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Abstract

A hierachy of simplified models for traffic flow on networks is derived
from continuous traffic flow models based on partial differential equations.
The hierachy contains nonlinear and linear combinatorial models with and
without dynamics. Optimization problems are treated for all models and
numerical results and algorithms are compared.

1 Introduction

Modelling and simulation of traffic flow on highways has been investigated in-
tensively during the last years. On the one hand models describing detailed
traffic dynamics on single roads have been constantly developed and improved,
see [32, 31, 27, 14, 30, 1, 23, 13, 11, 8, 12] and many others. To describe traffic
flow on networks such detailed dynamic models based on partial differential
equations have been used in [18, 7]. However, the number of roads which can
be treated with such an approach is restricted, in particular, if optimization
problems have to be solved. On the other hand large traffic networks with
strongly simplified dynamics or even static description of the flow have been
widely investigated [6, 10, 21, 24, 28]. In particular, optimal control problems
for traffic flow on networks arising from traffic management, see for example
[26, 3], are a major focus of research in this field.

The purpose of the present investigation is to derive and develop a hier-
achy of simplified dynamical models based on the ’correct’” dynamics described
by partial differential equations. These models should include reasonable dy-
namics and, at the same time, they should be solvable for large scale networks.
Special focus is on optimal control problems and optimization techniques. We
start with macroscopic models based on partial differential equations. Two such
models were introduced by Holden/Risebro [18], resp. Coclite/Piccoli [7]. In
particular, dealing with optimal control questions for such large scale networks
where the flow is described by partial differential equations is very expensive
from a computational point of view, see for [16, 17]. Therefore, we concentrate
in the present paper on the derivation of simplified dynamic models derived



from the models based on partial differential equations. The resulting models
are network models which are based on nonlinear algebraic equations or com-
binatorial models based on linear equations. In the simplest case well known
static combinatorial models like min-cost flow models are obtained. For the
different models we study optimal control problems and various optimization
methods, i.e., combinatorial and continuous optimization techniques. Using
strongly simplified models large scale networks can be optimized with combi-
natorial approaches in real-time. However, including more complex dynamics
reduces the advantage of the combinatorial algorithms compared to continuous
optimization procedures.

We note that for the linear models there is a strong connection to the
traffic flow models proposed by Mohring et al. see, for example [24]. Especially
the occurence of the so-called transit-times shows the close relation between
the models. However, the cost functional for the linear problem differs due
to the derivation starting with partial differential equations. For more details
see Remark 4.3.

2 Continuous traffic low models

The starting point is a macroscopic traffic flow model on networks. We give
a brief review of the model. Further details and more general situations are
treated in [7, 16]. We consider a network of roads as follows:

Definition 2.1. A traffic flow network is a finite, connected directed graph.
For some traffic road map we introduce a graph G = (V, E) where the edges
correspond to the roads and the vertices to the junctions. With each edge j,
j = 1,...,|E| we associate an intervall [a;,b;] representing the location z at
the corresponding road, with the interpretation x = a; if we are at the head of
edge j and x = b; if we are at the tail of edge j. The vertices of the graph are
labelled by v = 1,...,|V|. At a single junction v the set of indices of ingoing
roads is denoted by &, and the set of outgoing roads by 8.

On each edge j, the traffic dynamics are described by a model based on
partial differential equations for the density p;(z,t),z € [aj,b;],¢ > 0. We use
the well-known Lighthill-Whitham equations [29] to model the evolution of the
density. Hence the following equations are assumed to hold on the network
away from junctions:

Opj(z,t) + Orfi(pj(z,t)) =0, Vj=1,...,|E|, z € [a;,b;],t >0 (2.1)
pj(z,0) = pj(z)  Vz € [a,bj],

where f;(p) = pu$(p) and u(p) is the fundamental diagram and p;(z) are given
initial values.

A solution p; j = 1,...,|E| to the network problem should satisfy flux
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Figure 1: Considered types for a junction v. The used notation is §; =

{71,792}, &F = {43} (left), resp. 0, = {jo}, & = {j1,72} (right part of the
figure).

conservation through junctions, i.e., for allv =1,...,|V| we have
> Filei(b5,8) = filpslag,t)) Vit € (0,00). (2.3)
j€by jedy

To obtain a well-defined problem we have to impose further boundary conditions
in the sense of [2]. Those conditions describe the coupling of different roads at
a junction and satisfy (2.3). An overview of possible models for junctions and
the corresponding boundary values for the equations (2.1) can be found in [16].
For the following derivations we restrict ourselves to the Coclite/Piccoli model
of junctions [7]. For non-constant initial data pj(z) the obtained boundary
conditions can not be given explicitly. They are well-defined in the case of con-
stant initial data and obtained as the limit of an approximation, see [7, 9, 19].
However, in certain cases and under some restrictions one can derive explicit
formulas for the boundary values. We briefly describe the Coclite/Piccoli cou-
pling conditions for special geometries.

