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Abstract

In the present paper, the concept of n—ary and finitary connect-
edness is introduced, where 1—ary connectedness coincides with the
usual notion of (abstract) connectedness. Relationships between (n-
ary) connectedness and an abstract concept of separation are studied.
As applications, the classical intersection theorems of Helly, Klee, and
others are obtained from the previous results by showing that the
paving of closed convex resp. open convex subsets of a topological
vector space are finitary connected.

Based on a general minimax theorem, an abstract separation theo-
rem is proved, generalizing the classical separation theorem for convex
compact subsets of a locally compact topological vector space. This
theorem and other results on abstract separation can be used to derive
fairly general results on finitary connectedness which can be applied
to various types of (convex) topological spaces.
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0 Introduction

Many problems in pure and applied mathematics can be reduced to the
following

Problem When does a system of subsets of a given set intersect?
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By a compactness argument this problem is usually reduced to finite
systems.

A very simple property is the following:

If A and B are nonvoid closed (open) subsets of a topological space such
that AU B is connected, then A and B intersect.

This innocent looking observation is a useful tool for proving minimax
theorems as was demonstrated in several papers by Konig, Simons, Kindler,
and others (compare [23] for a survey). In this context, the notion of “con-
nectedness” was lifted to an abstract level.

But, as Horvath remarks in [10], “connectedness is good enough to estab-
lish that a family of sets has the binary intersection property (any two sets of
the family intersect), but does not allow the passage to the finite intersection
property. One has to impose higher order connectedness properties to have
the n—ary intersection property...”

1 Connectedness and separation

Let S be a nonvoid set and 29 the power set of S. Then every nonvoid subset
P C 25 is called a paving in S and (S, P) is a paved space. Especially, £(S)
denotes the paving of all nonvoid finite subsets of S and £™(S) is the paving
of all subsets of S with n elements. The paving PT :={T'C S: TNP €
P VP € P} is the transporter of P, and P is the paving of all complements
S\ P, PeP.

The paving P is called

o Ny—closed (Ug—closed) iff ABe P=ANBeP (AUBeP),
o Ny—closed iff (. R € P for all nonvoid R C P,

e a lattice iff it is Ny—closed and Uy—closed,

o coherentiff ABeP, ANB#()—=— AUB¢€ P,

e compact iff every subpaving R C P with the finite intersection prop-
erty per R # 0 VF € E(R) has the global intersection property
Nrer B # 0, and a subset T' of S is compact (w.r.t. P) iff its trace
PNT:={PNT:P &P} is compact,

e upward filtrating iff for all A, B € P there exists a C € P with C D
AUB,



e an alignment iff {(), S} C P, P is Ny—closed, and |J{A: A€ A} € P
for every totally ordered subpaving A C P.

Let (S,P) be a paved space. For k,n € N :={1,2,...} with £ < n we
denote by P(n, k) the paving of all subsets T' C S where for all { Py, ..., P,} C
P the relations

1) ﬂjeJPj € P for all nonvoid proper subsets J of {0,...,n},

(
2) T c U B

(3) TN, Pi #0 for all subsets J € £*({0,...,n}), and
4) TNz =0

cannot hold simultaneously.

In the above situation we set J" for the paving of all nonvoid proper
subsets of {0,...,n}, P;:= ﬂjeJPj for J € J", and P_; := P;_, for J_; :=
{0,...,n}\ {7}

The subsets T' € P(n, n) will be called n—ary connected (for P). A subset
is called connected for P iff it is 1—ary connected for P.

A subset T is called finitary connected (for P) iff it is n—ary connected
(for P) for every n € N.

If K is another paving in S, then we say that K is n—ary/finitary con-
nected for P if every K € K has this property. Finally, in case L = P we
say that P is n—ary/finitary connected.

Remark 1 Let (S,P) be a paved space.
a) PP CPiff SEP, and PT D P iff P is Ny—closed.

b) A subset T of S is connected for P iff it is connected for PC.
This property does not carry over to n—ary connectedness. For exam-
ple, S ={1,2,3,4,5} is 2—ary connected for the paving P = {{1, 2, 3,4},
{1,2,4,5},{2,3,4,5},{2,3,4},{1,2},{4,5}} but not for PC.

¢) P C P(n,k) implies P C P'(n,k) for k < n. For Ny—closed P the
converse implication also holds.

Lemma 1 Let (S,P) be a paved space. Then the paving D = {D € 25 :
D is connected for P} has the following properties.

(i) EX(S) U {0} C D.

(ii) D is coherent.



(iii) D is closed w.r.t. upward filtrating unions (i.e., Uycqy H € D for every
upward filtrating subpaving H C D).

(iv) For H C D with (e H # 0 we have Uy oy H € D.

Proof. (i) and (iii) are obvious.

(ii) Let A, B € D with ANB # (). Suppose that AUB ¢ D. Then there exist
sets C, D € P with AUB C CUD, (a) (AUB)NC # 0, (8) (AUB)ND # 0,
and (AUB)NCND = (). Since A and B are connected for {C, D}, we have

either ANC=0 or AND=40,

and
eitherr BNC =0 or BND=1.

But ANC =0 = BN C contradicts (o) and AND = () = BN D contradicts
(B). Hence we have either AND = BNC =@ or ANC = BND = (). In both
cases we arrive at ANB=(ANBNC)U(ANBN D)=, a contradiction.
(iv) For finite # this follows from (ii) by induction. The general case follows
together with (iii). O

Remark 2 Pavings D satisfying conditions (i) and (iv) of Lemma 1 are
called connectivities. We have seen in the above proof that conditions (ii)
and (iii) imply (iv). It is easy to verify that, conversely, (iv) implies (i) and

Connectivities were introduced by K. Csdsdr in her study of abstract sep-
aration and connectedness [4] and, independently, by Matheron and Serra
as a new approach in the analysis of digital images [22]. In the context of
stochastic and algebraic independence, Matis [20] introduced the notation of
a C-family which — in essence — is a paving D satisfying relations (i) and

(ii).

