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Abstract

We generalize the classical construction principles of infinite-dimensional real (or
complex) Lie groups to the case of Lie groups over non-discrete topological fields.
In particular, we discuss linear Lie groups, mapping groups, test function groups,
diffeomorphism groups, and weak direct products of Lie groups. The specific tools of
differential calculus required for the Lie group constructions are developed. Notably,
we establish differentiability properties of composition and evaluation, as well as ex-
ponential laws for function spaces. We also present techniques to deal with the subtle
differentiability and continuity properties of non-linear mappings between spaces of
test functions. Most of the results are independent of any specific properties of the
topological vector spaces involved; in particular, we can deal with real and complex
Lie groups modeled on non-locally convex spaces.
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Introduction

Most of the known examples of infinite-dimensional real or complex Lie groups can be
subsumed under (at least) one of the following main classes of Lie groups: 1. linear Lie
groups; 2. mapping groups; 3. diffeomorphism groups. In the present article, we show
that the general construction principles underlying these classes of Lie groups work just
as well beyond the real and complex cases. Thus, we are able to discuss linear Lie groups
and groups of continuous Lie group-valued mappings over arbitrary non-discrete topo-
logical fields; groups of smooth Lie group-valued mappings on finite-dimensional smooth
manifolds over locally compact fields; and diffeomorphism groups of paracompact finite-
dimensional smooth manifolds over local fields (of arbitrary characteristic). In the real
and complex cases, it becomes possible to construct Lie groups modeled on arbitrary (not
necessarily locally convex) topological vector spaces.

A fourth main class of infinite-dimensional Lie groups are Lie groups obtained from di-
rect limit constructions, in particular direct limits of finite-dimensional Lie groups (see
[63], [64], [21], [29]). Direct limits of finite-dimensional Lie groups over local fields have
been discussed in [29] (cf. also [21]). Here, we construct weak direct products of (finite-
or infinite-dimensional) Lie groups over valued fields, generalizing the discussion of weak
direct products of Lie groups modeled on real or complex locally convex spaces from [22].

Our studies are based on a concept of Ck-maps (and smooth maps) between open subsets
of topological vector spaces over non-discrete topological fields introduced in [3], where
more generally an axiomatic approach to differential calculus over arbitrary infinite fields
(and suitable commutative rings) is developed. A map between open subsets of locally
convex real topological vector spaces is of class Ck in the sense considered here if and only
if it is a Ck-map in the sense of Michal-Bastiani, i.e., a Ck

c -map in the terminology of
Keller’s monograph [44] (see [3]). Ck-maps in the latter sense have been used as the basis
of differential calculus and infinite-dimensional Lie theory by many authors (see, e.g., [10],
[18]–[23], [25], [27], [29]–[34], [37], [43], [57]–[59], [65]–[67], [70], and [80]). Furthermore, a
map between open subsets of complex locally convex spaces is complex C∞ if and only if
it is complex analytic in the usual sense (as in [8]).

Taken together, the papers [3], [28] and the present work develop, from first principles,
a comprehensive theory of differential calculus and Lie groups over arbitrary non-discrete
topological fields. In [3] already mentioned, an exposition of differential calculus over topo-
logical fields and the corresponding basic theory of manifolds and Lie groups is given; this
article is directed to a broad audience including readers without prior knowledge of dif-
ferential calculus over topological fields. In [28] (needed here only for the discussion of
diffeomorphism groups), implicit (and inverse) function theorems for Ck-maps over com-
plete valued fields are established. The present article, then, provides concrete examples of
Lie groups over topological fields, and develops the specific aspects of differential calculus
required for this purpose. Further papers related to the “General Differential Calculus”
over topological fields are [2], [4], [5], [24], [26], [29] and [30]. In [26], it was shown that
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2 HELGE GLÖCKNER

every finite-dimensional smooth p-adic Lie group is a p-adic analytic Lie group in the usual
sense. Important aspects of differential geometry over topological fields have been worked
out in [2]. Jordan theoretic applications are described in [4] and [5].

The article commences with a brief introduction to differential calculus over non-discrete
topological fields (Section 1), and ends with appendices covering material which is best
taken on faith on a first reading, and whose presentation within the text would have dis-
tracted from the main line of thought. Apart from these sections, the main body of the text
is divided into three parts, devoted to the three main classes and construction principles
of infinite-dimensional Lie groups described above:

I. Linear Lie groups

Paradigms of real or complex Lie groups are linear Lie groups, i.e., unit groups of unital
Banach algebras (or other well-behaved topological algebras) and their Lie subgroups (see
[20], [38], [41, Ch. 5], [56]). We begin our studies with a discussion of linear Lie groups over
topological fields (Section 2), as this only requires a minimum of technical machinery. If
K is a non-discrete topological field, a good class of topological K-algebras to look at are
the continuous inverse algebras (or CIAs), viz. unital associative topological K-algebras A
such that the group of units A× is open in A and the inversion map ι : A× → A, a 7→ a−1

is continuous. We describe examples of CIAs and construction principles for CIAs over
arbitrary non-discrete topological fields. Since the unit group A× is a K-Lie group for any
continuous inverse algebra A (Proposition 2.2), we thus always have a certain supply of
K-Lie groups, for any K (beyond the trivial examples, the additive groups of topological
K-vector spaces). Algebras of continuous or differentiable maps on compact topological
spaces or compact manifolds, with values in a CIA, are again CIAs (Proposition 5.7). For
further typical examples of CIAs in the real or complex cases, see [20], [23], [36, 1.15], [81].

II. Mapping groups and related constructions

The second widely studied class of infinite-dimensional real (or complex) Lie groups are
the mapping groups. Typical examples are the “loop groups” C(S1, G) and C∞(S1, G),
where G is a finite-dimensional real (or complex) Lie group [70]. More generally, let G be
a real or complex Lie group modeled on a locally convex space, r ∈ N0 ∪ {∞}, and M
be a finite-dimensional smooth manifold (or topological space if r = 0). Among the types
of mapping groups encountered in the literature, we mention: the groups Cr(M,G) of
G-valued Cr-maps, for compact M ; the groups Cr

K(M,G) of G-valued Cr-maps supported
in a compact set K ⊆ M ; and, for σ-compact manifolds M , the “test function groups”
Cr
c (M,G) :=

⋃
K Cr

K(M,G) of compactly supported G-valued Cr-maps (see [1], [19], [27],
[47], [59], [64], [66], [67]).

In the second main part of this article, we construct Lie group structures on analogous
mapping groups in the case of Lie groups over topological fields. The results include:
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Groups of continuous mappings. If K is a non-discrete topological field, G a K-Lie
group, X a topological space, and K ⊆ X a compact subset, then the group

CK(X,G) := {γ ∈ C(X,G) : γ|X\K = 1}

of continuous G-valued mappings supported in K can be made a K-Lie group modeled on
CK(X,L(G)), in a natural way. In particular, C(K,G) = CK(K,G) is a K-Lie group, for
every compact topological space K and any K-Lie group G.

Groups of differentiable mappings. Let F be a locally compact, non-discrete topological
field, K be a topological extension field of F, G be a K-Lie group, r ∈ N0 ∪ {∞}, M be a
finite-dimensional Cr

F-manifold, K ⊆M a compact subset, and

Cr
K(M,G) := {γ ∈ Cr(M,G) : γ|M\K = 1}

be the group of G-valued Cr
F-functions on M supported in K. Then Cr

K(M,G) is a K-Lie
group modeled on Cr

K(M,L(G)), in a natural way. If M is paracompact and the topology
on K arises from an absolute value, then also the group Cr

c (M,G) :=
⋃
K Cr

K(M,G) of
G-valued test functions of class Cr

F is a K-Lie group, modeled on Cr
c (M,L(G)).

(See Sections 5 and 9). Typically, we might choose K := F here, or F := R, K := C. As the
basis for the construction of Lie group structures on mapping groups, we study continuity
and differentiability properties of mappings between function spaces. The three cases
of interest (mappings between spaces of CK-functions, Cr

K-functions, and Cr
c -functions,

respectively) are discussed in turn in Sections 3, 4, resp., 8 and 10. For simplicity, let
us assume that K := F now, for the remainder of the introduction. The results obtained
subsume, for example, that the mappings

C∞K (M, g) : C∞K (M,U) → C∞K (M,F ), γ 7→ g ◦ γ and
f∗ : C∞K (M,U) → C∞K (M,F ), γ 7→ f ◦ (idM , γ)

are of class C∞K , for any C∞K -maps g : U → F and f : M × U → F such that g(0) =
0 and f |(M\K)×{0} = 0, where K is a locally compact, non-discrete topological field, E
and F are topological K-vector spaces, U ⊆ E an open zero-neighbourhood, M a finite-
dimensional C∞K -manifold, and K ⊆M a compact subset. For paracompact M , analogous
conclusions are valid for C∞c (M, g) and f∗ : C∞c (M,U) → C∞c (M,F ). More generally,
results of the preceding type are established for mappings between spaces of sections in
vector bundles, whose fibres are arbitrary topological vector spaces (Appendix F). For the
real locally convex case, the reader may compare Michor [57], in particular his “Ω-Lemma”
[57, Thm. 8.7] for finite-dimensional real vector bundles; [19] (for maps between spaces of
test functions), and [32]. It is a peculiarity of differential calculus over general topological
fields that, when we are trying to prove differentiability properties of f∗ (or related results),
parameter-dependent variants invariably pop up in the natural inductive arguments, even
when we are only interested in the case of f∗ (not involving parameters). On the one
hand, this makes the proofs more complicated; but, on the other hand, we are rewarded
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with stronger, parameter-dependent versions of the basic results (like our “Ω-Lemma with
Parameters”, Theorem F.23), which are novel even in the real locally convex case.

Topologies on spaces of test functions. If K 6= C is locally compact, E a topological K-
vector space and M a σ-compact, finite-dimensional Cr

K-manifold, we equip Cr
c (M,E) =

lim
−→

Cr
K(M,E) with the topology making it the direct limit of its subspaces Cr

K(M,E) in the

category of topological K-vector spaces. Although little is known on direct limits of general
topological vector spaces (in contrast to the real or complex locally convex case, which has
been studied extensively), we get a perfectly firm grip on the topology of Cr

c (M,E) by
showing that the linear map

ρ : Cr
c (M,E) →

⊕
i∈I

Cr(Ui, E), ρ(γ) := (γ|Ui)i∈I (1)

is a topological embedding onto a closed vector subspace, for any locally finite cover (Ui)i∈I
of M by relatively compact, open subsets Ui. Here, the direct sum is equipped with the
box topology, which is extremely simple to work with.

If K = C, or if M is merely paracompact, then the topology making Cr
c (M,E) the direct

limit topological vector space lim
−→

Cr
K(M,E) is too elusive to be useful for us. Instead of

excluding these cases altogether from our considerations, we simply replace the direct limit
topology on Cr

c (M,E) with the topology induced by ρ, which turns out to be independent
of the choice of open cover (Ui)i∈I . This enables us to carry out most of our constructions
also in the complex case, and also for paracompact manifolds (see Proposition 8.13 and
Remark 8.16 for further discussions of the box topology and explanations why we prefer
to use it). Note that, for a non-locally convex complex topological vector space E, the
space Cr

c (M,E) of compactly supported E-valued Cr
C-maps need not be reduced to the lo-

cally constant functions. For example, there are non-zero compactly supported C∞C -maps
C → E, for suitable E (see [24]). As we do not have cut-off functions (nor partitions of
unity) available in the complex case, we have to proceed with particular care. In Section 10,
their use cannot be avoided any longer, and the complex case has to be excluded then.

Mappings between direct sums. The embedding ρ from (1) allows us to reduce the study
of continuity and differentiability properties of mappings between spaces of test functions
(or compactly supported sections in vector bundles) almost entirely to the study of differ-
entiability properties of mappings of the form

⊕i∈I fi :
⊕
i∈I

Ui →
⊕
i∈I

Fi, (xi)i∈I 7→ (fi(xi))i∈I

on open boxes
⊕

i∈I Ui in direct sums
⊕

i∈I Ei of topological K-vector spaces. In Section 6,
for arbitrary valued fields K, we show that a mapping ⊕i∈Ifi as before is Ck

K provided each
fi is Ck

K. Although the proof of the special case where I is countable and we are dealing
with real or complex locally convex topological vector spaces is almost trivial (see [22]),
the proof of the general case requires a substantial amount of work. In order to control
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simultaneously, for each i ∈ I, the dependence on the parameter t of the extended difference
quotient maps

f
[1]
i : Ui × Ei ×K ⊇ U

[1]
i → Fi , (xi, yi, t) 7→ f

[1]
i (xi, yi, t)

and, more generally, analogous parameters in the mappings f
[j]
i , where j ∈ N, j ≤ k, which

are encountered in the inductive arguments, we are forced to investigate in some depth the
symmetry properties of the higher difference quotient maps

f
[j]
i : U

[j]
i → Fi ,

which are rather complicated functions depending on 2j+1−1 variables (Proposition 6.9).
In the case of locally compact fields, the dependence on parameters can be controlled more
easily by means of compactness arguments, which in fact permit us to formulate stronger
results, involving additional parameters (Proposition 6.10). As a first straightforward
application, mappings between direct sums are used to define a Lie group structure on
(countable or uncountable) weak direct products

∏∗
i∈I Gi of Lie groups Gi over a valued

field K, based on the box topology on direct sums (Section 7). As we shall see later, such
groups are encountered quite frequently in the case of ultrametric fields; for example, they
shall play an important role in our discussion of diffeomorphism groups over local fields.
Weak direct products of Lie groups modeled on real or complex locally convex spaces,
based on locally convex direct sums, have first been considered in [22].

In the real finite-dimensional case, embeddings in locally convex direct sums are implicit
in [57, §4.7] in connection with descriptions of the “D-topology” on mapping spaces, which
are used there for similar purposes. The usefulness of embeddings into real and complex
locally convex direct sums for the study of mappings between spaces of test functions (and
compactly supported sections) has been pointed out explicitly in [32], [33]. The arguments
in [57] (based on jet bundles) are restricted to vector bundles over finite-dimensional bases.
We approach function spaces and mappings between them in a more direct way. This
allows us, for instance, to prove smoothness of the pushforward

f∗ : C
∞(M,E) → C∞(M,F )

in the case of a globally defined C∞K -map f : M ×E → F in utmost generality, namely, for
K an arbitrary topological field, M a C∞K -manifold modeled on an arbitrary topological
K-vector space, and E, F arbitrary topological K-vector spaces (Proposition 4.16).

Differentiability properties of almost local mappings. In order to motivate the most general
results we have to offer which exploit embeddings into direct sums (presented in Section 10),
we recall from [31] that the self-map

f : C∞c (R,R) → C∞c (R,R), f(γ) := γ ◦ γ − γ(0)

of the space C∞c (R,R) of real-valued test functions on the real line is discontinuous (and
hence not smooth), although the restriction of f to C∞K (R,R) is smooth, for every compact
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subset K ⊆ R. In the real and complex case, and, more generally, in the case of locally
compact topological fields K, this poses the question whether it is possible to specify simple
and easily verified additional properties ensuring that a mapping

f : Cr
c (M,E) → Cs

c (N,F )

between spaces of vector-valued test functions is indeed Ck
K, provided the restriction of f

to Cr
K(M,E) is Ck

K for each compact subset K ⊆ M (and likewise for mappings between
spaces of compactly supported sections, or open subsets thereof).

Generalizing the real locally convex case (see [27], [32], [33]), we show that also in the case
of general locally compact fields K 6= C, the requirement that f be almost local is a suitable
additional property on f (Theorem 10.4), meaning that there exist locally finite, relatively
compact open covers (Ui)i∈I of M and (Vi)i∈I of N such that f(γ)|Vi only depends on γ|Ui ,
for any i. The class of almost local maps includes most mappings of interest. For example,
in the case M = N , every pushforward of sections associated with a fibre-preserving
bundle map is almost local. Furthermore, all mappings encountered in the construction of
Lie group structures on diffeomorphism groups of σ-compact finite-dimensional real C∞-
manifolds are (locally) almost local (see [25] and [33], where diffeomorphism groups are
discussed along lines independent of the earlier work [57]).

For a highly developed theory of spaces (and manifolds) of mappings and mappings between
these in the “convenient setting of analysis” (based on Mackey complete real or complex
locally convex spaces), which is inequivalent to the setting of analysis we are working in
here, see [17], [47] and further works by the same authors.

III. Diffeomorphism groups

The third main part of the article is devoted to diffeomorphism groups of finite-dimensional
manifolds over local fields, and related material. We begin with a discussion of continuity
and differentiability properties of evaluation and composition of maps in the context of
locally compact fields K (Section 11). Among variants and related results, we show in
particular that the evaluation map

ε : Cr(M,E)×M → E, ε(γ, x) := γ(x)

is of class Cr
K, for every finite-dimensional Cr

K-manifold M and topological K-vector space E
(Proposition 11.1), and that the composition map

Γ: Cr+k(U,E)× Cr
K(M,U) → Cr(M,E), Γ(γ, η) := γ ◦ η

is of class Ck
K, for any r, k ∈ N0 ∪ {∞}, finite-dimensional Cr

K-manifold M , topological K-
vector space E, compact subsetK ⊆M , and open subset U of a finite-dimensional K-vector
space F (Proposition 11.2). We then turn to the exponential law for smooth mappings
(Section 12). Given any topological field K, topological K-vector space E, r, k ∈ N0∪{∞}
and arbitrary Cr+k

K -manifolds M and N , we show that

f∨ : M → Cr(N,E), f∨(x)(y) := f(x, y)
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is of class Ck
K for all f ∈ Cr+k(M ×N,E), and that the mapping

Φ: Cr+k(M ×N,E) → Ck(M,Cr(N,E)), Φ(f) := f∨ (2)

is a continuous linear injection (Lemma 12.1). If K is locally compact and N is finite-
dimensional (but M arbitrary), we show that Φ is an isomorphism of topological vector
spaces, in the case r = k = ∞ (Proposition 12.2).1 Similar (slightly weaker) conclusions
hold if both M and N are modeled on metrizable topological vector spaces and K is R or
an ultrametric field (Proposition 12.6). To deduce the surjectivity of Φ in the metrizable
case, we make use of techniques of convenient differential calculus (already mentioned),
suitably adapted to non-locally convex or ultrametric analysis by means of preparatory
results provided in [3]. We can only broach on the subject of “ultrametric convenient dif-
ferential calculus” here, and have to confine ourselves to what is actually needed for the
concrete purpose. A further application of the exponential laws is given in Appendix E.
Combining the latter and an ultrametric analogue of Grothendieck’s Theorem (relating
smoothness and weak smoothness of suitable maps) provided in Appendix D, it is shown
there that Boman’s theorem will hold for mappings f : E ⊇ U → F from an open sub-
set of a metrizable topological vector space E over a local field K to a Mackey complete
locally convex topological K-vector space F provided Boman’s theorem holds for all map-
pings f : K2 → K. Recall that Boman’s classical theorem [9, Thm. 1] asserts that a map
f : Rn → R is smooth if and only if f ◦ γ : R → R is smooth for each smooth curve
γ : R → Rn. Whether Boman’s theorem transfers to maps f : K2 → K is still unknown.

In the final Sections 13 and 14, which can be read independently, we describe two
approaches to diffeomorphism groups of finite-dimensional smooth manifolds over local
fields. The first approach (Section 13) produces a Lie group structure on Diff∞(M), for
every paracompact, finite-dimensional smooth manifold M over a local field K. The second
approach (Section 14) is restricted to σ-compact M . It produces two Lie group structures
on Diff∞(M) (one of which coincides with the one constructed in Section 13). Both ap-
proaches make use of many of the results and techniques prepared before (and hence also
illustrate the usefulness and typical applications of these results).

First approach (Section 13). Let M be a finite-dimensional, paracompact C∞K -manifold
over a local field K, and Diff∞(M) be the group of all C∞K -diffeomorphisms of M . Our first
construction of a Lie group structure on Diff∞(M) relies on the fact M is a disjoint union
of a family (Bi)i∈I of open and compact balls Bi ⊆ M (i.e., subsets Bi ⊆ M which are
C∞K -diffeomorphic to balls in Kd with respect to the supremum-norm). Motivated by this
decomposition, we first turn the diffeomorphism group Diff∞(B) of a ball B ⊆ Kd (where
d ∈ N0) into a Lie group; this is quite easy, because Diff∞(B) is a mere open subset of
C∞(B,Kd). Next, we form the weak direct product of Lie groups∏∗

i∈I Diff∞(Bi)

1Analogous results for the case where k = r = ∞, E is locally convex and both M and N are open
subsets of real locally convex spaces (instead of manifolds) have been obtained earlier in [6], along with
interesting additional information.
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modeled on
⊕

i∈I C
∞(Bi, TBi) = C∞c (M,TM). This weak direct product can be identified

with a subgroup of the group Diff∞c (M) of “compactly supported” diffeomorphisms. It
then only remains to equip Diff∞(M) with a smooth K-manifold structure making it a
Lie group with

∏∗
i∈I Diff∞(Bi) as an open subgroup. We remark that smoothness of the

inversion map Diff∞(B) → Diff∞(B), γ 7→ γ−1 is a simple consequence of the exponential
laws established here and a version of the implicit function theorem (the “Inverse Function
Theorem with Parameters”) for mappings from metrizable topological vector spaces to
Banach spaces [28].

Second approach (Section 14). For our second approach to diffeomorphism groups,
we assume that M is σ-compact and of positive dimension over K. In this case, M is
C∞K -diffeomorphic to an open subset U of its modeling space Kd (Lemma 8.3 (a); cf. [50]),
making it quite easy to deal with M . Given r ∈ N∪{∞}, we consider the monoid Endrc(U)
of all Cr

K-maps U → U which coincide with idU outside some compact set. We show that
γ 7→ γ − idU identifies Endrc(U) with an open subset of Cr

c (U,Kd). Thus Endrc(U) is a
C∞K -manifold with a global chart. We show that Diffrc(U) = Endrc(U)× is open in Endrc(U),
and we show that, for each k ∈ N0 ∪ {∞}, the composition map

Diffr+kc (U)×Diffrc(U) → Diffrc(U)

and the inversion map Diffr+kc (U) → Diffrc(U) are Ck
K. This enables us to turn Diff∞(M)

into a Lie group with Diff∞c (M) ∼= Diff∞c (U) as an open subgroup, modeled on the space
C∞c (M,TM) of compactly supported smooth vector fields on M , equipped with its natural
LF vector topology.2 But it also enables us to define a second Lie group structure on
Diff∞(M) (which we then denote by Diff∞(M )̃ ). It is modeled on the same vector space
C∞c (M,TM), equipped however with the (in general properly) coarser vector topology
making this space the projective limit⋂

k∈N0

Ck
c (M,TM) = lim

←−k∈N0

Ck
c (M,TM) .

Apparently, the definition of this second Lie group structure is close in spirit to the ILB-
approach to diffeomorphism groups in the works of Omori [68], [69]. An analogous con-
struction for diffeomorphism groups of σ-compact real manifolds had been proposed in [58]
(and was fully worked out in [33]). As in the real case, we can also give Diffr(M) a smooth
manifold structure for each finite r, with Diffrc(M) ∼= Diffrc(U) as an open subgroup, such
that Diffr(M) becomes a topological group and all right translations are smooth.

We remark that certain groups Diff(t,M), G(t,M), and GC(t,M) of diffeomorphisms of
class of smoothness C(t) for manifolds over local fields of characteristic zero have already
been discussed in [49], [51], [55] and further works of S. V. Ludkovsky, where they are
considered mainly as manifolds and topological groups (rather than Lie groups). He dis-
cusses irreducible representations of these groups ([51]) and measures on such groups (or

2The Lie group structure so obtained coincides with the one from Section 13.
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M) which are quasi-invariant with respect to dense subgroups [49]. Ludkovsky’s approach
to differential calculus (which is necessarily restricted to local fields K of characteristic
zero, and differs from the one we use), is described in [53, I, §2.3] (for maps between ul-
trametric Banach spaces) and extended to the case of locally convex topological K-vector
spaces in [53, II, Rem. 4.4] and [55], where diffeomorphism groups are discussed in further
detail and generality. Ludkovsky also turns groups Diff t

β,γ(M) of certain diffeomorphisms
of real Banach manifolds (subject to Hölder-type conditions) into topological groups [52,
Thm. 3.1], and discusses irreducible representations and quasi-invariant measures for such
groups [52], [54]. Note that the “non-archimedian loop groups” discussed in [53] are not
mapping groups in the sense considered in the present article, but something different.

Finally, let us mention that weak direct products of Lie groups are also useful to obtain
information on diffeomorphism groups of real manifolds (although they are not simply
open subgroups here, as in the ultrametric case). In [34], weak direct products are used
to show that the Lie group Diff∞c (M) of compactly supported diffeomorphisms of a σ-
compact, finite-dimensional smooth manifold M is the direct limit lim

−→
Diff∞K (M) both in

the category of Lie groups modeled on real locally convex spaces and in the category
of topological groups (where K ranges through the set of compact subsets of M , and
Diff∞K (M) := {γ ∈ Diff∞(M) : (∀x ∈ M \K) γ(x) = x}). This is remarkable, because, as
a consequence of results from [31], in general the Lie group Diff∞c (M) neither is the direct
limit lim

−→
Diff∞K (M) in the category of topological spaces, nor in the category of smooth

manifolds ([34]; cf. also [76]). Analogous results can be obtained for the test functions
groups C∞c (M,G), for G a finite-dimensional real Lie group [34].

Concluding remarks and guidance for the reader

Readers who wish to get quickly to the main results can skip part of the material. For ex-
ample, since all of the vector bundles required for the discussion of diffeomorphism groups
over local fields are trivial bundles, only very few of our results on spaces of sections in
vector bundles (discussed in Appendix F) will actually be used, and these are easy to
take on faith (cf. Remark 8.17). Proposition 4.16 (concerning pushforwards f∗ for glob-
ally defined f) is only needed for the discussion of spaces of sections in vector bundles,
while its more complicated variants (Propositions 4.20 and 4.23) are vital for the Lie group
constructions. Nonetheless, the author recommends to study the proof of the simpler
Proposition 4.16 first, and to leave the proofs of Propositions 4.20 and 4.23 for a second
reading. Section 10 is only needed for our second approach to diffeomorphism groups (Sec-
tion 14), but not for the first approach (Section 13). The general case of Proposition 11.3
(proved in Appendix C) is not used elsewhere, and only part of Section 12 (concerning the
exponential law) is needed for the discussion of diffeomorphism groups: Lemma 12.1 (a),
and Lemma 12.1 (b) for k = 0 suffice.

It is clear, however, that it would be inefficient not to include such closely related results,
when this can be done without much additional effort. Besides their obvious potential for
applications, the additional results also serve to put the Lie theoretic constructions in a
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larger perspective, and thus foster their understanding.

Let us remark in closing that it was necessary to refrain from developing the surrounding
theory up to the possible limits of generality, in order not to be carried away too far from
the subject matter of Lie group constructions, to increase the readability, and to avoid the
discussions from getting even more technical.

We mainly think of two possible generalizations. In the real locally convex case, a more
refined discussion of the maps Cr

c (M, f) : Cr
c (M,U) → Cr

c (M,F ) between open subsets
of spaces of compactly supported sections is possible [32]; in this case, Cr

c (M, f) is Ck

provided, in local coordinates, f is Ck along the fibre, with fibre derivatives jointly Cr.
An analogous condition, based on iterated partial difference quotient maps, should be suf-
ficient to ensure that Cr

c (M, f) be Ck, in the general case of bundles of topological vector
spaces over finite-dimensional paracompact Cr-manifolds over locally compact fields. This
would substantially generalize our version of the Ω-Lemma (which, however, already in-
corporates the cases of main relevance), but would inflict complicated technical arguments
on us, which are irrelevant for the Lie group constructions.

The second possible generalization concerns the exponential law. If k = r = ∞, the map
Φ from (2) should always be a topological embedding (cf. [6]). Furthermore, for general r
and k, a more detailed analysis of the problem should reveal that Φ can be written as a
composition

Cr+k(M ×N,E) → Ck,r(M ×N,E) → Ck(M,Cr(N,E))

of continuous linear injections for a suitably defined space Ck,r(M × N,E) of E-valued
Ck,r-maps on M × N . Here, the first mapping is the inclusion map. The second map,
Ck,r(M ×N,E) 3 f 7→ f∨ ∈ Ck(M,Cr(N,E)), should always be a topological embedding.
Again, the author feels that the immense additional technical effort would not be justified
in the present context. The problems may be analyzed elsewhere.

1 Differential calculus over topological fields

It is possible to define Ck-mappings and smooth mappings once a topologized ring and a
so-called C0-concept is given, satisfying suitable axioms (see [3]). In the present paper,
we exclusively consider the special case where the given topologized ring is a non-discrete
topological field K (Hausdorff, as all topological spaces we consider), where C0-maps are
defined as continuous maps between open subsets of topological vector spaces over K,
and where the product topology is used on products of topological vector spaces. In this
section, we briefly describe the resulting setting of differential calculus.

1.1 Conventions. All topological spaces occurring in this paper are assumed Hausdorff.
All topological fields are supposed to be non-discrete. A field K, together with an absolute
value |.| : K → [0,∞[ giving rise to a non-discrete topology on K will be called a valued
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field. An ultrametric field is a valued field (K, |.|) whose absolute value is ultrametric, i.e.,

|x+ y| ≤ max{|x|, |y|} for all x, y ∈ K.

If (K, |.|) is an ultrametric field, then O := {x ∈ K : |x| ≤ 1} is a subring of K, called
the valuation ring. The valuation ring is an open and closed subset of K. Totally dis-
connected, locally compact topological fields will be referred to as local fields. It is well
known that every local field admits an ultrametric absolute value defining its topology, and
can therefore be considered as a complete ultrametric field. The valuation ring of a local
field is open and compact. It is also known that every locally compact topological field is
either isomorphic to R, C, or a local field [78]. A complete3 valued field (K, |.|K) is either
ultrametric or isomorphic as a valued field to (R, |.|α) or (C, |.|α) for some α ∈ ]0, 1], where
|.| is the usual absolute value [11, VI, §6].

1.2 A topological vector space E over an ultrametric field (K, |.|) is called locally convex
if every zero-neighbourhood of E contains an open O-submodule of E, where O is the
valuation ring of K (see [60], Ch. III, §2, Prop. 4 and §3, Déf. 1 when K is complete). It is
well known that a topological vector space E over an ultrametric field is locally convex if
and only if its topology arises from a family (‖.‖γ)γ of ultrametric continuous seminorms
‖.‖γ : E → [0,∞[, satisfying ‖x+ y‖γ ≤ max{‖x‖γ, ‖y‖γ} for all x, y ∈ E.

1.3 If (E, ‖.‖) is a normed space over a valued field K, given ε > 0 and x ∈ E we write
BE
ε (x) := {y ∈ E : ‖y − x‖ < ε}, or simply Bε(x) := BE

ε (x) if E is understood. Note
that, since the image of a norm ‖.‖ need not be contained in the image |K| of the absolute
value, it is not possible in general to normalize elements: Given 0 6= x ∈ E we need
not find t ∈ K× such that ‖tx‖ = 1. To ensure that ‖Ax‖ ≤ ‖A‖ ‖x‖, the operator
norm of a linear operator A : E → F between normed spaces (E, ‖.‖E) and (F, ‖.‖F )
therefore has to be defined as ‖A‖ := min{C ≥ 0 : (∀x ∈ E) ‖Ax‖F ≤ C‖x‖E}. If
E = F = Kd for some d ∈ N0 and ‖.‖E = ‖.‖F is the maximum norm ‖.‖∞ : Kd → [0,∞[,
‖(x1, . . . , xd)‖∞ := max{|x1|, . . . , |xd|}, then every non-zero vector can be normalized and
thus ‖A‖ = max{‖Ax‖∞ : x ∈ Kd, ‖x‖∞ ≤ 1}. As usual, given topological vector spaces
E and F over a topological field K, we let L(E,F ) denote the set of all continuous linear
maps from E to F ; we abbreviate L(E) := L(E,E).

Throughout the remainder of this section, K denotes a (non-discrete) topological field.

Before we define Ck-maps, we need an efficient notation for the domains of certain mappings
associated with Ck-maps.

Definition 1.4 If E is a topological K-vector space and U ⊆ E an open subset, we define
U [0] := U and

U [1] := {(x, y, t) ∈ U × E ×K : x+ ty ∈ U},
which is an open subset of the topological K-vector space E ×E ×K. Having defined U [j]

inductively for a natural number j ≥ 1, we set U [j+1] := (U [j])[1].

3The requirement is that (K, d) be a complete metric space, where d : K×K → [0,∞[, d(x, y) := |x−y|K.
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In particular, E[1] = E × E ×K, E[2] = E × E ×K× E × E ×K×K, etc.

Definition 1.5 Let E and F be topological K-vector spaces and f : U → F be a mapping,
defined on an open subset U ⊆ E. We say that f is of class C0

K if f is continuous, in which
case we set f [0] := f and call f [0] the 0th extended difference quotient map of f . If f is
continuous and there exists a continuous mapping f [1] : U [1] → F such that

1
t
(f(x+ ty)− f(x)) = f [1](x, y, t) for all (x, y, t) ∈ U [1] such that t 6= 0, (3)

we say that f is of class C1
K, and call f [1] the (first) extended difference quotient map

of f (note that, as K is non-discrete, the continuous map f [1] is uniquely determined by
(3)). Recursively, having defined Cj

K-maps and jth extended difference quotient maps for
j = 0, . . . , k − 1 for some natural number k ≥ 2, we call f a mapping of class Ck

K if f is
of class Ck−1

K and f [k−1] is of class C1
K. In this case, we define the kth extended difference

quotient map of f via
f [k] := (f [k−1])[1] : U [k] → F .

The mapping f is of class C∞K (or K-smooth) if it is of class Ck
K for all k ∈ N0. If K is

understood, we simply write Ck instead of Ck
K, and call f smooth or of class C∞ if it is

K-smooth. If, conversely, we want to stress the fact that the field K is used, we shall write
U

[k]
K for U [k] and f

[k]
K for f [k].

Examples 1.6 Every continuous K-linear mapping λ : E → F between topological K-
vector spaces is smooth, with λ[1](x, y, t) = λ(y) for all (x, y, t) ∈ E ×E ×K. If V,W and
F are topological K-vector spaces and β : V ×W → F is a continuous bilinear map, then
β is smooth, with

β[1]((v, w), (v′, w′), t) = β(v, w′) + β(v′, w) + tβ(v′, w′)

for all v, v′ ∈ V , w,w′ ∈ W , and t ∈ K (cf. [3]).

1.7 Note that, for k ≥ 2, a mapping f as above is of class Ck
K if and only if f is of class

C1
K and f [1] is of class Ck−1

K ; in this case, f [k] = (f [1])[k−1] (these claims are proved by a
trivial induction).

1.8 Given a map f : U → F as before, let f ]1[ : U ]1[ → F , f ]1[(x, y, t) := 1
t
(f(x+ ty)−f(x))

be the associated difference quotient map, defined on U ]1[ := {(x, y, t) ∈ U [1] : t 6= 0}. Then
f is C1

K if and only if it is continuous and f ]1[ extends to a continuous function, f [1], on
U [1]. The set U ]1[ is open and dense in U [1], and we have U [1] = U ]1[ ∪ (U×E ×{0}), as a
disjoint union. If f is Ck

K, then so is f ]1[ (cf. 1.11 below).

1.9 Given a C1
K-map f : U → F as before, we define the directional derivative of f at

x ∈ U in the direction v ∈ E via

df(x, v) := (Dvf)(x) := lim
0 6=t→0

1
t
(f(x+ tv)− f(x)) = f [1](x, v, 0) .



LIE GROUPS OVER TOPOLOGICAL FIELDS 13

Then df : U × E → F is continuous, being a partial map of f [1], and it can be shown that
the “differential” df(x, •) : E → F of f at x is a continuous K-linear map, for each x ∈ U
[3, Prop. 2.2]. If f is C2, we define a continuous map d2f : U × E2 → F via

d2f(x, v1, v2) := (Dv2(Dv1f))(x) = lim
0 6=t→0

1
t
(df(x+ tv2, v1)− df(x, v1))

= f [2](x, v1, 0, v2, 0, 0, 0).

Similarly, if f is of class Ck
K, we obtain continuous mappings (the “higher differentials”)

djf : U × Ej → F , djf(x, v1, . . . , vj) := (Dvj · · ·Dv1f)(x) for all j ∈ N0 such that j ≤ k
(where d0f := f). Here djf(x, •) : Ej → F is symmetric and j-multilinear [3, La. 4.8].

1.10 If K is R or C and the range F is locally convex, the considerations in 1.9 show
that every Ck

K-map in the preceding sense is a Ck-map in the sense of Michal-Bastiani (a
Ck
MB-map for short), i.e., the iterated directional derivatives needed to define djf exist

for all j ∈ N such that j ≤ k, and the mappings djf : U × Ej → F so obtained (as well
as f) are continuous (such mappings are also called “Keller’s Ck

c -maps” in the literature,
following [44]). Exploiting the Fundamental Theorem of Calculus, it can be shown that,
conversely, every Ck

MB-map with locally convex range is of class Ck
K [3, Prop. 7.4]. Thus,

when dealing with maps into real or complex locally convex spaces, it is fully sufficient
(and much more convenient) to work with the differentials djf , no use has to be made of
the mappings f [j]. However, as soon as we turn to mappings into non-locally convex real or
complex topological vector spaces, and also in the case of base fields other than R and C, the
differentials alone do not encode enough information on f , and it is necessary to work with
the mappings f [j]. For example, consider the function f : ]0, 1[→ L0[0, 1], f(t) := 1[0,t]

taking t to the characteristic function of the interval [0, t]; here [0, 1] is equipped with
Lebesgue measure, and L0[0, 1] denotes the space of equivalence classes of measurable real-
valued functions on [0, 1] (modulo equality a.e.), equipped with the topology of convergence
in measure (see [42]). Then f is injective. It can be shown that f is of class C∞R , with djf
vanishing identically for all j ∈ N (cf. [24]).

1.11 (Chain Rule). If E, F and H are topological K-vector spaces, U ⊆ E and V ⊆ F
are open subsets, and f : U → V ⊆ F , g : V → H are mappings of class Ck, then also the
composition g ◦ f : U → H is of class Ck. If k ≥ 1, we have (f(x), f [1](x, y, t), t) ∈ V [1] for
all (x, y, t) ∈ U [1], and

(g ◦ f)[1](x, y, t) = g[1](f(x), f [1](x, y, t), t) . (4)

In particular, d(g ◦ f)(x, y) = dg(f(x), df(x, y)) for all (x, y) ∈ U × E (see [3], Prop. 3.1
and Prop. 4.5).

We recall that being of class Ck is a local property [3, La. 4.9]:

Lemma 1.12 Let E and F be topological K-vector spaces and f : U → F be a mapping,
defined on an open subset U of E. Let k ∈ N0 ∪ {∞}. If there is an open cover (Ui)i∈I
of U such that f |Ui : Ui → F is of class Ck for each i ∈ I, then f is of class Ck. 2
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1.13 Compositions of composable Ck-mappings being of class Ck, we can define Ck-
manifolds modeled on topological K-vector spaces in the usual way, namely as Hausdorff
topological spaces M , together with a set (“atlas”) of homeomorphisms (“charts”) from
open subsets of M onto open subsets of the modeling topological K-vector space Z, whose
domains cover M , and such that the transition maps are of class Ck. A Lie group over K is
a group G, equipped with a smooth manifold structure modeled on a topological K-vector
space Z, with respect to which inversion and the group multiplication are smooth map-
pings. For every K-Lie group G, the geometric tangent space T1(G) can be turned into a
topological K-Lie algebra L(G) in a natural way (see [3] for more information).

Remark 1.14 It can be shown that K-analytic maps from open subsets of (ultrametric)
normed spaces to locally convex topological K-vector spaces (as in [14], where locally convex
spaces are called “polynormed”) are C∞K , for every ultrametric field (K, |.|) [3, Prop. 7.20].
As a consequence, every finite-dimensional K-analytic Lie group G in the usual sense (as
defined in [74, p. 102]) can be considered as a K-Lie group in our sense, and likewise for
the analytic Lie groups modeled on ultrametric Banach spaces considered in [13].

We recall three simple, but very useful facts ([3], Lemmas 10.1–10.3):

Lemma 1.15 Let E and F be topological K-vector spaces, U ⊆ E be open, and f : U → F
be a mapping of class Ck, where k ∈ N0∪{∞}. Let F0 be a vector subspace of F containing
the image of f . If F0 is closed or if F0 is sequentially closed and K is metrizable, then the
co-restriction f |F0 : U → F0 is Ck as a map into F0. 2

Lemma 1.16 Suppose that E is a topological K-vector space, (Fi)i∈I a family of topological
K-vector spaces, U ⊆ E an open subset, and f : U → P a mapping, where P :=

∏
i∈I Fi,

with canonical projections pri : P → Fi. Let k ∈ N0 ∪ {∞}. Then f is of class Ck if and
only if pri ◦ f is of class Ck for each i ∈ I. 2

Lemma 1.17 Let E be a topological K-vector space, (Fi)i∈I be a family of topological K-
vector spaces, U ⊆ E be open, and f : U → F be a map, where F = lim

←− i∈I
Fi, with limit

maps πi : F → Fi. Let k ∈ N0 ∪ {∞}. Then f is Ck iff πi ◦ f is Ck for each i ∈ I. 2

As in the case of Banach-Lie groups, general Lie groups can be described locally:

Proposition 1.18 (Local description of Lie group structures) Suppose that a sub-
set U of a group G is equipped with a smooth manifold structure modeled on a topological
K-vector space E, and suppose that V is an open subset of U such that 1 ∈ V , V = V −1,
V V ⊆ U , and such that the multiplication map V × V → U , (g, h) 7→ gh is smooth
as well as inversion V → V , g 7→ g−1; here V is considered as an open submanifold
of U . Suppose that for every element x in a symmetric generating set of G, there is an
open identity-neighbourhood W ⊆ U such that xWx−1 ⊆ U , and such that the mapping
W → U , w 7→ xwx−1 is smooth.4 Then there is a unique K-Lie group structure on G
which makes V , equipped with the above manifold structure, an open submanifold of G.

Proof. The proof of [13], Chapter 3, §1.9, Proposition 18 can easily be adapted. 2

4This condition is automatically satisfied if V generates G.
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2 Unit groups of continuous inverse algebras

Let K be an arbitrary topological field. In this section, we show that the groups A× of
invertible elements in suitable topological K-algebras A (the continuous inverse K-algebras)
are K-Lie groups. We describe constructions producing new continuous inverse algebras
from given ones. In this way, we obtain a supply of continuous inverse K-algebras and thus
also of K-Lie groups. For much more information concerning locally convex continuous
inverse algebras over the real or complex field, and their unit groups, the reader is referred
to [20]. Further examples can be found in [23], [36, 1.15], and [81].

Definition 2.1 A continuous inverse algebra (over K) is a unital associative topological
K-algebra A whose group of units A× is open in A and such that inversion ι : A× → A,
a 7→ a−1 is continuous.

Continuous inverse algebras are of interest in the present context, for the following reason:

Proposition 2.2 For every continuous inverse K-algebra A, inversion ι : A× → A is of
class C∞K , and thus A× is a K-Lie group when considered as an open submanifold of A.

Proof. The algebra multiplication A × A → A is continuous bilinear and hence smooth.
Hence so is the group multiplication A× × A× → A×. We now show by induction that
ι is Ck

K for each k ∈ N0. By hypothesis, ι is C0
K. Suppose that ι is Ck

K. Using that
b−1−a−1 = b−1(a− b)a−1 for a, b ∈ A×, we obtain for any (x, v, t) ∈ (A×)[1] ⊆ A××A×K:

ι(x+ tv)− ι(x) = (x+ tv)−1 − x−1 = −t((x+ tv)−1vx−1 = tF (x, v, t) , (5)

where F : (A×)[1] → A, F (x, v, t) := −ι(x + tv)vι(x). Since ι is Ck
K by the induction

hypotheses, F is of class Ck
K, in particular of class C0

K. Thus (5) shows that ι is of class
C1

K, with ι[1] = F a mapping of class Ck
K. Therefore ι is of class Ck+1

K (see 1.7). 2

For example, K is a continuous inverse algebra over K, and thus K× is a K-Lie group.

Proposition 2.3 If A is a continuous inverse K-algebra, then so is the algebra Mn(A) of
n×n-matrices with entries in A, when equipped with the natural vector topology ∼= An×n.

Proof. Apparently, Mn(A) is a topological K-algebra. Its unit group is open and inversion
is continuous by [75, Cor. 1.2]. 2

Lemma 2.4 If A is a finite-dimensional unital associative K-algebra and B ⊆ A a unital
subalgebra, then B× = A× ∩B.

Proof. This is a well-known fact (cf. [20, La. 9.4] if K = R or C). 2
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2.5 Recall that, among the vector topologies on a finite-dimensional K-vector space V of
dimension d, there is a uniquely determined vector topology making V isomorphic to the
direct product Kd as a topological vector space. It is called the canonical K-vector space
topology (see [12], Ch. I, §1, no. 1, Example 5).

We remark that it is possible to characterize those topological fields K having the special
property that any finite-dimensional K-vector space admits only one (Hausdorff) vector
topology ([62], also [79], Section 5.4, Theorem 10). They are necessarily complete.

Proposition 2.6 Let A be a finite-dimensional unital associative K-algebra. Then the
canonical K-vector space topology turns A into a continuous inverse algebra over K.

Proof. Let n := dimK(A). It is clear that the canonical K-vector space topology turns A
into a topological K-algebra, and it is clear that the left regular representation

λ : A→ L(A) ∼= Mn(K), λ(a)(b) := ab

is a topological embedding (where L(A) denotes the K-algebra of K-linear self-maps of A,
equipped with the canonical K-vector space topology). It therefore suffices to assume that
A is a subalgebra of Mn(K). Now, Mn(K) being a finite-dimensional K-algebra, we have

A× = Mn(K)× ∩ A (6)

by Lemma 2.4. Since Mn(K) is a continuous inverse algebra by Proposition 2.3, Mn(K)×

is open in Mn(K) and thus A× is open in A by (6). The inversion map ι : A× → A
being a restriction of the continuous inversion map Mn(K)× → Mn(K), we deduce that ι
is continuous. 2

Tensor products of finite-dimensional algebras and continuous inverse algebras are again
continuous inverse algebras.

Proposition 2.7 Given a continuous inverse K-algebra A and finite-dimensional unital
associative K-algebra F , consider the associative unital K-algebra F ⊗K A. Pick any K-
basis e1, . . . , en of F , and equip F ⊗K A with the topology making φ : An → F ⊗K A,
(ai)

n
i=1 7→

∑n
i=1 ei ⊗ ai an isomorphism of topological K-vector spaces. Then this topology

does not depend on the choice of basis, and it turns F ⊗K A into a continuous inverse
algebra over K.