We restrict ourselves for simplicity to networks with only two types of
junctions with a total of three incident roads, see Figure 1. We assume that
f; is defined on [0, pj max] and assume that f; is smooth, concave with single
maximum. Define

M, = max f;(p), o; = argmaxf;(p). (2.4)

We consider the case of a single junction v and constant initial data p;. Co-
clite/Piccoli introduced additional conditions for a junction by considering Rie-
mann problems on the in- and outgoing roads. To be more precise, assume
we have given values p; € Rt and the initial value p; € Rt. We consider the



following problem:

Opj + 0 fi(pj) =0

st _|Pi >0y
j€dy :pi(z,0) = [~j JJSGJ‘] resp. (2.5)
. I _|pj x>0
Jj€ b, :pi(z,0) = [_j xgbj]

A solution p; of (2.5) satisfies also (2.1). We have a degree of freedom in
choosing the values p;. Since the conservation of flux (2.3) holds, there are
certain restriction on p;. They can be given explicitly by (2.7) using the following
definition of 7:

Vpar = 7i(p) : T # p, fi(7) = fi(p)- (2.6)

The restrictions are

JEL, :
pj € [{pj}U]Tj(pj)apj,max] %f éj < O'j:|
[0, pj,max] if p; > o
(2.7)
jES:
ﬁje[ B [0, 05) ) %fﬁj<0'j:|.
{pi} V0,7 (py)[  if pj > 0;

Depending to which intervall p; belongs, the wave generated by the Riemann
problem (2.5) is either a shock wave or a rarefaction wave. But still, there
are many possible choices for p; depending on the values of p;. Therefore Co-
clite/Piccoli introduced more constraints.

Case 1: Consider a single junction v where road jy disperse in two roads
j1 and ja. A value o, € R with 0 < a,, < 1 specifying the percentage of drivers
coming from road jy and driving to j; is introduced. (2.3) reads

fjl (pj1 (aj1 +, )) = avfjo (pjo (bj ) ))
Fir(pja(ajy+,-)) = (1 — ) fio (0o (bjg—5))- (2.8)

Unique values p;, 7 = jo, j1,j2, can be found by solving the maximization prob-
lem

max fj,(p;) s.t. (2.7),(2.8),(2.5) (2.9)

Equation (2.9) does not allow an explicit representation of the boundary con-
ditions. If we neglect the possibility of shock waves, especially backwards going
shock wave on the incoming street jo, the situation is much simpler. Therefore
we assume in the following

pj, pi(z,t) < o}, Vj. (2.10)



Since we omit shock waves on jo we obtain instead of the maximization problem
(2.9) an explicit formula for calculating p; :

Pj=pPjJ=Jo

[ (ﬁh) = ay fj, (ﬁjo) (2.11)

fj2(ﬁj2) = (1 - av)fjo@jo)'
Equation (2.11) is well-defined due to (2.10) and yields unique values p;, , pj,.
Remark 2.1. Coclite/Piccoli proved the existence and uniqueness of admissible
solutions satisfying (2.9) for a single junction with constant initial data. They
generalized this result to prove existence for networks where for each junction

v we have |6 | + |0, | < 4 and the initial data p; has bounded total variation.
For more details we refer to [7].

Case 2: Consider a single junction v where roads j; and jo merge to js.
Flux conservation through the junction implies

fja (pj3 (aj3+7 )) = fjl (pjl (bjl > )) + fj2 (pjz (bj2_a )) (2'12)
In the same spirit as above we define unique values p;,j = j;,7 = 1,2,3 by a
procedure suggested in [16]: Define maximal possible fluxes by
j € 611_ = {jl,jZ} :
i = fi(pi) if pj <o
LMy ifp >0
j€ oy ={js}:
- [ M; 1fﬁj<aj]
7 Uiey) itpi 205
and solve the maximization problem:
If vj; +vjo > 7js max Z fi(Pj) st (2.12),(2.7) and f;, (B5,) = fi, (D))
JEy
If vy + Y5 < Wi max Y f5(By) st (2.12), (2.7). (2.13)
JESy
Again we obtain an explicit representation of the boundary conditions when
assuming (2.10).
pj=pjj =71 and j=jo
fis(Bjs) = Z fi(B5) (2.14)
JESy
Now, optimal control problems can be investigated. Typically, the time

spent by the drivers in the network is minimized. This means we consider the
functional

T |E|

bj
T(on, .- ) = /0 > / " pita, tydadt (2.15)

i=1
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This functional has to be minimized with respect to the control variables c,.
We solve the problem:
min J(a1,..., ) (2.16)

0<ai, oy <1
subject to: p; is solution of (2.1) with coupling conditions
at the junctions given by (2.9) and (2.13).