A bipaved space is a triplet (S,P,K) where P and K are pavings in S.
Weset CMP:={KNP:KeckK,PecP}.

Given a bipaved space (S, P, K), we say that K separates P or (S, P, K)
is separated iff for all A, B € P\ {0} with ANB = () there exists a set K € K
with ANK =BNK =0 and PNK # () for all P € P with P D A and
PN B #(. A paved space (S, P) resp. a paving P is separated iff (S, P, P)
is separated.

Lemma 2 Let (S,P) be a paved space.
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a) Let T € 25\ {0} such that 2° separates P N'T and P NT is upward
filtrating. Then T is connected for P.

b) If 25 separates P, then P is connected for PT.

Proof. a) Let sets A, B C P be given with T C AUB, TN A # () and
TN B# (). Assume that TN AN B = (. Then there exists a K € 25 with
KNANT = KNBNT = () such that for C € P with C D (AUB)NT we have
CNTNK # 0 in contradiction to TNK = (TNKNA)U(TNKNB)=.
b) Part a) applies to (S,P") and T € P since T € PT NT. O

The method of proof of the following Lemma goes back to Helly [9].

Lemma 3 Let (S,P,L) be a bipaved space, let T € 25\ {0} such that L
separates PNT, and let n >k > 2. Then LNT C P(n — 1,k — 1) implies
T € P(n, k).

Proof. Let {Py, ..., P,} C P satisfy relations (1), (2), and (3). Assume that
TNPogNPy,= . Since L separates P N T, there exists an L € £ with
LNP¢NT=LNP,NT = 0 such that

MePNT, MD>P_oNT and MNPyNT # @ imply M N L # (.

In particular, for every subset J € £E¥71({1,...,n}) we obtain P;NTNL # ()
by taking M = P, NT. But LNT N Py, = 0 together with T" C |J;_, P;
implies LNT C U}, P, and with LNT C P(n — 1,k — 1) we arrive at
D#LNTNN—, P,=LNP_yNT, acontradiction. O

Theorem 1 Let S be a nonvoid set endowed with three pavings K, L and M
such that KNL C KU{D} and L separates every trace MNK, K € K. Then
K is finutary connected for M iff it is connected for M.

Proof. Let n € N\ {1}. Suppose that K is (n — 1)—ary connected for M.
Then every LN K(C KU{0}), K € K, is also (n — 1)—ary connected for M.
Hence, by Lemma 3, IC is n—ary connected for M. The assertion follows by
induction. O

Corollary 1 Let (S, P, K) be a bipaved space such that P is upward filtrating
and KT separates KK T1P. Then K is finitary connected for P.
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Proof. By Lemma 2 a), K is connected for P. Now apply Theorem 1 with
L=K" and M =P. O

Corollary 2 Let (S,P) be a paved space. If P' separates P, then P is
finitary connected for PT.

Proof. Corollary 1 applies to (S,P",P) since S € P'. O

Let S be a nonvoid set, and let A, B be a pair of disjoint subsets of S.
Then A, B is said to be screened with the subsets C, D of Siff A ¢ C\D, B C
D\ C and CUD = S. Let P and K be pavings in S. Then P is screened
with K iff every pair of nonvoid disjoint subsets in P is screened with a pair
of subsets in K. In particular, a paving P is normal iff P is screened with P.

Lemma 4 Let (S,P,K) be a bipaved space such that P is screened with IC,
and P is connected for IC. Then IC MK separates P.

Proof. Let A,B € P\ {0} with AN B = (). Let A, B be screened with
C,D € K. Then for K := CND we have ANK = BNK =), and for P € P
with P D Aand PN B # () we have PNC D A# () and PND D> PNB # .
Since P is connected for K we arrive at PN K =PNCND#(. O

We note two instances where our concepts of connectedness and separa-
tion coincide:

Example 1 Let (S,P) be a paved space such that P is Ny—closed. Then
we have (a) = (b) = (c) for the following properties.

(a) P is separated.
(b) P is finitary connected.
(c) P is connected.

If P is normal, then the three conditions are equivalent.

Proof. (a) = (b) follows from Corollary 2 together with Remark 1 a) and
¢), and (b) = (c) is obvious. If P is normal, then (¢) = (a) follows from
Lemma 4 with  =P. O

Example 2 Let (S, P) be a paved space such that P is a lattice. Then the
following are equivalent:



a) P is separated.

(
(b

P is finitary connected.

(c) P is connected.

)
)
)
(d) P\ {0} is a lattice.

Proof. (b) = (¢) = (d) = (a) is obvious, and (a) = (b) follows with
Example 1. O

Lemma 5 Let S be a nonvoid set endowed with three pavings IC, L, and P,
and let k,n € N with k < n. Suppose that

(i) L C P(n,k), and

(it) for every A € £(S) and every K € K with K D A there exists an L € L
with AC L C K.

Then I C P(n, k).
In case n = k condition (ii) my be relazed according to

(ii)” for every A € EMY(S) and every K € K with K D A there exists an
LelL withACLCK.

Proof. Let T € K and {P,,...,P,} C P satisfy relations (1), (2), and (3).
Choose sy € TN Py, J € EF := EF({0,...,n}), and set A := {s;: J € EF}.
In case £ = n we have card A < n + 1, and in case card A < n there
exists a pair Ji,J; € & with J; # J, and s;, = sj,, and we obtain
s, € TNPy,NP, =TnN(.,P Hence without loss of generality
we may assume A € E£""1(S) in case k = n. Now choose L according
to condition (ii), resp.condition (ii)’ in case k = n, for A as above and
K =T. Then L ¢ J,P and LN P; # 0 for all J € &*. Hence,
TNNeoPsD LNy P # 0, since L C P(n, k). O

Example 3 Let P be a normal paving in S containing £(S). Then the
following holds.

a) P C P(n,k) implies P¢ C P(n, k) for n > k.

b) If P is a lattice, then every A € P which is n—ary connected for P is
also n—ary connected for PC.



