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Abstract

We prove existence of solutions global in time to an initial-boundary
value problem for a system of partial differential equations, which consists
of the equations of linear elasticity and a nonlinear, non-uniformly parabolic
equation of second order. This problem models the behavior of material
phases, whose evolution in time is driven by configurational forces. The
model is obtained by inserting a parabolic, regularizing term into an original
model with hyperbolic character, which is derived in [2, 3] by transforming
a well known sharp interface model for the evolution of a surface of strain
discontinuity. Our existence proof, which contributes to the verification of
the model, is only valid in one space dimension.

1 Introduction

In [3] a model has been derived for the behavior of materials with phase transistions,
for which the evolution of the interfacial regions is driven by configurational forces.
The model consists of the partial differential equations of linear elasticity coupled
to a quasilinear, non-uniformly parabolic equation of second order. To verify the
validity of a new model investigations are necessary, in which not only simulations
must be carried out but also the analytical properties of the model must be deter-
mined. Here we contribute to the verification of the new model by showing that in
the case of one space dimension an initial-boundary value problem to this model
has solutions global in time. We first formulate this initial-boundary value problem
in the three-dimensional case, give a short sketch of the derivation of the model
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and conclude this introduction by reducing the model to the one-dimensional case
and by stating our main result.

Let Ω ⊂ R3 be an open set. It represents the material points of a solid body.
The different phases are characterized by the order parameter S(t, x) ∈ R. A value
of S(t, x) near to zero indicates that the material is in the matrix phase at the point
x ∈ Ω at time t, a value near to one indicates that the material is in the second
phase. The other unknowns are the displacement u(t, x) ∈ R3 of the material point
x at time t and the Cauchy stress tensor T (t, x) ∈ S3, where S3 denotes the set of
symmetric 3× 3-matrices. The unknowns must satisfy the quasi-static equations

−divx T (t, x) = b(t, x), (1.1)

T (t, x) = D
(
ε(∇x u(t, x))− ε̄S(t, x)

)
, (1.2)

St(t, x) = −c
(
ψS(ε(∇xu(t, x)), S(t, x))− ν∆xS(t, x)

)
|∇xS(t, x)| (1.3)

for (t, x) ∈ (0,∞)× Ω. The boundary and initial conditions are

u(t, x) = γ(t, x), S(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω, (1.4)

S(0, x) = S0(x), x ∈ Ω. (1.5)

Here ∇xu denotes the 3× 3-matrix of first order derivatives of u, the deformation
gradient, (ε(∇xu))

T denotes the transposed matrix and

ε(∇xu) =
1

2

(
∇xu+ (∇xu)

T
)

is the strain tensor. ε̄ ∈ S3 is a given matrix, the misfit strain, and D : S3 → S3

is a linear, symmetric, positive definite mapping, the elasticity tensor. In the free
energy

ψ(ε, S) =
1

2

(
D(ε− ε̄S)

)
· (ε− ε̄S) + ψ̂(S) (1.6)

we choose for ψ̂ ∈ C2(R, [0,∞)) a double well potential with minima at S = 0
and S = 1. Also, c is a positive constant and ν is a small nonnegative constant.
Given are the volume force b : [0,∞)×Ω → R3 and the boundary and initial data
γ : [0,∞)× ∂Ω → R3, S0 : Ω → R.

This completes the formulation of the initial-boundary value problem. The
equations (1.1) and (1.2) differ from the system of linear elasticity only by the
term ε̄S, which couples this system to equation (1.3). The evolution equation
(1.3) for the order parameter S is non-uniformly parabolic because of the term
ν∆S|∇xS|.

We sketch the derivation of the model and explain the interest in the present
investigations: Material phases with moving phase interfaces driven by configura-
tional forces can for example consist of regions in the material with differing crystal
structures. In the different regions the lattice constants of the crystal differ slightly.
The phase interface is therefore a surface of strain discontinuity. This strain dis-
continuity causes configurational forces, which by some process can transform the
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material at the phase interface from one phase to the other and thus move the
phase interface. A well known sharp interface model for moving surfaces of strain
discontinuity has been formulated in [1]; applications of this model can for example
be found in [7, 13, 15, 16]. Under a large number of publications on configurational
forces we only mention [9, 12].

For varies reasons it is advantages to work with a phase field model instead
of a sharp interface model. Therefore in [2, 3] the sharp interface model from [1]
has been transformed into the phase field model (1.1) – (1.5). This transformation
runs along the following lines: In [2] it has been observed that the equation for
the normal speed of the interface in the sharp interface model can be reformulated
as a partial differential equation allowing smooth and distributional solutions. In
particular, if x 7→ S(t, x) : Ω → {0, 1} is the characteristic function of the region in
Ω, which at time t forms the second phase, and if (u, T, S) solves the equations (1.1),
(1.2), then (u, T, S) is a distributional solution of this partial differential equation.
On the other hand, if (u, T, S) is a smooth solution of the equations (1.1), (1.2)
and of the distributional partial differential equation, then this partial differential
equation simplifies and becomes the Hamilton-Jacobi transport equation

St = −cψS(ε(∇xu), S) |∇xS|. (1.7)

The idea suggests itself to approximate the solution of the sharp interface model
by smooth solutions (u, T, S) of the system (1.1), (1.2), (1.7). Yet, examples show
that in general the function S in such a smooth solution develops a jump after
finite time. From that time on the equation (1.7) can no longer be used to govern
the evolution of S. To avoid this problem and to force solutions to stay smooth,
(1.7) has been replaced by the equation (1.3), which contains the regularizing term
ν|∇xS|∆xS with the small positive parameter ν. This yields the model (1.1) –
(1.5) first stated in [3].

To regularize (1.7) one could also try the equation

St(t, x) = −cψS(ε(∇xu), S) |∇xS|+ ν∆S. (1.8)

However, in contrast to (1.1), (1.2), (1.8), the system (1.1) – (1.3) satisfies the
second law of thermodynamics with the free energy (1.6) replaced by

ψ∗(ε, S) =
1

2

(
D(ε− ε̄S)

)
· (ε− ε̄S) + ψ̂(S) +

ν

2
|∇xS|2, (1.9)

cf. [3]. One expects that this is an advantage, which is confirmed by our math-
ematical investigations. They indicate that the system (1.1) – (1.3) has better
mathematical properties than the system (1.1), (1.2), (1.8), though (1.3) is seem-
ingly more singular than (1.8).

Thus, to verify that (1.1) – (1.5) is indeed a phase field model regularizing
the sharp interface model in [1], it must be shown that the initial-boundary value
problem (1.1) – (1.5) with positive ν has solutions which exist global in time, and
that these solutions tend to solutions of the sharp interface model for ν → 0. In this
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article we contribute to the first part of this program and show that in one space
dimension the initial-boundary value problem has solutions. Whether solutions in
three space dimensions exist and whether these solutions converge to a solution of
the sharp interface model for ν → 0 is an open problem not investigated here.

