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Abstract

Using the notion of very weak solutions, introduced recently, see [2], [9],
[10], [16], we obtain a new and very large uniqueness class for solutions of
the inhomogeneous Navier-Stokes system —Au+u-Vu+Vp = f, divu =k,
Ul =9 with u € LY, ¢ > n, and very general data classes for f,k, g such
that v may have no differentiability property. If the data are sufficiently
smooth we get a large class of unique and regular solutions extending the
well known classical solution classes and generalize a regularity result of
Gerhardt [17].
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1 Introduction and Main Result

Let Q C R™, n > 3, be a bounded domain with boundary 9 of class C*!, let
N = N(z) = (Ni(),...,N,(z)) denote the outer normal at = = (z1,...,,) €
00, and let 1 < g < o0, ¢ = q%l. In  we consider the Navier-Stokes system

—Au+u-Vu+ Vp=f, divu =k, Ul =9 (1.1)
with data f = div F, k, g satisfying
F=(F)lm €L(Q), keL'(Q), geW (60), (1.2)
1

1 1
/kdx: N-gdS wheren<g<oo, ¢ <r<gq, —+->-.
Q o0 n o q _r

Here the surface integral is well defined in the generalized sense |, aq N - gdS =
(9, N)oa = (N - g,1)sq of a boundary distribution.
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The notion of very weak solutions, introduced in principle by Amann [2], [3]
for the 3D-nonstationary case with k£ = 0, and in [9], [10], [16] for the 2D- and
3D-stationary case with k # 0, rests on the use of test functions in the space

Cio(Q) :={v=(v1,...,v,) € C*(Q);dive =0, Vg = 0}. (1.3)

Applying such a test function formally to (1.1) we obtain the following relation
which is well defined for u € L9, ¢ > n, and data (1.2):

—(u, Aw)o + (9, N - Vw)aa — (uu, Vw)g — (ku, w)g

o) (1.4)
= —(F.Vw)q, weC§,(9Q).

Here (-, -)o means the usual L?- L9 -pairing in Q, (g, N-Vw)asq denotes the value of
the distribution g = (g1,...,9n) € W_%’q(aQ) at the normal derivative N-Vuw), .
and uu = (uzu;);;—;. Further we use the relation u-Vu = (u-V)u = div (vu) —ku,
and the notation f =divF := (Y1, DiFij);L:p D;=0/0z;,1=1,...,n.

The main result, see Theorem 1.3 below, states that system (1.1) has a unique
very weak solution u € L? in the sense of (1.4) if the data in (1.2) are sufficiently
small. Furthermore, we obtain the existence of a pressure p € W=14(Q), well
defined up to a constant, by de Rham’s argument [28]. Concerning regularity we
prove that every very weak solution is a weak solution or even a strong solution
provided the data in (1.2) are sufficiently regular, see Theorem 1.6 below. These
results will generalize the regularity result of Gerhardt [17] on weak solutions
in the four-dimensional case to higher dimensions and are related to the result
on the existence of (locally) strong solutions by Frehse & Ruzicka [11], [12] for
dimensions n > 5, see Remark 1.7 below.

To understand the precise meaning of all terms in (1.4) let 7 = 7(x) =
(7’ , Ta—1(2)) be a system of unit tangential vectors at z € 99 such that
(T(z ) = (n1(z),...,7a_1(2), N(z)) defines a Cartesian basis at z. Then
g(x ) has the form

o() = L,(r(x)) + (N - g) N(2) (15)

where £,(7(z)) € R™ means a suitable linear combination of 7(z),..., 7,-1(x)
contained in the tangential plane at x, and N - g = Nyg; + ... N,g, denotes
the normal component of g(x). An elementary calculation, using divw = 0 and
assuming without loss of generality that (T(ZU), N (x)) is the standard basis of R™,
shows that N - Vw|89 is contained in the tangential plane. Thus we obtain that

(g,N—Vw>aQ = <£9(T1,...,Tn,1),N'VU}>39; (16)

hence (1.4) contains only the tangential components of g.
Concerning the normal component N - g of g we have to require the additional
(well defined) conditions

divu=kin Q, N-u=N-gon . (1.7)
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Thus, if (1.4) is satisfied for some vector field u € L4(2), we say by definition
that )
,Cu|m(71, vy Tnet) = Lyg(T1, .. To1) € Wa4(09) (1.8)

is the tangential trace of u at 9€) in the sense of boundary distributions. Since
1

the trace NV - Ul € W—a%(0Q) is well defined in the usual sense we get a precise

meaning of the boundary trace Ul =9 in (1.1).

