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Abstract

Using the notion of very weak solutions, introduced recently, see [2], [9],
[10], [16], we obtain a new and very large uniqueness class for solutions of
the inhomogeneous Navier-Stokes system −∆u+u·∇u+∇p = f , div u = k,
u|∂Ω

= g with u ∈ Lq, q ≥ n, and very general data classes for f, k, g such
that u may have no differentiability property. If the data are sufficiently
smooth we get a large class of unique and regular solutions extending the
well known classical solution classes and generalize a regularity result of
Gerhardt [17].
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1 Introduction and Main Result

Let Ω ⊆ Rn, n ≥ 3, be a bounded domain with boundary ∂Ω of class C2,1, let
N = N(x) =

(
N1(x), . . . , Nn(x)

)
denote the outer normal at x = (x1, . . . , xn) ∈

∂Ω, and let 1 < q < ∞, q′ = q
q−1

. In Ω we consider the Navier-Stokes system

−∆u + u · ∇u +∇p = f, div u = k, u|∂Ω
= g (1.1)

with data f = div F, k, g satisfying

F = (Fi,j)
n
i,j=1 ∈ Lr(Ω), k ∈ Lr(Ω), g ∈ W− 1

q
,q(∂Ω), (1.2)∫

Ω

k dx =

∫
∂Ω

N · g dS where n ≤ q < ∞, q′ < r ≤ q,
1

n
+

1

q
≥ 1

r
.

Here the surface integral is well defined in the generalized sense
∫

∂Ω
N · g dS =

〈g,N〉∂Ω = 〈N · g, 1〉∂Ω of a boundary distribution.
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The notion of very weak solutions, introduced in principle by Amann [2], [3]
for the 3D-nonstationary case with k = 0, and in [9], [10], [16] for the 2D- and
3D-stationary case with k 6= 0, rests on the use of test functions in the space

C2
0,σ(Ω) := {v = (v1, . . . , vn) ∈ C2(Ω); div v = 0, v|∂Ω

= 0}. (1.3)

Applying such a test function formally to (1.1) we obtain the following relation
which is well defined for u ∈ Lq, q ≥ n, and data (1.2):

−〈u, ∆w〉Ω + 〈g,N · ∇w〉∂Ω − 〈uu,∇w〉Ω − 〈ku, w〉Ω
= −〈F,∇w〉Ω, w ∈ C2

0,σ(Ω).
(1.4)

Here 〈·, ·〉Ω means the usual Lq-Lq′-pairing in Ω, 〈g,N ·∇w〉∂Ω denotes the value of

the distribution g = (g1, . . . , gn) ∈ W− 1
q
,q(∂Ω) at the normal derivative N ·∇w|∂Ω

,

and uu = (uiuj)
n
i,j=1. Further we use the relation u·∇u = (u·∇)u = div (uu)−ku,

and the notation f = div F :=
( ∑n

i=1 DiFij

)n

j=1
, Di = ∂/∂xi, i = 1, . . . , n.

The main result, see Theorem 1.3 below, states that system (1.1) has a unique
very weak solution u ∈ Lq in the sense of (1.4) if the data in (1.2) are sufficiently
small. Furthermore, we obtain the existence of a pressure p ∈ W−1,q(Ω), well
defined up to a constant, by de Rham’s argument [28]. Concerning regularity we
prove that every very weak solution is a weak solution or even a strong solution
provided the data in (1.2) are sufficiently regular, see Theorem 1.6 below. These
results will generalize the regularity result of Gerhardt [17] on weak solutions
in the four-dimensional case to higher dimensions and are related to the result
on the existence of (locally) strong solutions by Frehse & Růžička [11], [12] for
dimensions n ≥ 5, see Remark 1.7 below.

To understand the precise meaning of all terms in (1.4) let τ = τ(x) =(
τ1(x), . . . , τn−1(x)

)
be a system of unit tangential vectors at x ∈ ∂Ω such that(

τ(x), N(x)
)

=
(
τ1(x), . . . , τn−1(x), N(x)

)
defines a Cartesian basis at x. Then

g(x) has the form
g(x) = Lg

(
τ(x)

)
+ (N · g

)
N(x) (1.5)

where Lg

(
τ(x)

)
∈ Rn means a suitable linear combination of τ1(x), . . . , τn−1(x)

contained in the tangential plane at x, and N · g = N1g1 + . . . Nngn denotes
the normal component of g(x). An elementary calculation, using div w = 0 and
assuming without loss of generality that

(
τ(x), N(x)

)
is the standard basis of Rn,

shows that N · ∇w|∂Ω
is contained in the tangential plane. Thus we obtain that

〈g,N · ∇w〉∂Ω = 〈Lg(τ1, . . . , τn−1), N · ∇w〉∂Ω ; (1.6)

hence (1.4) contains only the tangential components of g.
Concerning the normal component N ·g of g we have to require the additional

(well defined) conditions

div u = k in Ω, N · u = N · g on ∂Ω. (1.7)
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Thus, if (1.4) is satisfied for some vector field u ∈ Lq(Ω), we say by definition
that

Lu|∂Ω
(τ1, . . . , τn−1) := Lg(τ1, . . . , τn−1) ∈ W− 1

q
,q(∂Ω) (1.8)

is the tangential trace of u at ∂Ω in the sense of boundary distributions. Since

the trace N ·u|∂Ω
∈ W− 1

q
,q(∂Ω) is well defined in the usual sense we get a precise

meaning of the boundary trace u|∂Ω
= g in (1.1).

Definition 1.1 Given data f, k, g as in (1.2), a vector field u ∈ Lq(Ω) is called
a very weak solution of (1.1) if and only if the relation (1.4) and the conditions
(1.7) are satisfied.

For the linearized system

−∆u +∇p = f, div u = k, u|∂Ω
= g (1.9)

we may omit the condition q′ < r in (1.2), caused by the nonlinear term u · ∇u,
and suppose that the data f = div F, k, g satisfy

F ∈ Lr(Ω), k ∈ Lr(Ω), g ∈ W− 1
q
,q(∂Ω), (1.10)∫

Ω

k dx =

∫
∂Ω

N · g dS with n ≤ q < ∞, 1 < r ≤ q,
1

n
+

1

q
≥ 1

r
.

