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Abstract

A general class of stochastic Runge-Kutta methods for the weak approximation
of It6 and Stratonovich stochastic differential equations with a multi-dimensional
Wiener process is introduced. Colored rooted trees are used to derive an expansion of
the solution process and of the approximation process calculated with the stochastic
Runge-Kutta method. A theorem on general order conditions for the coefficients and
the random variables of the stochastic Runge-Kutta method is proved by rooted tree
analysis. This theorem can be applied for the derivation of stochastic Runge-Kutta
methods converging with an arbitrarily high order.
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1 Introduction

In recent years many numerical methods have been proposed for the approx-
imation of stochastic differential equations (SDEs), see e.g. [7], [9], [10], [13],
[18] and [19]. Substantially, numerical methods for strong and for weak ap-
proximations can be distinguished. While strong approximations focus on a
good approximation of the path of a solution, weak approximations are ap-
plied if a good distributional approximation is needed. In the present paper, a
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class of stochastic Runge-Kutta (SRK) methods for weak approximation of It6
and Stratonovich SDEs is introduced in Section 2. Similar to the deterministic
setting, order conditions for SRK methods are calculated by comparing the
numerical solution with the exact solution over one step assuming exact initial
values. Therefore, the actual solution of the SDE and the numerical approx-
imation process have to be expanded by a stochastic Taylor series. However,
even for low orders such expansions become much more complex than in the
deterministic setting where it is already a lengthy task. In order to handle this
task in an easy way, a rooted tree theory based on three different kinds of col-
ored nodes is established in Section 3, which is a generalization of the rooted
tree theory due to Butcher [3]. Thus, colored trees are applied in Section 4
and 5 to give a representation of the solution and the approximation process
calculated with the SRK method in order to allow a rooted tree analysis of
order conditions. A similar approach with two different kinds of nodes has
been introduced by Burrage & Burrage [1], [2] for a SRK method converg-
ing in the strong sense as well as in Komori et al. [8] for ROW-type schemes
for Stratonovich SDEs. Finally, the main Theorem 6.4 presented in Section 6
immediately yields all order conditions for the coefficients and the random
variables of the introduced SRK method such that it converges with an arbi-
trarily given order in the weak sense. As a result of this theorem, the lengthy
calculation and comparison of Taylor expansions can be avoided.

Let (2, F, P) be a probability space with a filtration (F;);>o and let I = [to, T']
for some 0 < t5 < T < oo. We consider the solution (X;);c; of either a
d-dimensional It6 stochastic differential equation system

dX; = a(s, Xs) ds + b(s, X,) dWj (1)
or a d-dimensional Stratonovich stochastic differential equation system
dX; = a(s, Xs) ds + b(s, Xs) o dW; (2)

with an F;,-measurable initial condition Xy, =z € R? such that for some [ €
N holds E(|| Xy, ||*) < oo. Here, W = (W}, ..., W/™))t>0 is an m-dimensional
Wiener process w.r.t. (F;);>0. SDE (1) and (2) can be written in integral form

t mooct :
Xy =x0+ / a(s, Xs)ds + Z/ b (s, Xs) *x dW! (3)
to j=1 to

for ¢t € I, where the jth column of the d x m-matrix function b = (b%9) is
denoted by ¥ for j = 1,...,m. Here, the second integral w.r.t. the Wiener
process has to be interpreted either as an It6 integral in case of SDE (1) or
as a Stratonovich integral in case of SDE (2), which is indicated by the asterisk.

The solution (X;);e; of a Stratonovich SDE with drift ¢ and diffusion b is
also solution of an It6 SDE as in (1) and therefore also a diffusion process,



however with the modified drift

‘ . 1.4 m ik
a(tz)=a(t,z)+=>. > vk (t, z) o —(t, x) (4)
2k 0z
fori=1,...,d and the same diffusion b, i.e.

t t
X, = X, +/ a(s, X,)ds + [ b(s, X,) odW,
to

t M (5)
- X, +/ a(s, X,) ds + [ b(s, X,) dW,.
to to

The solution of the stochastic differential equation (3) is sometimes denoted
by X%-Xt in order to emphasize the initial condition. We suppose that the
drift @ : I x R — R? and the diffusion b : I x R? — R%*™ are measurable
functions satisfying a linear growth and a Lipschitz condition

la(t, 2)[| + llb(, 2)|| < C (1 + [l«]]) (6)
la(t, z) —a(t, y)|| + [1b6(t, z) = b(t, y)|| < Cllz = y]| (7)

for all 7,y € R? and all t € I with some constant C' > 0. Then the conditions
of the Existence and Uniqueness Theorem are fulfilled for the It6 SDE (1)
(see, e.g., [6]). If the conditions also hold with a replaced by the modified drift
a in the Ito6 SDE, then the Existence and Uniqueness Theorem also applies to
the Stratonovich SDE (2).

In the following, let CL(R?, R) denote the space of | times continuously differ-
entiable functions g € C'(R?, R) for which all partial derivatives up to order [
have polynomial growth. That is, for which there exist constants K > 0 and
r € N depending on g, such that [9.g(z)| < K (14 ||z[|*") holds for all z € R?
and any partial derivative 9’ g of order i < .

Let I, = {to,t1,...,tn} be a discretization of the time interval I = [to, T
such that

0<ty<ti <...<ty=T (8)
and define h, =t,11 —t, forn=0,1,..., N — 1 with the maximum step size
h= max h,.
0<n<N-—1

In the following, we consider a class of approximation processes of the type
Y% (t+ h) = A(t, z, h; §) where £ is a random variable or in general a vector of
random variables, with moments of sufficiently high order, and A is a vector
valued function of dimension d. We write Y,, = Y%t (¢,) and we construct
the sequence

}/E) = Xto
_ . _ _ (9)
Yn+1 _A(tnaynahagn)a n_Oala"'aN ]-a



where & is independent of Y, while &, for n > 1 is independent of Yy, ..., Y,
and &, ...,&,—1- Then we can define weak convergence with some order p of
an approximation process.

Definition 1.1 A time discrete approzimation process Y = (Yy)ter, converges

weakly with order p to X as h — 0 at time T if for each f € C?D(erl)(Rd,R)
exists a constant Cy, which does not depend on h, and a finite hy > 0 such
that

|E(f(Xr)) — E(f(Yr))| < Cp b (10)
holds for each h €0, hy.

Since we are interested in calculating a global approximation converging in the
weak sense with some desired order p, we make use of the following slightly
modified theorem due to Milstein (1986) [12].

Theorem 1.2 Suppose the following conditions hold:

(1) the coefficients a* in the case of SDE (1), @' in the case of SDE (2)
and b% are continuous, satisfy a Lipschitz condition (7) and belong to
Cfg(erl)(Rd,R) with respect to x fori=1,...,d, j=1,...,m,

(ii) for sufficiently large r (specified below) the moments E(||Y,||*") exist and
are uniformly bounded with respect to N andn =0,1,..., N,

(iii) assume that for all f € CXPYU(RY,R) the following local error estima-
tion
[E(f(X"(t+ 1)) = E(f(Y**(t + h)))| < K(z) hP* (11)
is valid for x € R4, t,.t+h € I and K € C%(R%, R).

Then for all N and alln =0,1,..., N the following global error estimation
[E(f(X "% (t,))) = E(f(Y*¥0(t,)))| < C AP (12)

holds for all f € CX*™(RY,R), where C is a constant, i.e. the method (9)
has order of accuracy p in the sense of weak approrimation.

A proof of Theorem 1.2 can be found in [11], [12] and [16]. Lemma 1.3 gives
sufficient conditions for assumption (ii) of Theorem 1.2 (see also [11], [12]).

Lemma 1.3 Suppose that for h < 1 the conditions

|E(A(tn, 2, h; &) — 2)|| < Co(1 + [|])) B, (13)
[A(tn, @, h; &a) — @] < M (&) (1 + ||2]]) /2 (14)

hold where M(&,) has moments of all orders, i.e. E((M(&,))") < Co, 1 €N,
with constants Cy and Cs independent of h. Then for every even number 2r

the expectations E(||Y,||*") exist and are uniformly bounded with respect to N
andn=1,...,N, if only E(|Yo|*") exists.