We mention some related investigations: The evolution equation (1.3) is of
parabolic type, but it originates from the hyperbolic equation (1.7) by regulariza-
tion. Indeed, in the sharp interface model the movement of interfaces is a transport
process. A corresponding model with partial differential equations should therefore
have hyperbolic character. On the other hand, if the movement of interfaces is not
predominantly resulting from configurational forces but from a diffusion process,
the corresponding model should naturally have parabolic character. This is the
case for models consisting of the Cahn-Allen or Cahn-Hilliard equations coupled
with the equations of elasticity, which are therefore the appropriate models for such
processes. They have recently been studied in [5, 6, 8]. Another related article is
[4], where the second law of thermodynamics for phase transition models with free
energies of the type (1.9) is studied.

Statement of the main result. We now assume that all functions only depend
on the variables x1 and t, and, to simplify the notation, denote x1 by x. The set
Ω = (a, d) is a bounded open interval with constants a < d. We write QTe :=
(0, Te)× Ω, where Te is a positive constant, and define

(v, ϕ)Z =

∫
Z

v(y)ϕ(y) dy ,

for Z = Ω or Z = QTe . If v is a function defined on QTe we denote the mapping
x → v(t, x) by v(t). If no confusion is possible we sometimes drop the argument
t and write v = v(t). We still allow that the material points can be displaced in
three directions, hence u(t, x) ∈ R3, T (t, x) ∈ S3 and S ∈ R. If we denote the first
column of the matrix T (t, x) by T1(t, x) and set

ε(ux) =
1

2
((ux, 0, 0) + (ux, 0, 0)T ) ∈ S3,

then with these definitions the equations (1.1) – (1.3) in the case of one space
dimension can be written in the form

−T1x = b, (1.10)

T = D(ε(ux)− ε̄S), (1.11)

St = c
(
T · ε̄− ψ̂′(S) + νSxx

)
|Sx|, (1.12)

which must be satisfied in QTe . Here we have inserted ψS(ε, S) = −T · ε̄ + ψ̂′(S).
Since the equations (1.10), (1.11) are linear, the inhomogeneous Dirichlet boundary
condition for u can be reduced in the standard way to the homogeneous condition.
For simplicity we thus assume that γ = 0. The initial and boundary conditions
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therefore are

u(t, x) = 0, (t, x) ∈ (0, Te)× ∂Ω, (1.13)

S(t, x) = 0, (t, x) ∈ (0, Te)× ∂Ω, (1.14)

S(0, x) = S0(x), x ∈ Ω. (1.15)

To define weak solutions of this initial-boundary value problem we note that be-
cause of 1

2
(|y|y)′ = |y| equation (1.12) is equivalent to

St − cν
1

2
(|Sx|Sx)x − c

(
T · ε̄− ψ̂′(S)

)
|Sx| = 0. (1.16)

Definition 1.1. Let b ∈ L∞(0, Te, L
2(Ω)), S0 ∈ L∞(Ω). A function (u, T, S) with

u ∈ L∞(0, Te;W
1,∞
0 (Ω)), (1.17)

T ∈ L∞(QTe), (1.18)

S ∈ L∞(QTe) ∩ L∞(0, Te, H
1
0 (Ω)), (1.19)

is a weak solution to the problem (1.10) – (1.15), if the equations (1.10), (1.11),
(1.13) are satisfied weakly and if for all ϕ ∈ C∞

0 ((−∞, Te)× Ω)

(S, ϕt)QTe
− cν

1

2
(|Sx|Sx, ϕx)QTe

+ c
((
T · ε− ψ̂′(S)

)
|Sx|, ϕ

)
QTe

+ (S0, ϕ(0))Ω = 0.

(1.20)

The main result of this article is

Theorem 1.1 To all S0 ∈ H1
0 (Ω) and b ∈ C(QTe

) with bt ∈ C(QTe
) there exists a

weak solution (u, T, S) of the problem (1.10) – (1.15), which in addition to (1.17)
– (1.20) satisfies

St ∈ L
4
3 (QTe), Sx ∈ L

8
3 (0, Te;L

q(Ω)), for any 1 < q <∞ (1.21)

and
(|Sx|Sx)x ∈ L

4
3 (QTe), Sxt ∈ L

4
3 (0, Te;W

−1, 4
3 (Ω)). (1.22)

The remaining sections are devoted to the proof of this theorem. The main difficulty
in the proof stems from the fact that the coefficient ν|Sx| of the highest order
derivative Sxx in the equation (1.12) is not bounded away from zero and that it is
not differentiable with respect to Sx.

To prove Theorem 1.1 we therefore consider in Section 2 a modified initial-
boundary value problem which consists of (1.10), (1.11), (1.13) – (1.15) and the
equation

St − (cν|Sx|κ + κ)Sxx − c
(
T · ε̄− ψ̂′(S)

)
|Sx|κ = 0, x ∈ Ω, t > 0 (1.23)
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with a constant κ > 0. Here we use the notation

|p|κ :=
|p|2√
κ2 + |p|2

. (1.24)

Since (1.23) is a uniformly parabolic equation we can use a standard theorem to
conclude that the modified initial-boundary value problem has a sufficiently smooth
solution (uκ, T κ, Sκ). For this solution we derive in Section 3 a-priori estimates
independent of κ.

To select a subsequence converging to a solution for κ→ 0 we need a compact-
ness result. However, our a-priori estimates are not strong enough to show that
the sequence Sκ

x is compact; instead, we can only show that the sequence |Sκ
x |Sκ

x ,
or more precisely, an approximation to this sequence, has bounded derivatives and
thus is compact. It turns out that this is enough to prove existence of a solution.
For the compactness proof in Section 4 we use the Aubin-Lions Lemma; since one
of our a-priori estimates for derivatives of the approximating sequence is only valid
in L1(0, Te;H

−2(Ω)), we must use the generalized form of this lemma given by
Roub́ıcěk [14], which is valid in L1.

For the a-priori estimates it is crucial that the term |Sx|Sxx in (1.12) can be
written in the form 1

2
(|Sx|Sx)x. In the higher dimensional case the corresponding

term |∇xS|∆xS cannot be rewritten in this way. This is an important reason why
our proof is not valid for higher space dimensions. We surmise that existence of
solutions in two space dimensions can be proved using the formula

|∇xS|∆xS =
1

2
(Sr|Sr|)r + Sr|Sr|Γ,

where d
dr

denotes the spatial derivative in the direction of ∇xS(t, x) and Γ is the
curvature of the curve S = Const = S(t, x). Yet, this problem is open.