Definition 1.2 Given data f, k, g as in (1.10), a vector field u ∈ Lq(Ω) is called
a very weak solution of (1.9) if and only if the relation

−〈u, ∆w〉Ω + 〈g,N · ∇w〉∂Ω = −〈F,∇w〉Ω for all w ∈ C2
0,σ(Ω) (1.11)

and the conditions div u = k, N · u|∂Ω
= N · g are satisfied.

Our main result reads as follows.

Theorem 1.3 Suppose the data f = div F, k, g satisfy (1.2). Then there exists a
constant K = K(Ω, q, r) > 0 such that in the case

‖F‖Lr(Ω) + ‖k‖Lr(Ω) + ‖g‖
W

− 1
q ,q

(∂Ω)
≤ K (1.12)

there is a unique very weak solution u ∈ Lq(Ω) of (1.1) satisfying the estimate

‖u‖Lq(Ω) ≤ C
(
‖F‖Lr(Ω) + ‖k‖Lr(Ω) + ‖g‖

W
− 1

q ,q
(∂Ω)

)
(1.13)

with C = C(Ω, q, r) > 0. Moreover, there exists a pressure p ∈ W−1,q(Ω) such
that −∆u + u · ∇u +∇p = f is satisfied in the sense of distributions.
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Remark 1.4 (i) In the proof of Theorem 1.3 we first solve the linearized system
(1.9), only assuming (1.10) in the sense of Definition 1.2. The solution u ∈
Lq(Ω) of (1.9) always exists, is unique, satisfies (1.13) and possesses the explicit
representation formula (3.4), see below.

(ii) A well known scaling argument shows that the data conditions in (1.2)
are optimal for the solution class u ∈ Lq(Ω) and that the estimate (1.13) is
sharp. Thus we also get a new class of unique solutions u ∈ Lq(Ω) without any
differentiability property. However, if the data f, k, g are sufficiently smooth we
obtain the corresponding regularity properties for the solution u solving (1.1) in
the classical weak or strong sense. Therefore, even in the case of more regular data
f, k, g, the uniqueness class determined by (1.12) leads to a new large class also
for classical solutions. These uniqueness and regularity assertions are described
in the following two theorems.

Theorem 1.5 Suppose the data f = div F, k, g satisfy (1.2), and let u ∈ Lq(Ω)
be a very weak solution of (1.1). Then there exists a constant K = K(Ω, q, r) > 0
such that under the condition

‖u‖q + ‖k‖r ≤ K (1.14)

there is no other very weak solution v ∈ Lq(Ω) of (1.1) for the same data f, k, g.

Theorem 1.6 Let u ∈ Lq(Ω) be a very weak solution of the Navier-Stokes system
(1.1) with data f = div F and k, g as in (1.2).

(i) Assume that the data f, k, g satisfy the additional conditions

F ∈ Lq(Ω), k ∈ Lq(Ω) and g ∈ W 1−1/q,q(∂Ω).

Then u ∈ W 1,q(Ω), the equation −∆u + u · ∇u + ∇p = f holds in the sense of
distributions with some pressure function p ∈ Lq(Ω), and u|∂Ω

= g holds in the

sense of the usual trace theorem.
(ii) Assume that the data f = div F, k, g satisfy the additional conditions

f ∈ Ls(Ω), F ∈ Lq(Ω), k ∈ W 1,q(Ω) and g ∈ W 2−1/q,q(∂Ω)

where s ∈ [n
2
,∞). Then u ∈ D(As)+W 2,q(Ω), the equation −∆u+u·∇u+∇p = f

holds strongly in Lq̃(Ω), q̃ = min(q, s), with some pressure function p ∈ W 1,q̃(Ω)
and u|∂Ω

= g holds in the sense of traces.

Remark 1.7 (i) Consider f ∈ Ls(Ω) with n
2
≤ s < ∞, and the ”classical”

case k = 0, g = 0. Then we can choose q ≥ max (n, s) such that α
n

+ 1
q

= 1
s

with some α ∈ [0, 1]. This yields α
n

+ 1
s′

= 1
q′

and the embedding W 1,q′(Ω) ⊂
Ls′(Ω) which shows that there exists some F ∈ Lq(Ω) satisfying f = div F .
Thus Theorem 1.6 (ii) implies that every (very) weak solution u of (1.1) satisfies
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u ∈ D(As) + W 2,q(Ω) ⊂ W 2,s(Ω). In the case s = n
2

this result generalizes the
well known regularity theorem for weak solutions of the Navier-Stokes equations
in the four-dimensional case when k = 0 and g = 0, see [17].

(ii) For every right-hand side f ∈ W−1,2(Ω) the classical Navier-Stokes equa-
tions (with k = 0, g = 0) have a weak solution u ∈ W 1,2

0 (Ω) ∩ L2
σ(Ω), see [28],

Theorem 1.2 in Chapter II, §1. If additionally u ∈ Ln which is guaranteed for
n = 3, 4, this weak solution u is also a very weak solution in the sense of Def-

inition 1.1, since Ṽ := C∞
0,σ(Ω)

H1∩Ln

= C2
0,σ(Ω)

H1∩Ln

on p. 161 in [28]. Now
assuming f ∈ Ls(Ω), s ≥ n

2
, part (i) implies that u is a strong solution in

W 2,s(Ω). This result is related to existence and regularity theorems in a series
of papers, see e.g. [11], [12], where the existence of at least one locally regular
solution u ∈ W 2,r

loc (Ω), r > 1, was proved. If the data are sufficiently small in the
sense of Theorem 1.3 to guarantee the unique existence of a very weak solution
u ∈ Lq, we get u ∈ W 2,s(Ω) provided the external force f lies in Ls(Ω), s ≥ n

2
.

(iii) If q = s in Theorem 1.6, (ii), then obviously u ∈ W 2,q(Ω).