2 A Class of Stochastic Runge-Kutta Methods

In the following a class of stochastic Runge-Kutta methods is introduced for the
approximation of both, It6 and Stratonovich stochastic differential equation
systems w.r.t. an m-dimensional Wiener process. In order to preserve the most
possible generality, the considered class of stochastic Runge-Kutta methods is
of type (9) and has the following structure

Yo =0 (15)
Yoo = Altn, Yo, hy; 0,(hy) : v € M)
where M is an arbitrary finite set of multi-indices with k = | M| elements and
0,(h), v € M, are some suitable random variables. For the weak approxima-
tion of the solution (X;):c; of the d-dimensional SDE system (3), considered
either with respect to Ito or Stratonovich calculus, the general class of s-stage
stochastic Runge-Kutta methods is given by Y; = x and

Yori =Ya+ > 200 ¢ (tn + %, Hi(o,o))
i=1

+300 > A (t + by, HE)

i=1 k=1veM

(16)

with

+ZZ > Z5OT b (b, + Y b, HY)

j=1lr=1 pyeM
H(k v) Y + Z Z(k v),(0,0) (tn + c;0,0)hn’ H](O,O))
j=1
+ ZZ Z sz’/) ) b (t +C( ,.U)h H(T,M))
Jj=1lr=1 pueM

fori=1,...;s,k=1,... mrveMand n=0,1,...,N — 1 where

k,v
ZZ(O,O) = a; hy, zi(k,u) - Z ,yi(b)( )gb(hn)
teEM
OO
Zi(J(_),o),(o,o) _ A,(;-)’O)’(O’O) By, () — => B,] o L(h"ﬂ)
LEM
ZE00) _ gk 00) 5 ZEem = 2 BU T4, (ha)
LEM



k. v ) (kv)y(ry
for i,7 = 1,...,s. Here ai,’y@( ),Ag-c’ )’(0’0),B§j)( L) € R are the coeffi-

K3

cients of the SRK method and as usual the weights can be defined by

C(O,O) — A(070)7(070)e C(kau) — A(k},l/),(o,o)e (17)
kaV s\ . . .
with e = (1,..., )T, If Ag_c,u),(o,o) = BZ-(]L-)( M 0 for j > 4 then (16) is

called an explicit SRK method, otherwise it is called implicit. The introduced
class of SRK methods can be characterized by an extended Butcher array

00 | A00:00) | gln@O | B @O
k) | Ak),00) | gln)Edtrw) | Blew) E)(rm) (18)
o A ®E NSO

fork,r=1,...,mand ;,v,u € Mfor1 <i < k. We assume that the random
variables 6, (h,,) satisfy the moment condition

E (08 (hn) - .- 00 (hn)) = O (P -4700/2) (19)

for all p; € Ny and v; € M, 1 < i < k. This moment condition ensures a
contribution of each random variable having an order of magnitude O(v/h),
i.e. having mean-square order 5.

Some SRK schemes which belong to the introduced general class of SRK
methods can be found in [14], [15] and [16]. Further, many schemes proposed
in recent literature like in [7] or [20] are also covered. Usually, the set M may
consist of some multi-indices (ji,...,J;) with 0 < j; <m fori=1,...,] and
the random variables may be chosen as multiple It6 or Stratonovich integrals
of type I(jl,___,jl)/hq or J(jh___,jl)/hq, depending on the calculus that is used.

3 Stochastic Rooted Tree Theory

The SDE system (3) can be represented by an autonomous SDE system
t mooet ,
Xo=zo+ [ a(X)ds+ Y [ V(X,) < (20)
to j=1 to

with one additional equation representing time. Hence without loss of gener-
ality, it is sufficient to treat autonomous SDE systems in the following. First
of all a definition of colored graphs which will be suitable in the rooted tree
theory for SDEs w.r.t. a multi-dimensional Wiener process is given (see [17]).



Definition 3.1 Let | be a positive integer.

(1) A monotonically labelled S-tree (stochastic tree) t with | = [(t) nodes is
a pair of maps t = (¥, ") with

t:{2,... 1} = {1,...,1—-1}
v:{1,...,l} = A

so that t'(i) < i fori=2,...,1. Unless otherwise noted, we choose the set
A ={v,7,0j,k € N} where ji is a variable index with j, € {1,...,m}.
(2) LTS denotes the set of all monotonically labelled S-trees. Here two trees
t=(t,t) and u = (W, u") just differing by their colors t' and u’' are
considered to be identical if there exists a bijective map w : A — A with
7w(y) = and w(1) = 7 so that (i) = w(u' (7)) holds fori=1,...,1.

As a result of this t’ defines a father son relation between the nodes, i.e. t'(¢)
is the father of the son i. Furthermore the color t”(i), which consists of one
element of the set A, is added to the node 7 for 4 = 1,...,I(t). The node of
type v = ® is denoted as the root and always sketched as the lowest node of
the graph, 7 = @ is a deterministic node and o, = Q,, is a stochastic node
with a variable index jj, € {1,...,m}. So the variable index jj is associated
with the jyth component of the corresponding m-dimensional Wiener process
of the considered SDE. In case of a one-dimensional Wiener process one can
omit the variable indices since we have j; = 1 for all k¥ € N (see also [16]). As
an example Figure 1 presents two elements of LT'S.

Fig. 1. Two elements of LTS with ji,jo € {1,...,m}.

For the labelled S-tree t; in Figure 1 we have t7(2) = t}(3) = 1 and t}(4) = 2.
The color of the nodes is given by t7(1) = v, t7(2) = 7, t{(3) = 0, and
t7(4) = 0,

Definition 3.2 Let t = (¢,t") € LTS. We denote by d(t) = #{i : t'(i) = 7}
the number of deterministic nodes, by s(t) = #{i : ¢'(i) = o,k € N} the
number of stochastic nodes and by n(t) = §{i: t'(i) = ¢t"(i + 1) = 0j,, k € N}
the number of pairs of stochastic nodes with the same variable index. The order
p(t) of the tree ¢ is defined as p(t) = d(t) + 35(t) with p(y) = 0.

The order of the trees t; and t;; presented in Figure 1 can be calculated as
p(tr) = p(t;r) = 2. Every labelled S-tree can be written as a combination of



three different brackets defined as follows.
Definition 3.3 If t,,..., t; are colored trees then we denote by
(tl,...,tk), [tl,...,tk] and {tl,...,tk}j

the tree in which ty,...,t; are each joined by a single branch to ®, @ and
O;, respectively (see Figure 2).

t, ts ty t, to ty t, ts ty
(tla"',tk) [tla"'atk] {tla"',tk}j

Fig. 2. Writing a colored S-tree with brackets.

Therefore proceeding recursively, for the two examples t; and t;; in Figure 1
we obtain t; = ([Oj2]’oj1) = ([sz]’ajl) and t;r = ({" Oj2}j1) = ({7—’ sz}jl)'

Due to the fact that we are interested in calculating weak approximations,
it will turn out that we can concentrate our considerations to one representa-
tive tree of each equivalence class.

Definition 3.4 Let t = (¥, t") and uw = (u, u") be elements of LTS. Then
the trees t and u are equivalent, i.e. t ~ wu, if the following hold:

(i) 1(#) = I(w)

(1i) There exist two bijective maps

{1, U0 = {1, ()} with (1) =1,
A=A with 7w(y)=~v and 7(7)=T,

so that the following diagram commutes
4

2,...,1(8)} (1,18} .

{27"':l(t)} {1,...,l(t)} m(u")

The set of all equivalence classes under the relation ~ is denoted by TS =
LTS/ ~. We denote by a(t) the cardinality of t, i.e. the number of possibilities
of monotonically labelling the nodes of t with numbers 1,...,1(t).

Thus, a monotonically labelled S-tree u is equivalent to t, if each label 7 is
replaced by (i) and if each stochastic node ¢;, with variable index jj is
replaced by an other stochastic node 7 (o, ). Thus, all trees in Figure 3 belong



to the same equivalence class as t; in the example above, since the indices j;
and jo are just renamed either by j, and j; or jg and j3, respectively. Finally
the graphs differ only in the labelling of their number indices.

3 Oj, 4 O,

2 4

1 1

Fig. 3. Trees of the same equivalence class.

For every rooted tree t € LTS, there exists a corresponding elementary dif-
ferential which is a direct generalization of the differential in the deterministic
case (see, e.g., [3]). For j € {1,...,m}, the elementary differential is defined
recursively by

for a tree t with more than one node. Here f®), a®) and /%) define a symmet-
ric k-linear differential operator, and one can choose the sequence of labelled
S-trees t1,...,t; in an arbitrary order. For example, the Ith component of
a®) - (F(ty),..., F(t)) can be written as

d akal .
(@® - (F(t1),..., F(t)" = Jh;jk:l T (7 (), P ()

where the components of vectors are denoted by superscript indices, which
are chosen as capitals. As a result of this we get for t; and t;; the elementary
differentials

' ) d 82 d 0 Ji
F(t) = /@m0 = > o 0T (v 9

J1,J2=1 Ki=1

pELI2 | sz,jl)

Flom) = 0" @) = 3 2L (5 T ke
(t) = PO @) = 3 55 ( Y Frmgem e V)

It has to be pointed out that the elementary differentials for the trees presented
in Figure 3 coincide with F'(t;) if the variable indices j; are simply renamed
by a suitable bijective mapping 7.