A solution to this problem yields an optimal distribution of a traffic flow in a
network including all dynamics, like jam propagation etc.

Alternatively we can optimize the above functional in the case of no back-
wards going shock wave. This implies replacing conditions (2.9) and (2.13) by
(2.11) and (2.14). However, even in this case optimization of networks with a
large number of roads in reasonable time is beyond any computational possi-
bility.

3 Simplified Nonlinear Model

In this section the traffic flow model based on partial differential equations
is reduced to a system of algebraic equations, c.f. [17]. This is achieved by
considering a simplified situation concerning the inflow into the network and
tracking single waves running through the network. In contrast to the static
network models often used by traffic engineers the present approach still con-
tains simplified dynamics, being at the same time not much more complicated
and expensive from a computational point of view. For the following we as-
sume that no backwards going shock waves appear, this means that the traffic
is optimized in such a way that no traffic jam occurs. We start with an initially
empty network and refer to the end of the section for the case of partially filled
networks. Moreover, we restrict for the moment to constant inflow p; ¢ applied
as boundary condition at the incoming road to the network. For the geometry
of the network we use the same assumptions as in the previous section, i.e.,
we assume to have only junctions connecting at most three roads, labelled like
in Figure 1.

We assume to have an initially empty network, i.e.,
pjo(z) = 0.

The assumption of no backwards going shock waves is imposed as in
(2.10), i.e.,
pj(a:,t) S gj Vj

We assign two values p; € R and t; € R to each road j of the network. The
value p; is an approximation of the density p;(z,t) while ¢; denotes the arrival
time of a wave at road j. The following bounds are obvious.

OSijU]‘,OSthT. (3.1)



Due to (2.10) we can express the coupling conditions (2.11) and (2.14) in the
form (2.11). We translate them in terms of p; and obtain:

Case 1:

6y = {0}, 6 = {j1. 42}

pj, = fﬁl(%fjo(pjo))

Pj>, = fjgl((l — aw) fjo (Pjo))-
Case 2:

&, = {j1,72}, 6, = {53}
—1 -1

pjs = fiy (Fi(pjr) + £, (fi(p3)))
For the ingoing roads to the network we set p; = p; . In Case 1 the parameters
0 < ay < 1 distributes traffic at junction v in the direction of road i. Hence, p;
is determined solely by fulfilling the coupling conditions at the junctions.
Remark 3.1. As an example note that for a fluz function of the type f;(z) =
4z(1 — z/M;) the conditions read 2p;; = M;, — \/MJQ1 — oy M, fio(pj,) and

similar for p;,. For the other junction we obtain 2p;, = M;j, — Mj23 - M, x
with x = fjl(pjl) + sz(pj2)'

We model the dynamics in the following way: the times ¢; describe an
approximation of the arrival times of the waves (generated as solutions to the
hyperbolic equation (2.1)) at z = a; of road j. Since we cannot track the whole
wave we use as an approximation a discontinuity. Then the times ¢; defined by
(3.2) and (3.3). In more detail, we have initially a Riemann problem

pi T <aj
Op; + 0z fi(pj) =0, pj(z,0) = [Oj > aj
with concave fluxfunction f;. A rarefaction wave is the correct solution of the
above problem. We simplify this by approximating the wave by a discontinuity.
We restrict ourselves to track only one wave on each road. The speed of the
wave is approximated with the so-called “Rankine-Hugoniot speed”

fi(pj)

Y
The arrival times of the rarefaction wave are approximated as follows: For the
ingoing road jo we set t;, = 0. In the case of a junction, where one road jo
disperse in two others ji,jo we set
b—a
tjy = tj, = tj, + . (3.2)
Sjo

In the case of a junction with two incoming roads ji, jo and one outgoing road
j3 the situation is more complicated. We set

b— : b— :
%) o (1, )

ti = (t;, + ,
R T Sjs  Pjr + Pjs

(3.3)