Proof. a) Let A € £(5) and K € P° with A C K. Then there exists a
screening C, D € P for A, S\ K which implies A C C C K. Now apply
Lemma 5 with £ =P and K = P°.

b) We first show by induction that for {4, Aq,...,A,} C P with A C
Ui_o(S'\ A;) there exist sets By,...,B, € P with B; C S\ 4; and A =
U?:o Bi.

In case n = 0 take By = A. Suppose that the assertion is true forn = k£ — 1,
and let {A, Ao, ..., Ax} C P with AN ﬂf:o A; = (. Since P is normal and
Ny—closed, there exist sets C,D € P with CUD =S5, ANAy C C\D and
N, A; € D\C. In particular, ANCNN'_, 4; = P and By := DNA C A\ Ay.
By the induction hypothesis there exist sets By,..., B, € P with B;NA; = ()
and ANC =¥, B;. Finally, Jl_, B; = (DN A)U(CNA) = A.

Now let A € P be n—ary connected for P. Suppose that conditions (2) and
(3) with k = n are satisfied for {T, Py, Py,...,P,} ={A,S\ Ao,..., S\ An}
with {Ao,..., Ay} C P. By (3) there exist s; € AN (S\ 4;), j # i. Now
choose By, ..., B, as above. Then for C; = B; U ({so,---,sn} \ {s:}) we
have A =J ,C;, C; C A\ A;, and s; € C_;,i € {0,...,n}, and we obtain
ANy (S\ 4i) DNy Ci # 0, i.e. condition (4) is violated. O

For further use, the following lemma is formulated more general than
required in section 4 below.

Lemma 6 Let (S,F,G) be a bipaved space such that F is Us—closed, G is
Nyg—closed, and the following reqularity condition is satisfied.

(5)VteVegGaUegG, FeF:teUCFCV
Let K be a nonvoid subset of S which is compact w.r.t. G°.

a) Let {Go,...,Gp} C G with K C |}, Gi, and let s; € KNG_;,i € I :=
{0,...,n} be given. Then there exist subsets F; € F with K C J,_, F;,
F,CcG;ands; € F_;,i €.

b) If P is a Ny—closed subpaving of S such that K is n—ary connected
for P, then K s also n—ary connected for every subpaving H C G
satisfying

(6) VF e FHeH,FCH3IPeP:FNK CPCH.
Proof. a) Fort € G :=J;_,G; and V; := ({G; : t € G;,i € I}(€ G) choose
U, € G and F, € F with
teU,C F,CV,
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Then G = |J{U; : t € G}. Since K is compact w.r.t G, there exists a set
H € £(G) such that K C (J,.yU,. Without loss of generality we may
assume {sg,...,s,} C H. For i € I the sets

F; .= U{Ft Uy C Gy, t € HY (€ F)

are subsets of G; because t € U; C G; implies F; C V; C G;.

Let t € K. Then there exists a z € H with ¢t € U, and an 7 € I with z € G;.
Now t € U, C F, C V, C G; implies t € F;, i.e., we have K C |J,.; Fi.
Finally, for 7 € I,

si € Uy, CF,, CV;, CGyforall kel with s; € Gy

together with s; € G_; yields s; € F;,1 € I.
b) This is an easy consequence of a). O

The following result is an abstract version of a minimax theorem due to
Terkelsen [26]:

Lemma 7 Let (S,K) be a paved space such that K is compact, connected,
and Ng—closed. Let G be a nonvoid family of functions g : S — R with the
properties

(i) {g <A} e C,AeR, and
(i) Vg,he GIk € G:2k> g+ h
Then there exists an 3 € S with sup,cg 9(8) = sup,eg infses g(s).

Proof. For oo > v := sup,¢infscg g(s) we have

S(H):==[{h < a} €K, HeEE(G)

heH

Let F = {f1, fo} € £*G) and H € £(G) such that SHU{f;}) # 0, ¢ €
{1,2}, and S(H) € S({fi}) US({f2}). Since K is connected, we obtain
S(HUF) # 0, which means that S is ['—connected [12] w.r.t. T' = (G, S, a)
with a(g,s) = g¢(s), and assumption (ii) means that ' is ¢p—concave [12]
w.r.t. the arithmetic mean ¢(o,7) = (o + 7). Moreover every g € G is
bounded from below since {g < —n} # 0 Vn € N would imply {g = —o0} #
(). Hence, the assumptions of [12];Theorem 1 are satisfied, and we obtain
infyes maxyepn h(s) < v for every finite H C G. Therefore, the system R of
sets {g < B}, g € G, BE€R, B>, has the finite intersection property. By
compactness of K there exists an § € (e B =[,cclg < 7} O



Lemma 8 Let (S, P) be a paved space, and let F be a linear space of functions
f:S — R such that {f < o} € P" for all f € F, a € R. Then for
Y,Z € 25\ {0} with compact connected traces PT NY and PT N Z the
following are equivalent:

(a) Y(y,2) €Y x Z 3f € F: f(y) # f(2).
(b) 3f € F:min,ez f(2) > maxyey f(y).

Proof. (a) = (b): Observe that {f < max[inf,es f(2) + &, —n|} N Z €
(PTNZ)\{0},n € N, implies {f = inf,c f(2)} N Z # 0, i.e., min,cz f(2)
and max,cz f(z) exist for f € F.

We now fix a z € Z and set gy.(y) = f(2) — f(y),y € Y, f € F. Then
(a) implies sup;cg g5 .(y) > 0 for all y € Y. From Lemma 7, applied to
(Y,PTNY) and G = {gy,, : f € F}, we obtain sup ¢ mingey gy,.(y) > 0.
A second application of Lemma 7 to the functions hy, f € F, with hs(z) =
f(z) —maxyey f(y), 2z € Z, yields

ilél;[gggf(@ max f(y)] Sup mig 7(2)

minsup h¢(z) = minsup min > 0.
2€Z fEIF) f( ) 2€Z fEIF) yey gf’z(y)

(b) = (a) is obvious. O

Let (S,P) be a paved space and F a family of real-valued functions on S.
Then we say that F separates P pointwise iff

VA,Be P\{0},ANB=0, Vac A,be B3f €F: f(a)# f(b)

and F is point separatingiff F separates 2° pointwise, i.e., V{s,t} € £2(S) 3f €
F: f(s)# f(2).