2 Some preliminaries

Let 1 < q < ∞ and q′ = q
q−1

such that 1
q

+ 1
q′

= 1. We need the usual spaces

Lq(Ω), Lq(∂Ω), Wα,q(Ω), Wα,q
0 (Ω), W−α,q(Ω) =

(
W α,q′

0 (Ω)
)′

, W α,q(∂Ω), and

W−α,q(∂Ω) =
(
Wα,q′(∂Ω)

)′
, 0 ≤ α ≤ 2. The corresponding pairings are de-

noted by 〈·, ·〉Ω or 〈·, ·〉∂Ω, resp., and the corresponding norms are denoted by
‖·‖q = ‖·‖q,Ω, ‖·‖±α;q,Ω = ‖·‖±α;q, ‖·‖q,∂Ω, and ‖·‖±α;q,∂Ω, respectively.

The spaces of smooth functions on Ω are denoted as usual by Cj(Ω), Cj
0(Ω),

Cj(Ω) for j = 0, 1, 2, . . . and j = ∞. We set

Cj
0(Ω) := {v ∈ Cj(Ω); v|∂Ω

= 0},

Cj
0,σ(Ω) := {v = (v1, . . . , vn) ∈ Cj

0(Ω); div v = 0},

and Cj
0,σ(Ω) := {v ∈ Cj

0(Ω); div v = 0}. The space of distributions C∞
0 (Ω)′ is

the dual space of C∞
0 (Ω) in the usual topology, the duality pairing of which is

again denoted by 〈·, ·〉Ω. Correspondingly, we use the test function space Cj(∂Ω),
j = 1, 2, on the boundary ∂Ω, and the corresponding distribution spaces Cj(∂Ω)′

with pairing 〈·, ·〉∂Ω.
Let Lq

σ(Ω) be the closure of C∞
0,σ(Ω) in the norm ‖·‖Lq(Ω). The dual space

Lq
σ(Ω)′ of Lq

σ(Ω) is identified with Lq′
σ (Ω) by the pairing 〈f, v〉Ω =

∫
Ω

f · v dx. By

analogy, we identify Lq(∂Ω)′ = Lq′(∂Ω) with pairing 〈f, v〉∂Ω =
∫

∂Ω
f · v dS.

We need some trace and extension properties for α = 1, 2. The trace
map f 7→ f |∂Ω

is a well defined bounded linear operator from W α,q(Ω)

onto Wα− 1
q
,q(∂Ω). Conversely, there exists a bounded linear operator E1 :

W 1−1/q,q(∂Ω) → W 1,q(Ω) with E1(h)|∂Ω
= h, and a bounded linear operator
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E2 : W 2−1/q,q(∂Ω) × W 1−1/q,q(∂Ω) → W 2,q(Ω) satisfying E2(h1, h2)|∂Ω
= h1,

N · ∇E2(h1, h2)|∂Ω
= h2; see [24], Theorem 5.8, [29], 5.4.4.

Let 1 < r ≤ q, 1
n

+ 1
q
≥ 1

r
, and let f = (f1, . . . , fm) ∈ Lq(Ω), div f ∈ Lr(Ω).

Then, using E1 with q replaced by q′, the embedding estimate

‖E1(h)‖r′,Ω ≤ C
(
‖E1(h)‖q′,Ω + ‖∇E1(h)‖q′,Ω

)
, C = C(Ω, q, r) > 0,

and Green’s identity 〈div f, E1(h)〉Ω = 〈N · f, h〉∂Ω − 〈f,∇E1(h)〉Ω for h ∈
W 1/q,q′(∂Ω), we get N · f |∂Ω

∈ W− 1
q
,q(∂Ω) and the estimate

‖N · f‖− 1
q
;q,∂Ω ≤ C

(
‖f‖q,Ω + ‖div f‖r,Ω

)
(2.1)

with C = C(Ω, q, r) > 0.

Conversely, there is a linear operator Ê : W− 1
q
,q(∂Ω) → Lq(h) satisfying

div Ê(h) ∈ Lr(Ω), N · Ê(h)|∂Ω
= h and the estimate

‖Ê(h)‖q,Ω + ‖div Ê(h)‖r,Ω ≤ C‖h‖− 1
q
;q,∂Ω, h ∈ W− 1

q
,q(∂Ω), (2.2)

with C = C(Ω, q, r) > 0; see [25], Corollary 4.6, (4.10).
As an application we consider some gradient ∇H = (D1H, . . . , DnH) ∈ Lq(Ω)

with ∆H ∈ Lr(Ω), and apply (2.1) to ∇H and to the vector fields f i,j =(
f i,j

1 , . . . , f i,j
n

)
, 0 ≤ i < j ≤ n, satisfying f i,j

i := DjH, f i,j
j := −DiH but f ij

k = 0
if i 6= k 6= j. Obviously div f i,j = DiDjH −DjDiH = 0 in the sense of distribu-

tions. Then N ·∇H|∂Ω
and N ·f i,j|∂Ω

∈ W− 1
q
,q(∂Ω) are well defined by (2.1), and

a calculation shows that each DkH, k = 1, . . . , n, at ∂Ω is a linear combination
of N · ∇H|∂Ω

and N · f i,j|∂Ω
with 1 ≤ i < j ≤ n. Therefore we conclude from

(2.1) that ∇H|∂Ω
∈ W− 1

q
,q(∂Ω) is well defined and satisfies the estimate

‖∇H‖− 1
q
;q,∂Ω ≤ C

(
‖∇H‖q,Ω + ‖∆H‖r,Ω

)
(2.3)

with C = C(Ω, q, r) > 0.
Consider the data f = div F, k, g as in (1.10), and the weak Neumann problem

∆H = k, N · ∇H|∂Ω
= N · g (2.4)

where∇H ∈ Lq(Ω) is considered as a solution. Then we use Ê(h) with h = N ·g ∈
W− 1

q
,q(∂Ω), and choose a solution b(h) ∈ W 1,r

0 (Ω) of the equation div b(h) =
div Ê(h)− k ∈ Lr(Ω). Since∫

Ω

(div Ê(h)− k)dx =

∫
∂Ω

N · g dS −
∫

Ω

k dx = 0,
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such a solution exists, see [14], Theorem III, 3.2, or [27], and satisfies

