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ABSTRACT: Given a language of ramified cumulative type theory as introduced in (Zahn
2004). We shall construct and investigate an extension, L, of it, which is a language of
the same sort, but also containes sentences which express that certain sentences of L are
deducible from others (hypotheses) by given rules. To this we introduce ‘names’ of terms
and formulas of L and include them in L. So in L we can not only use but also ‘speak
about’ sentences of that language. Especially, by means of first order sentences we can
speak about higher order sentences. Despite this possibility of ‘reduction’ of order, all
sentences of L are non-circular. The considered deducibility-relations of sentences from
others correspond to systems of labelled modal logic of types K4 and G.

Motivation: In everyday speech and in empirical sciences one does necessarily not
only assert established facts but also uses universal hypotheses or conjectures, which
often do not even get cited. If A is the conjunction of all current hypotheses, we could
use (assert) any sentence B as short for A → B. Note that, for every admissible
inference rule B1, . . . ,Bn ⇒ B, the rule A → B1, . . . , A → Bn ⇒ A → B is also
admissible. (Here, the Bi’s and B represent sentence schemes, and ‘⇒’ indicates steps
of successive assertions.) But as soon as A becomes rejected, it becomes obviously
unserviceable to assert sentences of the form A → B (or abbreviations for them).
Accordingly, if A contains (probably) untrue hypotheses (such as simplifications of
conjectures) we can instead of A → B better use the statement that B has been
deduced from A and already justly asserted sentences of a given class, K, by the rules
of classical logic (e.g.). This statement reminds of necessity, say “B is necessary with
respect to (A, K)”. (The set K should be chosen considering particular purposes. It
might be a set of physical or medical sentences, e.g., that can possibly be verified.)
Then the sets Si of all sentences that are deducible at successive times ti (i =
0, 1, 2, . . .) form a monotonic increasing sequence S0, S1, S2, . . . .

1 A Language of Cumulative Type Theory

At first we incompletely sketch the construction of the language of a particular rami-
fied cumulative type theory, which has been investigated in (Zahn 2004).

Assume that we already dispose of certain elementary formulas and terms,
which are said to be original terms. All variables that occur in those formulas or
terms are said to be of order 0. Let
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V0 = set of all variables of order 0
Tor = set of all original terms, V0 ⊂ Tor
E = set of all elementary formulas (to be considered).

V0 is permitted to contain variables of several sorts. (Of course, V0 is supposed
to contain denumerably many variables of every of those sorts. Also Tor and E
are supposed to satisfy certain conditions.) Let constants / sentences be closed
terms / formulas, respectively (i.e. without free occurring variables).

We shall introduce sets (or, if you like, ‘properties’ and ‘relations-in-intension’,
given by certain constants) of order 1, whose elements are (tuples of) constants of
order 0 (or objects denoted by them), sets of order 2, whose elements are (tuples of)
constants of order 0 or 1, etc. So a set of order n contains only elements that have
orders < n. However, a set of order n will also be said to have any order larger than
n.

To this end we introduce the following sets of higher order terms and formulas:
Tn = set of all terms of order n,
Fn = set of all formulas of order n.

Here and in the following, m, n range over (signs of) ordinal numbers belonging to a
given set Ω with IN ⊆ Ω. We define

Cn ⇀↽ set of all constants belonging to Tn,
Cn ⇀↽

⋃
j∈IN+ Cj

n,
which is the set of all j-tuples (c1, . . . , cj) of constants ci ∈ Cn with arbitrary length
j ∈ IN+ ⇀↽ IN \ {0}. Let also be given two disjunct denumerable sets V and V of
‘new’ variables which do not occur in elements of Tor ∪ E . We use the elements of V
as variables for elements of C ⇀↽

⋃
n∈Ω Cn, i.e. for constants of arbitrary order, and

the elements of V as variables for elements of C ⇀↽
⋃

n∈Ω Cn, i.e. for arbitrary tuples
of constants. - Moreover, let

T n ⇀↽
⋃

j∈IN+ T j
n ∪ V.

So Cn is the set of all closed elements of T n.

We shall also use the following abbreviations: F ⇀↽
⋃

n∈Ω Fn, T ⇀↽
⋃

n∈Ω Tn,

T ⇀↽
⋃

n∈Ω T n, and A ⇀↽ set of all sentences of F .