Proof. The natural map Mn(K)×An → An being continuous, we readily deduce that the
topology on F ⊗K A is independent of the choice of K-basis for F . Given i, j ∈ {1, . . . , n},
we have eiej =

∑n
k=1 ti,j,kek for uniquely determined elements (“structure constants”)

ti,j,k ∈ K. Given z = (zi)
n
i=1, v = (vi)

n
i=1 in An, we have

φ(z) · φ(v) =
n∑
k=1

ek ⊗

(
n∑

i,j=1

ti,j,kzivj

)
= φ

(( n∑
i,j=1

ti,j,kzivj

)n
k=1

)
.
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As A is a topological K-algebra, we readily deduce from the preceding formula that multi-
plication in F ⊗K A is continuous. Thus F ⊗K A is a topological K-algebra. Given z and v
as before, we calculate

(1 + φ(z)) · (1 + φ(v)) = (1 +
n∑
i=1

ei ⊗ zi) · (1 +
n∑
j=1

ej ⊗ vj)

= 1 +
n∑

i,j=1

eiej︸︷︷︸
=

∑n
k=1 ti,j,kek

⊗ zivj +
n∑
k=1

ek ⊗ zk +
n∑
k=1

ek ⊗ vk

= 1 +
n∑
k=1

ek ⊗ (zk + (S(z).v)k) , (7)

where S(z) := (akj(z))nk,j=1 ∈Mn(A) with akj(z) := δk,j +
∑n

i=1 ziti,j,k, and where (S(z).v)k
denotes the kth coordinate of the vector S(z).v ∈ An. We strive to show that for z ∈ An in
some zero-neighbourhood, we can choose v such that S(z).v = −z. Then, by Equation (7),
the element 1 + φ(v) will be a right inverse for 1 + φ(z).

Since Mn(A) is a continuous inverse K-algebra (Proposition 2.3), and S : An →Mn(A) is a
continuous mapping such that S(0) = 1 ∈Mn(A)×, there is a zero-neighbourhood U in An

such that S(U) ⊆Mn(A)×. Apparently, the mapping

ρ : U → An, ρ(z) := −S(z)−1.z

is continuous. For each z ∈ U , we have S(z)ρ(z) = −z, and thus (1+φ(z))·(1+φ(ρ(z))) = 1
by (7). Thus, for each a in the open identity neighbourhood V := 1 +φ(U) ⊆ F ⊗K A, the
element

r(a) := 1 + φ(ρ(φ−1(a− 1))) ∈ F ⊗K A

is a right inverse for a in F ⊗K A, and the mapping r : V → F ⊗K A is continuous. Very
similar arguments show that there is an identity neighbourhood W in F ⊗K A such that
every a ∈ W has a left inverse in F ⊗K A. Then P := V ∩W is an identity neighbourhood
in F ⊗K A such that P ⊆ (F ⊗K A)×, and the inversion map ι : (F ⊗K A)× → F ⊗K A
satisfies ι|P = r|P an thus is continuous on P . As a consequence, (F ⊗K A)× is open in
F ⊗K A and ι is continuous (cf. [20, La. 2.8]). 2

Concerning extension of scalars, we readily deduce:

Corollary 2.8 For every continuous inverse algebra A over K and finite extension field L
of K, AL := L⊗K A is a continuous inverse algebra over L (where L is equipped with the
canonical K-vector space topology).

Proof. We equip AL = L ⊗K A with the topological K-algebra structure defined in
Proposition 2.7, which makes it a continuous inverse algebra over K. It is easy to see
that the mapping L → L⊗K A, z 7→ z ⊗ 1 is a continuous K-algebra homomorphism. The
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continuity of scalar multiplication L × AL → AL therefore follows from the continuity of
the multiplication map AL × AL → AL. 2

For the final result of this section, we specialize to the case where K is a locally compact
topological field.

2.9 We consider a unital associative K-algebra A which is locally finite in the sense that
every finite subset is contained in a finite-dimensional subalgebra of A. We also assume
that A is of countable dimension as a K-vector space. As a consequence, there exists an
ascending sequence A1 ⊆ A2 ⊆ · · · of finite-dimensional unital subalgebras An of A such
that A =

⋃
n∈NAn.

2.10 We equip A with the so-called “finite topology,” i.e., the final topology with respect
to the inclusion maps λF : F → A, where F runs through the set F of finite-dimensional
vector subspaces of A. The set {An : n ∈ N} being co-final in F (directed with respect
to inclusion), the finite topology on A is also the final topology with respect to the family
(λAn)n∈N. Then A = lim

−→
An as a topological space, furthermore A × A = lim

−→
(An × An)

and K×A = lim
−→

(K×An), each An and K being locally compact ([40] or [21, Prop. 3.3]).

As a consequence, A is a topological K-algebra (cf. [21]).

Proposition 2.11 Every countable-dimensional, locally finite associative unital algebra
over a locally compact topological field K is a continuous inverse K-algebra when equipped
with the finite topology.

Proof. We have already shown that A is a topological K-algebra. The openness of A×

in A as well as continuity of inversion can be shown as in the real and complex special
cases (see [20, Prop. 9.5]). 2

Remark 2.12 If A is a real or complex locally convex CIA, then A× is in fact an analytic
Lie group. If, furthermore, A is complete (or, at least, Mackey complete), then A× is a
Baker-Campbell-Hausdorff (BCH) Lie group, viz. it possesses a locally analytically diffeo-
morphic exponential function, and its multiplication is given locally by the BCH-series (see
[20]). In this case, the results of [71] and [19] facilitate to integrate closed Lie subalgebras
of A to analytic subgroups of A×, providing us with a much richer supply of “linear Lie
groups” then the mere full unit groups A×. In the case where K is a complete valued field,
in some cases subgroups of unit groups of continuous inverse K-algebras may be turned
into Lie groups using the inverse function and implicit function theorems from [28].

3 Spaces of continuous mappings and mappings

between them

As a preliminary for our studies in Section 5, where we shall turn the group C(K,G)
of continuous mappings from a compact topological space K to a K-Lie group G into a
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K-Lie group, in the present section we study differentiability properties of certain types
of mappings between spaces of continuous vector-valued functions on compact topological
spaces. More generally, here (and in Section 5) we can consider mappings on non-compact
spaces supported in given compact sets.

Throughout this section, K denotes a topological field, X a topological space, and K a
compact subset of X.

3.1 If E is a topological K-vector space, we let CK(X,E) ⊆ EX denote the K-vector
space of all continuous mappings γ : X → E such that supp(γ) ⊆ K. We equip CK(X,E)
with the topology of uniform convergence, which apparently makes CK(X,E) a topological
K-vector space. A basis of open zero-neighbourhoods is given by the sets CK(X,U) :=
{γ ∈ CK(X,E) : im γ ⊆ U}, where U ranges through the open zero-neighbourhoods in E.

3.2 Note that if K ∈ {R,C} and E is locally convex, then CK(X,U) is convex for each
convex, open 0-neighbourhood U ⊆ E and thus CK(X,E) is locally convex. If K is an
ultrametric field with valuation ring O and E is locally convex (see 1.2), then CK(X,U)
is an open O-submodule of CK(X,E) for each open O-submodule U ⊆ E, and hence
CK(X,E) is locally convex.

The following proposition (and a Cr-analogue to be proved later) is the technical backbone
of our discussion of mapping groups.

Proposition 3.3 Let E, F , and Z be topological K-vector spaces, U ⊆ E and P ⊆ Z be
open subsets, k ∈ N0 ∪ {∞}, and f : X × U × P → F be a mapping. Suppose that

(a) f(x, •) = 0 for all x ∈ X \K;

(b) f(x, •) : U × P → F is of class Ck for each x ∈ X, and

(c) X × (U ×P )[j] → F , (x, y) 7→ f(x, •)[j](y) is a continuous map, for each j ∈ N0 such
that j ≤ k.

Then CK(X,U) := CK(X,E) ∩ UX is a (possibly empty) open subset of CK(X,E), and

φ : CK(X,U)× P → CK(X,F ), φ(γ, p) := f(•, p)∗(γ)

is a mapping of class Ck (where f(•, p)∗(γ)(x) := f(x, γ(x), p) for x ∈ X).

Proof. It is clear that CK(X,U) is open, and that φ(γ, p) ∈ CK(X,F ) indeed. To show
that φ is of class Ck, we clearly may assume that k <∞. The proof is by induction.

The case k = 0. Let ξ ∈ CK(X,U), p ∈ P , and V ⊆ F be an open zero-neighbourhood.
Let W ⊆ F be an open zero-neighbourhood such that W −W ⊆ V . For each x ∈ K, we
find an open neighbourhood Ax ⊆ K of x in K and open zero-neighbourhoods Bx ⊆ E
and Cx ⊆ Z such that ξ(Ax) +Bx ⊆ U , p+ Cx ⊆ P , and

f(y, u, q)− f(x, ξ(x), p) ∈ W
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for all y ∈ Ax, u ∈ ξ(Ax) + Bx, and q ∈ p + Cx. By compactness, K ⊆
⋃
x∈I Ax for

some finite subset I ⊆ K. Then B :=
⋂
x∈I Bx ⊆ E and C :=

⋂
x∈I Cx ⊆ Z are open

zero-neighbourhoods. Let η ∈ ξ + CK(X,B) and q ∈ p + C ⊆ P . Given y ∈ K, there is
x ∈ I such that y ∈ Ax. Hence

f(y, η(y), q)− f(y, ξ(y), p) = f(y, η(y), q)− f(x, ξ(x), p)− (f(y, ξ(y), p)− f(x, ξ(x), p))

∈ W −W ⊆ V.

For y ∈ X \K on the other hand, we have f(y, η(y), q) = f(y, ξ(y), p) = 0 and thus
f(y, η(y), q) − f(y, ξ(y), p) = 0 ∈ V trivially. We have shown that φ(η, q) − φ(ξ, p) ∈
CK(X,V ) for all (η, q) in the open neighbourhood (ξ+CK(X,B))× (p+C) of (ξ, p). Thus
φ is continuous, as required.

Induction step. Suppose that k ≥ 1, and suppose that the proposition holds for k replaced
with k− 1. Abbreviate Q := (CK(X,U)×P )[1] ⊆ CK(X,U)×P ×CK(X,E)×Z ×K and
Q× := {(ξ, p, η, q, t) ∈ Q : t 6= 0}. For all (ξ, p, η, q, t) ∈ Q×, we have

1
t
(φ(ξ + tη, p+ tq)− φ(ξ, p))(x) = 1

t
(f(x, ξ(x) + tη(x), p+ tq)− f(x, ξ(x), p))

= f(x, •)[1]((ξ(x), p), (η(x), q), t) (8)

for all x ∈ X, which suggests to define

ψ : Q→ CK(X,F ), ψ(ξ, p, η, q, t)(x) := f(x, •)[1]((ξ(x), p), (η(x), q), t) for x ∈ X.

If we can show that ψ is continuous, then φ will be C1 with φ[1] = ψ, by (8).

Claim 1. ψ is of class Ck−1 on Q×. In fact, inversion K× → K× being smooth, addition and
scalar multiplication in CK(X,E) and CK(X,F ) being continuous linear (resp., bilinear)
and thus smooth, and φ being of class Ck−1 by induction, the claim readily follows from
the formula ψ(ξ, p, η, q, t) = 1

t
(φ(ξ + tη, p+ tq)− φ(ξ, p)) for (ξ, p, η, q, t) ∈ Q×.

Claim 2. Every (ξ, p, η, q, 0) ∈ Q has an open neighbourhood on which ψ is of class Ck−1.
In fact, since im ξ ⊆ ξ(K) ∪ {0} and im η ⊆ η(K) ∪ {0} are compact subsets of E, and
im ξ ⊆ U , there exist open neighbourhoods A ⊆ U of im ξ, B ⊆ E of im η and an open
zero-neighbourhood C ⊆ K such that A + C · B ⊆ U . Shrinking C if necessary, we may
furthermore assume that there exist open neighbourhoods D ⊆ P of p and G ⊆ Z of q such
that D + C · G ⊆ P . Then U1 := A × B is an open subset of E × E containing im(ξ, η),
and P1 := D ×G× C is an open neighbourhood of (p, q, 0) in P × Z ×K. The definition

f1 : X × U1 × P1 → F, f1(x, (a, b), (p
′, q′, t)) := f(x, •)[1]((a, p′), (b, q′), t)

makes sense by choice of U1 and P1 (i.e., the expression on the right hand side is defined).
As an immediate consequence of hypothesis (c), the mapping f1(x, •) is of class Ck−1, for
each x ∈ X, and X × (U1 × P1)

[j] → F , (x, y) 7→ f1(x, •)
[j](y) is continuous for all j ∈ N0

such that j ≤ k − 1. By induction,

φ1 : CK(X,U1)× P1 → CK(X,F ), φ1(γ, p1)(x) := f1(x, γ(x), p1)
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is a mapping of class Ck−1. Since φ1((σ, τ), (p′, q′, t)) = ψ(σ, p′, τ, q′, t) for all (σ, p′, τ, q′, t) ∈
CK(X,A)×D × CK(X,B)×G× C ⊆ Q, Claim 2 is established.

In view of Claims 1 and 2, Lemma 1.12 shows that ψ is a mapping of class Ck−1. In
particular, ψ is continuous and thus, in view of (8), the mapping φ is of class C1 with
φ[1] = ψ of class Ck−1. Thus φ is of class Ck. 2

We readily deduce:

Corollary 3.4 Let E and F be topological K-vector spaces, U ⊆ E an open subset, k ∈
N0 ∪ {∞}, and f : X × U → F be a mapping. Suppose that

(a) f(x, •) = 0 for all x ∈ X \K;

(b) f(x, •) : U → F is of class Ck for each x ∈ X, and

(c) X × U [j] → F , (x, y) 7→ f(x, •)[j](y) is continuous, for each j ∈ N0 with j ≤ k.

Then
f∗ : CK(X,U) → CK(X,F ), f∗(γ)(x) := f(x, γ(x))

is a mapping of class Ck. 2

Corollary 3.5 Let E and F be topological K-vector spaces and f : U → F be a mapping of
class Ck, defined on an open subset U of E. If K 6= X, assume that 0 ∈ U and f(0) = 0.
Then

CK(X, f) : CK(X,U) → CK(X,F ), γ 7→ f ◦ γ

is a mapping of class Ck.

Proof. We have CK(X, f) = g∗, where g : X × U → F , g(x, y) := f(y) is easily seen to
satisfy Conditions (a), (b), (c) of Corollary 3.4. 2

Before working through the analogues of the preceding facts for spaces of Cr-maps stated
in the next section—which are considerably harder to prove—the reader may wish to pass
directly to the construction of continuous mapping groups in Section 5 (assuming r = 0
there), to see what the results just proved are good for.

4 Spaces of Cr-maps and mappings between them

In this section, we discuss spaces of vector-valued Cr-maps, and mappings between such
spaces, to facilitate the construction of a manifold structure on groups of Cr-maps in
Section 5. We begin with the special case of vector-valued mappings on open subsets of
topological vector spaces.

In this section, F denotes a topological field, and K a topological field extending F, meaning
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that K contains F as a subfield, and that the inclusion map F → K is continuous.5 Starting
with Proposition 4.20, we shall assume that F is locally compact. We remark that, if F
is a valued field (for instance, if F is locally compact), then the inclusion map F → K
is a topological embedding automatically, as every 1-dimensional (Hausdorff) topological
F-vector space is topologically isomorphic to F ([79], §5.1, Example 1 and §5.4, Theorem 9).

The spaces Cr(U, E), when U is an open subset of the modeling space

The preparatory results concerning mappings on open subsets U of topological vector
spaces provided in this subsection are essential for our later discussion of the general case,
where U is replaced with a manifold.

4.1 Given a topological K-vector space E and open subset U of a topological F-vector
space Z, we let Cr(U,E) be the set of all mappings γ : U → E of class Cr

F (where
r ∈ N0 ∪ {∞}). It is clear that pointwise operations turn Cr(U,E) into a K-vector space.
We give Cr(U,E) the initial topology with respect to the family of mappings

Cr(U,E) → C(U [j], E), γ 7→ γ[j],

where j ∈ N0 such that j ≤ r, and where C(U [j], E) is equipped with the topology of
uniform convergence on compact sets (which coincides with the compact-open topology).
It is clear that Cr(U,E) becomes a topological K-vector space in this way.

The sets
bK,W c := {γ ∈ C(U [j], E) : γ(K) ⊆ W}

form a basis of open zero-neighbourhoods for the topology on C(U [j], E) when K ranges
through the compact subsets of U [j] and W through the open zero-neighbourhoods of E.

Remark 4.2 The following assertions readily follow from the definitions:

(a) For every r ≥ s, the inclusion map Cr(U,E) → Cs(U,E) is a continuous linear map.
The topology on C∞(U,E) is initial with respect to the family of inclusion maps
C∞(U,E) → Ck(U,E), where k ∈ N0. Furthermore, C∞(U,E) = lim

←−
Ck(U,E).

(b) For every k ∈ N0, the topology on Ck+1(U,E) is initial with respect to the inclusion
map Ck+1(U,E) → C(U,E) together with the mapping

Ck+1(U,E) → Ck(U [1], E), γ 7→ γ[1] .

Strengthening (b), we have:

Lemma 4.3 In the preceding situation, the map

Λ : Ck+1(U,E) → C(U,E)× Ck(U [1], E) , Λ(γ) := (γ, γ[1])

is a topological embedding onto a closed vector subspace of C(U,E)× Ck(U [1], E).

5Typical examples are: 1. K = F; 2. F = R, K = C.
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Proof. By Remark 4.2 (b), the map Λ is a topological embedding. To see that im(Λ) is
closed, let (γα) be a net in Ck+1(U,E) such that Λ(γα) converges in C(U,E)×Ck(U [1], E),
say to (γ, η) with γ ∈ C(U,E) and η ∈ Ck(U [1], E). Let (x, y, t) ∈ U ]1[ (see 1.8 for the
notation). Then γα(x) → γ(x) and γα(x+ ty) → γ(x+ ty), entailing that (γα)[1](x, y, t) =
1
t
(γα(x + ty) − γα(x)) → 1

t
(γ(x + ty) − γ(x)). Since also (γα)[1](x, y, t) → η(x, y, t), we

deduce that η(x, y, t) = 1
t
(γ(x+ ty)− γ(x)). The map η being continuous, this means that

γ is C1
F, with γ[1] = η. The map γ[1] = η being Ck

F , we deduce that γ is Ck+1
F and thus

γ ∈ Ck+1(U,E). Then lim Λ(γα) = (γ, η) = (γ, γ[1]) = Λ(γ). Thus im(Λ) is closed. 2

Lemma 4.4 Suppose that Z and Y are topological F-vector spaces, U ⊆ Z and V ⊆ Y
open subsets, and f : U → V a Cr

F-map. Then the “pullback”

Cr(f, E) : Cr(V,E) → Cr(U,E), γ 7→ γ ◦ f

is a continuous K-linear map.

Proof. Given elements r ≥ s ∈ N0 ∪ {∞}, let is,r : Cr(U,E) → Cs(U,E) and
js,r : Cr(V,E) → Cs(V,E) be the respective inclusion maps. Since ik,∞ ◦ C∞(f, E)
= Ck(f, E) ◦ jk,∞ if f is of class C∞F , in view of Remark 4.2 (a) the continuity of C∞(f, E)
follows if we can show that Ck(f, E) is continuous for each k ∈ N0. Thus, we may assume
that r ∈ N0, and prove the assertion by induction on r. The case r = 0 is a standard fact,
see [16], p. 157, Assertion (2).

Induction step. Suppose the lemma is correct for some r ∈ N0, and suppose that f : U → V
is of class Cr+1

F . The mapping i0,r+1 ◦ Cr+1(f, E) = C0(f, E) ◦ j0,r+1 being continuous, in
view of Remark 4.2 (b) it only remains to show that

φ : Cr+1(V,E) → Cr(U [1], E), φ(γ) :=
(
Cr+1(f, E)(γ)

)[1]
= (γ ◦ f)[1]

is continuous. By the Chain Rule, we have

φ(γ) = (γ ◦ f)[1] = Cr(Φ, E)(γ[1]),

where Φ : U [1] → V [1], Φ(u, y, t) := (f(u), f [1](u, y, t), t) is of class Cr. By induction,
Cr(Φ, E) : Cr(V [1], E) → Cr(U [1], E) is continuous, and also ψ : Cr+1(V,E) → Cr(V [1], E),
γ 7→ γ[1] is continuous (Remark 4.2 (b)). Thus φ = Cr(Φ, E) ◦ ψ is continuous. 2

Lemma 4.5 Let E be a topological K-vector space, Z a topological F-vector space, U ⊆ Z
an open subset, and f : U → K be a mapping of class Cr

F. Then the “multiplication
operator”

mf : Cr(U,E) → Cr(U,E), (mf (γ))(x) := f(x) · γ(x)

is a continuous K-linear map.
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Proof. Arguing as before, we find that it suffices to discuss the case where r ∈ N0. The
proof is by induction. In the following, let us write mf,r for mf , to stress its dependence
on r. Given r ≥ s ∈ N0, we let is,r : Cr(U,E) → Cs(U,E) be the inclusion map.

Case r = 0: Let K ⊆ U be a compact subset and V ⊆ E be an open zero-neighbourhood.
Since f(K) is compact, f(K) · 0 ⊆ {0} ⊆ V , and scalar multiplication is continuous, there
is an open zero-neighbourhood W ⊆ E such that f(K) · W ⊆ V . As a consequence,
mf

(
bK,W c

)
⊆ bK,V c. Being continuous at 0 by the preceding, the linear map mf,0 is

continuous.

Induction step. Suppose that the assertion of the lemma is correct for some r ∈ N0, and
let f : U → K be a mapping of class Cr+1

F . Then i0,r+1 ◦mf,r+1 = mf,0 ◦ i0,r+1 shows that
i0,r+1◦mf,r+1 is a continuous linear map. Using that scalar multiplication β : K×E → E is
a continuous K-bilinear (and thus F-bilinear) map, the formula for β[1] (see Examples 1.6)
combined with the Chain Rule shows that

(mf,r+1(γ))[1](x, y, t)

= (β ◦ (f, γ))[1](x, y, t)

= β(f(x), γ[1](x, y, t)) + β(f [1](x, y, t), γ(x)) + tβ(f [1](x, y, t), γ[1](x, y, t))

= f(x) · γ[1](x, y, t) + f [1](x, y, t) · γ(x) + tf [1](x, y, t) · γ[1](x, y, t),

whence

(mf,r+1(γ))[1] = (mf◦π+τ ·f [1],r ◦ φ)(γ) + (mf [1],r ◦ Cr(π,E) ◦ ir,r+1)(γ) , (9)

where π : U [1] → U , π(x, y, t) := x and τ : U [1] → K, τ(x, y, t) := t are smooth and thus Cr
F,

multiplication operators are denoted in the apparent way, and φ : Cr+1(U,E) → Cr(U [1], E)
denotes the continuous linear map γ 7→ γ[1]. In view of the induction hypothesis and
Lemma 4.4, Equation (9) shows that Cr+1(U,E) → Cr(U [1], E), γ 7→ (mf,r+1(γ))[1] is a
continuous K-linear map. By Remark 4.2 (b), mf,r+1 is continuous. 2

Lemma 4.6 Let Z be a topological F-vector space, U ⊆ Z be an open subset, and (Ui)i∈I
be an open cover of U . For i ∈ I, let λi : Ui ↪→ U be the inclusion map, and

ρi := Cr(λi, E) : Cr(U,E) → Cr(Ui, E), ρi(γ) := γ|Ui

be the corresponding restriction map. Then the topology on Cr(U,E) is initial with respect
to the family (ρi)i∈I .

Proof. Arguing as usual, we may assume that r is finite. The proof is by induction. By
Lemma 4.4, each map ρi is continuous linear and thus the initial topology Or on Cr(U,E)
with respect to (ρi)i∈I is a (Hausdorff) vector topology on Cr(U,E) which is coarser than
the given topology. We shall write ρi,r for ρi, to stress its dependence on r.
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The case r = 0. Suppose that K is a compact subset of U , and W ⊆ E an open zero-
neighbourhood. Given x ∈ K, there exists i ∈ I such that x ⊆ Ui. Since K is compact
Hausdorff, there exists a compact neighbourhood Vx of x in K such that Vx ⊆ K∩Ui. As a
consequence, using the compactness of K we find finitely many compact subsets A1, . . . , An
of K covering K, such that, for each j = 1, . . . , n, there is ij ∈ I with Aj ⊆ Uij . Then
bK,W c ⊆ C0(U,E) coincides with

⋂n
j=1 ρ

−1
j (bAj,W c), where bAj,W c ⊆ C0(Uj, E). As a

consequence, the vector topology O0 on C0(U,E) is finer than the given topology and thus
coincides with it.

Induction step. Suppose that the assertion of the lemma is correct for some r ∈ N0. In
view of Remark 4.2 (b), we have to show that the mappings

φ : (Cr+1(U,E),Or+1) → C0(U,E), φ(x) = x and

ψ : (Cr+1(U,E),Or+1) → Cr(U [1], E), ψ(γ) := γ[1]

are continuous, using the usual topology on the spaces on the right hand side. Let ji :
Cr+1(Ui, E) → C0(Ui, E) be the inclusion map, which is continuous linear. As ρi,0 ◦ φ =
ji ◦ ρi,r+1 is continuous, we deduce from the C0-case of the lemma already proved that φ is
continuous.

To see that also ψ is continuous, let (x, y, t) ∈ U ]1[ and γ ∈ Cr+1(U,E) (see 1.8). Then

ψ(γ)(x, y, t) = 1
t
(γ(x+ ty)− γ(x))

and thus
ψ(γ)|U ]1[ = (mf ◦ (Cr(s, E)− Cr(π,E)) ◦ µr,r+1)(γ), (10)

where the inclusion map µr,r+1 : (Cr+1(U,E),Or+1) → (Cr(U,E),Or) = Cr(U,E) (induc-
tion hypothesis !) is apparently continuous linear, and f : U ]1[ → K, (x, y, t) 7→ t−1 is
of class Cr

F as well as the mappings s : U ]1[ → U , s(x, y, t) := x + ty and π : U ]1[ → U ,
π(x, y, t) := x. By Lemma 4.5, the multiplication operator mf : Cr(U ]1[, E) → Cr(U ]1[, E)
is continuous, and by Lemma 4.4, the mappings Cr(s, E) and Cr(π,E) are continuous.
Thus Equation (10) shows that

(Cr+1(U,E),Or+1) → Cr(U ]1[, E), γ 7→ ψ(γ)|U ]1[ (11)

is a continuous mapping.

Next, suppose that p = (x0, y0, t0) ∈ U [1] is given such that t0 = 0. There exists i ∈
I such that x0 ∈ Ui. Then (x0, y0, 0) ∈ (Ui)

[1], which is an open subset of U [1]. As

ρi,r+1 is continuous on (Cr+1(U,E),Or+1) and also Cr+1(Ui, E) → Cr(U
[1]
i , E), γ 7→ γ[1] is

continuous, we deduce that the mapping (Cr+1(U,E),Or+1) → Cr(U
[1]
i , E),

γ 7→ (γ|Ui)[1] = γ[1]|
U

[1]
i

= ψ(γ)|
U

[1]
i

(12)

is continuous. Now {U ]1[} ∪ {U [1]
i : i ∈ I} being an open cover of U [1], using the induction

hypothesis we deduce from the continuity of the mappings described in (11) and (12) that ψ
is continuous. 2
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The spaces Cr(M, E) and mappings between them

4.7 Given a topological K-vector space E and F-manifold M of class Cr
F, modeled on a

topological F-vector space Z, we let Cr(M,E) be the set of all mappings γ : M → E of
class Cr

F. It is clear that pointwise operations turn Cr(M,E) into a K-vector space. We
give Cr(M,E) the initial topology with respect to the mappings

θκ : Cr(M,E) → Cr(V,E), γ 7→ γ|U ◦ κ−1 , (13)

where κ : U → V ⊆ Z ranges through the charts of M . It is clear that this topology makes
Cr(M,E) a topological K-vector space.

4.8 Since an open subset U ⊆ Z may be considered as an F-manifold, we now have two
definitions of a topology on Cr(U,E), described in 4.1 and 4.7. As a consequence of
Lemma 4.6, both topologies coincide:

Lemma 4.9 If A is an atlas of charts for M , then the topology on Cr(M,E) is initial
with respect to the family (θκ)κ∈A.

Proof. Apparently, the initial topology O with respect to (θκ)κ∈A is coarser than the
given topology on Cr(M,E). To see that it is also finer, we have to show that O makes
θη continuous, for every chart η : U → V of M . For κ ∈ A, say κ : Uκ → Wκ, define
Vκ := η(Uκ ∩U). Then (Vκ)κ∈A is an open cover of V , and as (Cr(M,E),O) → Cr(Vκ, E),

γ 7→ θη(γ)|Vκ = γ ◦ η−1|Vκ = θκ(γ) ◦ κ ◦ η−1|Vκ = (Cr(κ ◦ η−1|Vκ , E) ◦ θκ)(γ)

is a continuous function of γ by Lemma 4.4 and definition of O, for each κ ∈ A, we deduce
from Lemma 4.6 that θη is continuous, which completes the proof. 2

Remark 4.10 The topology on C0(M,E) = C(M,E) just defined coincides with the
compact-open topology. Indeed, the new topology obviously is coarser than the compact
open topology, but it is also finer, by the argument used in the proof of Lemma 4.6, case
r = 0 (see also Lemma 4.22).

Lemma 4.11 Let M and N be Cr
F-manifolds modeled on topological F-vector spaces, E be

a topological K-vector space, and f : M → N be a Cr
F-map. Then the “pullback”

Cr(f, E) : Cr(N,E) → Cr(M,E), γ 7→ γ ◦ f

is a continuous K-linear map.

Proof. It is clear that Cr(f, E) is K-linear. There exists an atlas {κi : i ∈ I} of charts κi :
Ui → Vi of M such that, for each i ∈ I, f(Ui) ⊆ Ai for some chart φi : Ai → Bi of N . Given
i ∈ I, consider θi : C

r(M,E) → Cr(Vi, E), θi(γ) := γ ◦κ−1
i and Θi : C

r(N,E) → Cr(Bi, E),
Θi(γ) := γ ◦ φ−1

i . In view of Lemma 4.9, the mapping Cr(f, E) is continuous if and only
if θi ◦Cr(f, E) is continuous for each i. But θi ◦Cr(f, E) = Cr(φi ◦ f |AiUi ◦ κ

−1
i , E) ◦Θi is a

composition of continuous mappings (see Lemma 4.4) 2
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Lemma 4.12 Let M be a Cr
F-manifold, modeled on a topological F-vector space, E be a

topological K-vector space, and (Ui)i∈I be an open cover of M . Then

ρ := (ρi)i∈I : Cr(M,E) →
∏
i∈I

Cr(Ui, E), γ 7→ (γ|Ui)i∈I

is a topological embedding, whose image is a closed vector subspace of
∏

i∈I C
r(Ui, E).

Proof. Let λi : Ui → M be the inclusion maps. The coordinate functions of ρ are
the restriction maps ρi = Cr(λi, E) : Cr(M,E) → Cr(Ui, E), γ 7→ γ ◦ λi = γ|Ui , which
are continuous linear by Lemma 4.11. Hence ρ is continuous linear, and apparently it
is injective. Let A be the set of all charts of M whose domain is contained in some Ui.
Then A is an atlas for M . Given κ ∈ A, say κ : U → V with U ⊆ Ui, we can write
θκ : Cr(M,E) → Cr(V,E), γ 7→ γ ◦ κ−1 as θκ = Θκ ◦ ρi, where Θκ : Cr(Ui, E) → Cr(V,E),
η 7→ η ◦ κ−1. As a consequence, θκ is continuous with respect to the topology O induced
by ρ on Cr(M,E). Hence, by Lemma 4.9, O has to be finer than the given topology on
Cr(M,E). Being also coarser (since ρ is continuous), it coincides with the given topology.
Thus ρ is a topological embedding.

Let F := im ρ, and F be its closure. Given j, k ∈ I, and x ∈ Uj ∩ Uk, define fj,k,x :∏
i∈I C

r(Ui, E) → E via (γi)i∈I 7→ γj(x) − γk(x). Then fj,k,x is a continuous linear map.

From fj,k,x(F ) = {0} we deduce fj,k,x(F ) ⊆ {0} = {0}. Thus γj|Uj∩Uk = γk|Uj∩Uk for all

(γi)i∈I ∈ F and j, k ∈ I. As a consequence, given (γi)i∈I ∈ F , we can unambiguously
define a mapping γ : U → E via γ(x) := γi(x) if x ∈ Ui. Since γ|Ui = γi is of class Cr for
each i ∈ I, Lemma 1.12 shows that γ is a mapping of class Cr. It remains to note that
(γi)i∈I = ρ(γ) ∈ F . 2

Various simple observations will be useful.

Lemma 4.13 Suppose that λ : E → F is a continuous K-linear map between topological
K-vector spaces. Then

Cr(M,λ) : Cr(M,E) → Cr(M,F ), γ 7→ λ ◦ γ
is a continuous linear map.

Proof. Given a chart κ : U → V of M , we have θFκ ◦ Cr(M,λ) = Cr(V, λ) ◦ θEκ , where
θEκ : Cr(M,E) → Cr(V,E), γ 7→ γ ◦ κ−1, and θFκ : Cr(M,F ) → Cr(V, F ) is defined
analogously. The topology on Cr(M,F ) being initial with respect to the mappings θFκ ,
it therefore suffices to show that Cr(V, λ) is continuous, for any open subset V of the
modeling space of M . Let j ∈ N0 such that j ≤ r. For each γ ∈ Cr(V,E), we have
(Cr(V, λ)(γ))[j] = (λ ◦ γ)[j] = λ ◦ (γ[j]) = C(V [j], λ)(γ[j]) since λ is continuous linear. Here
Cr(V,E) → C(V [j], E), γ 7→ γ[j] is continuous linear by definition of the Cr-topology, and
C(V [j], λ) : C(V [j], E) → C(V [j], F ), η 7→ λ ◦ η is continuous with respect to the compact-
open topologies by [16, §3.4, Assertion (1)]. The topology on Cr(V, F ) being initial with
respect to the maps (•)[j], we deduce that Cr(V, λ) is continuous. 2

If the topology on a topological space X is initial with respect to a family of maps into
topological spaces whose topology is again initial with respect to certain families of maps,
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then the topology on X is initial with respect to the family of composed maps. This
well-known fact will be referred to as “transitivity of initial topologies” in the following.

Lemma 4.14 Suppose that the topology on E is initial with respect to a family (λi)i∈I
of K-linear maps λi : E → Ei into topological K-vector spaces Ei. Then the topology
on Cr(M,E) is initial with respect to the family (Cr(M,λi))i∈I of the linear mappings
Cr(M,λi) : Cr(M,E) → Cr(M,Ei).

Proof. The topologies on Cr(M,E) and Cr(M,Ei) are initial with respect to the mappings
θκ : Cr(M,E) → Cr(Vκ, E), resp., θκ,i : Cr(M,Ei) → Cr(Vκ, Ei) (as in (13)), where
κ : Uκ → Vκ ranges through the set of charts of M . Hence, we deduce from Cr(Vκ, λi)◦θκ =
θκ,i ◦ Cr(M,λi) and the transitivity of initial topologies that the assertion will hold if we
can prove it when M is an open subset of a topological F-vector space Z (like the sets Vκ).
Using Remark 4.2 (a) in a similar way, we may furthermore assume that r ∈ N0 is finite.
Now, the proof is by induction.

For r = 0, in view of Remark 4.10 the assertion is immediate from [16, La. 3.4.6]. If r ∈
N and the assertion holds when r is replaced with r−1, we recall that, for M = U ⊆ Z, the
topology on Cr(U,E) is initial with respect to the inclusion map f : Cr(U,E) → C(U,E)
and the map (•)[1] : Cr(U,E) → Cr−1(U [1], E). Let fi : C

r(U,Ei) → C(U,Ei) be inclusion.
Since Cr−1(U [1], λi) ◦ (•)[1] = (•)[1] ◦ Cr(U, λi) and C(U, λi) ◦ f = fi ◦ Cr(U, λi), we deduce
from the induction hypothesis, the case r = 0 and the transitivity of initial topologies that
the topology on Cr(M,E) is indeed initial with respect to the maps Cr(U, λi). 2

As an immediate consequence, we have:

Lemma 4.15 Let E1 and E2 be topological K-vector spaces, and pr1 : E1 × E2 → E1,
pr2 : E1 × E2 → E2 be the coordinate projections. Then(

Cr(M, pr1), C
r(M, pr2)

)
: Cr(M,E1 × E2) → Cr(M,E1)× Cr(M,E2)

is an isomorphism of topological K-vector spaces. 2

Using the latter isomorphism, we shall frequently identify a function γ ∈ Cr(M,E1 × E2)
with its pair of coordinate functions (γ1, γ2), γi := pri ◦ γ.

Proposition 4.16 Let E, F , H and Z̃ be topological K-vector spaces, P ⊆ H be an
open subset, r, k ∈ N0 ∪ {∞}, M̃ be a K-manifold of class Cr+k

K modeled on Z̃, and

f̃ : M̃ × E × P → F be a mapping of class Cr+k
K . Let M be an F-manifold of class Cr

F,

modeled on a topological F-vector space Z. Given a Cr
F-map σ : M → M̃ , define

f := f̃ ◦ (σ × idE × idP ) : M × E × P → F .

Then
φ : Cr(M,E)× P → Cr(M,F ), φ(γ, p) := f(•, p)∗(γ)

is a mapping of class Ck
K, where f(•, p)∗(γ)(x) := f(x, γ(x), p) for x ∈M .
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Proof. Since C∞(M,F ) = lim
←− `∈N0

C`(M,F ) apparently and the inclusion map

C∞(M,E) → C`(M,E) is continuous linear and thus of class C∞K , we easily deduce with
Lemma 1.17 that φ is of class C∞K in the case r = ∞, provided the proposition holds for
all r ∈ N0. It therefore suffices to consider the case r ∈ N0.

Reduction to open subsets of Z and Z̃

There is an atlas A = {κi : i ∈ I} of charts κi : Ui → Vi ⊆ Z of M such that σ(Ui) is

contained in the domain Si of a chart τi : Si → Ri ⊆ Z̃ of M̃ . In view of Lemma 4.12,
Lemma 4.11, Lemma 1.15 and Lemma 1.16, the map φ will be Ck

K if we can show that

hi : C
r(M,E)× P → Cr(Vi, F ), (γ, p) 7→ φ(γ, p) ◦ κ−1

i

is of class Ck
K, for every i ∈ I. Then f̃i := f̃ ◦ (τ−1

i × idE × idP ) : Ri × E × P → F is a
Cr+k

K -map, and σi := τi◦σ|SiUi ◦κ
−1
i : Vi → Ri is of class Cr

F. We set fi := f̃i◦(σi× idE× idP ) :
Vi × E × P → F and define

φi : C
r(Vi, E)× P → Cr(Vi, F ), φi(γ, p) := f(•, p) ◦ (idVi , γ) .

In view of Lemma 4.11, the formula hi(γ, p) = φi(C
r(κ−1

i , E)(γ), p) shows that hi will be

Ck
K if so is φi. Replacing M with Vi and M̃ with Ri, we may therefore assume that M and

M̃ are open subsets of Z, resp., Z̃, for the rest of the proof.

Apparently, it suffices to consider the case where k ∈ N0; the proof is by induction on k.

The case k = 0.

The proof is by induction on r. If r = 0, then the topology on C0(M,E) and C0(M,F ) is
the topology of uniform convergence on compact sets (see 4.8). Let γ ∈ C(M,E), p ∈ P ,
L be a compact subset of M , and V ⊆ F be an open zero-neighbourhood. Let W ⊆ F
be an open zero-neighbourhood such that W −W ⊆ V . For each x ∈ L, we find an open
neighbourhood Ax ⊆ M of x and open zero-neighbourhoods Bx ⊆ E and Cx ⊆ H such
that p+ Cx ⊆ P and

f(y, u, q)− f(x, γ(x), p) ∈ W

for all y ∈ Ax, u ∈ γ(Ax) + Bx, and q ∈ p + Cx. By compactness, L ⊆
⋃
x∈I Ax for

some finite subset I ⊆ L. Then B :=
⋂
x∈I Bx ⊆ E and C :=

⋂
x∈I Cx ⊆ H are open

zero-neighbourhoods. Let ξ ∈ γ + bL,Bc and q ∈ p+ C ⊆ P . Given y ∈ L, there is x ∈ I
such that y ∈ Ax. Then

f(y, ξ(y), q)− f(y, γ(y), p) = f(y, ξ(y), q)− f(x, γ(x), p)− (f(y, γ(y), p)− f(x, γ(x), p))

∈ W −W ⊆ V.

We have shown that φ(ξ, q)− φ(γ, p) ∈ bL, V c ⊆ C(M,F ) for all (ξ, q) in the open neigh-
bourhood (γ + bL,Bc)× (p+ C) of (γ, p). Thus φ is continuous, as required.
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Induction step on r. We write φr for φ, to emphasize its dependence on r. Suppose the as-
sertion of the lemma is correct for k = 0 and some r ∈ N0. Suppose that the hypotheses of
the lemma are satisfied by f̃ and σ, with r replaced by r+1. Let i : Cr+1(M,E) → C(M,E)
and j : Cr+1(M,F ) → C(M,F ) be the inclusion maps. The mapping

Cr+1(M,F ) → C(M,F )× Cr(M [1], F ), γ 7→ (γ, γ[1])

is an embedding of topological K-vector spaces by Remark 4.2 (b). Thus φr+1 will be
continuous if we can show that the mappings j ◦ φr+1 and

ψ : Cr+1(M,E)× P → Cr(M [1], F ), ψ(γ, p) := φr+1(γ, p)
[1]

are continuous. We already know that φ0 is continuous, whence j ◦ φr+1 = φ0 ◦ (i × idP )
is continuous. Recall that φr+1(γ, p)(x) = f̃(σ(x), γ(x), p) for γ ∈ Cr+1(M,E), p ∈ P and
x ∈M . The Chain Rule gives

ψ(γ, p)(x, y, t) = φr+1(γ, p)
[1](x, y, t)

= f̃ [1]((σ(x), γ(x), p), (σ[1](x, y, t), γ[1](x, y, t), 0), t)

for all γ ∈ Cr+1(M,E), p ∈ P and (x, y, t) ∈M [1]. Hence

ψ(γ, p) = g(•, p)∗(γ ◦ pr1, γ
[1]) , (14)

where pr1 : M [1] →M , (x, y, t) 7→ x, and g := g̃ ◦
(

(T̂ σ)× idE2 × idP

)
: M [1]×E2×P → F

with

g̃ : M̃ [1] × E2 × P → F, g̃((x, y, t), (u, v), p) := f̃ [1]((x, u, p), (y, v, 0), t)

of class Cr
K and T̂ σ : M [1] → M̃ [1], (T̂ σ)(x, y, t) := (σ(x), σ[1](x, y, t), t) of class Cr

F. By the
induction hypothesis, the map

Cr(M [1], E2)× P → Cr(M [1], F ), (κ, p) 7→ g(•, p)∗(κ)

is continuous. As Cr+1(M,E) → Cr(M [1], E2) ∼= Cr(M [1], E)2, γ 7→ (γ ◦ pr1, γ
[1]) is

continuous as well (cf. Remark 4.2, Lemma 4.4, Lemma 4.15), we deduce from (14) that ψ
is continuous, and hence so is φr+1.

Induction step on k.

Suppose the assertion of the lemma is correct for some k ∈ N0 and all r ∈ N0. Let σ and
f̃ be given which satisfy the hypotheses of the lemma when k is replaced with k+ 1. Then
φ : Cr(M,E) × P → Cr(M,F ) is of class Ck

K (and thus continuous), by induction. Given
γ, η ∈ Cr(M,E), p, q ∈ H and t ∈ F, we clearly have (γ, p, η, q, t) ∈ (Cr(M,E) × P )[1] if
and only if (p, q, t) ∈ P [1]. In this case, provided t 6= 0 we calculate

1
t
(φ(γ + tη, p+ tq)− φ(γ, p)) (x)

= 1
t
(f̃(σ(x), γ(x) + tη(x), p+ tq)− f̃(σ(x), γ(x), p))

= f̃ [1]((σ(x), γ(x), p), (0, η(x), q), t)
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for all x ∈M . Hence

1

t
(φ(γ + tη, p+ tq)− φ(γ, p)) = h(•, (p, q, t))∗(γ, η) (15)

for all γ, η ∈ Cr(M,E) and (p, q, t) ∈ P [1] such that t 6= 0, where h := h̃◦(σ× idE2× idP [1]) :
M × E2 × P [1] → F arises from the Cr+k

K -map

h̃ : M̃ × E2 × P [1] → F, h̃(z, (u, v), (p, q, t)) := f̃ [1]((z, u, p), (0, v, q), t) .

By the induction hypothesis, the map

ψ : Cr(M,E2)× P [1] → Cr(M,F ), (κ, (p, q, t)) 7→ h(•, (p, q, t))∗(κ)

is of class Ck
K (and hence continuous). In view of (15), we see that φ is of class C1

K, with
φ[1] given by φ[1]((γ, p), (η, q), t) = ψ((γ, η), (p, q, t)) and thus of class Ck

K. Hence φ is of
class Ck+1

K , as required. 2

It would not make sense to omit the set of parameters P in the formulation of Proposi-
tion 4.16 (hoping to make the proof easier this way). In fact, even if P is a singleton, a
non-singleton set P1 will occur in the induction step on k of the preceding proof.

The spaces Cr
K(M, E) and mappings between them

If F is locally compact and K ⊆M is a compact subset, we give

Cr
K(M,E) := {γ ∈ Cr(M,E) : supp(γ) ⊆ K}

the topology induced by Cr(M,E). The point evaluations Cr(M,E) → E, γ 7→ γ(x) at
the elements x ∈M being continuous linear maps, Cr

K(M,E) is a closed vector subspace of
Cr(M,E). In the next proposition, we compile some useful properties of function spaces.
The simple proofs are given in Appendix A. Only part (c) is needed for the Lie group
constructions. Part (d) serves to put our studies in perspective. Before we can state the
proposition, let us recall various concepts.

4.17 First, recall that a Hausdorff topological space X is called a k-space if a subset U ⊆ X
is open precisely if U ∩ K is open in K for every compact subset K ⊆ X. For example,
every metrizable topological space is a k-space.

Definition 4.18 Let E be a topological K-vector space.

(a) E is called sequentially complete if every Cauchy sequence in E is convergent.

(b) E is called Mackey complete if every Mackey-Cauchy sequence in E is convergent.
Here, a sequence (xn)n∈N in E is called a Mackey-Cauchy sequence6 if there exists a
bounded subset B ⊆ E and elements µn,m ∈ K such that xn − xm ∈ µn,mB for all
n,m ∈ N and µn,m → 0 in K as both n,m→∞.