Theorem 2 Let (S, P) be a paved space with compact and connected P, and
let F be a linear space of real-valued functions on S separating P pointwise,
such that {f < a} € P for all f € F, a € R. Let K denote the paving
of all sets {f = a}, f € F, a € R, and let L be the paving of all sets
< f<a}, feEF B <a Then K and L both separate P, and P is
finitary connected for P

Proof. 1. We first show that K and £ separate P. Let A, B € P\ {0} with
AN B = (. Then by Lemma 8 there exists an f € F and o, € R with
fla) > a > B> f(b) foralla € A;b € B. Let P € P with P D A and
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PNB#0.

For K={f=a} wehave ANK=BNK=0. From C:={f>a}NPD
A#0, D={f<a}nPD>PNB#0, {C,D}CP,and CUD = P it
follows that K NP = C N D # (), since P is connected.

For L={f < f <a}wehave ANL=BNL=0. Here PC S={f <a}U
{f > B} together with {f > B}NPD>A#0and {f <a}NPDOBNP#(]
implies PNL =PN{f <a}n{f> B} +# 0 since, by Remark 1 b) and ¢),
P is connected for the paving (P")¢ which contains the sets {f < a} and
{f> 5}

2. Since P is Ny—closed, we have K C PT. By Corollary 2 together with
1. it follows that P is finitary connected for P'. O

2 Segments and hulls

A segment space is a pair (S,(-,-)) where S is a nonvoid set and
(-,-): 8 x S — 2% is a set—valued map with (s,t) D {s,t} for all 5, € S.

(-,+) is called a segment function for S. A subset T' C S is convex iff
{s,t} CT = (s,t) CT.

Examples of segment spaces can be found in abundance in the books of
Coppel [3] and van de Vel [28].

A paved segment space is is a triplet (S, P, (-,-)) where (S, P) is a paved
space and (-,-) is a segment function for S. An interval is a segment (s, )
that is connected (for P). An interval space is a paved segment space where
every segment is an interval.

Every segment space (S, (-,-)) gives rise to a hull operator (-) : 25 — 25
according to

(D):=(Y{cec:C>D}
where C denotes the paving of all convex subsets of S.
For a paving K in S we set (K) := {(K), K € K}. Especially, (£(95)) is

the paving of all polytopes in S. Obviously, C is an alignment and therefore
(25)y C C.

The standard example is the following.

Example 4 In the following, every vector space S will be endowed with the
standard segment function

[5,t] :={ s+ (1=ANt:0< A< 1}, s,t,€8
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Here a subset 7" is convex in the segment space (S, [+, -]) iff it is convex in the
ordinary sense. The induced hull operation yields [D], the convex hull of D,
and for A = {t1,...,t,} € E(S) we have [A] = {d " Nt; : A > 0,1 <i <
n, Z?:l Ai =1}

If S is a topological vector space, and if P is the paving of all open (closed)
subsets of S, then (S, P, [-,-]) is an interval space.

Lemma 9 In an interval space (S, P, (-,-)) the following holds.
a) Bvery set P+Q = U,epyeo(®:y), P QE 25\{0}, is connected for P.
b) Every convex subset is connected for P.

¢) Let the paving KC be screened with P, and let every K € K be convex.
Then PP separates K.

Proof. a) Px(Q) is the upward filtrating union of the sets AxB, A € £(P), B €
£(Q). Hence, by Lemma 1 (iii), it is sufficient to show that every set
AxB, A, B € £(S), is connected. Every set {2} x B =, cp(2,v), B € £(95),
is connected by Lemma 1 (iv), since z € (,c5(2,y). Suppose that A * B
is connected for some pair A,B € £(S). Then for z € S\ A we have
(AU {z}) * B = (A x B) U ({2} x B). Again this set is connected, since
(AxB)N ({z} * B) D B # (). The assertion follows by induction.

b) If P is convex, then P = P x P is connected according to a).

¢) By b), K is connected for P, and with Lemma 4 the assertion follows. O

Example 5 Every paved space (S, P) gives rise to an intrinsic segment func-
tion

(s,t)p := ﬂ{C’E’P:CD {s,t}},s,t € S with ﬂ@zS.

Here every P € P is convex, and the implication (a) = (b) holds for the
conditions

(a) (S,P,{--)p) is an interval space.
(b) P is connected.

If P is Ny—closed and if Vs,t € S 3P € P : {s,t} C P, then the segments
are convex, and (a) and (b) are equivalent.

Proof. (a) = (b): Let {P, P, P,} C P with P C P,UP;,andlet x € PUP,
and y € PUP,. Then (z,y)p C P C P, U P,. But (z,y)p is connected for
P, and we obtain () # (z,y)pNPLN P, C PN P NP,

(b) = (a): This follows from (s,t)p € P. O
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Lemma 10 Let (S, P, L) be a bipaved space and {-,-) a segment function for
S such that every set in P is convex. Suppose that

(7) for all A,B € P\ {0} with AN B =0 there exists an L € L such that
ANL=BNL=0and Yye B3z € A: (z,y)NL #0.

Then L separates P.

Proof. For A,B € P\ {0} with AN B = () choose L € L according to
(7). Let P € P with P D A and PN B # (. Choose y € PN B arbi-
trarily and take z € A such that (z,y) "L # 0. Then {z,y} C P implies
0 # (x,y)NL C PN L since P is convex. O

Example 6 Let (S, P, (-,-)) be a paved segment space and F a family of real—
valued functions on S such that every image f((s,t)),s,t € S, is convex, and
for all A,B € P\ {0} with AN B = () there exists an f € Fand a A € R
such that

fla) >X> f(b) Vae A,be B
Then relation (7) holds for the paving £ of sets {f = A}, A € R.