As signs of the object language for Cn, Cn, and ∈ we use Cn, Cn, and ε, respectively.
For the present, x, x1, x2, . . . range over variables of V0 ∪V, and x, y over variables of
V.

All elements of Cn \ C0 are to be introduced as (signs of) subsets of
⋃

m<n Cm. A

constant of the form {x ε Cm : A(x)} is to denote the set of all elements c ∈ Cm

satisfying A(c). A sentence of the form ∃x ε Cm. A(x) is to mean that there exists a
constant c of order m satisfying A(c). By this means, j-ary relations (j ∈ IN+) can
be described in the form

{(x1, . . . , xj) ε Cj
m : A(x1, . . . , xj)} ⇀↽

{x ε Cm : ∃x1 ε Cm. . . .∃xj ε Cm. (x =m (x1, . . . , xj) ∧ A(x1, . . . , xj))}.
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(To this end, the sign ‘=m’ must previously be introduced suitably.) - So we at first
demand that

t ∈ Tn if t ∈ Tor ∪ V,
{x ε Cm : F} ∈ Tn if F ∈ Fn, m < n,

E ∈ Fn if E ∈ E ,
(F ∧ G), (F ∨ G) ∈ Fn if F, G ∈ Fn,

(¬F ) ∈ Fn if F ∈ Fn,
(∃x ε Cm. F ) ∈ Fn if F ∈ Fn, m < n,

(s ε t) ∈ Fn if s ∈ T n, t ∈ Tn.

Note that we need not deal with complicated types that include information about
‘arities’ of relations. So we may simply identify types with orders.

The latter and certain subsequently adduced demands can be formulated as formal
rules - called T ,F -rules - to construct terms and formulas of order n. But we need
also ‘semantical’ stipulations. Accordingly, in (Zahn 2004) there is also introduced
an assertion game, which contains certain ‘primary rules’ to restrict assertions of
sentences of arbitrary order. All inference rules of classical logic can be shown to be
admissible in the ‘classical game’ of assertion which is given by the agreement that
a sentence may be asserted in this game if and only if the assertion of its double
negation would not violate a primary rule. - Note that, for purposes of classical
reasoning, the particles →, ↔, and ∀ can be defined by means of ∧,¬ and ∃.

For mathematical purposes we want also to dispose of sequences R of relations
R(0), R(1), R(2), . . . ∈ Cn satisfying

(c, k) ε R(l) ↔ (c) ε Cm ∧ k < l ∧ A((c), k, R(k))

for all tuples (c) ≡ (c1, . . . , cj) of constants and all k, l ∈ Ω, if any formula A(x, µ, z) ∈
Fn and any ordinal m < n are given. By this ‘recursive characterization’, R(l)
depends upon the relations R(k) with numbers k < l only. - We designate R by
(Jx ε Cm, µ, z : A(x, µ, z)). Accordingly, we demand:

(Jx ε Cm, µ, z : F )(q) ∈ Tn if F ∈ Fn, q ∈ T (Ω), m < n, µ ∈ V(Ω), z ∈ V

where T (Ω) (⊆ Tor) is a given set of terms whose substitution instances are elements
of Ω, and V(Ω) = V0∩T (Ω) is a set of variables for elements of Ω. (‘J’ is an ‘induction
operator’) - Then it can be shown that if two formulas A(x), B(x, µ, z) ∈ Fn and an
order m < n are given, there also exists a sequence of relations S0, S1, S2, . . . ∈ Cn

satisfying
c ε S0 ↔ c ε Cm ∧ A(c)

c ε Sk+1 ↔ c ε Cm ∧ B(c, k, Sk)

for all c ∈ C and all k ∈ IN.