6The two concepts mainly are of interest if K is a valued field.
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Note that every Mackey-Cauchy sequence also is a Cauchy sequence; hence every sequen-
tially complete topological K-vector space is Mackey complete.

Proposition 4.19 Let M be a Cr
F-manifold, modeled on a topological F-vector space Z.

Let E be a topological K-vector space. Then the following holds:

(a) Assume that Z [j] is a k-space for all j ∈ N0 such that j ≤ r; for example, this
holds if both F and Z are metrizable. Then Cr(M,E) is complete (resp., sequentially
complete, resp., Mackey complete) if E is complete (resp., sequentially complete,
resp., Mackey complete).

(b) If K is R, C or an ultrametric field and E is locally convex, then also Cr(M,E) is
locally convex.

(c) If F is locally compact, E is metrizable and M is a σ-compact, finite-dimensional
Cr

F-manifold, then Cr(M,E) is metrizable.

(d) If F ∈ {R,C}, K ∈ {F,C} and E is locally convex, then the topology on Cr(M,E) is
initial with respect to the family (Dj)r≥j∈N0 of maps Dj : Cr(M,E) → C(T jM,E)c.o.,
γ 7→ Djγ, and hence it is the topology traditionally considered on Cr(M,E) (see
Appendix A for the notations).

If F is locally compact, then analogous conclusions hold for the closed vector subspace
Cr
K(M,E) of Cr(M,E), for every compact subset K ⊆M . 2

The remainder of this section is devoted to the following result (and variants), which will
be needed, for example, for the discussion of groups of Cr-maps. Until the end of the
section, we now assume that the topological field F is locally compact.

Proposition 4.20 Let E, F , and Z̃ be topological K-vector spaces, U ⊆ E an open subset,
r, k ∈ N0 ∪ {∞}, M̃ be a K-manifold of class Cr+k

K modeled on Z̃, and f̃ : M̃ × U → F
be a mapping of class Cr+k

K . Let M be a finite-dimensional F-manifold of class Cr
F, and

K ⊆ M be a compact subset. Given a mapping σ : M → M̃ of class Cr
F, we define

f := f̃ ◦ (σ × idU) : M × U → F . If K 6= M , we assume that 0 ∈ U and f(x, 0) = 0
for all x ∈ M \K. Then Cr

K(M,U) := {γ ∈ Cr
K(M,E) : γ(M) ⊆ U} is an open subset of

Cr
K(M,E), and

f∗ : C
r
K(M,U) → Cr

K(M,F ), f∗(γ)(x) := f(x, γ(x))

is a mapping of class Ck
K.

Corollary 4.21 Let E and F be topological K-vector spaces and f : U → F be a mapping of
class Cr+k

K , defined on an open subset U of E. Let M be a finite-dimensional F-manifold of
class Cr

F, and K ⊆M a compact subset. If K 6= M , we suppose 0 ∈ U and f(0) = 0. Then

Cr
K(M, f) : Cr

K(M,U) → Cr
K(M,F ), γ 7→ f ◦ γ

is a mapping of class Ck
K.
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Proof. Let M̃ := {0} be a singleton smooth K-manifold, and σ : M → M̃ , x 7→ 0, which

apparently is a smooth mapping. Then g̃ : M̃ × U → F , g̃(0, u) := f(u) is a mapping of
class Cr+k

K , and CK(M, f) = g∗ for g := g̃ ◦ (σ × idU). By Proposition 4.20, g∗ is Ck
K. 2

Instead of proving Proposition 4.20 directly, we deduce it from a more flexible technical
result (Proposition 4.23 below), which shall be re-used repeatedly afterwards. For its
formulation, we require certain sets bK,Ucr :

Lemma 4.22 For every compact subset K ⊆M and open subset U ⊆ E, the set

bK,Ucr := {γ ∈ Cr(M,E) : γ(K) ⊆ U}

is open in Cr(M,E).

Proof. There are compact subsets A1, . . . , An ⊆ K which cover K, and such that Ai ⊆ Ui
for some chart κi : Ui → Vi of M (cf. proof Lemma 4.6). Set Ki := κi(Ai). Then bKi, Uc ⊆
C(Vi, E) is open by definition of the compact-open topology, and hi : C

r(M,E) → C(Vi, E),
hi(γ) := γ ◦ κ−1

i is continuous, for each i ∈ {1, . . . , n}. Thus bK,Ucr =
⋂n
i=1bAi, Ucr =⋂n

i=1 h
−1
i (bKi, Uc) is open in Cr(M,E). 2

We now formulate the main technical result of this section. For the moment, only part (a)
of the proposition is needed, but the more general part (b) will become essential in the
proof of Proposition 12.2 below (to tackle also the case of infinite-dimensional M there).

Proposition 4.23 Let E, F , H and Z be topological K-vector spaces, U ⊆ E and P ⊆ H
be open subsets, r, k ∈ N0 ∪ {∞}, and N be a K-manifold of class Cr+k

K modeled on Z.
Let M be an F-manifold of class Cr

F, modeled on a finite-dimensional topological F-vector
space X, K ⊆ M be a compact subset, Y ⊆ K be an open, non-empty subset of M , and
σ : Y → N be a mapping of class Cr

F. Define bK,Ucr ⊆ Cr(M,E) as above.

(a) If g̃ : N×U×P → F is a Cr+k
K -map and g := g̃ ◦ (σ×idU×idP ) : Y×U×P → F , then

bK,Ucr × P → Cr(Y, F ), (γ, p) 7→ g(•, p)∗(γ)

is a mapping of class Ck
K, where g(•, p)∗(γ)(x) := g(x, γ(x), p) for x ∈ Y .

(b) More generally, let E be a topological K-vector space, M an F-manifold of class Cr
F,

modeled on a topological F-vector space X, and f̃ : N×U×E×P → F be a Cr+k
K -map.

Define f := f̃ ◦ (σ × idU × idE × idP ) : Y × U × E × P → F . Then the map

φ : bK,Ucr × Cr(M,E)× P → Cr(Y ×M,F ), φ(γ, γ̄, p) := f(•, p)∗(γ × γ̄)

is of class Ck
K, where f(•, p)∗(γ × γ̄)(x, x̄) := f(x, γ(x), γ̄(x̄), p) for x ∈ Y , x̄ ∈M .

Proof. The proof is similar to the one of Proposition 4.16, but longer and painfully
technical in detail. We defer it to Appendix B. 2

The following lemma helps to deduce Proposition 4.20 from Proposition 4.23:
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Lemma 4.24 If K ⊆ M is a compact subset and Y ⊆ M an open subset containing K,
then the restriction map

Cr
K(M,E) → Cr

K(Y,E), γ 7→ γ|Y

is an isomorphism of topological K-vector spaces.

Proof. The restriction map clearly is an isomorphism of K-vector spaces. Let A1 be an
atlas for Y , and A2 an atlas for M \K. Then A := A1 ∪ A2 is an atlas for M . For each
κ ∈ A2, we have θκ(γ) = 0 for each γ ∈ Cr

K(M,E), entailing that the initial topology on
Cr
K(M,E) with respect to the mappings θκ|CrK(M,E), where κ ∈ A, coincides with the initial

topology with respect to the subset of mappings parametrized by κ ∈ A1. The assertion
now readily follows with Lemma 4.9. 2

Proof of Proposition 4.20. Let Z be the modeling space of M . Since F is locally com-
pact, the canonical Hausdorff vector topology on the finite-dimensional F-vector space Z
is locally compact. Hence M is a locally compact topological space. We therefore find
a relatively compact open neighbourhood Y of K in M . The inclusion mappings i :
Cr
K(M,E) → Cr(M,E) and j : Cr

K(Y, F ) → Cr(Y, F ) are K-linear and topological em-
beddings, with closed image. The restriction map ρ : Cr

K(M,F ) → Cr
K(Y, F ) is an isomor-

phism of topological K-vector spaces by Lemma 4.24. Let P := H := {0} (zero-dimensional
K-vector space), and define g : Y × U × P → F , g(x, y, p) := f(x, y). Then, by Proposi-
tion 4.23 (a), the map

ψ : bY , Ucr × P → Cr(Y, F ), ψ(γ, p) := g(•, p)∗(γ)

is of class Ck
K, where bY , Ucr ⊆ Cr(M,E). Note that i(Cr

K(M,U)) = bY , Ucr ∩Cr
K(M,E).

Thus Cr
K(M,U) is open in Cr

K(M,E), and i(Cr
K(M,U)) ⊆ bY , Ucr. Since j ◦ ρ ◦ f∗ =

ψ(•, 0) ◦ i|bY ,UcrCrK(M,U) apparently, we see that j ◦ ρ ◦ f∗ is of class Ck
K, whence so is f∗, by

Lemma 1.15. 2

5 Mapping groups and mapping algebras

In this section, we discuss mapping groups and mapping algebras, based on our studies in
Sections 3 and 4.

Throughout this section, r ∈ N0 ∪ {∞}. If r = 0, we let M be any topological space, and
K any topological field. If r > 0, we let F be a locally compact topological field, M be a
finite-dimensional F-manifold of class Cr

F, and K be a topological field possessing F as a
topological subfield. In either case, we let K ⊆M be a compact subset.
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Mapping Groups

Given a K-Lie group G, we consider the set

Cr
K(M,G) := {γ ∈ Cr(M,G) : γ|M\K = 1}

of G-valued mappings of class Cr
F on M which are identically 1 off K.7 It is clear that

Cr
K(M,G) is a group under pointwise multiplication and inversion. Then Cr

K(M,G) is a
K-Lie group in a natural way:

Proposition 5.1 On the group Cr
K(M,G), there is a uniquely determined smooth K-

manifold structure with the following properties:

(a) it makes Cr
K(M,G) a K-Lie group; and:

(b) There exists a chart κ : P → Q from an open identity neighbourhood P ⊆ G onto
an open zero-neighbourhood Q ⊆ L(G) such that κ(1) = 0, T1(κ) = idL(G), and such
that Cr

K(M,P ) := Cr
K(M,G) ∩ PM is open in Cr

K(M,G) and

Cr
K(M,κ) : Cr

K(M,P ) → Cr
K(M,Q) ⊆ Cr

K(M,L(G)), γ 7→ κ ◦ γ

is a diffeomorphism of smooth K-manifolds.

Identifying L(Cr
K(M,G)) with T0(C

r
K(M,L(G))) = Cr

K(M,L(G)) via T1(C
r
K(M,κ)), the

Lie bracket on L(Cr
K(M,G)) corresponds to the mapping Cr

K(M,β) : Cr
K(M,L(G)2) ∼=

Cr
K(M,L(G))2 → Cr

K(M,L(G)), where β : L(G)2 → L(G) is the Lie bracket of L(G) (in
other words, [γ, η](x) = [γ(x), η(x)]).

Proof. The following proof closely follows the lines of [19], Section 3, where only real and
complex Lie groups modeled on locally convex spaces are considered. We proceed in steps.

5.2 Let φ : U1 → U be a chart of G, defined on an open identity neighbourhood U1 in G,
with values in an open zero-neighbourhood U in L(G), such that φ(1) = 0. Let V1 be an
open, symmetric identity neighbourhood in G such that V1V1 ⊆ U1, and set V := φ(V1).
Then the mappings

µ : V × V → U, µ(x, y) := φ(φ−1(x) · φ−1(y))

and ι : V → V , ι(x) := φ(φ−1(x)−1)

are smooth. We equip Cr
K(M,U1) := {γ ∈ Cr

K(M,G) : γ(M) ⊆ U1} with the smooth
K-manifold structure making the bijection

Cr
K(M,φ) : Cr

K(M,U1) → Cr
K(M,U), γ 7→ φ ◦ γ

a diffeomorphism of smooth K-manifolds onto the open subset Cr
K(M,U) ⊆ Cr

K(M,L(G)).

7To harmonize notation, we write C0(M,G) := C(M,G) now also in the case where M merely is a
topological space, and call continuous mappings C0-maps.
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5.3 Since Cr
K(M,V ) × Cr

K(M,V ) ∼= Cr
K(M,V × V ) as C∞K -manifolds (cf. Lemma 4.15),

and Cr
K(M,µ) : Cr

K(M,V × V ) → Cr
K(M,U) is C∞K by Corollary 3.5 (resp., Corol-

lary 4.21), we deduce that the group multiplication of Cr
K(M,G) induces a C∞K -mapping

Cr
K(M,V1)× Cr

K(M,V1) → Cr
K(M,U1). Similarly, inversion is C∞K on Cr

K(M,V1).

5.4 Let γ ∈ Cr
K(M,G) now. As γ(M) ⊆ γ(K)∪ {1} is compact, there is an open identity

neighbourhood W1 ⊆ V1 in G and an open neighbourhood P of γ(M) in G such that
pW1p

−1 ⊆ U1 for all p ∈ P . Set W := φ(W1). As Cr
K(M,W ) is open in Cr

K(M,V ),
we deduce that Cr

K(M,W1) is open in Cr
K(M,V1). The mapping h : P × W1 → U1,

h(p, w) := pwp−1 being C∞K , also f̃ := φ ◦ h ◦ (idP × φ−1|W1
W ) : P ×W → U is C∞K . Then

clearly the mapping f := f̃ ◦ (γ × idW ) : M ×W → U , f(x, y) = φ(γ(x)φ−1(y)γ(x)−1)
satisfies the hypotheses of Corollary 3.4 (resp., Proposition 4.20), with k := ∞. We deduce
from Corollary 3.4 (resp., Proposition 4.20) that the mapping f∗ : C

r
K(M,W ) → Cr

K(M,U)
is C∞K . Note that

Cr
K(M,φ)−1 ◦ f∗ ◦ Cr

K(M,φ)
∣∣CrK(M,W )

CrK(M,W1)
= Iγ

∣∣
CrK(M,W1)

,

where Iγ : Cr
K(M,G) → Cr

K(M,G), Iγ(η) := γηγ−1. Thus Iγ(C
r
K(M,W1)) ⊆ Cr

K(M,U1)

and Iγ
∣∣CrK(M,U1)

CrK(M,W1)
is C∞K on the open identity neighbourhood Cr

K(M,W1) ⊆ Cr
K(M,V1). Now

Proposition 1.18 provides a unique smooth K-manifold structure on Cr
K(M,G) such that

Cr
K(M,G) becomes a K-Lie group which possesses Cr

K(M,V1) as an open submanifold.

5.5 The Lie group Cr
K(M,G) being modeled on Cr

K(M,L(G)), its Lie algebra can be iden-
tified with Cr

K(M,L(G)) as a topological vector space, by means of T1(C
r
K(M,φ|VV1

)). Let us
show that the Lie bracket is the mapping Cr

K(M, [., .]) on Cr
K(M,L(G)2) ∼= Cr

K(M,L(G))2

(which is continuous by Corollary 3.5, resp., Corollary 4.21). To this end, note first that
the point evaluation πx : Cr

K(M,G) → G, πx(γ) := γ(x) is a smooth homomorphism for
each x ∈ M , since πx ◦ Cr

K(M,φ−1|V ) = φ−1|V ◦ Πx|VCrK(M,V ) is smooth, using that the

point evaluation Πx : Cr
K(M,L(G)) → L(G) is a continuous linear map. As we identify

T1C
r
K(M,G) with Cr

K(M,L(G)) by means of T1C
r
K(M,φ|VV1

), and T1φ = idL(G) by hypoth-
esis, we clearly have L(πx) = T1(πx) = Πx. As L(πx) is a Lie algebra homomorphism, we
deduce that [γ, η](x) = [γ(x), η(x)] for all γ, η ∈ Cr

K(M,L(G)). The assertion follows.

5.6 The asserted uniqueness of the Lie group structure on Cr
K(M,G) with the required

properties follows by standard arguments, using that Cr
K(M,κ1 ◦ κ−1

2 ) is a diffeomorphism
(by Corollary 3.5, resp., Corollary 4.21) if both κ1 and κ2 are charts of G with the described
properties (whose domains coincide, without loss of generality). This completes the proof
of Proposition 5.1. 2

Mapping Algebras

Given an associative topological K-algebra A (possibly without an identity element), we
let Ae be the associated unital K-algebra. Thus Ae = A ⊕ Ke as a K-vector space. We
give Ae the product topology, which makes it a unital, associative topological K-algebra.
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Proposition 5.7 If A is a continuous inverse algebra over K, then also Cr
K(M,A)e is a

continuous inverse K-algebra. In the special case where M = K is compact, also Cr(K,A)
is a continuous inverse K-algebra.

Proof. Since we have Corollaries 3.5 and 4.21 at our disposal, the arguments used in [20]
to prove the analogous result for locally convex real or complex continuous inverse algebras
carry over to the present situation. 2

6 Mappings between direct sums

Throughout this section, (K, |.|) denotes a valued field. We study differentiability properties
of certain mappings between open subsets of direct sums of topological K-vector spaces.

Given a real number ε > 0, we abbreviate Bε(0) := BK
ε (0) = {x ∈ K : |x| < ε}. We recall

that a subset U ⊆ E of a K-vector space E is called balanced if tU ⊆ U for all t ∈ K such
that |t| ≤ 1. It is called absorbing if, for x ∈ E, there exists ε > 0 such that Bε(0) · x ⊆ U
(see [12], Ch. I, §1, no. 5).

6.1 Let (Ei)i∈I be a family of topological K-vector spaces, and E :=
⊕

i∈I Ei be its vector
space direct sum. Let F be the set of all sets U of the form

U :=
⊕

i∈I Ui := E ∩
∏

i∈I Ui

where Ui is an open, balanced zero-neighbourhood in Ei. Then apparently every U ∈ F
is a balanced and absorbing subset of E, and tU ∈ F for each t ∈ K×. It is also easy to
find V ∈ F such that V + V ⊆ U . As a consequence, there is a unique topology on E
turning E into a topological K-vector space, and such that F is a basis for the filter of
zero-neighbourhoods of E (see [12], Ch. I, §1, no. 5, Prop. 4). Since

⋂
F = {0}, this vector

topology is Hausdorff.

6.2 Let x = (xi)i∈I ∈ E, and suppose that Ui is an open neighbourhood of xi in Ei, for
all i ∈ I. Then U =

⊕
i∈I Ui := E ∩

∏
i∈I Ui is an open neighbourhood of x in E. In fact,

let y = (yi)i∈I ∈ U . Then Ui being a neighbourhood of yi in Ei, there exists a balanced,
open zero-neighbourhood Vi in Ei such that yi + Vi ⊆ Ui. Then V :=

⊕
i∈I Vi ∈ F , and

thus y + V ⊆ U shows that U is a neighbourhood of y. We have shown that U is open.

In the preceding situation, we call U a box neighbourhood of x. Accordingly, the topology
on E just defined will be called the box topology. In this article, direct sums shall always
be equipped with the box topology.

6.3 It is obvious from the definition that the box topology on E =
⊕

i∈I Ei is finer than
the topology induced by the product topology on

∏
i∈I Ei. It is also obvious that the direct

sum E induces the product topology on
∏

i∈F Ei =
⊕

i∈F Ei ⊆ E, for each finite subset
F ⊆ I.
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6.4 Note that if K ∈ {R,C} and each Ei is locally convex, then also
⊕

i∈I Ei is locally
convex, because

⊕
i∈I Ui is convex for any family (Ui)i∈I of convex open 0-neighbourhoods

Ui ⊆ Ei. Likewise, if K is an ultrametric field with valuation ring O and each Ei is locally
convex (see 1.2), then

⊕
i∈I Ei is locally convex, because

⊕
i∈I Ui is an open O-submodule

of
⊕

i∈I Ei for any family (Ui)i∈I of open O-submodules Ui ⊆ Ei.

6.5 We claim that E, equipped with the box topology, is the direct sum of the family
(Ei)i∈I in the category of topological K-vector spaces, provided that I is countable. Indeed,
this assertion is trivial if I is finite. Otherwise, we may assume that I = N. In this
case, suppose that F is a topological K-vector space and λn : En → F a continuous linear
mapping for each n ∈ N. As E =

⊕
n∈NEn as a K-vector space, there is a uniquely

determined K-linear map λ : E → F such that λ|En = λn for each n ∈ N. Let V0 be a zero-
neighbourhood in F . Inductively, we find a sequence (Vn)n∈N of open zero-neighbourhoods
Vn ⊆ F such that Vn + Vn ⊆ Vn−1 for all n ∈ N. Then U :=

⊕
n∈N λ

−1
n (Vn) is an open

zero-neighbourhood in E such that λ(U) ⊆
∑

n∈N Vn ⊆ V0. We deduce that λ is continuous.

We are primarily interested in the case of countable direct sums, but our arguments will
work more generally.

Remark 6.6 If I is uncountable, then the box topology on E need not make E the direct
sum of the family (Ei)i∈I in the category of topological K-vector spaces. For example, if
K = R (or C) and (Ei)i∈I is an uncountable family of non-zero locally convex topological
K-vector spaces, then the locally convex direct sum topology is easily seen to be properly
finer than the box topology (since this is so for R(I)). 8

Remark 6.7 If (Ei)i∈I is any family of locally convex topological vector spaces over an
ultrametric field K, then E :=

⊕
i∈I Ei, equipped with the box topology, is locally convex

(see 6.4), and it is the direct sum of the family (Ei)i∈I in the category of locally con-
vex topological K-vector spaces. To see this, let M ⊆ E be an O-submodule such that
Mi := M ∩ Ei is open in Ei for each i. Then

⊕
i∈IMi is a box neighbourhood of 0 which

is contained in M as M is an O-submodule (and thus an additive subgroup) of E. Con-
sequently, M is open in E. Therefore the box topology is the finest locally convex vector
topology on the direct sum E which makes all of the inclusion maps Ei → E continuous.
Hence E, with the box topology, has the universal property of the locally convex direct
sum: A linear map f : E → F in a locally convex space F is continuous if and only if
f |Ei : Ei → F is continuous for each i ∈ I.

It is our goal now to explore differentiability properties of mappings between direct sums.
Our discussions will hinge on symmetry properties of the maps f [k]. In order to formulate
these symmetry properties conveniently, we re-order the arguments of f [k] : U [k] → F , by
grouping the variables in E together on the one hand, on the other hand those in K.

8Note that the addition map R(I) → R, (ri)i∈I 7→
∑
i∈I ri is discontinuous with respect to the box

topology, if I is uncountable.
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Given topological K-vector spaces E and F and a Cr-map f : U → F defined on an open
subset of E, we let U{0} := U , f {0} := f , U{1} := U [1], f {1} := f [1] and define mappings
f {k+1} : U{k+1} → F for k ∈ N, k < r on the sets

U{k+1} := {(x, y, u, v, t) ∈ E2k × E2k ×K2k−1 ×K2k−1 ×K : (x, u, y, v, t) ∈ (U{k})[1]}

inductively via
f {k+1}(x, y, u, v, t) := (f {k})[1](x, u, y, v, t) .

Lemma 6.8 Given k ∈ N, there exist ` ∈ N, iν ∈ N0 for ν = 1, . . . , 2k and jµ ∈ N0 for
µ = 1, . . . , 2k − 1 with the following properties:

(a) Given an open subset U of a topological K-vector space E, x = (x1, . . . , x2k) ∈ E2k ,
p = (p1, . . . , p2k−1) ∈ K2k−1 and t ∈ K×, we have (x, tp) ∈ U{k} if and only if

(ti1x1, . . . , t
i
2kx2k , t

−j1p1, . . . , t
−j

2k−1p2k−1) ∈ U{k} .

(b) For any topological K-vector spaces E, F , any Ck-map f : U → F defined on an open
subset of E, and each (x, p, t) ∈ E2k ×K2k−1 ×K× such that (x, tp) ∈ U{k}, we have:

f {k}(x, tp) = t−` · f {k}(ti1x1, . . . , t
i
2kx2k , t

−j1p1, . . . , t
−j

2k−1p2k−1) . (16)

Proof. The proof is by induction on k ∈ N. If k = 1, let x1, x2 ∈ E, p ∈ K, t ∈ K×. Then
(x1, x2, tp) ∈ U [1] if and only if x1 ∈ U and x1 + (tp)x2 = x1 + p(tx2) ∈ U , which holds
precisely if (x1, tx2, p) ∈ U [1]. Assume that (x1, x2, tp) ∈ U [1]. If p 6= 0, we have

f [1](x1, x2, tp) = 1
tp

(f(x1 + tpx2)− f(x1)) = 1
t
f [1](x1, tx2, p).

By continuity, f [1](x1, x2, tp) = 1
t
f [1](x1, tx2, p) then also holds if p = 0.

Induction step. Suppose the lemma is correct for a certain k ∈ N0; let ` and iν , jµ be as

described in the lemma. Suppose further that f : U → F is of class Ck+1. Let x, y ∈ E2k ,
u, v ∈ K2k−1, s ∈ K and t ∈ K× such that (x, y, tu, tv, ts) ∈ U{k+1}. If s 6= 0, we calculate

f {k+1}(x, y, tu, tv, ts) (17)

= (f {k})[1](x, tu; y, tv; ts)

= 1
ts

(
f {k}((x, tu) + ts(y, tv))− f {k}(x, tu)

)
= 1

ts

(
f {k}(x+ tsy, t2(1

t
u+ sv))− f {k}(x, t2(1

t
u))
)

= 1
ts·t2` [f

{k}(t2i1x1 + t2i1+1sy1, . . . , t
2i

2kx2k + t2i2k+1sy2k , t
−2j1−1u1 + t−2j1sv1,

. . . , t−2j
2k−1

−1u2k−1 + t−2j
2k−1sv2k−1)

−f {k}(t2i1x1, . . . , t
2i

2kx2k , t
−2j1−1u1, . . . , t

−2j
2k−1

−1u2k−1)]

= 1
t2`+1 (f {k})[1](t2i1x1, . . . , t

2i
2kx2k , t

−2j1−1u1, . . . , t
−2j

2k−1
−1u2k−1,

t2i1+1y1, . . . , t
2i

2k
+1y2k , t

−2j1v1, . . . , t
−2j

2k−1v2k−1, s)

= 1
t2`+1f

{k+1}(t2i1x1, . . . , t
2i

2kx2k , t
2i1+1y1, . . . , t

2i
2k

+1y2k ,

t−2j1−1u1, . . . , t
−2j

2k−1
−1u2k−1, t

−2j1v1, . . . , t
−2j

2k−1v2k−1, s) ,
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where the calculation shows that the argument of the function in the last line is in U{k+1}.
Here, the induction hypothesis was used to obtain the fourth equality in (17). If s = 0,
there exists a zero-neighbourhood S in K such that (x, y, tu, tv, ts′) ∈ U{k+1} for all s′ ∈ S.
There exists s′ ∈ S \ {0}. By the above, we then have

(t2i1x1, . . . , t
2i

2kx2k , t
−2j1−1u1, . . . , t

−2j
2k−1

−1u2k−1, t
2i1+1y1, . . . , t

2i
2k

+1y2k ,

t−2j1v1, . . . , t
−2j

2k−1v2k−1, s
′) ∈ (U{k})[1]

and thus (t2i1x1, . . . , t
2i

2kx2k , t
−2j1−1u1, . . . , t

−2j
2k−1

−1u2k−1) ∈ U{k}, entailing that

(t2i1x1, . . . , t
2i

2kx2k , t
−2j1−1u1, . . . , t

−2j
2k−1

−1u2k−1, t
2i1+1y1, . . . , t

2i
2k

+1y2k ,

t−2j1v1, . . . , t
−2j

2k−1v2k−1, 0) ∈ (U{k})[1]

and hence

(t2i1x1, . . . , t
2i

2kx2k , t
2i1+1y1, . . . , t

2i
2k

+1y2k , t
−2j1−1u1, . . . , t

−2j
2k−1

−1u2k−1,

t−2j1v1, . . . , t
−2j

2k−1v2k−1, s) ∈ U{k+1} (18)

with s = 0. By continuity, the first and final term in display (17) also coincide when
s = 0. To complete the proof of (a), assume, conversely, that x, y ∈ E2k , u, v ∈ K2k−1,
s ∈ K and t ∈ K× are given such that (18) holds. If s 6= 0, exploiting the induction
hypothesis we can go backwards from bottom to top in the display (17), and deduce that
(x, y, tu, tv, ts) ∈ U{k+1}. Arguing as above, we see that this conclusion remains valid when
s = 0. Thus (a) and (b) are established also for k replaced with k + 1. 2

The proof shows that we can achieve ` = 2k − 1 here.

We are now ready for the main result of this section.

Proposition 6.9 Suppose that (Ei)i∈I and (Fi)i∈I are families of topological K-vector
spaces indexed by a set I. Let k ∈ N0 ∪ {∞}, and suppose that fi : Ui → Fi is a mapping
of class Ck for i ∈ I, defined on an open non-empty subset Ui of Ei. Suppose that there is
a finite subset J ⊆ I such that 0 ∈ Ui and fi(0) = 0, for all i ∈ I \ J . Then U :=

⊕
i∈I Ui

is an open subset of E :=
⊕

i∈I Ei, and

f :=
⊕
i∈I

fi : U → F, f((xi)i∈I) := (fi(xi))i∈I

is a mapping of class Ck into F :=
⊕

i∈I Fi. For each j ∈ N such that j ≤ k, identifying

E2j with
⊕

i∈I E
2j

i in the natural way, we have

U{j} = {((xi)i∈I , p) ∈ E2j ×K2j−1 : (∀i ∈ I) (xi, p) ∈ U{j}i }, and (19)

f {j}((xi)i∈I , p) = (f
{j}
i (xi, p))i∈I .
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Proof. We may assume that k ∈ N0; the proof is by induction on k.

The case k = 0. Let x = (xi)i∈I ∈ U and V be a neighbourhood of f(x). Then V contains
a box-neighbourhood B =

⊕
i∈I Vi of f(x), where Vi is an open neighbourhood of fi(xi).

As f−1(V ) contains the box-neighbourhood f−1(B) =
⊕

i∈I f
−1
i (Vi) of x, the set f−1(V )

is a neighbourhood of x. We have shown that f is continuous at x.

Induction step. Suppose the assertion holds for a given k ∈ N0, and suppose that each fi
is a mapping of class Ck+1. Then f is of class Ck, and f {k}((xi)i∈I , p) = (f

{k}
i (xi, p))i∈I .

Equation (19) holds for j ≤ k by induction and thus also for j = k + 1, as an immediate
consequence of the definitions. We claim that f {k} is of class C1. Let x = (xi)i∈I , y =
(yi)i∈I ∈ E2k ∼=

⊕
i∈I E

2k

i , u, v ∈ K2k−1 and t ∈ K such that (x, u, y, v, t) ∈ (U{k})[1]. If
t 6= 0, we have, by induction,

1
t
(f {k}(x+ ty, u+ tv)− f {k}(x, u)) = (1

t
f
{k}
i (xi + tyi, u+ tv)− f

{k}
i (xi, u)))i∈I

= (f
{k+1}
i (xi, yi, u, v, t))i∈I .

Thus f {k} will be of class C1 if we can show that the mapping

(U{k})[1] → F, (x, u, y, v, t) 7→ (f
{k+1}
i (xi, yi, u, v, t))i∈I

is continuous, or, equivalently, that

g : U{k+1} → F, (x, y, u, v, t) 7→ (f
{k+1}
i (xi, yi, u, v, t))i∈I

is continuous—this is our goal now. We have {0} × K2j−1 ⊆ U
{j}
i for all i ∈ I \ J and all

j ∈ N such that j ≤ k + 1, and

f
{j}
i (0, p) = 0 for all p ∈ K2j−1, (20)

by a simple induction. Let x̄ = (x̄i)i∈I ∈ E2k+1 ∼=
⊕

i∈I E
2k+1

i , p̄ = (p̄ν)
2k+1−1
ν=1 ∈ K2k+1−1

such that (x̄, p̄) ∈ U{k+1}. Pick a real number r > ‖p‖∞. There is a finite subset J0 ⊆ I
such that J ⊆ J0 and such that x̄i = 0 for all i ∈ I \ J0. Let W be an open neighbourhood
of g(x̄, p̄) in F ; we may assume that W =

⊕
i∈IWi, where Wi is an open neighbourhood

of f
{k+1}
i (x̄i, p̄) in Fi. For i ∈ I \ J0, we may assume that the zero-neighbourhood Wi is

balanced.
Let ` ∈ N, iµ ∈ N0 for µ = 1, . . . , 2k+1 and jν ∈ N0 for ν = 1, . . . , 2k+1 − 1 be as in the

Ck+1-case of Lemma 6.8.
For each i ∈ I \ J0, there exists εi > 0 and an open balanced zero-neighbourhood

Vi ⊆ Ei such that
f
{k+1}
i (V 2k+1

i ×Bεi(0)2k+1−1) ⊆ Wi .

There exists τi ∈ K× such that |τi| > max{1, r
εi
}; set Ai :=

∏2k+1

µ=1 τ
−iµ
i Vi. Holding i ∈ I \ J0

fixed for the moment, let us write τ := τi, for convenience. For all x = (xµ)2k+1

µ=1 ∈ Ai and

p = (pν)
2k+1−1
ν=1 ∈ Br(0)2k+1−1, we have τ iµxµ ∈ Vi for µ = 1, . . . , 2k+1 and |τ−jν−1pν | =
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|τ |−jν−1 · |pν | < r
|τ | < εi for ν = 1, . . . , 2k+1−1, i.e., τ−jν−1pν ∈ Bεi(0). Thus Lemma 6.8 (a)

shows that (x, p) ∈ U{k+1}
i and

f
{k+1}
i (x, p)− f

{k+1}
i (xi, p)

= f
{k+1}
i (x, p) = f

{k+1}
i (x, τ(τ−1p))

= 1
τ`
f
{k+1}
i (τ i1x1, . . . , τ

i
2k+1x2k+1 , τ−j1−1p1, . . . , τ

−j
2k+1−1

−1p2k+1−1) ∈ 1
τ`
Wi ⊆ Wi ,

using (20) to pass to the second line and Lemma 6.8 (b) to pass to the third. For each

i ∈ J0, on the other hand, by continuity of f
{k+1}
i there exists an open neighbourhood

Ai ⊆ Ei of x̄i and an open neighbourhood Zi of p in K2k+1−1 such that Ai × Zi ⊆ U
{k+1}
i

and f
{k+1}
i (Ai × Zi) ⊆ Wi. Then Z := Br(0)2k+1−1 ∩

⋂
i∈J0

Zi is an open neighbourhood

of p̄ in K2k+1−1. Let A :=
⊕

i∈I Ai. Then A × Z is an open neighbourhood of (x̄, p̄) in
U{k+1} such that

g(x, p) ∈ W for all (x, p) ∈ A× Z.

We have shown that g is continuous at (x̄, p̄). Thus f {k} is of class C1 and hence also f [k]

is of class C1 (by the Chain Rule). Hence f is of class Ck+1. Furthermore, f {k+1} = g is of
the asserted form. 2

Results analogous to Proposition 6.9 for mappings between locally convex direct sums of
real or complex locally convex spaces have first been established in [22]; the proofs are
considerably easier in that case.

Analogues for functions involving parameters

When the ground field K is locally compact, Proposition 6.9 can be generalized to functions
involving parameters (and its proof simplifies substantially).

Proposition 6.10 Let (K, |.|) be a valued field, P 6= ∅ be a locally compact topological
space, (Ei)i∈I and (Fi)i∈I be families of topological K-vector spaces indexed by a set I, and
(fi)i∈I be a family of continuous mappings fi : Ui×P → Fi, where Ui is a non-empty open
subset of Ei. Suppose that there is a finite subset J ⊆ I such that 0 ∈ Ui and fi(0, p) = 0,
for all i ∈ I \ J and p ∈ P . Then U :=

⊕
i∈I Ui is an open subset of E :=

⊕
i∈I Ei, and

f := U × P → F, f((xi)i∈I , p) := (fi(xi, p))i∈I

is a continuous map into F :=
⊕

i∈I Fi. If K is locally compact here, P an open subset of
a finite-dimensional K-vector space Z, and if there exists k ∈ N0 ∪ {∞} such that fi is of
class Ck for all i ∈ I, then also f is of class Ck.

Proof. We may assume that k ∈ N0; the proof is by induction on k.

The case k = 0. Let x = (xi)i∈I ∈ U , p ∈ P , and V be a neighbourhood of f(x, p)
in F . Then V contains a box-neighbourhood B =

⊕
i∈I Vi of f(x, p), where Vi is an open
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neighbourhood of fi(xi, p) in Fi. There is a finite subset J0 ⊆ I such that J ⊆ J0 and
such that xi = 0 for all i ∈ I \ J0. For each i ∈ J0, we find a compact neighbourhood Ki

of p in P and an open neighbourhood Wi ⊆ Ui of xi such that fi(Wi × Ki) ⊆ Vi. Then
K :=

⋂
i∈J0

Ki is a compact neighbourhood of p in P . For each i ∈ I \ J0, we have

fi({0} ×K) = {0} ⊆ Vi .

Using the compactness of K, we therefore find an open zero-neighbourhood Wi ⊆ Ei such
that fi(Wi × K) ⊆ Vi. Then W :=

⊕
i∈IWi ⊆ U is an open neighbourhood of x, and

f(W ×K) ⊆ B since fi(Wi ×K) ⊆ Vi for all i. Thus f is continuous.

Induction step. Let K be locally compact now, k ∈ N, and suppose that the assertion of
the proposition holds when k is replaced with k−1. Let P ⊆ Z and Ck-maps fi : Ui×P → Fi
be given. Then f : U × P → F is a Ck−1-map (and thus continuous), by induction. As

(U × P )[1] =
{

(x, p, y, q, t) ∈ (E × Z)2 ×K : (xi, p, yi, q, t) ∈ (Ui × P )[1] for all i ∈ I
}

clearly (where x = (xi)i∈I , y = (yi)i∈I), we can define a mapping

g : (U × P )[1] → F, g(x, p, y, q, t) := (f
[1]
i (xi, p, yi, q, t))i∈I .

Let us show that f is C1, with f [1] = g of class Ck−1. Since

1
t
(f(x+ ty, p+ tq)− f(x, p)) =

(
1
t
(fi(xi + tyi, p+ tq)− fi(xi, p))

)
i∈I = g(x, p, y, q, t)

for all (x, p, y, q, t) ∈ (U × P )[1] such that t 6= 0, it suffices to show that g is of class Ck−1.
Now f being of class Ck−1, the map g is Ck−1 on the set {(x, p, y, q, t) ∈ (U×P )[1] : t 6= 0}. It
therefore only remains to show that g is Ck on some open neighbourhood of (x̄, p̄, ȳ, q̄, 0), for
all x̄ = (x̄i) ∈ U , p̄ ∈ P , ȳ = (ȳi) ∈ E, and q̄ ∈ Z. For each i ∈ I, we find an open, balanced
zero-neighbourhood Wi ⊆ Ei such that x̄i + Wi + Wi ⊆ Ui. Then Ai := x̄i + Wi ⊆ Ui.
Since ȳi = 0 for all but finitely many i, we find r ∈ ]0, 1] such that tȳi ∈ Wi for all i ∈ I
and t ∈ K such that |t| ≤ r. Pick ρ ∈ K× such that |ρ| ≤ r; then Bi := ρ−1Wi is an
open neighbourhood of ȳi, for all i ∈ I. There are s ∈ ]0, r|ρ|] and open neighbourhoods
R ⊆ P of p̄ and S ⊆ Z of q̄, such that R× S ×Bs(0) ⊆ P [1], where Bs(0) ⊆ K. Then also

Ai ×Bi ×Bs(0) ⊆ U
[1]
i for each i ∈ I and hence

A×R×B × S ×Bs(0) ⊆ (U × P )[1] ,

where A :=
⊕

i∈I Ai ⊆ E and B :=
⊕

i∈I Bi ⊆ E. Let Q := R× S ×Bs(0); then

hi : (Ai ×Bi)×Q→ F, hi(xi, yi, p, q, t) := f
[1]
i (xi, p, yi, q, t)

is a Ck−1-map, for each i ∈ I. Furthermore, hi|{0}×Q = 0 for all i ∈ I \ J . Define

h : (A×B)×Q→ F, h(x, y, p, q, t) := (hi(xi, yi, p, q, t))i∈I = g(x, p, y, q, t) .

Here A×B ⊆ E×E ∼=
⊕

i∈I(Ei×Ei), and Q is an open subset of the finite-dimensional K-
vector space Z×Z×K, which is locally compact since so is K. By the induction hypothesis,
h is of class Ck−1. Hence g is Ck−1 on the open neighbourhood A×R×B × S ×Bs(0) of
(x̄, p̄, ȳ, q̄, 0), which completes the proof. 2
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Remark 6.11 Let K be R or a local field, n ∈ N, and G := Diff∞c (Kn)×Aff(Kn) be the
group of all smooth diffeomorphisms of Kn which coincide with an affine isomorphism of Kn

outside some compact set. Using Proposition 6.10, it is possible to make G a K-Lie group
modeled on the topological K-vector space C∞c (Kn,Kn) × aff(Kn). We omit the proof. A
more profound application of Proposition 6.10 will be given in Theorem F.23 below.

7 Weak direct products of Lie groups

The considerations in Section 6 make it possible to construct Lie group structures on weak
direct products of Lie groups.

Proposition 7.1 Let (Gi)i∈I be a family of Lie groups over a valued field (K, |.|). Then
there exists a unique K-Lie group structure on∏∗

i∈I Gi := {(gi)i∈I ∈
∏

i∈I Gi : gi = 1 for all but finitely many i } ,
modeled on

⊕
i∈I L(Gi), equipped with the box topology, such that, for certain charts κi :

Ui → Vi ⊆ L(Gi) of Gi defined on an identity neighbourhood Ui ⊆ Gi and taking 1 to 0,
the mapping ⊕

i∈I Vi →
∏∗

i∈I Gi, (xi)i∈I 7→ (κ−1
i (xi))i∈I

is a diffeomorphism of smooth K-manifolds onto an open subset of
∏∗

i∈I Gi.

Proof. Using Proposition 6.9 instead of [22, Prop. 7.1], the proof of [22, Prop. 7.3] (devoted
to weak direct products of real or complex Lie groups modeled on locally convex spaces)
carries over to the present situation (see [27, Thm. 18.1] for further details). 2

The following observations are immediate from the construction of the Lie group structure
on weak direct products and obvious properties of direct sums of topological vector spaces:

Lemma 7.2 Let K be a valued field.

(a) If (Gi)i∈I is a family of K-Lie groups and (Hi)i∈I a family of open subgroups Hi ⊆ Gi,
then

∏∗
i∈I Hi is an open subset of

∏∗
i∈I Gi. The smooth manifold structure making∏∗

i∈I Hi an open submanifold of
∏∗

i∈I Gi and the manifold structure on the weak direct
product of Lie groups

∏∗
i∈I Hi coincide.

(b) Assume that I is a set, Ji a finite set for each i ∈ I, and K := {(i, j) : i ∈ I, j ∈ Ji}.
Let (Gij)(i,j)∈K be a family of K-Lie groups. Then the mapping∏∗

(i,k)∈KGij →
∏∗

i∈I

(∏
j∈Ji Gij

)
, (gij)(i,j)∈K 7→

(
(gij)j∈Ji

)
i∈I

is an isomorphism of K-Lie groups.

(c) If (Gi)i∈I and (Hj)j∈J are families of K-Lie groups, π : J → I is a bijection and
βj : Gπ(j) → Hj an isomorphism of K-Lie groups for each j ∈ J , then also the map∏∗

i∈I Gi →
∏∗

j∈J Hj , (gi)i∈I 7→
(
βj(gπ(j))

)
j∈J

is an isomorphism of K-Lie groups. 2
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8 Spaces of test functions and mappings between them

In this section (and in Section 10), we study differentiability properties of mappings be-
tween spaces of vector-valued test functions on paracompact finite-dimensional manifolds
over locally compact ground fields. First, we collect some properties of such manifolds.

Paracompact finite-dimensional manifolds over locally compact fields

Throughout this subsection, F is a (non-discrete), locally compact topological field, and
r ∈ N0 ∪ {∞}.

Paracompact manifolds over locally compact fields are amenable to investigation due to the
following well-known fact (see [16, Thm. 5.1.27]): For every paracompact, locally compact
topological space X, there exists a cover (Xi)i∈I of X by mutually disjoint, σ-compact,
open (and closed) subsets Xi ⊆ X (and thus X =

∐
i∈I Xi). As a special case, we obtain:

Lemma 8.1 Every paracompact, finite-dimensional Cr
F-manifold M is a disjoint union

M =
∐

i∈IMi of a family (Mi)i∈I of σ-compact, open (and closed) submanifolds Mi ⊆M .2

8.2 If F is a local field, we fix the following notation: |.| is an ultrametric absolute value
on F defining its topology, O the maximal compact subring of F, and π ∈ F× a uniformizing
element (thus |π| < 1 and |F×| = 〈|π|〉). Given d ∈ N, we let ‖•‖∞ be the maximum norm
on Fd. Given a ∈ Kd and ε > 0, Bε(a) := {y ∈ Fd : ‖y − a‖∞ < ε} denotes the ball with
respect to the maximum norm. Then B := Od is an open compact O-submodule of Fd,
and it is easy to see that each ball Bε(a) is of the form a + πkB for some k ∈ Z and thus
C∞F -diffeomorphic to B. If M is a d-dimensional F-manifold of class Cr

F, we call an open
subset of M a ball if it is Cr

F-diffeomorphic to B. It is clear that every point x ∈ M is
contained in some ball. To avoid misunderstandings, the balls Bε(a) ⊆ Fd will occasionally
be called metric balls now.

The following lemma assembles various useful facts concerning paracompact manifolds over
local fields (cf. also [50]).

Lemma 8.3 Let F be a local field, r ∈ N0 ∪ {∞}, and M be an Cr
F-manifold over F, of

positive, finite dimension d ∈ N. Then the following holds:

(a) If M is σ-compact, then M is Cr
F-diffeomorphic to an open subset U ⊆ Fd.

(b) If M is paracompact, then M is a disjoint union M =
∐

i∈I Bi of a family (Bi)i∈I of
compact and open balls Bi ⊆M .

Proof. (a) Since M is σ-compact, there exists a sequence (Bk)k∈N of balls covering M . We
set J1 := {B1}. Suppose that we have found an open cover Jk of

⋃k
j=1Bj by disjoint balls

for k = 1, . . . , n, such that J1 ⊆ J2 ⊆ · · · ⊆ Jn. Let ψ : Bn+1 → B be a Cr
F-diffeomorphism

onto B := Od. Then R := Bn+1 \ (
⋃
Jn) = Bn+1 \ (

⋃n
k=1Bk) is an open, compact subset

of Bn+1 and thus ψ(R) is an open, compact subset of B. As ψ(R) is open and compact,
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there exists ε ∈ ]0, 1] such that ψ(R) + Bε(0) ⊆ ψ(R). Since Bε(0) is an open subgroup
of the compact additive group B, we deduce that ψ(R) is the disjoint union of a finite
number of balls Bε(a1), · · · , Bε(am) (i.e., cosets of Bε(0)), for some m ∈ N0 and elements
a1, . . . , am ∈ B. Then Jn+1 := Jn∪{ψ−1(Bε(ai)) : i = 1, . . . ,m} is an open cover of Bn+1 by
mutually disjoint balls, and Jn ⊆ Jn+1 by definition. Proceeding in this way, we obtain an
ascending sequence J1 ⊆ J2 ⊆ · · · , where each Jn is an open cover of

⋃n
k=1Bk by mutually

disjoint balls. Thus J :=
⋃
k∈N Jk is a countable cover of M by mutually disjoint balls.