Theorem 3 Let S be a nonvoid set endowed with three pavings P, K, and L
and a segment function (-,-). Suppose that

(i) KNLcKu{d},
(i1) every set in ICT1P is convezx, and
(1ii) condition (7) with P replaced by K NP is satisfied.

Then K is finitary connected for P iff it is connected for P.

Proof. From Lemma 10 it follows that £ separates C 1 P. Now apply The-
orem 1 with M =7P. O

Corollary 3 Let (S, P, (-,-)) be a paved segment space such that every P € P
is convex, and relation (7) holds with £ = P". Then P is finitary connected
for PT. If moreover P is upward filtrating, then also P is finitary connected

for P.
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Proof. By Lemma 10, P separates P, and Corollary 2 implies that P is
finitary connected for PT. Now let P be upward filtrating. Then it follows
from Lemma 2 a) that P is connected for P, and from Theorem 3, applied
to K = L ="PT, it follows that PT is finitary connected for P. O

Remark 3 Let (S,P,{-,-)) be a paved segment space such that every P € P
s convex. Then for n € N the follouning are equivalent.

(a) The paving C of all convez subsets of S is n—ary connected for P.

(b) (E"TL(S)) is n—ary connected for P.

Proof. Apply Lemma 5 with k =n, K =C and £ = (£""'(9)). O

Theorem 4 Let (S, P,(-,:)) be a paved segment space with Ng—closed P.
Let B denote the paving of all subsets of S which are contained in some
polytope, and let C be the paving of all conver subsets of S. Suppose that
CNP separates BNCNP, and (E(S)) C P. Then C is finitary connected for
cCNP.

Proof. Let Q@ := BNCNP. Then Q' (D CNP) separates Q. By Corollary 2,
the paving of polytopes (£(S)) (C Q) is finitary connected for CNP and, by
Remark 3, C is finitary connected for CNP. O

3 Helly and Klee type intersection theorems

Let n € N. A paved space (S,P) will be called a K,—space (resp. an
H,—space) and P is a K,—paving (resp. an H,—paving) iff for all
{P,...,P,} C P the relations

(8) Njes Pr€ P\ {0} for all nonvoid proper subsets J of {0,...,n}

9) Ui, P € P, and
(10) My P =0

(resp. (8) and (10)) cannot hold simultaneously, and P is a Klee paving [13]
iff it is a K,,—paving for every n € N.
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Remark 4 For a paving P in S and for n € N the implications (a) = (b)
= (c¢) hold for the following conditions.

(a) P is n—ary connected.
(b) P is a K,—paving.
(c) P is n—ary connected for PT.

In particular, every finitary connected paving is a Klee paving.
If P is Ng—closed, then the three conditions are equivalent.

Lemma 11 Let (S,P) be a paved space, and let n € N. Then we have
(a) <= (b) = (c) = (d) for the properties

(a) P is an H,—paving.
(b) For all {Py,..., Py} C P with m > n the relations
(i) Njes Pi # 0 for all subsets J € E™({0,...,m}),
(it) Njes Pi € P for all nonwvoid proper subsets J of {0,...,m}, and
fii) (o P =0
cannot hold simultaneously.
(c) PT C P(m,n) for all m > n.
(d) S e€P(n+1,n).

In case {0, S} C P the four conditions are equivalent.

Proof. (a) = (b): Suppose that {P,...,P,} C P with m > n sat-
isfies conditions (i), (ii), and (iii). Then without loss of generality there
exists an [ € {n,...,m} with (\_,B = 0 and Q; := ﬂﬁzo,#jpi # 0
for all j € {0,...,1}. Set P/ := PN (\_,, 1 P;i € {0,...,n}. Then
we have (., P/ = @Q; # 0,5 € {0,...,n}, ie., condition (8) holds for
{P},...,P'}(C P). Now N._y B = Ny P} # 0 leads to a contradiction.

(b) = (c): Let T € P" and {P,,...,P,} C P such that conditions (1),
(2), and (3) are satisfied with n and & replaced by m and n. Then relations
(i) and (ii) hold with P; replaced by P, N T(e P), and from (b) we infer
Nico ZNT # 0.

(c) = (d) and (b) = (a) are obvious.

(d) = (a): Let (d) be satisfied, and let {(), S} C P. Suppose that for
{Py,...,P,} C P relations (8) and (10) are satisfied. Then S = [JI*] P, with
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Py =8, SN, Py # O forall J € €*({0,...,n+1}) and (., P; € P for
all J € J™t! together with S € P(n + 1,n) implies (), P = ﬂ?jol P, # 0,
a contradiction. O

Remark 5 Let P be a H,—paving in S. Then P is a K,—paving, and
PU{D,S} is an H,—paving for every | > n.

Example 7 (Discrete Helly-Klee Theorem, cf. [13, 14]) Let S be a finite set
with m elements. Then for n € N the following are equivalent:

(a) n>m.

(b) 25 is n—ary connected.

(c)
)

(d) 2% is an H,—paving.

2% is a K,—paving.

Proof. (a) = (d): Let {P,...,P,} C 2° and z; € P_;,i € {0,...,m}.
Then we have z; = x; for some pair 7 # j, and we arrive at z; € P_;NP_; =
N, P- With Remark 5 the assertion follows.

(d) = (¢) <= (b) follows from Remarks 5 and 4.

(b) = (a): Suppose that n < m. Then for A = {zg,...,z,} € E"T(S)
we have A = (J_o(A\ {zi}), zi € Mj_o,.(A\{z;}), i € {0,...,n} and
Nieo(A\ {zi}) =0, i.e., A is not n—ary connected for 25. O

Lemma 12 Let (S,P,K) be a separated bipaved space, and let n € N.
a) If every trace PNK, K € K, is an H,—paving, then P is an H, 1—paving.
b) If every trace PNK, K € K, is a K,,—paving, then P is a K, 1—paving.