4 Taylor Expansion for I1t6 and Stratonovich SDEs

For the expansion of the expectation of some functional applied to the so-
lution (X})ser of the d-dimensional SDE (20) considered either w.r.t. It6 or
Stratonovich calculus, some subsets LT'S(I) and LT'S(S) of LT'S have to be

introduced, respectively.

Definition 4.1 For x € {I,S} let LTS(x) denote the set of trees t € LTS
having a root v = ® and which can be constructed by a finite number of steps
of the form

a) adding a deterministic node T = @, or

b) adding two stochastic nodes o;, = Oj,» where both nodes get the same new
variable indez jy for some k € N. Additionally, in the case of x = I neither
of the two nodes s allowed to be the father of the other.

The nodes have to be labelled in the same order as they have been added by
the construction of the tree. Further TS(x) = LTS(x)/ ~ denotes the equiva-
lence class under the relation of Definition 3.4 restricted to LT'S(x) and o (t)
denotes the cardinality of t in LTS(x) for x € {I, S}, respectively.

Since the number of stochastic nodes is always even with n(t) = s(t)/2, the
order p(t) has to be an integer and t owns the variable indices j1, .. ., jnt)- As
the construction of the trees in LT'S(I) is more restrictive than of the ones in
LTS(S), it holds LT'S(I) c LTS(S).

3 3 J1
2 2 Oy,
1 1

Fig. 4. Some trees which belong to LT'S(I) or LT'S(S).

All trees of Figure 4 belong to LT'S(S), however only the first three trees be-
long to LT'S(I). For the last tree, there is similar tree ({0}, };,, {0}, };;) which
belongs to LT'S(I). The only difference is the sequence of the construction,
i.e. the correct father-son relationship for the stochastic nodes. Clearly, a tree

like ({7};,) or ({[o},]};,) neither belongs to LT'S(I) nor to LTS(S).

The following result gives an expansion for the solution process of an Ito
and a Stratonovich SDE, respectively, by the use of colored rooted trees.

Theorem 4.2 Let (X;)ier be the solution of the stochastic differential equa-
tion system (20) with initial value X;, = o € RY. Then for p € Ny and

10



f,at, a, b € C;(erl)(Rd,R) fori=1,....d, 5=1,...,m and fort € [to, T]
the following truncated expansion holds:

Eth O(f(Xt)) — Z Z W(t)' (t — to)p(t) + O((t - to)p+1)
LELTS(x) J1rends(t)/2=1 PRY):

p(t)<p

-y oy «lFk)
tETS(*) jlv"'ajs(t)/2:1 ZS(t)/2 Io(t)!
p(t)<p

(t —t0)P® + O((t — t)"*Y)

(22)

Here, x = I for the It6 version of SDE (20), and x = S for the Stratonovich
version of SDE (20).

Proof. For a proof we refer to Theorem 3.2 and Theorem 4.2 together with
Proposition 5.1 in [17]. O

5 Taylor Expansion for the SRK method

In order to derive conditions such that the stochastic Runge-Kutta method
(16) converges in the weak sense with some specified order, a Taylor expansion
of the numerical solution based on colored rooted trees has to be developed.
We follow the approach of Butcher [3] in a similar way as in Burrage and
Burrage [1], [2], Hairer [4], Hairer, Ngrsett and Wanner [5] and Ré8ler [16].

For notational convenience, in this section we define M = M U {0} and
we denote by y(h) = h and by 0(h) = (6y(h),0,,(h),...,0, ()T, v; € M,
the corresponding  + 1-dimensional vector' with x = |M]|. Further, it is
assumed that 6,(0) = 0 for all v € M. Due to condition (17), it is sufficient
to consider autonomous SRK methods (16) in the following. We denote t,
by to and for a given ¢t = t; + h the approximations Y,, and Y,,,; are de-
noted by Y (o) and Y(¢), respectively. Further, the values Hi(k’u) are denoted
by Hi(k’”) (t) in order to stress the dependency on t of the random variables
Oo(t—to), 0,,(t—to), ..., 0, (t—ty) appearing in Hi(k’”). For the Taylor expansion
of the SRK method Y (¢) = A(Y (t5),0(t — to)) as a function of 6y,0,,,...,0,,,
the differential operator D* for k € N is introduced as

8k

Dk = A, -AB, -...-Ab, -
2 Ous - As, 2 86,,00,, ...00,,

ul,...,ukem

(23)

! Then Y (t) = A(to, Y (to),0(t — to)) and Y (tg) = A(to, Y (¢0),0,...,0).

11



with Af, = 6,(h) — 60,(0) and we denote by D° = Id. Under the assumption
that f, @ and ¢/, 1 < j < m, are sufficiently differentiable, we apply the
Theorem of Taylor and get for n € N

+ Rt to) (24)

with a remainder term R, which can be written in Lagrange form as

DM f(Y(to + £ h))

Ralt;to) = (n+1)!

(25)

with some £ €]0,1[ and h =t — to.

The next step is the computation of D*f(Y (ty)) for k € Ny, i.e. the kth
derivative of the numerical solution f(Y'(¢)). Therefore, generalized versions
of the Leibniz formula and of Fad di Bruno’s formula (see, e.g., [5]) are helpful.

To begin with, a multi-dimensional version of the Leibniz formula fitted to
the expansion of the SRK method is given. Let ¢ € N, k£ € {0,1,...,m} and
v € M. Then the formula

8qH(k¢,l/) (t)J S (k V) (0 0) aq 1 ( 0 0)( ))
%t rZ = q . sz WY
%Emaem .. 00,, ; J Zem 50, ... 90, ,
)70 g1 (H (1))
+4q- B J
Jz:l rz:l u,u%e:M V1,--.,§16ﬂ a0, ... 80,,(171 )
81a(H™ (1))7
(k,v),(0,0) - j
+ZA o(t=to) > 90,,...0,
V1,eeesVgEM q
v),(r,m) aqbr H("':N) t J
+ZZ Z Bzg g eb(t_tO) Z 89( ; 0())
j=lr=1 uLeM V1,...,uqe./\_/[ v -y,

can be easily calculated (see also [16], Lemma 2.5.3). In order to state a gen-
eralized version of Faa di Bruno’s formula [5], we introduce a special set of
trees corresponding to the derivatives of the composition of two functions.
For example, if we consider g o h, we get for the Jth component of the third

12



/ l
l\k/ k
J J

/ | ‘ "
m ] i m m l l
\I/a l k l k m k k
J J J
J

Fig. 5. Some special trees representing the derivatives of g(h)”.

derivative

?g(h)? 7 OhKt  QhK2 QpKs
0rKoxrloxM Z Iz (1) orM gL OxK

K;,K2,K3

A
. gfaKz(h)( )

+ Z 9{(11(2 (h)

oL OrKoxzM orLoxM  OrK

( d9’h* 8hK2>

Kl,Kz Kl,K2
OhEKr  92pK> P
J h . J h, e
* K§(2 91z (1) (833”[ BxKaxL> + ;ngl( ) <8xK8xL8xM)

(27)

The corresponding special trees are presented in the last line of Figure 5. Here
the number m of indices K1, ..., K,, depends on the number of ramifications
of the root. Each time g(h)’ is differentiated, one has to

(i) differentiate the first factor g{(II__, i.e., add a new branch to the root j,

(ii) increase the number of derivatives of each of the h functions by 1, which
is presented by lengthening the corresponding branch.

So each time we differentiate, we have to add a new label. All trees which are
obtained in this way are those special trees which have no ramifications except
at the root.

In order to take into account colored stochastic trees with their meaning for
the expansion of the SRK method in the following, special trees having either
a root of type 7, 7 or o; have to be considered. This is due to the analysis of

the composed functions f(V(t)), a(H "% (t)) and v (H)(t)).

2

13



Definition 5.1 The set of special labelled trees with q nodes having no ram-
ifications except at the root is denoted by SLTS,. For u € SLTS, we denote
by m = m(u) the number of ramifications of the root of u. Further we denote
by SLTS(SM) C SLTS, with M C A = {v,1,05 : k € N} the set of special
labelled trees in SLTS, having a root of type m with m € M.

Now a formula similar to Faa di Bruno’s formula fitted to the stochastic setting
can be stated.

Lemma 5.2 Forq € N, 7 € A and functions g : R = R" and h : Rt — R?,
the multi-dimensional chain rule

97g(h)’ d

— J
> _m = > > gKl...Km(u)(h) X

I/1,...,I/q€M ’UESLTS;:_)l Kl,-..,Km(u)zl
861 hKl a‘sm(u) th(u)
* X g, )\ X
V1,V eM 1 31 Vl,---,Vém(“) eM 1 6m(u)

(28)

holds. Here m = m(u) denotes the number of ramifications of the root of the
special tree w = (uy, - . ., W)z with a root of type m € A and §; = l(w;) describes
the number of nodes of the subtree u; for 1 < i < m with 61 + ...+ o) = ¢
for all u € SLTSé?l.