Choose an injection κ : J → N. For each ball Cj := j ∈ J , there exists a Cr
F-diffeomorphism

φj : Cj → π−κ(j) +B ⊆ Fd. Then U :=
⋃
j∈J(π−κ(j) +B) is an open subset of Fd. The union

defining U is disjoint, because |π−κ(j) + x| = max{|π−κ(j)|, |x|} = |π−κ(j)| = |π|−κ(j) for
each j ∈ J and x ∈ B. Hence φ :=

∐
j∈J φj : M → U (the map determined by φ|Cj = φj)

is a Cr
F-diffeomorphism.

(b) By Lemma 8.1, M is a disjoint union M =
∐

i∈IMi of σ-compact, open and closed
submanifolds Mi. The proof of (a) shows that each Mi is a disjoint union Mi =

∐
j∈Ji Ci,j

of a countable family (Ci,j)j∈Ji of balls Ci,j ⊆ Mi. Set K := {(i, j) : i ∈ I, j ∈ Ji}. Then
M =

∐
(i,j)∈K Ci,j is a disjoint union of balls. 2

If U is an open subset of Fd, we can even find partitions into metric balls subordinate to
any given open cover:

Lemma 8.4 Suppose that F is a local field, d ∈ N and U ⊆ Fd a non-empty, open subset.
Let (Ui)i∈I be an open cover of U . Then there exist families (rj)j∈J and (aj)j∈J of positive
real numbers rj > 0, resp., elements aj ∈ U , indexed by a countable set J , such that
(Brj(aj))j∈J is an open cover of U by mutually disjoint sets and furthermore the open
cover (Brj(aj))j∈J is subordinate to (Ui)i∈I , viz. for every j ∈ J , there exists i(j) ∈ I such
that Brj(aj) ⊆ Ui(j).

Proof. Since U is σ-compact, we find a sequence (Bk)k∈N of metric balls covering U and
which is subordinate to (Ui)i∈I : For each k ∈ N, there exists ik ∈ I such that Bk ⊆ Uik .
Adapting the proof of Lemma 8.3 (a) in the obvious way,9 we arrive at a countable cover
J =

⋃
k∈N Jk of U by mutually disjoint metric balls, such that all balls C ∈ J1 are subsets

of B1 ⊆ Ui(1) and all balls C ∈ Jk+1 \ Jk are subsets of Bk+1 ⊆ Uik+1
. 2

Locally finite, relatively compact, open covers can always be thickened.

Lemma 8.5 Let F be a locally compact field, M be a paracompact, finite-dimensional Cr
F-

manifold, and (Ui)i∈I be a locally finite cover of M by relatively compact, open subsets

Ui ⊆ M . Then there exists a locally finite cover (Ũi)i∈I of M by relatively compact, open

subsets Ũi ⊆M , such that for each i ∈ I the closure U i of Ui in M is contained in Ũi.

Proof. To reduce the assertion to the σ-compact case, we first observe that Ui is σ-
compact, for each i ∈ I (using that U i can be covered by finitely many balls). We now

9Thus, we choose each φ of the form φ(z) = az + b with suitable a ∈ F×, b ∈ Fd.
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write i ∼ j for i, j ∈ I if and only if there exists n ∈ N and k1, . . . , kn ∈ I such that
k1 = i, kn = j and Ukν ∩Ukν+1 6= ∅ for ν = 1, . . . , n− 1. Then ∼ is an equivalence relation.
Since (Ui)i∈I is a locally finite cover and each Ui is relatively compact, we deduce that each
equivalence class C ∈ I/∼ =: J is countable; hence

MC :=
⋃
i∈C

Ui

is a σ-compact open subset of M . By construction, M =
∐

C∈JMC is a disjoint union of
the open (and hence also closed) sets MC . Since (Ui)i∈C is a countable, locally finite cover
of MC by relatively compact, open sets, it suffices to prove our assertion for countable
covers of the MC ’s. We may hence assume that M is σ-compact and that I is countable.
If I is finite, then M is compact and the assertion is trivial. Thus I = N without loss of
generality.

To construct a suitable open cover (Ũn)n∈N, choose a sequence (Kn)n∈N of compact subsets
Kn ⊆ M such that

⋃
n∈NKn = M and such that Kn is contained in the interior (Kn+1)

0,
for each n ∈ N. Define K−1 := K0 := ∅ for convenience of notation. Then Im := {n ∈ N :
(Km \ (Km−1)

0)∩Un 6= ∅} is a finite set, for each m ∈ N, because also the sequence (Un)n∈N
of the closures is locally finite.10 Also Jn := {m ∈ N : n ∈ Im} is a finite set for each n ∈ N:
indeed, there is m0 ∈ N such that Un ⊆ Km0 ; then Un ⊆ (Km)0 for all m ≥ m0 + 1 and
thus Un∩(Km \ (Km−1)

0) = ∅ for all m ≥ m0 +2, entailing that m 6∈ Jn for all m ≥ m0 +2.
For each m ∈ N and n ∈ Im, the set Vm := (Km+1)

0 \Km−2 is an open neighbourhood of
Un∩ (Km \ (Km−1)

0), which is contained in Km+1 and therefore relatively compact. We set

Ũn :=
⋃
m∈Jn Vm; this is a relatively compact, open neighbourhood of Un. Given n,m ∈ N,

we have Km ∩ Ũn =
⋃
m′∈Jn(Km ∩ Vm′), where Km ∩ Vm′ = ∅ unless m′ ≤ m + 2. Let

m′ ≤ m + 2. If m′ ∈ Jn, then n ∈ Im′ . Thus Km ∩ Ũn = ∅ unless n ∈
⋃m+2
m′=1 Im′ , which is

a finite set. It now readily follows that the open cover (Ũn)n∈N of M is locally finite. In
fact, given any x ∈ M we find m ∈ N such that K0

m is an open neighbourhood of x. By

the preceding, Km (and hence K0
m) only meets Ũn for finitely many n. 2

Cut-offs and partitions of unity on finite-dimensional real manifolds are standard tools. To
enable unified proofs, we now discuss analogous concepts also over local fields.

Definition 8.6 Let F be a local field. A Cr
F-partition of unity of a finite-dimensional Cr

F-
manifold M is a family (hi)i∈I of continuous mappings hi : M → {0, 1} ⊆ F, such that the
open and closed sets h−1

i ({1}) are mutually disjoint and cover M .

Note that, being locally constant, each hi is actually Cr
F.

Lemma 8.7 Let M be a σ-compact Cr
F-manifold over a local field F, and (Ui)i∈I be an

open cover of M . Then there exists a partition of unity (hi)i∈I such that supp(hi) ⊆ Ui.

10Every x ∈M has an open neighbourhood U such that {n ∈ N : Un ∩U 6= ∅} is finite. The set U being
open, we have {n ∈ N : Un ∩ U 6= ∅} = {n ∈ N : Un ∩ U 6= ∅}.
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Proof. The assertion is trivial if dim(M) = 0. If d := dim(M) > 0, by Lemma 8.3 we
may assume that M is an open subset of Fd. Let (Brj(aj))j∈J and i(j) for j ∈ J be as in
Lemma 8.4. The family of balls being locally finite, the open sets Vi :=

⋃
j∈J :i(j)=iBrj(aj) ⊆

Ui are also closed. For each i ∈ I, define hi : M → F via hi(x) := 1 ∈ F if x ∈ Vi, hi(x) := 0
otherwise. Then (hi)i∈I is a partition of unity with the desired properties. 2

Lemma 8.8 Let F be a local field, M be a finite-dimensional Cr
F-manifold, K ⊆ M be

compact, and U ⊆ M be an open subset containing K. Then there exists a Cr
F-function

h : M → {0, 1} ⊆ F such that h|K = 1 and h|M\U = 0.

Proof. As each element x ∈ K is contained in some open and compact ball Bx ⊆ U ,
exploiting the compactness of K we find finitely many open and compact balls C1, . . . , Cn ⊆
U such that K ⊆

⋃n
k=1Ck =: W . Then W is an open and closed neighbourhood of K such

that W ⊆ U , and hence h : M → F, h(x) := 1 if x ∈ W , else h(x) := 0 is a function with
the desired properties. 2

Topologies on spaces of vector-valued test functions

For the remainder of this section, F denotes a locally compact, non-discrete topological
field, and K a topological extension field of F, whose topology arises from an absolute
value |.| : K → [0,∞[. We let r ∈ N0 ∪ {∞}.

Definition 8.9 Given a paracompact Cr
F-manifold M , modeled on a finite-dimensional

F-vector space Z, and a (Hausdorff, not necessarily locally convex) topological K-vector
space E, we let

Cr
c (M,E) := {γ ∈ Cr(M,E) : supp(γ) is compact }

be the set of compactly supported E-valued Cr
F-functions on M . Then Cr

c (M,E) is a K-
vector subspace of Cr(M,E), and Cr

c (M,E) =
⋃
K∈K(M) C

r
K(M,E), where K(M) denotes

the set of all compact subsets of M . In the following, we consider three vector topologies
on Cr

c (M,E):

(a) We write Cr
c (M,E)tvs for Cr

c (M,E), equipped with the finest (a priori not necessarily
Hausdorff) vector topology making the inclusion maps λK : Cr

K(M,E) → Cr
c (M,E)

continuous for each compact subset K ⊆ M . Thus Cr
c (M,E)tvs = lim

−→
Cr
K(M,E) in

the category of not necessarily Hausdorff topological K-vector spaces and continuous
K-linear maps.

(b) If E is locally convex, we write Cr
c (M,E)lcx for Cr

c (M,E), equipped with the finest (a
priori not necessarily Hausdorff) locally convex vector topology making the inclusion
maps λK : Cr

K(M,E) → Cr
c (M,E) continuous for each compact subset K ⊆M . Thus

Cr
c (M,E)lcx = lim

−→
Cr
K(M,E) in the category of not necessarily Hausdorff, locally

convex topological K-vector spaces and continuous K-linear maps.
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(c) Given a locally finite cover U = (Ui)i∈I of M by relatively compact, open subsets11

Ui ⊆M , we let ρi : C
r
c (M,E) → Cr(Ui, E) be the restriction map for i ∈ I and define

ρU : Cr
c (M,E) →

⊕
i∈I

Cr(Ui, E), ρU(γ) := (ρi(γ))i∈I = (γ|Ui)i∈I .

We write Cr
c (M,E)box for Cr

c (M,E), equipped with the topology OU induced by ρU ,
where the direct sum is endowed with the box topology.

Lemma 8.10 In the situation of Definition 8.9 (c), assume that both U = (Ui)i∈I and V =
(Vj)j∈J are locally finite covers of M by relatively compact open subsets. Then OU = OV .
In other words, the box topology on Cr

c (M,E) is independent of the choice of U .

Proof. The topologies OU and OV are induced by ρU : Cr
c (M,E) →

⊕
i∈I C

r(Ui, E),
ρU(γ) := (γ|Ui)i∈I and ρV : Cr

c (M,E) →
⊕

j∈J C
r(Vj, E), ρV(γ) := (γ|Vj)j∈J , respectively.

8.11 Given i ∈ I, the set Ji := {j ∈ J : Ui ∩ Vj 6= ∅} is finite, as Ui is relatively compact
and V is a locally finite cover. By Lemma 4.12, the topology on Cr(Ui, E) is initial with
respect to the family (µi,j)j∈Ji of restriction maps

µi,j : Cr(Ui, E) → Cr(Ui ∩ Vj, E), µi,j(γ) := γ|Ui∩Vj .

Likewise, the set Ij := {i ∈ I : Ui ∩ Vj 6= ∅} is finite for each j ∈ J , and the topol-
ogy on Cr(Vj, E) is initial with respect to the family (νj,i)i∈Ij of restriction mappings
νj,i : C

r(Vj, E) → Cr(Ui ∩ Vj, E).

8.12 Let Pi,j be an open 0-neighbourhood of Cr(Ui ∩ Vj, E), for any i ∈ I, j ∈ Ji. Then
Pi :=

⋂
j∈Ji µ

−1
i,j (Pi,j) is an open 0-neighbourhood in Cr(Ui, E) for each i ∈ I and thus

P :=
⊕
i∈I

Pi

is an open 0-neighbourhood in
⊕

i∈I C
r(Ui, E). It is clear from the preceding that the

set B of such open 0-neighbourhoods P is a basis for the filter of 0-neighbourhoods of⊕
i∈I C

r(Ui, E), and hence {ρ−1
U (P ) : P ∈ B} is a basis for the filter of 0-neighbourhoods

of (Cr
c (M,E),OU).

To see that OU = OV , it suffices to show that OU ⊆ OV (as we can interchange U and V).
Since both OU and OV are vector topologies, we only need to show that W ∈ OV for W
ranging through a suitable basis of open 0-neighbourhoods of (Cr

c (M,E),OU). It therefore
suffices to consider W := ρ−1

U (P ) for P ∈ B as in 8.12. Set Qj :=
⋂
i∈Ij ν

−1
j,i (Pi,j) for j ∈ J ;

11Such a cover always exists because M is locally compact and paracompact.
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then Q :=
⊕

j∈J Qj is an open 0-neighbourhood in
⊕

j∈J C
r(Vj, E). For γ ∈ Cr

c (M,E),
we have

γ ∈ W = ρ−1
U (P ) ⇔ ρU(γ) ∈ P ⇔ (∀i ∈ I) γ|Ui ∈ Pi

⇔ (∀i ∈ I) (∀j ∈ Ji) γ|Ui∩Vj ∈ Pi,j
⇔ (∀j ∈ J) (∀i ∈ Ij) γ|Ui∩Vj ∈ Pi,j
⇔ (∀j ∈ J) γ|Vj ∈ Qj ⇔ ρV(γ) ∈ Q ⇔ γ ∈ ρ−1

V (Q) .

Thus W = ρ−1
V (Q) ∈ OV , which completes the proof. 2

Proposition 8.13 Let M be a paracompact Cr
F-manifold, modeled on a finite-dimensional

F-vector space Z, and E be a topological K-vector space. Then the following holds:

(a) The box topology on Cr
c (M,E)box is Hausdorff. For every locally finite cover U =

(Ui)i∈I of M by relatively compact, open subsets Ui ⊆M , the map

ρU : Cr
c (M,E)box →

⊕
i∈I

Cr(Ui, E), ρU(γ) := (γ|Ui)i∈I

has closed image, and ρU |im ρU is an isomorphism of topological vector spaces. The
inclusion map Cr

c (M,E)box → Cr(M,E) is continuous. If E is locally convex, then
Cr
c (M,E)box is locally convex.

(b) The inclusion map λK : Cr
K(M,E) → Cr

c (M,E)box is continuous and induces the
given topology on Cr

K(M,E), for each compact subset K ⊆M .

(c) The map Φ: Cr
c (M,E)tvs → Cr

c (M,E)box, Φ(γ) := γ is continuous. Thus Cr
c (M,E)tvs

is Hausdorff and induces the given topology on each Cr
K(M,E). If F 6= C and M is

σ-compact, then Φ is an isomorphism of topological K-vector spaces.

(d) If E is locally convex, then Ψ: Cr
c (M,E)lcx → Cr

c (M,E)box, Ψ(γ) := γ is continuous.
Hence Cr

c (M,E)lcx is Hausdorff and induces the given topology on each Cr
K(M,E).

If F 6= C and M is σ-compact, then Ψ is an isomorphism of topological K-vector
spaces.

(e) If F is a local field and U = (Ui)i∈I is a cover of M by mutually disjoint, compact
open sets (cf. Lemma 8.3 (b)), then

ρU : Cr
c (M,E)box →

⊕
i∈I

Cr(Ui, E), ρU(γ) := (γ|Ui)i∈I

is an isomorphism of topological vector spaces onto the direct sum, equipped with the
box topology.

(f) If F is a local field and E is locally convex, then Ψ is an isomorphism of topological
vector spaces, i.e., Cr

c (M,E)lcx = Cr
c (M,E)box.
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In particular, Cr
c (M,E)box = Cr

c (M,E)tvs = Cr
c (M,E)lcx if F 6= C and M is σ-compact.

Proof. (a) Let U = (Ui)i∈I be a locally finite cover of M by relatively compact, open sets.
The box topology on

⊕
i∈I C

r(Ui, E) being Hausdorff and ρU : Cr
c (M,E) →

⊕
i∈I C

r(Ui, E)
being injective, the topology Obox induced by ρU on Cr

c (M,E) is Hausdorff and ρU |im ρU is
an isomorphism of topological vector spaces. The box topology on S :=

⊕
i∈I C

r(Ui, E)
is properly finer than the topology induced by the product P :=

∏
i∈I C

r(Ui, E). The
map τ : Cr(M,E) → P , τ(γ) := (γ|Ui)i∈I is a topological embedding with closed image,
by Lemma 4.12. This entails, firstly, that the inclusion map Cr

c (M,E)box → Cr(M,E) is
continuous. Secondly, it entails that im(τ) ∩ S is closed in S. Note that τ(γ) ∈ S implies
that supp(γ) is compact, i.e., γ ∈ Cr

c (M,E). Thus im(ρU) = im(τ)∩S is closed in S. If E
is locally convex, then each of the spaces Cr(Ui, E) is locally convex (Proposition 4.19 (b)),
whence so is the direct sum

⊕
i∈I C

r(Ui, E) (see 6.4) and hence so is Obox.

(b) Let K ⊆ M be compact. For U = (Ui)i∈I as before, there exists a finite subset
J ⊆ I such that Ui ∩ K = ∅ for all i ∈ I \ J . Thus K ⊆

⋃
i∈J Ui =: W . Then the

composition f : Cr
K(M,E) →

⊕
i∈I C

r(Ui, E) of the maps

Cr
K(M,E)

∼=→ Cr
K(W,E) ↪→ Cr(W,E) ↪→

∏
i∈J

Cr(Ui, E) ↪→
⊕
i∈I

Cr(Ui, E)

is a topological embedding, where the first map and the coordinate functions of the second
map are the respective restriction maps (see Lemma 4.24 and Lemma 4.12), and the last
map is inclusion (see 6.3). Since f = ρU ◦ λK , where ρU is a topological embedding, we
deduce that also λK is a topological embedding.

(c) Since λK : Cr
K(M,E) → Cr

c (M,E)box is continuous for each K ∈ K(M), our def-
inition of Cr

c (M,E)tvs shows that the topology on Cr
c (M,E)tvs is finer than the one on

Cr
c (M,E)box, and thus Φ is continuous. Since λK : Cr

K(M,E) → Cr
c (M,E)tvs is continuous

as a map into Cr
c (M,E)tvs and Φ ◦ λK : Cr

K(M,E) → Cr
c (M,E)box is a topological embed-

ding by (b), also λK : Cr
K(M,E) → Cr

c (M,E)tvs is a topological embedding.

We now assume that M is σ-compact, and we assume that F is not isomorphic to C as
a topological field; then F is a local field or F ∼= R (see [78]). We have to show that
Cr
c (M,E)box = lim

−→
Cr
K(M,E) in the category of topological vector spaces, with limit maps

λK : Cr
K(M,E) → Cr

c (M,E)box. We already know from (b) that each λK is continuous;
thus (Cr

c (M,E)box, (λK)K∈K(M)) is a cone in the category of topological K-vector spaces and
continuous K-linear maps. To see that it is a direct limit cone, suppose that (fK)K∈K(M) is
a family of continuous linear maps fK : Cr

K(M,E) → F into a topological K-vector space F
such that fL|CrK(M,E) = fK whenever K ⊆ L. Then f : Cr

c (M,E)box → F , f(γ) := fK(γ)
if supp(γ) ⊆ K is well-defined and is the unique linear map Cr

c (M,E)box → F such that
f ◦ λK = fK for each K. To establish the desired direct limit property, it only remains to
show that f is continuous.

Let U = (Ui)i∈I be as before; M being σ-compact, we may assume that I is countable.
We pick a Cr

F-partition of unity (hi)i∈I of M such that supp(hi) ⊆ Ui for each i ∈ I
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(see Lemma 8.7 when F is a local field; the real case is standard). Since Ui is relatively
compact, Ki := supp(hi) ⊆ Ui is compact. Let ei : C r

Ki
(Ui, E) → C r

Ki
(M,E) be the

isomorphism of topological vector spaces which extends functions by 0 (cf. Lemma 4.24).
Then gi : Cr(Ui, E) → F , gi := fKi ◦ ei ◦ µhi is a continuous linear mapping, where µhi :
Cr(Ui, E) → C r

Ki
(Ui, E) is the multiplication operator defined via µhi(γ) := hi|Ui ·γ, which

is continuous linear (in view of Lemma 1.15 and Lemma 4.12, applied with a cover of co-
ordinate neighbourhoods, this assertion can be reduced to Lemma 4.5). By the universal
property of the countable direct sum S :=

⊕
i∈I C

r(Ui, E) (see 6.5), the linear map

g : S → F, (γi)i∈I 7→
∑
i∈I

gi(γi)

(where γi ∈ Cr(Ui, E)) is continuous, because so is each gi. Given γ ∈ Cr
c (M,E), we

calculate gi(γ|Ui) = f(ei(hi|Ui · γ|Ui)) = f(ei((hi · γ)|Ui)) = f(hi · γ), whence g(ρU(γ)) =∑
i∈I gi(γ|Ui) =

∑
i∈I f(hi · γ) = f(

∑
i∈I hi · γ) = f(γ). Thus g ◦ ρU = f , and so f is

continuous on Cr
c (M,E)box, as required; the direct limit property is fully established.

(d) Since Cr
c (M,E)box is locally convex for locally convex E (see (a)), we can repeat the

proof of (c), except that topological vector spaces have to be replaced with locally convex
spaces.

(e) By the definition of the box topology, ρU is a topological embedding. Each of the
sets Ui being compact and open, given (γi)i∈I ∈

⊕
i∈I C

r(Ui, E) the map γ : M → E
defined via γ(x) := γi(x) for x ∈ Ui is Cr

F and compactly supported. Thus γ ∈ Cr
c (M,E),

and ρU(γ) = (γi)i∈I by definition of γ. Thus ρU is also surjective, and thus ρU is an
isomorphism of topological vector spaces.

(f) Assume that f : Cr
c (M,E)box → F is a linear map into a locally convex topo-

logical K-vector space F such that f ◦ λK is continuous for each K ∈ K(M). Let
U = (Ui)i∈I be as in (e). Then f |CrUi (M,E) is continuous in particular for each i ∈ I,

and hence so is gi := f ◦ ei : Cr(Ui, E) → F , where ei : Cr(Ui, E) → Cr
Ui

(M,E) is the
isomorphism of topological vector spaces obtained as the inverse of the restriction map
Cr
Ui

(M,E) → Cr(Ui, E) (see Lemma 4.24). Since the box topology makes
⊕

i∈I C
r(Ui, E)

the category-theoretical locally convex direct sum in the present situation (see Remark 6.7),
the map g :

⊕
i∈I C

r(Ui, E) → F , g((γi)i∈I) :=
∑

i∈I gi(γi) is continuous linear. Hence also
f = g ◦ ρU is continuous. 2

Convention 8.14 Throughout the following, spaces of vector-valued test functions will
always be equipped with the box topology, and we abbreviate Cr

c (M,E) := Cr
c (M,E)box.

Remark 8.15 If F = K = R, M is σ-compact and E is locally convex, then the box
topology on Cr

c (M,E) coincides with the locally convex topology traditionally considered
on this space of test functions, by Proposition 4.19 (d) and Proposition 8.13 (d).
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Remark 8.16 As we shall mainly need spaces of test functions with values in locally
convex spaces over local fields in the following (for example, in our discussion of diffeomor-
phism groups), we have chosen to work with the box topology, which is the appropriate
topology on Cr

c (M,E) in this case, even for non-σ-compact M (see Proposition 8.13 (f)).
If M is a non-σ-compact, paracompact finite-dimensional manifold over R and E a real
locally convex space, it is certainly more natural to work with the (finer) locally convex
direct limit topology on Cr

c (M,E), and study differentiability properties of mappings be-
tween spaces of test functions topologized in this way. We did not find it advantageous
(nor necessary) to discuss this situation in parallel here; the interested reader can find a
separate discussion in [32] and [33] (cf. also [57]).

Remark 8.17 Spaces of compactly supported sections in vector bundles can be treated
much in the same way as spaces of test functions. However, the only vector bundles we
shall really have to work with in our Lie group constructions (of diffeomorphism groups)
are the tangent bundles of paracompact finite-dimensional smooth manifolds M over local
fields K. Since any vector bundle over such a manifold M is trivial (as a consequence of
Lemma 8.3 (b) and Lemma 8.4), it is not necessary for our purposes to introduce the addi-
tional machinery required to discuss spaces of sections and vector bundles, and so we de-
cided to defer their discussion to an appendix (Appendix F). The only facts we shall really
use are the following: 1. For each paracompact, finite-dimensional Cr

K-manifold M and dis-
joint cover (Bi)i∈I by open and compact balls, the map Cr

c (M,TM) →
⊕

i∈I C
r(Bi, TBi),

σ 7→ (σ|Bi)i∈I is an isomorphism of topological vector spaces (Proposition F.19 (e)). 2. If
κ : M → B is a Cr

K-diffeomorphism from a d-dimensional Cr
K-manifold M onto a metric

ball B ⊆ Kd, then Cr(M,TM) → Cr(B,Kd), σ 7→ (x 7→ (dκi) ◦σ ◦κ−1) is an isomorphism
of topological K-vector spaces (cf. Lemma F.9 and Lemma 4.9).

Patched topological vector spaces and patched mappings

To formalize the situation encountered in Proposition 8.13 (a), we now introduce the notion
of a “patched” topological vector space. Roughly speaking, this is a topological vector
space, together with an embedding into a direct sum. We then discuss differentiability
properties of mappings between patched topological vector spaces. The general results
obtained here shall allow us to transfer our discussion of pushforwards to the case of test
functions (Proposition 8.22). We shall also derive certain very convenient criteria ensuring
differentiability properties for mappings between spaces of test functions (Section 10).

For analogous discussions (and applications) of “patched locally convex spaces” based on
locally convex direct sums, we refer to [32] and [33].

Definition 8.18 A patched topological vector space over a valued field (K, |.|) is a pair
(E, (pi)i∈I), where E is a topological K-vector space and (pi)i∈I a family of continuous
linear maps pi : E → Ei to certain topological vector spaces Ei, such that

(a) For each x ∈ E, the set {i ∈ I : pi(x) 6= 0} is finite;
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(b) The linear map

p : E →
⊕
i∈I

Ei , x 7→ (pi(x))i∈I =
∑
i∈I

pi(x)

from E to the direct sum
⊕

i∈I Ei (equipped with the box topology) is a topological
embedding;

(c) The image p(E) is sequentially closed in
⊕

i∈I Ei.

The mappings pi : E → Ei are called patches, and the family (pi)i∈I is called a patchwork.

We retain the notation introduced earlier in this section.

Example 8.19 Let M be a paracompact, finite-dimensional Cr
F-manifold over F (where

r ∈ N0 ∪ {∞}), and E be a topological K-vector space. Let (Ui)i∈I be a locally finite open
cover of M by relatively compact, open subsets Ui ⊆ M and ρi : C

r
c (M,E) → Cr(Ui, E),

ρi(γ) := γ|Ui be the restriction map for i ∈ I. Then

(Cr
c (M,E), (ρi)i∈I)

is a patched topological vector space, by Proposition 8.13 (a).

We now discuss mappings between open subsets of patched topological vector spaces.

Definition 8.20 Let (E, (pi)i∈I) and (F, (qi)i∈I) be patched topological K-vector spaces
over the same index set I. Let p : E →

⊕
i∈I Ei and q : F →

⊕
i∈I Fi be the canonical

embeddings.

(a) A map f : U → F , defined on an open subset U of E, is called a patched mapping if
there exists a family (fi)i∈I of mappings fi : Ui → Fi on certain open neighbourhoods
Ui of pi(U) in Ei, which is compatible with f in the following sense: we have 0 ∈ Ui
and fi(0) = 0 for all but finitely many i, and qi(f(x)) = fi(pi(x)) for all i ∈ I, i.e.,
q ◦ f = (⊕fi) ◦ p|⊕UiU .

(b) Given k ∈ N0 ∪ {∞}, we say that a patched mapping f : U → F as before is of class
Ck

K on the patches if all of the mappings fi in (a) can be chosen of class Ck
K.

Proposition 8.21 Let (E, (pi)i∈I) and (F, (qi)i∈I) be patched topological K-vector spaces
over the same index set I. Assume that f : U → F is a patched mapping from an open
subset U ⊆ E to F . If f is of class Ck

K on the patches, then f is of class Ck
K.

Proof. Let pi : E → Ei and qi : F → Fi be the patches of E, resp., F . If f is of class Ck
K on

the patches, then there exists a family (fi)i∈I of Ck
K-maps fi : Ui → Fi, which is compatible

with f . By Proposition 6.9, the map g := ⊕i∈Ifi :
⊕

i∈I Ui →
⊕

i∈I Fi, g(
∑

i∈I ui) :=∑
i∈I fi(ui) is of class Ck

K. The linear map p : E →
⊕

i∈I Ei, p(x) :=
∑

i∈I pi(x) being

continuous, the composition g ◦ p|⊕UiU is Ck
K. But g ◦ p|⊕UiU = q ◦ f , where q : F →

⊕
i∈I Fi,
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q(y) :=
∑

i∈I qi(y), since g(p(x)) =
∑

i∈I fi(pi(x)) =
∑

i∈I qi(f(x)) = q(f(x)) for all x ∈ U .
By the preceding, the map q◦f is of class Ck

K. Its image being contained in the sequentially
closed vector subspace Q := im q of

⊕
i∈I Fi, Lemma 1.15 shows that also the co-restriction

(q◦f)|Q is of class Ck
K. As q|Q is an isomorphism of topological vector spaces (by the axioms

of a patched topological vector space), we see that also f = (q|Q)−1 ◦ (q ◦ f)|Q is Ck
K. 2

Example: Pushforwards of compactly supported functions

We now establish an analogue of Proposition 4.20 for pushforwards between spaces of
test functions. The idea is to use the technique of patched topological vector spaces to
reduce the assertion to Proposition 4.23 (a). A further generalization to mappings between
spaces of compactly supported sections in vector bundles is provided in Appendix F (the
“Ω-Lemma with parameters”). In the real locally convex case, stronger and much more
refined results are available: see [32].

Proposition 8.22 Let E, F and Z̃ be topological K-vector spaces, U ⊆ E an open zero-
neighbourhood, r, k ∈ N0 ∪ {∞}, M̃ be a K-manifold of class Cr+k

K modeled on Z̃, and

f̃ : M̃ × U → F be a mapping of class Cr+k
K . Let M be a paracompact, finite-dimensional

F-manifold of class Cr
F. Given a mapping σ : M → M̃ of class Cr

F, we define f :=
f̃ ◦ (σ × idU) : M × U → F . We assume that there exists a compact subset K ⊆ M such
that f(x, 0) = 0 for all x ∈ M \K. Then Cr

c (M,U) := {γ ∈ Cr
c (M,E) : γ(M) ⊆ U} is an

open subset of Cr
c (M,E), equipped with the box topology, and

f∗ : C
r
c (M,U) → Cr

c (M,F ), f∗(γ)(x) := f(x, γ(x))

is a mapping of class Ck
K.

Proof. There exist locally finite covers V := (Vi)i∈I and U := (Ui)i∈I of M by relatively
compact, open sets Vi (resp., Ui), such that Ki := Vi ⊆ Ui for all i ∈ I (cf. Lemma 8.5).

To see that Cr
c (M,U) is open in Cr

c (M,E), note that bKi, Ucr ⊆ Cr(Ui, E) is an open 0-
neighbourhood, and thusQ :=

⊕
i∈I bKi, Ucr is an open 0-neighbourhood in

⊕
i∈I C

r(Ui, E).
By definition of the box topology on Cr(M,E), the map ρU : Cr

c (M,E) →
⊕

i∈I C
r(Ui, E),

ρU(η) := (η|Ui)i∈I is continuous. Hence ρ−1
U (Q) is an open 0-neighbourhood in Cr

c (M,E).
Since

ρ−1
U (Q) = { γ ∈ Cr

c (M,E) : (∀i ∈ I) γ(Ki) ⊆ U } ,

where M =
⋃
i∈I Ki, we have ρ−1

U (Q) = Cr
c (M,U). Hence Cr

c (M,U) is an open 0-
neighbourhood, as required.

To see that f∗ is Ck
K, we shall exploit that (Cr

c (M,E), (ρi)i∈I) and (Cr
c (M,F ), (τi)i∈I) are

patched topological vector spaces, with the patches

ρi : C
r
c (M,E) → Cr

c (Ui, E), ρi(γ) := γ|Ui and
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τi : C
r
c (M,F ) → Cr

c (Vi, F ), τi(γ) := γ|Vi ,

respectively (see Example 8.19). The map fi := f |Ui×U : Ui × U → F being of the form

f̃ ◦ (σ|Ui × idU), the pushforward

(fi)∗ : bKi, Ucr → Cr(Vi, F )

is Cr
K on the open subset bKi, Ucr ⊆ Cr(Ui, E), by Proposition 4.23 (a) (applied with a

singleton parameter set P ). Apparently ρi(C
r
c (M,U)) ⊆ bKi, Ucr for each i ∈ I, and the

family of mappings ((fi)∗)i∈I is compatible with f∗, i.e., τi ◦ f∗ = (fi)∗ ◦ ρi for all i ∈ I.
Thus f∗ is a patched mapping. Every (fi)∗ being Ck

K, the map f∗ is Ck
K on the patches and

hence Ck
K, by Proposition 8.21. 2

Corollary 8.23 Let E and F be topological K-vector spaces and f : U → F be a mapping
of class Cr+k

K , defined on an open zero-neighbourhood U ⊆ E, such that f(0) = 0. Let M
be a paracompact, finite-dimensional F-manifold of class Cr

F. Then

Cr
c (M, f) : Cr

c (M,U) → Cr
c (M,F ), γ 7→ f ◦ γ

is a mapping of class Ck
K.

Proof. Let M̃ := {0} be a singleton smooth K-manifold, and σ : M → M̃ , x 7→ 0, which

apparently is a Cr
F-map. Then g̃ : M̃ ×U → F , g̃(0, u) := f(u) is a mapping of class Cr+k

K ,
and Cr

K(M, f) = g∗ for g := g̃ ◦ (σ × idU). By Proposition 8.22, g∗ is Ck
K. 2

9 Test function groups and algebras of test functions

As in Section 8, let F be a locally compact topological field and K be a valued field which
is a topological extension field of F. Let r ∈ N0 ∪ {∞}. In view of Proposition 8.22 and
Corollary 8.23, we can re-use the arguments from Section 5 to obtain the following:

Proposition 9.1 Let M be a paracompact, finite-dimensional F-manifold of class Cr
F.

(a) If A is a topological K-algebra, then also Cr
c (M,A) is a topological K-algebra (using

pointwise multiplication).

(b) If A is an associative topological K-algebra and E a topological A-module, then
Cr
c (M,E) is a topological Cr

c (M,A)-module.

(c) If G is a K-Lie group modeled on a topological K-vector space E, then

Cr
c (M,G) := {γ ∈ Cr(M,G) : γ−1(G \ {1}) is compact }
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can be given a C∞K -manifold structure modeled on the topological K-vector space
Cr
c (M,E) in one and only one way, such that Cr

c (M,G) becomes a K-Lie group
and such that Cr

c (M,Uφ) := Cr
c (M,G) ∩ (Uφ)M is open in Cr

c (M,G) and

Cr
c (M,φ) : Cr

c (M,Uφ) → Cr
c (M,Vφ), γ 7→ φ ◦ γ

is a C∞K -diffeomorphism onto the open subset Cr
c (M,Vφ) ⊆ Cr

c (M,E), for some chart
φ : Uφ → Vφ ⊆ E of G around 1 such that φ(1) = 0. 2

The Lie groups Cr
c (M,G) described in (c) are also called test function groups .

10 Differentiability of almost local mappings

We describe a criterion ensuring differentiability properties for mappings between open
subsets of spaces of vector-valued test functions (equipped with the box topology). Cf.
[32], [33], [27] and their precursor [25] for analogous results in the real locally convex case,
based on the locally convex direct limit topology.

10.1 Our general setting is the following: F is the field of real numbers or a local field,
and K a valued field which is a topological extension field of F. 12 For r, s, k ∈ N0 ∪ {∞},
we are given a paracompact, finite-dimensional F-manifold M of class Cr

F; a paracompact,
finite-dimensional F-manifold N of class Cs

F; and topological K-vector spaces E and F . We
consider a mapping f : P → Cs

c (N,F ), defined on an open subset P ⊆ Cr
c (M,E).

Our investigations are stimulated by the following question:

10.2 Question. If f |P∩CrK(M,E) is of class Ck
K for all compact subsets K ⊆ M , does it

follow that f is Ck
K ?

The answer is negative. For example, the self-map

f : C∞c (R,R) → C∞c (R,R), γ 7→ γ ◦ γ − γ(0)

of the space of real-valued test functions on the line is discontinuous at γ = 0, although
f |C∞K (R,R) is smooth, for all compact subsets K ⊆ R (see [31]).

The goal of this section is to describe a simple additional condition which prevents the
type of pathology just described. As we shall see, Question 10.2 has an affirmative answer
if we require in addition that f be “almost local.” Being almost local is a rather mild
condition, which is satisfied by most of the mappings of relevance, for example by all
mappings encountered in the construction of the Lie group structure on groups of compactly
supported diffeomorphisms of finite-dimensional smooth manifolds over the reals (see [33]).

12The case F = C has to be excluded now, since we have to use compactly supported cut-off functions.
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Definition 10.3 (a) A map f : P → Cs
c (N,F ) (as in 10.1) is called almost local if there

exist locally finite covers (Ui)i∈I of M and (Vi)i∈I of N by relatively compact, open sets
such that, for all i ∈ I and γ, η ∈ P with γ|Ui = η|Ui , we have f(γ)|Vi = f(η)|Vi . 13

(b) A map f : P → Cs
c (N,F ) is called locally almost local if every γ ∈ P has an open

neighbourhood Q ⊆ P such that f |Q is almost local.

(c) In the special case where M = N , we call f : P → Cs
c (M,F ) a local mapping if, for all

x ∈M and γ ∈ P , the element f(γ)(x) only depends on the germ of γ at x.14 It is easy to
see that every local mapping is almost local.

Cf. already [46, Defn. 14.13] for the related notion of a “local operator.”

Theorem 10.4 (Smoothness Theorem) Let f : Cr
c (M,E) ⊇ P → Cs

c (N,F ) be a map
as described in 10.1. If fK := f |P∩CrK(M,E) is of class Ck

K for every compact subset K ⊆M

and f is locally almost local, then f is of class Ck
K.

Proof. We proceed in steps.

10.5 Given γ ∈ P , there exists an open neighbourhood Q of γ in P such that f |Q is
almost local. As γ was arbitrary, the assertion will follow if we can show that f |W is
of class Ck

K for some open neighbourhood W of γ in Q. To this end, it suffices to show
that the mapping g : Q − γ → Cs

c (N,F ), g(η) := f(γ + η) − f(γ) is of class Ck
K on some

open zero-neighbourhood. As f |Q is almost local, we find locally finite covers (Ui)i∈I of M
and (Vi)i∈I of N , with each Ui and Vi relatively compact and open, such that f(η)|Vi only
depends on η|Ui , for all η ∈ Q. Then apparently also g(η)|Vi = g(ξ)|Vi for all η, ξ ∈ Q− γ
such that η|Ui = ξ|Ui , showing that also g is almost local. Furthermore, given a compact
subset K ⊆ M , the map g|(Q−γ)∩CrK(M,E) is of class Ck

K, since so is the restriction of f to
Q ∩ Cr

K∪supp(γ)(M,E). We abbreviate R := Q− γ.

10.6 We pick a locally finite open cover (Ũi)i∈I of M such that Ui ⊆ Ũi holds for the
compact closures, for all i ∈ I; such a “thickening” exists by Lemma 8.5. For each i ∈ I, we
pick a mapping hi ∈ Cr(Ũi,F), with compact support Ki := supp(hi), which is constantly 1
on Ui (see Lemma 8.8 if F is a local field; the real case is standard).

10.7 By Example 8.19, the family (ρi)i∈I of restriction maps ρi : C
r
c (M,E) → Cr(Ũi, E) is a

patchwork for Cr
c (M,E). We let ρ : Cr

c (M,E) →
⊕

i∈I C
r(Ũi, E) =: S be the corresponding

embedding taking η to
∑

i∈I ρi(η). Similarly, the family (σi)i∈I of restriction maps σi :
Cs
c (N,F ) → Cs(Vi, F ) is a patchwork for Cs

c (N,F ).

10.8 The mapping ρ being a topological embedding, we find an open 0-neighbourhood
H ⊆ S such that ρ−1(H) ⊆ R. The direct sum being equipped with the box topol-
ogy, after shrinking H we may assume that H =

⊕
i∈I Ai for a family (Ai)i∈I of open 0-

neighbourhoodsAi ⊆ Cr(Ũi, E). The multiplication operator µhi : C
r(Ũi, E) → Cr

Ki
(Ũi, E),

13In other words, f(γ)|Vi only depends on γ|Ui .
14More precisely, we require f(γ)(x) = f(η)(x) for all x ∈M and γ, η ∈ P with the same germ at x.
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η 7→ hi · η is continuous linear (in view of Lemma 1.15 and Lemma 4.12, applied with a
cover of coordinate neighbourhoods, this assertion can be reduced to Lemma 4.5). Hence,
we find an open zero-neighbourhood Wi ⊆ Ai such that hi ·Wi ⊆ R, where we identify
C r
Ki

(Ũi, E) with C r
Ki

(M,E) ⊆ Cr
c (M,E) as a topological K-vector space in the natural

way, extending functions by 0 (cf. Lemma 4.24). Then W := ρ−1(
⊕

i∈IWi) ⊆ R is an open
zero-neighbourhood in Cr

c (M,E) such that ρi(W ) ⊆ Wi for each i ∈ I. We define

gi : Wi → Cs(Vi, F ), gi := σi ◦ g|R∩CrKi (M,E) ◦ µhi|RWi
.

Then gi is of class Ck
K, being a composition of Ck

K-maps. Note that σi(g(η)) = g(η)|Vi =
g(hi · η)|Vi = gi(η|Ũi) for each η ∈ W and i ∈ I. Thus (gi)i∈I is compatible with g|W in the
sense of Definition 8.20. We have shown that g|W is a patched mapping which is of class
Ck

K on the patches. By Proposition 8.21, g|W is of class Ck
K. 2

11 Smoothness of evaluation and composition

We discuss differentiability properties of evaluation and composition of maps.

Proposition 11.1 Let K be a locally compact topological field, k ∈ N0 ∪{∞}, M a finite-
dimensional Ck

K-manifold, and E a topological K-vector space. Then the “evaluation map”

ε : Ck(M,E)×M → E, ε(γ, x) := γ(x)

is of class Ck
K.

Proof. Given x ∈M , let κ : U → V be a chart of M around x, where V is an open subset of
the modeling space Z of M . Then ε(γ, κ−1(y)) = (γ ◦κ−1)(y) = ε̃(Ck(κ−1, E)(γ), y) for all
y ∈ V , in terms of the evaluation map ε̃ : Ck(V,E)×V → E and the pullback Ck(κ−1, E) :
Ck(M,E) → Ck(V,E) which is continuous linear and thus smooth (Lemma 4.11). It
therefore suffices to consider the case where M = V is an open subset of a finite-dimensional
K-vector space Z. The inclusion map C∞(V,E) → Ck(V,E) being continuous linear for
all k ∈ N0 (Remark 4.2 (a)), it also suffices to consider finite k. We proceed by induction.

The case k = 0 is well known (see, e.g., [16], Thm. 3.4.3 and Prop. 2.6.11).

Induction step. Given k ∈ N, suppose that the assertion of the lemma holds if k is replaced
with k − 1. Given (γ, x, η, y, t) ∈ (Ck(V,E)× V )[1] such that t 6= 0, we calculate

1
t
(ε(γ + tη, x+ ty)− ε(γ, x)) = 1

t
(γ(x+ ty)− γ(x)) + η(x+ ty)

= γ[1](x, y, t) + η(x+ ty) . (21)

Let ε1 : Ck−1(V [1], E) × V [1] → E denote the evaluation map, which is of class Ck−1
K by

induction. Then, using Remark 4.2 (b),

θ : (Ck(V,E)× V )[1] → E, θ(γ, x, η, y, t) := ε(η, x+ ty) + ε1(γ
[1], (x, y, t))
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is a mapping of class Ck−1
K . In view of (21), we deduce that ε is of class C1

K, with ε[1] = θ
of class Ck−1

K , and thus ε is of class Ck
K, which completes the inductive proof. 2

Let us turn to the composition map now. We shall show:

Proposition 11.2 Let K be a locally compact topological field, E a topological K-vector
space, r, k ∈ N0 ∪ {∞}, M be a finite-dimensional Cr

K-manifold, F a finite-dimensional
K-vector space, U ⊆ F be open, and K ⊆M compact. Then the composition map

Γ: Cr+k(U,E)× Cr
K(M,U) → Cr(M,E), Γ(γ, η) := γ ◦ η

is of class Ck
K. If k ≥ 1, then

dΓ(γ, η, γ1, η1) = dγ ◦ (η, η1) + γ1 ◦ η (22)

for all γ, γ1 ∈ Cr+k(U,E), η ∈ Cr
K(M,U), and η1 ∈ Cr

K(M,F ).

If U = F , then we need not assume that M be finite-dimensional. In this case, we have:

Proposition 11.3 Let K be a locally compact topological field, E a topological K-vector
space, r, k ∈ N0 ∪ {∞}, M a Cr

K-manifold, modeled on an arbitrary topological K-vector
space, and F be a finite-dimensional K-vector space. Then the composition map

Γ: Cr+k(F,E)× Cr(M,F ) → Cr(M,E), Γ(γ, η) := γ ◦ η

is of class Ck
K. If k ≥ 1, then

dΓ(γ, η, γ1, η1) = dγ ◦ (η, η1) + γ1 ◦ η (23)

for all γ, γ1 ∈ Cr+k(F,E) and η, η1 ∈ Cr(M,F ).

For finite-dimensional M , both propositions are immediate consequences of the following
technical result, which we prove now. A direct proof for Proposition 11.3 (including the
case of infinite-dimensional M) is given in Appendix C.