This choice is motivated by the following calculations: Let t() < ¢(2) denote
the time, when the dicontinuity from road j; and js reach the beginning of
road j3 with the values p;, and p;,. We again assume to have one shock on

road j3 instead of rarefaction waves. The travelling speeds are given by s =

fia(Pjy) 2) — Fig(jg)— fj3(p]1)
Pjq Djs

condition, i.e. f(pj,) = f(pjl) + f(pj,). Then we have

T b .
/ / pis (@, )dzdt = (T —tO)(b = a)p;, — LI (b— a)?
0 a 23(1)

Pjs — Pj
+ (T —t2)(b - a)pj, —pj) - W(b— a)?

and s( . The values p;, are determined by the coupling

The idea is to approximate the above integral by (T'—t,)(b—a)p;, — p5]3 (b—a)?

with sj, = fj,(pjs)/pjs- If f is linear, then the correct choice for ¢;, is

s = ey Pj + +(2) _Pjr . (3.4)
Pjr t Pja Pjy t Pja

This is used as approximation in the nonlinear case. Finally, to obtain formula

(3.3) we use (3.4) together with t() = (¢;, + ) and t?) = (t;, + I;;—;)

Thus we have defined a purely algebralc dynamic model for traffic flow
on road networks without backwards going shock waves.

It remains to reformulate the functional (2.15) in terms of the simplified
nonlinear model. We assumed to have a discontinuity arrives at road j at time
t; and travels with speed s;. Evaluating the integral fOT fabj pj(z,t)dzdt under
this assumptions yields !

T rbi pj 2
/ / pj(z,t)dzdt = (T — t;)(bj — aj)p; — 5= (bj — a;)".
0 aj 28]

Finally, the full simplified nonlinear model reads with L; = b; — a; and
sj = fi(pj)/ps:
For junctions of merging type:
L; i L; ;
b = (b + =)y (1 4+ L)L
Si " pit+pj 8j " Pitpj
pr = fi H(filpi) + £i(py))-
For junctions of dispersing type:
Ly
t;, = t] =t + —
Sk

pi = I (awfi(pr)), pj = f7 (1 — o) fi(pr)-

For the road entering the network:

Pj = po,t; = 0.

The functional reads

Mk

0
J(5 T, po) Lipj = 52-Lj. (3.5)
J

]=1



Herein T is a fixed time and pgy is the inflow to the network. It turns out
that also for this simplification the minimization problem min J subject to the
constraints above still needs large computation times for very large networks
due to the nonlinearities in the coupling conditions for p; and ¢;. For numerical
results we refer to the subsequent sections.

Remark 3.2. The treatment of a partially filled network is also possible. As-
sume we have the initial densities p; on road j given, where all values are
consistent with the conditions at the junctions. p; is constant for the whole
road such that p; < ;. We start, as before, with an inflow po < 0. Then simi-

lar considerations as the above yield the following expression for an integral on
j with (L:=b—a)
T rb Pi — P;
/ / p(z,t)dzdt = Ltijp; + ij(T — tj) -8 (3.6)
0 a 2Sj
where now s; is given by
Pj — Dy

Using this definition of s; one can approzimate the arrival times of the ingoing

wave t; in the same way as before with s; as in (3.7).

Remark 3.3. Nonconstant initial data, for example piecewise constant initial
data, can be treated in the same way. For each wave the arrival times have to
be tracked and we have to assume that the waves do not interact.

4 Linear Models

In this section the previously introduced model is further simplified obtaining
a linear model accessible to discrete optimization techniques. The basic idea is
the reformulation of the above model in terms of the flux g; := p;u®(p;). We
introduce the notation

(4.1)

and obtain p; = g;7(g;)-

The coupling conditions at the junctions read

For junctions of merging type:
Gk = Gi T 45

For junctions of dispersing type:
g + 95 = k-

For all roads

M; > q; > 0.



Note that the control variable o, does not appear in the above formulation.
Therefore the values of g;,q; are not solely defined by g;. The functional J is
given in terms of g; by

|E|

J(q1,---,qm; T po) = Z(TLj —tiLj —
j=1

TN ) (42)

Then the complete model and the optimization problem reads

I%;HJ(QM -+q8); T po)

where for junctions of dispersing type:
ti =t; =ty + Lpmr(qr)

9+ 9 = qk

where for junctions of merging type:

¢:7:(:) _ -
¢iTi(q:) + quj(qj) + (tJ + L J(q]))

q;75(q5)
¢i7i(q:) + 4;75(q5)

tr = (ti + LiTi(q:))

9k = ¢ + g5

where for roads ingoing to the network:
q; = fo(po),tj =0

and where for all roads:

M;>q; >0

We derive different (linear!) models from this formulation and refer to the
subsequent sections for numerical results.