Proof. We prove Lemma 5.2 by induction on ¢. For ¢ =1 and 7 € A we have

i 4 ohfs
Z_ 90, = Z ork1 ) 0, = Z Z gKl(h) Z 80,

uesrTs{™ Ki=1 meM

with the set SLT S = {(7)z }, m(u) =1 and 6; = 1. Assuming now that the
hypothesis (28) holds for ¢, we prove it for ¢ + 1. Therefore we write shortly

K\(5) aJhK
(R ) =3 a0, ...00,, (29)

— o, ...
V..., VgEM 1
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and we thus get

R RV S O
ViyeVg 41 €M 601/1 T 60”‘”1 Vgt1EM 80'/‘1"‘1 V1, Vg EM 60”1 T ae”q
a d

- ¥ 5 )DRND SR PN (DR (D LIN (R L)
I/q_l_lem Vg+1 uESLTSé:_)l Ki,....Kp=1
d

= XY Gl (B (W)W (o
ueSLTST), K Km, K=1
d
XY G () (W) RO ()6
UESLTS;:_)I Ky, Ky =1
+ ..
d
o2 Y Ikxn(h) (hE0) @ (R ) Omen) () Ot L)
uesSLrs(P, K Km=1
d

= XY G ) ) (RO,

() K1y Km=1
ueSLTSP, Kioobm

|

As in the deterministic setting, the density 7(t) of a tree is a measure of
its non-bushiness and can be similarly defined for stochastic colored trees.

Definition 5.3 For t = (t,t') € LTS let (&) be defined recursively by

() =1 if 1I(t) =1,
v(t) = [[v(ti) if t=(t,..., tn),

v(t):l(t)Hv(ti) if t=1[ty,...,tn] or t={t1,... . tn};

P eV
. . 0. k2
v(t) =8 25 -3 =240

Fig. 6. Example for the definition of y(t) for a tree t € LT'S.

In order to have a more suitable notation for the proof of the main theorem of
this section, i.e. the theorem about the expansion of the approximation calcu-
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lated with the stochastic Runge-Kutta method by rooted trees, we introduce
the following denomination:

Definition 5.4 Let t = (¢, t") € LTS be a tree with | = I(t) > 1 nodes which

are denoted by iy < iy < ... < 4y, consisting of s = s(t) < [ stochastic nodes
Oj1sOjys - - -, 04, Then we denote for i € {ia,..., i1} by
(2{%0) if V(i) =1 and ¢'(£(i)) = v
zjk L Ceenm A if ¥'(i) =0y, and ¢'(£(i) =
P Zy o0 if U'(i) =7 and t'(£(i)) =1
PO ZGen 00 if ¢(6) =7 and ¢'(¢(i)) = 0j,
ST Soem Zy i #) = 0y, and #(¢(i) =7
(S S em ZEG 0 if #1() = 0y, and ¢(£(i) = o,
(30)
Further, we denote by
(I)il(t) = Z Zt’(iz),iz L Zt’(il),il (31)

12,00 =1
the corresponding coefficient function and define ®;,(t) =1 if I(t) =

We will now state a proposition which allows a representation of the derivatives
of the stochastic Runge-Kutta method w.r.t. rooted trees.

Proposition 5.5 Let g € N, k € {0,1,...,m}, v € M and A= {r,0j, : 7 €
N}. We denote by

{2 if (i) =7
i1 _1 ZUTEM Z(]mw) if t"(il) = 0j,
(k 1),(0,0) oy (32)
(k) _ Zii o if U'(ih) =T
S Sen Z i #(0) = o,
Then the derivatives of the Jth component of Hi(k’y) (to) satisfy
(kv (k,v)
DUHM ) = 3 20 X 25 00 FO W) (g
teLTS i1=1
I(t)=q
The Jth component of the numerical solution Y (to) satisfies
DY (o)’ = > (t Z ziy - @i, (1) - F(H)(Y (t))”- (34)

teLTS 11=1
Ut)=q

16



Proof. Because of the similarity of Y (¢) and Hi(k’") (t), it is satisfactory to
prove the first equation (33) only Then the second equation (34) follows sub-
stituting Z('c )00 and Z (k)("1) by 2 (00 and zj(-r’ " respectively, in H™)(t)
which equals it to Y'(¢), and by the deﬁnition of Dq in (23).

Y

We prove equation (33) by induction on ¢. For ¢ =1 and A = {r,0j, : k € N}
there are two trees t; = 7 and ty = 0;, with {(t;) ={(t;) =1 in LTS and

OH®) (t0)”
T,

Z Zku) (0,0) a Y(to))J

7,21
11=1

LY S I (v (tg)) (35)

i1=1j1=1v1EM

=Y ) Y 25 o) (1)

teLTS i1=1

I(t)=1

For a better understanding, we also consider the case ¢ = 2. Here we have
to consider the trees t3 = [7], t4 = [0},], t5 = {7};, and tg = {0}, };, with
[(t) = 2 nodes in LT'S. Then we get

OH™M (1)’
AB, -Ag,, - =i 0
) Vzem 1120 50,09,
d J
v 80, Y t
=2 Z Zz(lzcl (00 1(1,12) (0.0 Z %G(Y(tO))KI
i1,i2=1 Ki=1
> L (kv j1,V1 ))
L2y Y 20 opoe 3 0 2T i (1 (1))
i1,82=1 j1=1v1EM Ki=1
d j J
W 1% v abjl Y t
2y 30Xz giies s O
i1,02=1 j1=111EM Ki=1 Z
d j J
v v v v ov (Y (t i
12y S x5 O )
11,82=1 j1,j2=1 v1,V2EM Ki=1

= Y () 0 258y, (1) F®)(Y (1))

te LTS i1=1
I(t)=2

(36)
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Now, we assume that equation (33) holds for some g — 1 and prove the case
g. The first step is the application of formula (26) in order to obtain

81 HY (1)’
DIg®E (1) = Ay, ... AG,, -
o) - %:Em 1 “" 00, ...00,,
v 81 a(H"V (¢
—qZZZ':I)OO) S Ab,-...-A6, ao( 19(0))
11=1 Viyg—1€EM VLot Pt (37)

Fa X ST s

i1=1j1=1 v EM
o1~ lb“( Jlaul)(to))J
6, ...00,_,

X > A, ... A, _,

V1,eeesVg—1EM

As the second step, we make use of Lemma 5.2 twice. Firstly, equation (28)
is applied to trees u € SLTS(ST) (i.e., trees having a root of type 7) and

secondly, to trees u € SLTSQ(,%) (i-e., trees having a root of type o;,). Thus
with 61 + ...+ dpm) = ¢ — 1 we obtain

o La(H (1))’

i1

09, ...06,, _,

d

= > S ahr, (HY (1)) %

ueSLrs{” Kisn Km=1

S AG,-...-A,

V1,..,Vg—1EM

(38)

aﬁlHKO’O) (tO)KI
b - AG, a
* 2 b Y50, 08,

IJ1,...,U51 eM

gom g7 (00) (o) Km
Ab,, -...-A i
> A, Do 56, .00,

18



and analogously

o1~ lb]l( Jth)(tO))J

Z Aby, -...-Ab,,_, 90, ...00,,

Vi,esVg—1€EM

D> Z Ve (HEY™ (1)) x

(031) Kiy.o Km=1

ueSLTS,
9% gl (3 K1
x Do Ay A, 8(00)
V1,eslsy eM vyt Vs,
0% HM™ (k) K

S Aby, ... AG,,

V1 yeensl§,, EM

06y, ...00,;
(39)
Finally, we replace the derivatives of Hi(l0 ) and Hi(lj 1’"1), which appear in (38)

and (39) with §; < ¢—1,1 < i < m = m(u), by the induction hypothesis (33)
and rearrange the sums. Then we get for (37):

91 %) (to)‘]
A vy "t st A ) R T VA
141 ;EH 0 ' 9 ! 891}1 e ael/q

=a 2 2 2 b)) (tm) X

SLTS() BELTS  tmELTS
ue (t)=01  I(tm)=0m

< 3 gfyen (z 200k 3 2000, m>) .

xS ks, (HPO () - (F(6) (Y (1)) - - Fltm) (Y (1))

+a Z > 2 b)) X

(ej,) t1€LTS tmeLTS

ueSLTS, 1(t1)=61 1(tm )=0rm
X Z > Z Zi ) Z ZI By, (1) Z Z By, (¢ )) §
1= I/1€MZ1 1 ki1=1 km=1
x Z D s (S (10)) - (F(6) (Y (80))™ - .- () (Y (t0))"")
K1y Krp=1
(40)
where 7; denotes the root of u and k4,...,k,, denote the roots of the trees

ti,...,t,, respectively.