Lemma 11.4 Let K be a locally compact topological field, E a topological K-vector space,
r, k ∈ N0 ∪ {∞}, M a finite-dimensional Cr

K-manifold, F a finite-dimensional K-vector
space, U an open subset of F , K a compact subset of M , and Y ⊆ K0 be a non-empty,
open subset. Let H be a finite-dimensional K-vector space, and P ⊆ H be open. Then

Θ: Cr+k(U × P,E)× bK,Ucr × P → Cr(Y,E), Θ(γ, η, p) := γ(•, p) ◦ η|Y ,

where bK,Ucr ⊆ Cr(M,F ), is a mapping of class Ck
K. If k ≥ 1, then

Θ[1]((γ, η, p), (γ1, η1, p1), t)

= γ[1]((•, p), (•, p1), t) ◦ (η, η1)|Y + γ1(•, p+ tp1) ◦ (η + tη1)|Y (24)
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for all ((γ, η, p), (γ1, η1, p1), t) ∈ (Cr+k(U × P,E)× bK,Ucr × P )[1].

Hence, as a special case, the map

Γ: Cr+k(U,E)× bK,Ucr → Cr(Y,E), Γ(γ, η) := γ ◦ η|Y

is of class Ck
K. If k ≥ 1, then

Γ[1]((γ, η), (γ1, η1), t) = γ[1](•, t) ◦ (η, η1)|Y + γ1 ◦ (η + tη1)|Y (25)

for all ((γ, η), (γ1, η1), t) ∈ (Cr+k(U,E)× bK,Ucr)[1]. In particular,

dΓ((γ, η), (γ1, η1)) = dγ ◦ (η, η1)|Y + γ1 ◦ η|Y (26)

for all γ, γ1 ∈ Cr+k(U,E), η ∈ bK,Ucr, and η1 ∈ Cr(M,F ).

Remark 11.5 In the real or complex locally convex case, the desired properties of Γ can
be established directly, without recourse to parameters. In the general case envisaged here,
a direct induction without parameter sets (based on Proposition 11.1 and Lemma 12.1)

would only show that Γ is Ck
K when Cr+k(U,E) is replaced with Cr+ 1

2
k(k+1)(U,E), due to

the loss in the order of differentiability in Lemma 12.1.

Proof of Lemma 11.4. Clearly, we only need to prove the assertions concerning Θ:
then also Γ will have the asserted properties. It suffices to consider finite k ∈ N0 (cf.
Remark 4.2 (a)). We may also assume that r ∈ N0 (cf. proof of Proposition 4.16). Thus,
we assume that both r and k are finite, and prove the assertion by induction on k.

The case k = 0

We proceed by induction on r. Let us suppose that r = 0 first. We recall that the
topology we have defined on spaces of C0-maps coincides with the compact-open topology
(Remark 4.10). For (γ, η, p) ∈ C(U × P,E)× bK,Uc × P , we have

Θ(γ, η, p) = Γ̃ (γ, η|Y ×idP ) (•, p) , where (27)

Γ̃ : C(U×P, E)c.o. × C(Y ×P, U×P )c.o. → C(Y ×P, E)c.o., Γ̃(σ, τ) := σ ◦ τ

is the composition map, which is continuous since U×P is locally compact [16, Thm. 3.4.2].
It easily follows from the definition of the compact-open topology that the mapping
bK,Uc → C(Y × P,U × P )c.o., η 7→ η|Y × idP is continuous. The map

f∨ : P → C(Y,E) , f∨(p) := f(•, p)

is continuous for f ∈ C(Y × P,E), and also the map C(Y × P,E) → C(P,C(Y,E)),
f 7→ (f∨ : p 7→ f(•, p)) is continuous [16, Thm. 3.4.7]. Furthermore, P being locally
compact, the evaluation map ε : C(P,C(Y,E)) × P → C(Y,E) is continuous (cf. [16],

Thm. 3.4.3 and Prop. 1.6.11). Reading (27) as Θ(γ, η, p) = ε(Γ̃(γ, η|Y × idP )∨, p), we see
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that Θ is continuous.

Induction step on r. Let r ∈ N, and suppose that the proposition holds for k = 0, when r
is replaced with r − 1. It then suffices to show continuity of Θ in the case where M is an
open subset of its modeling space Z. In fact, suppose that M is a Cr

K-manifold. For each
y ∈ Y , there exists a chart κy : Wy → Vy ⊆ Z of Y around y. Let Ly ⊆ Wy be a compact
neighbourhood of y, and Ky := κy(Ly); let Yy := K0

y be the interior of Ky. Since (L0
y)y∈Y

is an open cover of Y , we deduce with Lemma 4.12 that Θ will be continuous if we can
show that

hy : Cr(U × P,E)× bK,Ucr × P → Cr(Yy, E), hy(γ, η, p) := Θ(γ, η, p) ◦ κ−1
y |Yy

is continuous, for all y ∈ Y . But

hy(γ, η, p) = γ(•, p) ◦ (η ◦ κ−1
y )|Yy = Θy(γ, η ◦ κ−1

y , p) (28)

with Θy : Cr(U × P,E) × bKy, Ucr × P → Cr(Yy, E), Θy(γ, σ, p) := γ(•, p) ◦ σ|Yy , where
bKy, Ucr ⊆ Cr(Vy, F ). Note that the pullback Cr(M,F ) → Cr(Vy, F ), η 7→ η ◦ κ−1

y is
continuous linear (Lemma 4.11) and takes the open set bK,Ucr into bKy, Ucr. Thus (28)
shows that hy will be continuous if each Θy is continuous. Since Vy is open in Z, this
completes the reduction step to the case where M is open in Z.

To complete the induction step on r in the case k = 0, by the preceding we may assume
now that M is an open subset of Z. The map Θ: Cr(U ×P,E)×bK,Ucr×P → Cr(Y,E)
is continuous as a map into C(Y,E), by the case r = 0 already settled and Remark 4.2 (a).
Hence, in view of Remark 4.2 (b), Θ will be continuous if we can show that the map

Cr(U × P,E)× bK,Ucr × P → Cr−1(Y [1], E), (γ, η, p) 7→ Θ(γ, η, p)[1]

is continuous at each given element (γ0, η0, p0) in its domain, where

Θ(γ, η, p)[1](x, y, t) = γ[1]((η(x), p), (η[1](x, y, t), 0), t) (29)

for all (x, y, t) ∈ Y [1], by the Chain Rule. Let (x0, y0, t0) ∈ Y [1] be given. There exist open

neighbourhoods U1 ⊆ U of η0(x0), U2 ⊆ F of η
[1]
0 (x0, y0, t0) and U3 ⊆ K of t0, such that

U1 × P × U2 × {0} × U3 ⊆ (U × P )[1]. Then

ρ : Cr−1((U × P )[1], E) → Cr−1(U1 × U2 × U3 × P,E), ρ(ξ)(x, y, t, p) := ξ(x, p, y, 0, t)

is a continuous linear map (Lemma 4.11). There exist open neighbourhoods V1 ⊆ Y of
x0, V2 ⊆ Z of y0, and V3 ⊆ U3 of t0 such that η0(V1) ⊆ U1, V1 × V2 × V3 ⊆ Y [1], and

η
[1]
0 (V1 × V2 × V3) ⊆ U2. There exist compact neighbourhoods K1 ⊆ V1 of x0, K2 ⊆ V2

of y0, and K3 ⊆ V3 of t0. Set Yi := K0
i for i = 1, 2, 3. By induction, the map

Θ̃ :Cr−1(U1×U2× U3×P,E)×bK1×K2 ×K3, U1×U2×U3cr−1×P→ Cr−1(Y1×Y2×Y3, E)
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taking (σ, τ, p) to σ(•, p)◦ τ |Y1×Y2×Y3 is continuous; here bK1×K2×K3, U1×U2×U3cr−1 ⊆
Cr−1(V1 × V2 × V3, F × F ×K). Note that

Ω :=
{
η ∈ bK,Ucr ∩ bK1, U1cr : η[1]|V1×V2×V3 ∈ bK1 ×K2 ×K3, U2cr−1

}
is an open neighbourhood of η0 in bK,Ucr. Furthermore, by Lemma 4.11, the map

h : Ω → bK1 ×K2 ×K3, U1 × U2 × U3cr−1, h(η) :=
(
η ◦ π1, η

[1]|V1×V2×V3 , π3

)
is continuous, where π1 : V1 × V2 × V3 → V1 and π3 : V1 × V2 × V3 → V3 ⊆ U3 are the
coordinate projections. Since, by (29) and the definition of ρ and h, we have

Θ(γ, η, p)[1]|Y1×Y2×Y3 = Θ̃(ρ(γ[1]), h(η))

for all p ∈ P , γ ∈ Cr(U × P,E), and η ∈ Ω, we see that (γ, η, p) 7→ Θ(γ, η, p)[1]|Y1×Y2×Y3 ∈
Cr−1(Y1 × Y2 × Y3, E) is continuous at (γ0, η0, p0). Since Y [1] can be covered by sets of
the form Y1 × Y2 × Y3 as before, using Lemma 4.12 we now deduce that the mapping
(γ, η, p) 7→ Θ(γ, η, p)[1] ∈ Cr−1(Y [1], E) is continuous at (γ0, η0, p0), as desired.

Induction step on k

Let k ∈ N, and suppose that the assertion of the lemma holds when k is replaced with
k − 1, for all r ∈ N0. Let r ∈ N0. Given an element ((γ, η, p), (γ1, η1, p1), t) ∈ Ω :=
(Cr+k(U × P,E)× bK,Ucr × P )[1] such that t 6= 0, we calculate for x ∈ Y :

1
t

(Θ(γ + tγ1, η + tη1, p+ tp1)−Θ(γ, η, p)) (x)

= 1
t

(
γ(η(x) + tη1(x), p+ tp1)− γ(η(x), p)

)
+ γ1(η(x) + tη1(x), p+ tp1)

= γ[1]((η(x), p), (η1(x), p1), t) + γ1(η(x) + tη1(x), p+ tp1) , (30)

in accordance with (24). Since Θ is Ck−1
K and hence continuous as a consequence of the

induction hypothesis, in order that Θ be Ck
K, it therefore only remains to show that the

mapping Ω → Cr(Y,E) described in (24), let us call it g, is of class Ck−1
K (then g = Θ[1]).

Since Θ is Ck−1
K , the map g is Ck−1

K on an open neighbourhood of each given element
((γ̄, η̄, p̄), (γ̄1, η̄1, p̄1), t̄) ∈ Ω, provided t̄ 6= 0. It remains to consider the case where t̄ = 0.
There is a balanced, open zero-neighbourhood W ⊆ F such that η̄(K) +W +W +W ⊆ U .
Next, there are open neighbourhoods P0 ⊆ P of p̄, P1 ⊆ H of p̄1, and r ∈ ]0, 1] such that

P0 + P2P1 ⊆ P and thus P0 × P1 × P2 ⊆ P [1] ,

where P2 := {t ∈ K : |t| ≤ r}. After shrinking r, we may assume that furthermore
P2 · η̄1(K) ⊆ W . We let U0 := η̄(K) +W ⊆ U and U1 := η̄1(K) +W . Then

U0 + P2U1 ⊆ η̄(K) +W + P2η̄1(K) + P2W ⊆ η̄(K) +W +W +W ⊆ U

and hence U0 × U1 × P2 ⊆ U [1]. Furthermore, we have

(η̄, η̄1) ∈ bK,U0 × U1cr ⊆ Cr(M,F × F ) .
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Then U0 × P0 × U1 × P1 × P2 ⊆ (U × P )[1], and the map

ρ : Cr+k(U,E) → Cr+(k−1)((U0 × U1)× (P0 × P1 × P2), E),

ρ(γ)((u0, u1), (p, p1, t)) := γ[1]((u0, p), (u1, p1), t)

is continuous linear by Remark 4.2 (b) and Lemma 4.11. Hence ρ is Ck−1
K . By the induction

hypothesis, the map

Θ̃ : Cr+(k−1)((U0×U1)× (P0×P1 ×P2), E)× bK,U0×U1cr × (P0×P1×P2) → Cr(Y,E)

taking (ξ, ζ, (p, p1, t)) to ξ(•, (p, p1, t)) ◦ ζ is of class Ck−1
K . The set

Cr+k(U × P,E)× bK,U0cr × P0 × Cr+k(U × P,E)× bK,U1cr × P1 × P2

is an open neighbourhood of (γ̄, η̄, p̄, γ̄1, η̄1, p̄1, 0) in the domain Ω of g. For all elements
(γ, η, p, γ1, η1, p1, t) in this open neighbourhood, we have

g(γ, η, p, γ1, η1, p1, t) = Θ̃(ρ(γ), (η, η1), (p, p1, t)) + Θ(γ1, η + tη1, p+ tp1) ,

showing that g is Ck−1
K on this open neighbourhood. This completes the proof. 2

Proposition 11.2 and Proposition 11.3 (for finite-dimensional M) now readily follow:

Proof of Proposition 11.3 for finite-dimensional M . Every x ∈ M has a compact
neighbourhood Kx; let Yx := K0

x be its interior. Then (Yx)x∈M is an open cover of M . Let
ρx : Cr(M,E) → Cr(Yx, E), γ 7→ γ|Yx be the restriction map. Then, as a consequence of
Lemma 1.15 and Lemma 4.12, the composition map Γ: Cr+k(F,E)×Cr(M,F ) → Cr(M,E)
will be of class Ck if we can show that

ρx ◦ Γ: Cr+k(F,E)× Cr(M,F ) → Cr(Yx, E)

is of class Cs, for each x ∈M . However, we have ρx ◦ Γ = Γx, where

Γx : Cr+k(F,E)× bKx, F cr → Cr(Yx, E), Γx(γ, η) := γ ◦ (η|Yx)

is of class Ck by Lemma 11.4. Hence Γ is of class Ck. Suppose that k ≥ 1 now. The
mapping ρx being continuous linear, we have dΓx = d(ρx ◦Γ) = ρx ◦dΓ. Hence (26) implies
that, for all γ, γ1 ∈ Cr+k(F,E), η, η1 ∈ Cr(M,F ):

dΓ((γ, η), (γ1, η1))|Yx = dγ ◦ (η, η1)|Yx + γ1 ◦ η|Yx = (dγ ◦ (η, η1) + γ1 ◦ η) |Yx

for all x ∈M , entailing that dΓ((γ, η), (γ1, η1)) = dγ ◦ (η, η1) + γ1 ◦ η, as asserted. 2

Proof of Proposition 11.2. Let Kx, Yx and ρx : Cr(M,E) → Cr(Yx, E) be as in the
preceding proof. In order that the composition map

Γ: Cr+k(U,E)× Cr
K(M,U) → Cr(M,E)
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be of class Ck, we only need to show that ρx ◦ Γ is of class Ck for all x ∈ M . But
ρx ◦ Γ = Γx ◦ λx, where

Γx : Cr+k(U,E)× bKx, Ucr → Cr(Yx, E), Γx(γ, η) := γ ◦ (η|UYx)

is of class Ck by Lemma 11.4, and

λx : Cr+k(U,E)× Cr
K(M,U) → Cr+k(U,E)× bKx, Ucr, (γ, η) 7→ (γ, η)

is obtained by restricting and co-restricting a continuous linear map to open sets and
therefore smooth. Hence ρx ◦ Γ = Γx ◦ λx is of class Ck, being a composition of Ck-maps.
The desired formula for dΓ (if k ≥ 1) can now be deduced as in the preceding proof. 2

12 Basic exponential law for smooth mappings

In this section, we establish an exponential law for smooth mappings on products of suitable
manifolds, and related results.

Lemma 12.1 Let K be a topological field, r, k ∈ N0 ∪ {∞}, M and N be Cr+k
K -manifolds

modeled on topological K-vector spaces, and E be a topological K-vector space. Then the
following holds:

(a) For each mapping f : M ×N → E of class Cr+k
K , the associated mapping

f∨ : M → Cr(N,E), f∨(x) := f(x, •)

is of class Ck
K.

(b) The linear map Φ: Cr+k(M ×N,E) → Ck(M,Cr(N,E)), Φ(f) := f∨ is continuous.

Proof. The lemma will hold in general if we can prove the case where M and N are open
subsets of topological K-vector spaces X and Y , respectively. In fact, suppose that M and
N are Cr+k

K -manifolds. Let f : M × N → E be a Cr+k
K -map. The mapping f∨ will be of

class Ck
K if we can show that it is Ck

K on some open neighbourhood of each given point
x0 ∈M . Given x0, we let φ : Uφ → Vφ ⊆ X be a chart of M around x0. Let A be an atlas
for N , of charts ψ : Uψ → Vψ ⊆ Y of N . As a consequence of Lemma 1.15, Lemma 4.12
and Lemma 4.11, the map f∨|Uφ is Ck

K if and only if

Cr(ψ−1, E) ◦ f∨|Uφ : Uφ → Cr(Vψ, E), x 7→ f∨(x) ◦ ψ−1 (31)

is Ck
K for each ψ ∈ A. This holds if and only if

Cr(ψ−1, E) ◦ f∨ ◦ φ−1 : Vφ → Cr(Vψ, E)

is Ck
K, for each ψ ∈ A. Now, for given ψ, the latter map coincides with g∨, where g :=

f ◦(φ−1×ψ−1) : Vφ×Vψ → E, and here Vφ ⊆ X and Vψ ⊆ Y are open subsets of topological
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K-vector spaces. It therefore suffices to show that each g∨ is of class Ck
K.

To see that also (b) can be reduced to the case of open subsets of topological vector spaces,
note that, as a consequence of Lemma 4.11, Lemma 4.12, Lemma 4.13 and Lemma 4.14,
the topology on Ck(M,Cr(N,E)) is initial with respect to the family of mappings

hφ,ψ := Ck(Vφ, C
r(ψ−1, E)) ◦ Ck(φ−1, Cr(N,E)) : Ck(M,Cr(N,E)) → Ck(Vφ, C

r(Vψ, E))

taking g ∈ Ck(M,Cr(N,E)) to Cr(ψ−1, E)◦g◦φ−1, where φ and ψ range through the charts
ofM andN , respectively. Since hφ,ψ(f∨) = (f◦(φ−1×ψ−1))∨ =

(
Cr+k(φ−1 × ψ−1, E)(f)

)∨
,

where Cr+k(φ−1 × ψ−1, E) : Cr+k(M ×N,E) → Cr+k(Vφ × Vψ, E) is continuous and takes
f to a mapping defined on the product Vφ × Vψ of open subsets of X and Y , it suffices to
prove (b) for mappings on such products Vφ × Vψ.

By the preceding, we may assume for the rest of the proof that U := M ⊆ X and
V := N ⊆ Y are open subsets of topological vector spaces. Recall from Remark 4.2 (a) that
C∞(V,E) = lim

←− r∈N0

Cr(V,E). Accordingly, Ck(U,C∞(V,E)) = lim
←− r∈N0

Ck(U,Cr(V,E))

(Lemma 1.17, Lemma 4.14). It therefore suffices to prove the assertions when r ∈ N0. By
a similar argument, we may assume that k is finite. The proof is by induction on k ∈ N0.

The case k = 0. If r = 0, then (a) and (b) are special cases of [16], Thm. 3.4.1 and 3.4.7,
respectively. To proceed by induction on r, suppose that r ∈ N, and suppose the assertion
of the lemma holds when r is replaced with r− 1. The topology on Cr(V,E) is initial with
respect to the maps α : Cr(V,E) → Cr−1(V,E), γ 7→ γ and β : Cr(V,E) → Cr−1(V [1], E),
β(γ) := γ[1] (Remark 4.2). Hence the topology on C(U,Cr(V,E)) is initial with respect to
the mappings C(U, α) and C(U, β) (Lemma 4.14).

(a) Let f : U×V → E be a Cr
K-map, and f∨ : U → Cr(V,E) be as above. By the induction

hypothesis, U → Cr−1(V,E), x 7→ f(x, •) = α ◦ f∨ is a continuous mapping. In view of the
preceding, f∨ : U → Cr(V,E) will be continuous if we can show that also

β ◦ f∨ : U → Cr−1(V [1], E), x 7→ (f∨(x))[1]

is continuous. However,

ψf : U × V [1] → E, ψf (x, (v, h, t)) := f [1]((x, v), (0, h), t) for x ∈ U , (v, h, t) ∈ V [1] (32)

is of class Cr−1
K , being a partial map of f [1]. Since (β ◦ f∨)(x) = ψf (x, •) = (ψf )

∨(x), the
map β ◦f∨ = (ψf )

∨ is continuous by the induction hypothesis. Thus f∨ is continuous, and
thus (a) holds in the Cr

K-case, when k = 0.

(b) As an immediate consequence of the induction hypothesis, the mapping C(U, α) ◦ Φ :
Cr(U × V,E) → C(U,Cr−1(V,E)), f 7→ (x 7→ f(x, •)) is continuous. The mapping

Ψ: Cr(U × V,E) → Cr−1(U × V [1], E), Ψ(f) := ψf

(with ψf as in (32)) is continuous by Remark 4.2 (b) and Lemma 4.4. Furthermore,

Ξ: Cr−1(U × V [1], E) → C(U,Cr−1(V [1], E)), Ξ(g)(x) := g(x, •) for x ∈ U
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is continuous, by induction. Thus C(U, β) ◦ Φ = Ξ ◦ Ψ is continuous. The topology on
C(U,Cr(V,E)) being initial with respect to C(U, α) and C(U, β), we deduce from the
preceding that Φ : Cr(U × V,E) → C(U,Cr(V,E)) is continuous. Thus also the Cr

K-case
of (b) is established, when k = 0.

Induction step on k. Let k ∈ N, and suppose that the assertions of the lemma hold for
all r, when k is replaced with k− 1. Let f : U × V → E be a mapping of class Cr+k

K . As a
consequence of the induction hypothesis and Remark 4.2 (a), the map f∨ : U → Cr(V,E)
is of class Ck−1

K , and Cr+k(U × V,E) → Ck−1(U,Cr(V,E)), f 7→ f∨ is a continuous linear
map. We now observe that

1
t
(f∨(x+ ty)− f∨(x))(v) = 1

t
(f(x+ ty, v)− f(x, v)) = f [1](x, v, y, 0, t) (33)

for all v ∈ V and (x, y, t) ∈ U [1] such that t 6= 0. The mapping δ(f) : U [1] × V → E,
δ(f)(x, y, t, v) := f [1](x, v, y, 0, t) is Cr+k−1

K , and δ : Cr+k(U × V,E) → Cr+k−1(U [1] × V,E)
is a continuous linear map (see Remark 4.2 (b), Lemma 4.4). By the induction hypothesis,
for any g ∈ Cr+k−1(U [1] × V,E), the map

Ψ(g) := g∨ : U [1] → Cr(V,E), Ψ(g)(x, y, t)(v) := g((x, y, t), v) for (x, y, t) ∈ U [1], v ∈ V

is of class Ck−1
K , and the map Ψ : Cr+k−1(U [1] × V,E) → Ck−1(U [1], Cr(V,E)) so obtained

is continuous and linear. By the preceding, given f ∈ Cr+k(U × V,E), we have Ψ(δ(f)) ∈
Ck−1(U [1], Cr(V,E)). In particular, Ψ(δ(f)) = δ(f)∨ is continuous. Note that (33) can be
read as

(f∨)]1[(x, y, t) = (δ(f))∨(x, y, t) for all (x, y, t) ∈ U ]1[.

Thus f∨ is of class C1
K with (f∨)[1] = δ(f)∨ = Ψ(δ(f)). Now f∨ being of class C1

K with
(f∨)[1] of class Ck−1

K , the mapping f∨ is of class Ck
K. Since Φ is continuous when considered

as a mapping Cr+k(U × V,E) → C(U,Cr(V,E)) as a consequence of the case k = 0, and
the map Cr+k(U ×V,E) → Ck−1(U [1], Cr(V,E)), f 7→ (f∨)[1] = (Ψ◦ δ)(f) is continuous by
the preceding, we deduce with Remark 4.2 (b) that Φ: Cr+k(U ×V,E) → Ck(U,Cr(V,E)),
Φ(f) = f∨ is continuous. This completes the proof. 2

Proposition 12.2 Let K be a locally compact topological field, E be a topological K-vector
space, M be a C∞K -manifold modeled on a topological K-vector space, and N be a finite-
dimensional C∞K -manifold. Then the following holds:

(a) A mapping g : M → C∞(N,E) is of class C∞K if and only if

g∧ : M ×N → E, g∧(x, y) := g(x)(y)

is of class C∞K .

(b) The mapping Φ: C∞(M ×N,E) → C∞(M,C∞(N,E)), Φ(f) := f∨

is an isomorphism of topological K-vector spaces, with inverse given by

Φ−1 : C∞(M,C∞(N,E)) → C∞(M ×N,E), Φ−1(g) = g∧ .
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Proof. (a) By Proposition 11.1, the evaluation map ε : C∞(N,E)×N → E is smooth. The
formula g∧ = ε◦ (g× idN) for g ∈ C∞(M,C∞(N,E)) shows that g∧ is smooth whenever so
is g. If, on the other hand, g : M → C∞(N,E) is a mapping such that f := g∧ is smooth,
then g = f∨ is smooth, by Lemma 12.1 (a).

(b) As a consequence of Lemma 12.1 and Part (a) of the present proposition, the
mapping Φ is an isomorphism of vector spaces and continuous, with inverse given by
Φ−1(g) = g∧ for g ∈ C∞(M,C∞(N,E)). In order that Φ−1 be continuous, in view of
Lemma 4.12 and Lemma 4.11, we only need to show that

C∞(idM × ψ−1, E) ◦ Φ−1 : C∞(M,C∞(N,E)) → C∞(M × Vψ, E),

f 7→ Φ−1(f) ◦ (idM × ψ−1) = f∧ ◦ (idM × ψ−1)

is continuous, for each chart ψ : Uψ → Vψ ⊆ Y of N , where Y is the modeling space
of N . Note that f∧ ◦ (idM × ψ−1) = (C∞(ψ−1, E) ◦ f)∧ = (C∞(M,C∞(ψ−1, E))(f))

∧
for

f ∈ C∞(M,C∞(N,E)), and thus

C∞(idM × ψ−1, E) ◦ Φ−1 = Ψ ◦ C∞(M,C∞(ψ−1, E)) ,

where Ψ: C∞(M,C∞(Vψ, E)) → C∞(M × Vψ, E), g 7→ g∧. The map C∞(M,C∞(ψ−1, E))
being continuous (Lemma 4.11, Lemma 4.13), it only remains to prove that Ψ is continuous.
We fix ψ now, and write V := Vψ for brevity.

Let (Wi)i∈I be an open cover of V , where Wi ⊆ V is relatively compact for each i ∈
I, with compact closure Ki := Wi ⊆ V . As a consequence of Lemma 4.12, the map
Ψ will be continuous if we can show that ρi ◦ Ψ is continuous for each i ∈ I, where
ρi : C

∞(M × V,E) → C∞(M ×Wi, E) is the restriction map. Hold i ∈ I fixed. We have

ρi(Ψ(g)) = ρi(g
∧) = (ε ◦ (g × idV ))|M×Wi

, (34)

where ε : C∞(V,E) × V → E is evaluation (which is C∞K by Proposition 11.1). We want
to re-write (34) further in order to be able to apply Proposition 4.23 (b). To this end, we
let σ : Wi → V be inclusion. We define

h̃ : V × V × C∞(V,E) → E, h̃(v, y, γ) := ε(γ, y) = γ(y)

and h := h̃ ◦ (σ× idV × idC∞(V,E)) : Wi × V ×C∞(V,E) → E, h(v, y, γ) = γ(y). Then (34)
can be re-written as ρi(Ψ(g)) = C∞(τ, E) (φ(idV , g)), where τ : M ×Wi → Wi ×M is the
coordinate flip and where

φ : bKi, V c∞ × C∞(M,C∞(V,E)) → C∞(Wi ×M,E), φ(f, g) := h∗(f, g)

is smooth by Proposition 4.23 (b); here h∗(f, g)(y, x) = h(y, f(y), g(x)) = g(x)(f(y)) for
y ∈ Wi, x ∈ M , and bKi, V c∞ ⊆ C∞(V, Y ). Hence ρi ◦ Ψ is smooth and thus continuous,
which completes the proof of Part (b). 2

The remainder of this section is devoted to a variant of Proposition 12.2 for manifolds
modeled on metrizable topological vector spaces. In order to prove the result efficiently,
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we introduce as an auxiliary concept the notion of conveniently K-smooth maps, inspired
by the convenient differential calculus of Frölicher, Kriegl and Michor (devoted to the real
or complex locally convex case).

Definition 12.3 Given a topological field K and topological K-vector space E, a subset
U ⊆ E will be called c∞-open if U is open in the final topology on E with respect to the
set of all C∞K -maps γ : I → E, where I is an open subset of Kn for some n ∈ N.15 A
mapping f : U → F from a c∞-open subset U ⊆ E to a topological K-vector space F is
called conveniently K-smooth (or also a c∞K -map) if f ◦ γ : I → F is C∞K , for every n ∈ N,
open subset I ⊆ Kn, and C∞K -map γ : I → E such that γ(I) ⊆ U .

Apparently every open subset U ⊆ E is c∞-open, and every C∞K -map is also c∞K . Further-
more, it is obvious that compositions of composable c∞K -maps are c∞K -maps. It does not pose
any problems to develop a theory of c∞K -manifolds, along the lines of convenient differential
calculus, but we refrain from doing so here, as we wish to focus on the Cr

K-theory. For the
present purposes, the following limited definition is sufficient: We call a map f : M → E
from a C∞K -manifold to a topological K-vector space conveniently K-smooth (or a c∞K -map)
if f ◦ γ is C∞K for C∞K -maps γ : Kn ⊇ I → M , or, equivalently, if f ◦ κ−1 is conveniently
K-smooth for every chart κ in an C∞K -atlas for M .

Remark 12.4 Throughout this remark, suppose that K = R, or that K is an ultrametric
field. Then, as a consequence of [3, Thm. 11.3 (a)] (applied to subsets of Kn), a subset
U ⊆ E is c∞-open if and only if γ−1(U) is open in K for every C∞K -curve γ : K → E.
Furthermore, a map f : U → F is conveniently K-smooth if and only if f ◦ γ is C∞K for
every n ∈ N and every C∞K -map γ : Kn → E with image in U (defined on all of Kn). If E
is a metrizable topological K-vector space, then a subset U ⊆ E is open if and only if it is
c∞-open [3, Thm. 11.3 (a)]; in this case, a mapping f : U → F into a topological K-vector
space F is C∞K if and only if it is conveniently K-smooth (cf. [3, Thm. 12.4]).

Before we can formulate the exponential law, we need to have a second look at the evalu-
ation map.

Lemma 12.5 Let K be a topological field which is metrizable (or, more generally, a topo-
logical field such that Kn is a k-space for all n ∈ N). Let M be a C∞K -manifold modeled on
a topological K-vector space, and E a topological K-vector space. Then the evaluation map

ε : C∞(M,E)×M → E, ε(γ, x) := γ(x)

is conveniently K-smooth.

Proof. Arguing similarly as in the proof of Proposition 11.1, we reduce to the case where
M is an open subset of its modeling space Z, which we assume now. To establish the
lemma, we show by induction on k ∈ N0 that ε ◦ c is of class Ck

K, for every C∞K -map
c = (c1, c2) : I → C∞(M,E)×M defined on an open subset I ⊆ Kn for some n ∈ N.

15Thus, we require that γ−1(U) be open in I for any γ.
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The case k = 0. Let c be as before. Since Kn is a k-space, so is its open subset I. Hence
ε◦c will be continuous if we can show that ε◦c|K : K → E is continuous, for every compact
subset K ⊆ I. As c2 : I →M is continuous, the set L := c2(K) ⊆M is compact. Since

ε(c(x)) = c1(x)(c2(x)) = ε̃(c1(x)|L, c2(x))

for all x ∈ K, where the restriction map C∞(M,E) → C(L,E)c.o., η 7→ η|L is continuous
(cf. Remark 4.10 & [16, p. 157, Eqn. (2)]) and the evaluation map ε̃ : C(L,E)c.o. × L→ E
is continuous, we see that ε ◦ c|K is continuous, as desired.

Induction step. Suppose that k ∈ N0 and suppose that ε ◦ c is of class Ck
K, for all c as

before. For all (x, y, t) ∈ I ]1[, we calculate

(ε ◦ c)]1[(x, y, t) = 1
t
((ε ◦ c)(x+ ty)− (ε ◦ c)(x))

= 1
t
(c1(x+ ty)− c1(x))(c2(x+ ty)) + 1

t
(c1(x)(c2(x+ ty))− c1(x)(c2(x)))

= c
[1]
1 (x, y, t)(c2(x+ ty)) + c1(x)[1](c2(x), c

[1]
2 (x, y, t), t)

= ε(c
[1]
1 (x, y, t), c2(x+ ty)) + (ε̃ ◦ c̃)(x, y, t) , (35)

where c̃ : I [1] → C∞(M [1], E) ×M [1], c̃(x, y, t) := (c1(x)[1], (c2(x), c
[1]
2 (x, y, t), t)) is smooth

(cf. Remark 4.2), and where evaluation ε̃ : C∞(M [1], E) ×M [1] → E takes C∞K -maps on
open subsets of Km (for any m ∈ N) to Ck

K-maps, by induction. Since, trivially, also

I [1] → C∞(M,E)×M , (x, y, t) 7→ (c
[1]
1 (x, y, t), c2(x+ ty)) is C∞K (cf. 1.7), we deduce from

the induction hypothesis that the map

g : I [1] → E, g(x, y, t) := ε(c
[1]
1 (x, y, t), c2(x+ ty)) + (ε̃ ◦ c̃)(x, y, t)

is of class Ck
K and thus continuous. Since g|I]1[ = (ε ◦ c)]1[ by (35), we deduce that ε ◦ c is

C1
K, with (ε ◦ c)[1] = g, and thus ε ◦ c is of class Ck+1

K , which completes the induction. 2

Proposition 12.6 Let K be a metrizable topological field, E be a topological K-vector
space, and M , N be C∞K -manifolds modeled on arbitrary topological K-vector spaces. Let
g : M → C∞(N,E) be a map. Then the following holds:

(a) If g is a c∞K -map, then also g∧ : M ×N → E, g∧(x, y) := g(x)(y) is a c∞K -map.

(b) Assume that K = R or K is an ultrametric field. If both M and N are modeled on
metrizable topological K-vector spaces, then g is C∞K if and only if g∧ is C∞K .

(c) Φ : C∞(M × N,E) → C∞(M,C∞(N,E)), f 7→ f∨ is a continuous isomorphism of
vector spaces in the situation of (b), whose inverse g 7→ g∧ is a c∞K -map.

Proof. (a) Suppose that g is a c∞K -map. Then g∧ = ε ◦ (g × idN), where the evaluation
map ε : C∞(N,E)×N → E is c∞K by Lemma 12.5. If γ = (γ1, γ2) : Kn ⊇ I →M ×N is a
C∞K -map, then g∧ ◦ γ = ε ◦ (g ◦ γ1, γ2) is of class C∞K since (g ◦ γ1, γ2) : I → C∞(N,E)×N
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is a C∞K -map and ε is c∞K . Thus g∧ is c∞K .

(b) Since M and M×N are C∞K -manifolds modeled on metrizable topological vector spaces,
where K is R or an ultrametric field, mappings on these manifolds are C∞K if and only if
they are c∞K (cf. Remark 12.4). Hence (b) readily follows from (a) and Proposition 12.1 (a).

(c) It is immediate from (b) and Proposition 12.1 (b) that Φ is a continuous linear bijection,
with inverse Ψ : C∞(M,C∞(N,E)) → C∞(M × N,E), Ψ(g) = g∧. To see that Ψ is
a c∞K -map, let γ : Kn ⊇ I → C∞(M,C∞(N,E)) be a C∞K -map. We have to show that
Ψ ◦ γ : I → C∞(M ×N,E) is C∞K . By Prop. 12.1 (a), this will hold if we can show that

f := (Ψ ◦ γ)∧ : I ×M ×N → E

is of class C∞K (since then f∨ = Ψ ◦ γ apparently). This in turn holds if and only if f is a
c∞K -map, the manifold I ×M ×N being modeled on a metrizable topological vector space.
However, given η = (η1, η2, η3) : Km ⊇ J → I ×M ×N of class C∞K , we have

(f ◦ η)(z) = ε2

(
ε1

(
γ(η1(z)), η2(z)

)
, η3(z)

)
,

where ε1 : C∞(M,C∞(N,E)) × M → C∞(N,E) and ε2 : C∞(N,E) × N → E are the
respective evaluation maps, which are c∞K -maps by Lemma 12.5. Consequently, f ◦ η is of
class C∞K and thus f a c∞K -map, which completes the proof. 2

Note that, in the real or complex case, none of the topological vector spaces involved in
Lemma 12.1, Proposition 12.2 and Proposition 12.6 need to be locally convex. Cf. [6] for
a careful discussion of the exponential law for maps M ×N → E, when E is a real locally
convex space and both M and N are open subsets of real locally convex spaces. In the real
and complex locally convex case, the exponential law for conveniently smooth maps plays
a central role in convenient differential calculus (see [17], [47]). The reader should be aware
that the locally convex topology on spaces of conveniently smooth functions primarily used
in convenient differential calculus (initial with respect to pullbacks along smooth curves) is
in general properly coarser than the topology we use here, already for C∞(R2,R) (cf. [6]).

13 Diffeomorphism groups of finite-dimensional,

paracompact smooth manifolds over local fields

Let K be a local field (of arbitrary characteristic), and M be a paracompact, finite-
dimensional smooth manifold over K. In this section, we turn the group Diff∞(M) of
smooth diffeomorphisms of M into a K-Lie group, modeled on the space C∞c (M,TM)
of compactly supported smooth vector fields, equipped with the box topology.16 Since
M =

∐
i∈I Bi is a disjoint union of balls, we first turn the diffeomorphism group Diff∞(B)

16By Prop. 8.13 (f), this is the locally convex direct limit topology on C∞c (M,TM) = lim
−→K

C∞K (M,TM).
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of a ball B into a Lie group, which is quite easy. Then also the weak direct product∏∗
i∈I Diff∞(Bi) is a Lie group by our general construction from Section 7. As this weak

direct product can be identified with a subgroup of Diff∞(M) in an obvious way, it only
remains to show in a final step that Diff∞(M) can be given a Lie group structure making∏∗

i∈I Diff∞(Bi) an open subgroup; this will complete our construction.

In the next section, which can be read independently of the present one, we describe
an alternative (slightly more complicated) construction, which is restricted to σ-compact
manifolds but provides information also on the groups Diffr(M) of Cr-diffeomorphisms for
finite r.

13.1 Throughout this section and the next, K denotes a local field. We let |.| be an
ultrametric absolute value on K defining its topology, and O be the maximal compact
subring of K. Given d ∈ N, we let ‖•‖∞ be the maximum norm on Kd. Given a ∈ Kd

and ε > 0, Bε(a) := {y ∈ Kd : ‖y − a‖∞ < ε} denotes the open ball with respect to the
maximum norm.

The diffeomorphism group of a ball

Given d ∈ N, consider the ball B := Od ⊆ Kd. We show:

Proposition 13.2 The set Diff∞(B) of all C∞K -diffeomorphisms of B is an open subset
of C∞(B,Kd). Consider Diff∞(B) as an open smooth submanifold of C∞(B,Kd). Then
Diff∞(B), with composition of mappings as the group operation, is a K-Lie group.

Proof. We prove the proposition in various steps.

13.3 Define End∞(B) = C∞B (B,B) = {γ ∈ C∞(B,Kd) : γ(B) ⊆ B}. Since B is both open
and compact, Proposition 4.20 shows that End∞(B) is an open subset of C∞(B,Kd) =
C∞B (B,Kd). By Proposition 11.2, the composition map

Γ: End∞(B)× End∞(B) → End∞(B) , Γ(γ, η) := γ ◦ η

is of class C∞K . In particular, Γ is continuous and thus End∞(B) is a topological monoid,
with identity element idB. Hence, by standard arguments, the unit group Diff∞(B) =
End∞(B)× of the topological monoid End∞(B) will be open in End∞(B) (and hence in
C∞(B,Kd)) if we can show that it contains an identity neighbourhood.

13.4 Given γ ∈ C∞(B,Kd) and x ∈ B, we abbreviate γ′(x) := dγ(x, •). We let Ω ⊆
End∞(B) be the set of all γ ∈ End∞(B) such that (γ − idB)[1](B × B × O) ⊆ B 1

2
(0).

Then Ω is an open identity neighbourhood in End∞(B) and ‖γ′(x)− id‖ < 1
2

for all γ ∈ Ω
and x ∈ B (using the operator norm with respect to the maximum norm ‖.‖∞). We
now show that Ω ⊆ Diff∞(B). To this end, let γ ∈ Ω and abbreviate σ := γ − idB. Then
γ′(x) ∈ GLd(O) = Iso(Kd, ‖•‖∞) is a linear isometry for all x ∈ B, because ‖γ′(x)− id‖ < 1

2



LIE GROUPS OVER TOPOLOGICAL FIELDS 73

(cf. [74], Chapter IV, Appendix 1). Furthermore, ‖γ′(x)‖ = ‖γ′(x)−1‖ = 1. We conclude
that

‖γ(z)− γ(y)− γ′(x).(z − y)‖∞ = ‖σ(z)− σ(y)− σ′(x).(z − y)‖∞
≤ min { ‖σ(z)− σ(y)‖∞, ‖σ′(x).(z − y)‖∞}

<
1

2
‖z − y‖∞ =

1

2 ‖γ′(x)−1‖
‖z − y‖∞ (36)

for all x, y, z ∈ B such that y 6= z. Indeed, because we are using the maximum norm
here, given x, y, z as before there exists 0 6= ξ ∈ K such that |ξ| = ‖z − y‖∞ ≤ 1. Then
‖σ′(x).(z − y)‖∞ ≤ ‖σ′(x)‖ ‖z − y‖∞ < 1

2
‖z − y‖∞ and

σ(z)− σ(y) = ξ 1
ξ

(
σ
(
y + ξ z−y

ξ

)
− σ(y)

)
= ξ σ[1]

(
y, z−y

ξ
, ξ
)

with z−y
ξ
∈ Od and ξ ∈ O, entailing that ‖σ(z)− σ(y)‖∞ ≤ |ξ| · ‖σ[1](y, z−y

ξ
, ξ)‖∞ < 1

2
|ξ| =

1
2
‖z − y‖∞. Thus (36) holds. Using (36) with x = 0, [28, Lemma 6.1 (b)] shows that γ

is an isometry from B onto γ(0) + γ′(0).B = γ(0) + B = B. Since γ′(x) ∈ GLd(O) is
invertible for all x, we deduce from the Inverse Function Theorem [28, Thm. 7.3] that γ is
a C∞K -diffeomorphism and thus γ ∈ Diff∞(B). We have shown that Ω ⊆ Diff∞(B). Hence
Diff∞(B) is open.

13.5 The group multiplication on Diff∞(B) being smooth by 13.3, it only remains to show
smoothness of the inversion map ι : Diff∞(B) → Diff∞(B), ι(γ) := γ−1. We only need to
prove that

ι∧ : Diff∞(B)×B → Kd , ι∧(γ, x) := ι(γ)(x) = γ−1(x)

is smooth; then ι = (ι∧)∨ : Diff∞(B) → C∞(B,Kd) will be smooth, by Lemma 12.1 (a). By
Lemma 11.1, the evaluation map

ε : Diff∞(B)×B → Kd , ε(γ, x) := γ(x)

is smooth. Note that ε(γ, •) = γ is a diffeomorphism of B for each γ ∈ Diff∞(B),
where Diff∞(B) is an open subset of the metrizable topological vector space C∞(B,Kd)
(see Proposition 4.19 (c)). Therefore the Inverse Function Theorem with Parameters [28,
Thm. 8.1 (c)′] can be applied to the map ε, using the diffeomorphism γ ∈ Diff∞(B) itself
as the parameter. The theorem shows that Diff∞(B)×B → Kd, (γ, x) 7→ (ε(γ, •))−1(x) =
γ−1(x) = ι∧(γ, x) is smooth. As just observed, this entails smoothness of ι. 2

13.6 Slightly more generally, let us consider a C∞K -manifold M now which is isomorphic
to B = Od as a C∞K -manifold. Given a C∞K -diffeomorphism ψ : M → B, we simply
give Diff∞(M) the uniquely determined K-Lie group structure modeled on C∞(M,TM) ∼=
C∞(B,Kd) which makes the isomorphism of groups

Θψ : Diff∞(M) → Diff∞(B) , Θψ(γ) := ψ ◦ γ ◦ ψ−1

an isomorphism of Lie groups.
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Lemma 13.7 For M ∼= B as before, the Lie group structure on Diff∞(M) just defined is
independent of the choice of C∞K -diffeomorphism ψ : M → B.

Proof. If both φ and ψ are C∞K -diffeomorphism M → B, then the composition Θφ◦(Θψ)−1 :
Diff∞(B) → Diff∞(B), γ 7→ (φ ◦ψ−1) ◦ γ ◦ (φ ◦ψ−1)−1 is an inner automorphism of the Lie
group Diff∞(B) and hence a C∞K -diffeomorphism. The assertion follows. 2

A very similar argument shows:

Lemma 13.8 Suppose that M and N are finite-dimensional C∞K -manifolds such that M ∼=
N ∼= B. Let φ : M → N be a C∞K -diffeomorphism. Then

Λ: Diff∞(M) → Diff∞(N) , γ 7→ φ ◦ γ ◦ φ−1

is an isomorphism of Lie groups.

Proof. Let ψ : N → B be a C∞K -diffeomorphism. Then also ψ ◦ φ : M → B is a
C∞K -diffeomorphism and hence Θψ : Diff∞(N) → Diff∞(B), γ 7→ ψ ◦ γ ◦ ψ−1 and Θψ◦φ :
Diff∞(M) → Diff∞(B), γ 7→ (ψ ◦ φ) ◦ γ ◦ (ψ ◦ φ)−1 are isomorphisms of Lie groups. Hence

also Λ =
(
Θψ

)−1 ◦Θψ◦φ is an isomorphism of Lie groups. 2

Another technical lemma is useful:

Lemma 13.9 If M is an open submanifold of Kd such that M ∼= B, then Diff∞(M) is an
open subset of C∞(M,Kd). The manifold structure making Diff∞(M) an open submanifold
of C∞(M,Kd) coincides with the manifold structure underlying the Lie group Diff∞(M),
as defined in 13.6.

