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Abstract. Let f : G → H be a homomorphism between smooth Lie groups modelled
on Mackey complete, locally convex real topological vector spaces. We show that if f is
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Introduction

While specific examples of infinite-dimensional Lie groups have been studied extensively
and are well understood, in the general theory of infinite-dimensional Lie groups even very
fundamental questions are still open. Various important unsolved problems were recorded
in the preprint [17] by John Milnor in 1982; most of them have resisted all attempts at a
solution so far.1 In the present article, we give a partial answer to Milnor’s third problem:
“ Is a continuous homomorphism between Lie groups necessarily smooth ? ” As our main
result, we show that every Hölder continuous homomorphism is smooth. More precisely:

Main Theorem. Let f : G → H be a homomorphism between Lie groups modelled on
real locally convex spaces. If f is Hölder continuous at 1 and the modelling space of H is
Mackey complete, then f is smooth.

In particular, the Main Theorem applies to Lipschitz continuous homomorphisms. Milnor
only considered Lie groups modelled on complete locally convex spaces. Mackey complete-
ness is a very natural and useful weakened completeness condition [14].

A simple special case. The basic idea underlying our approach is most easily explained
for one-parameter groups. It is helpful to keep this simplest special case in mind as a
guideline also when dealing with the general case (which is much harder). Thus, consider
a continuous homomorphism ξ : R → G from R to a Lie group G modelled on a locally
convex space E. Using a chart, we identify an open identity neighbourhood of G with an

1Milnor’s second problem (does every closed subalgebra correspond to an immersed Lie subgroup ?)
had in fact already been solved earlier by Omori [19] (in the negative). The other three main problems
remain open. Various smaller problems mentioned in Milnor’s preprint could be settled: A Lie group
whose exponential map is a local diffeomorphism at 0 need not be of Campbell-Hausdorff type [20, §3.4.1].
A real or complex analytic Lie group need not be of Campbell-Hausdorff type [7, Rem. 4.7 (b)]. The com-
plexification of an enlargible real Banach-Lie algebra need not be enlargible [10, Ex.VI.4]. A connected Lie
group modelled on a locally convex space is abelian if and only if its Lie algebra is abelian [5, Prop. 22.15].
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open 0-neighbourhood in E. Making use of the first order Taylor expansion

x2 = 2x+R(x)

of the squaring map around the identity 0, for small t ∈ R we obtain ξ(t) = ξ(1
2
t)2 =

2ξ(1
2
t) +R(ξ(1

2
t)) and thus ξ(1

2
t) = 1

2
ξ(t)− 1

2
R(ξ(1

2
t)). Applying this formula twice yields

ξ(1
4
t) = 1

2
ξ(1

2
t)− 1

2
R(ξ(1

4
t)) = 1

4
ξ(t)− 1

4
R(ξ(1

2
t))− 1

2
R(ξ(1

4
t)) .

Similarly, ξ(2−nt) = 2−nξ(t) −
∑n

k=1 2k−n−1R(ξ(2−kt)) for all n ∈ N, by induction. After
re-parametrizing ξ, we may assume that t = 1 can be chosen here. This gives

ξ(2−n)

2−n
= ξ(1)−

n∑
k=1

2k−1R(ξ(2−k)) for all n ∈ N. (1)

Now assume that ξ is Hölder continuous at 0, with Hölder exponent α ∈ ]0, 1]. Then ξ(2−k)
is of order O(2−kα) (as k → ∞). A first order Taylor remainder being at most quadratic
in the order of its argument, we see that R(ξ(2−k)) is of order O(2−2kα). Therefore the
summands 2k−1R(ξ(2−k)) in (1) are of order O(2(1−2α)k). If α ∈ ]1

2
, 1], the preceding

estimates show that n 7→
∑n

k=1 2k−1R(ξ(2−k)) is a Mackey-Cauchy sequence in E and

hence convergent if E is Mackey complete. Thus limn→∞
ξ(2−n)
2−n exists in E, and apparently

this limit gives us a candidate for ξ′(0). Of course, it remains to show that ξ′(0) exists, and
that existence of ξ′(0) entails smoothness of ξ. Also, it remains to remove the requirement
that α > 1

2
(but all of this can be done).