The main difficulty is now to understand that to each tuple of trees

(W, t1,...,tn) with ue SLTS!™, t,€ LTS, I(t;) =4
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with 7 € A and }J7", 6; = ¢ — 1, there corresponds exactly one labelled tree
t = (t',t") € LTS with [(t) = ¢ such that the root i; of t is of type 7 and
such that

V() =g (b)) v (bm) (41)
and for mr =7
Fi)Y () = > ) Ui, i, (Y (t0)) F(£1) (Y (20)) ™ .. F(t) (Y (t0))
ou0)= Y 202D 0 (). 0, ()
kyeomrkim=1 )
or for m = 0y,
Ft)(Y(t) = > ) D syt (Y (t0)) F(61) (Y (80)) 5" . F (4 (Y (t0)) "

S

O (t)= > 20 200 (4) .. By, (b)
k1yenkm=1

(43)

holds, respectively. This labelled tree t is obtained if the branches of u are
replaced by the trees ti,...,t,, and the corresponding labels are taken over
in a natural way, i.e., in the same order (see Figure 7).

Fig. 7. Example for the bijection of (u,t1,...,t,;,) <> t with 7 = 0.

In this way, for 7 = 7 and 7 = 0, all trees t = (t',t") € LTS with [(t) = ¢
appear exactly once. Thus (40) becomes (33) after inserting (41), (42) and
(43), respectively. O

Since the Taylor expansion contains the coefficients of the SRK method, we

define a coefficient function ®5 which assigns to every tree an elementary
weight. So for every t € T'S or t € LTS the function ®g is defined recursively
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HZ 1©S( ) lft:(tl,,t)\)
Ds(t) = I, w0 () if t=[ty,...,t] (44)
ZVEM P o7 [, UEI () it = {t,...,t2}e

where U0 () = W) (() = e with v = (@), 7 = [0], o = {0}, and

7(0,0), OO)HA TO0)(t;) ift =[tq,...,t,]
= (0,0),(rs) TTA . \pr(rom) i (45)
Z M Z 7 T HZ:l \If T (tl) lf t - {t17 ] t)\}’l‘
ZE,00) [, §O0) (¢ ) if t = [ty,...,t)]
(kw), () TTA @ (ran) if t = 1o
pem Z WL B(t)  ift={t,..., t\}r

Here e = (1,...,1)T and the product of vectors in the definition of W(%0)
and W) is defined by component-wise multiplication, i.e. with (ai, ..., a,)
(b1, .-.,bn) = (a1by,-..,anb,). Now we get immediately the following repre-
sentation of the stochastic Runge-Kutta approximation w.r.t. rooted trees.

Corollary 5.6 Assume that the drift a and the diffusion v, 1 < j < m, are
sufficiently differentiable. Then, the one-step approzimation Y (t) =Y (to + h)
with h €10, 00[, given by the stochastic Runge-Kutta method (16), can be re-
presented as

Y(t).] — Y(to)J + Z V(t) Zzl lzll (I)il(t) F(t)(Y(tO))J

+ Rn(t,t
teLTS i) o
(t)<n
, J
1y y AT m O POV, o (4

eTS l(t).

I(t)<n

(47)

for n € N and with o(t) denoting the cardinality of the tree t € LTS with
A ={r,0}. Using the coefficient function ®g, we get analogously

J_ J T (k) @s(8) F()(Y (L))
Y () =Y (t) + %éwl,..%o—l ) + Ral(t, to)
a(t) y(t) s (t) F(8) (Y (t0))’
T ()Z Z() 1(2) Rl o)
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Proof. This follows directly from the Theorem of Taylor (see (24)) and Propo-
sition 5.5. a

As a final step, we extend this representation of the approximation Y'(¢) to
our primarily problem of a representation for f(Y'(¢)). Therefore we consider
a suitable subset LT'S(A) of LTS w.r.t. the set A = {v, 7,0, : k € N}, where
v represents the function f.

Definition 5.7 Let LT'S(A) denote the set of trees t = (¢, ") € LTS w.r.t.
A={v,7,0j 1k € N} such that

a) the root is of type t'(1) = v and all other nodes are either deterministic or
stochastic nodes, i.e. t'(i) € {1,0j, : k € N} for2 <i<I(¢),

b) all stochastic nodes own a different variable index ji, 1 < k < s(¢t), i.e. for
two different stochastic nodes i # 1 holds t'(i) # t'(1).

Further TS(A) = LTS(A)/ ~ denotes the equivalence class under the relation
of Definition 3.4 restricted to LTS(A) and aa(t) denotes the cardinality of t
in LTS.

Here it has to be pointed out that LTS(I) C LTS(S) C LTS(A) since the
rules of construction for the trees t in L7'S(/) and in LT'S(S) are more re-
strictive than for the trees t € LT'S(A). However in contrast to LT'S(I) and
LTS(S), a tree t € LTS(A) has s(t) different variable indices 71, ..., jsq
while a tree uin LTS(I) or LT'S(S) has only n(u) = s(u)/2 different variable
indices. For example, the tree ({[o),]};,) is an element of LTS(A) while it
is neither an element of LT'S(I) nor of LTS(S). With the definition of the
set LTS(A), we can now formulate our main result for the expansion of the
stochastic Runge-Kutta method. It gives an expansion of f(Y'(¢)) which is
required for the calculation of order conditions for the SRK method.

Theorem 5.8 For the one-step approzrimation Y (t) =Y (ty + h), h €]0, 0],
defined by the stochastic Runge-Kutta method (16), a function f : R? — R
and for n € N the expansion

UOEEDIEDS V(t)‘q)?l((tt))._Fg?(Y(to))+Rn(t,to)
tle(tL)Tf(gi) J1yemds(y=1 !
-y 3 aA(t).V(t)(é((i;(_t)ll)f?(t)(y(t()))+’Rn(t,to)
;(Elf)jlsl(SAr)L F1seendisey=1 !

(49)

holds provided all necessary derivatives of f, a and b, 1 < j < m, exist.
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Proof. Let A = {v,7,0j, : k € N}. We apply Lemma 5.2 with 7 =  and
conclude that

q _ 01/ (Y (%))
DIf(Y (to)) = ,, zu:emMyl A, - 56, .90,
e (50)
= 2 > frka(Y(t) - (DY (t) .. DY (to) )

uesSLTs(y, Kips Km=1

where m = m(u) and §; + ...+ 0,, = ¢. Now Proposition 5.5 yields

DIfY(t))= > Y [rik,(Y(to)) x

uesSLTSp, Ko Km=1

(2 A) Y i (6) - )Y (1)) -

t1€ELTS k1=1
I(t1)=0d1

i (8 At 3 St Bi (b) - F () (¥ (1)) )

tm ELTS -
1(tom)=0m

(51)

where ti,...,t, € LTS are considered wr.t. A = {r,05, : £k € N} and
ki,...,kn denote the roots of the trees tq,...,t,,, respectively. Now nearly
the same considerations as in the proof of Proposition 5.5 apply: To each
tuple of trees (u, tq,...,t,) with u € SLTSéZr)l, t; € LTS, l(t;) = J; and with
>, d; = g, there corresponds exactly one labelled tree t = (t',t") € LT S(A)
with [(t) = ¢ + 1 such that the root i; of t is of type v and

Y(t) =y (t1) - - Y(tm)

F(t)(Y(h)) = ) ZK B et (Y (t0)) - F(6)(Y (0))™ . F(tm) (Y (o))
(i(t) L= ljll . i Zlc@k(tk) = i ~ Zk1(1)k1 (t1) talat ka@km(tm)
€ (41) y-km (52)

where t; denotes the subtree of t having the node k as a root.

The labelled tree t is obtained if the branches of u are replaced by the trees
ti,...,t, and the corresponding labels are taken over in a natural way, i.e.
in the same order (see Figure 7). In this way all trees t = (t',t") € LTS(A)
with I(t) = ¢+ 1 appear exactly once. Applying the usual tensor notation and
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substituting ®(t) by ®g(t), we get

DIf(Y(t) = Y. (t)-B(t)- F(t)(Y(to))
teLTS(A)
l(t)=q+1

= Z() Y. ) Ps(t) - F(t)(Y(t))
teLTS(A) Ji,e.s js(t):1
I(t)=¢+1

With ®5(y) =1, F(v)(Y(t0)) = f(Y(to)) and the Theorem of Taylor (24) we
finally arrive at (49) which completes the proof. O

6 Order Conditions for SRK Methods

In this section, conditions such that the stochastic Runge-Kutta method (16)
converges in the weak sense with order p to the solution of the stochastic
differential equation (20) are considered. Therefore, we give a suitable repre-
sentation of the approximation due to the SRK method.

Proposition 6.1 Let Y (t) = Y (to+h) with h €0, ho[ and Y (ty) = o denote
the one-step approzimation defined by the stochastic Runge-Kutta method (16).
Assume that for the random variables holds ,(h) = V'h -9, for . € M with a
bounded random variable 9,. Then for f : R = R and p € N the expansion

FtosTo (f (Y(t))) - Z( ) J i 1 aA(t) V(t)(ii)t)fxl()))lE (q)S(t)) Y (hp+1)
p(t)<pts Trle®=
(54)

holds for sufficient small hy > 0, provided f,a b € C;(pJ’l)(Rd,R) for all
1=1,....,dand j=1,...,m.