Proof. Let ψ : M → B be a C∞K -diffeomorphism. As M ⊆ Kd is open and compact,
C∞(M,M) is open in C∞(M,Kd). The pullback C∞(ψ−1,Kd) : C∞(M,Kd) → C∞(B,Kd)
is a linear isomorphism which takes C∞(M,M) C∞K -diffeomorphically onto C∞(B,M) (cf.
Lemma 4.11). The map C∞(B,ψ) : C∞(B,M) → C∞(B,B) is a C∞K -diffeomorphism,
since so is ψ (cf. Corollary 4.21). Hence also

Φ: C∞(M,M) → C∞(B,B), γ 7→ ψ ◦ γ ◦ ψ−1

is a C∞K -diffeomorphism. Since Diff∞(B) is an open submanifold of C∞(B,B), the set
Φ−1(Diff∞(B)) = Diff∞(M) is open in C∞(M,M), and Φ induces a C∞K -diffeomorphism
Θψ from the open submanifold Diff∞(M) ⊆ C∞(M,M) onto Diff∞(B). But the same map
Θψ also is a C∞K -diffeomorphism from the Lie group Diff∞(M) onto Diff∞(B), by definition
of the Lie group structure in 13.6. 2
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Passage to paracompact manifolds

Let M be a paracompact, finite-dimensional smooth K-manifold now, of dimension d, say.
Then M is a disjoint union M =

∐
i∈I Bi of a family of open and compact balls Bi ⊆ M

(see Lemma 8.3 (b)). For each i ∈ I, we equip Diff∞(Bi) with the K-Lie group structure
modeled on C∞(Bi, TBi) described in 13.6 and Lemma 13.7. We then endow the weak
direct product ∏∗

i∈I Diff∞(Bi)

with a Lie group structure, as described in Proposition 7.1. Consider the mapping

Ψ :
∏∗

i∈I Diff∞(Bi) → Diff∞(M) (γi)i∈I 7→
∐
i∈I

γi (37)

taking (γi)i∈I to the map γ : M →M determined by γ|Bi = γi for each i ∈ I. Then indeed Ψ
takes its values in Diff∞(M), and apparently Ψ is injective and a homomorphism of groups.
Throughout the following, using Ψ we shall identify

∏∗
i∈I Diff∞(Bi) with the corresponding

subgroup im Ψ ⊆ Diff∞(M). We shall also identify the modeling space
⊕

i∈I C
∞(Bi, TBi)

with C∞c (M,TM) in the obvious way (Proposition F.19 (e)); cf. Remark 8.17).

Lemma 13.10 Assume that M ∼= B and assume that M =
∐

j∈J Cj for a finite family
(Cj)j∈J of balls. Then

∏
j∈J Diff∞(Cj) is open in Diff∞(M) and Diff∞(M) induces the

given manifold structure on the product
∏

j∈J Diff∞(Cj) of the Lie groups Diff∞(Cj).

Proof. Reduction to the case where M is a metric ball : Let ψ : M → B be a C∞K -
diffeomorphism. Then Θψ : Diff∞(M) → Diff∞(B), γ 7→ ψ ◦ γ ◦ ψ−1 is an isomorphism of
Lie groups, by 13.6. Set Bj := ψ(Cj) ⊆ B. Then Λj : Diff∞(Cj) → Diff∞(Bj), Λj(γ) :=

ψ|BjCj ◦γ◦
(
ψ|BjCj

)−1
is an isomorphism of Lie groups for each j ∈ J , by Lemma 13.8. Since the

restriction of Θψ to
∏

j∈J Diff∞(Cj) coincides with the map
∏

j∈J Λj onto
∏

j∈J Diff∞(Bj),
we clearly only need to prove the assertion for B =

∐
j∈J Bj (then the assertion concerning

M =
∐

j∈J Cj follows).

By the preceding, we may assume now that M = B. By Lemma 4.12, the map ρ :
C∞(M,Kd) →

∏
j∈J C

∞(Cj,Kd), ρ(γ) := (γ|Cj)j∈J is an isomorphism of topological
vector spaces. By Lemma 13.9, the Lie group Diff∞(Cj) is an open submanifold of
C∞(Cj,Kd). Hence ρ−1 induces an isomorphism Ψ from the direct product of Lie groups
P :=

∏
j∈J Diff∞(Cj) onto the open subset Ψ(P ) = ρ−1(P ) ⊆ Diff∞(M) of C∞(M,Kd).

Here Ψ is the map from (37). 2

Lemma 13.11 Assume that M =
∐

i∈I Bi is a disjoint union of a family (Bi)i∈I of balls
Bi ⊆ M , and assume that, for each i ∈ I, the ball Bi =

∐
j∈Ji Cij is a disjoint union

of balls Cij ⊆ Bi for some finite set Ji. Abbreviate K := {(i, j) : i ∈ I, j ∈ Ji}. Then∏∗
(i,j)∈K Diff∞(Cij) is an open subgroup of

∏∗
i∈I Diff∞(Bi), and

∏∗
i∈I Diff∞(Bi) induces the

given manifold structure on the weak direct product
∏∗

(i,j)∈K Diff∞(Cij).
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Proof. By Lemma 7.2 (b), there is a natural isomorphism
∏∗

(i,j)∈K Diff∞(Cij) ∼=
∏∗

i∈I Hi,

with Hi :=
∏

j∈Ji Diff∞(Cij). Here Hi is an open subgroup (and submanifold) of Diff∞(Bi),

by Lemma 13.10. Hence, by Lemma 7.2 (a), also the weak direct product
∏∗

i∈I Hi is an
open subgroup and submanifold of

∏
i∈I Diff∞(Bi), as asserted. 2

Theorem 13.12 (The Lie group structure on Diff∞(M)) Let M be a paracompact,
finite-dimensional smooth manifold over a local field K. Then there exists a uniquely
determined C∞K -manifold structure on Diff∞(M), modeled on the space C∞c (M,TM) of
compactly supported smooth vector fields, such that

∏∗
i∈I Diff∞(Bi) is an open subgroup of

Diff∞(M) and Diff∞(M) induces the given manifold structure on
∏∗

i∈I Diff∞(Bi), for every
cover (Bi)i∈I of M by mutually disjoint balls Bi.

Proof. For the moment, we fix a cover (Bi)i∈I of M by mutually disjoint balls. Let
U :=

∏∗
i∈I Diff∞(Bi) ⊆ Diff∞(M), equipped with its natural Lie group structure introduced

above. Suppose we can show the following claim:

Claim. For every γ ∈ Diff∞(M), there exists an open identity neighbourhood V ⊆ U such
that Iγ(V ) ⊆ U , and such that Iγ|UV : V → U is smooth, where Iγ : Diff∞(M) → Diff∞(M),
Iγ(η) := γ ◦ η ◦ γ−1.

Then there exists a uniquely determined Lie group structure on Diff∞(M) with U as an
open submanifold, by Proposition 1.18.

13.13 To prove the claim, let γ ∈ Diff∞(M). As a consequence of Lemma 8.4, for each
i ∈ I there exists a finite cover (Cij)j∈Ji of Bi by mutually disjoint balls that is subordinate
to the open cover {Bi ∩ γ−1(Bk) : k ∈ I} of Bi. Let J := {(i, j) : i ∈ I, j ∈ Ji}. Given
k ∈ I, define Lk := {(i, j) ∈ J : γ(Cij) ⊆ Bk}. Let L := {(k, `) : k ∈ I, ` ∈ Lk} and
Dk := γ(C`) for (k, `) ∈ L. Then (Dk`)`∈Lk is a finite partition of Bk into balls, for each
k ∈ I. The map π : L→ J , π(k, `) := ` is a bijection, and we have

γ(Cπ(k,`)) = γ(C`) = Dk` for all (k, `) ∈ L. (38)

Define V :=
∏∗

(i,j)∈J Diff∞(Cij) and W :=
∏∗

(k,`)∈L Diff∞(Dk`); then V and W are open

subgroups (and submanifolds) of U , by Lemma 13.11. Let η ∈ V . Given x ∈ Dk`, we have
γ−1(x) ∈ C` by (38) and hence η(γ−1(x)) ∈ C`. Thus Iγ(η)(x) = γ(η(γ−1(x))) ∈ Dk`, using
(38) again. Therefore Iγ(V ) ⊆ W ⊆ U , as desired. Interpreting η as the corresponding
element (ηij)(i,j)∈J ∈

∏∗
(i,j)∈J Diff∞(Cij) here with ηij := η|Cij , by the preceding we have

Iγ(η)k` := Iγ(η)|Dk` = Λk`(ηπ(k,`))

for all (k, `) ∈ L, where Λk` : Diff∞(Cπ(k,`)) → Diff∞(Dk`), Λk`(σ) := γ|C` ◦ σ ◦ γ−1|C`Dk` is
an isomorphism of K-Lie groups by Lemma 13.8. Thus Iγ|WV : V → W is a mapping of the
type discussed in Lemma 7.2 (c), and thus Iγ|WV is an isomorphism of K-Lie groups (and
hence a C∞K -diffeomorphism). Thus, the above claim is established.
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By the preceding, Diff∞(M) admits a unique K-Lie group structure making the Lie group∏∗
i∈I Diff∞(Bi) a subgroup and open submanifold. To complete the proof of Theorem 13.12,

it only remains to show that the Lie group structure on Diff∞(M) so obtained is indepen-
dent of the choice of the partition M =

∐
i∈I Bi of M into balls. To this end, suppose

that M =
∐

j∈J Cj is a second partition of M into balls. For each (i, j) ∈ I × J such that
Bi ∩Cj 6= ∅, the open, compact submanifold Ci ∩Cj can be partitioned into finitely many
balls (cf. Lemma 8.3 (b)). As a consequence, we find a partition (Dk)k∈K of M into balls
that is subordinate to the disjoint open cover {Bi ∩ Cj : i ∈ I, j ∈ J} of M . Given i ∈ I,
the set Ki := {k ∈ K : Dk ⊆ Bi} is finite, and Bi =

∐
k∈Ki Dk. Likewise, for any j ∈ J

the set Lj := {k ∈ K : Dk ⊆ Cj} is finite, and Cj =
∐

k∈Lj Dk. Hence, by Lemma 13.11,

the weak direct product
∏∗

k∈K Diff∞(Dk) is a subgroup and open submanifold of both
U :=

∏∗
i∈I Diff∞(Bi) and V :=

∏∗
j∈J Diff∞(Cj). Therefore

∏∗
k∈K Diff∞(Dk) is a subgroup

and open submanifold of both Diff∞(M), equipped with the unique Lie group structure
making U an open submanifold, and of Diff∞(M), equipped with the unique Lie group
structure making V an open submanifold. As a consequence, the two Lie group structures
on Diff∞(M) coincide. 2

Remark 13.14 It is not hard to see that the natural action Diff∞(M) ×M → M (the
evaluation map) is smooth, entailing that every smooth homomorphism π : G→ Diff∞(M)
from a K-Lie group G to Diff∞(M) gives rise to a smooth action π∧ : G ×M → M . If G
is finite-dimensional here or modeled on a metrizable topological vector space, then G has
an open subgroup fixing any element outside a compact subset of M . Conversely, given
a smooth action σ : G ×M → M , the associated homomorphism σ∨ : G → Diff∞(M) is
smooth, provided there exists an open subgroup U ⊆ G and a compact subset K ⊆M such
that σ(x, y) = y for all x ∈ U and y ∈ M \K. This condition is, of course, automatically
satisfied if M is compact; in this special case, smooth actions of Lie groups on M are in
one-to-one correspondence with smooth homomorphisms into Diff∞(M). Compare [33] for
full proofs in the real case; they are easily adapted to the present situation.

In the real case, it is well known that every continuous action of a finite-dimensional Lie
group on a manifold by C∞-diffeomorphisms is automatically smooth [61, Thm., p. 212].
It is also known that every locally compact group acting effectively on a connected finite-
dimensional smooth manifold by diffeomorphisms is a Lie group (see [45, Ch. I, Thm. 4.6]
and [61, §5.2]), whence every locally compact subgroup of Diff∞(M) is a Lie group in
particular. It is natural to ask for analogues in the p-adic case. The following problems
are open and deserve to be investigated:

Problem 13.15 Is every compact subgroup G of the diffeomorphism group Diff∞(M) of
a paracompact, finite-dimensional smooth p-adic manifold M a p-adic Lie group ? Does
this hold at least if G is topologically finitely generated ?

One strategy might be to try to verify the hypotheses of Lazard’s characterization of finite-
dimensional p-adic Lie groups (see [48, A1, Thm. (1.9)], [15, Thm. 8.32]; cf. [74, p. 157]).
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However, the author suspects that counterexamples can be found. Compare also [55] for
some related studies of subgroups of diffeomorphism groups.

Problem 13.16 Are continuous actions of finite-dimensional p-adic Lie groups by smooth
diffeomorphisms on paracompact, finite-dimensional smooth p-adic manifolds always
smooth ? Arguing as in the real case (see [58] or [33]), this would entail that every contin-
uous homomorphism from a finite-dimensional p-adic Lie group to Diff∞(M) is smooth.

14 The diffeomorphism groups Diffr(M) and Diff∞(M )̃

Let K be a totally disconnected local field and M be a σ-compact smooth manifold over K,
of positive finite dimension d. Given r ∈ N ∪ {∞}, let Diffr(M) be the group of all Cr

K-
diffeomorphisms of M . In this section, we equip Diffr(M) with a C∞K -manifold structure
modeled on the space Cr

c (M,TM) of compactly supported vector fields of class Cr
K on M

which makes Diffr(M) a topological group, with smooth right translation maps. For r = ∞,
the preceding smooth manifold structure makes Diff∞(M) a Lie group, modeled on the LF-
space C∞c (M,TM); it coincides with the Lie group constructed in the preceding section.
However, we shall also define a second smooth manifold structure on Diff∞(M) making it
a K-Lie group, denoted Diff∞(M )̃ ; it is modeled on the projective limit

C∞c (M,TM )̃ := lim
←−k∈N0

Ck
c (M,TM) =

⋂
k∈N0

Ck
c (M,TM)

of LB-spaces. Note that C∞c (M,TM )̃ coincides with C∞c (M,TM) as a vector space, but
its topology is coarser (and can be properly coarser). Since M is diffeomorphic to an open
subset U of Kd (see Lemma 8.3 (a)), we first discuss Diffr(U) and only pass to general M
at the very end. Throughout this section, we retain the conventions from 13.1.

The monoids Endr
c(U) and End∞

c (U )̃

14.1 Let d ∈ N and U ⊆ Kd be a non-empty, open subset. By Lemma 8.4, there exist
a countable set I, positive real numbers ri for i ∈ I and elements ai ∈ U such that U =⋃
i∈I Bri(ai) as a disjoint union. Abbreviate Ui := Bri(ai). Then, for every r ∈ N0 ∪ {∞},

by Proposition 8.13 (e) the map

Cr
c (U,Kd) →

⊕
i∈I

Cr(Ui,Kd), γ 7→ (γ|Ui)i∈I

is an isomorphism of topological K-vector spaces (when the box topology is used on the
direct sum); we use it to identify Cr

c (U,Kd) and
⊕

i∈I C
r(Ui,Kd). We define

Endrc(U) := {γ ∈ Cr(U,Kd) : γ(U) ⊆ U and γ − idU ∈ Cr
c (U,Kd)} and

Erc (U) := {γ ∈ Cr
c (U,Kd) : idU + γ ∈ Endrc(U)} .

Then
βr : Erc (U) → Endrc(U), βr(γ) := idU + γ

is a bijection.
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14.2 Every γ ∈ Endrc(U) is a proper map, since γ−1(K) ⊆ K ∪ supp(γ − idU) for every
compact subset K of U . Given γ, η ∈ Erc (U), we have

(idU + γ) ◦ (idU + η) = idU + η + γ ◦ (idU + η) ,

where γ ◦ (idU + η) ∈ Cr
c (U,Kd) since idU + η is proper, and thus η + γ ◦ (idU + η) ∈

Cr
c (U,Kd). Therefore (idU + γ) ◦ (idU + η) ∈ Endrc(U). We have shown that Endrc(U)

is closed under composition of maps, and thus Endrc(U) is a monoid under composition,
with idU as the identity element. We give Erc (U) the monoid structure which makes βr an
isomorphism of monoids. Thus 0 is the identity in Erc (U), and the monoid multiplication
µr : Erc (U)× Erc (U) → Erc (U) is given by

µr(γ, η) = η + γ ◦ (idU + η) . (39)

14.3 We claim that Erc (U) is open in Cr
c (U,Kd). In fact, let γ ∈ Erc (U) be given. For every

x ∈ U , there exists i(x) ∈ I such that x+γ(x) ∈ Ui(x) = Bri(x)(ai(x)) = x+γ(x)+Bri(x)(0) ⊆
U . There exists s(x) ∈ ]0, ri(x)] such that Bs(x)(x) ⊆ U and γ(Bs(x)(x)) ⊆ γ(x) + Bri(x)(0).
By Lemma 8.4, there exists a countable cover (Vj)j∈J of U by mutually disjoint compact
open sets Vj, which is subordinate to (Bs(x)(x))x∈U . Given j ∈ J , choose xj ∈ U such
that Vj ⊆ Bs(xj)(xj), and abbreviate i(j) := i(xj). If η ∈ Cr

c (U,Kd) such that η(Vj) ⊆
Bri(j)(γ(xj)), then

y + η(y) ∈ xj +Bs(xj)(0) + γ(xj) +Bri(j)(0) = xj + γ(xj) +Bri(j)(0) = Ui(j) ⊆ U (40)

for all y ∈ Vj. We have shown that the open neighbourhood
⊕

j∈J C
r(Vj, Bri(j)(γ(xj))) of γ

in Cr
c (U,Kd) is contained in Erc (U). Thus Erc (U) is indeed open in Cr

c (U,Kd).

14.4 We consider Erc (U) as an open C∞K -submanifold of Cr
c (U,Kd). We equip Endrc(U) with

the smooth K-manifold structure making βr : Erc (U) → Endrc(U) a C∞K -diffeomorphism.

14.5 Define C∞c (U,Kd)̃ :=
⋂
k∈N0

Ck
c (U,Kd) = lim

←−k∈N0

Ck
c (U,Kd). Then the vector space

underlying C∞c (U,Kd)̃ is C∞c (U,Kd), but the projective limit topology on C∞c (U,Kd)̃ can
be properly coarser than the topology on C∞c (U,Kd) if U is non-compact. Since

Erc (U) = E0
c (U) ∩ Cr(U,Kd) (41)

for each r ∈ N0 ∪ {∞}, we have E∞c (U) = E0
c (U) ∩ C∞c (U,Kd) in particular. As a conse-

quence, E∞c (U) is an open subset of C∞c (U,Kd)̃ . When equipped with the topology induced
by C∞c (U,Kd)̃ , we write E∞c (U )̃ for E∞c (U). We write End∞c (U )̃ for the monoid End∞c (U),
equipped with the C∞K -manifold structure making β̃ : E∞c (U )̃ → End∞c (U )̃ , γ 7→ idU + γ a
C∞K -diffeomorphism and an isomorphism of monoids.

In various steps, we now show:
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Proposition 14.6 In the preceding situation, we have:

(a) For every r, k ∈ N0 ∪ {∞}, the mapping

mr,k : Endr+kc (U)× Endrc(U) → Endrc(U), mr,k(γ, η) := γ ◦ η

is of class Ck
K. In particular, for each r ∈ N0 the composition map mr := mr,0 :

Endrc(U) × Endrc(U) → Endrc(U) is continuous, and the composition maps m∞ :=
m∞,∞ : End∞c (U)× End∞c (U) → End∞c (U) and

m̃ : End∞c (U )̃ × End∞c (U )̃ → End∞c (U )̃ , m̃(γ, η) := γ ◦ η

are smooth.

(b) For every r ∈ N0 ∪ {∞} and η ∈ Erc (U), the right translation map ρr,η := mr,0(•, η) :
Endrc(U) → Endrc(U) is of class C∞K .

(c) For every r ∈ N∪{∞}, the group of invertible elements Diffrc(U) := Endrc(U)× is open
in Endrc(U), and Diffrc(U) = Diff1

c(U) ∩ Endrc(U). Also Diff∞c (U )̃ := (End∞c (U )̃ )× is
open in End∞c (U )̃ .

(d) Given r ∈ N ∪ {∞}, let γ be a Cr
K-diffeomorphism of U . Then γ ∈ Diffrc(U) if and

only if there exists a compact subset K ⊆ U such that γ(x) = x for all x ∈ X \K.

(e) For each r ∈ N ∪ {∞} and k ∈ N0 ∪ {∞}, the map ιr,k : Diffr+kc (U) → Diffrc(U),
γ 7→ γ−1 is Ck

K. In particular, inversion ιr := ιr,0 : Diffrc(U) → Diffrc(U) is continuous
for each r ∈ N, and the inversion maps ι∞ := ι∞,∞ : Diff∞c (U) → Diff∞c (U) and
ι̃ : Diff∞c (U )̃ → Diff∞c (U )̃ are smooth.

Thus Diff∞c (U) and Diff∞c (U )̃ are K-Lie groups when considered as open C∞K - submanifolds
of End∞c (U), resp., End∞c (U )̃ . Furthermore, Diffrc(U) is a topological group with respect to
the topology underlying the smooth manifold Diffrc(U), for each r ∈ N.

Proof. We begin with the proof of (a) and (b).

14.7 The maps βr and βr+k being C∞K -diffeomorphisms and isomorphism of monoids, in
view of (39) apparently mr,k will be of class Ck

K if we can show that the mapping µr,k :
Er+kc (U)×Erc (U) → Cr

c (U,Kd), (γ, η) 7→ η+γ ◦(idU +η) is of class Ck
K. The map (γ, η) 7→ η

involved being continuous linear and thus smooth, it suffices to show that

f : Cr+k
c (U,Kd)× Erc (U) → Cr

c (U,Kd), f(γ, η) := γ ◦ (idU + η)

is of class Ck
K. To see this, let γ ∈ Cr+k

c (U,Kd), η ∈ Erc (U) be given. As in 14.3, we find
a countable open cover (Vj)j∈J of U by mutually disjoint compact open sets Vj, elements
xj ∈ U , and a mapping i : J → I such that η ∈

⊕
j∈J C

r(Vj, Bri(j)(η(xj))) ⊆ Erc (U),

and such that (idU + τ)(Vj) ⊆ Ui(j) for all j ∈ J and τ ∈
⊕

j∈J C
r
(
Vj, Bri(j)(η(xj))

)
(cf.
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(40)). Abbreviate Bj := Bri(j)(η(xj)) and Q :=
⊕

j∈J C
r(Vj, Bj). Then Cr+k

c (U,Kd) × Q
is an open neighbourhood of (γ, η). By the preceding, f(σ, τ)|Vj = σ ◦ (idU + τ)|Vj =
σ|Ui(j) ◦ (idVj + τ |Vj)|Ui(j) for all σ ∈ Cr+k

c (U,Kd) and τ ∈ Q. Thus f |Cr+kc (U,Kd)×Q can be
written as the composition

Cr+k
c (U,Kd)×Q

∼=−→ (
⊕

i∈I C
r+k(Ui,Kd))× (

⊕
j∈J C

r(Vj, Bj))
∼=−→

⊕
i∈I,j∈J(Cr+k(Ui,Kd)× Cr(Vj, Bj))

p−→
⊕

j∈J(Cr+k(Ui(j),Kd)× Cr(Vj, Bj))

⊕j∈Jfj−→
⊕

j∈I C
r(Vj,Kd)

∼=−→ Cr
c (U,Kd)

where “∼=” are the obvious isomorphisms of topological vector spaces (or their restrictions to
C∞K -diffeomorphisms of open sets), p is the map (σi, τj)i∈I,j∈J 7→ (σi(j), τj)j∈J which is C∞K as
the restriction of a continuous linear map, and fj : Cr+k(Ui(j),Kd)×Cr(Vj, Bj) → Cr(Vj,Kd),
fj(σ, τ) := σ ◦ (idVj + τ)|Ui(j) . Then fj = Γj ◦ (idCr+k(Ui(j),Kd) × gj), where the composition
map

Γj : Cr+k(Ui(j),Kd)× Cr(Vj, Ui(j)) → Cr(Vj,Kd)

is Ck
K by Proposition 11.4, 17 and gj : Cr(Vj, Bj) → Cr(Vj, Ui(j)), gj(τ) := idVj + τ is

smooth, being a restriction of an affine-linear map. Thus each fj is of class Ck
K and hence

so is ⊕j∈Jfj, by Proposition 6.9. Being a composition of Ck
K-maps, f |Cr+kc (U,Kd)×Q is Ck

K.

If k = 0 here, then f(•, η) : Cr
c (U,Kd) → Cr

c (U,Kd) is a continuous map by the preceding.
Since it is also linear, we deduce that the map f(•, η) is smooth. As a consequence,
ρr,η = mr,0(•, η) is smooth, establishing (b).

14.8 Clearly m̃ will be smooth if we can show that µ̃ : E∞c (U )̃ × E∞c (U )̃ → C∞c (U,Kd)̃ ,
µ̃(γ, η) := η+γ ◦ (idU +η) is smooth. By Lemma 1.17, µ̃ will be smooth if λr ◦ µ̃ is smooth
for every r ∈ N0, where λr : C∞c (U,Kd)̃ → Cr

c (U,Kd) is the inclusion map. But this is the

case. In fact, given any k ∈ N0, we have (λr ◦ µ̃)|Erc (U) = µr,k ◦ (λr+k × λr)|E
r+k
c (U)×Erc (U)

(E∞c (U )̃ )2 ,

where µr,k is of class Ck
K and λr+k and λr are continuous linear and thus smooth. Thus

λr ◦ µ̃ is of class Ck
K. This completes the proof of Part (a) of Proposition 14.6.

14.9 To prove (d), let r ∈ N ∪ {∞}. If γ ∈ Diffrc(U), then γ ∈ Endrc(U), whence there
exists a compact subset K ⊆ U such that (γ − idU)|U\K = 0 and thus γ|U\K = idU |U\K .
Conversely, if γ is a Cr

K-diffeomorphism of X such that γ coincides with idU off some
compact set K, then apparently also the inverse map γ−1 satisfies γ−1|X\K = idU |X\K ,
whence γ−1 ∈ Endrc(U). Thus γ is invertible in the monoid Endrc(U); (c) is established.

14.10 To prove (c), note first that

Endrc(U) ∩ End1
c(U)× = Endrc(U)× for all r ∈ N ∪ {∞}. (42)

17We apply the proposition with K := Y := Vj ; note that Cr(Vj , Ui(j)) = bVj , Ui(j)cr here.
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In fact, clearly Endrc(U)× ⊆ Endrc(U)∩End1
c(U)×. If, conversely, γ ∈ Endrc(U)∩End1

c(U)×,
then γ is a C1

K-diffeomorphism and thus dγ(x, •) is invertible for all x ∈ U . Since, further-
more, γ is of class Cr

K, the Ultrametric Inverse Function Theorem [28, Thm. 7.3] entails
that γ−1 is of class Cr

K (cf. also [28, Rem. 5.4]). Thus γ is a Cr
K-diffeomorphism, and, in

view of (d), apparently γ ∈ Diffrc(U) = Endrc(U)×.

14.11 Given r ∈ N ∪ {∞}, by the preceding Endrc(U) is a topological monoid. Therefore
its unit group Endrc(U)× will be open if we can show that it is an identity neighbourhood.
The inclusion map Endrc(U) → End1

c(U) being continuous, in view of (42), we only need to
show that Diff1

c(U) is open in End1
c(U), or equivalently, that E1

c (U)× is a 0-neighbourhood
in E1

c (U). Let Bi := Bri(0) ⊆ Kd and Di := {t ∈ K : |t| < ri} for i ∈ I, with ri as in
14.1. Then W :=

⊕
i∈I C

1(Ui, Bi) is an open zero-neighbourhood in C1
c (U,Kd), and we

have W ⊆ Ec(U) since x + γ(x) ∈ Ui + Bi = ai + Bri(0) + Bri(0) = ai + Bri(0) = Ui ⊆ U
for all γ ∈ W , i ∈ I, and x ∈ Ui. Define

Ωi := {σ ∈ C1(Ui, Bi) : σ[1](Ui ×Od ×Di) ⊆ B 1
2
(0) and dσ(Ui ×Od) ⊆ B 1

2
(0)} .

Then Ω :=
⊕

i∈I Ωi ⊆ W ⊆ E1
c (U) is an open zero-neighbourhood. We claim that Ω ⊆

E1
c (U)×, or equivalently, β1(Ω) ⊆ Diff1

c(U). To see this, let σ = (σi)i∈I ∈ Ω, where
σi = σ|Ui ∈ Ωi for i ∈ I. Define γ := β1(σ) = idU + σ and γi = idUi + σi = γ|Ui .
Then γ′i(x) := dγi(x, •) = 1 + dσi(x, •) ∈ GLd(O) = Iso(Kd, ‖•‖∞) for all x ∈ Ui (cf. [74],
Chapter IV, Appendix 1) and ‖γ′i(x)‖ = ‖γ′i(x)−1‖ = 1, because ‖γ′i(x)−1‖ = ‖σ′i(x)‖ < 1

2
.

We conclude that

‖γi(z)− γi(y)− γ′i(x).(z − y)‖∞ = ‖σi(z)− σi(y)− σ′i(x).(z − y)‖∞
≤ min { ‖σi(z)− σi(y)‖∞, ‖σ′i(x).(z − y)‖∞}

<
1

2
‖z − y‖∞ =

1

2 ‖γ′i(x)−1‖
‖z − y‖∞ (43)

for all x, y, z ∈ Ui such that y 6= z. Indeed, because we are using the supremum norm
here, given x, y, z as before there exists 0 6= ξ ∈ K such that |ξ| = ‖z − y‖∞ < ri. Then
‖σ′i(x).(z − y)‖∞ ≤ ‖σ′i(x)‖ ‖z − y‖∞ < 1

2
‖z − y‖∞ and

σi(z)− σi(y) = ξ 1
ξ

(
σi(y + ξ z−y

ξ
)− σi(y)

)
= ξ σ

[1]
i (y, z−y

ξ
, ξ)

with z−y
ξ

∈ Od and ξ ∈ Di, entailing that ‖σi(z) − σi(y)‖∞ ≤ |ξ| · ‖σ[1]
i (y, z−y

ξ
, ξ)‖∞ <

1
2
|ξ| = 1

2
‖z − y‖∞. Thus (43) holds. Using (43) with x = ai, [28, Lemma 6.1 (b)] shows

that γi is an isometry from Ui = Bri(ai) onto γi(ai) + γ′i(ai).Bri(0) = γi(ai) + Bri(0) =
ai+σi(ai)+Bri(0) = ai+Bri(0) = Bri(ai) = Ui. As a consequence, γ is an isometry from U
onto U . Since γ′(x) = 1+σ′(x) ∈ GLd(O) is invertible for all x, we deduce from the Inverse
Function Theorem [28, Thm. 7.3] that γ is a C1

K-diffeomorphism and thus γ ∈ Diff1
c(U),

using (d).
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14.12 In view of (42), the openness of End1
c(U)× in End1

c(U) just established entails that
Diff∞c (U )̃ = End∞c (U )̃ ∩ End1

c(U)× is open in End∞c (U )̃ . This completes the proof of
Part (c) of Proposition 14.6.

14.13 To prove (e), we first observe that, for given r ∈ N ∪ {∞} and k ∈ N0 ∪ {∞},
the map ιr,k will be of class Ck

K if its restriction to some open identity neighbourhood
Y ⊆ Diffr+kc (U) is of class Ck

K. In fact, if γ ∈ Diffr+kc (U) is given, then Y ◦ γ is an open
neighbourhood of γ in Diffr+kc (U) since right translation by γ is a C∞K -diffeomorphism of
Endr+kc (U), as a consequence of (b). In view of (a) and (b), the formula ιr,k|Y ◦γ(η) = η−1 =

γ−1 ◦ (η ◦ γ−1)−1 = mr,k

(
γ−1, ιr,k|Y (ρr+k,γ−1(η))

)
for η ∈ Y ◦ γ shows that ιr,k will be Ck

K

on Y ◦ γ if it is Ck
K on Y .

14.14 By 14.4 and the preceding, ιr,k will be of class Ck
K if we can show that the map

jr,k : Er+kc (U)× → Cr
c (U,Kd), jr,k(γ) := γ∗ := (idU + γ)−1 − idU

is Ck
K on some open 0-neighbourhood in Er+kc (U). Note that S :=

⊕
i∈I Er+kc (Ui)

×

is an open subset of Er+kc (U)× ⊆ Cr+k
c (U,Kd) =

⊕
i∈I C

r+k(Ui,Kd), and jr,k|S = ⊕i∈I ji,r,k :
S →

⊕
i∈I C

r(Ui,Kd) = Cr
c (U,Kd), where ji,r,k : Er+kc (Ui)

× → Cr
c (Ui,Kd), ji,r,k(γ) :=

(idUi + γ)−1 − idUi . By Proposition 6.9, ⊕i∈I ji,r,k will be of class Ck
K if each ji,r,k is of

class Ck
K. Summing up, in order that ιr,k be of class Ck

K, for all r and k, we only need to
establish the following claim:

Claim. For each i ∈ I, r ∈ N ∪ {∞} and k ∈ N0 ∪ {∞}, the map ji,r,k is of class Ck
K on

some open zero-neighbourhood in Er+k(Ui)×, where Er+k(Ui) := Er+kc (Ui).

14.15 Fix i, r and k. Since Ui is compact, Diffrc(Ui) = Diffr(Ui) is the set of all Cr
K-

diffeomorphisms of Ui, and the map Cr(Ui,K) → Cr(Ui,Kd), γ 7→ γ + idUi is an affine-
linear homeomorphism and hence a C∞K -diffeomorphism, which takes Er(Ui)× diffeomor-
phically onto the open subset Diffr(Ui) ⊆ Cr(Ui,Kd). Thus Diffr(Ui) simply is an open
C∞K -submanifold of Cr(Ui,Kd). Likewise for Diffr+k(Ui). In order that ji,r,k be Ck

K on some
open zero-neighbourhood, it therefore suffices to show that inversion h : P → Cr(Ui,Kd),
h(γ) := γ−1 is Ck

K on the open identity neighbourhood

P := {idUi + σ : σ ∈ Ωi ∩ Cr+k(Ui,Kd)}

of Diffr+k(Ui), where Ωi ⊆ C1(Ui,Kd) is as in 14.11.18 We only need to prove that
h∧ : P × Ui → Kd, h∧(γ, x) := h(γ)(x) = γ−1(x) is Cr+k

K ; then h = (h∧)∨ : P → Cr(Ui,Kd)
will be Ck

K, by Lemma 12.1 (a). By Lemma 11.1, the evaluation map

ε : P × Ui → Kd , ε(γ, x) := γ(x)

is Cr+k
K . Since ε(γ, •) = γ is a diffeomorphism of Ui for each γ ∈ P , and Cr+k(Ui,Kd)

is metrizable (Proposition 4.19 (c)), the Inverse Function Theorem with Parameters [28,

18The discussion in 14.11 shows that indeed P ⊆ Diffr+k(Ui).
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Thm. 8.1 (c)′] can be applied to ε, with the diffeomorphism γ ∈ P as the parameter. The
theorem shows that P × Ui → Kd, (γ, x) 7→ (ε(γ, •))−1(x) = γ−1(x) = h∧(γ, x) is of class
Cr+k

K . The claim is established.

14.16 Arguing as in 14.8, we deduce from the fact that ιr,k is of class Ck
K for all r, k ∈ N

that ι̃ is smooth. This completes the proof of Proposition 14.6. 2

Lemma 14.17 Let n,m ∈ N, r ∈ N0∪{∞}, U ⊆ Kn, V ⊆ Km be open subsets, φ : U → V
be a proper mapping of class Cr

K, and E be a topological K-vector space. Then

Cr
c (φ,E) : Cr

c (V,E) → Cr
c (U,E), γ 7→ γ ◦ φ

is a continuous K-linear map.

Proof. Indeed, the mapping Cr
c (φ,E) being linear, by Proposition 8.13 (c) we only need

to show that its restriction to Cr
K(V,E) is continuous, for every compact open subset K

of V . Since φ is assumed to be proper, L := φ−1(K) ⊆ U is a compact, open subset.
It is clear that Cr

c (φ,E) takes Cr
K(V,E) into Cr

L(U,E). Using the obvious identifications

Cr
K(V,E) ∼= Cr(K,E) and Cr

L(U,E) ∼= Cr(L,E), the map Cr
c (φ,E)|C

r
L(U,E)

CrK(V,E) corresponds

to the pullback Cr(φ|KL , E) : Cr(K,E) → Cr(L,E), which is a continuous linear map by
Lemma 4.4. 2

Lemma 14.18 Let U ⊆ Kd, V ⊆ Kd be open subsets and φ : U → V be a bijection. Then
the following holds:

(a) Let r, k ∈ N0 ∪ {∞}, and suppose that φ is a Cr+k
K -diffeomorphism. Then

Φ: Endrc(U) → Endrc(V ), Φ(γ) := φ ◦ γ ◦ φ−1

is a Ck
K-diffeomorphism and an isomorphism of monoids.

(b) If φ is a C∞K -diffeomorphism, then End∞c (U )̃ → End∞c (V )̃ , γ 7→ φ ◦ γ ◦ φ−1 is a
C∞K -diffeomorphism and an isomorphism of monoids.

Proof. (a) It is obvious that Φ is a bijection, whose inverse γ 7→ φ−1 ◦ γ ◦ φ also is a map
as described in the lemma. Furthermore, clearly Φ is a homomorphism of monoids. In
view of the preceding it only remains to show that Φ is a Ck

K-map, or equivalently, that

Ψr,k : Erc (U) → Erc (V ), Ψr,k(γ) := φ ◦ (idU + γ) ◦ φ−1 − idV = φ ◦ (φ−1 + γ ◦ φ−1)− idV

is of class Ck
K. To see this, we note first that Ψr,k is almost local. Indeed: Choose any

locally finite cover (U`)`∈L of U by relatively compact, open sets U`. Then V` := φ(U`)
defines a locally finite cover (V`)`∈L of V by relatively compact, open subsets V` ⊆ V .
Given any ` ∈ L, for every x ∈ V` and γ ∈ Erc (U) we have

Ψr,k(γ)(x) = φ
(
φ−1(x) + γ(φ−1(x))

)
− x ,
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which only depends on the value of γ at φ−1(x) ∈ U`. Thus Ψr,k is almost local.

By the Smoothness Theorem (Theorem 10.4), Ψr,k will be Ck
K if we can show that the

restriction f of Ψr,k to the open subset Erc (U) ∩ Cr
K(U,Kd) of Cr

K(U,Kd) is Ck
K, for ev-

ery compact subset K ⊆ U . It suffices to show this for K open and compact, which
we assume now. The image of f is contained in Cr

φ(K)(V,Kd). The inclusion mapping

Cr
φ(K)(V,Kd) → Cr

c (V,Kd) being continuous linear and hence smooth, it therefore suffices

to prove that f is Ck
K as a map into Cr

φ(K)(V,Kd). Since φ(K) is compact and open, the
restriction map

Cr
φ(K)(V,Kd) → Cr

φ(K)(φ(K),Kd) = Cr(φ(K),Kd)

is an isomorphism of topological vector spaces (Lemma 4.24). In order that f be Ck
K, we

therefore only need to show that

g : Erc (U) ∩ Cr
K(U,Kd) → Cr(φ(K),Kd), g(γ) := f(γ)|φ(K)

is Ck
K. Note that

g(γ) = φ ◦ (idK + γ|K) ◦ φ−1|φ(K) − idφ(K)

=
(
Cr(φ−1|φ(K),Kd) ◦ Cr(K,φ)

)
( idK + γ|K︸ ︷︷ ︸
∈Cr(K,U)

) − idφ(K) . (44)

The pullback Cr(φ−1|φ(K),Kd) : Cr(K,Kd) → Cr(φ(K),Kd) is continuous linear and hence
smooth, by Lemma 4.11; the map Cr

c (U,Kd) → Cr(U,Kd) → Cr(K,Kd), γ 7→ γ|K com-
posed of inclusion and restriction is continuous linear and hence smooth (cf. Proposi-
tion 8.13 (a) and Lemma 4.11); and Cr(K,φ) : Cr(K,U) → Cr(K,V ) is Ck

K as φ is Cr+k
K ,

by Corollary 4.21. Hence (44) shows that g is Ck
K, as required.

(b) Apparently (b) will hold if we can show that the mapping E∞c (U )̃ → E∞c (V )̃ ,
γ 7→ φ ◦ (idU + γ) ◦ φ−1 − idV is Ck

K for all k ∈ N. But this readily follows from the fact
that Ψk,k is of class Ck

K for all k ∈ N (cf. 14.8). 2

Proposition 14.19 Let d ∈ N and U ⊆ Kd be a non-empty open subset. Then the
following holds:

(a) For each r ∈ N∪ {∞}, there is a uniquely determined C∞K -manifold structure on the
group Diffr(U) of all Cr

K-diffeomorphisms of U such that Diffr(U) becomes a topo-
logical group, the right translation maps Rγ : Diffr(U) → Diffr(U), Rγ(η) := η ◦ γ
are C∞K for each γ ∈ Diffr(U), and such that Diffrc(U) is an open C∞K -submanifold of
Diffr(U).

(b) For any r ∈ N ∪ {∞} and k ∈ N0 ∪ {∞}, the composition map

Diffr+k(U)×Diffr(U) → Diffr(U), (γ, η) 7→ γ ◦ η (45)
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and the inversion map

Diffr+k(U) → Diffr(U), γ 7→ γ−1 (46)

are of class Ck
K, with respect to the smooth manifold structures from (a).

(c) There is a uniquely determined smooth manifold structure on Diff∞(U) turning it into
a K-Lie group and such that Diff∞c (U) is an open smooth submanifold of Diff∞(U).

(d) There is a uniquely determined smooth manifold structure on Diff∞(U) turning it
into a K-Lie group (which we denote by Diff∞(U )̃ ), such that Diff∞c (U )̃ is an open
smooth submanifold of Diff∞(U )̃ .

Proof. It readily follows from Proposition 14.6 (d) that Diffrc(U) is a normal subgroup of
Diffr(U), for each r ∈ N ∪ {∞}. Given γ ∈ Diffr(U), let Iγ : Diffrc(U) → Diffrc(U) denote
the automorphism of groups η 7→ γ ◦ η ◦ γ−1.

(a) Given γ ∈ Diffr(U), consider the map

κγ : Diffrc(U) ◦ γ → Erc (U)× , κγ(η) := β−1
r (η ◦ γ−1) .

We claim that A := {κγ : γ ∈ Diffr(U)} is an atlas defining a C∞K -manifold structure
on Diffr(U) (equipped with the final topology with respect to the family of the maps
κ−1
γ : Erc (U)× → Diffr(U)). The domains of the maps κγ cover Diffr(U). Let us prove

compatibility of the charts. If γ, γ ∈ Diffr(M) such that Diffrc(U) ◦ γ and Diffrc(U) ◦ γ
have non-empty intersection, then γ ◦ γ−1 ∈ Diffrc(U) and the two cosets coincide. For
η ∈ Erc (U)×, we have

(κγ ◦ κ−1
γ )(η) = β−1

r (βr(η) ◦ γ ◦ γ−1) = β−1
r

(
ρr,γ◦γ−1(βr(η))

)
using right translation ρr,γ◦γ−1 on Diffrc(U), which is smooth. Hence κγ ◦ κ−1

γ is smooth, as
required for compatibility. Now standard arguments provide a smooth manifold structure
on Diffr(U) with atlas A. Since κid = β−1

r : Diffrc(U) → Erc (U)×, we see that Diffrc(U)
is an open submanifold of Diffr(U). Given γ ∈ Diffr(U), for each η ∈ Diffr(U) we have(
κη◦γ

)−1 ◦ Rγ ◦ κ−1
η = id on Erc (U)×, entailing that Rγ is smooth. The topology under-

lying Diffr(U) makes it a topological group, because it has the following properties (cf.
[39, Thm. 4.5]): the topological group Diffrc(U) is an open subgroup of Diffr(U); all right
translations are homeomorphisms of Diffr(U); and Iγ is continuous for each γ ∈ Diffr(U),
by Lemma 14.18.

(b) Let γ ∈ Diffr+k(U), η ∈ Diffr(U). For all γ ∈ Diffr+kc (U) and η ∈ Diffrc(U), we have

(γ ◦ γ) ◦ (η ◦ η) = γ ◦ (γ ◦ η ◦ γ−1) ◦ (γ ◦ η) .

Right translation by γ ◦ η being smooth, Iγ : Diffrc(U) → Diffrc(U) being Ck
K (Lemma 14.18)

and composition Diffr+kc (U) × Diffrc(U) → Diffrc(U) being Ck
K (Proposition 14.6), the pre-

ceding formula defines a Ck
K-function Diffr+kc (U)×Diffrc(U) → Diffr(U) of (γ̄, η̄). Hence the



LIE GROUPS OVER TOPOLOGICAL FIELDS 87

composition map (45) is Ck
K on the open neighbourhood (Diffr+kc (U) ◦ γ) × (Diffrc(U) ◦ η)

of (γ, η). Similarly, the inversion map (46) is Ck
K on the open neighbourhood Diffr+kc (U)◦γ

of γ because

(γ ◦ γ)−1 = γ−1 ◦ γ −1 = γ−1 ◦ γ −1 ◦ γ ◦ γ−1 = (Iγ−1(γ −1)) ◦ γ−1 ,

where inversion Diffr+kc (U) → Diffrc(U) is Ck
K by Proposition 14.6 (e) and Iγ−1 is Ck

K by
Lemma 14.18 (a).

(c) By (b), the C∞K -manifold structure from (a) makes Diff∞(U) a Lie group.

(d) By Lemma 14.18 (b), the automorphism Iγ of Diffrc(U )̃ is C∞K , for any γ ∈ Diffr(U).
Therefore Part (d) directly follows from Proposition 1.18. 2

Definition 14.20 Let K be a local field, r ∈ N ∪ {∞}, and M be a σ-compact K-
manifold of class C∞K , of finite, positive dimension d. By Lemma 8.3 (a), there exists a
C∞K -diffeomorphism ψ : M → Uψ from M onto an open subset Uψ ⊆ Kd. Then

Θψ : Diffr(M) → Diffr(Uψ), Θψ(ξ) := ψ ◦ ξ ◦ ψ−1

is an isomorphism of groups. The map

Ξ: Cr
c (Uψ,Kd) → Cr

c (M,TM), Ξ(f)(x) := Tψ−1
(
ψ(x), f(ψ(x))

)
being an isomorphism of topological vector spaces, there exists a uniquely determined C∞K -
manifold structure on Diffr(M), modeled on Cr

c (M,TM), which makes the bijection Θψ a
C∞K -diffeomorphism. The charts of Diffr(M) are of the form

κψ : Diffr(M) → Cr
c (M,TM), κψ(γ) := Ξ(κ(Θψ(γ))) ,

for κ : Pκ → Qκ ranging through the charts of Diffr(Uψ). If r = ∞ here, then apparently
Diff∞(M) is a Lie group, and Θψ is an isomorphism of Lie groups. Analogously, we make
Diff∞(M )̃ a Lie group modeled on C∞c (M,TM )̃ := lim

←−k∈N0

Ck
c (M,TM).

Proposition 14.21 Let K be a local field and M be a σ-compact C∞K -manifold of finite,
positive dimension d.