‖b(h)‖q,Ω ≤ C1‖∇b(h)‖r,Ω ≤ C2

(
‖div Ê(h)‖r,Ω + ‖k‖r,Ω

)
(2.5)

with Cj = Cj(Ω, q, r) > 0, j = 1, 2. Writing (2.4) in the form

∆H = div
(
Ê(h)− b(h)

)
, N ·

(
∇H − Ê(h)− b(h)

)
|∂Ω

= 0, (2.6)

we find, see [13], [25], a unique solution ∇H ∈ Lq(Ω) satisfying

‖∇H‖q,Ω ≤ C1

(
‖Ê(h)‖q,Ω + ‖b(h)‖q,Ω

)
≤ C2

(
‖N · g‖− 1

q
;q,∂Ω + ‖k‖r,Ω

)
, (2.7)

and therefore
‖∇H‖− 1

q
;q,∂Ω ≤ C

(
‖N · g‖− 1

q
;q,∂Ω + ‖k‖r,Ω

)
(2.8)

with C = C(Ω, q, r) > 0, Cj = Cj(Ω, q, r) > 0, j = 1, 2.
Now approximate the data k, g in (2.4) by smooth function kj, gj, j ∈ N, such

that limj→∞ ‖k − kj‖r,Ω = 0 and limj→∞ ‖g − gj‖− 1
q
;q,∂Ω = 0. Let ∇Hj ∈ Lq(Ω)

be the corresponding solution of (2.4). Using (2.7), (2.8) with ∇H, k, g replaced
by ∇H − ∇Hj, g − gj, k − kj we see that limj→∞ ‖∇H − ∇Hj‖q,Ω = 0 and
limj→∞ ‖∇H − ∇Hj‖− 1

q
;q,∂Ω = 0. Then, using the Stokes operator Aq′ and its

inverse A−1
q′ , see below, we get the important identity

〈∇H, ∆A−1
q′ v〉Ω = lim

j→∞
〈∇Hj, ∆A−1

q′ v〉Ω

= lim
j→∞

(
〈∇Hj, N · ∇A−1

q′ v〉∂Ω + 〈∇∆Hj, A
−1
q′ v〉Ω

)
(2.9)

= 〈∇H, N · ∇A−1
q′ v〉∂Ω

for all v ∈ Lq′
σ (Ω) since div A−1

q′ v = 0 and A−1
q′ v|∂Ω

= 0.

Let f = (f1, . . . , fn) ∈ Lq(Ω). Then as in (2.6) the weak Neumann problem

∆H = div f, N · (∇H − f)|∂Ω
= 0

has a unique solution ∇H ∈ Lq(Ω), see [13], [25], satisfying

‖∇H‖q,Ω ≤ C‖f‖q,Ω (2.10)

with C = C(Ω, q) > 0. Setting Pqf := f −∇H we get the Helmholtz projection
as a bounded linear operator from Lq(Ω) onto Lq

σ(Ω) satisfying P 2
q = Pq and

P ′
q = Pq′ where P ′

q means the dual operator.

The Stokes operator Aq with domain D(Aq) = Lq
σ(Ω)∩W 1,q

0 (Ω)∩W 2,q(Ω) and
range R(Aq) = Lq

σ(Ω) defined by Aqu := −Pq∆u, u ∈ D(Aq), is a densely defined
closed operator satisfying 〈Aqu, v〉Ω = 〈u, Aq′v〉Ω for u ∈ D(Aq), v ∈ D(Aq′),
and Aqu = Aγu for 1 < q, γ < ∞, u ∈ D(Aq) ∩ D(Aγ). The fractional power
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Aβ
q : D(Aβ

q ) → Lq
σ(Ω), 0 ≤ β ≤ 1, with D(Aq) ⊆ D(Aβ

q ) ⊆ Lq
σ(Ω), is well

defined and bijective; its inverse A−β
q = (Aβ

q )−1 is bounded from Lq
σ(Ω) onto

R(A−β
q ) = D(Aβ

q ). Moreover, it holds (Aβ
q )′ = Aβ

q′ . We note that the norms
‖u‖2;q,Ω and ‖Aqu‖q,Ω are equivalent for u ∈ D(Aq), as well as that the norms

‖u‖1;q,Ω and ‖A1/2
q u‖q,Ω are equivalent for u ∈ D(A

1/2
q ). Further it holds the

embedding estimate

‖u‖q,Ω ≤ C‖Aβ
γu‖γ,Ω, u ∈ D(Aβ

γ), 1 < γ ≤ q < ∞, 2β +
n

q
=

n

γ
, (2.11)

with C = C(Ω, q, γ) > 0. Using A
1/2
q we define the Yosida operators Jm =

(I + 1
m

A
1/2
q )−1 for m ∈ N. It is well known that there exists C = C(Ω, q) > 0

such that
‖Jm‖+

∥∥ 1
m

A
1
2
q Jm

∥∥ ≤ C, m ∈ N, (2.12)

in the operator norm on Lq
σ(Ω) and that Jmu → u in Lq

σ(Ω) as m →∞. See [4],
[18], [19], [20], [23], [27], [29], concerning the Stokes operator.