Proof. a) Without loss of generality we may assume {(), S} C P. By Lemma
11 we have K € (PN K)(n + 1,n), K € K, which implies £ C P(n + 1,n).
From Lemma 3, applied to "= S, we obtain S € P(n + 2,n + 1), and with
Lemma 11 the assertion follows.

b) This follows from [13];Proposition 1. O

Theorem 5 Let (S, P) be a paved space with compact and connected P, and
let {fi,..., fn} be a finite family of real-valued functions on S separating P
pointwise such that {f < a} € P for all o € R and all f in the linear hull
of {fi,---, fa}- Then P is an H, 1—paving.
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Proof. We proceed by induction. The assertion is true for n = 1:

By Theorem 2, K = {{f1 = a} : « € R} separates P. On the other
hand, every trace PN K, K € K, is easily seen to be an H;—paving, since f;
separates P pointwise. Hence, by Lemma 12, P is an Hy—paving.

Suppose that the theorem is true for n = k. Let {fi,..., f, fxs1} satisfy
the assumptions of the theorem. Let K = {f = a} with f = Zf;l ~ifi # 0.
Without loss of generality we may assume 7,,; # 0, which implies that
{fi,..., fr, f} separates P pointwise. Since K € P', the set of restrictions
{filK, ..., fe| K} separates P N K pointwise. Therefore, all assumptions of
the theorem are satisfied for (K, PNK) and {f1|K, ..., fx| K}, and it follows
that the trace PN K is an Hy,1—paving. Now from Theorem 2 together with
Lemma 12 it follows that P is an Hy;o—paving. O

Lemma 13 Let (S,P, L) be a bipaved space such that the following holds.
(i) L is a Ny—closed H,—paving, and

(ii) for every A € E™(S) and every P € P with P D A there exists an
LeLl withACLCP.

Then P is an H,-paving.

Proof. Let {F,...,P,} C P satisfy relation (8). Choose s; € P_;. In
case A 1= {sp,...,8,} ¢ E"T(S) there exists a pair s; = s;,i # 7, and
we have ()_, P, = P_; N P_; # (. Otherwise there exist sets L; € £ with
A\{si} C L; C P;, and with (i) we arrive at (_y P, D Lo L1 # 0. O

The following is classical.

Example 8 (Helly’s Theorem [9]). Let Ci,...,C,, n > d + 1, be con-
vex subsets of the Euclidean space R? such that (),.;C; # 0 for all J €

E({1,...,n}). Then N, C; # 0.

jeJ

Proof. By Theorem 5, applied to the projections f;(z1,...,%;,...,2q) = i,
1 < d, the paving of all compact convex subsets is an Hy,;—paving. By
Lemma 13, the paving of all convex subsets is an H;,;—paving as well. With
Lemma 11 “(a) = (b)” the assertion follows. O

Remark 6 Ezample 8 can be used to derive Carathéodory’s theorem [6]
which implies [5] that, in R", the conver hull of a compact subset is com-
pact.
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Example 9  a) Every connected, coherent, and Ny—closed paving P is an
Hjy—paving.

b) Every connected Hy—paving P is a Klee paving.

c) Let (S,P) be a paved space and T a nonvoid subset of S such that
P NT is an Hy—paving. Then T is finitary connected for P iff it is
connected for P.

d) A Ng—closed Hy—paving is finitary connected iff it is connected.

e) Let P be a coherent paving such that D = {D € P : D is connected
for P} is Ny—closed. Then D is a finitary connected Hy—paving.

Proof. a) Let {Py, P,,P»} C P such that , N P; # 0, i # j. Then
(Poﬂpl)U(PoﬂPQ):P()ﬂ(PlLJPQ) EplmphespoﬂplﬂPg;é(Z)

b) By Remark 4, P is a K;—paving, and by Remark 5, P is a H,—paving,
and therefore a K,—paving for all n > 2.

c¢) Let T be connected for P, let {F,,...,P,} CP, TC U P, TNP_; #
pVie{0,....,n},and Py € P, Je J"

In case n = 1 we have T N Py N P, # () since T is connected for P. In case
n>2wehave TNP,NP,DTNP_; #0fori¢ {k,I} which, by Lemma 11,
implies (i, s NT # 0 since PN T is an Ho—paving.

d) This follows from c).

e) From Lemma 1 it follows that D is coherent, and with a) and d) the as-
sertion follows. O

Theorem 6 Let (S,P,(-,-)) be a paved segment space, C the paving of all
conver subsets of S and S the paving of all segments in S. Suppose that

(i) S C P,

(i) every trace SN P, P € P, is compact,
(iii) P is a Ny—closed Hy—paving, and
(iv) EY(S) is screened with P NC.

Then P 1is screened with C NP, and the following are equivalent.

(a) P is connected.

(b) P is connected for CNP.
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(c) P is separated.
(d) CN'P separates P.

(e) P is finitary connected.

Proof. 1. We adopt an argument from [27], p. 21:

Let A, B € P\ {0} with ANB = (), and let z € A. By (i), (ii), and
(iii) there exists a point y € B N [),c5(2,b), since the sets of the paving
{{z,b) : b € B} U {B} intersect pairwise. Similarly there exists a point
re AN ﬂa€A<y7 a)'

Choose convex sets C, D € P N C screening {z} and {y}. Assume that
there exists an 2’ € DN A. Then z € (y,z') C D leads to a contradiction.
Hence, A C C'\ D. Similarly, y' € C N B implies y € (z,y’) C C, another
contradiction, and we obtain B C D\ C.

2. (a) = (b) and (d) = (c) are obvious, (a) <= (c¢) < (e) follows
from Example 1, and (b) = (d) follows from Lemma 4. O

Corollary 4 Let (S,P,(-,-)) be an interval space such that the assumptions
(i) — (iv) of Theorem 6 are satisfied. Assume moreover that every set in P
1s convex. Then P is finitary connected.

Proof. By Theorem 6 the paving P is screened with C NP = P, and by
Lemma 9 ¢) P = P NP separates P. With Theorem 6 “(c) = (e)” the
assertion follows. O

Example 10 Let (S, (-,-)) be a segment space. Then we have (a) = (b)
for the following conditions.