(a) For each r ∈ N∪{∞}, the C∞K -manifold structure on Diffr(M) is independent of the
choice of ψ in Definition 14.20. It makes Diffr(M) a topological group and the right
translation maps Diffr(M) → Diffr(M), η 7→ η ◦ γ are smooth for each γ ∈ Diffr(M).
Furthermore, for any k ∈ N0 ∪ {∞}, both the composition map

Diffr+k(M)×Diffr(M) → Diffr(M)

and the inversion map Diffr+k(M) → Diffr(M) are Ck
K.
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(b) The C∞K -manifold structure on Diff∞(M) (resp., Diff∞(M )̃ ) is independent of the
choice of ψ in Definition 14.20; it makes Diff∞(M) (resp., Diff∞(M )̃ ) a K-Lie group.

Proof. We only need to show that the manifold structures are independent of the choice
of ψ; all other assertions are immediate consequences of Proposition 14.19.

(a) If both φ : M → Uφ and ψ : M → Uψ are C∞K -diffeomorphisms onto open subsets
of Kd, then Θφ ◦ (Θψ)−1 : Diffr(Uψ) → Diffr(Uφ), ξ 7→ (φ ◦ ψ−1) ◦ ξ ◦ (φ ◦ ψ−1)−1 is
an isomorphism of groups which takes Diffrc(Uψ) C∞K -diffeomorphically onto Diffrc(Uφ), by
Lemma 14.18 (a). Since right translations in the groups Diffr(Uφ) and Diffr(Uψ) are smooth
and the homomorphism f := Θφ ◦ (Θψ)−1 is smooth on an open identity neighbourhood,
the usual argument shows that the homomorphism f is smooth. Interchanging the roles
of φ and ψ, we see that also f−1 is smooth.

(b) In view of Lemma 14.18 (b), the same argument applies to Diff∞(M )̃ . 2

Remark 14.22 If M is a σ-compact, finite-dimensional Cr
K-manifold for some r ∈ N (but

not smooth), we can still use the same arguments to make Diffr(M) a topological group
and C0

K-manifold modeled on C0
c (M,TM). 19

A Proof of Proposition 4.19

In this section, we prove the properties of function spaces asserted in Proposition 4.19.
In view of Remark 4.2 (a) and Lemma 4.12 (applied with a countable cover of coordinate
neighbourhoods in case of (c)), it suffices to prove assertions (a), (b) and (c) of Proposi-
tion 4.19 when r ∈ N0 and M = U is an open subset of Z, which we assume now.20

(a) The proof is by induction on r ∈ N0. Let us assume first that E is complete. If
r = 0, suppose that (γα) is a Cauchy net in C(U,E)c.o.. Then (γα(x)) is a Cauchy net
in E for each fixed element x ∈ U and hence convergent, to γ(x) ∈ E, say. For each
compact subset K ⊆ U , the restrictions γα|K converge uniformly to γ|K , whence γ|K is
continuous. Hence γ is continuous, using that U (being open in the k-space Z) is a k-space.
Furthermore, γα → γ in C(U,E)c.o..

Induction step: Assume the assertion is correct for some r. Then both C(U,E) and
Cr(U [1], E) are complete and hence so is the topological vector space Cr+1(U,E), being
isomorphic to a closed vector subspace of C(U,E) × Cr(U [1], E) by Lemma 4.3. This
completes the induction.

If E is merely sequentially complete (resp., Mackey complete) the sequential completeness

19Although we obtain an isomorphism of topological groups onto the C∞K -manifold Diffr(Uψ) for each
CrK-diffeomorphism ψ : M → Uψ ⊆ Kd, we cannot expect anymore that the corresponding C∞K -manifold
structures on Diffr(M) are independent of the choice of ψ.

20For (a), note that cartesian products and closed vector subspaces of Mackey complete topological
vector spaces are Mackey complete.



LIE GROUPS OVER TOPOLOGICAL FIELDS 89

of Cr(U,E) can be proved in the same way, replacing Cauchy nets by Cauchy sequences
(resp., Mackey-Cauchy sequences).21

(b) Assume that K ∈ {R,C} (resp., that K is an ultrametric field, with valuation
ring O) and E is locally convex. If K ⊆ U is compact and V ⊆ E is a convex, open
0-neighbourhood (resp., an open O-submodule submodule), then apparently also the open
0-neighbourhood bK,V c ⊆ C(U,E) is convex (resp., an O-submodule). Hence C(U,E) is
locally convex. Likewise, C(U [j], E) is locally convex for each j and hence so is Cr(U,E),
its topology being initial with respect to linear maps into the spaces C(U [j], E) for j ≤ r
(by definition).

(c) Case r = 0: There exists an ascending sequence (Kj)j∈N of compact subsets Kj

of U such that Kj is contained in the interior of Kj+1 for each j ∈ N, and U =
⋃
j∈NKj.

Then every compact subset of U is contained in Kj for some j, entailing that the topol-
ogy of uniform convergence on compact sets on C(U,E) is the topology making the map
C(U,E) →

∏
j∈NC(Kj, E), γ 7→ (γ|Kj)j∈N a topological embedding, where C(Kj, E) is

equipped with the topology of uniform convergence. If (Vn)n∈N is a countable basis of open
0-neighbourhoods in E, then (bKj, Vnc)n∈N is a countable basis of open 0-neighbourhoods
for C(Kj, E), entailing that this space is metrizable. We readily deduce that also C(U,E)
is metrizable.

Suppose that r ∈ N now, and suppose that the assertion of the lemma is correct for
r−1. By Lemma 4.3, Cr(U,E) is isomorphic to a topological vector subspace of C(U,E)×
Cr−1(U [1], E). The factors of the product being metrizable by induction, also the product
is metrizable and hence so is Cr(U,E). This completes the proof of (c).

(d) Given r, M and E as described in the proposition, let us write Cr(M,E)D for
Cr(M,E), equipped with the initial topology with respect to the family (Dj)N3j≥r of
the mappings Dj : Cr(M,E) → C(T jM,E)c.o., γ 7→ Djγ, defined as follows: we set
D0γ := γ, let D1γ := Dγ := dγ : TM → E be the second component of the tangent map
Tγ : TM → TE = E × E, TxM 3 v 7→ (γ(x), dγ(v)), and define Djγ := D(Dj−1γ) :
T jM := T (T j−1M) → E recursively. Before we establish Proposition 4.19 (d), let us first
recall some useful properties of the spaces Cr(M,E)D :

Lemma A.1 In the situation of Proposition 4.19 (d), we have:

(a) If r = ∞, then C∞(M,E)D = lim
←−k∈N0

Ck(M,E)D as a topological vector space, with

the inclusion maps C∞(M,E)D → Ck(M,E)D as the limit maps.

(b) If (Ui)i∈I is an open cover of M , then the topology on Cr(M,E)D is initial with respect
to the family (ρi)i∈I of restriction maps ρi : C

r(M,E) → Cr(Ui, E)D, ρi(γ) := γ|Ui.

(c) If φ : M → U ⊆ Z is a Cr
R-diffeomorphism, then Cr(φ,E) : Cr(U,E)D → Cr(M,E)D,

γ 7→ γ ◦ φ is an isomorphism of topological K-vector spaces.

21Note that continuous linear maps take Mackey-Cauchy sequences to Mackey-Cauchy sequences because
they take bounded sets to bounded sets.
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(d) If r ∈ N0, then the topology on Cr+1(M,E)D is initial with respect to the maps
β1 : Cr+1(M,E) → C(M,E)c.o., β1(γ) := γ and β2 : Cr+1(M,E) → Cr(TM,E)D,
β2(γ) := Dγ.

Proof. (a) and (d) are immediate from the definition of the topologies. For a proof of (b),
see [27, Prop. 24.10] (for example). For (c), see [27, Prop. 24.8].22 See also [32]. 2

In view of Lemma 4.12, Lemma 4.11 and their analogues compiled in Lemma A.1 (b)
and (c), Proposition 4.19 (d) will hold in general if we can prove it in the special case when
U := M ⊆ Z is an open subset of the modeling space, which we assume now. In view of
Remark 4.2 (a) and Lemma A.1 (a), we may also assume that r ∈ N0. The following four
lemmas will enable us to complete the proof:

Lemma A.2 For Z, E, U ⊆ Z as before and each r ∈ N0, the topology on Cr(U,E)D
is initial with respect to the family (dj)r≥j∈N0, where dj : Cr(U,E) → C(U × Zj, E)c.o.,
γ 7→ djγ is as in 1.9.

Proof. Note first that djγ is a partial map of Djγ: There is an injective map κ :
{1, . . . , j} → {1, . . . , 2j − 1} (independent of Z, U and E), such that

djγ(x, y) = Djγ(x, φ(y)) for all γ ∈ Cr(U,E), x ∈ U and y ∈ Zj,

where φ : Zj → Z2j−1 is the (continuous linear) map with kth component

prk(φ(y1, . . . , yj)) =

{
yi if κ(i) = k
0 else,

for k = 1, . . . , 2j − 1 and y1, . . . , yj ∈ Z [18, Claim 2, p. 50]. Accordingly, the map dj =
C(idU × φ,E) ◦Dj : Cr(U,E)D → C(U × Zj, E)c.o. is a composition of Dj and a pullback
along a continuous map, and thus dj is continuous on Cr(U,E)D, for each j ≤ r.

We now show that, conversely, each Dj is continuous on Cr(U,E)d, i.e., on Cr(U,E),
equipped with the topology initial with respect to the family (dj)j≤r. To this end, we
recall that

Djγ(x, y1, . . . , y2j−1) =

j∑
`=1

∑
1≤i1<i2<···<i`≤2j−1

ci1,...,i` d
`γ(x, yi1 , . . . , yi`)

for all γ ∈ Cr(U,E), x ∈ U and y1, . . . , y2j−1 ∈ Z, for suitable numbers ci1,...,i` ∈ N0 which
are independent of Z, U , E, γ, x, and y1, . . . , y2j−1 (cf. [18, Eqn. (3)]). Hence Dj is a sum
of terms of the form C(idU×ψi1,...,i` , E)◦d` with a suitable continuous (linear) map ψi1,...,i` :

E2j−1 → E`, and hence Dj is continuous on Cr(U,E)d. Thus Cr(U,E)D = Cr(U,E)d. 2

22The cited results are formulated in [27] only for real manifolds, but they carry over to complex
manifolds, with identical proofs.
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Lemma A.3 Let Z, U ⊆ Z and E be as before, and F be a locally convex topological
K-vector space such that E is a topological vector subspace of F . The the inclusion maps

Cr(U,E) → Cr(U, F ) and Cr(U,E)D → Cr(U, F )D

are topological embeddings.

Proof. In view of the definition of the topologies, the assertion readily follows from
the well-known (and apparent) fact that the inclusion map C(Y,E)c.o. → C(Y, F )c.o. is a
topological embedding, for any topological space Y . (Apply this with Y := U [j], resp.,
Y := U × Zj, for all j ∈ N0 such that j ≤ r). 2

Lemma A.4 Let Z, U ⊆ Z and E be as before. Assume that E is complete. Define

λ : C(U × [0, 1], E) → C(U,E)

via λ(γ)(x) :=
∫ 1

0
γ(x, t) dt for γ ∈ C(U × [0, 1], E) and x ∈ U . Then λ is a continuous

K-linear map.

Proof. The maps λ(γ) : U → E are in fact continuous, being parameter-dependent
integrals with continuous integrands (see, for example, [27, La. 6.15] or [35]). As clearly λ
is linear, it only remains to show that λ is continuous at 0. To this end, let V ⊆ C(U,E)
be a 0-neighbourhood. Then there exists a compact subset K ⊆ U and a closed, convex
0-neighbourhood W ⊆ E such that bK,W c := {γ ∈ C(U,E) : γ(K) ⊆ W} ⊆ V . Set
I := [0, 1]. Then bK × I,W c := {γ ∈ C(U × I, E) : γ(K × I) ⊆ W} is a 0-neighbourhood
such that λ(bK × I,W c) ⊆ bK,W c ⊆ V (cf. [18, La. 1.7]). Hence λ is continuous. 2

Lemma A.5 Given r ∈ N0 and an open neighbourhood I of [0, 1] in F, consider the set
Ω ⊆ Cr(U × I, E)D of all γ ∈ Cr(U × I, E)D such that the weak integrals

ι(γ)(x) :=

∫ 1

0

γ(x, t) dt

exist in E for all x ∈ U , as well as the weak integrals
∫ 1

0
dj1γ(x, t, y) dt, for all j ≤ r

and (x, y) ∈ U × Ej. Here dj1γ(x, t, y) := dj(γ(•, t))(x, y) for all x ∈ U , t ∈ I, and
y = (y1, . . . , yj) ∈ Zj, or, more explicitly:

dj1γ(x, t, y1, . . . , yj) = djγ((x, t), (y1, 0), . . . , (yj, 0)) . (47)

Then ι(γ) ∈ Cr(U,E) for all γ ∈ Ω, and

ι : Cr(U × I, E)D ⊇ Ω → Cr(U,E)D (48)

is a continuous K-linear map.
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Proof. (e) By [27, Prop. 8.7] (or [3, La. 7.5]) and [3, Prop. 7.4],23 the map ι(γ) is Cr
F, with

dj
(
ι(γ)

)
(x, y) =

∫ 1

0

dj1γ(x, t, y) dt for all j ≤ r, x ∈ U and y ∈ Ej. (49)

Clearly ι is linear. To prove the continuity of ι, after passing to the completion of E
we may assume that E is complete, and hence Ω = Cr(U × I, E), for convenience (cf.
Lemma A.3). The topology on Cr(U,E)D being initial with respect to the maps dj :
Cr(U,E) → C(U × Zj, E)c.o. by Lemma A.2, the mapping ι will be continuous if dj ◦ ι :
Cr(U × I, E)D → C(U × Zj, E), γ 7→ djι(γ) is continuous for j ≤ r. By (49) and (47),
dj ◦ι is a composition of the continuous map dj : Cr(U×I, E)D → C((U×I)×(Z×F)j, E),
the continuous pullback C(f, E) : C((U × I) × (Z × F)j, E) → C(U × I × Zj, E),
η 7→ η ◦ f with f(x, t, y1, . . . , yj) := (x, t, (y1, 0), . . . , (yj, 0)), and the integration map λj :

C(U × I ×Zj, E) → C(U ×Zj, E), λj(η)(x, y) :=
∫ 1

0
η(x, t, y) dt, which is continuous as a

consequence of Lemma A.4. Hence dj ◦ ι is continuous for each j ≤ r, and hence so is ι, as
asserted. 2

We are now in the position to complete the proof of Proposition 4.19 (d). The proof is by
induction on r ∈ N0. The case r = 0 is trivial: By definition, both C0(U,E) and C0(U,E)D
are equipped with the compact-open topology, and hence coincide.

Induction step: Assume that Proposition 4.19 (d) holds for some r ∈ N0. Consider the
map f : Cr+1(U,E) → Cr+1(U,E)D, f(γ) := γ. For β1 and β2 as in Lemma A.1 (d), the
composition

β1 ◦ f : Cr+1(U,E) → C(U,E)c.o. , γ 7→ γ

is continuous by Remark 4.2 (b), and also

β2 ◦ f : Cr+1(U,E) → Cr(TU,E)D , γ 7→ dγ = γ[1](•, 0)

is continuous as it is a composition of the continuous map (•)[1] : Cr+1(U,E) → Cr(U [1], E)
(Remark 4.2 (b)), the restriction map Cr(U [1], E) → Cr(TU,E) which is a pullback and
hence continuous (Lemma 4.4), and the identity map Cr(TU,E) → Cr(TU,E)D which is
an isomorphism of topological vector spaces by induction. The topology on Cr+1(U,E)D
being initial with respect to the maps βj (j ∈ {1, 2}), the continuity of the compositions
βj ◦ f entails that f is continuous.

It remains to show that also f−1 is continuous. In view of Remark 4.2 (b), we only need
to show that α1 ◦ f−1 and α2 ◦ f−1 are continuous, where α1 : Cr+1(U,E) → C(U,E) is
the inclusion map and α2 : Cr+1(U,E) → Cr(U [1], E), α2(γ) := γ[1]. Here α1 ◦ f−1 = β1 is
continuous. To see that α2 ◦ f−1 is continuous, note that for any x ∈ U and y ∈ Z, we find
an open balanced 0-neighbourhood J(x,y) ⊆ F and open neighbourhoods V(x,y) ⊆ U of x
and W(x,y) ⊆ Z of y such that

V(x,y) + 2 J(x,y)W(x,y) ⊆ U (50)

23Erratum: In the complex case, I should be an open neighbourhood of [0, 1] in C in [3, La. 7.5]. Similar
apparent adaptations are necessary in the proof of [3, Prop. 7.4].
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(and thus V(x,y) ×W(x,y) × 2J(x,y) ⊆ U ]1[). Note that U [1] is covered by U ]1[, together with
the sets Y(x,y) := V(x,y)×W(x,y)×J(x,y) for (x, y) ∈ U ×Z. Hence, by Lemma 4.12, the map
α2 ◦ f−1 will be continuous if we can show that

φ : Cr+1(U,E)D → Cr(U ]1[, E) , φ(γ) := γ[1]|U ]1[ = γ]1[

is continuous, as well as the mappings

ψ(x,y) : Cr+1(U,E)D → Cr(Y(x,y), E) , ψ(x,y)(γ) := γ[1]|Y(x,y)
,

for all (x, y) ∈ U × Z. The formula φ(γ)(x, y, t) = 1
t
(γ(x + ty) − γ(x)) shows that

φ is built up from the following continuous maps and hence continuous: 1. The map
Cr+1(U,E)D → Cr(U ]1[, E), γ 7→ [(x, y, t) 7→ γ(x + ty)]. This map is the compo-
sition of the inclusion map Cr+1(U,E)D → Cr(U,E)D = Cr(U,E) (which is contin-
uous by definition of the D-topologies and the induction hypothesis) and the pullback
Cr(g, E) : Cr(U,E) → Cr(U ]1[, E) along g : U ]1[ → U , g(x, y, t) := x+ ty, which is continu-
ous by Lemma 4.4. 2. The map Cr+1(U,E)D → Cr(U ]1[, E), γ 7→ [(x, y, t) 7→ γ(x)], which
is continuous by the same argument. 3. The addition map of the topological vector space
Cr(U ]1[, E). 4. The multiplication operator mτ : Cr(U ]1[, E) → Cr(U ]1[, E), γ 7→ τ · γ with
τ : U ]1[ → F, τ(x, y, t) := 1

t
, which is continuous by Lemma 4.5. Hence φ is continuous.

In view of Lemma A.3, it suffices to prove continuity of the maps ψ(x,y) when E is com-
plete, which we assume now (we can always replace E by its completion). For the proof, fix
(x, y) ∈ U×Z; we abbreviate V := V(x,y), W := W(x,y), J := J(x,y), Y := Y(x,y) = V ×W×J ,
and ψ := ψ(x,y). Let B2(0) := BF

2 (0) ⊆ F. Then

ψ(γ)(u, v, t) = γ[1](u, v, t) =

∫ 1

0

dγ(u+ stv, v) ds for all (u, v, t) ∈ Y

(see [3, Prop. 7.4] and its proof). We can therefore interpret ψ as a composition

Cr+1(U,E)D → Cr(U × Z,E)D = Cr(U × Z,E) → Cr(Y ×B2(0), E)

= Cr(Y ×B2(0), E)D → Cr(Y,E)D = Cr(Y,E)

of the continuous map D : Cr+1(U,E)D → Cr(U×Z,E)D (Lemma A.1 (d)), the continuous
pullback Cr(h,E) : Cr(U × Z,E) → Cr(Y × B2(0), E) along h : Y × B2(0) → U × Z,
h(u, v, t, s) := (u+ stv, v) (Lemma 4.4), and the integration map

ι : Cr(Y ×B2(0), E)D → Cr(Y,E)D

taking η to the map (u, v, t) 7→
∫ 1

0
η(u, v, t, s) ds. 24 Here ι is continuous by Lemma A.5.

Hence ψ is continuous, and hence so is f−1, which completes the proof of Proposition 4.19.2

24Note that all of the required weak integrals exist, by completeness of E.
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B Proof of Proposition 4.23

Part (a) follows from Part (b) in an obvious way. We therefore only need to prove (b).
Furthermore, as in the proof of Proposition 4.16, we may assume that r, k ∈ N0.

Reduction to open subsets of X, X and Z

As F is locally compact and X finite-dimensional, we deduce that X is locally compact (cf.
[12, I, §2, No. 3, Thm. 2]), and hence so are M and Y . For each i := (x, x̄) ∈ Y ×M =: I,
we find a chart τi : Wi → Ni of N around σ(x), onto an open subset Ni ⊆ Z. Let
κ̄i : Si → M i ⊆ X be a chart of M around x̄, and κi : Si → Mi ⊆ X be a chart
of M around x such that Si ⊆ σ−1(Wi). As Y is locally compact, we find a compact
neighbourhood Ci of x in Y such that Ci ⊆ Si. We let Ui := C0

i be the interior of Ci. Define
Ki := κi(Ci), Yi := κi(Ui) = K0

i , and ηi := κi|YiUi . Then Y =
⋃
i∈I Ui, and {ηi × κ̄i : i ∈ I}

is an atlas for Y × M . Abbreviate Θi := θηi×κ̄i : Cr(Y × M,F ) → Cr(Yi × M i, F ),
θi := θκi : C

r(M,E) → Cr(Mi, E), and θ̄i := θκ̄i : C
r(M,E) → Cr(M i, E) (see (13) in 4.7

for the notations). Then

λ : Cr(Y ×M,F ) →
∏
i∈I

Cr(Yi ×M i, F ), γ 7→ (Θi(γ))i∈I = (γ ◦ (η−1
i × κ−1

i ))i∈I

is a topological embedding (Lemma 4.9) whose image is easily seen to be closed (cf.
Lemma 4.12). Hence, by Lemma 1.15 and Lemma 1.16, the map φ will be of class Ck

K if we
can show that Θi ◦ φ is of class Ck

K for each i ∈ I. Using the Cr
F-map σi := τi ◦ σ|Wi

Si
◦ η−1

i :

Yi → Ni and the Cr+k
K -map f̃i := f̃ ◦(τ−1

i × idU× idE× idP ) : Ni×U×E×P → F , we define
fi := f̃i ◦ (σi × idU × idE × idP ) : Yi × U × E × P → F . For γ ∈ bK,Ucr, γ̄ ∈ Cr(M,E),
x ∈ Yi, x̄ ∈M i, and p ∈ P , we have

Θi(φ(γ, γ̄, p))(x, x̄) = f(η−1
i (x), γ(η−1

i (x)), γ̄(κ̄−1
i (x̄)), p) = fi(x, θi(γ)(x), θ̄i(γ̄)(x̄), p)

= φi(θi(γ), θ̄i(γ̄), p)(x, x̄) ,

where

φi : bKi, Ucr × Cr(M i, E)× P → Cr(Yi ×M i, F ), φi(η, η̄, p)(x, x̄) := fi(x, η(x), η̄(x̄), p)

with bKi, Ucr ⊆ Cr(Mi, E). Thus Θi ◦ φ = φi ◦ (θi|bKi,UcrbK,Ucr × θ̄i × idP ), showing that Θi ◦ φ
will be of class Ck

K if φi is of class Ck
K. Thus, each Mi being an open subset of X, M i open

in X, and Ni an open subset of Z, the proposition will hold if we can prove (b) in the case
where M , M and N are open subsets of X, X and Z, respectively, which we shall assume
for the rest of the proof. We proceed by induction on k.
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The case k = 0.

The proof is by induction on r. If r = 0, then the topology on C0(M,E), C0(M,E) and
C0(Y × M,F ) is the topology of uniform convergence on compact sets (see 4.8). Let
γ ∈ bK,Uc ⊆ Cr(M,E), γ̄ ∈ Cr(M,E), p ∈ P , L be a compact subset of Y ×M , and
V ⊆ F be an open zero-neighbourhood. Let W ⊆ F be an open zero-neighbourhood such
that W −W ⊆ V . For each i := (x, x̄) ∈ L, there are open neighbourhoods Ai ⊆ Y and
Ai ⊆ M of x, resp., x̄, and open zero-neighbourhoods Bi ⊆ E, Bi ⊆ E and Ci ⊆ H such
that γ(Ai) +Bi ⊆ γ(K) +Bi ⊆ U , p+ Ci ⊆ P , and

f(y, u, ū, q)− f(x, γ(x), γ̄(x), p) ∈ W

for all y ∈ Ai, u ∈ γ(Ai) + Bi, ū ∈ γ̄(Ai) + Bi, and q ∈ p + Ci. By compactness,
L ⊆

⋃
i∈I(Ai×Ai) for some finite subset I ⊆ L. Then B :=

⋂
i∈I Bi ⊆ E, B :=

⋂
i∈I Bi ⊆ E

and C :=
⋂
i∈I Ci ⊆ H are open zero-neighbourhoods, and K := pr2(L) ⊆ M is compact,

where pr2 : Y ×M → M is the coordinate projection. Let ξ ∈ γ + bK,Bc ⊆ C0(M,E),
ξ̄ ∈ γ̄ + bK,Bc ⊆ C0(M,E), and q ∈ p+ C ⊆ P . Given (y, ȳ) ∈ L, there is i = (x, x̄) ∈ I
such that (y, ȳ) ∈ Ai × Ai. Then ξ ∈ bK,Uc, and

f(y, ξ(y), ξ̄(ȳ), q)− f(y, γ(y), γ̄(ȳ), p)

= f(y, ξ(y), ξ̄(ȳ), q)− f(x, γ(x), γ̄(x̄), p) − (f(y, γ(y), γ̄(ȳ), p)− f(x, γ(x), γ̄(x̄), p))

∈ W −W ⊆ V .

We have shown that φ(ξ, ξ̄, q) − φ(γ, γ̄, p) ∈ bL, V c ⊆ C(Y ×M,F ) for all (ξ, ξ̄, q) in the
open neighbourhood (γ+bK,Bc)×(γ̄+bK,Bc)×(p+C) of (γ, γ̄, p). Thus φ is continuous.

Induction step on r. We write φr for φ, to emphasize its dependence on r. Suppose the
assertion of the lemma is correct for k = 0 and some r ∈ N0. Suppose that the hypotheses
of the lemma are satisfied by f̃ and σ, with r replaced by r + 1. The map φr being
continuous, we see as in the proof of Proposition 4.16 that φr+1 will be continuous if we
can show that the map

ψ : bK,Ucr+1 × Cr+1(M,E)× P → Cr((Y ×M)[1], F ), ψ(γ, γ̄, p) := φr+1(γ, γ̄, p)
[1]

is continuous. Here we have, by the Chain Rule,

ψ(γ, γ̄, p)(x, x̄, y, ȳ, t)

= φr+1(γ, γ̄, p)
[1](x, x̄, y, ȳ, t)

= f̃ [1]((σ(x), γ(x), γ̄(x̄), p), (σ[1](x, y, t), γ[1](x, y, t), γ̄[1](x̄, ȳ, t), 0), t) (51)

for (x, x̄, y, ȳ, t) ∈ (Y ×M)[1]. Let (γ0, γ̄0, p0) ∈ bK,Ucr+1×Cr+1(M,E)×P be given; our
goal is to show that ψ is continuous at (γ0, γ̄0, p0). We setX1 := X×X×F, X1 := X×X×F,
Z1 := Z × Z ×K, E1 := E × E, and E1 := E × E. Given (x0, x̄0, y0, ȳ0, t0) ∈ (Y ×M)[1],

we have (σ(x0), σ
[1](x0, y0, t0), t0) ∈ N [1] and (γ0(x0), γ

[1]
0 (x0, y0, t0), t0) ∈ U [1]. There are
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open neighbourhoods R1 ⊆ N of σ(x0), R2 ⊆ Z of σ[1](x0, y0, t0), R3 ⊆ K of t0, V1 ⊆ U of

γ0(x0), and V2 ⊆ E of γ
[1]
0 (x0, y0, t0) such that

R1 ×R2 ×R3 ⊆ N [1] and V1 × V2 ×R3 ⊆ U [1] .

Then R1 × V1 × E × P × R2 × V2 × E × {0} × R3 ⊆ (N × U × E × P )[1]. Abbreviate
N1 := R1 ×R2 ×R3 and U1 := V1 × V2. Then

f̃1 : N1 × U1 × E1 × P → F, f̃1(x, y, t, u, v, ū, v̄, p) := f̃ [1]((x, u, ū, p), (y, v, v̄, 0), t)

for (x, y, t) ∈ N1, (u, v) ∈ U1 = V1 × V2, (ū, v̄) ∈ E1, p ∈ P defines a mapping of class
Cr+1+k−1

K = Cr+k
K on the open subset N1 × U1 × E1 × P of Z1 × E1 × E1 × H. There

exists an open neighbourhood A1 ⊆ Y of x0 with compact closure C1 ⊆ Y , and open
neighbourhoods A2 ⊆ X of y0, A1 ⊆ M of x̄0, A2 ⊆ X of ȳ0, and A3 ⊆ F ∩ R3 of t0
such that M1 := A1 × A2 × A3 ⊆ Y [1], M1 := A1 × A2 × A3 ⊆ M

[1]
, σ(A1) ⊆ R1,

σ[1](A1 × A2 × A3) ⊆ R2, γ0(C1) ⊆ V1, and γ
[1]
0 (A1 × A2 × A3) ⊆ V2. Let K1 ⊆ M1 be

a compact neighbourhood of (x0, y0, t0), with interior Y1 := K0
1 . Define σ1 : Y1 → N1,

σ1(x, y, t) := (σ(x), σ[1](x, y, t), t) for x ∈ A1, y ∈ A2, t ∈ A3. Then σ1 is a Cr
F-map. We set

f1 := f̃1 ◦ (σ1 × idU1 × idE1
× idP ) : Y1 × U1 × E1 × P → F.

Abbreviate z := (x0, x̄0, y0, ȳ0, t0). Then

ψ1 : bK1, U1cr × Cr(M1, E1)× P → Cr(Y1 ×M1, F ), ψ1(γ, γ̄, p) := f1(•, p)∗(γ × γ̄)

is a continuous mapping by induction, where bK1, U1cr ⊆ Cr(M1, E1). Let B1 ⊆ A1,
B2 ⊆ A2 and B3 ⊆ A3 be open neighbourhoods of x0, y0 and t0, respectively, such that
B1 × B2 × B3 ⊆ Y1. Then Qz := B1 × A1 × B2 × A2 × B3 is an open neighbourhood of z
in (Y ×M)[1]. We define δ : Qz → Y1 ×M1, δ(x, x̄, y, ȳ, t) := (x, y, t, x̄, ȳ, t). Since ψ1 is
continuous, also

ψ2 := Cr(δ, F ) ◦ ψ1 : bK1, U1cr × Cr(M1, E1)× P → Cr(Qz, F )

is continuous (by Lemma 4.4). Note that

Ω := {γ ∈ bK,Ucr+1 ∩ bC1, V1cr+1 : γ[1]|M1 ∈ bK1, V2cr}

is an open neighbourhood of γ0 in bK,Ucr+1 (cf. Remark 4.2 (b), Lemma 4.4 and Lemma 4.22).
The linear maps

π : Cr+1(M,E) → Cr(M1, E), π(γ)(x, y, t) := γ(x) and

π̄ : Cr+1(M,E) → Cr(M1, E), π̄(γ̄)(x̄, ȳ, t) := γ̄(x̄)

are continuous (see Remark 4.2 (a) and Lemma 4.4), and we have π(Ω) ⊆ bK1, V1cr. Also

Cr+1(M,E) → Cr(M1, E), γ 7→ γ[1]|M1 and
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Cr+1(M,E) → Cr(M1, E), γ̄ 7→ γ̄[1]|M1

are continuous linear mappings (see Remark 4.2 and Lemma 4.4), and the first of these
maps Ω into bK1, V2cr. Let ρz : Cr((Y × M)[1], F ) → Cr(Qz, F ), ρz(η) := η|Qz be the
restriction map. In view of (51) and the definition of ψ2, we have

ψ(γ, γ̄, p)(x, x̄, y, ȳ, t) = ψ2

(
(π(γ), γ[1]|M1), (π̄(γ̄), γ̄[1]|M1

), p
)

(x, x̄, y, ȳ, t)

for (γ, γ̄, p) ∈ Ω× Cr+1(M,E)× P , (x, x̄, y, ȳ, t) ∈ Qz, showing that

ρz ◦ ψ|Ω×Cr+1(M,E)×P

is continuous on Ω × Cr+1(M,E) × P , which is a neighbourhood of (γ0, γ̄0, p0). Thus, we
have achieved the following: given any z = (x0, x̄0, y0, ȳ0, t0) ∈ (Y ×M)[1], we have found
an open neighbourhood Qz of z in (Y ×M)[1] such that ρz ◦ψ is continuous at (γ0, γ̄0, p0).
In view of Lemma 4.6, this entails that ψ is continuous at (γ0, γ̄0, p0), as desired.

Induction step on k.

Suppose the assertion of the lemma is correct for some k ∈ N0 and all r ∈ N0. Let
σ and f̃ be given which satisfy the hypotheses of the lemma when k is replaced with
k + 1. Then φ : bK,Ucr × Cr(M,E) × P → Cr(Y × M,F ) is of class Ck

K (and thus
continuous), by induction. For all (γ, γ̄, p, η, η̄, q, t) ∈ (bK,Ucr × Cr(M,E) × P )]1[ ⊆
bK,Ucr × Cr(M,E)× P × Cr(M,E)× Cr(M,E)×H ×K, we calculate

1
t
(φ(γ + tη, γ̄ + tη̄, p+ tq)− φ(γ, γ̄, p)) (x, x̄)

= 1
t
(f̃(σ(x), γ(x) + tη(x), γ̄(x̄) + tη̄(x̄), p+ tq)− f̃(σ(x), γ(x), γ̄(x̄), p))

= f̃ [1]((σ(x), γ(x), γ̄(x̄), p), (0, η(x), η̄(x̄), q), t) (52)

for all x ∈ Y and x̄ ∈M . On the open subset

W ⊆ N × U × E × E × E × P ×H ×K

consisting of those (x, y, z, ȳ, z̄, p, q, t) such that (y, z, t) ∈ U [1] and (p, q, t) ∈ P [1], we define
a Cr+k+1−1

K = Cr+k
K -map

h̃ : W → F, h̃(x, y, z, ȳ, z̄, p, q, t) := f̃ [1]((x, y, ȳ, p), (0, z, z̄, q), t) .

Motivated by (52), we consider the map

ψ : (bK,Ucr × Cr(M,E)× P )[1] → Cr(Y ×M,F ) ,

ψ((γ, γ̄, p), (η, η̄, q), t)(x, x̄) := h̃(σ(x), γ(x), η(x), γ̄(x̄), η̄(x̄), p, q, t)

which extends φ]1[. If we can show that ψ is Ck
K, then ψ is continuous and thus ψ = φ[1].

Thus φ will be of class C1
K, with φ[1] = ψ of class Ck

K, entailing that φ is of class Ck+1
K (see

1.7), as required.
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Let A be the set of all relatively compact, non-empty, open subsets of Y . As a consequence
of Lemmas 1.15, 1.16, 4.6 and 4.12, the mapping ψ will be of class Ck

K if we can show that
ρQ ◦ ψ is of class Ck

K for all Q ∈ A, where ρQ : Cr(Y ×M,F ) → Cr(Q×M,F ), ρQ(γ) :=
γ|Q×M . Here ρQ ◦ ψ will be of class Ck

K if we can show that every (γ0, γ̄0, p0, η0, η̄0, q0, t0) ∈
(bK,Ucr ×Cr(M,E)×P )[1] has an open neighbourhood T such that (ρQ ◦ψ)|T is of class
Ck

K (see Lemma 1.12).

Case t0 6= 0: Then we can take T := (bK,Ucr ×Cr(M,E)×P )]1[. In fact, ψ|T = φ]1[ (and
thus ρQ ◦ ψ|T ) is of class Ck

K since so is φ.

Case t0 = 0: In view of the compactness of γ0(Q) ⊆ U and η0(Q) ⊆ E, where Q denotes
the closure of Q in Y , there exist open neighbourhoods B1 of γ0(Q) in U , B2 of η0(Q)
in E and an open zero-neighbourhood B3 ⊆ K such that B1 + B3 · B2 ⊆ U and thus
B1 × B2 × B3 ⊆ U [1]. Shrinking B3 if necessary, we find open neighbourhoods B4 of p0 in
P and B5 of q0 in H such that B4 + B3 · B5 ⊆ P and thus B4 × B5 × B3 ⊆ P [1]. Define
U1 := B1×B2 ⊆ U×E and P1 := B4×B5×B3 ⊆ P×H×K. Then N×U1×E×E×P1 ⊆ W ,

and g̃ := h̃|
N×U1×E

2×P1
: N × U1 × E

2 × P1 → F is a mapping of class Cr+k
K . We define

g := g̃ ◦ (σ|Q × idU1 × id
E

2 × idP1) : Q× U1 × E
2 × P1 → F .

By induction hypothesis, the mapping

Φ: bQ,U1cr × Cr(M,E
2
)× P1 → Cr(Q×M,F ), Φ(γ, γ̄, p) := g(•, p)∗(γ × γ̄)

is of class Ck
K, where bQ,U1cr ⊆ Cr(M,E × E). Note that

θ : (Cr(M,E)× Cr(M,E)×H)2 ×K → Cr(M,E × E)× Cr(M,E × E)×H ×H ×K,
(γ, γ̄, p, η, η̄, q, t) 7→ ((γ, η), (γ̄, η̄), p, q, t)

is an isomorphism of topological K-vector spaces such that (γ0, γ̄0, p0, η0, η̄0, q0, t0) ∈ T :=

θ−1(bQ,U1cr ×Cr(M,E
2
)× P1) ∩ (bK,Ucr ×Cr(M,E)× P )[1]. To complete the proof, it

only remains to observe that ρQ ◦ ψ|T = Φ ◦ θ|θ(T )
T is a mapping of class Ck

K.

C Proof of Proposition 11.3

In the situation of Proposition 11.3, let H be a finite-dimensional K-vector space, and
P ⊆ H be open. If we can prove the following lemma, then apparently Proposition 11.3
will follow:

Lemma C.1 The mapping Θ: Cr+k(F × P,E)× Cr(M,F )× P → Cr(M,E),
Θ(γ, η, p) := γ(•, p) ◦ η is of class Ck

K. If k ≥ 1, then

Θ[1]((γ, η, p), (γ1, η1, p1), t)

= γ[1]((•, p), (•, p1), t) ◦ (η, η1) + γ1(•, p+ tp1) ◦ (η + tη1) (53)

for all ((γ, η, p), (γ1, η1, p1), t) ∈ (Cr+k(F × P,E)× Cr(M,F )× P )[1].



LIE GROUPS OVER TOPOLOGICAL FIELDS 99

Proof. As in the proof of Lemma 11.4, we may assume that k, r ∈ N0. The proof is by
induction on k.

The case k = 0

We proceed by induction on r. If r = 0, then a trivial variation of the argument used in
the proof of Lemma 11.4 shows that Θ is continuous.

Induction step on r. Let r ∈ N, and suppose that the lemma holds for k = 0, when r is
replaced with r − 1. It then suffices to show continuity of Θ in the case where M is an
open subset of its modeling space Z. In fact, if M is a Cr

K-manifold, Lemma 4.12 entails
that Θ will be continuous if, for any chart κ : U → V ⊆ Z of M , the map

h : Cr(F × P,E)× Cr(M,F )× P → Cr(V,E), h(γ, η, p) := Θ(γ, η, p) ◦ κ−1

is continuous. But

h(γ, η, p) = γ(•, p) ◦ (η ◦ κ−1) = Ξ(γ, η ◦ κ−1, p) , (54)

where Ξ: Cr(F ×P,E)×Cr(V, F )×P → Cr(V,E), Ξ(γ, σ, p) := γ(•, p)◦σ. Recall that the
pullback Cr(M,F ) → Cr(V, F ), η 7→ η ◦κ−1 is continuous linear (Lemma 4.11). Thus (54)
shows that h will be continuous if Ξ is continuous. Since V is open in Z, this completes
the reduction step to the case where M is open in Z.

To complete the induction step on r in the case k = 0, by the preceding we may assume
now that M is an open subset of Z. The map Θ: Cr(F×P,E)×Cr(M,F )×P → Cr(M,E)
is continuous as a map into C(M,E), by the case r = 0 already settled. Hence, in view of
Remark 4.2 (b), Θ will be continuous if we can show that the map

Cr(F × P,E)× Cr(M,F )× P → Cr−1(M [1], E), (γ, η, p) 7→ Θ(γ, η, p)[1]

is continuous, where

Θ(γ, η, p)[1](x, y, t) = γ[1]((η(x), p), (η[1](x, y, t), 0), t) (55)

for all (x, y, t) ∈M [1], by the Chain Rule. By (55), we have

Θ(γ, η, p)[1] = Θ̃(γ[1] ◦ ρ, (η ◦ pr1, η
[1], pr3), p) (56)

for all (γ, η, p) in the domain of Θ, where pr1 : M [1] →M , (x, y, t) 7→ x and pr3 : M [1] → K,
(x, y, t) 7→ t are the coordinate projections,

ρ : F [1] × P → (F × P )[1], ρ((u, v, t), p) := ((u, p), (v, 0), t)

is continuous linear, and Θ̃ : Cr−1(F [1]×P,E)× Cr−1(M [1], F [1])× P → Cr−1(M [1], E),

Θ̃(σ, τ, p) := σ(•, p) ◦ τ

is continuous by induction. Because the mapping Cr(M,F ) → Cr−1(M [1], F ), η 7→ η[1]

and both of the pullbacks Cr(M,F ) → Cr−1(M [1], F ), η 7→ η ◦ pr1 and Cr−1(ρ,E) :
Cr−1((F × P )[1], E) → Cr−1(F [1] × P,E) are continuous, we deduce from (56) that
(γ, η, p) 7→ Θ(γ, η, p)[1] is continuous. Hence so is Θ.
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Induction step on k

Let k ∈ N, and suppose that the assertion of the lemma holds when k is replaced with
k − 1, for all integers r ∈ N0. Let r ∈ N0. Given an element ((γ, η, p), (γ1, η1, p1), t) ∈
(Cr+k(F × P,E)× Cr(M,F )× P )]1[, we calculate for x ∈M :

1
t

(Θ(γ + tγ1, η + tη1, p+ tp1)−Θ(γ, η, p)) (x)

= 1
t

(
γ(η(x) + tη1(x), p+ tp1)− γ(η(x), p)

)
+ γ1(η(x) + tη1(x), p+ tp1)

= γ[1]((η(x), p), (η1(x), p1), t) + γ1(η(x) + tη1(x), p+ tp1) . (57)

Thus Θ]1[ coincides with the restriction to (Cr+k(F × P,E) × Cr(M,F ) × P )]1[ of the
mapping g : (Cr+k(F × P,E)× Cr(M,F )× P )[1] → Cr(M,F ),

g((γ, η, p), (γ1, η1, p1), t) := Θ̃(γ[1] ◦ ρ, (η, η1), (p, p1, t)) + Θ(γ1, η + tη1, p+ tp1) , (58)

where ρ : F 2 × P [1] → (F × P )[1], ρ(u, v, p, p1, t) := ((u, p), (v, p1), t) is continuous linear

and Θ̃ : Cr+k−1(F 2×P [1], E)× Cr(M,F 2)× P [1] → Cr(M,E),

Θ̃(σ, τ, (p, p1, t)) := σ(•, (p, p1, t)) ◦ τ

is of class Ck−1
K , by induction. Since Θ is Ck−1

K and hence continuous as a consequence
of the induction hypothesis, in order that Θ be Ck

K, it only remains to show that g is of
class Ck−1

K (then Θ[1] = g, which also establishes (53)). Now, the second summand in (58)
clearly describes a Ck−1

K -map. Also the first summand is Ck−1
K , as pullbacks are continuous

linear and Θ̃ is Ck−1
K . 2

D Smoothness vs. weak smoothness over local fields

We vary a classical result of A. Grothendieck concerning mappings on open sets in Rn:

Theorem D.1 Let K be a local field, E and F be topological K-vector spaces, f : U → F
a map on an open subset of E, and k ∈ N0. If E is metrizable and F is Mackey complete
and locally convex, then we have:

(a) If f is Ck, then f is weakly Ck, viz. λ ◦ f is Ck for each λ ∈ F ′.

(b) If f is weakly Ck+1, then f is Ck.

In particular, f is smooth if and only if f is weakly smooth.

Proof. (a) is a trivial consequence of the Chain Rule.

(b) If we can prove (b) in the special case where U = E is finite-dimensional, then
for general f the composition f ◦ γ will be weakly Ck+1 and thus Ck, for every smooth
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map γ : Kk+1 → U . Hence f will be Ck by [3, Thm. 12.4]. We may therefore assume that
U = E = K` for some `. The proof is by induction on k.

If k = 0 and f : E = K` → F is weakly C1, let x ∈ U and W ⊆ F be a 0-neighbourhood.
Define

B := {f ]1[(x, y, t) : y ∈ K, t ∈ O \ {0}} ,
where O ⊆ K is the valuation ring, K a compact 0-neighbourhood in E, and f ]1[(x, y, t) :=
t−1(f(x+ ty)− f(x)). Then λ(B) ⊆ (λ ◦ f)[1]({x}×K×O) is compact and thus bounded,
for each λ ∈ F ′, whence B is bounded in F by [77, Thm. 4.21]. Thus there is t ∈ O \ {0}
such that tB ⊆ W . Then f(y) − f(x) ∈ tB ⊆ W for every y ∈ x + tK. Hence f is
continuous at x.

Induction step. If k ≥ 1 and f : E = K` → F is weakly Ck+1, given x, y ∈ E choose a
sequence (tn)n∈N of pairwise distinct elements in O \ {0} such that tn → 0. Set

B := {(tn − tm)−1(f ]1[(x, y, tm)− f ]1[(x, y, tn)) : n,m ∈ N} .

Then λ(B) = {(λ◦f)[2]((x, y, tn), (0, 0, 1), tm− tn) : n,m ∈ N} is contained in the compact
set (λ◦f)[2]({x}×{y}×O×{(0, 0, 1)}×O) and thus bounded, for each λ ∈ F ′, whence B is
bounded by [77, Thm. 4.21]. Since f ]1[(x, y, tm)−f ]1[(x, y, tn) ∈ (tm− tn)B, we deduce that
(f ]1[(x, y, tn))n∈N is a Mackey-Cauchy sequence in F and thus convergent; we let g(x, y, 0)
be its limit. Then λ(g(x, y, 0)) = limn→∞(λ ◦ f)]1[(x, y, tn) = (λ ◦ f)[1](x, y, 0) for each λ.
Furthermore, trivially λ(g(x, y, t)) = (λ ◦ f)[1](x, y, t) for g(x, y, t) := t−1(f(x+ ty)− f(x))
for all (x, y, t) ∈ E × E × K×. Thus λ ◦ g = (λ ◦ f)[1] is Ck for each λ, whence g is Ck−1

(and thus C0), by induction. Hence f is C1 with f [1] = g of class Ck−1, whence f is Ck. 2

E Towards a p-adic analogue of Boman’s Theorem

Boman’s Theorem asserts that a mapping f : Rn → R is smooth if and only if f ◦ γ :
R → R is smooth for each smooth curve γ : R → R (see [9, Thm. 1]). As is well known,
this implies that a mapping f : U → F from an open subset U ⊆ E of a metrizable
real locally convex space E to a real locally convex space F is smooth if and only if
f ◦ γ is smooth for each smooth curve γ : R → U (cf. [47, Thm. 12.8]). It is natural
to ask whether versions of Boman’s theorem remain valid over arbitrary locally compact
topological fields, or at least in the p-adic case. A positive answer to this question (which is
still open) would be quite useful.25 In the present section, we show that, as in the real locally
convex case, the validity of Boman’s Theorem for functions K2 → K entails its validity
for functions between open subsets of suitable topological vector spaces. Our main tools
are the exponential laws from Section 12, the adaptations of Grothendieck’s Theorem from
Appendix D, and the characterization of smooth maps on metrizable topological vector
spaces from [3, Thm. 12.4].