Definition 1.1 Given data f, k, g as in (1.2), a vector field v € L(€) is called
a very weak solution of (1.1) if and only if the relation (1.4) and the conditions
(1.7) are satisfied.

For the linearized system

—Au+Vp=f, divu=k, g (1.9)

Yoo =

we may omit the condition ¢’ < r in (1.2), caused by the nonlinear term u - Vu,
and suppose that the data f = div F' k, g satisfy

FeL'(Q), kelL(Q), geW 9dQ), (1.10)

+-2

S |-

/kd:r;— N-gdS with n<g<oo, 1<r<yq,
Q o0

S|~
< |

Definition 1.2 Given data f, k, g as in (1.10), a vector field u € LI(Q2) is called
a very weak solution of (1.9) if and only if the relation

—(u, Aw)g + (g, N - Vw)sq = —(F,Vw)q for all w € C7 () (1.11)
and the conditions divu =k, N - Ul = N - g are satisfied.

Our main result reads as follows.

Theorem 1.3 Suppose the data f = div F, k, g satisfy (1.2). Then there ezists a
constant K = K(§2,q,7) > 0 such that in the case

[E N zr ) + 1Rl @) + N9l -1 (1.12)

<
(0Q) —
there is a unique very weak solution u € L1(Q) of (1.1) satisfying the estimate

lull Loy < CUF N + Fller) + llgll, - (1.13)

a ’4(39))

with C = C(Q,q,r) > 0. Moreover, there exists a pressure p € W14(Q) such
that —Au +u - Vu + Vp = f is satisfied in the sense of distributions.



Remark 1.4 (i) In the proof of Theorem 1.3 we first solve the linearized system
(1.9), only assuming (1.10) in the sense of Definition 1.2. The solution u €
L9(Q) of (1.9) always exists, is unique, satisfies (1.13) and possesses the explicit
representation formula (3.4), see below.

(ii)) A well known scaling argument shows that the data conditions in (1.2)
are optimal for the solution class u € L%(§2) and that the estimate (1.13) is
sharp. Thus we also get a new class of unique solutions u € L(Q2) without any
differentiability property. However, if the data f,k, g are sufficiently smooth we
obtain the corresponding regularity properties for the solution u solving (1.1) in
the classical weak or strong sense. Therefore, even in the case of more regular data
f, k, g, the uniqueness class determined by (1.12) leads to a new large class also
for classical solutions. These uniqueness and regularity assertions are described
in the following two theorems.

Theorem 1.5 Suppose the data f = div F k, g satisfy (1.2), and let v € L9(S2)
be a very weak solution of (1.1). Then there ezists a constant K = K(Q,q,r) >0
such that under the condition

[ullg + 15l < K (1.14)
there is no other very weak solution v € L1(Q)) of (1.1) for the same data f,k,g.

Theorem 1.6 Letu € L9(2) be a very weak solution of the Navier-Stokes system
(1.1) with data f =divF and k,g as in (1.2).
(i) Assume that the data f,k, g satisfy the additional conditions

FeL{Q), kelLiQ) and ge W Yo10Q).

Then u € WhH4(Q), the equation —Au + u - Vu + Vp = f holds in the sense of
distributions with some pressure function p € L1(2), and Uy = 9 holds in the

sense of the usual trace theorem.
(ii) Assume that the data f = div F,k, g satisfy the additional conditions

feLiQ), FeliQ), keW"(Q) and g W*Y29(9Q)

where s € [%,00). Thenu € D(A;)+W?>4(Q), the equation —Au+u-Vu+Vp = f
holds strongly in L1(SY), ¢ = min(q, s), with some pressure function p € W14(Q)
and Uy =9 holds in the sense of traces.

Remark 1.7 (i) Consider f € L*(Q2) with § < s < oo, and the "classical”

case k = 0, g = 0. Then we can choose ¢ > max (n,s) such that %—l—é =1

with some a € [0,1]. This yields ¢ + 4 = ? and the embedding W7 (Q) C
L* () which shows that there exists some F € L9(Q) satisfying f = div F.

Thus Theorem 1.6 (ii) implies that every (very) weak solution u of (1.1) satisfies
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u € D(A;) +W?1(Q) € W**(Q). In the case s = 2 this result generalizes the
well known regularity theorem for weak solutions of the Navier-Stokes equations
in the four-dimensional case when & =0 and g = 0, see [17].