2 Existence of solutions to the modified problem

In this section, we study the modified initial-boundary value problem and show
that it has a Hölder continuous classical solution. To formulate this problem, let
χ ∈ C∞

0 (R, [0,∞)) satisfy
∫∞
−∞ χ(t)dt = 1. For κ > 0, we set

χκ(t) :=
1

κ
χ

(
t

κ

)
,

and for S ∈ L∞(QTe ,R) we define

(χκ ∗ S)(t, x) =

∫ Te

0

χκ(t− s)S(s, x)ds. (2.1)

The modified initial-boundary value problem consists of the equations

−T1x = b, (2.2)

T = D(ε(ux)− ε̄χκ ∗ S), (2.3)

St = (cν|Sx|κ + κ)Sxx + c(T · ε̄− ψ̂′(S))|Sx|κ , (2.4)
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which must hold in QTe , and of the boundary and initial conditions

u(t, x) = 0, (t, x) ∈ (0, Te)× ∂Ω, (2.5)

S(t, x) = 0, (t, x) ∈ (0, Te)× ∂Ω, (2.6)

S(0, x) = S0(x), x ∈ Ω. (2.7)

To formulate an existence theorem for this problem we need some function spaces:
For nonnegative integers m,n and a real number α ∈ (0, 1) we denote by Cm+α(Ω)
the space of m−times differentiable functions on Ω, whose m−th derivative is
Hölder continuous with exponent α. The space Cα,α/2(QTe

) consists of all functions
on QTe

, which are Hölder continuous in the parabolic distance

d((t, x), (s, y)) :=
√
|t− s|+ |x− y|2.

Cm,n(QTe
) and Cm+α,n+α/2(QTe

), respectively, are the spaces of functions, whose
x–derivatives up to order m and t–derivatives up to order n belong to C(QTe

) or
to Cα,α/2(QTe

), respectively.

Theorem 2.1 Let ν, κ > 0, Te > 0, suppose that the function b ∈ C(QTe
) has

the derivative bt ∈ C(QTe
) and that the initial data S0 ∈ C2+α(Ω) satisfy S0|∂Ω =

S0,x|∂Ω = S0,xx|∂Ω = 0. Then there is a solution

(u, T, S) ∈ C2,1(QTe
)× C1,1(QTe

)× C2+α,1+α/2(QTe
)

of the modified initial-boundary value problem (2.2) – (2.7). This solution satisfies
Stx ∈ L2(QTe) and

max
QTe

|S| ≤ max
Ω
|S0|. (2.8)

Proof. Note first that if S is given then for every t the equations (2.2), (2.3),
(2.5) form a linear elliptic boundary value problem for the unknown function x 7→
(u(t, x), T (t, x)). In [3] it is shown that the unique solution is given by

u(t, x) = u∗
(∫ x

a

(χκ ∗ S)(t, y)dy − x− a

d− a

∫ d

a

(χκ ∗ S)(t, y)dy

)
+ w(t, x), (2.9)

T (t, x) = D(ε∗ − ε̄)(χκ ∗ S)(t, x)− Dε∗

d− a

∫ d

a

(χκ ∗ S)(t, y)dy + σ(t, x), (2.10)

where u∗ ∈ R3, ε∗ ∈ S3 are suitable constants only depending on ε̄ and D, and
where for every t ∈ [0, Te] the function (w(t), σ(t)) : Ω → R3 × S3 is the solution
to the boundary value problem

−σ1x(t) = b(t),

σ(t) = Dε(wx(t)),

w(t)|∂Ω = 0.
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Since by assumption b and bt belong to C(Q̄Te), it follows that (w, σ) ∈ C2,1(Q̄Te)×
C1,1(Q̄Te). We insert (2.10) into (2.4) and obtain the equation

St = a1(Sx)Sxx + a2

(
t, x, S, Sx, χκ ∗ S,

1

d− a

∫ d

a

(χκ ∗ S)(t, y)dy

)
(2.11)

in QTe , where

a1(p) = cν|p|κ + κ

and

a2(t, x, S, p, r, s) = c
(
ε̄ ·D(ε∗ − ε̄)r − ε̄ ·Dε∗s+ ε̄ · σ(t, x)− ψ̂′(S)

)
|p|κ .

The equations (2.11), (2.6) and (2.7) form an initial-boundary value problem with
nonlocal terms, which is equivalent to the problem (2.2) – (2.7). To prove The-
orem 2.1 it therefore suffices to show that this initial-boundary value problem is
solvable. This follows from

Theorem 2.2 Let Te > 0, M > 0 and suppose that the coefficient functions a1 ∈
C1(R, [0,∞)) and a2 ∈ C1(QTe

× [−M,M ]×R× [−M,M ]2,R) satisfy the equations
and inequalities

a2(t, x, S, 0, r, s) = 0, (2.12)

µ1(1 + |p|)m−2 ≤ a1(p) ≤ µ2(1 + |p|)m−2, (2.13)∣∣∣∣∂a1

∂p

∣∣∣∣ (1 + |p|)3 +

∣∣∣∣∂a2

∂p

∣∣∣∣ (1 + |p|) + |a2| ≤ µ3(1 + |p|)m, (2.14)∣∣∣∣∂a2

∂x

∣∣∣∣ ≤ (µ4 + P (|p|))(1 + |p|)m+1, (2.15)

max

(
∂a2

∂S
,
∂a2

∂r
,
∂a2

∂s

)
≤ (µ4 + P (|p|))(1 + |p|)m, (2.16)

where P (ρ) is a nonnegative continuous function that tends to zero for ρ → ∞,
µ1, · · · , µ4 are positive constants and m is an arbitrary number.

If the number µ4 is sufficiently small, depending on the numbers M,µ1, µ2, µ3

and P̂ = maxρ≥0 P (ρ), and if the initial data S0 ∈ C2+α(Ω̄, [−M,M ]) satisfy the
compatibility conditions S0|∂Ω = 0 and

a1(S0,x(x))S0,xx(x) + a2(0, x, S0(x), S0,x(x), r, s) = 0 (2.17)

for all x ∈ ∂Ω and for all −M ≤ r, s ≤ M , then there is a solution S ∈
C2+α,1+α/2(QTe

) of the problem (2.11), (2.6) and (2.7). This solution has deriva-
tives Stx ∈ L2(QTe) .
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A proof of Theorem 2.2 is obtained by modification of the proof of the analo-
gous Theorem 5.2 in [10, p.564], which is valid for the quasilinear parabolic initial
boundary value problem

St = a1(Sx)Sxx + a2(t, x, S, Sx),

S(t, x) = 0, (t, x) ∈ (0, Te)× ∂Ω,

S(0, x) = S0(x), x ∈ Ω,

which does not contain nonlocal terms. The theorem in [10] states that if the coef-
ficient functions satisfy the conditions (2.12) – (2.16) and if the initial data satisfy
compatibility and regularity conditions analogous the ones given above, then this
initial-boundary value problem has a solution S with the regularity stated in The-
orem 2.2. Actually, in [10] more general coefficient functions are considered. The
proof is based on the Leray-Schauder fixed point theorem. We leave the modifica-
tion, which is technical, to the reader.