25For example, combining the results of this section and [26, Cor. 4.3], this would entail that the ex-
ponential map of a smooth (not necessarily analytic) p-adic Banach-Lie group is automatically a C∞-
diffeomorphism. This would be an important step towards proving the conjecture that every smooth
p-adic Banach-Lie group admits a smoothly compatible p-adic analytic Lie group structure.
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Lemma E.1 Let K be the field of real numbers or an ultrametric field. Let A be one of
the following classes of topological K-vector spaces:

• The class of all topological K-vector spaces;

• The class of all sequentially complete topological K-vector spaces;

• The class of all Mackey complete topological K-vector spaces;

• The class of all locally convex topological K-vector spaces;

• The class of all sequentially complete, locally convex topological K-vector spaces; or:

• The class of all Mackey complete, locally convex topological K-vector spaces.

Suppose that Boman’s Theorem holds for mappings from K2 to topological vector spaces
in A, i.e., assume the validity of the following statement:

If f : K2 → F is a map into a topological K-vector space F ∈ A, and f ◦ γ : K → F
is C∞K for each C∞K -curve γ : K → K2, then f is of class C∞K .

Then Boman’s Theorem holds for mappings f : U → F from open subsets U ⊆ E of metriz-
able topological K-vector spaces E to topological K-vector spaces F ∈ A, i.e., smoothness
of f ◦ γ : K → F for each smooth curve γ : K → U entails smoothness of f .

Proof. Assuming that the hypothesis of the lemma is correct, we first show by induc-
tion on n ∈ N that Boman’s Theorem holds for mappings f : Kn → F , for all F ∈ A.
The case n = 1 is trivial, and the case n = 2 holds by the hypothesis of the lemma.
Thus, assume that n ≥ 2 now, assume that Boman’s Theorem holds for functions on
Kn, and assume that f : Kn+1 → F is a function into some F ∈ A such that f ◦ γ
is smooth for each smooth curve γ : K → Kn+1. Then f(x, •) : Kn−1 → F is smooth
along smooth curves, for any x ∈ K2, and thus f(x, •) is smooth, by induction. Therefore
f∨ : K2 → C∞(Kn−1, F ), f∨(x) := f(x, •) is correctly defined. By Proposition 12.6 (b),
the map f = (f∨)∧ will be smooth if f∨ is smooth. Since C∞(Kn−1, F ) ∈ A by Proposi-
tion 4.19, f∨ will be smooth if f∨ ◦ γ : K → C∞(Kn−1, F ) is smooth for each smooth curve
γ = (γ1, γ2) : K → K2, by the hypothesis of the lemma. By Proposition 12.6 (b), f∨ ◦γ will
be smooth if g := (f∨ ◦ γ)∧ : Kn → F is smooth. Note that g(t, y) = f(γ1(t), γ2(t), y) for
t ∈ K, y ∈ Kn−1, and thus (g ◦ η)(t) = f(γ1(η1(t)), γ2(η1(t)), η2(t), . . . , ηn(t)) is smooth for
each smooth curve η = (η1, . . . , ηn) : K → Kn, as f is smooth along smooth curves. Being
smooth along smooth curves, g : Kn → F is smooth, by the induction hypothesis. In view
of our reduction steps, this means that also f is smooth. This finishes the induction.

To complete the proof, let U be an open subset of a metrizable topological K-vector space,
F ∈ A and f : U → F be a mapping which is smooth along smooth curves. Then the
composition f ◦ η : Kn → F is smooth along smooth curves and hence smooth by what has
already been shown, for any n ∈ N and smooth map η : Kn → U . Hence f is smooth, by
[3, Thm. 12.4]. 2
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Theorem E.2 Let K be a local field. Suppose that Boman’s Theorem holds for functions
from K2 to K, i.e., assume the validity of the following statement:

If f : K2 → K is a function such that f ◦ γ : K → K is C∞K for each C∞K -curve
γ : K → K2, then f is of class C∞K .

Then Boman’s theorem holds for mappings f : U → F from open subsets U ⊆ E of
metrizable topological K-vector spaces E to Mackey complete, locally convex topological K-
vector spaces F , i.e., smoothness of f ◦γ : K → F for each smooth curve γ : K → U entails
smoothness of f .

Proof. Let A be the class of Mackey complete, locally convex topological K-vector spaces.
We only need to show that the present hypothesis entails the hypothesis of Lemma E.1.
To this end, let f : K2 → F be a map into a Mackey complete, locally convex topological
K-vector space which is smooth along each smooth curve. If λ : F → K is a continuous
linear functional, then λ ◦ f : K2 → K is smooth along each smooth curve and hence
smooth, by the hypothesis of the present theorem. Thus f is weakly smooth and hence
smooth, by our analogue of Grothendieck’s Theorem (Theorem D.1). Thus, the hypothesis
of Lemma E.1 is verified. 2

In the real case, we do have Boman’s Theorem available. Thus, we arrive at the conclusion:

Proposition E.3 Let E be a metrizable real topological vector space, U ⊆ E be an open
subset and F a locally convex real topological vector space. Then a mapping f : U → F is
smooth if and only if f ◦ γ is smooth for each smooth curve γ : R → U .

Proof. We only need to verify the hypothesis of Lemma E.1 for K = R and the class A of
all locally convex, real topological vector spaces. Thus, suppose that f : R2 → F is a map
into a real locally convex space which is smooth along smooth curves. Then λ◦f : R2 → R
is smooth along smooth curves and hence smooth by Boman’s Theorem [9, Thm. 1], for
each continuous linear functional λ on the completion F of F . Hence f : R2 → F is
weakly smooth and hence smooth, by Grothendieck’s classical theorem. For any n ∈ N
and x, y ∈ R2, we have dnf(x, y, . . . , y) = dn

dtn

∣∣
t=0
f(x + ty) ∈ F , as f is smooth along the

smooth curve R → R2, t 7→ x + ty. Hence dnf(x, •) has image in F , by polarization (cf.
[7, Thm. A]). Now, f : R2 → F being a smooth map into F with im(dnf) ⊆ F for each
n ∈ N0, we deduce that f is smooth as a map into F , as required. 2

Remark E.4 Note that E need not be locally convex in Proposition E.3, and that no
completeness properties whatever are presumed for E nor F . Therefore, the result is
slightly more general than the results in the literature (and those in the folklore).
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F Spaces of sections in vector bundles and mappings

between them

In this appendix, we define bundles of topological vector spaces, topologize their spaces of
sections, and study differentiability properties of mappings between open subsets of spaces
of sections.

In the following, K denotes an arbitrary topological field. Additional properties of K (local
compactness) will be spelt out explicitly where they are needed. Unless specified otherwise,
r ∈ N0 ∪ {∞}.

Definition F.1 Let M be a Cr
K-manifold, modeled on a topological K-vector space Z, and

F be a topological K-vector space. A Cr
K-vector bundle over M , with typical fibre F , is a

Cr
K-manifold E, together with a Cr

K-surjection π : E → M and equipped with a K-vector
space structure on each fibre Ex := π−1({x}), such that for each x0 ∈ M , there exists an
open neighbourhood Mψ of x0 in M and a Cr

K-diffeomorphism

ψ : π−1(Mψ) →Mψ × F

(called a “local trivialization of E about x0”) such that ψ(Ex) = {x}×F for each x ∈Mψ

and prF ◦ ψ|Ex : Ex → F is K-linear (and thus an isomorphism of topological K-vector
spaces with respect to the topology on Ex induced by E), where prF : Mψ × F → F is the
projection on the second coordinate.

Remark F.2 In the situation of Definition F.1, suppose we are given two local trivial-
izations ψ : π−1(Mψ) → Mψ × F and φ : π−1(Mφ) → Mφ × F . Then φ(ψ−1(x, v)) =
(x, gφ,ψ(x).v) for some function gφ,ψ : Mφ ∩Mψ → GL(F ) ⊆ L(F, F ) (the space of contin-
uous linear self-maps), and Gφ,ψ : (Mφ ∩Mψ) × F → F , (x, v) 7→ gφ,ψ(x).v is a Cr

K-map
(since φ ◦ ψ−1 is so).

Definition F.3 A Cr
K-section of a Cr

K-vector bundle π : E → M is a Cr
K-map σ : M → E

such that π ◦ σ = idM . Its support supp(σ) is the closure of {x ∈ M : σ(x) 6= 0x}. We
let Cr(M,E) be the set of all Cr

K-sections in E. If K is locally compact and M is finite-
dimensional, we let Cr

K(M,E) be the set of all Cr
K-sections with support contained in a

given compact subset K ⊆M .

Making use of scalar multiplication and addition in the individual fibres, we obtain natural
vector space structures on Cr(M,E) and Cr

K(M,E). The zero-element is the zero-section
0• : M → E, x 7→ 0x ∈ Ex.

Definition F.4 If π : E →M is a Cr
K-vector bundle with typical fibre F , σ : M → E a Cr

K-
section, and ψ : π−1(Mψ) →Mψ × F a local trivialization, we define σψ := prF ◦ ψ ◦ σ|Mψ

:
Mψ → F . Thus ψ(σ(x)) = (x, σψ(x)) for all x ∈Mψ.

Note that σψ is a mapping of class Cr
K here. The symbols gφ,ψ, Gφ,ψ, and σψ will always

be used with the meanings just described, without further explanation.
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Definition F.5 If π : E →M is a vector bundle and A a set of local trivializations ψ of E
whose domains cover E, then we call A an atlas of local trivializations.

Lemma F.6 If π : E → M is a Cr
K-vector bundle with typical fibre F , and A an atlas of

local trivializations for E, then

Γ: Cr(M,E) →
∏
ψ∈A

Cr(Mψ, F ), σ 7→ (σψ)ψ∈A

is an injection, whose image is the closed vector subspace

H :=
{

(fψ) ∈
∏
ψ∈A

Cr(Mψ, F ) : (∀φ, ψ ∈ A, ∀x ∈Mφ ∩Mψ) fφ(x) = gφ,ψ(x).fψ(x)
}

of
∏

ψ∈AC
r(Mψ, F ).

Proof. It is obvious that im Γ ⊆ H, and clearly Γ is injective. If now (fψ)ψ∈A ∈ H,
we define σ : M → E via σ(x) := ψ−1(x, fψ(x)) if x ∈ Mψ. By definition of H, σ(x) is
independent of the choice of ψ. As ψ ◦ σ|Mψ

= (idMψ
, fψ), the mapping σ : M → E is

of class Cr
K. Thus σ is a Cr

K-section, and Γ(σ) = (fψ)ψ∈A by definition of σ. We deduce
that im Γ = H. The closedness of H follows from the continuity of the point evaluations
Cr(Mψ, F ) → F , γ 7→ γ(x) for x ∈Mψ. 2

Definition F.7 Let π : E → M be a Cr
K-vector bundle, with typical fibre F , and A be

the atlas of all local trivializations of E. We give Cr(M,E) the vector topology making
the linear mapping

Γ: Cr(M,E) →
∏
ψ∈A

Cr(Mψ, F ), σ 7→ (σψ)ψ∈A

a topological embedding.

By the preceding definition, the topology on Cr(M,E) is initial with respect to the family
(θψ)ψ∈A, where θψ : Cr(M,E) → Cr(Mψ, F ), σ 7→ σψ.

Remark F.8 In the situation of Definition F.7, assume that K is R, C or an ultrametric
field, and assume that F is locally convex. Then Cr(Mψ, F ) is locally convex for each
ψ ∈ A, by Proposition 4.19 (b). Hence also Cr(M,E) is locally convex.

It suffices to work with any atlas of local trivializations.

Lemma F.9 The topology on Cr(M,E) described in Definition F.7 is initial with respect
to (θψ)ψ∈B, for any atlas B ⊆ A of local trivializations for E.
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Proof. We let O be the initial topology on Cr(M,E) with respect to (θψ)ψ∈B, which
apparently is coarser than initial topology with respect to (θψ)ψ∈A. Fix a local trivialization
φ ∈ A. Then {Mφ ∩Mψ : ψ ∈ B} is an open cover for Mφ. In view of Lemma 4.12, the
map θφ will be continuous on (Cr(M,E),O) if the map (Cr(M,E),O) → Cr(Mφ∩Mψ, F ),
σ 7→ θφ(σ)|Mφ∩Mψ

is continuous for all ψ ∈ B. But, with Gφ,ψ as in Remark F.2, the latter
mapping is the composition of (Gφ,ψ)∗ : Cr(Mφ ∩Mψ, F ) → Cr(Mφ ∩Mψ, F ) (which is
continuous by Proposition 4.16) and Cr(M,E) → Cr(Mφ ∩Mψ, F ), σ 7→ θψ(σ)|Mφ∩Mψ

,
which is continuous by Lemma 4.11. Thus, θφ being continuous on (Cr(M,E),O) for each
φ ∈ A, the topology O is finer than the initial topology with respect to the family (θφ)φ∈A,
which completes the proof. 2

Definition F.10 Suppose that π1 : E1 →M and π2 : E2 →M are Cr
K-vector bundles over

the same base, with typical fibres F1 and F2, respectively. A mapping f : U → E2, defined
on an open subset U of E1, is called a bundle map if it preserves fibres, i.e., f(U ∩ (E1)x) ⊆
(E2)x for all x ∈ M . Then, given local trivializations ψ : π−1

1 (Mψ) → Mψ × F1 and
φ : π−1

2 (Mφ) →Mφ × F2 of E1, resp., E2, we have

φ(f(ψ−1(x, v))) = (x, fφ,ψ(x, v))

for all (x, v) ∈ Uφ,ψ := ψ(U ∩ E1|Mψ∩Mφ
) ⊆ (Mψ ∩Mφ) × F1, for a uniquely determined

mapping
fφ,ψ : Uφ,ψ → F2 .

Theorem F.11 Let r, k ∈ N0 ∪ {∞}, M be a (not necessarily finite-dimensional) Cr+k
K -

manifold and π1 : E1 → M , π2 : E2 → M be Cr+k
K -vector bundles over M , whose typical

fibres F1, resp., F2 are arbitrary topological K-vector spaces. Then the following holds:

(a) If H is a topological K-vector space, P ⊆ H an open subset and f : E1 × P → E2 a
Cr+k

K -map such that fp := f(•, p) : E1 → E2 is a bundle map, for each p ∈ P , then

Θ : Cr(M,E1)× P → Cr(M,E2) , Θ(σ, p) := Cr(M, fp)(σ) = f(•, p) ◦ σ

is a Ck
K-map.

(b) If f : E1 → E2 is a bundle map of class Cr+k
K , then

Cr(M, f) : Cr(M,E1) → Cr(M,E2), σ 7→ f ◦ σ

is a mapping of class Ck
K.

Proof. (b) directly follows from (a) by taking P := H := {0}. It thus suffices to prove (a).
We let (Uj)j∈J be an open cover ofM such that for every j ∈ J , there are local trivializations
ψj : π−1

1 (Uj) → Uj × F1 and φj : π−1
2 (Uj) → Uj × F2. For each j ∈ J , the mapping

hj : Uj × F1 × P → F2, hj(x, y, p) := (fp)φj ,ψj(x, y) is Cr+k
K . We have

βj(Θ(σ)) = ((fp)φj ,ψj)∗(αj(σ)) = hj(•, p)∗(αj(σ))
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for all p ∈ P and σ ∈ Cr(M,E1), where αj : Cr(M,E1) → Cr(Uj, F1), σ 7→ σψj and
βj : Cr(M,E2) → Cr(Uj, F2), σ 7→ σφj are continuous linear maps. By Proposition 4.16,
the map Cr(Uj, F1) × P → Cr(Uj, F2), (γ, p) 7→ h(•, p)∗(γ) is Ck

K. In view of Lemma F.6
and Lemma F.9, Lemma 1.15 shows that Θ is of class Ck

K. 2

The most interesting cases of Theorem F.11 are (i) r = k = ∞; (ii) r ∈ N0 ∪ {∞}, k = 0.

To illustrate the results, we show that spaces of sections are topological modules over the
corresponding function algebras. Recall the notion of (Whitney) sums of vector bundles:

F.12 If πj : Ej → M are Cr
K-vector bundles with fibre Fj for j ∈ {1, 2}, over the same

base M , then E1⊕E2 :=
⋃
x∈M(E1)x×(E2)x is a Cr-vector bundle over M in a natural way,

with projection π : E1⊕E2 →M , v 7→ x if v ∈ (E1)x×(E2)x. Let φj : π−1
j (Mφj) →Mφj×Fj

be local trivializations of Ej for j ∈ {1, 2}, and Mφ1⊕φ2 := Mφ1 ∩Mφ2 . Then

φ1 ⊕ φ2 : π−1(Mφ1⊕φ2) →Mφ1⊕φ2 × (F1 × F2),

(φ1 ⊕ φ2)(v, w) := (x, prF1
(φ1(v)), prF2

(φ2(w))) for (v, w) ∈ (E1)x × (E2)x, is a local trivi-
alization of E1 ⊕ E2. It is easy to see that the linear mapping

Cr(M,E1)× Cr(M,E2) → Cr(M,E1 ⊕ E2), (σ1, σ2) 7→ (x 7→ (σ1(x), σ2(x)))

is an isomorphism of topological K-vector spaces.

As an immediate consequence of Theorem F.11, we have:

Corollary F.13 Let K be a topological field and π : E →M be a Cr
K-vector bundle, whose

fibre is a topological K-vector space F . Then Cr(M,E) is a topological Cr(M,K)-module.

Proof. The function space Cr(M,K) can be identified with the space Cr(M,M × K) of
Cr

K-sections of the trivial bundle pr1 : M × K → M with fibre K (cf. Lemma F.9). Thus
Cr(M,K)×Cr(M,E) ∼= Cr(M, (M×K)⊕E). Using this identification, the multiplication
map Cr(M,K)× Cr(M,E) → Cr(M,E) has the form

Cr(M,µ) : Cr(M, (M ×K)⊕ E) → Cr(M,E),

where µ : (M × K) ⊕ E → E is the bundle map defined via µ((x, z), v) := zv ∈ Ex
(scalar multiplication) for all x ∈ M , z ∈ K, and v ∈ Ex. Given any local trivialization
ψ : π−1(Mψ) → Mψ × F of E, using the global trivialization φ := id : M × K → M × K
we have µψ,φ⊕ψ(x, z, v) = zv ∈ F , for all (x, z, v) ∈ Mψ × K × F , showing that the map
µψ,φ⊕ψ : Mψ×K×F → F is of class Cr

K. Thus µ is a Cr
K-bundle map. By Theorem F.11 (b)

(applied with k = 0), Cr(M,µ) is continuous. 2

If π : E → M is a Cr
K-vector bundle and U an open subset of M , then π|UE|U : E|U → U

makes the open submanifold E|U := π−1(U) of E a Cr
K-vector bundle over the base U .
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Definition F.14 Let K be a locally compact topological field, π : E →M be a Cr
K-vector

bundle over a finite-dimensional Cr
K-manifold M , and K ⊆ M be compact. We equip

Cr
K(M,E) with the topology induced by Cr(M,E).

Lemma F.15 Let π : E → M be a Cr
K-vector bundle over a finite-dimensional Cr

K-
manifold M , and U be an open subset of M . Then the following holds:

(a) The restriction map Cr(M,E) → Cr(U,E|U), σ 7→ σ|U is continuous.

(b) Assume that K is locally compact, M a finite-dimensional Cr
K-manifold and K ⊆ U

a compact subset. Then the restriction map ρU : Cr
K(M,E) → Cr

K(U,E|U) is an
isomorphism of topological vector spaces.

Proof. (a) Since every local trivialization of E|U also is a local trivialization of E, Part (a)
is apparent from the definition of the topologies.

(b) As a consequence of (a), also ρU is continuous. Apparently, it is a linear bijection.
To see that ρU is an isomorphism of topological vector spaces, we let A0 be an atlas of local
trivializations for E|M \K , and A1 be an atlas for E|U . Then the topology on Cr

K(U,E|U) is
initial with respect to the family of mappings θUψ : Cr

K(U,E|U) → Cr(Mψ, F ), σ 7→ σψ, for
ψ ∈ A1. Furthermore, by Lemma F.9, the topology on Cr

K(M,E) is initial with respect to
family of mappings θMψ : Cr

K(M,E) → Cr(Mψ, F ) for ψ ∈ A0 ∪ A1 (defined analogously).
As θUψ ◦ ρU = θMψ for all ψ ∈ A1 and θMψ = 0 for all ψ ∈ A0, the assertion easily follows. 2

A variant of Lemma 4.12 (and Lemma F.6) will be needed.

Lemma F.16 Let π : E → M be a Cr
K-vector bundle, and (Ui)i∈I be an open cover of M .

For each i ∈ I, let ρi : C
r(M,E) → Cr(Ui, E|Ui) be the restriction map. Then

ρ := (ρi)i∈I : Cr(M,E) →
∏
i∈I

Cr(Ui, E|Ui) , ρ(σ) := (σ|Ui)i∈I

is a topological embedding, with closed image.

Proof. Each ρi being continuous by Lemma F.15 (a), also ρ is continuous. To see that ρ
is an embedding, consider the set A of all local trivializations ψ : E|Mψ

→ Mψ × F of E
such Mψ ⊆ Ui for some i ∈ I; here F is the typical fibre of E. Then A is an atlas of local
trivializations for E, and the topology on Cr(M,E) is initial with respect to the family
(θψ)ψ∈A of the maps θψ : Cr(M,E) → Cr(Mψ, F ), θψ(σ) := σψ (Lemma F.9). If Mψ ⊆ Ui,
then θψ(σ) = σψ = (σ|Ui)ψ = (ρi(σ))ψ shows that θψ is continuous with respect to the
topology induced by ρ on Cr(M,E). As a consequence, ρ is a topological embedding. To
complete the proof, note that

H :=
{

(σi)i∈I ∈
∏
i∈I

Cr(Ui, E|Ui) : (∀i, j ∈ I) σi|Ui∩Uj = σj|Ui∩Uj
}
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is closed in
∏

i∈I C
r(Ui, E|Ui), the restriction maps Cr(Ui, E|Ui) → Cr(Ui ∩ Uj, E|Ui∩Uj)

being continuous (Lemma F.15 (a)). Clearly im(ρ) ⊆ H. If, conversely, (σi)i∈I ∈ H, then
σ(x) := σi(x) if x ∈ Ui gives a well-defined section σ : M → E. Clearly σ ∈ Cr(M,E) and
ρ(σ) = (σi)i∈I . Thus im(ρ) = H is closed. 2

Definition F.17 Let K be a locally compact topological field, M be a paracompact Cr
K-

manifold modeled on a finite-dimensional K-vector space Z, and π : E →M be a Cr
K-vector

bundle with fibre an arbitrary (Hausdorff, not necessarily locally convex) topological K-
vector space F . Then the set

Cr
c (M,E) := {σ ∈ Cr(M,E) : supp(σ) is compact }

of compactly supported Cr
K-sections is a K-vector subspace of Cr(M,E), and Cr

c (M,E) =⋃
K∈K(M) C

r
K(M,E), where K(M) denotes the set of all compact subsets of M . In the

following, we consider three vector topologies on Cr
c (M,E):

(a) We write Cr
c (M,E)tvs for Cr

c (M,E), equipped with the finest (a priori not necessarily
Hausdorff) vector topology making the inclusion maps λK : Cr

K(M,E) → Cr
c (M,E)

continuous for each compact subset K ⊆ M . Thus Cr
c (M,E)tvs = lim

−→
Cr
K(M,E) in

the category of not necessarily Hausdorff topological K-vector spaces and continuous
K-linear maps.

(b) If F is locally convex, we write Cr
c (M,E)lcx for Cr

c (M,E), equipped with the finest (a
priori not necessarily Hausdorff) locally convex vector topology making the inclusion
maps λK : Cr

K(M,E) → Cr
c (M,E) continuous for each compact subset K ⊆M . Thus

Cr
c (M,E)lcx = lim

−→
Cr
K(M,E) in the category of not necessarily Hausdorff, locally

convex topological K-vector spaces and continuous K-linear maps.

(c) As M is paracompact and locally compact, there exists a locally finite cover U =
(Ui)i∈I of M by relatively compact, open subsets Ui ⊆M . We define

ρU : Cr
c (M,E) →

⊕
i∈I

Cr(Ui, E|Ui), ρU(σ) := (ρi(σ))i∈I = (σ|Ui)i∈I ,

where ρi : Cr
c (M,E) → Cr(Ui, E|Ui) is the restriction map for i ∈ I. We write

Cr
c (M,E)box for Cr

c (M,E), equipped with the topology OU induced by ρU , where the
direct sum is endowed with the box topology.

Lemma F.18 In the situation of Definition F.17 (c), assume that both U = (Ui)i∈I and
V = (Vj)j∈J are locally finite covers of M by relatively compact open sets. Then OU = OV .
In other words, the box topology on Cr

c (M,E) is independent of the choice of U .

Proof. The topologies OU and OV are induced by ρU : Cr
c (M,E) →

⊕
i∈I C

r(Ui, E|Ui),
ρU(σ) := (σ|Ui)i∈I and ρV : Cr

c (M,E) →
⊕

j∈J C
r(Vj, E|Vj), ρV(σ) := (σ|Vj)j∈J , respec-

tively. Using Lemma F.16 instead of Lemma 4.12, we can repeat the proof of Lemma 8.10
verbatim to get the desired result. 2
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Proposition F.19 Let M be a paracompact, finite-dimensional Cr
K-manifold over a locally

compact topological field K. Let π : E → M be a Cr
K-vector bundle over M , with typical

fibre a topological K-vector space F . Then the following holds:

(a) The box topology on Cr
c (M,E)box is Hausdorff. For every locally finite cover U =

(Ui)i∈I of M by relatively compact, open subsets Ui ⊆M , the map

ρU : Cr
c (M,E)box →

⊕
i∈I

Cr(Ui, E|Ui), ρU(σ) := (σ|Ui)i∈I

has closed image, and ρU |im ρU is an isomorphism of topological vector spaces. The
inclusion map Cr

c (M,E)box → Cr(M,E) is continuous. If F is locally convex, then
Cr
c (M,E)box is locally convex.

(b) The inclusion map λK : Cr
K(M,E) → Cr

c (M,E)box is continuous and induces the
given topology on Cr

K(M,E), for each compact subset K ⊆M .

(c) The map Φ: Cr
c (M,E)tvs → Cr

c (M,E)box, Φ(γ) := γ is continuous. Thus Cr
c (M,E)tvs

is Hausdorff and induces the given topology on each Cr
K(M,E). If K 6= C and M is

σ-compact, then Φ is an isomorphism of topological K-vector spaces.

(d) If F is locally convex, then Ψ: Cr
c (M,E)lcx → Cr

c (M,E)box, Ψ(γ) := γ is continuous.
Hence Cr

c (M,E)lcx is Hausdorff and induces the given topology on each Cr
K(M,E).

If K 6= C and M is σ-compact, then Ψ is an isomorphism of topological K-vector
spaces.

(e) If K is a local field and U = (Ui)i∈I is a cover of M by mutually disjoint, compact
open sets (cf. Lemma 8.3 (b)), then

ρU : Cr
c (M,E)box →

⊕
i∈I

Cr(Ui, E|Ui), ρU(σ) := (σ|Ui)i∈I

is an isomorphism of topological vector spaces onto the direct sum, equipped with the
box topology.

(f) If K is a local field and F is locally convex, then Ψ is an isomorphism of topological
K-vector spaces, i.e., Cr

c (M,E)lcx = Cr
c (M,E)box.

In particular, Cr
c (M,E)box = Cr

c (M,E)tvs = Cr
c (M,E)lcx if K 6= C and M is σ-compact.

Proof. (a) Using Lemma F.16 instead of Lemma 4.12 and Remark F.8 instead of Propo-
sition 4.19 (b), the proof of Proposition 8.13 (a) carries over.

(b) Using Lemma F.15 (b) and Lemma F.16 instead of Lemma 4.24 and Lemma 4.12,
respectively, the proof of Proposition 8.13 (b) can be repeated verbatim.
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(c) Note that, Cr(Ui, E|Ui) being a topological Cr(Ui,K)-module (Corollary F.13), the
multiplication operator mh : Cr(Ui, E|Ui) → Cr(M,E|Ui), mh(σ)(x) := h(x)σ(x) is contin-
uous, for each i ∈ I and h ∈ Cr(Ui,K). The assertion therefore follows along the lines of the
proof of Proposition 8.13 (c) (with F := K), using Lemma F.15 (b) instead of Lemma 4.24.

(d) We argue as in the proof of Proposition 8.13 (d).

(e) We argue as in the proof of Proposition 8.13 (e), taking F := K.

(f) Using Lemma F.15 (b) instead of Lemma 4.24, we can proceed as in the proof of
Proposition 8.13 (e) (taking F := K). 2

Throughout the following, spaces of compactly supported sections in vector bundles will
always be equipped with the box topology. We abbreviate Cr

c (M,E) := Cr
c (M,E)box.

Remark F.20 If K = R, M is σ-compact and the fibre F is locally convex, then the box
topology on Cr

c (M,E) coincides with the locally convex topology traditionally considered
on this space of compactly supported sections, as a consequence of Proposition F.19 (d)
and Proposition 4.19 (d).

Remark F.21 Let M be a paracompact, finite-dimensional Cr
K-manifold over a locally

compact field K (where r ∈ N0 ∪ {∞}), and π : E → M be a Cr
K-vector bundle, with

fibre an arbitrary topological K-vector space. Let (Ui)i∈I be a locally finite cover of M by
relatively compact, open subsets Ui ⊆ M and ρi : C

r
c (M,E) → Cr(Ui, E|Ui), ρi(σ) := σ|Ui

be the restriction map for i ∈ I. Then

(Cr
c (M,E), (ρi)i∈I)

is a patched topological vector space, by Proposition F.19 (a).

The Ω-Lemma with Parameters

In the following, we prove generalizations of the so-called “Ω-Lemma” (see [57, Thm. 8.7]),
formulated in [57] for mappings between subsets of spaces of compactly supported smooth
sections in finite-dimensional real vector bundles. An essential ingredient of the proof will
be a version of Proposition 8.21 for functions depending on parameters.

Lemma F.22 Let K be a locally compact topological field and π : E → M be a Cr
K-vector

bundle over a paracompact, finite-dimensional Cr
K-manifold M . Let Ω ⊆ E be an open

subset. Then
Cr
c (M,Ω) := {σ ∈ Cr

c (M,E) : σ(M) ⊆ Ω}
is an open (possibly empty) subset of Cr

c (M,E).

Proof. The present proof is not the shortest one; it is stated as follows because in exactly
this form it can be re-used to prove Theorem F.23.

Let σ ∈ Cr
c (M,Ω). Using the paracompactness and local compactness of M , we find
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locally finite covers (Ui)i∈I and (Mi)i∈I of M by relatively compact, open sets such that
Ki := Ui ⊆Mi and E|Mi

is a trivial vector bundle, for each i ∈ I. 26 Let ψi : E|Mi
→Mi×F

be a trivialization of E|Mi
, where F is the typical fibre of E. Then

κ : Cr
c (M,E) →

⊕
i∈I

Cr(Mi, F ) , κ(τ) := (τψi)i∈I =
(
(τ |Mi

)ψi
)
i∈I

is a topological embedding, by definition of the box topology on Cr
c (M,E) and Lemma F.9.

For each i ∈ I, the set Ωi := ψi(Ω∩E|Mi
) is an open neighbourhood of the compact subset

{(x, σψi(x)) : x ∈ Ki} of Mi×F . Since σψi is continuous, a standard compactness argument
provides finite families (Ui,j)j∈Ji and (Mi,j)j∈Ji of relatively compact, open subsets Mi,j ⊆
Mi and relatively compact, open subsets Ui,j ⊆ Mi,j such that Ki ⊆

⋃
j∈Ji Ui,j, and open

0-neighbourhoods Wi,j ⊆ F such that

Mi,j × (σψi(Mi,j) +Wi,j) ⊆ Ωi for each i ∈ I and j ∈ Ji . (59)

Set L := {(i, j) : i ∈ I, j ∈ Ji}. After replacing I by L, (Ui)i∈I by (Ui,j)(i,j)∈L, (Mi)i∈I by
(Mi,j)(i,j)∈L, and (ψi)i∈I by (ψi|E|Mi,j )(i,j)∈L, instead of (59) we may assume without loss of

generality that there exist open 0-neighbourhoods Wi ⊆ F such that

Mi × (σψi(Mi) +Wi) ⊆ Ωi (60)

for each i ∈ I. Then Vi := σψi(Ki) + Wi is an open neighbourhood of σψi(Ki) in F , for
each i ∈ I, and it is a 0-neighbourhood in F for all but finitely many i. Then bKi, Vi cr :=
{γ ∈ Cr(Mi, F ) : γ(Ki) ⊆ Vi} is an open subset of Cr(Mi, F ) and

V := κ−1

(⊕
i∈I

bKi, Vicr

)

is an open neighbourhood of σ in Cr
c (M,E). Since (Ki)i∈I is a cover of M , we deduce from

(60) that V ⊆ Cr
c (M,Ω). Thus Cr

c (M,Ω) is a neighbourhood of σ. 2

Theorem F.23 (Ω-Lemma with Parameters) Let K be a locally compact topological
field and r, k ∈ N0 ∪ {∞}. Let π1 : E1 →M and π2 : E2 →M be Cr+k

K -vector bundles over
the same paracompact, finite-dimensional Cr+k

K -manifold M , whose fibres F1, resp., F2 are
arbitrary topological K-vector spaces. Let P ⊆ Z be an open subset of a finite-dimensional
K-vector space Z, Ω ⊆ E1 be an open subset, and

f : Ω× P → E2

26Every x ∈M has a relatively compact open neighbourhood Qx such that E|Qx is trivial; let Px be an
open neighbourhood of x such that Px ⊆ Qx. Since M is paracompact, there exists a locally finite open
cover (Ui)i∈I subordinate to (Px)x∈M . Then Ui ⊆ Pxi for some xi ∈M , whence Ui is relatively compact.
By Lemma 8.5, there exists a locally finite cover (Ũi)i∈I of M by relatively compact open sets such that
Ui ⊆ Ũi for each i. We define Mi := Ũi ∩Qxi

; then (Ui)i∈I and (Mi)i∈I have the desired properties.
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be a mapping of class Cr+k
K such that fp := f(•, p) : Ω → E2 is a bundle map, for each

p ∈ P . We assume that there exists a compact subset K ⊆ M such that 0x ∈ Ω for each
x ∈ M \K, and f(0x, p) = 0x for each x ∈ M \K and p ∈ P (using the same symbol 0•
for the 0-section of E1 and E2, resp.) Then the mapping

φ : Cr
c (M,Ω)× P → Cr

c (M,E2) , φ(σ, p) := fp ◦ σ

is Ck
K. In particular, if k = r = ∞, then φ : C∞c (M,Ω)× P → C∞c (M,E2) is smooth.

Proof. Note first that for σ ∈ Cr
c (M,Ω) and p ∈ P , we have

supp(φ(σ, p)) ⊆ K ∪ supp(σ) .

Hence φ(σ, p) is indeed compactly supported, and thus im(φ) ⊆ Cr
c (M,E2). To see that φ

is of class Ck
K, we now fix σ ∈ Cr

c (M,Ω). We let (Ui)i∈I , (Mi)i∈I , (ψi)i∈I , (Ki)i∈I , (Vi)i∈I ,
κ : Cr

c (M,E1) →
⊕

i∈I C
r(Mi, F1), κ(τ) := (τψi)i∈I and V := κ−1

(⊕
i∈I bKi, Vicr

)
be as

in the proof of Lemma F.22 (applied with E := E1 and F := F1). Because we can choose
each Qx so small that also E2|Qx is trivial in the proof of Lemma F.22, we may assume
without loss of generality that also E2|Mi

is trivial, for each i ∈ I. Let φi : E2|Mi
→Mi×F2

be a trivialization. Abbreviate ωi := φi|Ui×F2

E2|Ui
: E2|Ui → Ui × F2. Then

κ2 : Cr
c (M,E2) →

⊕
i∈I

Cr(Ui, F2) , κ2(τ) := (τωi)i∈I =
(
(τ |Ui)ωi

)
i∈I

is a topological embedding onto a closed vector subspace, as a consequence of Proposi-
tion F.19 (a) and Lemma F.9. For each i ∈ I, the map

fi : Mi × Vi × P → F2 , fi(x, y, p) := pr2(φi(f(ψ−1
i (x, y), p)))

is of class Cr+k
K , where pr2 : Mi × F2 → F2 is the second coordinate projection. Hence, by

Proposition 4.23 (a), the map

gi : bKi, Vicr × P → Cr(Ui, F2) , gi(γ, p)(x) := fi(x, γ(x), p)

is of class Ck
K, where bKi, Vicr := {γ ∈ Cr(Mi, F1) : γ(Ki) ⊆ Vi}. Furthermore, 0 ∈

bKi, Vicr and gi(0, p) = 0 whenever Mi ∩ (K ∪ supp(σ)) = ∅, which is the case for all but
finitely many i ∈ I. Hence, by Proposition 6.10, the map

g :

(⊕
i∈I

bKi, Vicr

)
× P →

⊕
i∈I

Cr(Ui, F2) , g
(∑

i∈I

γi, p
)

:=
∑
i∈I

gi(γi, p)

is of class Ck
K. Since the diagram

Cr
c (M,Ω)× P ⊇ V × P

κ|V ×idP−→
(⊕

i∈I bKi, Vicr
)
× P

φ|V×P ↓ ↓ g
Cr
c (M,E2)

κ2−→
⊕

i∈I C
r(Ui, F2)
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commutes and κ2 is an embedding of topological vector spaces with closed image, we
deduce with Lemma 1.15 that φ|V×P is Ck

K on the open neighbourhood V × P of {σ} × P
in Cr

c (M,Ω)× P . As σ was arbitrary, φ is Ck
K. 2

Specializing to a singleton set of parameters, we obtain:

Corollary F.24 (Ω-Lemma) Let K be a locally compact topological field and r, k ∈
N0 ∪ {∞}. Let π1 : E1 → M and π2 : E2 → M be Cr+k

K -vector bundles over the same
paracompact, finite-dimensional Cr+k

K -manifold M , whose fibres F1, resp., F2 are arbitrary
topological K-vector spaces. Let Ω ⊆ E1 be an open neighbourhood of the image of a sec-
tion σ0 ∈ Cr

c (M,E1), and f : Ω → E2 be a bundle map of class Cr+k
K , such that f ◦ σ0 has

compact support. Then the map

φ : Cr
c (M,Ω) → Cr

c (M,E2) , φ(σ) := f ◦ σ

is of class Ck
K. 2

Remark F.25 The following special cases of Corollary F.24 are of particular interest:

(a) If k = r = ∞, then C∞c (M, f) : C∞c (M,Ω) → C∞c (M,E2), σ 7→ f ◦ σ is smooth.

(b) If r ∈ N0 and k = 0, then Cr
c (M, f) : Cr

c (M,Ω) → Cr
c (M,E2), σ 7→ f ◦σ is continuous.

To illustrate the results, let us prove that spaces of compactly supported sections are
topological modules over the corresponding test function algebras. First, we observe:

F.26 If K is locally compact and the manifold M is finite-dimensional and paracompact
in the situation of F.12, then apparently also the linear mapping

Cr
c (M,E1)× Cr

c (M,E2) → Cr
c (M,E1 ⊕ E2), (σ1, σ2) 7→ (x 7→ (σ1(x), σ2(x)))

is an isomorphism of topological K-vector spaces.

As an immediate consequence of Theorem F.11 and Corollary F.24, we now obtain:

Corollary F.27 Let K be a locally compact topological field, M be a paracompact, finite-
dimensional Cr

K-manifold, and π : E →M be a Cr
K-vector bundle, whose fibre is a topolog-

ical K-vector space F . Then Cr
c (M,E) is a topological Cr

c (M,K)-module.

Proof. The proof of Corollary F.13 carries over verbatim, using Corollary F.24 and F.26
instead of Theorem F.11 (b) and F.12. 2

Remark F.28 If A is an associative topological K-algebra and M a Cr
K-manifold, we

define a bundle of topological A-modules as a Cr
K-vector bundle π : E → M whose typical

fibre F is a topological A-module, and equipped with an atlas A of local trivializations
such that im(gφ,ψ) consists of topological A-module automorphisms of F , for all φ, ψ ∈ A.
In this case, we see as in the proof of Corollary F.13 that Cr(M,E) is a topological
Cr(M,A)-module (under pointwise operations). If K is locally compact and M is finite-
dimensional and paracompact, then Cr

c (M,E) is a topological Cr
c (M,A)-module (cf. proof

of Corollary F.27).
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Almost local mappings between spaces of compactly supported sections

Our considerations from Section 10 carry over directly to the case of mappings between
spaces of compactly supported sections in vector bundles (equipped with the box topology).
Compare the earlier works [32] and [33] for a discussion of the real locally convex case,
based on the locally convex direct limit topology on spaces of compactly supported sections.

Definition F.29 Let K be the field of real numbers or a local field. Given r, s, k ∈
N0 ∪ {∞}, let π1 : E1 →M be a Cr

K-vector bundle over a paracompact, finite-dimensional
Cr

K-manifold M , with fibre an arbitrary topological K-vector space F1. Let π2 : E2 → N
be a Cs

K-vector bundle over a paracompact, finite-dimensional Cs
K-manifold N , with fibre

an arbitrary topological K-vector space F2. Finally, let f : P → Cs
c (N,E2) be a mapping,

defined on an open subset P ⊆ Cr
c (M,E1).

(a) f is called almost local if there exist locally finite covers (Ui)i∈I of M and (Vi)i∈I of N
by relatively compact, open sets such that, for all i ∈ I and σ, τ ∈ P with σ|Ui = τ |Ui ,
we have f(σ)|Vi = f(τ)|Vi .

(b) f is called locally almost local if every σ ∈ P has an open neighbourhood Q ⊆ P
such that f |Q is almost local.

(c) In the special case where M = N , we call f : P → Cs
c (M,E2) a local mapping if, for

all x ∈M and σ ∈ P , the element f(σ)(x) only depends on the germ of σ at x.27

It is easy to see that every local mapping is almost local.

Theorem F.30 (Smoothness Theorem) Let f : Cr
c (M,E1) ⊇ P → Cs

c (N,E2) be a map
as described in Definition F.29. If fK := f |P∩CrK(M,E1) is of class Ck

K for every compact

subset K ⊆M and f is locally almost local, then f is of class Ck
K.

Proof. Given σ ∈ P , there exists an open neighbourhood Q of σ in P such that f |Q is
almost local. As σ was arbitrary, the assertion will follow if we can show that f |W is of
class Ck

K for some open neighbourhood W of σ in Q. To this end, it suffices to show that
the mapping g : Q − σ → Cs

c (N,E2), g(τ) := f(σ + τ) − f(σ) is of class Ck
K on some

open zero-neighbourhood. As f |Q is almost local, we find locally finite covers (Ui)i∈I of M
and (Vi)i∈I of N , with each Ui and Vi relatively compact and open, such that f(τ)|Vi only
depends on τ |Ui , for all τ ∈ Q. Then apparently also g(τ)|Vi = g(κ)|Vi for all τ, κ ∈ Q− σ
such that τ |Ui = κ|Ui , showing that also g is almost local. Furthermore, given a compact
subset K ⊆ M , the map g|(Q−σ)∩CrK(M,E1) is of class Ck

K, since so is the restriction of f to
Q ∩ Cr

K∪supp(σ)(M,E1). We abbreviate R := Q− σ.

Next, we pick a locally finite open cover (Ũi)i∈I of M such that Ui ⊆ Ũi holds for the
compact closures, for all i ∈ I; such a “thickening” exists by Lemma 8.5. For each i ∈ I,

27More precisely, we require f(σ)(x) = f(τ)(x) for all x ∈M and σ, τ ∈ P with the same germ at x.
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we pick a mapping hi ∈ Cr(Ũi,K), with compact support Ki := supp(hi), which is con-
stantly 1 on Ui (see Lemma 8.8 if K is a local field; the real case is standard).

By Remark F.21, the family (ρi)i∈I of restriction maps ρi : Cr
c (M,E1) → Cr(Ũi, E1|Ũi)

is a patchwork for Cr
c (M,E1). We let ρ : Cr

c (M,E1) →
⊕

i∈I C
r(Ũi, E1|Ũi) =: S be the

corresponding embedding taking τ to
∑

i∈I ρi(τ). Similarly, the family (ξi)i∈I of restriction
maps ξi : C

s
c (N,E2) → Cs(Vi, E2|Vi) is a patchwork for Cs

c (N,E2).

The mapping ρ being a topological embedding, we find an open 0-neighbourhood H ⊆ S
such that ρ−1(H) ⊆ R. The direct sum being equipped with the box topology, after shrink-
ing H we may assume that H =

⊕
i∈I Ai for a family (Ai)i∈I of open 0-neighbourhoods

Ai ⊆ Cr(Ũi, E1|Ũi). As a consequence of Corollary F.13, the multiplication operator

µhi : Cr(Ũi, E1|Ũi) → Cr
Ki

(Ũi, E1|Ũi), τ 7→ hi · τ is continuous linear. Hence, we find an

open zero-neighbourhood Wi ⊆ Ai such that hi ·Wi ⊆ R, where we identify C r
Ki

(Ũi, E1|Ũi)
with C r

Ki
(M,E1) as a topological K-vector space in the natural way, extending sections

by 0 (cf. Lemma F.15 (b)). Then W := ρ−1(
⊕

i∈IWi) ⊆ R is an open zero-neighbourhood
in Cr

c (M,E1) such that ρi(W ) ⊆ Wi for each i ∈ I. We define

gi : Wi → Cs(Vi, E2|Vi), gi := ξi ◦ g|R∩CrKi (M,E1) ◦ µhi|RWi
.

Then gi is of class Ck
K, being a composition of Ck

K-maps. Note that ξi(g(τ)) = g(τ)|Vi =
g(hi · τ)|Vi = gi(τ |Ũi) for each τ ∈ W and i ∈ I. Thus (gi)i∈I is compatible with g|W in the
sense of Definition 8.20. We have shown that g|W is a patched mapping which is of class
Ck

K on the patches. By Proposition 8.21, g|W is of class Ck
K. 2
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