We want to introduce equations x = y such that all formulas A(x) of arbitrary
order are invariant under (=), i.e. satisfy c=d ∧A(c) → A(d) for all constants c, d.
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To this end, equal constants must especially have the same orders, and equal sets
must contain the same elements:

c = d → ∀µ ε C0. (c ε Cµ ↔ d ε Cµ)
c = d ∧ ¬ (c ε C0) → c ⊆ d ∧ d ⊆ c

where µ ∈ V(Ω) (again), and c ⊆ d means that c is a subset of d (see below). Since
the formulas c ε Cµ and c ⊆ d should belong to the object language considered, we
demand and define the following (where ∃x ε t. F is to be read as “For some x, x ε t
and F”):

(t ε Cq) ∈ Fn if t ∈ Tn, q ∈ T (Ω)
(∃x ε t. F ) ∈ Fn if t ∈ Tn, F ∈ Fn

∀x ε s. F ⇀↽ ¬∃x ε s. ¬F
s ⊆ t ⇀↽ ∀x ε s. x ε t ∧ ¬ (s ε C0) ∧ ¬ (t ε C0).

Notice, however, that if q (is or) contains a variable, we do not rank Cq with the
terms of T .

Now we presuppose: Let (=0) be an equivalence relation on C0 (which has already
been introduced and is suitable for certain purposes). Assume that all terms of Tor
and all formulas of E are invariant under (=0). For terms s, t of any order we define

s ∼ t ⇀↽ ∀µ ε C0. (s ε Cµ ↔ t ε Cµ)
s = t ⇀↽ s =0 t ∨ (s ⊆ t ∧ t ⊆ s ∧ s ∼ t).

Of course, we demand that

(s =0 t) ∈ Fn if s, t ∈ Tn.

Then it can be shown that all formulas of F are invariant under (=).

The ‘type-free’ relations (⊆), (∼), and (=) are definable in our object language
but they are neither elements of C nor elements of elements of C.

Given a formula A(x), a tuple c ≡ (c1, . . . , cj) ∈ Cm of constants, and some

i = 1, . . . , j. Then A(ci) means that the ith component of c satisfies A(x). Since our
object language also contains variables y for such tuples c of constants, we postulate,

in addition, that the object language contains a formula expressing that the ith

component of any given value of y belongs to Cm and satisfies A(x). For that formula
we take ∃x ε πm(y, i). A(x) (with π for “projection”). Generalizing we demand

(∃x ε πm(s, p). F ) ∈ Fn if m < n, s ε T n, p ∈ T (IN+), F ∈ Fn

where T (IN+) (⊆ Tor) is a given set of terms (inclusive of variables) whose substitu-
tion instances are elements of IN+. Then all sentences of the form

∃x ε πm((c1, . . . , cj), i). A(x) ↔ ci ε Cm ∧ A(ci)
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(i = 1, . . . , j) may be asserted in the correspondingly stipulated classsical game.

In the above definition of j-ary relations we have already used the following
definition: For s, t ∈ T ,

s =m t ⇀↽ s, t ε Cm

∧ ∀κ ε C0. ∀x ε Cm.
(
∃y ε πm(s, κ). x = y ↔ ∃z ε πm(t, κ). x = z

)
.

where κ ∈ V0 is a variable for elements of IN+, and x, y, z ∈ V are different variables
that do not occur in s or t. - For all a ≡ (a1, . . . , aj) and b ≡ (b1, . . . , bj) we obtain:

a =m b ↔ a1 = b1 ε Cm ∧ . . . ∧ aj = bj ε Cm.

2 Deducibility of sentences from hypotheses
considered modal-logically

We have just sketched a comprehensive language of cumulative type theory. We shall
construct and investigate an extension, L, of it, which is a language of the same sort,
but also contains sentences which express that certain sentences of L are deducible
from others by given rules. To this we shall introduce ‘names’ of sentences of L and
include them in L. So in L we can not only use but also ‘speak about’ sentences of
that language.

But in this section we only deal with the deducibility of sentences from ‘hypothe-
ses’ by given axioms and rules. (Later we shall show how we can formulate that
deducibility in L.) Assume that A ≡ A1 ∧ . . . ∧ Aj is the conjunction of all ‘current
hypotheses’. We shall introduce sentences of the form A � B which are to mean that
B is deducible from A and certain additional axioms by certain rules. The system of
those axioms and rules will be denoted by S.

Let now be given a language of cumulative type theory as described in section 1.
Define: W ⇀↽ V0 ∪ V and W ⇀↽ W ∪ V. We extend F as follows: Let F+ (⊃ F) be
the set of all formulas constructible by the following six rules (where ‘⇒’ indicates
the steps of construction):

⇒ F, if F ∈ F
F ⇒ (¬F ), (∃xF ), if x ∈ W

F, G ⇒ (F ∧ G), (F ∨ G), (F � G).