Using (2.11) we get for f = div F and arbitrary v ∈ Lq′
σ (Ω) the estimate

|〈f, A−1
q′ v〉Ω| = |〈F,∇A−1

q′ v〉Ω| = |〈F,∇A
− 1

2

r′ A
− 1

2

r′ v〉Ω| (2.13)

≤ C1‖F‖r,Ω ‖A
− 1

2

r′ v‖r′,Ω ≤ C2‖F‖r,Ω ‖v‖q′,Ω

with Cj = Cj(Ω, q, r) > 0, j = 1, 2. This proves the existence of a unique

f̂ ∈ Lq
σ(Ω) satisfying 〈f, A−1

q′ v〉Ω = 〈f̂ , v〉Ω for all v ∈ Lq′
σ (Ω), and the estimate

‖f̂‖q,Ω ≤ C‖F‖r,Ω , C = C(Ω, q, r) > 0. (2.14)

Similarly as in the theory of distributions, we set, by definition, f̂ = A−1
q Pqf ∈

Lq
σ(Ω) giving this expression a generalizing meaning. Then A−1

q Pqf is well defined
by the relation

〈A−1
q Pqf, v〉Ω = 〈f, A−1

q′ v〉Ω , v ∈ Lq′

σ (Ω). (2.15)

More generally, let f ∈ C∞
0 (Ω)′ be any distribution such that 〈f, w〉Ω is well

defined (by any continuous extension) for all test functions w ∈ D(Aβ
q′), 0 ≤ β ≤

1, and satisfies the estimate

|〈f, A−β
q′ v〉Ω| ≤ Cf‖v‖q′,Ω , v ∈ Lq′

σ (Ω). (2.16)

Then A−β
q Pqf ∈ Lq

σ(Ω) is well defined by the relation

〈A−β
q Pqf, v〉Ω = 〈f, A−β

q′ v〉Ω , v ∈ Lq′

σ (Ω), (2.17)

giving A−β
q Pqf a generalized meaning, and it holds

‖A−β
q Pqf‖q ≤ Cf . (2.18)
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As an example we mention the estimate

‖A− 1
2

q Pq div w‖q ≤ C‖w‖q, w ∈ Lq(Ω), 1 < q < ∞, (2.19)

with C = C(Ω, q) > 0. See [27], III, 2.5, 2.6, for similar definitions.
Let w ∈ C2

0,σ(Ω) and v = Aq′w. Then, using (2.11) and the trace estimates,
we obtain that

|〈g,N · ∇A−1
q′ v〉∂Ω| ≤ C1‖g‖− 1

q
;q,∂Ω ‖∇A−1

q′ v‖ 1
q
;q′,∂Ω

≤ C2‖g‖− 1
q
;q,∂Ω ‖∇A−1

q′ v‖1;q′,Ω (2.20)

≤ C3‖g‖− 1
q
;q,∂Ω ‖v‖q′,Ω

with Cj = Cj(Ω, q) > 0, j = 1, 2, 3. Since Lq
σ(Ω) =

(
Lq′

σ (Ω)
)′

, there is a unique
G ∈ Lq

σ(Ω) satisfying

〈G, v〉Ω = 〈g,N · ∇A−1
q′ v〉∂Ω for all v ∈ Lq′

σ (Ω), (2.21)

‖G‖q,Ω ≤ C‖g‖− 1
q
;q,∂Ω

with C = C(Ω, q) > 0.
Finally we need the density property

AqC2
0,σ(Ω)

‖·‖q,Ω

= Lq
σ(Ω). (2.22)

Indeed, consider f ∈ Lq
σ(Ω), choose fj ∈ C∞

0,σ(Ω), j ∈ N, with limj→∞ ‖f −
fj‖q,Ω = 0 and let uj = A−1

q fj. The regularity property in [26], p. 518, (9.13)

shows that uj ∈ C2
0,σ(Ω) for j ∈ N, and we see that Aquj = fj → f in Lq

σ(Ω) as

j →∞. This proves (2.22). Moreover, this proof shows that C2
0,σ(Ω) ⊆ D(Aq) is

a core of D(Aq).

3 Proof of Theorems

First we consider the data f = div F, k, g as in (1.10) and prove a representation
formula for the solution u ∈ Lq(Ω) of the linearized system (1.9).

Consider the solution ∇H ∈ Lq(Ω) of the system (2.4). From (2.8) we know

that ĝ := ∇H|∂Ω
∈ W− 1

q
,q(∂Ω) is well defined, and from (2.9) we conclude that

−〈∇H, ∆w〉Ω + 〈ĝ, N ·∇w〉∂Ω = 0 for all w ∈ C2
0,σ(Ω), v = Aq′w, w = A−1

q′ v. This
shows, see (1.11), that u1 := ∇H is a very weak solution of the linear system

−∆u1 +∇p1 = 0, div u1 = k, u1|∂Ω
= ĝ. (3.1)

Next set g̃ := g − ĝ ∈ W− 1
q
,q(∂Ω) and choose G̃ ∈ Lq

σ(Ω), using (2.21) with
g replaced by g̃, such that 〈g̃, N · ∇A−1

q′ v〉∂Ω = 〈G̃, v〉Ω, v ∈ Lq′
σ (Ω). Setting

w = A−1
q′ v we get

〈G̃, ∆w〉Ω = −〈G̃,−Pq′∆w〉Ω = −〈G̃, v〉Ω = −〈g̃, N · ∇w〉∂Ω
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which shows that u2 := G̃ is a very weak solution of the linear system

−∆u2 +∇p2 = 0, div u2 = 0, u2|∂Ω
= g̃. (3.2)

Finally, we set u3 := A−1
q Pqf , see (2.15), and conclude that u3 is a very weak

solution of the linear system

−∆u3 +∇p3 = f, div u3 = 0, u3|∂Ω
= 0. (3.3)

Combining (3.1), (3.2), (3.3) and using div (u1 + u2 + u3) = k and N · (u1 + u2 +
u3)|∂Ω

= N · g we see that u ∈ Lq(Ω) defined by

u := u1 + u2 + u3 = ∇H + G̃ + A−1
q Pqf (3.4)

is a very weak solution of the linearized system (1.9). Using (2.7), (2.14) and
(2.21) with G, g replaced by G̃, g̃, we obtain the estimate

‖u‖q,Ω ≤ C
(
‖F‖r,Ω + ‖k‖r,Ω + ‖g‖− 1

q
;q,∂Ω

)
(3.5)

with C = C(Ω, q, r) > 0.
To prove the uniqueness let v be another solution of (1.9) for the same data

(1.10). Then u−v is a very solution of (1.9) with data f = 0, k = 0, g = 0. From
(1.11) we obtain that −〈u − v, ∆w〉Ω = 〈u − v, Aq′w〉Ω for all w ∈ C2

0,σ(Ω), and
using (2.22) we get that u− v = 0, u = v. Therefore, each very weak solution of
(1.9) with data (1.10) has the representation (3.4).