End of the proof of Theorem 2.1: It is immediately seen that the coefficients a1

and a2 in (2.11) satisfy the relations (2.12) – (2.16) with m = 3. In particular,
we can choose µ1, µ2, µ3, P̂ such that the inequalities (2.15), (2.16) hold for ev-
ery µ4 > 0, with a suitable function P depending on µ4. Moreover, from the
assumption S0|∂Ω = S0,x|∂Ω = S0,xx|∂Ω = 0 together with (2.12) it follows that the
compatibility condition (2.17) holds. Thus, Theorem 2.2 asserts that a solution
S ∈ C2+α,1+α/2(QTe

) of (2.11), (2.6), (2.7) exists with Sxt ∈ L2(QTe). The func-
tions T and u with the regularity stated in Theorem 2.1 are obtained from (2.10),
(2.9). Finally, since a1(0) = κ > 0 and a2(t, x, S, 0, r, s) = 0, we can apply [10,
Theorem 2.9, p.23] to (2.11) and conclude that the estimate (2.8) holds.

3 A priori estimates

In this section we establish a-priori estimates for solutions of the modified problem,
which are uniform with respect to κ. We remark that the estimates in Lemma 3.1
and Corollary 3.1, though stated in the one-dimensional case, can be generalized
to higher space dimensions.

In what follows we assume that

0 < κ ≤ 1, (3.1)

since we consider the limit κ→ 0. The L2(Ω)-norm is denoted by ‖·‖, and the letter
C stands for varies positive constants independent of κ. Supplementing (1.24) we
also use the notation

[p]κ :=
p|p|√
κ2 + p2

. (3.2)

We start by constructing a family of approximate solutions to the modified problem.
To this end let Te be a fixed positive number and choose for every κ a function
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Sκ
0 ∈ C∞

0 (Ω) such that

‖Sκ
0 − S0‖H1

0 (Ω) → 0, κ→ 0, (3.3)

where S0 ∈ H1
0 (Ω) are the initial data given in Theorem 1.1. We insert for S0 in

(2.7) the function Sκ
0 and choose for b in (2.2) the function given in Theorem 1.1.

These functions satisfy the assumptions of Theorem 2.1, hence there is a solu-
tion (uκ, T κ, Sκ) of the modified problem (2.2) – (2.7), which exists in QTe . The
inequality (2.8) and Sobolev’s embedding theorem yield for this solution

sup
0<κ≤1

‖Sκ‖L∞(QTe ) ≤ sup
0<κ≤1

‖Sκ
0 ‖L∞(Ω) ≤ C. (3.4)

Remembering that σ in (2.10) belongs to C1,1(Q̄Te), we conclude from (3.4) that
also

max
QTe

|c(T κ · ε− ψ̂′(Sκ))| ≤ C. (3.5)

Lemma 3.1 There holds for any t ∈ [0, Te]

‖Sκ
x(t)‖2 +

∫ t

0

∫
Ω

(ν|Sκ
x |κ + 2κ) |Sκ

xx|2dxdτ ≤ C. (3.6)

Proof. Observe first that Sκ
tx ∈ L2(QTe), by Theorem 2.1, which yields that for

almost all t
1

2

d

dt
‖Sκ

x(t)‖2 =

∫
Ω

Sκ
x(t)Sκ

xt(t)dx.

Using this relation and (3.5) we obtain by multiplication of (2.4) by −Sκ
xx and

integration by parts with respect to x, where we take the boundary condition (2.6)
into account, that for almost all t

1

2

d

dt
‖Sκ

x‖2 +

∫
Ω

(ν|Sκ
x |κ + κ) |Sκ

xx|2dx =

∫
Ω

c(ψ̂′(Sκ)− T κ · ε)|Sκ
x |κSκ

xxdx

≤ C

∫
Ω

|Sκ
x |κ|Sκ

xx|dx = C

∫
Ω

|Sκ
x |

1
2
κ |Sκ

x |
1
2
κ |Sκ

xx|dx

≤ ν

2

∫
Ω

|Sκ
x |κ|Sκ

xx|2dx+
2C2

ν

∫
Ω

(|Sκ
x |κ)2dx. (3.7)

We subtract the term ν
2

∫
Ω
|Sκ

x |κ|Sκ
xx|2dx on both sides of this inequality and use

Gronwall’s Lemma to derive (3.6) from the resulting estimate, noting also (3.3).

Corollary 3.1 There holds for any t ∈ [0, Te]∫ t

0

∫
Ω

(|Sκ
x |κ|Sκ

xx|)
4
3 dxdτ ≤ C. (3.8)

10



Proof. By Hölder’s inequality, we have for some 2 > p ≥ 1, q = 2
p

and 1
q

+ 1
q′

= 1
that ∫ t

0

∫
Ω

(|Sκ
x |κ|Sκ

xx|)
p dxdτ

=

∫ t

0

∫
Ω

(|Sκ
x |κ)

p
2

(
(|Sκ

x |κ)
p
2 |Sκ

xx|p
)
dxdτ

≤
(∫ t

0

∫
Ω

(|Sκ
x |κ)

pq′
2 dxdτ

) 1
q′
(∫ t

0

∫
Ω

(|Sκ
x |κ)

pq
2 |Sκ

xx|pqdxdτ

) 1
q

≤
(∫ t

0

∫
Ω

(|Sκ
x |κ)

p
2−p dxdτ

) 2−p
2
(∫ t

0

∫
Ω

|Sκ
x |κ|Sκ

xx|2dxdτ
) p

2

. (3.9)

Inequality (3.6) implies for p
2−p

≤ 2, i.e. p ≤ 4
3
, that the right hand side of (3.9) is

bounded.

Lemma 3.2 There hold∫ t

0

∫
Ω

∣∣([Sκ
x ]κ |S

κ
x |κ)x

∣∣ 43 dxdτ ≤ 2
8
3

∫ t

0

∫
Ω

||Sκ
x |κ S

κ
xx|

4
3 dxdτ ≤ C, (3.10)

∫ t

0

‖|Sκ
x |κ‖

8
3

L∞(Ω) dτ =

∫ t

0

‖[Sκ
x ]κ |S

κ
x |κ‖

4
3

L∞(Ω) dτ ≤ C. (3.11)

Proof. We first show that (3.11) is a consequence of (3.10). Equation (3.10) and
the Poincaré inequality imply∫ t

0

‖ [Sκ
x ]κ |S

κ
x |κ − [Sκ

x ]κ |Sκ
x |κ‖

4
3

L
4
3
dτ ≤ C

∫ t

0

∫
Ω

∣∣([Sκ
x ]κ |S

κ
x |κ)x

∣∣ 43 dxdτ
≤ C, (3.12)

where for the function f = f(t, x) we have used the notation

f̄(t) =
1

|Ω|

∫
Ω

f(t, x)dx.