Proof. Apply Theorem 5.8 with n = 2(p+ %) and simply take the expectation
of equation (49). By the definition of ®5 and due to (19), for all t € T'S(A)
the expectation becomes

E(®s(t)) = 0T+ 250y — O (ho®)),

Now, for all trees t € T'S(A) appearing in the sum of equation (49) and which
do not appear in the sum of (54), i.e. trees with I(t) < 2p+2 and p(t) > p+1,
we have E(®g(t)) = O(hP*!). As a result of this, we finally have to prove
that E™(Ry,1(t,10)) = O(AP™) holds. In the following, let h < 1. The
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autonomous version of the SRK method (16) can be written as

HE) —(coDY,+ Y S o) (B9 o 1) G, (1)

=0 4. eM

Yo=Y, +Z > 6,(h ( ®1) Gy, (H(kw))

k=0pemM

(55)

Here, denote 6y(h) = h and ~(© 00 _ = q, 7(0)(19,11) =0for k #0orv # 0,
BOEO0 _ g(60),0.0) yng pOETH _ ) gor # 0 or u # 0. Further we
denote b° = a, Gy(H*")) = (bk(Hyc’"))T,...,bk(H§k’”))T)T € Rés, HkY) =
(HE L HEDT)T ¢ Rd-s I € R and e = (1,...,1)T € R°. In the
following the norm ||Gy(H%*))|| = max;<;<s ||6% (H*)|| is used. Then, with
the linear growth condition ||Gk(H(k N < (1 + ||H(’c )||) and

(s = max {HB(‘)(k’U)’(T’“)

L:kayﬂ':H

o1 lew 11

the following inequality holds:

n;ax‘HkV <02||Y||+Z Z 16,(h ‘0201(1_1_HH u”)
() =0, eM
< Go||Yall + (m + 1)[M|* max |6, (h)| C1Cs (1 + max || H*) )
LEM (k,v)
(56)

Let C3 = (m + 1) |M|?> C,Cs. Then for max, 7 6,(h)| < 55 holds

1
HEM| < Y, 0,(h
el = (ot mes ) gy
< 2G|Vl + 2 C5 max [6, ()| (57)
LEM
< Cy (1+||Yal)
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Next, consider the gth derivative. By (26) and similar considerations, we get
with the application of Lemma 5.2 using the notation (29) that

o1 H®»)!
z -
Vl,...,l/qe./\_/t 601/1 T aeyq
D 011G, (Hrm !
<03 3 fpeotomgr]| y i)
= " 06,,...00,,_,
sV eM V1,eeslg—1EM
m 091G H(w))J
(L (kww),(r,u) H r (
T2, 2 [ |HB ©1 96, ... 00,
™=V ueM V.. ,quM q

m d-s
MY Y Y Y Gk, (H)] x

=0 ueM uesLTS{m) KiseKim(u)=1

(51 Jm u
X <H< rn >( ! (Hmu)Km(w)( o)
m d-s
+ |(M|Cy m?\*_/)l(|0L(h)| S > > HGTJKI...Km(u) (H(r,u))H v
Le r=0 Hem uesfrz;sé}rl) Ki,..., Km(u):1
m(u)>
Om(u
X (H( ru) K )(61) . H H(r,u)Km(u)>( )

m

- & (r0) e Kr)
+ G max 00 35 3 it ()| ().

rT= OILEMKl 1

(58)

Due to the Lipschitz condition and the polynomial growth condition, we have
G s, (HO)|| < Land |G, g (H)| < Cs(1 + (maxgy) |HE))

m(u)

which is bounded by some constant Cg only depending on ||Y,|| due to (57).
Therefore, we get with C; = Co |[M|? (m + 1)

N @ m(u) o\ ()
max (H(k’”) ) <qCr > (d - s)™W Cy I max (H( V) )
J,(k,v) ) i—1 J,(k,v)

ueSLTS,
m ) k J (61)
+Crmaxlf (b)Y (d-s)™™C5 [ max (H< ,,,))
LtEM wesITs(® =1 J,(k,v)
g+1
m(u)>1
k J ()
+ Cy max|0,(h)| (d - 5) L max (H< ) ) .
LEM J,(k,l/)
(59)
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Let Cs = C7d s L. Then we get with max,7160,(h)| < 5&- that

2Cg
(H(k,u)‘] ) ) H

()]

() (u)
(H(k,l/)J) H < 2q07 Z (d S)m(u) Cﬁ H maX
ueSLTS{ i=1 H()
m(u)
+2C; max|0,(h)] Y. (d-s)™™Cs ] max
LEM (o) i=1 (k V)
ueSLTS{Y)
m(u)>1

max
ACRD

(60)

holds with 6; = 6;(u) < ¢ — 1 because m(u) > 1. Especially for ¢ = 1 where
due to the linear growth condition Cs = Cy (1 + ||Ya,||), we get

dH ")’
Z_ 96, (h)

max

<
max < Cup (14 Yl (61)

Applying formula (60) recursively and using finally (57) yields an upper bound
C,(Y,) of the gth derivative of H**) only depending on ||Y,|| for all ¢ € N.
Due to the definition of Cy and the same structure of Y, 11 = A(Y,,0(h)) as
H®") | the same upper bound holds also for the gth derivative of A(Y,,8(h)).
Since f € CF*(R*,R), we get for & €]0,1[ and |0,(h)| < VhCy with the
Jensen inequality

Et( S Al ... Af 62p+2f(A( to - )l

Vap+2
20,, ...06,, .,

1/1,---,V2p+2€m

2p+2
S Eto,zo ((ma—wa(h”) X
LEM

P m(u) (62)
x X > fxmn (AY (1), £0(R))] 1:[1 C(sl(Y(to)))

ueSLTSSD, , Kb Km=1

m(u)
<HTCPET Y a0 (14 (Ca(l + [lo]) ) 1 Ca
ueSLTSS, s
and it follows E'%(Rgp11(t,t0)) = O(hPT). .

The result of Proposition 6.1 can also be proved for general unbounded ran-
dom variables in the case of explicit SRK methods (see [16], Proposition 2.6.1).
However, especially for weak approximations it is usual to use bounded ran-
dom variables which are often easier to generate (see, e.g., [7], [11], [19]).

The approximation Y has to be uniformly bounded with respect to the number
N of steps in order to guaranty convergence. Therefore, sufficient conditions
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for the random variables and for some coefficients of the stochastic Runge-
Kutta method are calculated.

Proposition 6.2 Let a',b*/ € CY(RY R) satisfy a Lipschitz and a linear
growth condition and let for all1 < k <m and v € M

E (Z > A0 a(h)) =0, (63)

i=11eEM

Further assume that each random variable can be expressed as 6,(h) = Vh -9,
for 1 € M with a bounded random variable 9,. Then the approxrimation Y by
the stochastic Runge-Kutta method (16) has uniformly bounded moments, i.e.
for r € N the expectation E(||Y,||*") is uniformly bounded w.r.t. the number
of steps N for alln=20,1,..., N.

Proof. Let h < 1. Using the notation (55) we get with the linear growth
condition and with (57)

JAa6) =Vl < 3 X 10.0)] G |Gy (HE)]

k=0 I/,LE./\_/[

< (m+1)|M]?* max |6, (k)| Cy Cy (1 + max
LEM (ka‘/)

‘H(kﬂ/)

)

(64)

< Cu (1+|IYal)) VA

Next, we get with one step of the Taylor-expansion of Gy for £ €0, 1] that

15 (A 00) ~ ¥l < | 5 B@.0) (0 1) Gr (oD Y2)

k=1v.eM

+h |1 e 1 Go (0 1Y)l +

E (fj 3 0,(h) (7@"“’”)@1) X

k=0y ,eM

ds OG, (H*) (€0(h (ko) J
Ly ( W(S (h)) oH 8éi0(h)) M“(h))H'

HEM J=1

(65)

The first summand on the right hand side vanishes due to (63). With a Lip-
schitz constant L for GG and the linear growth condition, we get with the Jensen
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inequality
1B (A(Yn, 0(h)) — Ya)|| < hCaCy (1 + [l(e @ I)Yy]l)

o5 5 e o]

(ifelaﬂwa(hﬂ)Q) .

k=0 eM ueEM
(66)
Finally, applying (61) and the condition |6,(h)| < VA Cy, we get
I1E (A(Yn, 0(R) = Ya)|l < Cr2 (1 + [|Y5]]) A (67)

Now, Lemma 1.3 can be applied because (64) and (67) are fulfilled. This yields
the existence of E(||Y,]|*") for all r € N and provides that the moments are
uniformly bounded with respect to N and n=1,..., N. O

The next step is to compare the representations of the solution of the stochas-
tic differential equation in Theorem 4.2 with the representation of the ap-
proximation in Proposition 6.1. Due to Theorem 1.2 these representations
have to coincide up to order p + 1 locally. This leads to different conditions
w.r.t. trees in T'S(I) and T'S(S) on the one hand and trees in T'S(A)\ T'S(1)
and T'S(A) \ TS(S) on the other hand, respectively. Having in mind that for
t € TS(I) or t € TS(S) we have s(t)/2 different variable indices while for
the same tree t € T'S(A) we have twice as much, i.e. s(t) different variable
indices, we use the following helpful definition.