In the following, x, y, z range over W , x over V, and y, z over all lists z1, . . . , zk of

variables zi ∈ W with arbitrary length k ∈ IN; t ranges over T ∪ T ; m over Ω;
F, G, H over F+; and A, B, C over A+, i.e. the set of all sentences belonging to F+.
- Let ∀z1, . . . , zk F stand for ∀z1 . . . ∀zk F (or, in case k = 0, for F ). Accordingly, we
let ∀y and ∀z range over all prefices of the form ∀z1 . . .∀zk with k ≥ 0.
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Note that the quantifications in ∃xF and in ∀z F are not restricted to any order, and
that formulas of F+ \ F do not occur in terms of T .

Now we assign the axioms of S under 1. - 4.:

1. Let PL be the ‘propositional language’ whose formulas are as usual composed of
‘propositional variables’ and ⊥ (⇀↽ 0 = 1) by means of ∧,∨,¬, ∃, and (, ). Let TAU
be a particular finite set of tautologies that are formulated in PL. TAU with the rule
of modus ponens is assumed to be ‘complete’. As axioms of S we take all formulas
of the shape ∀z F where F is a ‘substitution instance’ of an element of TAU.

Explanations. By a ‘substitution instance’ of a formula, p, of PL we understand a
formula that results from p by replacing all occurrences of propositional variables with
formulas of F+. But by a sustitution instance of a formula, F , of F+ we (as usual)
understand a sentence that results from F by replacing all free occurrences of variables
with values of them, which are constants. - The axioms of S, which have the shape ∀z F ,
are permitted to contain further free variables. (This will in section 3 be convenient for
including these axioms in F .) In the following, Fr(t, x, F ) is to mean that t is free for x in
F , and N(y,G) is to mean that y does not occur free in G.

2. Let all formulas of the following shapes be axioms of S:

∀z (t = t) with t ∈ T ;
∀z (x = t → (F ↔ F x

t )) with Fr(t, x, F ), t ∈ T , x ∈ W;
∀z (F x

t → ∃x F ) with Fr(t, x, F );
∀z (∀y (F x

y → H) → (∃xF → H)) with Fr(y, x, F ), N(y, (∃xF → H));
∀z (∃x ε Cm. F ↔ ∃x (x ε Cm ∧ F )) with x ∈ W, F ∈ F ;

∀z (∃x ε t. F ↔ ∃x (x ε t ∧ F )) with t ∈ T , F ∈ F ;
∀z (s ε {x ε Cm : F} ↔ s ε Cm ∧ F x

s ) with Fr(s, x, F ), s ∈ T , F ∈ F ;

∀z
(
(s, p) ε T (q) ↔ (s) ε Cm ∧ p < q ∧ F ((s), p, T (p))

)

with (s) ∈ T , p, q ∈ T (Ω), T ≡ (Jx ε Cm, µ, z : F (x, µ, z)), µ ∈ V(Ω), z ∈ V,
Fr((s), x, F (. . .)), and Fr(p, µ, F (. . .));

∀z (∃x ε πm((t1, . . . , tj), i). F ↔ ti ε Cm ∧ F x
ti
),

∀z (∃x ε πm((t1, . . . , tj), p). F → p = 1 ∨ . . . ∨ p = j)

with i = 1, . . . , j and p ∈ T (IN+), respectively, x ∈ W, t1, . . . , tj ∈ T , and F ∈ F .

3. The following axiom schemes, which we include in S, concern the connective � :

∀z (F � F ) [1]
∀z (F � G ∧ G � H → F � H) [2]

∀z (F � ∀y (G → H) → (F � ∀y G → F � ∀y H)) [3]
∀z (F � ∀y H → F � ∀y (G � H)) [4].
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Note. [3] and [4] remind of the following axiom schemes of labelled modal logic:
i (A → B) → ( i A → i B) and i A → i j A, respectively, which are in case i = j (or
without labelles i, j) usually designated by (K) and (4) (cf. (Popkorn 1994), chap. 2).