(ii) For every right-hand side f € W—12(Q) the classical Navier-Stokes equa-
tions (with & = 0, ¢ = 0) have a weak solution u € Wy?(Q) N L2(Q), see [28],
Theorem 1.2 in Chapter II, §1. If additionally v € L™ which is guaranteed for
n = 3,4, this weak solution u is also a very weak solution in the sense of Def-

o ey . ~ —F—H NL"™ —H NL" .
inition 1.1, since V' := Cg5, () = C§,(9) on p. 161 in [28]. Now

assuming f € L*(Q), s > 7, part (i) implies that u is a strong solution in
W25(€)). This result is related to existence and regularity theorems in a series
of papers, see e.g. [11], [12], where the existence of at least one locally regular
solution u € VViCT(Q), r > 1, was proved. If the data are sufficiently small in the
sense of Theorem 1.3 to guarantee the unique existence of a very weak solution
u € L7, we get u € W?>*(Q) provided the external force f lies in L*(2), s > 2.

(iii) If ¢ = s in Theorem 1.6, (ii), then obviously u € W?24((Q).

2 Some preliminaries

Let 1 < ¢ < o0 and ¢ = qfl such that §+$ = 1. We need the usual spaces

L), L1(09), W*1(Q), W (Q), W—*1(Q) = (WOO"qI(Q))/, W4(082), and
W=4(0Q) = (Wa’q/((()Q))/, 0 < a < 2. The corresponding pairings are de-
noted by (-,-)q or (-,-)aq, resp., and the corresponding norms are denoted by
I ly = ooy I-lsenss = I-llzags -0, and |- |sagon, respectively.

The spaces of smooth functions on € are denoted as usual by C7(), C3(2),
Ci(Q) for j =0,1,2,... and j = co. We set

Cim) = {ve V@) v, =0,
C’g,a(ﬁ) = {v=(v1,...,v,) € CYQ); dive = 0},

and 0870(9) = {v € CJ(Q); dive = 0}. The space of distributions C$°(Q)" is
the dual space of C§°(2) in the usual topology, the duality pairing of which is
again denoted by (-, -)q. Correspondingly, we use the test function space C7(99),
j = 1,2, on the boundary 952, and the corresponding distribution spaces C7(92)’
with pairing (-, -)gq-

Let LZ(2) be the closure of C§%(€2) in the norm ||-||zeq). The dual space
L1(Q) of L1(Q) is identified with LZ (Q) by the pairing (f,v)q = [, f - vdz. By
analogy, we identify L7(9€)" = L7 (9<2) with pairing (f,v)aq = [, f - v dS.

We need some trace and extension properties for o« = 1,2. The trace
map f +— f loe is a well defined bounded linear operator from W®(()

onto Wa_%’q(ﬁﬁ). Conversely, there exists a bounded linear operator E' :

Wi-124(9Q) — Wh(Q) with El(h)|aQ = h, and a bounded linear operator



E? . WPlea(9Q) x Wi1/e9(9Q) — W29(Q) satisfying E*(hi,ho)|, = M,
N - VE?(hy, h2)|,, = ha; see [24], Theorem 5.8, [29], 5.4.4.
Let 1 < r <gq, %—i—% > %, and let f = (f1,..., fm) € LUQ), div f € L"(Q).

Then, using E' with ¢ replaced by ¢/, the embedding estimate

oN

1B (W)]lre < CUIE (W) lg0 + IVE (B)llg0),  C=C(Q.q,71) >0,

and Green’s identity (div f, E'(h))q = (N - f,h)aq — (f, VE'(h))q for h €
Wl/ed (99), we get N - f|aQ € Wﬁé’q(ﬁﬂ) and the estimate

IN - Fll- 1000 < C(If lg + iV flr0) (2.1)

with C' = C(Q,q,7) > 0.
Conversely, there is a linear operator E W_%’q(aﬁ) — Li(h) satisfying
divE(h) € L"(Q2), N - E(h)|ag = h and the estimate

. oA _1
IEM g0 + [1div E(R)l|ro < Cllk] 1400, he W %(09),  (2.2)

with C' = C(Q,¢q,r) > 0; see [25], Corollary 4.6, (4.10).