Definition 6.3 Let |t| denote the tree which is obtained if the nodes o}, of t
are replaced by o, i.e. by omitting all variable indices. Let a tree t € TS(x)
for x € {I, S} with variable indices ji,. .., js4)/2 be given and let uw € TS(A)
with variable indices jy, . . . ,j's(u) denote the tree which is equivalent to t except
for the variable indices, i.e. |t| ~ |u| with s(t) = s(wu). For a fized choice of
correlations of type ji, = j1 or jx # Ji, 1 < k <1 < s(t)/2, between the indices
Jis-- s Js(e)/2, let 6( t) denote the number of all possible correlations between

the indices ji,. .., Js(u) of tree w such that t ~ u holds In the case of s(t) =0
or te TS(A)\TS(x ), x € {I,S}, define B(t) =

Remark that in case of m = 1 we have B(t) = 1 for all t € TS(x), x €
{I,S}. As an example consider the trees t = (0j,,0},,0;,,0j,) € T'S(I) and
u = (03,,03,,03,0;3,) € T'S(A). For the correlation j; = j, of t we have ex-
actly one possibility for the choice of a correlation of u: We have to choose
Ji = J2 = j3 = Ja, ie. in this case we have 3(t) = 1. However, in case
of the correlation j; # jo for t, there are three dlfferent possible correla-
tions for u: We can choose j1 = Jo # j3s = Ja, J1 = J3 # Jo = Jja OF
1= 4 #* Jo = Js, thus we have B(t) = 3. As a second example, for the

trees ¢ = (0,05, {032} ) € TS(I) and u = (0, 03,. {03,}3,) € TS(A), two
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different correlations are distinguished. On the one hand we have the correla-
tion j; = jo for t where we get the only possible correlation 1 =Jo=J3= s
for u, i.e. f(t) = 1. On the other hand we have J # Jaasa correlatlon for t
allowing us two different correlations j1 = J5 # Jo = ja and Jo = J3 # J1 = Ja
for u. Thus we get 3(t) = 2 in the latter case.

The main theorem for stochastic Runge-Kutta methods of type (16) yields
general conditions for the coefficients and the random variables of the method
such that convergence with some order p in the weak sense is assured. Remark
that for every tree t € T'S(*) with variable indices ji,. .., js()/2 there exists a
tree u € T'S(A) with [u| ~ [t| and variable indices ji, ..., js) such that for
some suitable correlation of type jx = J; or jx # i, 1 < k <1 < s(u), we have
t ~ u and thus u € T'S(x) with a,(u) = a.(t) for x € {I,S}. However, we
have a,(u) =0 for all u € TS(A) \ T'S(x) for x € {I,S}.

Theorem 6.4 Let X be the solution of either an Ité or Stratonovich stochastic
differential equation (3) considered w.r.t. an m-dimensional Wiener process
with f,ai,a@, b € C2P(RER) fori=1,...,d and j =1,...,m. Then the
approzimation Y by the stochastic Runge-Kutta method (16) with mazimum
step size h is of weak order p, if for all t € TS(A) with p(t) < p+ 5 and all
correlations of type jx = Ji or jx, # ji, 1 < k <1 < s(t), between the indices
Jis--->Js) € {1,...,m} the equations

a(t) - WY aa(t) - B(Y) - (t) - E(Ps(t))
25(0/2 . p(#)! (1(t) — 1)!

(68)

hold for x = I in case of It6 SDFEs and x = S in case of Stratonovich SDEs,
provided that (17) and (19) hold and that the approzimation Y has uniformly
bounded moments w.r.t. the number N of steps.

Proof. Apply Theorem 1.2 and compare the coefficients from the representa-
tions of the solution in Theorem 4.2 with the coeflicients of the SRK method
in Proposition 6.1, where T'S(x) C T'S(A), * € {I, S}. Finally, we take into
account the summation w.r.t. variabel indices. Therefore, the correlation index
B(t) has to be added and we yield the conditions (68). O

Remark 6.5 Theorem 6.4 provides uniform weak convergence with order p
on the interval I = [to, T| for the stochastic Runge-Kutta method in the case
of a non-random time discretization I,. That is for each [ € CIQD(HI)(Rd,]R)
there exists a finite constant C; not depending on the mazimum step size h
such that

max |B(f(Xu)) = B(f(%))| < Cy ¥ (69)

0<k<N
holds. This is a consequence of Theorem 1.2 (see, e.g., [7], [11]).

30



Table A.1 contains all S-trees of T'S(I) and T'S(S) up to order two with the
corresponding cardinalities oy and «g. Table A.3 contains all S-trees of T'S(A)
up to order 2.5 with the values of aa. The cardinalities can be determined
very easily as the number of possibilities to build up the considered tree due
to the corresponding rules of growth. Together with Table A.2 containing the
values of 3, we can consider the following example:

Example 6.6 Assume that m > 1.

a)

b)

As a first ezample, let us have a look at tree ty 5 = (0;,, [0),]) € T'S(A) with

parameters l(tys5) = 4, 7(ts) = 2, s(ts) =2, aa(tes) = 3 and p(tas) = 2.
Then the following correlations have to be distinguished: For j1 = ja follows

that ty5 € TS(x) with ar(ts) = as(tes) = 2 and B(ty5) = 1. Then for
J1 € {1,...,m} Theorem 6.4 yields the conditions

T T . 2.3 h?
E (Z 2d1v) e) (Z(O,O) (Z Z(O’O)’Ul’“)e)>> =
(VeM M 21.21.3-1-2

Here, the conditions for Ité and Stratonovich calculus coincide. However,

for j1 # jo follows to5 ¢ T'S(x), i.e. ar(tys) = as(tes) =0, and thus one
gets for g1, 52 € {1,...,m} with j; # jo the additional conditions

E (( Z Z(jl,'/)T€> (Z(OaO)T ( Z Z(O70)a(j2yﬂ)e))) — O
VvEM HEM

Consider t11 = (0j,,04,,0j5,04,) € TS(A) with [(t2.11) = 5, y(11) = 1,
s(t11) = 4, aa(te11) = 1 and p(te11) = 2. The following correlations
have to be analyzed: For j1 = js # jo = ja we have ty11 € T'S(x) with
ar(ty11) = as(ter1) = 1 and B(te11) = 3. Then Theorem 6.4 yields the

condition
2 2
i ; 4! h?
E(Y Gaw)T 3 G2 T _
((ueM ’ e> (VEM ’ ’ 22-2!-3

with j1,jo € {1,...,m}, j1 # jo, for both, Ité6 and Stratonovich calculus.
For j1 = jo = js = js we have ty17 € TS(x) with ar(t11) = as(bi) =1
and B(te11) = 1. Again, Theorem 6.4 yields the condition

4 2
E <Z z(j“")Te> ='24!-h
=, 22.91.1

with 51 € {1,...,m} for both, Ité and Stratonovich calculus. For all re-
maining correlations of the indices follows that ty11 ¢ TS(*) and thus
ar(ty11) = as(ty11) = 0. Therefore, the condition E(®s(ty11)) = 0 has to
be fulfilled for the remaining correlations.
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C) For t2-12 = (O-j170-j2’{0-j4}j3) wlth l(t212) = 57 7(t212) = 2; 3(t2.12) = 4;
an(ta12) = 6 and p(ty12) = 2, consider the following correlations: For
J1 = J2 # Js = ja we have ty1o = ty194 € TS(S) with as(tr12,) = 2 and
B(tr124) = 1. Therefore, we get the condition

AN T . 2.41. 2
E <Z Ld1v) 6) Z PACEED Z 7(sw)(G3.1) ¢ — m
VEM VEM HEM :

with 31,73 € {1,...,m}, j1 # j3, for Stratonovich calculus. However, since
t10q ¢ TS(I) we get for Ité calculus the condition E(Pg(te.12,)) = 0 since
ar(tei2a) = 0. For jy = js # jo = ja or jo = js # j1 = ja we have
bz = b € TS(x) with ar(tain) = as(baw) = 4 and B(taaw) = 2.
Here we get the condition

E (Z z<j1=“>Te> (z z(a‘z,u)Te) 3 L) I GG
veEM veEM veEM HEM

4-4! - h?