Organization of the paper. After a brief description of the setting of differential calculus
used in the paper, in Section 1 we discuss various properties a mapping between open
subsets of locally convex spaces (or manifolds) can have at a given point: Hölder continuity
at x, total differentiability at x, and feeble differentiability (an auxiliary notion which we
introduce for internal use). In Section 2, we show that C1-homomorphisms between Lie
groups modelled on real locally convex spaces are smooth (Lemma 2.1), and we show that
a homomorphism is C1 if it is totally (or merely feebly) differentiable at 1 (Lemma 2.2).
Section 3 is devoted to the proof of the Main Theorem (Theorem 3.2). In view of the
reduction steps already performed, the crucial point will be to deduce total differentiability
at 1 from Hölder continuity at 1. Although our main result concerns real Lie groups, some
of our considerations are not restricted to the real case and have been formulated more
generally for complete valued fields. This enables us to show in Section 4 that Hölder
continuous homomorphisms between p-adic Lie groups are C1 (Theorem 4.1). Proofs for
various auxiliary results, which are best taken on faith on a first reading, are compiled in
two appendices.

Analogues in convenient differential calculus. In the subsequent paper [9], variants
of the ideas presented here are used to show that every Lip0-homomorphism between Lie
groups in the sense of convenient differential calculus (as in [14]) is smooth in the convenient
sense. More generally, this conclusion holds for “conveniently Hölder” homomorphisms [9].
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1 Basic definitions and facts

We compile and develop basic material. The proofs are recorded in Appendix A.

Differential calculus in topological vector spaces

We are working in the framework of differential calculus known as Keller’s C∞
c -theory [13]

(going back to Michal and Bastiani), as used in [4], [11], [16], [17], [18] and generalized to
a differential calculus over topological fields in [2]. We recall some of the basic ideas.

1.1 Let E be a real topological vector space, F be a real locally convex space, and U ⊆ E
be open. A map f : U → F is called C1 if it is continuous, the directional derivative
df(x, y) := d

dt

∣∣
t=0
f(x+ ty) exists for all x ∈ U and y ∈ E, and the mapping df : U×E → F

so obtained is continuous. Inductively, we say that f is Ck+1 (for k ≥ 1) if f is C1 and
df : U × E → F is Ck. The map f is called C∞ or smooth if it is Ck for all k ∈ N.

1.2 If f : E ⊇ U → F as before is C1, define f [1] : U [1] → F on the open set U [1] :=
{(x, y, t) ∈ U × E × R : x + ty ∈ U} ⊆ E × E × R via f [1](x, y, t) = 1

t
(f(x + ty) − f(x))

if t 6= 0, f [1](x, y, 0) := df(x, y). Then f [1] is continuous, because for small t we have

the integral representation f [1](x, y, t) =
∫ 1

0
df(x+ sty, y) ds, by the Mean Value Theorem.

Furthermore, by definition of f [1],

f [1](x, y, t) =
1

t
(f(x+ ty)− f(x)) for all (x, y, t) ∈ U [1] such that t 6= 0. (2)

If, conversely, f : U → F is continuous and (2) holds for a continuous map f [1] : U [1] → F ,
then f is C1, with df(x, y) = limt→0 t

−1(f(x+ty)−f(x)) = limt→0 f
[1](x, y, t) = f [1](x, y, 0).