As an application we consider some gradient VH = (D1 H, ..., D, H) € L1(Q)
with AH € L"(Q), and apply (2.1) to VH and to the vector fields % =
( f’j, . .,fﬁ;j), 0<i< < n',lsatisfying fZ” = D;H, f]” .= —D;H but f7 =0
if ¢ # k # j. Obviously div f*/ = D;D;H — D;D;H = 0 in the sense of distribu-
tions. Then N-VH| and N- [ € W~ +(d9) are well defined by (2.1), and
a calculation shows that each D H, k = 1,...,n, at 9€) is a linear combination
of N - VH|(‘)Q and N - fivj|8Q with 1 < i < j < n. Therefore we conclude from

(2.1) that VH| € W_%’q(GQ) is well defined and satisfies the estimate
IVH] 1,00 < C(IVHlg0 + |AH]|0) (2.3)

with C' = C(Q,q,r) > 0.
Consider the data f = div F, k, g as in (1.10), and the weak Neumann problem

AH=k N-VH| =N-g (2.4)
where VH € L(f) is considered as a solution. Then we use E(h) withh = N-g €
W_%’q(ﬁﬁ), and choose a solution b(h) € Wy"(Q) of the equation divb(h) =
div E(h) — k € L"(Q). Since

/(divE(h)—k)dx: N-gdS—/kdx:(),
Q o0 Q



such a solution exists, see [14], Theorem III, 3.2, or [27], and satisfies
16(R) g < C1lVO(B) [l < Co(lldiv E(h) [l + [|klle) (2.5)
with C; = C;(Q,¢,7) > 0, j = 1,2. Writing (2.4) in the form

AH =div (E(h) = b(h)), N-(VH —FE(h)—b(h)) 0, (2.6)

loo =

we find, see [13], [25], a unique solution VH € L4(Q) satisfying
IVHlg0 < Cr(IER)lgn + 1) ]l00) < Co(IN - gll 1400 + Fllna),  (27)

and therefore
IVH| 14,00 < C(|IN - 9ll-1400 + 1E|.c2) (2.8)

with C' = C(Q,¢q,7) >0, C; = C;(,q,7) >0, j =1,2.

Now approximate the data k, g in (2.4) by smooth function k;, g;, j € N, such
that lim; .. |k — kjllro = 0 and lim; . ||g — gjl| _1,,00 = 0. Let VH; € LI(Q)
be the corresponding solution of (2.4). Using (2.7), (2.8) with VH, k, g replaced
by VH — VH;,g — g;,k — k; we see that lim; . [|[VH — VH||,o = 0 and
limj . [[VH — VHj|| 1,59 = 0. Then, using the Stokes operator A, and its
inverse A(;l, see below, we get the important identity

(VH,AA'v)o = lim (VH;, AAZ v)g
j—o0

= lim ((VH;,N-VA_'v)aq + (VAH;, A v)g)  (2.9)

Jj—00

= <VH,N . VA;,11)>(’)Q

for all v € L% () since div Aq’,lv =0 and A;,lvbg = 0.
Let f=(f1,..., fn) € L(Q). Then as in (2.6) the weak Neumann problem

AH =divf, N-(VH-f) =0

has a unique solution VH € L(Q), see [13], [25], satisfying
IVH]lg.0 < C[[fllo0 (2.10)

with C' = C(£,¢q) > 0. Setting P,f := f — VH we get the Helmholtz projection
as a bounded linear operator from L?(f2) onto L%(Q) satisfying P; = P, and
P, = Py where P, means the dual operator.

The Stokes operator A, with domain D(A,) = LL(Q)NW,4(Q)NIW29(Q) and
range R(A,) = L1(2) defined by A,u := —P,Au, u € D(A,), is a densely defined
closed operator satisfying (A,u,v)q = (u, Ayv)q for v € D(A,), v € D(Ay),
and Aju = Ayu for 1 < ¢,v < oo, u € D(A,) N D(A,). The fractional power
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Aqﬁ : D(Aqu) — Li(Q), 0 < § < 1, with D(4,) C D(Aqu) C L4(Q), is well
defined and bijective; its inverse A_? = (A%)~! is bounded from LZ(£2) onto
R(A;P) = D(A?). Moreover, it holds (A7) = Ag,. We note that the norms
|ull2.0.0 and ||A, quQ are equivalent for v € D(A4,), as well as that the norms

w100 and ||A u||qQ are equivalent for u € D(Al/Q). Further it holds the
embedding estimate

n o n
lullga < CHAguH%Q, u € D(Af), l<y<g<oo, 20+ E = ;, (2.11)

with C = C(Q,q,7) > 0. Using A;/Q we define the Yosida operators J,, =

(I + %A;m)*l for m € N. It is well known that there exists C' = C(Q2,q) > 0
such that )
[Tl + ||£ A2 J0]| < C, mEN, (2.12)

in the operator norm on LZ(2) and that J,,u — u in LL(2) as m — oo. See [4],
(18], [19], [20], [23], [27], [29], concerning the Stokes operator.
Using (2.11) we get for f = div F' and arbitrary v € LI (Q2) the estimate

