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Abstract. In rural areas the public bus service is typically demand-oriented: By
far the biggest group of customers are pupils who are transported to their schools
within certain strict time limits. Usually, all schools start around the same time,
which causes a morning peak in the number of deployed buses. However, schools
are allowed to change their starting times within some intervall. The question is,
how to simultanenously rectify the starting times for all schools and bus trips in a
certain county so that the number of scheduled buses is minimized. We present a
mixed-integer programming formulation for this optimization problem and address
its solution for a real-world instance.

1 Introduction

In rural areas pupils on their ways to school and back home are usually the
biggest group of customers for public means of transportation. In Germany
it has become custom that schools start in a small time interval around 8:00.
On the transportation side, this leads to a high number of deployed vehicles
(i-e., buses) that have to transport the pupils in time, with a peak from 7:00
to 8:00. After having served the morning rush hour, most of the buses are
sent back to the depot, for there is nearly no further demand. The afternoon
peak at the end of school is much lower, for schools do not release all pupils
at the same time. Hence the main focus for optimization, i.e., the reduction
of the total number of deployed buses, is the morning peak. The optimization
problem can be manifested by the following questions:

e When should schools start, subject to the legal bounds?

e When should the bus trips start so that customers (pupils and others)
can use the current changes between trips, and pupils don’t have to wait
unacceptably long at school?

e What is a bus doing after serving a trip: driving back to the depot or
serving another trip?

Suppose for a moment we have some kind of tool that could answer all these
questions. Then, despite that, there is one important point, which has nothing
to do with optimization, but nevertheless is as important as the previous ones:

e Who is implementing the solution in real-world, negotiating with the
county administration, the transportation companies, the schools and
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teachers, the pupils and their parents, for short, all groups of interest
that are affected by the changes in public transit?

To give an example, if some school doesn’t start at, say, 7:50, but at 8:30,
then all respective pupils leave home more than half an hour later, which
might cause troubles for working parents. In the afternoon, the child returns
later, and therefore might no longer be able to attend a sport’s club. Here the
consulting company BPI-Consult, a subsidiary of the Finish Jaakko Pdyry,
enters the stage. Appointed from the county administration, they develop
new trip time tables, bus schedules, and school starting times. Then, BPT ac-
companies the whole process of embedding their solution into real-life, which
includes negotiations with all participants and potentially re-optimization,
when new constraints appear that make previous solutions infeasible. Up to
now, BPI successfully consulted four counties and one city, where the number
of buses was reduced by 15 — 20%, which yields a yearly cost saving of 10 —
15%, see [11] for details. In each of these cases, the solutions were generated
manually.

Note that BPI-Consult is not interested in changing the routes of bus trips,
in the creation of new lines and trips, or the deletion of some existing trips,
even if the number of deployed buses could be lowered. This is mainly a po-
litical decision, because changing only the starting times of trips and schools
already creates enough opposition. In addition it is required that after the
optimization all pupils are using the same bus trips to come to school as they
do now. The mathematical model we present in this article reflects these re-
strictions. It was designed to become part of a software tool that supports
the planning part of BPI’s work.

A wide range of transportation problems involving public bus transit, pupils
and/or schools were already studied before, see [2], [4], [3], [3], [7], or [8], to
name just a few. However, none of the presented models completely fits to our
problem, mainly for some or all of the following reasons. With exception of [8],
the time windows of school starting times are fixed and cannot be changed
to save buses. In all modelling approaches, pupils are always transported
directly to school, and changing the bus is not allowed. Locating bus stops,
designing routes (trips) and assigning pupils to routes is sometimes part of
the optimization, but for us these are input figures. Finally, scheduling drivers
is not an issue for us: Since our time horizon is small (from 6:00 till 8:30), no
planning of breaks is needed.

In Section 2 we come up with a new model. This model is applied to real-
world data collected by BPI, the results are discussed in Section 3. Finally,
Section 4 gives an outlook on future directions of our research.

2 A Mixed-Integer Programming Model

In general, our problem belongs to the class of vehicle routing problems,
or VRP, for short, where a fleet of vehicles starting at a depot is sent to
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customers, picks up some commodities up to a maximum load and drives back
to the depot. Dropping the capacity restrictions in VRP results in a multiple
traveling salesman problem, or mTSP. The model we present now is based
on a model for the classical single-depot multiple traveling salesman problem
with (static) time windows, or mTSP-TW for short, see [6], for instance. We
start with a detailed description of all sets and parameters needed as input
figures.

2.1 Sets and Parameters

Let S be the set of all schools in the given county. For every school s € S, a
time window 7,,7s € Z4,T, < Ts, for the school starting time is given.