T 22.91.6-2-2
(70)

with ji, jo € {1,...,m}, j1 # jo, for Ito and Stratonovich calculus. Further,
for j1 = jo = js = js we have ty10 € TS(x) with as;(ty12) = 0+ 4,
as(ty12) =2+ 4 and B(ty12) = 1. Therefore, we get the conditions

2 2
3 U )7 S U )T (1) (o) _ou(ba) 4l h
E(( 2\ e) ( 2\ (E:Zh Jlue>>)_ 2 31.6.9

VEM VEM HEM

with j1 € {1,...,m}. Thus we have different conditions for Ité6 and Stra-

tonovich calculus. Finally, for all remaining correlations the conditions
E(®5(ty12)) = 0 have to hold due to ty 15 ¢ T'S(*) in these cases.

7 Conclusions

The present paper introduces a very general class of stochastic Runge-Kutta
methods for the approximation of stochastic differential equations. Explicit as
well as implicit SRK methods for non-autonomous SDE systems w.r.t. to a
multi-dimensional Wiener process are considered. A rigorous analysis of the
weak convergence for the SRK method is given. Therefore, colored rooted
trees are introduced and an expansion of the solution and of the approxima-
tion process is given. Finally, a theorem giving directly the order conditions
for arbitrary high order of convergence is proved. The main advantages of the
rooted tree analysis are as follows: The required colored rooted trees can be
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easily determined. So in contrast to the usual direct comparison of the Taylor
expansions, one needs not to calculate the derivatives of f, a and b. It has
to be pointed out that the calculated order conditions dependent on the co-
efficients and the random variables of the SRK method. Therefore, the order
conditions can also be used for the determination of suitable random variables
for the SRK method. In order to get a closed theory, the presented results
cover SRK methods for the approximation of both, It6 and Stratonovich SDE
systems. Finally, the presented colored rooted tree theory and the introduced
SRK methods generalize the well known theory for deterministic Runge-Kutta
methods due to Butcher [3]. In the case of b = 0 and f(z) = z, i.e. an ordinary
differential equation, the SRK method coincides with a deterministic Runge-
Kutta method and also the order conditions coincide with the deterministic
order conditions. For some examples of SRK methods and the corresponding
analysis of order conditions with colored rooted trees, we refer to Ro8ler [16].

A Tables

Table A.1: Trees t € T'S(*), * € {I, S}, of order p(t) <
2.5 with variable indices ji,j € {1,...,m}.

t tree ar | as | p t tree ar | as | p
to.1 ol 1| 1|0} torr | (041,054,045,05,) | 1 | 1 |2
t11 (1) 1|1 |1} taiza| (041,05,{0jn}jn) | O | 2 |2
tio | (0j,,05) 1| 1 |1 toro | (041,00 {0i}in) | 4| 4 |2
tis | (o)) | 0| 1 | 1| tassa | (05, {0 05}5) | 2 | 2 |2
to1 ([7]) 1| 1 2] torse | (045 {0js05}0) | O | 2 |2
to.o (1,7) 1| 1|2 toraa | (05, {{oja}in}in) | O | 2 |2
tos | ({ondal) | O | 1|2 taiw | (05, {{optnta) | O | 2 |2
toa | ([05,05]) | 1| 1| 2| tassa | {05}, {o}sn) | O | 1 |2
tos | (ojslo5]) | 2| 2 | 2| taass | ({optjns{oints) | 2 ] 2 |2
tos | ({otinm) | 0| 2 |2 taws | ({04,050:05)5) | 0 | 1 |2
tor | (05,05,7) | 2 | 2 | 2| taaza | ({og, {optintn) | 0| 1 |2
tos | (0,47 ) | 2 | 2 | 2| toam | o, {ojtin}in) | O | 2 |2
too | ({({7}ids) | O | 1 |2 tas | ({{00htis}sn) | O | 1 |2
toro | ({05,735) | 0 | 1 |2 tong | ({{optititan) | O | 1 |2
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Remark A.1 If we choose j1 = jo then some trees of Table A.1 may coincide.
In this case a, has to be taken as the sum of the values o, from the coinciding
trees. As an example, for j1 = jo we get ar(te15) = 0+2 and ag(ty15) = 1+2.

Table A.2: The correlation coefficient 5(t) for some trees
t € TS(x), x € {I,S}, and 71,72 € {1,...,m}. For trees
with p(t) < 2.5 which are not listed holds 3(t) = 1.

t correlation | oy | ag | B t correlation | oy | ag | B
to.11 J1 # J2 L1 |3 | taam | J1# 72 4 14 |2
to.11 J1=17J2 L1 1] tar J1=J2 416 |1
toass | J1 F# Je 0 2 |2] tas J1 # Ja 01113
t2.13 J1 =172 214 |1 tas J1=1J2 01111

Table A.3: Trees t € T'S(A) of order p(t) < 2.5 with
arbitrary choice of ji, j2, js, ja, Jjs € {1,...,m}.

t tree QA t tree QA
to.1 0 1 tos.1 (oj,) 1
ti1 (1) 1 tio (051, 04,) 1
t1.3 ({75, }51)
tisa ([o,]) Lol tise {7}a) 1
t153 (7,05) 2 || tisa (@51, 052, 9j3) 1
ti55 ({os. 4 04s) 3 || tisse ({052,055 }31) 1
t15.7 ({{ois 1o }in) 1
to.1 ([7]) 1 to (7,7) 1
to.3 (RCAN) Loty (CAN)) 1
tos (751 [93,]) 3| tas ({75,315 7) 3
tor (051,955 7) 3| tas (051, {7}32) 3
ta. {H{7}sti) 1| taa0 ({755, 7}i) 2
o (015 Ojas O O Lol taa2 (9515 0525 {054 }5s) 6
tois | (05, {0Gs,05t) | 4 | teas | (o5, {Houbiti) | 4
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t tree QA t tree QA
tois | ({optis{outi) | 3 | taws | ({op,0405t) | 1
toir | ({ops{oitisdi) | 3 | tas | (Hogswoidinti) | 1
toro | ({({{ojldilitn) | 1| tox ({logl}si) 1
tos1 (1,7,0/,) 3 toso ([oj.],7) 3
tos5.3 ([7],05) 3 || tosa ([1,04]) 2
toss5 ([[o5:1]) L | tass ({7}, 7) 3
tos7 ({7, 7}5) L || toss ({[r]}) 1
tos.9 ({7} L || t2s5.10 (7,015 0z, 0j5) 4
ta5.11 ([04.], 952, 03) 6 | tesaz | (7 {0}, 05) 12
to5.13 ([041505,]; 0s) 4 || tas14 ({ojinls 0js) 4
t25.15 (loul: {055 }5) 6 | t2s.6 (7, {021 033 } 1) 4
tosar | (T, {{op}iti) 4|l tasas ([915 T4z, 05]) 3
to5.19 (loj1s {ojs }1n]) 3 || tas20 ({o)2r 0} iu]) 1
t25.01 (({{oja}itin]) 1|l tos20 (7} 05, 05s) 6
tosos | ({7} {osts) 6 | tes2a | ({705}, 05) 8
to5.25 ({loja] b 0js) 4 || tas.06 ({7,052, 045 }i) 3
tosor | ({7 {0 }intin) 3 | tasas (losals s }iin) 3
t2.5.20 ({lojor 03] }i) L || t25.30 ({{os}1}i) 1
to.5.31 ({Hr}i i ois) 4 | ta532 ({{}as 035 }i1) 3
to5.33 ({05t tin) 2 || tas3a ({{lojs]}so }in) 1
to5.35 {{{r}istio}in) 1 || tasse | (04042, 0jgs gy, 0j5) | 1
tossr | (05,04 0ss {055 }ia) | 10 || tasss | (041,05, {0)4s 05 }i) | 10
tass0 | (05,05 ({055} bis) | 10 || tasao | (0415 {05 oy {05 Yia) | 15
tosar | ({0} {050, 055 4is) | 10 || tasae | ({oi}i, {{oys}iatss) | 10
to5.43 | ({0)2r 0jsr 04ty 03s) | 5 || tasas | ({055 {0 }ia}ins 0js) | 15
tosas | ({{04s 0iatintins i) | 5 || tasas | ({{{0a}istinbins 04s) | 5
tosar | ({0404 040, 055 i) | 1 || tasas | ({04, 0y {0 Fia ki) | 6
tosa9 | ({040 {1070, 0ististin) | 4 || tasso | ({0s {4075 Fiatistin) | 4
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t tree QA t tree QA

tosst | ({{04s}ins {0hs i) | 3 || tasse | ({{04ss 05as 0 bin din) | 1
tosss | ({{ogss {0is biatintin) | 3 || tassa | ({({{o0 05 tistintin) | 1
tosss | ({{{{o)siatistintin) | 1
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