_1
(F A7)0l = I(F,VAZ0)al = |(F,VAFA Pu)q] (2.13)
< CilFla 147 0la < Coll Fllna o]l

with C; = C;(Q,¢,7) > 0, j = 1, 2 This proves the existence of a unique
f € Li(Q) satisfying (f, ; V) = (f,v)q for all v € LT(R), and the estimate

1flee < CIF|lha, C=C(Q,qr)>0. (2.14)

Similarly as in the theory of distributions, we set, by definition, f = A;qu fe
L1(Q) giving this expression a generalizing meaning. Then A;qu f is well defined
by the relation

(A]'Pof,v)e = (f. A 0)e, v e LL(Q). (2.15)

More generally, let f € C§°(Q2)" be any distribution such that (f, w)q is well
defined (by any continuous extension) for all test functions w € D(Ag,), 0<p<
1, and satisfies the estimate

(£ A7)0l < Collollga, v e LE(Q). (2.16)
Then A_PP,f € L1(Q) is well defined by the relation
(A;PPyf,v)a = (f, A7 v)a, v e LL(9), (2.17)
giving Aq_ﬁ P, f a generalized meaning, and it holds
|47 Pfll, < €. (2.18)
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As an example we mention the estimate
_1
|Aq 2 P, divwl|, < Cllwlly, w e LIUQ), 1 <q< oo, (2.19)

with C' = C(Q,q) > 0. See [27], IIL, 2.5, 2.6, for similar definitions.
Let w € CF,(Q) and v = Agw. Then, using (2.11) and the trace estimates,
we obtain that

(g, N - VA v) o

IN

Cl ”g”—é;q,aﬂ ||VA;/1/U”%;Q/789
CQH.gH—i;q,@Q ||VA;/1U||1;q’7Q (220)

< Gsllgll-s400 lvlleo

IN

with C; = C;(2,q) > 0, j = 1,2,3. Since LI(Q2) = (Lg’(Q))/, there is a unique
G € Li(Q) satistying
(G,v)a = (9, N VA v)eq forallv e LT(Q), (2.21)
1Gllee < Cligll-1400

with C' = C(Q,q) > 0.
Finally we need the density property

— H'”q,Q

1,08,@"" — L), (222)
Indeed, consider f € LI(Q2), choose f; € C§o(2), j € N, with lim; . [ f —
fillae = 0 and let u; = AJ'f;. The regularity property in [26], p. 518, (9.13)
shows that u; € C§,(Q) for j € N, and we see that Agu; = f; — f in LL(Q) as
j — oo. This proves (2.22). Moreover, this proof shows that C7 ,(Q) C D(4,) is
a core of D(A,).

3 Proof of Theorems

First we consider the data f = div F\ k, g as in (1.10) and prove a representation
formula for the solution w € L9(2) of the linearized system (1.9).
Consider the solution VH € L%(2) of the system (2.4). From (2.8) we know

that g := VH| € W_%’q((?ﬂ) is well defined, and from (2.9) we conclude that
—(VH, Aw)q+ (3, N - Vw)ag = 0 for all w € CF (), v = Agw, w = A_'v. This
shows, see (1.11), that u; := VH is a very weak solution of the linear system
=g. (3.1)
Next set § :== g — ¢ € W_%’q(aQ) and choose G € LL(N), using (2.21) with
g replaced by g, such that (g, NV - VA;1U>{)Q = (G,v)q, v € LL(Q). Setting
w = A;lv we get

—Au; +Vp =0, divu; =k, u,,

<é, Aw>Q = —<é, —Pq/Aw>Q = —<G,U>Q = —<g,N . Vw>ag
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which shows that uy := G is a very weak solution of the linear system

—Aus +Vpy =0, divus =0, Uz|, ) = gJ. (3.2)
Finally, we set uz := A;qu f, see (2.15), and conclude that uz is a very weak
solution of the linear system

—A’LLg + Vpg = f, div Uz = 0, u3|8§2 = 0. (33)

Combining (3.1), (3.2), (3.3) and using div (u; + us +uz) = k and N - (u + us +
ug,)|89 = N - g we see that u € LI(2) defined by
UI:U1+U2+U3:VH+G+A;1qu (34)

is a very weak solution of the linearized system (1.9). Using (2.7), (2.14) and
(2.21) with G, g replaced by G, g, we obtain the estimate

lullge < C(I1F e + [Kllre + 9] -1.400) (3:5)

with C' = C(Q,q,r) > 0.

