [(t)!
p(t)<1

=XtJ0 + ®g(t1.1) F(t1.1)(Xso)” + Ps(tos.1) Fbos)(Xi)”
+ D (t3) Fti3)(Xy)” + R

+ R’

I
:Xt‘ﬁ +a’ea’ (Xy) b+ (7(1)T6 Iy + V(Q)Te (1’1)> b (Xy,)

S

d
X
+ (7 BOWe Vi ++42"BOWe 1(1,1)) 3 b’ (Xs) ) (¥, ) + R

K
= Oz

with ||E(R)|| = O(h?) and (E(||R]|?))/? = O(h'?). From the weak order 2.0

conditions follows that aTe = 1, vV e =1, y®"¢ = 0, 7(1)TB(3)(1)6 =0 and
’7(2)TB(3)(1)6 = 1 holds. Since I(y) is an increment of the Wiener process and

Iy = %(1(21) — h), we have a SRK method with an expansion of type

1 ¢ 8bJ Xto)

Y/ =X +a’ (Xp0) h+ 07 (Xi) Iy + = 3 2 Z — b (X)) (I3 — h) + R

Therefore, the SRK method (2.1) of weak order 2.0 is also a method of strong
order 1.0. Thus Corollary 4.4 in [4] can be applied which yields the strong
convergence of the SRK method even if the discretization points are not stop-
ping times. Finally, for arbitrary f : R — R satisfying a Lipschitz condition,

the weak convergence follows from strong convergence and Jensen’s inequality
with a Lipschitz constant L > 0:

|E(f(X7) — FOe))| < L-E(|Xr—Ye|) =0 as h— 0.

6 Numerical results

In this section we compare the embedded SRK method (2.1)—(2.3) of weak
order (3,2)((2,1)), that means ps = 2 and ps = 1, with the step size control
presented in section 3 to the same SRK method of weak order (3, 2) with fixed
step size. We denote these methods by M1 and M2, respectively. We proceed

10



as follows: We choose a starting step size hgyq+ and tolerances Atol and Rtol
for M1 and compute M = 900.000 approximation paths simultaneously with
the same choice of step sizes given by the step size control algorithm. The
safety factors are chosen as fac = 0.8, facmax = 2.0 and facmin = 0.5. The
fixed step size for M2 is afterwards calculated by

T —t

Stried

hfiz = (6.1)
with starting time ¢y and end time 7" of the integration interval and where
Siriea denotes the number of steps tried by M1. Then we calculate 900.000 ap-
proximation paths with M2 and compute means at the discretization points
as we did before with method M1. Consequently, M1 and M2 are charged
with the same computational effort. Since the adaptive discretization times
of method M1 do not necessarily coincide with the equidistant discretization
times of M2, it is not possible to make a direct comparison between the re-
sults of M1 and M2 in the discretization points. In addition there do not exist
analytical solutions for our test problems in general. So we calculate a lin-
early interpolated approximation with a very small step size as a reference
solution. In the following we denote by SW,,;, the minimum and by SW ..
the maximum step size used by the step size algorithm during the simulation.
Furthermore let Sg.. and S,.; be the number of accepted and rejected steps,
respectively. All approximations are calculated with the SRK scheme RI3W1.
However the application of RI5W1 yields assimilable results.

6.1 Test problem 1

The Duffing-Van der Pol oscillator [7] is described by a 2-dimensional It6
stochastic differential equation

dX} =X} dt

6.2
dX2 =(X} o= (XD = X2) dt + o X} dW, (6.2)
with a € R and a parameter o > 0 which specifies the intensity of the stochas-
tical influence to the equation. For the simulation of the solution of equation
(6.2) the functional f is chosen as the identity.

Figure 2 shows approximations with increasing stochastic influence o. For
the simulation we use o = 1.0, the integration interval I = [0, 8], the starting
step size hgere = 0.15, the initial value Xy, = (—3,0)7, and the tolerances
Atol; = 0.001 and Rtol; = 0.05, i = 1,2. Considering the Figures 2(a) and
2(b) where the stochastic influence is rather small we do not realize any strong
changes between both of them whereas for ¢ = 0.5 and 0 = 1.0 we note a
successive reduction of the step size. These considerations are verified by Ta-

11



ble 2, where we observe a declining maximum step size and an increase of the
number of accepted steps S,... For any chosen o we observe that method M1
yields better results than M2 in comparison to the reference solution.