(a) (S, {-,-)) is modular, i.e., (x,y) N {y,z) N {z,z) # O for all {z,y,z2} €
E3(S).

(b) The paving C of all convex subsets of S is an Hy—paving.

If every segment is convex, then (a) and (b) are equivalent.
A lattice L is modular iff the segment space (L, (-,-)) with

(s,ty ={z € L:(shNz)V({tAzx)=x=(sVx)A(tVx)}, s,t€L

is modular ([2]; Proposition 1.6). An abundance of further examples of mod-
ular segment spaces can be found in [2], [28], and [29].
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4 Topological connectedness

If S is a topological space, then we denote by F(S), G(S), K(S) and C(S)
the pavings of all closed, open, compact, and connected subsets, respectively.
Here the empty set is considered to be connected. Of course, S is normal
(i.e., Ty but not neccessarily 77) iff F(S) is normal, the paving IC(S)NF(S) is
always compact, and F(S) is compact iff S is compact. A subset is connected
iff it is (1-ary) connected for F(S) or for G(S), respectively. In particular,
the pavings C(S) N F(S) and C(S) N G(S) are connected, but C(S) need not
be connected. If S is normal, then by Lemma 4 the paving F(S) separates
F(S)NC(S).

Example 11 For a topological space S the following are equivalent.

(a) F(S5) CC(9).

(b) F(S) is connected.

(c) F(S) is finitary connected.
(d) F(S) is separated.

(e) F(S)is an H,—paving.

(f) F(S) is a Klee paving.

(g) F(5)\ {0} is Ny—closed.

A topological space with these properties is called ultraconnected [25].
A similar result with F(S) replaced by G(S) holds for hyperconnected [25]
topological spaces.

Proof. (a) <= (b) and (e) <= (g) are obvious, (b) <= (c) < (d)

<= (g) follows from Example 2, and (¢) <= (f) follows from Remark 4. O

Example 12 Let S be a topological space. Then every Ny—closed normal
paving P in S with P C C(S)NF(S) or P C C(S)NG(S) is finitary connected.
If moreover P contains £(S), then PC is also finitary connected for P.

Proof. This follows from Examples 1 and 3 a). O
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Example 13 Let S be a regular topological space (i.e., a closed subset and
a disjoint singleton possess disjoint neighborhoods), and let K be a compact
subset of S. If K is n—ary connected for F(S), then K is n—ary connected

for G(5).

Proof. Apply Lemma 6 b) with F =P = F(S) and H = G = G(S). Observe
that regularity of S is equivalent with condition (5). O

Since, for n > 1, n—ary connectedness for F(S) is quite a strong condi-
tion, we present a more sophisticated consequence of Lemma 6.

Theorem 7 Let S be a reqular topological space endowed with a segment
function {-,-), and let C denote the paving of all convex subsets of S. Suppose
that

(i) CNF(S) separates CNF(S)NK(S), and
(it) (E£(S)) C F(S)NK(S).

Then C is finitary connected for C N F(S).
If moreover

(1i7) for all F € F(S)NK(S) and G € CNG(S) with F C G there ezists a
CeCnNF(S) with FC C CQG,

then C is also finitary connected for C N G(S).

Proof. We set F = F(S),G = G(S),H = CNG(S), and P = C N F(S).
By Theorem 4, conditions (i) and (ii) imply that C (and therefore (£(S))) is
finitary connected for P.

Since (iii) implies condition (6) for every K € F(S) N K(S)(D (£(S))) ,
(€£(S)) is finitary connected for H according to Lemma 6 b). From Remark
3 the second assertion follows. O

In the following all topological vector spaces are assumed to be Hausdorff.

Theorem 8 Let S be a topological vector space. Then the paving C of all
conver subsets of S is finitary connected for C N F(S) and for CNG(S).

Proof. According to Remark 3 it is sufficient to show that every polytope is
finitary connected for C N F(S) and for C N G(S). Therefore we may assume
S to be finite dimensional. By Theorem 2 (or by the classical separation
theorem) C N F(S) separates C N K(S). Together with Remark 6 it follows
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that the assumptions (i), (ii), and (iii) of Theorem 7 are satisfied. O

The ”closed version“ of the following example is due to Kolodziejczyk
[17]:

Example 14 Let Cy,. .., C, be closed (open) convex subsets of a topological
vector space S such that there exist points s; € C_;, i € {0,...,n}, with
K c UL, C; for the convex hull K of {so,...,s,}. Then K NN, C; # 0.

Proof. This follows from Theorem 8. O

The “closed version” of the following example is implicitely contained in
[24]; 3.3, and the open version generalizes [1|; Theorem 3.

Example 15 Let S be a topological vector space, T" a convex subset of S
and Cy, ..., C, closed (open) convex subsets of S such that 7' C |J!_, C; and
TNC_;# O for every i € {0,...,n}. Then TN, C; # 0.

Proof. The assumption of Example 14 is satisfied for arbitrary s; € TNC_;. O

As a special case of Example 14 or 15 we obtain Klee’s intersection the-
orem:

Example 16 (Klee [15], [16]). Let Cy, ..., C, be closed (open) convex sub-
sets of a topological vector space S such that (J;_,C; is convex and
C_; # 0 for every i € {0,...,n}. Then N, C; # 0.

Example 17 Let S! be the unit circle in R?. For s,¢ € S! with s # —¢ let
(s,t) denote the minor arc joining s and ¢, and let (s, —s) = S, s € S'. Then
(S, F(SY), (-,-)) and (S, G(SY), (-, -)) are interval spaces. Let C be the paving
of all convex subsets of S!. By Lemma 10, K := {{s, —s} : s € S'} separates
CNF(SY) and CNG(S'). Obviously, every trace (CNF(S))NK, K € K, is an
H,—paving, and therefore, by Lemma 12, C N F(S') is an Hz—paving. Since
(E(SY)) Cc CnF(SY), it follows from Lemma 13 that C is an Hz—paving.