Observe that in the proof of (3.4) we only used that A−1
q Pqf ∈ Lq

σ(Ω) is
well defined in the sense of (2.17) with β = 1. Thus instead of f = div F
with F ∈ Lr(Ω) we only need to assume that f is a distribution such that
A−1

q Pqf ∈ Lq
σ(Ω) is well defined with (2.16) – (2.18). In this case we define a very

weak solution u of (1.9) replacing the term −〈F,∇w〉Ω in (1.11) by 〈f, w〉Ω, and
obtaining for u the formula (3.4) and the estimate

‖u‖q,Ω ≤ C
(
‖A−1

q Pqf‖q,Ω + ‖k‖r,Ω + ‖g‖− 1
q
;q,∂Ω

)
(3.6)

with C = C(Ω, q, r) > 0.

Proof of Theorem 1.3 Considering the nonlinear case suppose that the data
f = div F, k, g satisfy the conditions (1.2). First assume that u ∈ Lq(Ω) is a
given very weak solution of (1.1). Setting f̂ := f − div (uu) + ku we obtain
that A−1

q Pqf̂ ∈ Lq
σ(Ω) is well defined in the general sense (2.17), see (3.9), (3.10)

below.
Therefore, u is a very weak solution of the linear system

−∆u +∇p = f̂ , div u = k, u|∂Ω
= g, (3.7)
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and possesses the representation

u = F(u) := ∇H + G̃ + A−1
q Pqf − A−1

q Pq div (uu) + A−1
q Pq(ku). (3.8)

Next we show that u = F(u) has a solution u ∈ Lq(Ω) using Banach’s fixed
point principle in a standard way.

Indeed, using (2.15) and (2.11) we obtain similarly as in (2.13) that

|〈A−1
q Pq div (uu), v〉Ω| = |〈uu,∇A−1

q′ v〉Ω| (3.9)

≤ C1‖uu‖q/2,Ω‖∇A−1
q′ v‖(q/2)′,Ω

≤ C2‖u‖2
q ‖A

− 1
2

q′ v‖(q/2)′,Ω

≤ C3‖u‖2
q,Ω‖v‖q′,Ω

and that

|〈A−1
q Pq(ku), v〉Ω| = |〈ku, A−1

q′ v〉Ω| (3.10)

≤ C1‖ku‖( 1
r
+ 1

q
)−1,Ω‖A−1

q′ v‖(1− 1
r
− 1

q
)−1,Ω

≤ C2‖k‖r,Ω ‖u‖q,Ω ‖v‖q′,Ω

for v ∈ Lq′
σ (Ω) and with C1, C2, C3 depending on Ω, q, r. Here we need that

q′ < r ≤ q, q ≥ n. This shows that −A−1
q Pq div (uu)+A−1

q Pq(ku) ∈ Lq
σ(Ω) is well

defined for u ∈ Lq(Ω); moreover, we get the estimate

‖F(u)‖q,Ω ≤ C
(
‖u‖2

q,Ω + ‖k‖r,Ω ‖u‖q,Ω + ‖F‖r,Ω + ‖k‖r,Ω + ‖g‖− 1
q
;q,∂Ω

)
, (3.11)

with C = C(Ω, q, r) > 0, which is rewritten in the form

‖F(u)‖q,Ω ≤ a‖u‖2
q,Ω + b‖u‖q,Ω + c

with a := C, b := C‖k‖r,Ω, c := C
(
‖F‖r,Ω + ‖k‖r,Ω + ‖g‖− 1

q
;q,∂Ω

)
. In the same

way we obtain that

‖F(u)−F(v)‖q,Ω ≤
(
a(‖u‖q,Ω + ‖v‖q,Ω) + b

)
‖u− v‖q,Ω (3.12)

for u, v ∈ Lq(Ω).
Assume that

4ac + 2b < 1 (3.13)

and consider the closed ball B := {u ∈ Lq(Ω); ‖u‖q,Ω ≤ y1} where y1 = 2c
(
1−b+√

1 + b2 − (4ac + 2b)
)−1

> 0 is the smallest root of the equation y = ay2 +by+c.
Setting K = K(Ω, q, r) := (4C2 + 3C)−1 with C from (3.11) we see that (1.12)
is sufficient for (3.13) to be satisfied. If u ∈ B, we obtain that ‖F(u)‖q,Ω ≤
ay2

1 + by1 + c = y1 ≤ 2c and that F(u) ∈ B. Thus Banach’s fixed point principle
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yields a unique u ∈ B with u = F(u). This u is a very weak solution of (3.7) and
therefore also of (1.1). Further we see that ‖u‖q,Ω ≤ y1 ≤ 2c which proves (1.13).

This completes the existence proof. The uniqueness of the solution u is a
consequence of Theorem 1.5 when we use the estimate (1.13). Note that the
constant K = (4C2+3C)−1 with C from (3.11) is only sufficient for the existence;
in general, the uniqueness requires another constant. The assertion concerning p
easily follows by de Rham’s argument. Now Theorem 1.3 is completely proved.

Proof of Theorem 1.5 Given very weak solutions u, v ∈ Lq(Ω) where u satisfies
(1.14) a calculation shows that w = u− v ∈ Lq

σ(Ω) is a very weak solution of the
linear system

−∆w +∇p = f̂ , div w = 0 in Ω, w|∂Ω
= 0,

with f̂ = −div (vw +wu)+ kw. Then the representation formula (3.4) yields the
well defined relation

w = −A−1
q Pq div (vw + wu) + A−1

q Pq(kw). (3.14)

This equation can be written - first of all formally - also in the form

A
1
2
q w = −A

− 1
2

q Pq div (vw + wu) + A
− 1

2
q Pq(kw).