To prove the uniqueness let v be another solution of (1.9) for the same data
(1.10). Then u—wv is a very solution of (1.9) with data f =0, k =0, ¢ = 0. From
(1.11) we obtain that —(u — v, Aw)q = (u — v, Agw)q for all w € C§ ,(Q), and
using (2.22) we get that u — v = 0, u = v. Therefore, each very weak solution of
(1.9) with data (1.10) has the representation (3.4).

Observe that in the proof of (3.4) we only used that A;'P,f € L1(Q) is
well defined in the sense of (2.17) with § = 1. Thus instead of f = divF
with F' € L"(2) we only need to assume that f is a distribution such that
AJTP,f € Li(Q) is well defined with (2.16) — (2.18). In this case we define a very
weak solution u of (1.9) replacing the term —(F, Vw)gq in (1.11) by (f, w)q, and
obtaining for u the formula (3.4) and the estimate

lulloe < CUIA; Pafllan + 1klre + llgll -1 00) (3.6)

with C' = C(Q,q,r) > 0.

Proof of Theorem 1.3 Considering the nonlinear case suppose that the data
f = div F k, g satisfy the conditions (1.2). First assume that v € L%() is a
given very weak solution of (1.1). Setting f := f — div (uu) 4+ ku we obtain
that A;quf € L1(Q) is well defined in the general sense (2.17), see (3.9), (3.10)
below.

Therefore, u is a very weak solution of the linear system

—Au+Vp=f, divu=Ek, g, (3.7)

Uoa =
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and possesses the representation
w=F(u):=VH+G + AP f — AP, div (uu) + APy (ku). (3.8)

Next we show that u = F(u) has a solution u € L?(2) using Banach’s fixed
point principle in a standard way.
Indeed, using (2.15) and (2.11) we obtain similarly as in (2.13) that

|<Aq_1Pq div (uu), v)q|

|<UU,VA;/1'U>Q| (3.9)
Cilluullg20 VA, Wl g/2y 0

IN

_1
Collull2 | A, 2 vl (/27,0

IN

IN

Csllull? gllv]l¢ 0
and that
(A Py(ku), v)al = [(ku, Ay )l (3.10)
< Cillbull g all 4z vl asa-nra
< Gollkl[rallullga [lv]ly.o

for v € LZ(Q) and with C},C,, Cs depending on Q,q,r. Here we need that
¢ <1 <gq,q>n. This shows that —A_ ' P, div (uu) + A P,(ku) € LL() is well
defined for u € L(Q2); moreover, we get the estimate

1Fllge < C(lullza + [Elma luloo + 1l + ko + gl -1400), (3.11)
with C' = C(Q,q,r) > 0, which is rewritten in the form

17 lge < allullgo + bllullgo +c

with a := C, b := C||k|,.0, ¢ :== C(||Fllno + [|kll.o + \|g\|_%;q789). In the same
way we obtain that

17 (1) = F@)lloe < (alllullge + []lg0) + b) llu = vll,e (3.12)

for u,v € LI(Q).
Assume that
dac+2b < 1 (3.13)

and consider the closed ball B := {u € LI(Q); ||lullqo < y1} where y; = 2¢(1—b+

V1402 — (dac+ Qb))fl > () is the smallest root of the equation y = ay®+ by +c.
Setting K = K(Q,q,7) := (4C* 4+ 3C)~! with C from (3.11) we see that (1.12)
is sufficient for (3.13) to be satisfied. If w € B, we obtain that ||F(u)|.a <
ay? + by; + ¢ = y; < 2c and that F(u) € B. Thus Banach’s fixed point principle
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yields a unique u € B with u = F(u). This u is a very weak solution of (3.7) and
therefore also of (1.1). Further we see that ||ul|,o < y1 < 2c which proves (1.13).

This completes the existence proof. The uniqueness of the solution u is a
consequence of Theorem 1.5 when we use the estimate (1.13). Note that the
constant K = (4C?+43C)~! with C from (3.11) is only sufficient for the existence;
in general, the uniqueness requires another constant. The assertion concerning p
easily follows by de Rham’s argument. Now Theorem 1.3 is completely proved. m

Proof of Theorem 1.5 Given very weak solutions u,v € L%(£2) where u satisfies
(1.14) a calculation shows that w = u —v € LZ(Q) is a very weak solution of the
linear system