4. As axioms of S we can (for certain purposes) also take other formulas whose substi-
tution instances may be asserted due to certain rules of assertion, especially formulas
of the shape ∀z (E1 ∧ . . . ∧En → E) with E1, . . . , En, E ∈ E , where E1, . . . , En ⇒ E
(with metavariables for certain elements of C0 in place of variables) is an agreed rule
of assertion (cf. (Zahn 2004, section 0)).

As rules of S we take

∀z F, ∀z (F → G) ⇒ ∀z G (modus ponens)
∀z H ⇒ ∀z (G � H) (necessitation).

(Special cases of these rules are F, F → G ⇒ G and H ⇒ G � H. )

Let S � B be short for “B is deducible in S (i.e. from the axioms of S by the
rules of S)”, and S(A) � B for “B is deducible in S(A) (i.e. from A and the axioms
of S by the rules of S).” We now interprete A � B as S(A) � B, i.e. we fix the
‘primary rule’ (cf. section 1): Assert A�B only if S(A) � B has been asserted. (This
rule is invertible, since we do not restrict the assertion of A � B by other rules.) But
all sentences of A+ are to be understood classically, i.e. with respect to the classical
game of assertion (mentioned in section 1).

Notes. We have: S � ∀z F if and only if S � F . This can be shown by induction
on S (i.e. on the number of corresponding deduction steps). The same also holds for
S(A) instead of S. Moreover, we have S � ∀z

(
F �∀xG → ∀x (F � G)

)
; this reminds

of the inverse Barcan formula, i ∀xG → ∀x i G.

2.1 Proposition: If S � F , then all substitution instances of F are true (assertible).

Proof (by a well-known model, see (Smullyan 1987), chap. 26, proof of Theorem
1, e.g.): At first we show that all substitution instances of the axioms [1] - [4] are
true. To this, we consider any substitution instances A, B, and C of F, G, and H ,
respectively.
Ad [1]: Let A be said to be deducible from itself. So S(A) � A.
Ad [2]: If S(A) � B and S(B) � C, then S(A) � C.
Ad [3]: Let A � ∀y (By → Cy) be a substitution instance of F � ∀y (G → H).
If S(A) � ∀y (By → Cy) and S(A) � ∀y By, then, by modus ponens, S(A) � ∀y Cy.
Ad [4]: If S(A) � ∀y Cy, then, by necessitation, S(A) � ∀y (By � Cy).

Also all substitution instances of the residual axioms of S are true. Now we easily
obtain 2.1 by induction on S. To this note the following: To obtain S � ∀z (G � H)
by necessitation, we must previously have S � ∀z H . But then, for any substitution
instance B � C of G � H , C is deducible in S and so in S(B) so that B � C is true.
Thus every substitution instance of ∀z (G � H) is true.
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2.2 Proposition: For all A, B ∈ A+, S(A) � B if and only if S � A � B.

Proof: Let A ∈ A+. Due to 2.1 it suffices to prove that, for any H ∈ F+, if
S(A) � H , then S � A � H . We do this by induction on S(A). Let S(A) � H . If H
is an axiom of S, then S � A � H by necessitation. If H ≡ A, then S � A � H by
axiom [1]. - If H ≡ ∀z G has been deduced in S(A) by applying modus ponens from
the premises ∀z F and ∀z (F → G), say, then we may use the induction hypotheses
that S � A � ∀z F and S � A � ∀z (F → G). Then, by axiom [3] and modus ponens,
S � A�∀z G. - If H ≡ ∀z (F �G) has been deduced in S(A) by applying necessitation
from the premise ∀z G, then, by induction hypothesis, we have S � A � ∀z G and so,
by [4] and modus ponens, S � A � ∀z (F � G).

3 A language of cumulative type theory
with quotation marks

In the following we construct a language of cumulative type theory that contains
‘names’ of sentences. By means of first order sentences of that language we can also
speak about higher order sentences of it. Despite this possibility of ‘reduction’ of
order, all sentences of that language are non-circular.