4.1 Linear models with dynamics

The coupling conditions at the junctions are linear for ¢; but nonlinear for ;.
We use different possibilites to linearize the coupling ¢;. In the numerical tests
it turns out that the crucial point is the proper discretization of the weight w
appearing in the case of merging junctions, i.e.,

q;7(q;)
aimi(a:) + q575(q5)

¢i7i(q:)
qimi(ai) + 4j7(g5)

wi(gs, q;) = wj(gs,qj) =

We propose two different approaches and compare the results numerically in
Section 5.

A We approximate
1

Wi, Wj ~ W = =

and calculate the first order Taylor expansion 7(q) = 7;(0) + ¢7;(0) as
an approximation for 7;(g). Neglecting higher order terms, we obtain the

10



Figure 2: Contour lines of the nonlinear weight function ay(g;,q;) for ¢;,q; €
[0,1]

following linear equations:
Dispersing junctions
ti =t =ty + Ly7r(qx)
Merging junctions
ty = (ti + LiTa(as)) - @ + (t; + LjTi(gy)) - b

(4.3)

B The junctions of merging type are now approximated by piecewise linear
functions on triangles, a more refined approximation as in case A. Let

qi7i () 4;75(45) 4.4)
aii(ai) + ¢;75(q5) qi7i(gi) + ¢;75(g5)
As an example note that for f(p) = 4p(1 — p/M;) and M; = M; =1 the
contour lines of a; are given in Figure 2.

ar(gi, q5) := LiTi(q;) Lj7;(qj)

At each junction k of merging type, for a; we introduce N;-N; discretiza-
tion points (&%,7F) with 0 = ¢ < ¢6 < ... < Efvi_l < {fvi = M; and
0=nF<nb<...< nfvjfl < nfvj = M;. Denote A a partition of the
grid of discretization points into triangles and introduce a binary variable
yé“phpws) € {0,1} for each triangle (p1,p2,ps3) € A. The identification of
the proper triangle corresponding to the incoming fluxes ¢;, ¢; is done by

the next equations. Exactly one triangle has to be selected:
k _
Z Y(p1,p2.p3) = L. (4.5)
(p1,p2,p3)EA

Once one triangle is selected, the values of ¢;, ¢; can be encoded as convex
combination of its corners. For this, introduce a fractional variable /\ﬁ,w >

11



0 for each discretization point (E{f, n’,f,), which are coupled to ¢; and g; as

follows:
N; Nj N; Nj
%= Z Z 55 ) k”’w’ q; = Z Z T]qlf; : )‘v,w- (46)
v=1w=1 v=1w=1

The convex combination condition is

Ni N
Y Xw=1 (4.7)

v=1w=1

Only those three values Ay, , Ap,, Ay, are non-zero that are corresponding
to the selected triangle by equation (4.5):

yégpl,pz,ps) <A+ Ay +Aps, YV (p1,p2,p3) € A (4.8)

To introduce Gy, as a piecewise linear approximation of ax(g;, ¢;), we add
the following equation to the model:

Ni Nj
ay = Z Z ak(éva nw) : )\v,w (4'9)

v=1w=1

The junctions of dispersing type are approximated as in case A, whereas
for the junctions of merging type, we use a blending of a as above and w
as in case A:
Dispersing junctions
ti =tj =tp + LiTr(qk)
Merging junctions
ty = (ti-l-tj) - W+ ag.

(4.10)

For any linearization A or B we linearize the functional (4.2) as follows. For
every j € FE we introduce D, variables 0 < yf < ]g—j and let the flux be
represented by

Dq
4=yl (4.11)
=1

Functional J is approximated by

|E|
Har, - qp; Topo) = Y 7, (4.12)
j=1
where we introduce for every edge 7 € F and every k = 1, ..., D; the inequality
“ (i+1)-M - M D
t A k—D v My k—D J
——.T-2 t] — T-2 ¢ L
> (e(Fp e ) e (St )
=1
< oz M- (1 —up), (4.13)

12



where M is a sufficient big value and G is defined by

66,0 = (7-¢- ") Lyriege (414

and we assume that G(-,() is convex for every ¢ € [0,T]. Moreover, uj; is
a binary variable for every j € E and k = 1,..., Dy, where u;, = 1 if t; <
T - 25=D¢ Thus we add the following inequalities to the model:

t; > T - 287D (1 —uyy), (4.15)

forall j € F and k = 1,..., D;. Summarizing we obtain a linear mixed-integer
model with dynamics given by