|Ω| is the volume of the domain Ω. Equations (1.24) and (3.2) imply |Sκ
x |κ ≤ |Sκ

x |
and | [Sκ

x ]κ | ≤ |Sκ
x |. From Lemma 3.1 we thus conclude∫ t

0

∫
Ω

∣∣∣[Sκ
x ]κ |Sκ

x |κ
∣∣∣ 43 dxdτ ≤ 1

|Ω| 43

∫ t

0

∫
Ω

(∫
Ω

|Sκ
x |2dx

) 4
3

dxdτ

=
1

|Ω| 13

∫ t

0

‖Sκ
x‖

8
3dτ ≤

∫ t

0

Cdτ ≤ Ct. (3.13)

Combination of the above two inequalities yields∫ t

0

‖[Sκ
x ]κ |S

κ
x |κ‖

4
3

L
4
3 (Ω)

dτ ≤ C. (3.14)

11



Invoking (3.10) we assert that

[Sκ
x ]κ |S

κ
x |κ ∈ L

4
3 (0, Te;W

1, 4
3 (Ω)),

whence by the Sobolev imbedding theorem we obtain∫ t

0

‖ [Sκ
x ]κ |S

κ
x |κ ‖

4
3

L∞(Ω)dτ ≤ C

∫ t

0

‖ [Sκ
x ]κ |S

κ
x |κ ‖

4
3

W 1, 43 (Ω)
dτ ≤ C. (3.15)

Thus (3.11) is proved, and it remains to verify (3.10).

To simplify the notation in the following computation we write y = Sκ
x . Using

that

([y]κ |y|κ)x =

(
y3|y|
κ2 + y2

)
x

=
2|y|3(2κ2 + y2)

(κ2 + y2)2
yx

= |y|κ
2|y|(2κ2 + y2)

(κ2 + y2)
3
2

yx, (3.16)

we obtain from Young’s inequality that∣∣([y]κ |y|κ)x

∣∣ = |y|κ
2|y|(κ2 + y2)

(κ2 + y2)
3
2

|yx|

≤ 2|y|κ
1
3
|y|3 + 2

3
(κ2 + y2)

3
2

(κ2 + y2)
3
2

|yx|

= 2|y|κ
1
3
|y|2

3
2 + 2

3
(κ2 + y2)

3
2

(κ2 + y2)
3
2

|yx|

≤ 2| |y|κ yx| = 2| |Sκ
x |κ S

κ
xx|. (3.17)

Therefore, from (3.8) we have∫ t

0

∫
Ω

∣∣([Sκ
x ]κ |S

κ
x |κ)x

∣∣ 43 dxdτ ≤ ∫ t

0

∫
Ω

|2 |Sκ
x |κ S

κ
xx|

4
3dxdτ ≤ 2

4
3C, (3.18)

which is (3.10) and completes the proof of this lemma.

Lemma 3.3 The function Sκ
t belongs to L

4
3 (QTe) and we have the estimates

‖Sκ
t ‖L4/3(QTe ) ≤ C , (3.19)

‖Sκ
xS

κ
xt‖L1(0,Te;H−2(Ω)) ≤ C , (3.20)

‖ ([Sκ
x ]κ|Sκ

x |κ)t ‖L1(0,Te;H−2(Ω)) ≤ C . (3.21)

Proof. From the equation (2.4) and the estimates (3.6), (3.5) and (3.8) we immedi-

ately see that Sκ
t ∈ L

4
3 (QTe) and that (3.19 holds. Therefore we only need to prove

the remaining two estimates.

12



To prove the first one we show that there is a constant C, which is independent
of κ, such that ∣∣(Sκ

xS
κ
xt, ϕ)QTe

∣∣ ≤ C‖ϕ‖L∞(0,Te;H2
0 (Ω)) (3.22)

for all ϕ ∈ L∞(0, Te;H
2
0 (Ω)). This estimate implies (3.20), since L1(0, Te;H

−2(Ω))
is isometrically imbedded into the dual space of L∞(0, Te;H

2
0 (Ω)).

For the proof of (3.22) recall first that Sκ
xt ∈ L2(QTe), which implies that the

right-hand side is well defined. We integrate by parts to get

(Sκ
xS

κ
xt, ϕ)QTe

= (Sκ
t ,−Sκ

xxϕ)QTe
+ (Sκ

t ,−Sκ
xϕx)QTe

=: I1 + I2. (3.23)

To estimate I1 we apply (2.4) and obtain

(Sκ
t ,−Sκ

xxϕ)QTe
=
(
(cν|Sκ

x |κ + κ)Sκ
xx + c

(
T · ε̄′ − ψ̂′(Sκ)

)
|Sκ

x |κ,−Sκ
xxϕ
)

QTe

.

(3.24)
We estimate the right hand side of this equation term by term. For the first term
we obtain from Lemma 3.1∣∣∣((cν|Sκ

x |κ + κ)Sκ
xx,−Sκ

xxϕ)QTe

∣∣∣ ≤ ‖ϕ‖L∞(QTe )

∫
QTe

(cν|Sκ
x |κ + κ)|Sκ

xx|2d(x, τ)

≤ C‖ϕ‖L∞(QTe ) ≤ C‖ϕ‖L∞(0,Te;H2
0 (Ω)) . (3.25)

For the second term it follows from (3.5) and (3.8) that∣∣∣∣(c(T · ε̄′ − ψ̂′(Sκ)
)
|Sκ

x |κ,−Sκ
xxϕ
)

QTe

∣∣∣∣ ≤ C‖ϕ‖L∞(QTe )

∫ Te

0

‖ |Sκ
x |κSκ

xx‖L1dτ

≤ C‖ϕ‖L∞(0,Te;H2
0 (Ω)). (3.26)

The estimates (3.25) and (3.26) together yield

|I1| ≤ C‖ϕ‖L∞(0,Te;H2
0 (Ω)). (3.27)

Now we estimate I2. From (2.4) and (3.5) we have

I2 =
∣∣(Sκ

t , S
κ
xϕx)QTe

∣∣
=

∣∣∣∣((cν|Sκ
x |κ + κ)Sκ

xx + c
(
T · ε̄′ − ψ̂′(Sκ)

)
|Sκ

x |κ,−Sκ
xϕx

)
QTe

∣∣∣∣
≤ C

∫
QTe

(|Sκ
x |κ|Sκ

xx|+ κ|Sκ
xx|+ |Sκ

x |κ) |Sκ
xϕx|d(x, t)

=: C(I2,1 + I2,2 + I2,3). (3.28)

We are now going to deal with I2,1, I2,2 and I2,3. Using the Cauchy-Schwarz in-
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equality and invoking the estimates (3.6), (3.8) and (3.11), we arrive at

I2,1 =

∫
QTe

|Sκ
x |κ|Sκ

xxS
κ
xϕx|d(x, t)

≤ C

∫ Te

0

‖|Sκ
x |κ‖

1
2

L∞(Ω)‖ϕx‖L∞(Ω)

∫
Ω

(|Sκ
x |κ)

1
2 |Sκ

xxS
κ
x |dxdτ

≤ C

∫ Te

0

‖|Sκ
x |κ‖

1
2

L∞(Ω) ‖ϕx‖L∞(Ω)