In the context of section 1 we say that the ‘language’ T , T ,F results from
Tor, E ,V0,V,V by the T ,F -rules. Now we presuppose that a given language T ◦, T ◦

,F◦

results from T ◦
or, E◦,V◦

0 ,V,V by those rules. We shall construct extensions Tor ⊃
T ◦
or, E ⊇ E◦, and V0 ⊃ V◦

0 such that the language L (i.e. T , T ,F) which results from
Tor, E ,V0,V,V contains sentences expressing that S(A) � B, for S as above and any
sentences A, B of A+. Note that L is a language of cumulative type theory.

Let VN be a denumerable set of ‘new variables’ that do not occur in the elements
of T ◦ ∪ T ◦ ∪ F◦. (N will be defined below.) Let the set Σ◦ contain all atomic
symbols occurring in elements of T ◦ ∪ T ◦ ∪F◦ ∪ VN , and the additional symbols �,
N, Fr, and Sub. Let the symbol set Σ result from Σ◦ by adding the new symbols
�α�, ��α��, ���α���, . . ., for every α ∈ Σ◦. The symbols �, � are supposed not to
belong to Σ◦. We do also not include them in Σ. So we may consider all elements of
Σ as atomic symbols.

Let Σ∗ be the set of all strings α1 . . . αj (j ≥ 0) of symbols αi ∈ Σ. So, especially,
the ‘empty word’ belongs to Σ∗ (case j = 0). For α1, . . . , αj ∈ Σ (j ≥ 0) we define

�α1α2 . . . αj� ⇀↽ �α1��α2� . . . �αj�.

Let this figure be said to be the name of α1α2 . . . αj . Especially, � � stands for the
empty word, which is its own name. Let N be the set of all such names of elements
of Σ∗. We shall use the elements of VN as variables for (all or particular) elements
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of N . All variables occurring in an element of N are considered to be bound (by the
‘quotation marks’ �, �).

Let T (N ) be the set of all figures of the shape

�S0�X11 . . .X1k1�S1�X21 . . .X2k2�S2� . . .Xj1 . . .Xjkj
�Sj�

with Si ∈ Σ∗\{� �}, variables Xik ∈ VN , j ≥ 0, and k1, k2, . . . , kj ≥ 1, - and of all
figures which result from them by omitting �S0� or �Sj� or both.

Note. We have N ∪ VN ⊆ T (N ). If we replace all free occurrences of a variable in an
element of T (N ) by an element of T (N ) - or, especially, by the empty word -, then we
again obtain an element of T (N ).

V◦
0 (⊆ T ◦

or, see above) is assumed to be a set of variables (of several given sorts)
for certain constants belonging to T ◦

or. Let V0 ⇀↽ V◦
0 ∪ VN , Tor ⇀↽ T ◦

or ∪ T (N ), and
let E contain all elements of E◦ and certain further formulas, which we shall specify
below. Let, as announced, T , T ,F result from Tor, E ,V0,V,V by the T ,F -rules.

Examples of tuples containing the empty word are: ( ), (t, ), ( , ), ( , , t), for any t ∈ T .
Such tuples are particular elements of T .

Given a system S of axioms and rules as indicated in section 2. We want to
define sets R0, R1, R2, . . . ∈ C1 such that, for all n ∈ IN, Rn is the set of all names of
sentences that are deducible in S by ≤ n steps of deduction.

For any U ⊆ Σ∗ let U �,� be the set of all names �u� of elements u of U . (So we
have U �,� ⊆ Σ∗�,� = N .) The sign ‘=0’ between elements of N is to mean their literal
equality.

So long we have used the letters x, y, x, s, t, m, F, G, H, . . . as metavariables.
However, to make the following definitions easier to understand, we now use these
and some other letters to indicate particular variables of VN that range over certain

subsets of N . That is, we provisionally let w (∈ VN ) range over W�,�, x, y over W�,�
,

x over V�,�
, r over T �,�, s over T �,�

, t over T �,�∪T �,�
, m over Ω�,�, F, G, H, X over

F+�,�, P, Q over F �,� only, and η, ζ over names �∀z1 . . . ∀zk� of prefices with variables
zi ∈ W and length k ≥ 0. (Of course, we presuppose that VN contains denumerably
many variables of each of those sorts.) We write �. . . x̌- - -� for �. . .�x�- - -� (wherein
x occurs free), �. . . x̌F̌ - - -� for �. . .�xF �- - -�, e.g., �. . .∀y̌ - - -� for �. . .�η�- - -�,
and �∀ž - - -� for ζ�- - -�.