I%inj(Q1, s qe; T, po)
J

where for junctions of dispersing type:

ti =t; =ty + LT (qk)

4 + q; = gk

where for junctions of merging type:

case A: t, = (ti + Liﬁ'(qi)) -w+ (tj + Lj'?j(qj)) -w

case B: tx, = (¢; -|-tj) - W+ ag

k= qi + g5

where for roads ingoing to the network:

g = folpo),t; =0

and where for all roads:

M; > q; > 0.
Remark 4.1. In the above modelling we set the discretization points as T2k~Dt
for k=1,...,D;. This produces a log-scale distribution of discretization points
in [0,T). Other distributions are also possible. For example, if we equally dis-
tribute we obtain

k—1
ti >T——(1 —ujg 4.16

instead of equation (4.15). The proper choice depends on the size of the network
geometry and the scaling of T.

4.2 Linear model without dynamics

We assume ¢; = 0 which models a static traffic flow network. We obtain a linear
functional J from (4.2) by a p1ecew1se linear approximation of J. For this, we
introduce D variables 0 < y7 < —L for every edge j € E. Then the flux g; is

represented by
D

g =yl (4.17)

1=1

13



Now J is approximated by

|E| D

. (i+1)- M; i-M;\\ D
J(q1,---,q8;T, = G| — ) -G Y,
- - qm;; T, po) ;;( ( D ) ( D )) ;Y

(4.18)
where G is defined by
() I2
G(€) = (TLJ-— (52)L-7> (). (4.19)

Again, we assume G(-) to be convex. Summarizing, we have the following
model

II;i'Il j(Qla s 7Q\E\aTa PO)
)

where for roads connected to a junction v:

DoG=D4

jess j€dy

where for roads ingoing to the network:
g; = fo(po)

and where for all roads:

M; > q; > 0.

4.3 Linearization for monotone, non-convex function G

In both linearizations above we assumed G(-,¢) and G(-), respectively, to be
convex functions. The convexity depends on 7 and is satisfied for those functions
7 we study within this article. However, other choices for 7 are possible, where
G is non-convex. But, if G happens to be monotone (and non-convex), it is
still possible to obtain a linearization. We present the necessary changes to the
model only in the case without dynamics. In the dynamic case they are similar.

We introduce D variables yf > 0 for every edge 7 € E. Since G is non-
convex, they cannot be coupled to the flux ¢; as simple as in (4.17). Instead
we have to use the following inequalities

M
ngyg‘l-fj-i, Vi={1,...,D},j € A. (4.20)

Now J is approximated by

i LIS
J(q1,-- - qm; T, po) == Z—(G

M.

M. .
(—9> Y+ (4.21)
— M D
7j=1
D

;(G(%)_Q.G(i-gj>+g<%>>,%,yzj),

where G is defined as before.

14



4.4 Mincost flow type model

We again assume t; = 0, i.e. the static network case. Instead of a piecewise
linear approximation of our functional (4.2) we additionally assume a simplified
dynamic: If the function

u3(p) = ¢; = const;

is constant for all j, then by definition

1
T(QJ) = g
The functional (4.2) reads
B |E|
J(q1,- - qm;Thopo) = Y wjg (4.22)
j=1
where w; are constants given by
L; L}
wj = T - —]2
cj 20]

Together with the linear coupling conditions and the lower bounds for ¢; we
obtain the classical min-cost flow problem:

E|
min w;q;
4 Z 39
Jj=1
where for roads connected to a junction v:
PILEDIL
jeos jeds
where for roads ingoing to the network:
g5 = fo(po)
and where for all roads:
M;>q; >0

Remark 4.2. Unfortunately the assumption u$ = constant; is not a realistic
approzimation of a typical fundamental diagram. For reasonable fundamental
diagrams we refer to [22]. At least we have to assume u$(z) is linear.

We have the following remark on the relation of the linear models given

above and known other approaches.

Remark 4.3. In [25] also linear models are introduced. There the starting
point are the “transit times” T, which are assumed to be known functions. They
describe the time needed by a flow to pass the arc e. In our formulation the
“transit times” are the functions derived by equation (4.1), i.e.,

q — 7(q)L;.
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Figure 3: Example of a network

The case of constant transit times is named “static flow problems” in [25]. In
our introduced model this reflects the situation uj(p) constant. As pointed out
by Mohring, et. al. this can not be a realistic assumption. Therefore, they
introduced “static traffic flows with congestion” by assuming a dependency of
Te on q. In our model this approach is reflected by the introduced linear model
without dynamics. However, we see by our derivation that congestion in form
of backwards going shock waves are not covered by those models, c.f. numerical

results below.