A trip t is a list of bus stops, where a departure time is assigned to every
bus stop of this list. Let V be the set of all bus trips in the county under
consideration. The starting time of trip ¢t € V, i.e., the time of departure at
the first bus stop, is allowed to be shifted within the time window a;,; €
Zy,a, < a;. The time a bus needs to serve trip t, i.e., the time difference
between first and last bus stop, is denoted by 8;"* € Z . We distinguish four
different types of bus trips, called school trips, feeder and collector trips, and
free trips.

A trip t € V is called school trip for school s € S, and we write (s,t) € P,
if trip ¢ transports pupils to a bus stop of school s. The driving time from
the first bus stop of the trip till the school’s bus stop is settled by parameter
0sh>°! € Z. For the pupils there is given a minimal and maximal waiting
time wige, wiPet € Zy,wipe! < wipe relative to the starting time of the
school in which they must arrive at the school bus stop. The lower bound on
this time interval w$;°' actually reflects the walking time from the school bus
stop to the classroom in school, whereas the maximum waiting time w3 is

specified by law.

Not all customers (pupils and others) arrive at their final destination using
only one trip. If they start their journey with some trip ¢; € V and transfer
to some other trip to € V at a so-called changing bus stop, then we call trip ¢;
a feeder trip for collector trip t2, and we write (¢1,t2) € C. The driving time
for feeder trip ¢; from the first bus stop of the trip till the changing bus stop
is settled by parameter 6;:%." € Z ., for collector trip ¢ this is d;ys*" € Z .
The minimum and maximum waiting time at this bus stop is given by the
time window wy 325, Wi o= € Zy, Wit < Wy pa=. Note that a trip can have
more than one type, p.e., it can be a school and feeder trip.

All other trips that are not school, feeder or collector trips are called free

trips. These trips don’t play a role for the transport of pupils. Nevertheless,
they also have to be served.

When a bus finishes a trip, it either starts serving another trip or it is sent
back to the depot. The connection of several trips that are served by the same
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bus is called schedule or block. The set A C V x V consists of all pairs of trips
that might be connected in some schedule. The intermediate trip from the
last bus stop of trip #; to the first bus stop of trip ¢, where no passangers are
transported, is called a shift or a deadhead trip. The driving time for a shift
is denoted by &% € Z for all (t1,t2) € A. If we formulate this problem in
a graph, where the nodes correspond to the trips and the arcs to the shifts,
then the blocks are paths in the directed graph (V, A).

In principle, every trip may be served by a new bus from the depot. The
assignment of a new bus from the depot to a trip ¢ contributes with cost
Ci € Z 4 to the objective value.

2.2 Variables and Bounds

For every bus trip ¢t € V we introduce a decision variable v, € {0,1} with
v; = 1 if and only if trip ¢ is the first trip in some block. In the same manner,
wy € {0,1} is a decision variable with w; = 1 if and only if trip ¢ is the last
trip in a block.

For the connection of two trips (t1,%2) € A in a block we make use of a decision
variable x¢,¢, € {0,1} with x4, = 1 if and only if some bus serves trip t,
directly after finishing trip ¢;. The starting time of trip ¢t € V (i.e., departure
of a bus at the first bus stop of trip t) is settled by the real-valued variable
oy € Ry which is bounded by the respective time window, o, < a; < @;.
For every school s € S, the starting time is modeled by a variable 7, € R
with 7, < 75, < 7. It is required that the new starting time is a multiple of
5 (minutes), thus we introduce an integer variable 7} € Z 4 with 71 < Tz
and set 7, =71, +5- 7.

2.3 mTSP-TW

In a feasible solution, every trip must be served by exactly one bus. The trip
can either be the first one in a block or it has a unique predecessor:

Z Ttito + Vi, = ]-, \4 t2 € V (]_)
(t1,t2)€A

Furthermore, it can either be the last one in a block or it has a unique
successor:

z Tiitg + Wy =1, Vit €eV. (2)

(t1,t2)€A

If trips ¢; and ty are connected, then trip ¢ can only start after the bus has
finished trip #1 and shifted from the end of #; to the start of 2. Waiting is
permitted, if the bus arrives there before the start of ¢2. Using a sufficient big
value for M, these constraints can be formulated in terms of linear equations:

gy + 6;;”3 + 6211];; - M- (1 - wtth) < oy, v (t17t2) € A. (3)
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Note that these inequalities are already sufficient to avoid the appearence of
sub-cycles within any feasible solution.