The following formula ‘Axiom(X)’ of F1 can be read as “X is the name of an
axiom of S”:
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Axiom(X) ⇀↽ ∃F, G, H, P, Q, w, x, y, x, η, ζ, r, s, t, m ε C0.
(
X =0 � ∀ž (F̌ � F̌ )�

∨ X =0 � ∀ž (F̌ � Ǧ ∧ Ǧ � Ȟ → F̌ � Ȟ)�
∨ X =0 � ∀ž (F̌ � ∀y̌ (Ǧ → Ȟ) → (F̌ � ∀y̌ Ǧ → F̌ � ∀y̌ Ȟ))�
∨ X =0 � ∀ž (F̌ � ∀y̌ Ȟ → F̌ � ∀y̌ (Ǧ � Ȟ))�
∨ . . .
∨

(
X =0 � ∀ž (Ǧ → ∃x̌ F̌ )� ∧ Sub(G, F, t, x) ∧ Fr(t, x, F )

)

∨
(
X =0 � ∀ž (∀y̌ (Ǧ → Ȟ) → (∃x̌ F̌ → Ȟ))�
∧ Sub(G, F, y, x) ∧ Fr(y, x, F ) ∧ N(y, �∃x̌ F̌ → Ȟ�)

)

∨ X =0 � ∀ž (∃w̌ ε Cm̌. P̌ ↔ ∃w̌ (w̌ ε Cm̌ ∧ P̌ ))�
∨ X =0 � ∀ž (∃x̌ ε ř. P̌ ↔ ∃x̌ (x̌ ε ř ∧ P̌ ))�
∨

(
X =0 � ∀ž (š ε {x̌ ε Cm̌ : P̌} ↔ š ε Cm̌ ∧ Q̌)�
∧ Sub(Q, P, s, x) ∧ Fr(s, x, P )

)

∨ . . .
)
.

(We have ommited several brackets here.) Of course, a sentence of the shape
Fr(t, x, F ) with names t, x, F (in place of variables) is to mean that t′ is free for
x′ in F ′ where t′ is the term denoted by t, x′ is the variable denoted by x, and F ′ is
the formula denoted by F . Similarly, N(y, G) is to mean that y′ does not occur free in
G′, and Sub(G, F, t, x) is to mean that G′ results from F ′ by substituting t′ for x′. We
include all formulas of those shapes in E . To formulate this in more detail, we at first
define: For U ⊆ Σ∗ let T (U �,�) be the set of all elements of T (N ) whose substitution
instances are elements of U �,�. Now let E contain all elements of E◦ and all formulas
Fr(t, x, F ), N(y, G), and Sub(G, F, t, x) with x, y ∈ T (W�,�

); F, G ∈ T (F+�,�), and

t ∈ T (T �,� ∪ T �,�
).

We now recursively define R0, R1, R2, . . . :

R0 =
{
X ε C0 : Axiom(X)

}

Rn+1 =
{
X ε C0 : X ε Rn

∨ ∃F, G, ζ ε C0. (� ∀ž F̌� ε Rn ∧ �∀ž (F̌ → Ǧ)� ε Rn ∧ X =0 � ∀ž Ǧ�)
∨ ∃G, H, ζ ε C0. (� ∀ž Ȟ� ε Rn ∧ X =0 � ∀ž (Ǧ � Ȟ)�)

}
.

It is easy to see that Rn is the set of all names of sentences that are deducible in S
by ≤ n steps (cf. (Zahn 1993, p. 425f.)). For any ν ∈ V(Ω), Rν can also be defined
as an element of T1 (cf. section 1). Let R ⇀↽

⋃
ν ε IN Rν . So R ∈ C1, and for any

B ∈ A+, the sentence �B� ε R belongs to A1 and means that B is deducible in S.
So, by 2.2, �A � B� ε R means that B is deducible in S(A) (i.e. ‘from A in S’).