—Aw—i—Vp:f, divw = 0 in €2, 0,

Yo =

with f = —div (vw 4+ wu) + kw. Then the representation formula (3.4) yields the
well defined relation

w=—A;"P, div (vw + wu) + A, Py (kw). (3.14)
This equation can be written - first of all formally - also in the form
AZw = —A7 2P, div (vw + wu) + Ay 2 P,(kw).
First let ¢ > n. Then we conclude using well known embedding theorems that
_ A2 P, div (vw + wu) + Ay TP, (kw) € LV*(Q). (3.15)

Looking at (3.14) a duality argument shows that w € D(A;g), yielding w €
L7 (Q) where % + qil = %, see (2.11). Since ¢ > n and consequently ¢; > ¢,
we may repeat this argument and obtain in a finite of steps that w &€ D(Aé/ 2).
Then take in (3.14) the scalar product with A;mw, write vw = ww — ww and use
that (div (ww),w) = 0. Now the smallness assumption (1.14) and an absorption
argument show that \|A§/2w|]2 < 0 yielding w = 0 and u = v.

If ¢ = n we need an additional smoothing step using Yosida operators
I = (I+ %Aéﬂ)_l, m € N, see [27], p. 298, concerning a similar procedure. Fur-
thermore, we choose C§°-functions k;, v; and u;, j € N, satisfying ||k — k||, — 0,
and ||v — vj||n + |Ju — uj]ln, — 0 as 7 — oo. Then (3.14) will be rewritten, using
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w = Jw+ %Aé/szw on the right-hand side, in the form

Az Tww = —JnAy? By div (v — v)) Jyw + (Jptw) (u — 1))
L4, aiv (0 = 0 A} T+ (A} )0 )
—JmA;%Pq div (vw + wuy;) (3.16)
I Ay Py((k = k) Jyw) + %JmAq_%Pq((k; — k) AZ Jy)

1
A ? Py(kjw)
=i+ hy + hy + by + s + he;

see [27], V.1.8, p. 298 concerning this smoothing procedure.
Next choose ¢; > ¢ =n and « € [0, 1] such that 2£ + q% <land 22> 1 If
n > 3, then o = 1 is possible. In the case ¢ = n = 3 and consequently r > ¢’ = %
we find a € [0, 1) to fulfill both conditions. Given ¢; > ¢ let p > 1 be defined by
++ o= 1. Using (2.12), (2.13), and (2.19), Ay in (3.16) is estimated by
1all, < Cill(v = v)) Jmw + (Jmw)(u — )],

Ca(llo = vjlla + llu = wjlln) [ Jmw]lg,

IAINA

1
< Cs(llv = vjlln + llu = wlln) 143 T -

Concerning ks let p; € (1,n) be defined by < + % = pil. Then by (2.12), (2.13),
(2.19),

lhall, < CillAghall,, < Call(v = v;) AG Jmw + (A Jmw) (w — ;) [,
1
Co(llv = vjlln + llw = ;1) [|AZ T -

IN

Moreover,
123]l, < Cllvjw +wuyl|, < C([[vjllg + llwsllgy) l[w]]n-
Next, since r > 2,

1hall, < Chll(Kk = Kj) Tmwllpy < Cullk = Kjllnal| Tmw]lg,
Col[k = Kjl|[| A Jmwl] -

IA

Looking at the estimate of hy and (2.13), we get for hs with ps > 1 defined by
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Cull Ay 2 Py((k = k) A3 )
Coll A7 2 (Py(k — k) A7 Jy)
Coll(k — ky)AZ T,

Collk = k| . [|AZ T,

1
Callk = kjll[[AG Tl -

||h5||p

IN AN IA A

IN

Finally,
1hell, < Crllkjwllo, < Cillksll, llwlln < Collkjllgy [1wlln-

Summarizing the Lf-estimates of h;, 1 < j < 6, we get from (3.16) the
estimate

1 1
1A Tl < Cllo = vyll + llu = wyll + 1k = Kyl ) [ AZ ol

(3.17)
+Cs([[vjllay + N1l + Ioslla) 1wl

with constants C5, Cs > 0 independent of m € N. Now choose 5 € N sufficiently
large such that ||v —vj||,, + [|u — u;||n + ||k — k;|l» < 1/(2C5). Hence, for this fixed
j and for every m € N

1
1AZ Tmwll, < M = 2Cs([[0;llg + Nllar + 1Esllgr) l1wlln-

Since the graph of A;/ ? is weakly closed and since J,,w — w in L2(£2), we conclude

that w € D(A},/z). Hence w € L2 (Q)) where ¢ > n. The condition ¢; > n was
the starting point in the first part of the proof. Thus we may proceed as before
to prove that w = 0. [ ]