First let q > n. Then we conclude using well known embedding theorems that

−A
− 1

2
q Pq div (vw + wu) + A

− 1
2

q Pq(kw) ∈ Lq/2(Ω). (3.15)

Looking at (3.14) a duality argument shows that w ∈ D(A
1/2
q/2), yielding w ∈

Lq1(Ω) where 1
n

+ 1
q1

= 2
q
, see (2.11). Since q > n and consequently q1 > q,

we may repeat this argument and obtain in a finite of steps that w ∈ D(A
1/2
2 ).

Then take in (3.14) the scalar product with A
1/2
2 w, write vw = uw−ww and use

that 〈div (ww), w〉 = 0. Now the smallness assumption (1.14) and an absorption

argument show that ‖A1/2
2 w‖2 ≤ 0 yielding w = 0 and u = v.

If q = n we need an additional smoothing step using Yosida operators
Jm = (I+ 1

m
A

1/2
q )−1, m ∈ N, see [27], p. 298, concerning a similar procedure. Fur-

thermore, we choose C∞
0 -functions kj, vj and uj, j ∈ N, satisfying ‖k− kj‖r → 0,

and ‖v − vj‖n + ‖u − uj‖n → 0 as j → ∞. Then (3.14) will be rewritten, using
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w = Jmw + 1
m

A
1/2
q Jmw on the right-hand side, in the form

A
1
2
q Jmw = −JmA

− 1
2

q Pq div
(
(v − vj)Jmw + (Jmw)(u− uj)

)
− 1

m
JmA

− 1
2

q Pq div
(
(v − vj)A

1
2
q Jmw + (A

1
2
q Jmw)(u− uj)

)
−JmA

− 1
2

q Pq div (vjw + wuj) (3.16)

+JmA
− 1

2
q Pq

(
(k − kj)Jmw

)
+

1

m
JmA

− 1
2

q Pq

(
(k − kj)A

1
2
q Jmw

)
+JmA

− 1
2

q Pq(kjw)

=: h1 + h2 + h3 + h4 + h5 + h6;

see [27], V.1.8, p. 298 concerning this smoothing procedure.
Next choose q1 > q = n and α ∈ [0, 1] such that 2+α

n
+ 1

q1
< 1 and 1+α

n
≥ 1

r
. If

n > 3, then α = 1 is possible. In the case q = n = 3 and consequently r > q′ = 3
2

we find α ∈ [0, 1) to fulfill both conditions. Given q1 > q let ρ > 1 be defined by
1
n

+ 1
q1

= 1
ρ
. Using (2.12), (2.13), and (2.19), h1 in (3.16) is estimated by

‖h1‖ρ ≤ C1‖(v − vj)Jmw + (Jmw)(u− uj)‖ρ

≤ C2

(
‖v − vj‖n + ‖u− uj‖n

)
‖Jmw‖q1

≤ C3

(
‖v − vj‖n + ‖u− uj‖n

)
‖A

1
2
ρ Jmw‖ρ.

Concerning h2 let ρ1 ∈ (1, n) be defined by 1
n

+ 1
ρ

= 1
ρ1

. Then by (2.12), (2.13),

(2.19),

‖h2‖ρ ≤ C1‖A
1
2
ρ h2‖ρ1 ≤ C2‖(v − vj)A

1
2
q Jmw + (A

1
2
q Jmw)(u− uj)‖ρ1

≤ C2

(
‖v − vj‖n + ‖u− uj‖n

)
‖A

1
2
ρ Jmw‖ρ.

Moreover,

‖h3‖ρ ≤ C‖vjw + wuj‖ρ ≤ C
(
‖vj‖q1 + ‖uj‖q1

)
‖w‖n.

Next, since r ≥ n
2
,

‖h4‖ρ ≤ C1‖(k − kj)Jmw‖ρ1 ≤ C1‖k − kj‖n/2‖Jmw‖q1

≤ C2‖k − kj‖r‖A
1
2
ρ Jmw‖ρ.

Looking at the estimate of h2 and (2.13), we get for h5 with ρ2 > 1 defined by
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1
ρ2

= α
n

+ 1
ρ1

, that

‖h5‖ρ ≤ C1‖A
− 1

2
q Pq

(
(k − kj)A

1
2
q Jmw

)
‖ρ1

≤ C2‖A
α
2
− 1

2
q

(
Pq(k − kj)A

1
2
q Jmw

)
‖ρ2

≤ C3‖(k − kj)A
1
2
q Jmw‖ρ2

≤ C3‖k − kj‖ n
1+α

‖A
1
2
q Jmw‖ρ

≤ C4‖k − kj‖r‖A
1
2
q Jmw‖ρ.

Finally,
‖h6‖ρ ≤ C1‖kjw‖ρ1 ≤ C1‖kj‖ρ ‖w‖n ≤ C2‖kj‖q1 ‖w‖n.

Summarizing the Lρ-estimates of hj, 1 ≤ j ≤ 6, we get from (3.16) the
estimate

‖A
1
2
ρ Jmw‖ρ ≤ C5

(
‖v − vj‖n + ‖u− uj‖n + ‖k − kj‖r

)
‖A

1
2
ρ Jmw‖ρ

+C6

(
‖vj‖q1 + ‖uj‖q1 + ‖kj‖q1

)
‖w‖n

(3.17)

with constants C5, C6 > 0 independent of m ∈ N. Now choose j ∈ N sufficiently
large such that ‖v− vj‖n +‖u−uj‖n +‖k−kj‖r ≤ 1/(2C5). Hence, for this fixed
j and for every m ∈ N

‖A
1
2
ρ Jmw‖ρ ≤ M := 2C6

(
‖vj‖q1 + ‖uj‖q1 + ‖kj‖q1

)
‖w‖n.

Since the graph of A
1/2
ρ is weakly closed and since Jmw → w in Lρ

σ(Ω), we conclude

that w ∈ D(A
1/2
ρ ). Hence w ∈ Lq1

σ (Ω) where q1 > n. The condition q1 > n was
the starting point in the first part of the proof. Thus we may proceed as before
to prove that w = 0.