(∫
Ω

|Sκ
x |2dx

) 1
2
(∫

Ω

(
|Sκ

x |κ|Sκ
xx|2
)
dx

) 1
2

dτ

≤ C‖ϕ‖L∞(0,T ;H2
0 (Ω))

∫ Te

0

‖|Sκ
x |κ‖

1
2

L∞(Ω)

∥∥∥(|Sκ
x |κ)

1
2Sκ

xx

∥∥∥
L2
dτ

≤ C‖ϕ‖L∞(0,T ;H2
0 (Ω))

 Te∫
0

‖|Sκ
x |κ‖L∞(Ω)dτ


1
2
 Te∫

0

∥∥∥(|Sκ
x |κ)

1
2 Sκ

xx

∥∥∥2

L2(Ω)
dτ


1
2

≤ C‖ϕ‖L∞(0,T ;H2
0 (Ω)). (3.29)

The other terms are easier to handle. It follows from the estimate (3.6) and the
assumption 0 < κ ≤ 1 that

I2,2 =

∫
QTe

κ|Sκ
xxS

κ
xϕx|d(x, τ)

≤ Cκ
1
2‖ϕx‖L∞(QT )

∫
QTe

κ
1
2 |Sκ

xx||Sκ
x |d(x, τ)

≤ Cκ
1
2‖ϕx‖L∞(QT )

(∫
QTe

κ|Sκ
xx|2dx

) 1
2
(∫

QTe

|Sκ
x |2d(x, τ)

) 1
2

≤ C‖ϕ‖L∞(0,T ;H2
0 (Ω)). (3.30)

Finally, (3.6) and the fact that |Sκ
x |κ ≤ |Sκ

x | imply

I2,3 =

∫
QTe

|Sκ
x |κ|Sκ

xϕx|d(x, t)

≤ C‖ϕx‖L∞(QTe )

∫
QTe

|Sκ
x |2d(x, t)

≤ C‖ϕ‖L∞(0,Te;H2
0 (Ω)). (3.31)

The estimates (3.28) – (3.31) yield

|I2| ≤ C‖ϕ‖L∞(0,T ;H2
0 (Ω)) .

This inequality and (3.23), (3.27) together yield the desired estimate (3.22), hence
(3.20) follows.

To prove the third statement of the lemma we define

Rκ := (cν|Sκ
x |κ + κ)Sκ

xx + c
(
T · ε̄′ − ψ̂′(Sκ)

)
|Sκ

x |κ (3.32)
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and set y = Sκ
x . Remembering that Sκ

xt ∈ L2(QTe) we obtain as in (3.16) that

([y]κ |y|κ)t
=

2|y|3(2κ2 + y2)

(κ2 + y2)2
yt. (3.33)

Multiply the equation (2.4) by(
Sκ

xϕ
y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

=

(
ϕ
|y|3(2κ2 + y2)

(κ2 + y2)2

)
x

,

integrate the resulting equation with respect to (x, t) over QTe and note (3.33) to
obtain

0 =

(
Sκ

t −Rκ,

(
Sκ

xϕ
y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

)
QTe

= −
(
Sκ

xt, S
κ
xϕ
y|y|(2κ2 + y2)

(κ2 + y2)2

)
QTe

−
(
Rκ,

(
Sκ

xϕ
y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

)
QTe

= −1

2

(
([Sκ

x ]κ |S
κ
x |κ)t

, ϕ
)

QTe
−
(
Rκ,

(
Sκ

xϕ
y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

)
QTe

= −1

2

(
([Sκ

x ]κ |S
κ
x |κ)t

, ϕ
)

QTe
−
(
Rκ, (S

κ
xxϕ+ Sκ

xϕx)
y|y|(2κ2 + y2)

(κ2 + y2)2

)
QTe

−
(
Rκ, S

κ
xϕ

(
y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

)
QTe

. (3.34)

To estimate the last two terms on the right-hand side of this inequality we note
that (

y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

=
4|y|κ4

(κ2 + y2)3
yx.

Thus we have the following inequalities∣∣∣∣y|y|(2κ2 + y2)

(y2 + κ2)2

∣∣∣∣ ≤ (y2 + κ2)2

(κ2 + y2)2
= 1

and ∣∣∣∣y(y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

∣∣∣∣ =
4y2κ4

(κ2 + y2)3
|yx| ≤

4

3

(y2 + κ2)3

(κ2 + y2)3
|yx| =

4

3
|Sκ

xx|,

which yield the estimates∣∣∣∣∣
(
Rκ, (S

κ
xxϕ+ Sκ

xϕx)
y|y|(2κ2 + y2)

(κ2 + y2)2

)
QTe

∣∣∣∣∣
≤ C

∫
QTe

|Rκ| (|Sκ
xxϕ|+ |Sκ

xϕx|) d(x, τ) (3.35)
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and ∣∣∣∣∣
(
Rκ, S

κ
xϕ

(
y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

)
QTe

∣∣∣∣∣ ≤ C

∫
QTe

|RκS
κ
xxϕ|d(x, τ). (3.36)

The term
∫

QTe
|RκS

κ
xxϕ|d(x, τ) coincides with the right-hand side of (3.24), which

was estimated in (3.25) – (3.27) by C‖ϕ‖L∞(0,T ;H2
0 (Ω)). The term∫

QTe

|RκS
κ
xϕx|d(x, τ) =

∫
QTe

|Sκ
t S

κ
xϕx|d(x, τ)

was estimated in (3.28) – (3.31) by C‖ϕ‖L∞(0,T ;H2
0 (Ω)). These results and (3.34) –

(3.36) yield ∣∣∣(([Sκ
x ]κ|Sκ

x |κ)t , ϕ)QTe

∣∣∣ ≤ C‖ϕ‖L∞(0,Te;H2
0 (Ω))

which implies (3.21).

4 Existence of solutions to the phase field model

In this section we use the a priori estimates established in the previous section
to study the convergence of (uκ, T κ, Sκ) as κ → 0. We shall show that there is
a subsequence, which converges to a weak solution of the initial-boundary value
problem (1.10) – (1.15), thereby proving Theorem 1.1.