The preceding characterization of C1-maps is a useful tool for various purposes. Beyond
the real case, the characterizing property just described can be used to define C1-maps [2]:

1.3 Let E and F be (Hausdorff) topological vector spaces over a topological field K (which
we always assume Hausdorff and non-discrete), and U ⊆ E be open. Let U [1] := {(x, y, t) ∈
U ×E×K : x+ ty ∈ U}. A map f : U → F is called C1 if it is continuous and there exists
a (necessarily unique) continuous map f [1] : U [1] → F such that (2) holds. Inductively, f is
called Ck+1 for k ∈ N if f is C1 and f [1] : U [1] → F is Ck. The map f is C∞ or smooth if
it is Ck for all k ∈ N. We write Ck

K for Ck if we wish to emphasize the ground field.

By [2, Prop. 7.4], the definitions of Ck-maps given in 1.1 and 1.3 are equivalent for maps
into real locally convex spaces. Compositions of Ck-maps being Ck [2, Prop. 4.5], manifolds
and (smooth) Lie groups modelled on topological K-vector spaces can be defined in the
usual way. For further information, see [18] (real case) and [2]. Examples of infinite-
dimensional Lie groups over topological fields can be found in [8].
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1.4 A valued field is a field K, equipped with an absolute value |.| : K → [0,∞[ (see [21]);
we require furthermore that the absolute value be non-trivial (i.e., the corresponding metric
defines a non-discrete topology on K). Every valued field is, in particular, a topological
field. A topological vector space E over a valued field K is called polynormed if its vector
topology arises from a family of continuous seminorms q : E → [0,∞[. Thus polynormed
vector spaces over K ∈ {R,C} are the usual locally convex spaces. We also write ‖.‖q := q,
for better readability. Given x ∈ E and r > 0, we let Bq

r(x) := {y ∈ E : ‖y − x‖q < r} be
the open q-ball of radius r around x.

Our studies hinge on Taylor’s formula [2, Thm. 5.1]:

Proposition 1.5 If k ∈ N and f : E ⊇ U → F is Ck, then there are continuous functions
aj : U × E → F for j = 1, . . . , k and a continuous function Rk : U [1] → F such that

f(x+ ty)− f(x) =
k∑

j=1

tjaj(x, y) + tk Rk(x, y, t) for all (x, y, t) ∈ U [1]

and Rk(x, y, 0) = 0 for all (x, y) ∈ U×E. The functions aj and Rk are uniquely determined,
aj(x, •) is homogeneous of degree j, and j!aj(x, y) = djf(x, y, . . . , y) for all (x, y) ∈ U×E.2

Here djf : U × Ej → F denotes the jth differential of f , defined in terms of iterated
directional derivatives via djf(x, y1, . . . , yj) := (Dy1 · · ·Dyj

f)(x).

Lemma 1.6 Let E and F be polynormed vector spaces over a valued field K and f : U → F
be a C2-map on an open subset U ⊆ E. Let x0 ∈ U , q be a continuous seminorm on F ,
and C > 0. Then there exists a continuous seminorm p on E such that Bp

2(x0) ⊆ U and
‖f(x+ y)− f(x)− df(x, y)‖q = ‖R1(x, y, 1)‖q ≤ C ‖y‖2

p for all x ∈ Bp
1(x0) and y ∈ Bp

1(0).

Hölder continuity at a point

Until 1.15, K denotes a valued field.

Definition 1.7 Let E and F be polynormed K-vector spaces, x ∈ E, U ⊆ E be a neigh-
bourhood of x, f : U → F be a map, and α ∈ ]0, 1]. We say that f is Hölder continuous
of degree (or Hölder exponent) α at x (for short: f is Hα at x) if, for every continuous
seminorm q on F , there exist δ > 0, C > 0 and a continuous seminorm p on E such that
Bp

δ (x) ⊆ U and

‖f(y)− f(x)‖q ≤ C (‖y − x‖p)α for all y ∈ Bp
δ (x). (3)

If f is H1 at x, we also say that f is Lipschitz continuous at x. We say that f is Hölder
continuous at x if f is Hα at x for some α ∈ ]0, 1].