M2

M2

E(X2_t)
E(X2_t)

M2

M2

E(X2_t)
n
E(X2_t)

() c=0.5

Fig. 2. Results for SDE (6.2) with varying o

Abb. Sacc Srej Sacc/stried SWmm SWmaac hfz;c

@ | 21 | 5 0.808 | 0.095707 | 0.812528 | 0.307692
) || 22 | 4 0.846 | 0.095708 | 0.758969 | 0.307692
) | 24 | 3 0.889 | 0.095715 | 0.546010 | 0.296296
(d || 30 | 8 0.789 | 0.095741 | 0.517270 | 0.210526

Table 2
Results of the step size control algorithm for SDE (6.2)

12



6.2 Test problem 2

We consider the stochastic Brusselator equation [1,8] which is given by the
following 2-dimensional system of It6 SDEs:

dX! = (o — DX} + (X))’ + (X} +1)’X}) dt + o X, (1 + X)) dW, 6.3
dX? = (—aX} — a(X})* — (X} +1)’X}) dt — o X} (1 4+ X}) dW, (6:3)
where again o gives the intensity of the stochastic influence. In the deter-
ministic case if a < 2 the paths converge to the global asymptotically stable
solution (X!, X?) = (0,0) whereas for & > 2 we obtain a boundary circle
which encloses the now instable solution (0, 0) [1,6,8]. As there does not exist
an analytical solution for equation (6.3) we again use a reference solution with
very small step size for comparison. The functional f is the identity.

0.03 T 3.5
Ml —
M2

0.025 - reference 3k
0.02 4 25
0.015 - 4 2r

E(X2_t)

0.01 / ] 151 |
|

0.005 - / 1 1 *//

oft — 05 |f
acq
rej
-0.005 : : : : : : 0 T — L
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0 10 20 30 40 50 60 70 80 90 100
E(X1_t) t
(a) @ = 0.5, Atol; = 0.001, Rtol; = (b) @ = 0.5, accepted and rejected steps
0.01,:=1,2
0.06 T T T T T T 0.2
M1 —
M2 M2
0.05 - 0.15
0.1
0.04 -
0.05
= 0.03 =
X X 0
o 002 f o
-0.05
0.01 04
0r -0.15
-0.01 : : : : : : 0.2 : : : : :
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
E(X1_t) E(X1_t)
(¢) a = 1.0, Atol; = 0.001, Rtol; = (d) @ = 1.9, Atol; = 0.01, Rtol; = 0.05,
0.01,4=1,2 i=1,2

Fig. 3. Results for SDE (6.3) with varying «
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Abb. || Sacc | Srej | Sace/Stried | SWmin | SWiaa hyia
(a) 51 9 0.850 0.402337 | 2.868974 | 1.666667
(c) 51 15 0.773 0.430555 | 3.806200 | 1.515152
(d) 74 26 0.740 0.573800 | 2.824429 | 1.000000

a

Table 3
Results of the step size control algorithm for SDE (6.3)

In Figure 3 we present the results of three simulations where we choose o = 0.5,
1.0 and 1.9, respectively. Further parameters are ¢ = 0.1, the integration in-
terval I = [0,100], the starting step size hgqrs = 1.0 and the initial value
Xy = (—0.1,0)". We observe that method M1 yields a better approximation
than M2 for every choice of a. In Figures 3(a) and 3(c) the approximation
obtained by M2 is particularly imprecise at the beginning of the interval. This
can be explained by analyzing the accepted and rejected step sizes, exemplar-
ily pictured for @ = 0.5 in Figure 3(b). For times ¢ < 5 one observes step
sizes which are rather small compared to the fixed step size 1.666667 used by
method M2. For o = 1.9 we notice that the approximation path obtained by
M2 reaches the origin much earlier than the path resulting from M1 and the
path of the reference solution.

7 Conclusion

The object of the present paper was the development of a method with auto-
matic step size control for the weak approximation of the solution of SDEs. We
propose an algorithm which works with an embedded SRK method and thus
causes a low additional computational effort for the step size control. Further-
more the error criterion of our step size algorithm is based on the expectation
of the functional f applied to the approximation processes - a proceeding
which is suitable, given that we are rather interested in expectations of func-
tions of the solution process E(f(X;)) than in the pathwise solution X; itself.
Numerical simulation of some test problems demonstrated the improvement
in accuracy of the approximation yielded by our proposed method when com-
pared to a method with fixed step size and an assimilable computational effort.
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