5 Results

We compared the computing times for different models and networks. All re-
sults have been obtained on a 1.0Ghz Pentium III processor machine with 2 GB
RAM, 256 KB first level cache and Debian Linux v3.0 as operating system.

5.1 Testcase for comparing network models

For the purpose of comparing the models we introduce a network with two
controls and seven roads as in Figure 3. As an example we use the smooth and
concave family of flux functions

fi(p) = pui(p) = 4p(1 — p/M;). (5.1)
The function 7;(p) is then given by (4.1), i.e.,
7i(q) = Y , 0<q<M; (5.2)
2 (0y + /M )
If not stated otherwise we assume
T=5and Lj:=bj—a;=1Vj=1,...,7. (5.3)

We define ¢y to be the known inflow given at z = a;.
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5.1.1 Comparison of the functional values

We compare the derived models on the sample network. We compute the func-
tional of the corresponding model for all admissible choices of the control vari-
ables o1 and «sg. In the context of the linear models this implies to compute
the objective for all choices ¢, ..., g7 satisfying the constraints. As described
in Section 4 the fluxes g; and the controls are related. For example we obtain
for the first roads of our sample network

g1 = qo, g2 = @141, g3 = (1 — a1)qr.

In all subsequent plots we draw contour lines of the functional against a; and
ao. We choose different maximal fluxes M; on the roads to obtain different
test-cases.

Testcase 1: Free Flow

We set M; = 1 for all roads and qo = 96%M;. We compute the func-
tional (2.15) by a trapezoid rule. The underlying partial differential equations
is solved by a first-order Godnuov scheme with N = 100 discretization points
for each road j. The functional (3.5) is computed by the formulas given in Sec-
tion 3. For the linear models we computed the functional (4.21) with D = 1000
variables for each edge j. Note, that the function & — G(€) is at least monotone
for the choice (5.1). For comparison we include a plot of the functional for the
mincostflow problem (4.22) where we set uj(p) = 2 for this calculation. The
results are given in Figure 4. The minimizer of all problems is (a1, as) = (3,0).
In case of the mincostflow model we loose the uniqueness of the minimizer. Fur-
thermore, the qualitative behaviour differs significantly from the other models.

Testcase 2: Backwards going shock waves

When deriving the simplified models we neglected backwards going shock
waves. This was an essential part of the simplification of the dynamics. We
compare the simplified nonlinear model with the model based on partial dif-
ferential equations in a case with backwards going shock waves. We set M; =
My = My = Mg =2, M3 =1, M5 = 0.5 and g9 = 75%M;. We used the same
discretization as previoulsy and compare the contour lines of (2.15) and (3.5)
in Figure 5). We observe that the domain of admissible controls is larger in
the pde case due to the occurence of backwards going waves. The region for
the optimal control coincides. We skip results on the linear model since they
approximate the algebraic model.

Testcase 3: Neglecting dynamics

For the linear and simplified nonlinear models we considered models with
and without dynamics. In this testcase we highlight the effects appearing when
neglecting the dynamics. We compute the corresponding functionals (4.21) and
(4.12) for the following setting M; = 2, g9 = 96%M; and L; = Ly = L5 =
2,Ly = Lg = 1,Ly = 2.5, L3 = 15. In the dynamic case we allow only those
controls a1, where the incoming flux reaches x = by, i.e., t; < T. The
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Figure 4: Testcase 1: Contour lines of the functionals for partial differential
equation, simplified nonlinear, linear without dynamics and mincostflow model
(top left to bottom right).

simplified nonlinear model with dynamics is given in Section 3. For the model
without dynamics we set

ti=0 Vj=1,...,7.

The results are in Figure 6. Note, that in the region a3 < 30% the routed traffic
does not reach the outgoing road. Furthmore, the functionals differ significantly
in their qualitative behaviour.

Testcase 4: Discretization points for linear models

The linear models depend strongly on the number of discretization points
D. We study the qualitative behaviour of the contour lines when decreasing D.
We consider the linear model without dynamics and its functional (4.21). We
set M; = 1,q0 = 0.96%. We plot the contour lines for D = 5 and D = 25
discretization points in Figure 7.