The main goal is the saving of buses, a secondary goal is to use the deployed
buses in an efficient way and avoid long shifts where no customers are trans-
ported. Thus for sufficient big values of Cy, an objective function reflecting
this goal can be stated as

z = minimize E Cy v+ E e Tty (4)
tey (t1,t2)EA

So far, the presented formulation is a model for the the classical single-depot
multiple traveling salesman problem with (static) time windows, or mTSP-
TW for short. Next, we extend this model with respect to restrictions due to
school starting times and restrictions for pupils who have to change the bus
on their way to school.

2.4 mTSP-CTW

In contrast to the classical mTSP-TW, the time windows for the trips are
not fixed from the beginning, but depend on other time windows. For this
reason, we call our problem mTSP-CTW, where the character “C” represents
the coupling aspect of the time windows.

The problem under consideration gives rise for two different kind of coupled

time windows. The first one we call internal coupling of time windows. In

our application, the time windows for feeder and collector trips are coupled

internally. For (t1,t2) € C, bus trip t; must arrive at the changing bus stop
change

after trip ¢; within a small time window specified by wi'3»* and @} 2. This
synchronization is done by the following inequalities:

feeder change collector
atl + tits + g151752 S at2 + ti1ts ? (5)

Qpy + OSTT + W > oy, + 070,V (t1,2) €C. (6)

The second one we call external coupling of time windows. In our application,
the external source are the schools, where coupling of time windows arises
from the minimal and maximal waiting time restriction for pupils at their
respective schools. Thus, we have to add the following inequalities to the
model in order to synchronise the start of bus trips and schools:

at + 6:(2}1001 +Q:cth°°1 S Ts, (7)
o+ Ot T > 1, Y (s,1) € P (8)

Summing up, our MIP model consists of optimizing the linear objective func-
tion (4) subject to the set of linear constraints (1) — (3) and (5) — (8).
Note that an instance of mTSP-CTW, where all trips are free trips (i.e.,
P =C =0), is in fact an instance of mTSP-TW.
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From a theoretical point of view mTSP-CTW is N P-hard. Checking feasi-
bility for mTSP-CTW with a fixed number of vehicles is N P-complete, for
it contains mTSP-TW with static time windows as a special case, which is
known to be NP-complete, see Savelsbergh [10]. Thus we cannot expect a
polynomial algorithm for its solution, unless P = N P.

3 Computational Results

In order to quickly solve the model, we developed a primal solution method,
i.e., a greedy-type heuristic algorithm®. For an evaluation of potential savings
for the simultaneous optimization of school starting times and public bus
services, we tested our heuristic on real-world data from a county in the
north-west of Germany. This county is rural, for the population density is
rather low. The biggest city has no more than 30,000 inhabitants, at most
150,000 people live in an area of about 1,000 square kilometers. More than
half of all pupils are coming to school by public transit, that is, about 15,000
pupils take the bus to 102 different schools. The average way to school has a
length of around 10 km, a few pupils travel even more than 30 km twice a day.
Today, most of the schools start between 7:50 and 8:00. In the morning from
6:00 till 8:30, the bus company deploys 227 buses to serve 490 trips. There
are 406 internally coupled time windows to ensure that all existing transfers
between two trips will also be possible after the optimization. Moreover, there
are 574 couplings of school and trip time windows. Our solution found by the
heuristic (after only a few seconds of computations) reduces the number of
deployed buses by 17% (from 227 down to 188). Figure 1 shows the current
(dashed line) and the planned (solid line) school starting time distribution.
Figure 2 shows the current (dashed line) and the planned (solid line) number
of simultaneously deployed buses. Note that the maxima of these curves are
lower than the total number of deployed buses, for not all buses are in use at
the same time.

However, there is no guarantee on the quality of this solution, perhaps even
more savings might be possible. Standard state-of-the-art mixed integer solvers
(CPlex, see [1]) are able to give lower bounds on the number of vehicles. From
this we know that no feasible solution can use less than 163 buses. However,
Cplex was not able to close the gap between lower bound and best known
feasible solution, even after some days of computations.

4 Conclusions and Future Research

In this article we presented mTSP-CTW as a generalization of the mTSP-
TW problem, and gave a mixed-integer programming model. We applied this
model to the problem of the simultaneous optimization of school starting

! The details of this algorithm will be described in a forthcoming article.



" o_sall]

mTSP-CTW

P,

""" L_J[:ll:]lzllj

7:30 7:35 740 7:45 750 755

8:00 805 810 815 820 825 8:30

Fig. 1. Current and planned school starting time distribution.
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Fig. 2. Current and planned number of simultaneously deployed buses.
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times and public bus services. The computational results presented show
that our heuristic is able to obtain savings. In the future, we will refine the
primal heuristic approach and improve the dual bound by strengthening the
LP-relaxation to obtain optimal solutions.
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