Proof of Theorem 1.6 (i) We use the vector-valued version of E'(g) € Wh¢(Q)
satisfying F1(g) |, = 9 and the solution b(g) € W,(Q) of the equation div b(g) =
div (u — E'(g)) = k — div E'(g), see §2; note that [, (k — div E'(g))dz = 0.
Setting

i=u—FE, E=E@g)+blg),

we see that @ is a very weak solution of the linear system

~AG+Vp=f, divi=0 inQ, if,, =0,

where f = f 4 divVE — div (uu) 4+ ku. The linear representation formula (3.4)
yields )
= A Pydiv(F 4+ VE —uu) + A" P, (ku). (3.18)
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Writing, first of all formally, (3.18) in the form
1 1 . 1
Aju = Ay *Pydiv (F + VE —uu) + A, ? Py(ku),

we argue as in the proof of Theorem 1.5. If ¢ > n, we obtain in a finite number
of steps that @ € D(Ay*) € W(Q) and consequently also u € W4(0Q).

If ¢ = n, we use the same smoothing procedure as in the proof of Theorem
1.5. First write (3.18) in the form

i=A;'P,div(F + VE) — A]'P,div (u(d + E)) + A;'P,(k(a + E))  (3.19)
and choose u; € C§°(Q), j € N, satisfying ||u —u,||, — 0o as j — oo. Then using
the Yosida operators J,, = (I + = Aéﬂ)_1 we get from (3.19) that
At = —JpAg 2 Pydiv ((u — uy) Jm)
1 P
— L I Ag 2 Pydiv ((u — uj)Ag Jp)
1
_ 2 i 7
ImAq 1 P, div (uju) 1 (3.20)
+JImAg 2P, div (F 4+ VE) — J,, A, 2 P, div (uE)
1 R
Ay 2 Py k(i + E)
= hy+ ho+ hs+ hy + hs + he.

Choose ¢; > ¢ = n and define p € (1,n) by % = % + qil. The functions hq, hy and
hs are estimated similarly as hq, ho, h3 in the proof of Theorem 1.5; we get that

1 .
il < Cullu = ujlln | A5 Jmiillp + Callugllg, alln, @ =1,2,3.
The last three functions h; are easily seen to satisfy the estimate
lhallp + sl + ksl < C (Nl + IEN) Kl + ulla |Ewin + 1F + VE],).

Choosing j € N sufficiently large, the absorption principle and (3.20) show that

1Az Joitll, < M for all m € N,

where M = M(||u;lg,, |@ln, || %lln; | Ellwin, | F]ln) > 0 is independent of m € N.
Hence u € D(A},/2) C L7(Q) and also u € L7 (Q2) where ¢; > g = n. Now we can
use the same argument as for the case ¢ > n to conclude that u € WhH4(Q).

(ii) By part (i) we first obtain that v € W(Q). Then we use the vector-

valued version of the extension operator E?(g,hy) € W2%(Q) with a suitably
chosen function hy € W1=Y%9(9Q) such that div E?(g, hy)|. = _k’aﬂ' Since

Jo (k= div E*(g, hy))dz = 0 and (k — div E*(g, h2>)|

o0

= 0, we find a solution
o0
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b € Wy1(Q) of the equation divb = div (u — E*(g,h2)) = k — div E%(g, hs), see
§2. Setting @ = u — E*(g,ho) — b, we see that 4 is a very weak solution of the
linear system

—Aa+Vp=f, divi=0 inQ, 0,

Yoo =
where f = f + AFE?*(g, hy) + Ab — div (uu) + ku.

If ¢ > n, standard estimates directly show that div (uu)—ku = u-Vu € LI(Q).
Hence the solution u has the representation

i =A;'P.f + A; Py (AE?(g, ha) + Ab) — APy (div (uu) — ku) (3.21)

yielding @ € D(A;)+ D(A,) and consequently u € D(Ag)+W?%(Q). Next, if ¢ =
n and s > n/2, we find some F* € L7 (Q) with f = div F*, ¢* > n, see Remark
1.7, (i); the exponent ¢* > n can be chosen such that k € L?", g € W'~1/44"(QQ).
By part (i) we get u € W (Q). Now we conclude that u - Vu € L4(2) which
leads to @ € D(A,) + W24(Q) as in the case ¢ > n. Finally, in the limit case
g =n and s = n/2 yielding u - Vu € L?(Q) for every 1 < ¢; < n, (3.21) holds
with the last term replaced by A;qu (div (uu) — ku) Choosing s < ¢ < n we
get that 4 € D(As) + D(A,,) C D(A;). This completes the proof. n
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