Note first that the estimates (3.6), (3.19), the fact that Sκ(t, x) = 0 for all (t, x) ∈
[0, Te]× ∂Ω and Poincaré’s inequality imply

‖Sκ‖W 1,4/3(QTe ) ≤ C , (4.1)

for a constant C independent of κ. Hence, we can select a sequence κn → 0 and a
function S ∈ W 1,4/3(QTe), such that the sequence Sκn , which we again denote by
Sκ, satisfies

‖Sκ − S‖L4/3(QTe ) → 0, Sκ
x ⇀ Sx , Sκ

t ⇀ St , (4.2)

where the weak convergence is in L4/3(QTe) .
As usual, since the equation (1.12) is nonlinear, the weak convergence of Sκ

x is
not enough to prove that the limit function solves this equation. In the following
lemma we therefore show that Sκ

x converges pointwise almost everywhere:

Lemma 4.1 There exists a subsequence of Sκ
x , we still denote it by Sκ

x , such that

Sκ
x → Sx, a.e. in QTe , (4.3)

[Sκ
x ]κ → Sx, |Sκ

x |κ → |Sx|, a.e. in QTe , (4.4)

|Sκ
x |κ ⇀ |Sx|, [Sκ

x ]κ ⇀ Sx, weakly in L
4
3 (QTe), (4.5)

[Sκ
x ]κ|Sκ

x |κ → Sx|Sx|, strongly in L
4
3 (0, Te;L

2(Ω)), (4.6)

as κ→ 0.
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The proof is based on the following two results:

Theorem 4.1 Let B0 be a normed linear space imbedded compactly into another
normed linear space B which is continuously imbedded into a Hausdorff locally con-
vex space B1, and 1 ≤ p < +∞. If v, vi ∈ Lp(0, Te;B0), i ∈ IN, the sequence {vi}i∈IN

converges weakly to v in Lp(0, Te;B0), and {∂vi

∂t
}i∈IN is bounded in L1(0, Te;B1), then

vi converges to v strongly in Lp(0, Te;B).

Lemma 4.2 Let (0, Te) × Ω be an open set in R+ × Rn. Suppose functions gn, g
are in Lq((0, Te)× Ω) for any given 1 < q <∞, which satisfy

‖gn‖Lq((0,Te)×Ω) ≤ C, gn → g almost everywhere in (0, Te)× Ω.

Then gn converges to g weakly in Lq((0, Te)× Ω).

Theorem 4.1 is a general version of Aubin-Lions lemma valid under the weak
assumption ∂tvi ∈ L1(0, Te;B1). This version, which we need here, is proved in
[14]. A proof of Lemma 4.2 can be found in [11, p.12].

Proof of Lemma 4.1: We choose p = 4
3

and

B0 = W 1, 4
3 (Ω), B = L2(Ω), B1 = H−2(Ω).

These spaces satisfy the assumptions of the theorem. Since the estimates (3.10) and
(3.21) imply that the sequence ([Sκ

x ]κ|Sκ
x |κ) is uniformly bounded in Lp(0, Te;B0) for

κ→ 0 and ([Sκ
x ]κ|Sκ

x |κ)t is uniformly bounded in L1(0, Te;B1), it follows from The-
orem 4.1 that there is a subsequence, still denoted by ([Sκ

x ]κ|Sκ
x |κ), which converges

strongly in Lp(0, Te;B) = L
4
3 (0, Te;L

2(Ω)) to a limit function G ∈ L 4
3 (0, Te;L

2(Ω)).
Consequently, from this sequence we can select another subsequence, denoted in
the same way, which converges almost everywhere in QTe . Using that the mapping
y 7→ f(y) := y|y| has a continuous inverse f−1 : R → R, we infer that also the
sequence [Sκ

x ]κ = f−1([Sκ
x ]κ|Sκ

x |κ) converges pointwise almost everywhere in QTe .
From this we deduce that also the sequence Sκ

x converges pointwise almost
everywhere. For, let yκ = Sκ

x , vκ = [Sκ
x ]κ and v = limκ→0 vκ. From

y4
κ = v2

κ(κ
2 + y2

κ) = v2
κκ

2 + v2
κy

2
κ

we conclude

y4
κ − v2

κκ
2 − v2

κy
2
κ = 0, (4.7)

hence

y2
κ =

v2
κ +

√
v4

κ + 4v2
κκ

2

2
,

since the second solution of (4.7) is negative. Therefore, for κ→ 0,

y2
κ =

v2
κ +

√
v4

κ + 4v2
κκ

2

2
→ v2 +

√
v4

2
= v2.
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From the fact that sign(vκ) = sign(yκ) we thus obtain

|yκ − vκ|2 = y2
κ − 2yκvκ + v2

κ

= y2
κ − 2|yκ||vκ|+ v2

κ → v2 − 2|v||v|+ |v|2 = 0, (4.8)

hence
lim
κ→0

Sκ
x = lim

κ→0
yκ = lim

κ→0
vκ = v = lim

κ→0
[Sκ

x ]κ.

Therefore Sκ
x converges pointwise almost everywhere in QTe . Since Sκ

x ⇀ Sx weakly

in L
4
3 (QTe), we conclude from Lemma 4.2 that Sκ

x → Sx and [Sx]
κ → Sx almost

everywhere in QTe . This proves (4.3) and (4.4). Relation (4.4) yields [Sκ
x ]κ|Sκ

x |κ →
Sx|Sx| a.e in QTe , which implies that the limit function G of [Sκ

x ]κ|Sκ
x |κ is equal to

Sx|Sx|. This prove (4.6).
To prove (4.5) we note that the estimate |[Sκ

x ]κ| = |Sκ
x |κ ≤ |Sκ

x | and the inequal-
ity (4.1) together imply that the sequences [Sκ

x ]κ and |Sκ
x |κ are uniformly bounded

in L
4
3 (QTe). Thus, (4.5) is a consequence of (4.4) and Lemma 4.2.

Proof of Theorem 1.1: Define the functions u and T by

u(t, x) = u∗
(∫ x

a

S(t, y)dy − x− a

d− a

∫ d

a

S(t, y)dy

)
+ w(t, x),

T (t, x) = D(ε∗ − ε̄)S −Dε∗
1

d− a

∫ d

a

S(t, y)dy + σ(t, x), (4.9)

where for S we insert the limit function of the sequence Sκ given in (4.2), and
where u∗ ∈ R3, ε∗ ∈ S3 and (w, σ) are the same constants and functions as in (2.9)
and (2.10). We prove that (u, T, S) is a weak solution of problem (1.10) – (1.15).

To this end note that (3.4) and (4.2) imply S ∈ L∞(QTe). From this relation,
from the above definition of u and T and from (w, σ) ∈ C2,1(Q̄Te) × C1,1(Q̄Te)
we immediately see that u and T satisfy (1.17) and (1.18). Observe next that
‖Sκ‖L∞(0,Te;H1

0 (Ω)) ≤ C, by (3.6). This implies S ∈ L∞(0, Te;H
1
0 (Ω)), since we can

select a subsequence of Sκ which converges weakly to S in thus space. Thus, S
satisfies (1.19).