Proof of Theorem 1.6 (i) We use the vector-valued version of E1(g) ∈ W 1,q(Ω)
satisfying E1(g)|∂Ω

= g and the solution b(g) ∈ W 1,q
0 (Ω) of the equation div b(g) =

div
(
u − E1(g)

)
= k − div E1(g), see §2; note that

∫
Ω

(
k − div E1(g)

)
dx = 0.

Setting
û = u− Ê, Ê = E1(g) + b(g),

we see that û is a very weak solution of the linear system

−∆û +∇p = f̂ , div û = 0 in Ω, û|∂Ω
= 0,

where f̂ = f + div∇Ê − div (uu) + ku. The linear representation formula (3.4)
yields

û = A−1
q Pq div (F +∇Ê − uu) + A−1

q Pq(ku). (3.18)
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Writing, first of all formally, (3.18) in the form

A
1
2
q û = A

− 1
2

q Pq div (F +∇Ê − uu) + A
− 1

2
q Pq(ku),

we argue as in the proof of Theorem 1.5. If q > n, we obtain in a finite number
of steps that û ∈ D(A

1/2
q ) ⊂ W 1,q(Ω) and consequently also u ∈ W 1,q(Ω).

If q = n, we use the same smoothing procedure as in the proof of Theorem
1.5. First write (3.18) in the form

û = A−1
q Pq div (F +∇Ê)− A−1

q Pq div
(
u(û + Ê)

)
+ A−1

q Pq

(
k(û + Ê)

)
(3.19)

and choose uj ∈ C∞
0 (Ω), j ∈ N, satisfying ‖u−uj‖n →∞ as j →∞. Then using

the Yosida operators Jm = (I + 1
m

A
1/2
q )−1 we get from (3.19) that

A
1
2
q Jmû = −JmA

− 1
2

q Pqdiv
(
(u− uj)Jmû

)
− 1

m
JmA

− 1
2

q Pq div
(
(u− uj)A

1
2
q Jmû

)
−JmA

− 1
2

q Pq div (ujû)

+JmA
− 1

2
q Pq div (F +∇Ê)− JmA

− 1
2

q Pq div (uÊ)

+JmA
− 1

2
q Pq k(û + Ê)

= h1 + h2 + h3 + h4 + h5 + h6.

(3.20)

Choose q1 > q = n and define ρ ∈ (1, n) by 1
ρ

= 1
n

+ 1
q1

. The functions h1, h2 and
h3 are estimated similarly as h1, h2, h3 in the proof of Theorem 1.5; we get that

‖hi‖ρ ≤ C1‖u− uj‖n ‖A
1
2
ρ Jmû‖ρ + C2‖uj‖q1 ‖û‖n, i = 1, 2, 3.

The last three functions hi are easily seen to satisfy the estimate

‖h4‖ρ + ‖h5‖ρ + ‖h6‖ρ ≤ C
(
(‖û‖n + ‖Ê‖n)‖k‖n + ‖u‖n ‖Ê‖W 1,n + ‖F +∇Ê‖n

)
.

Choosing j ∈ N sufficiently large, the absorption principle and (3.20) show that

‖A
1
2
ρ Jmû‖ρ ≤ M for all m ∈ N,

where M = M(‖uj‖q1 , ‖û‖n, ‖k‖n, ‖Ê‖W 1,n , ‖F‖n) > 0 is independent of m ∈ N.

Hence û ∈ D(A
1/2
ρ ) ⊂ Lq1(Ω) and also u ∈ Lq1(Ω) where q1 > q = n. Now we can

use the same argument as for the case q > n to conclude that u ∈ W 1,q(Ω).
(ii) By part (i) we first obtain that u ∈ W 1,q(Ω). Then we use the vector-

valued version of the extension operator E2(g, h2) ∈ W 2,q(Ω) with a suitably
chosen function h2 ∈ W 1−1/q,q(∂Ω) such that div E2(g, h2)|∂Ω

= −k|∂Ω
. Since∫

Ω

(
k − div E2(g, h2)

)
dx = 0 and

(
k − div E2(g, h2)

)
|∂Ω

= 0, we find a solution
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b ∈ W 2,q
0 (Ω) of the equation div b = div

(
u − E2(g, h2)

)
= k − div E2(g, h2), see

§2. Setting û = u − E2(g, h2) − b, we see that û is a very weak solution of the
linear system

−∆û +∇p = f̃ , div û = 0 in Ω, û|∂Ω
= 0,

where f̃ = f + ∆E2(g, h2) + ∆b− div (uu) + ku.
If q > n, standard estimates directly show that div (uu)−ku = u·∇u ∈ Lq(Ω).

Hence the solution û has the representation

û = A−1
s Psf + A−1

q Pq

(
∆E2(g, h2) + ∆b)− A−1

q Pq

(
div (uu)− ku

)
(3.21)

yielding û ∈ D(As)+D(Aq) and consequently u ∈ D(As)+W 2,q(Ω). Next, if q =
n and s > n/2, we find some F ∗ ∈ Lq∗(Ω) with f = div F ∗, q∗ > n, see Remark
1.7, (i); the exponent q∗ > n can be chosen such that k ∈ Lq∗ , g ∈ W 1−1/q∗,q∗(Ω).
By part (i) we get u ∈ W 1,q∗(Ω). Now we conclude that u · ∇u ∈ Lq(Ω) which
leads to û ∈ D(As) + W 2,q(Ω) as in the case q > n. Finally, in the limit case
q = n and s = n/2 yielding u · ∇u ∈ Lq1(Ω) for every 1 < q1 < n, (3.21) holds
with the last term replaced by A−1

q1
Pq1

(
div (uu) − ku

)
. Choosing s < q1 < n we

get that û ∈ D(As) + D(Aq1) ⊂ D(As). This completes the proof.
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[11] Frehse, J., Růžička, M., Regularity of stationary Navier-Stokes equations in
bounded domains. Arch. Rational Mech. Anal., 128 (1994), 361–380
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