Remarks: In the above definition of R0, R1, R2, . . . it has been convenient to use
several sorts of variables belonging to VN , namely for every set U ∈ {W,V ,W ,T ,T , T ∪
T ,Ω,F ,F+} variables ranging over U�,�, and variables ranging over names �∀z1 . . . ∀zk� of
prefices with zi ∈ W and k ≥ 0. To this use we must previously have introduced such
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variables. But instead of them we need only one sort of variables, namely variables ranging
over N . Then we have to reformulate Axiom(X) thus:

∃F, . . . , ζ, . . . ε C0.
(
F ε F+�,� ∧ . . . ∧ ζ ε Π�,� ∧ . . . ∧ (X =0 ζ �(F̌ � F̌ )� ∨ . . . )

)

where X,F, ζ, . . . are elements of V(N ) that range over N . Here we have added the clauses
F ε F+�,�, ζ ε Π�,�, . . ., where Π denotes the set of the above mentioned prefices. (To avoid
misunderstandings we can replace ‘F+’ by a new sign in this context.) We can effect that
the latter clauses are in F1 - provided that T ◦

or, E◦,V◦
0 ,V, and V , are recursively enumerable

(i.e. constructible by formal rules). Indeed, in this case also the sets T ,T ,F ,F+,Π, . . .
are recursively enumerable so that the corresponding sets of names for elements of those
sets can be introduced as elements of C1 (namely on the model of the above introduction
of R ⇀↽

⋃
ν ε IN Rν). - Complete reformulations of ‘Axiom(X)’ and the definition of Rn+1

are left to the reader.

The predicates N(·, ·), Fr(·, ·, ·), and Sub(., ., .) have recursively enumerable extents and
can, therefore, be defined to be elements of C1. So it suffices to take E to be E◦. (Recall
that, by a demand given in section 1, we have (s =0 t) ∈ F0 for all s, t ∈ T (N ).) We
may also omit the signs N, Fr, and Sub from Σ◦. - We shall, however, not employ these
reductions of basic means of the object language.

When we say that a sentence B is deducible in S(A), we do not use the sentences A
and B, we only refer to them. To indicate this fact we can put them in quotation marks.
Accordingly, it would be adequate to understand A � B as a shorthand of �A� � �B�. But
then the definiens of ‘Axiom(X)’ turns in

∃F, . . . , ζ, . . . ε C0.
(
X =0 � ∀ž (F � F )� ∨ . . .

)
,

where several occurrences of F are bound by �, �, which misses the intended meaning. We
do no further discuss that matter.

4 A version of the Theorem of Löb

Modifying an idea of Craig (see (Smullyan 1987), chap. 26, e.g.) we now extend F+

by the following rule: For all F, G ∈ F+ let ∆(F, G) be a formula of E (⊂ F ⊂ F+).
For all A, B ∈ A+ let

∆(A, B) mean that S(A) � (∆(A, B) → B).

(Note that the latter deducibility relation does not depend on the meaning of ∆(A, B).)
So for all F, G ∈ F+, all substitution instances of

∀z
(
∆(F, G) ↔ F � (∆(F, G) → G)

)
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are true. We now take all formulas of this form as additional axioms of S. (These
axioms can easily be enclosed in ‘Axiom(X)’.) So all formulas of the following form
are deducible in S:

∀z
{

(∆(F, G) → G) ↔ [ F � (∆(F, G) → G) → G]
}
.

Writing H for (∆(F, G) → G) we obtain this version of the

Diagonal Lemma: For all F, G ∈ F+ there is an H ∈ F+ satisfying
S � ∀z

{
H ↔ (F � H → G)

}
.

The special case with A+ instead of F+ implies the following version of the

Theorem of Löb: For all B, C ∈ A+, if S � (B � C → C), then S � C.

The proof given in (Boolos 1989), p.187, can easily be transformed into a proof
of this version of Löb’s theorem. By another well known theorem of modal logic, this
version yields

S � (B � (B � C → C) → B � C),

which reminds of the modal scheme i ( i C → C) → i C). Obviously, all results of
this section also hold for S(A) instead of S.

Notes: 1. Modal systems satisfying the latter scheme together with (K) and (4) are
said to be of type G.
2. Let � ⇀↽ ¬⊥, e.g. Because of S �� ⊥, Löb’s theorem especially implies S �� ¬ (� � ⊥)
(cf. Gödel’s second incompleteness theorem).
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