It is shown in [3] that the functions u and T defined in this way satisfy the
equations (1.10), (1.11) and (1.14). We remarked this previously. It therefore
suffices to show that the equations (1.12) and (1.15) are fulfilled in the weak sense.
By definition, these equations are satisfied in the weak sense if the relation (1.20)
holds. To verify (1.20) we use that by construction (T κ, Sκ) solves (2.4), (2.6) and
(2.7). If we multiply equation (2.4) by a test function ϕ ∈ C∞

0 ((−∞, Te)×Ω) and
integrate the resulting equation over QTe we obtain

0 = (Sκ
t , ϕ)QTe

+
(
−(cν|Sκ

x |κ + κ)Sκ
xx − c

(
T κ · ε̄− ψ̂′(Sκ)

)
|Sκ

x |κ, ϕ
)

QT

= −(Sκ
0 , ϕ(0))Ω − (Sκ, ϕt)QTe

+

(
cν

∫ Sκ
x

0

|y|κdy + κSκ
x , ϕx

)
QTe

+
(
c
(
T κ · ε̄− ψ̂′(Sκ)

)
|Sκ

x |κ, ϕ
)

QTe

.
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Equation (1.20) follows from this relation if we show that

(Sκ
0 , ϕ(0))Ω → (S0, ϕ(0))Ω, (4.10)

(Sκ, ϕt)QTe
→ (S, ϕt)QTe

, (4.11)

(∫ Sκ
x

0

|y|κdy, ϕx

)
QTe

→
(

1

2
|Sx|Sx, ϕx

)
QTe

, (4.12)

((
T κ · ε̄− ψ̂′(Sκ)

)
|Sκ

x |κ, ϕ
)

QTe

→
((
T · ε̄− ψ̂′(S)

)
|Sx|, ϕ

)
QTe

, (4.13)

(κSκ
x , ϕx)QTe

→ 0, (4.14)

for κ → 0. Now, the relation (4.10) follows from (3.3), the relation (4.11) is a
consequence of (4.2), and the relation (4.14) is obtained from (4.1). To prove
(4.12) we use that∫ Sκ

x

0

|y|κdy −
1

2
Sx|Sx| =

(∫ Sκ
x

0

|y|κdy −
1

2
[Sx]κ|Sx|κ

)
+

1

2
([Sx]κ|Sx|κ − Sx|Sx|)

=: I1 + I2. (4.15)

The relation (4.6) implies

‖I2‖L
4
3 (0,Te;L2(Ω))

→ 0 (4.16)

for κ→ 0. Moreover,

|I1| =

∣∣∣∣∫ Sκ
x

0

|y|κdy −
∫ Sκ

x

0

|y|dy
∣∣∣∣ =

∣∣∣∣∣
∫ Sκ

x

0

(
y2√
κ2 + y2

− |y|

)
dy

∣∣∣∣∣
≤

∫ |Sκ
x |

0

|y|√
κ2 + y2

∣∣∣√κ2 + y2 − |y|
∣∣∣ dy ≤ ∫ |Sκ

x |

0

κdy = κ|Sκ
x |,

whence (3.6) implies

‖I1‖L
4
3 (0,Te;L2(Ω))

≤ C‖I1‖L2(QTe ) ≤ Cκ→ 0

for κ→ 0. From this relation and from (4.15), (4.16) we obtain∥∥∥∥∫ Sκ
x

0

|y|κdy −
1

2
Sx|Sx|

∥∥∥∥
L

4
3 (0,Te;L2(Ω))

→ 0,
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which implies (4.12). To verify (4.13) we note that (2.10) and (4.9) yield

T κ(t, x)− T (t, x)

= D(ε∗ − ε̄)(χκ ∗ Sκ − S)(t, x)− Dε∗

d− a

∫ d

a

(χκ ∗ Sκ − S)(t, y)dy. (4.17)

From (2.1) and (4.2) we conclude that

‖χκ ∗ Sκ − S‖
L

4
3 (QTe )

≤ ‖χκ ∗ (Sκ − S)‖
L

4
3 (QTe )

+ ‖(S − χκ ∗ S)‖
L

4
3 (QTe )

≤ ‖(S − χκ ∗ S)‖
L

4
3 (QTe )

+ ‖Sκ − S‖
L

4
3 (QTe )

→ 0

for κ→ 0. Since ε∗ and ε̄ are constants, we infer from this relation and from (4.17)
that

‖T − T κ‖
L

4
3 (QTe )

→ 0

for κ → 0. Thus, after selecting a subsequence we have T κ → T a.e in QTe .
Together with (4.3) and (4.4) we see that (T κ · ε̄ − ψ̂′(Sκ))|Sκ

x |κ tends to (T · ε̄ −
ψ̂′(S))|Sx|, almost everywhere in QTe . Since (3.6) and (3.5) imply that (T κ · ε̄ −
ψ̂′(Sκ))|Sκ

x |κ is uniformly bounded in L2(QTe), we deduce from Lemma 4.2 that

(T κ · ε̄− ψ̂′(Sκ))|Sκ
x |κ ⇀ (T · ε̄− ψ̂′(S))|Sx|,

weakly in L2(QTe), which implies (4.13). Consequently (1.20) holds.

It remains to prove that the solution has the regularity properties stated in
(1.21) and (1.22). The relation St ∈ L

4
3 (QTe) is implied by (4.2). To verify the

second assertion in (1.21), we use estimate (3.11) to get∫ Te

0

‖[Sκ
x ]κ‖

8
3

Lq(Ω)dt ≤ C

for any 1 < q < ∞, since Ω is bounded. Using this estimate and (4.4) we infer

from Lemma 4.2 that [Sκ
x ]κ ⇀ Sx in L

8
3 (0, Te;L

q(Ω)), whence Sx ∈ L
8
3 (0, Te;L

q(Ω))
follows.

To prove (1.22), we recall that [Sκ
x ]κ|Sκ

x |κ converges to |Sx|Sx strongly in the

space L
4
3 (0, Te;L

2(Ω)) ⊂ L
4
3 (QTe) and that ([Sκ

x ]κ|Sκ
x |κ)x is uniformly bounded in

L
4
3 (QTe) for κ → 0, by (3.10). This together implies that (|Sx|Sx)x ∈ L

4
3 (QTe).

Finally, to prove the second assertion of (1.22) we choose a test function ϕ ∈
L4(0, Te,W

1,4
0 (Ω)), multiply equation (2.4) by−ϕx and integrate the resulting equa-

tion over QTe to obtain

0 = (Sκ
t −Rκ,−ϕx)QTe

= (Sκ
xt, ϕ)QTe

+ (Rκ, ϕx)QTe
, (4.18)

with Rκ defined in (3.32). Invoking the estimates (3.6), (3.5) and (3.8) we deduce
that

‖Rκ‖L
4
3 (QTe )

≤ C,
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hence (4.18) yields

(Sκ
xt, ϕ)QTe

≤ ‖Rκ‖L
4
3 (QTe )

‖ϕx‖L4(QTe ) ≤ C‖ϕ‖L4(0,Te;W
1,4
0 (Ω)) ,

and this means that Sκ
xt is uniformly bounded in L

4
3 (0, Te;W

−1, 4
3 (Ω)). From this

estimate and from Sκ
t ⇀ St in L

4
3 (QTe) we deduce easily that Sxt belongs to the

dual space of L4(0, Te;W
1,4
0 (Ω)), which is L

4
3 (0, Te;W

−1, 4
3 (Ω)).
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