Testcase 5: Linearization of the dynamics

In this case we consider the influence of the various possible discretizations
for the coupling in ¢;. We consider the same setting as in Testcase 3. We
compare the qualtiative behaviour of the functional for the simplified nonlinear
model with the linear models with dynamics given in Section 4.1. We compare
the different discretization, Cases A and B. The results are given in Figure 8.
We used D, = D; = 100 variables for the discretization of the flux and the time
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Figure 5: Testcase 2: Contour lines for the functionals for pde and simplified
nonlinear model (left to right).

Figure 6: Testcase 3: Contour lines for the functionals for simplified model with
(left) and without dynamics.

on each road for any linearized model. We calculate Cases B with N; = N; = 5
and N; = N; = 25, respectively, discretization points for each junction of the
merging type.

5.1.2 Optimization on the sample network

We consider the optimization problems introduced and compare computing
times on the sample network.

As in the previous section we solved the partial differential equations
model with a Godunov scheme with N discretization points. The functional
is discretized using the trapezoid rule. For standard nonlinear optimization
routines we need at least the gradient of the functional. We compute an ap-
proximation by finite differences. Other approaches (using adjoint formulas)
are investigated in [15]. In case of the algebraic model the gradient can be
calculated analytically.

For all nonlinear optimization problems the L-BFGS-B optimizer of Byrd,
Lu, Nocedal and Zhu [4, 33, 5] is used. This method is a gradient projection

19



Figure 7: Testcase 4: Contour lines for the functionals for linear model without
dynamics and varying D = 25 (left), resp. D =5 (right).

method with a limited memory BFGS approximation of the Hessian and is
capable to consider bound constraints. The default settings are m = 17, factr =
1.d + 5,pgtol = 1.d — 8 and isbmin = 1.

The linear model without dynamic is a pure linear programming problem.
We solved it using ILOG CPLEX 8.1 [20]. As a default strategy, we set the
network simplex method to solve the linear programs. For our test-cases, this
method outperforms other solution techniques, such as primal or dual simplex.
In case of the linear model with dynamics we have a mixed-integer problem.
We consider the discretization (a) of the dynamics only. Among the currently
most successful methods for solving these problems are linear programming
based branch-and-bound algorithms, where the underlying linear programming
relaxations are possibly strengthend by cutting planes. Fortunately, todays
state-of-the-art commercial MIP-solvers (such as CPLEX [20]) are able to han-
dle mixed-integer programs even for our large size problem instances.

For the setting of Testcase 1 we have the following result on the compu-
tational times (CPU times), see Figure 9. The parameters (Dg, D;) describes
the discretization of the nonlinear functional. The parameter N;N; describes
the number of discretization points for the function a(-,-) at the merging junc-
tions. Therefore, the only models reasonable to test on large scale networks are
the simplified nonlinear and the linear models.

5.2 Large Scale Network Optimization

The network considered next is shown in Figure 10.

There, every node in the top row is controlable via a separate control
. There are only one source and one sink. The prescribed inflow is again
go = 96%M; and all streets have the same maximal flux, M; = 1.0 Then, the
optimal controls are a; = 0.5 and o, = 1.0, Vv # 1. The results are given
in Figure 11. The number of discretization points for the flux ¢ per road is
denoted by D, and for the time by D;. The number of discretization points
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Figure 8: Testcase 5: Contour lines for the functionals for simplified nonlinear
and different linear models with dynamics. Simplified nonlinear (upper left),
Case A (upper right), Case B with N; = N; = 5, resp. N; = N; = 25 (lower
row left to right)

for each function ay, c.f. equation (4.4), in model B is denoted by N;N;. Note
that all nodes in the bottom row are of the merging type. To improve the
performance of CPLEX we increased the optimiality gap from 1/1000 (default
setting) to 10%. We present results for other optimality gaps, too.

6 Summary

e A hierachy a traffic network models ranging from PDE models to simple
combinatorial models of mean-cost-flow type has been developed. The
introduced linear models without dynamics are similar to the models de-

Model and Scheme Parameters CPU time
Godunov scheme for pde model N=100 135.65 s
Godunov scheme for pde model N=50 45.17 s
Simplified nonlinear model 0.05 s
Linear Model with dynamics (A,B) | Dy = D; = 100, N;N; = 25 0.02 s
Linear Model without dynamics D, =100 0.01 s

Figure 9: CPU times for sample network and different models
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Figure 10: General layout of a large scale network

veloped in [25].

However, the simplified models developed here do not contain dynamic
situations with backwards going shocks, i.e., traffic jams. To include
such situations more complicated models have to be derived from the
underlying PDE network.

A variety of different network topologies has been investigated. Combi-
natorial and continuous optimization approaches using these models have
been implemented and compared.
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