Obviously, there exist closed (or open) convex sets Cy, C, Cy intersecting
pairwise with Co,NC;, N Cy = 0 and Cy U C, UC, = S'. Hence, S? is neither
2—ary connected for C N F(S?) nor for C N G(S'). Together with Remarks 4
and 5 we obtain for n € N:

C is an H,—paving <= C\ {S!'} is an H,—paving <=

C is a K,—paving <= C is n—ary connected <= n > 3.
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From Theorem 8 it follows easily that C \ {S!} is finitary connected for the
pavings CNF(S') and CNG(S?'). In particular, the pavings (CNF(SY))\ {S*}
and (CNG(SY) \ {S'} are finitary connected.

Example 18 Let Z be the set of integers endowed with the segments (s, t) :=
{z € Z : min{s,t} < z < max{s,t}}, s,t € Z, and let C be the paving of
all convex subsets of Z. Obviously, (Z, (-,-)) is modular, and therefore, by
Example 10, C is an Hy—paving. The set Z can be endowed with a topol-
ogy such that C = C(S) [19]. As a neigborhood base of open sets one can take

a = {n} : ifniseven
"1 {n-1,n,n+1} : ifnisodd

A second topology is obtained by interchanging the words “even” and “odd”.
From Example 9 ¢) it follows that C is finitary connected for C N F(S) and
for CNG(S).

A tree-like space is a connected Hausdorff space S in which every two
points x and y can be separated by a third point z, i.e., x and y belong to
different connected components of S\ {z}.

Example 19 For a locally connected tree-like space S the following holds.

(a) C(S) is Ng—closed [30] and therefore an alignment according to Lemma
1 (iii). By Example 9 a), C(S) N F(S) is an Hy—paving.

(b) ([30], [27];2.10) For {z,y} € £2(S) the segment
[z,y] := {z,y} U{z € S : z separates = from y}

is compact, and it is the smallest connected set containing x and y. In
particular, (S,F(S),[-,-]) and (S,G(S),[-,-]) are interval spaces, and
[-,-] = (-, -)c(s) is the intrinsic segment function in (5, C(S5)).

(c) By Lemma 9 b) together with (b) a subset is convex iff it is connected,
and the polytopes are of the form [A] =, 4[z,y], A € £(S). In
particular, the polytopes are compact.

(d) By (a), (c), and Lemma 13, C(S) is an Hy—paving, and by Example 10
the segment space (S, [-,-]) is modular. With Example 9 d) it follows
that C(S) N F(S) and C(S) N G(S) are finitary connected. Together
with (b), (¢), and Remark 3 it follows that C(S) is finitary connected

for C(S) N F(S).
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(e) Tt is easy to see ([27]; p.25) that £1(S) is screened with C(S) N F(S).
Hence, by Theorem 6 together with (a) and (b), C(S)NF(S) is normal
and separated.

Every metric space (S, d) can be endowed with the geodesic segments
(z,y) g ={s € S:d(z,s) +d(s,y) =d(z,y)}, z,y €S

Here the convex subsets will be called d—convez, and a function f : S — R
is d—affine provided that

f(s0)d(s1, 82) = f(s1)d(s0, 82) + f(s2)d(s0, 51)

for all s, s1, 82 € S with sg € (51, S2)4-

Let C; denote the paving of all d—convex subsets of S and let A}, denote
the linear space of all continuous d-affine functions f: S — R

A metric space (S,d) is called Menger-convez iff (z,y), \ {z,y} # 0 for
all z,y € S with x # y. Every nonvoid convex subset of a normed linear
space is Menger—convex w.r.t. the induced metric. In [8] various examples
of Menger—convex metric spaces in hyperbolic geometry can be found. A
classical example is the Poincaré disc.

Example 20 Let (S, d) be a complete Menger—convex metric space. Then,
by a theorem of Menger [21, 7], for every pair s,t € S there exists an isometry
¢ :[0,d(s,t)] = S with ¢(0) = s and ¢(d(s,t)) = t. Now ¢([0,d(s,t)]) C
(s,t)q implies Cg; C C(S). In particular, the paving Cqy N K(S) is (compact
and) connected.
For f € A} and @ € R we have {f < a} € C4NF(S) and {f < a} € C4NG(S).
If A} separates points, then it follows with Theorem 2 that C; N F(S) and
CaNG(S) both separate Cy N K(S), and that C4 N K(S) is finitary connected
for C4 N F(S).

The segment function (-, -)4 is modular iff every triple of pairwise inter-
secting closed balls has a common point ([28]; p.134, [29]; p.32). In this case,
by Example 10, C; is an Hy—paving.

A metric space (S, d) is hyperconvez iff any family {B(z;,7;)} of closed
balls in S satisfying d(z;, ;) < r; + r; has a nonvoid intersection.

The Nachbin—Kelley-Goodner—Hasumi theorem ([18]; p. 92) states that
a Banach space is hyperconvex iff it is linearly isomorphic to some C(f),
where () is a stonian space. In particular, [, is hyperconvex.

Example 21 Let (S, d) be a hyperconvex metric space, and let .4 denote the
paving of arbitrary intersections of closed balls (the paving of ’admissible’
subsets of S). Then the following holds.
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(a) Obviously, A is a compact N,—closed Ho—paving. In particular, the
intrinsic segment function (-, -) 4 is modular.

(b) (S,d) is complete and Menger—convex, and every subspace (T,d),T €
A, is hyperconvex [11], and therefore A C C; by Example 20.

(c) By (a), (b), and by Examples 5 and 9 d), the paving A is finitary
connected, and (S, 4, (-,-)4) is an interval space.

5 Concluding remark

Our results on finitary connectedness and separation can be applied in many
fields of pure and applied mathematics. Among others, they can be used
to obtain intersection theorems, KKM-type theorems, coincidence theorems,
minimax theorems, existence theorems for an Euler characteristic, etc. These
topics will be treated elsewhere.
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