Remark 1.8 Replacing p with max
{
δ−1, C

1
α

}
· p, we can always achieve that C = δ = 1.
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Lemma 1.9 For maps between subsets of polynormed K-vector spaces, we have:

(a) If f is Hα at x then f is continuous at x.

(b) If α ≥ β and f is Hα at x, then f is Hβ at x.

(c) Any C1-map is Lipschitz continuous at each point.

(d) If f is Hα at x and g is Hβ at f(x), then g ◦ f is Hα·β at x.

Definition 1.10 Let f : M → N be a map between C1
K-manifolds modelled on polynormed

K-vector spaces, and α ∈ ]0, 1]. We say that f is Hölder continuous of degree α at x ∈M
(or briefly: F is Hα at x), if f is continuous at x and there are a chart φ : U1 → U of
M around x and a chart ψ : V1 → V of N around f(x), such that φ(f−1(V1) ∩ U1) → V ,
y 7→ ψ(f(φ−1(y))) is Hα at φ(x). (This then holds for any choice of φ and ψ, by La. 1.9).

Notions of differentiability at a point

1.11 (Cf. [15, I, §3]). Let E and F be topological K-vector spaces, x ∈ E, and f : U → F
be a map defined on a neighbourhood U of x in E. The map f is called totally differentiable
at x if there is a (necessarily unique) continuous linear map f ′(x) : E → F such that

h : U − x→ F, h(y) := f(x+ y)− f(x)− f ′(x).y

is tangent to 0 in the sense that, for every 0-neighbourhood W ⊆ F , there is a 0-
neighbourhood V ⊆ E and a function θ : I → K defined on some 0-neighbourhood I ⊆ K
such that I · V ⊆ U − x, θ(t) = o(t) (i.e., θ(0) = 0 and limt→0 θ(t)/t = 0), and

h(tV ) ⊆ θ(t)W for all t ∈ I.

1.12 If E and F are polynormed, then h as before is tangent to 0 if and only if, for every
continuous seminorm q on F , there exists a continuous seminorm p on E such that, for
each ε > 0, there exists δ > 0 such that Bp

δ (0) ⊆ U − x and

‖h(y)‖q ≤ ε‖y‖p for all y ∈ Bp
δ (0).

1.13 The Chain Rule holds: If f : E ⊇ U → F is totally differentiable at x and the map
g : F ⊇ V → H is totally differentiable at f(x) and f(U) ⊆ V , then g ◦ f : U → H is
totally differentiable at x, with (g ◦ f)′(x) = g′(f(x)) ◦ f ′(x).

Lemma 1.14 Let E and F be topological K-vector spaces, U ⊆ E be an open subset, and
f : U → F be a C2-map. Then f is totally differentiable at each x ∈ U , and f ′(x) = df(x, •).

1.15 Given r ∈ N∪{∞}, a map f : M → N between Cr-manifolds modelled on topological
K-vector spaces, and x ∈ M , we call f totally differentiable at x if f is continuous at x
and there exist a chart φ : U1 → U of M around x and a chart ψ : V1 → V of N around
f(x), such that φ(f−1(V1)∩U1) → V , y 7→ ψ(f(φ−1(y))) is totally differentiable at φ(x).2

2If r ≥ 2, then the latter property is independent of the choice of charts, by the Chain Rule (the chart
changes are C2 and hence totally differentiable at each point by Lemma 1.14).
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We find it convenient to work with a certain weaker differentiability property, which even
makes sense over arbitrary topological fields:

1.16 Let E and F be topological vector spaces over a topological field K, U ⊆ E be open,
x ∈ U , and f : U → F a continuous map. Let A := {(y, t) ∈ E × K× : x + ty ∈ U} and

Ũx := A ∪ (E × {0}) ⊆ E × K. We say that f is feebly differentiable at x if there is a
(unique) continuous linear map f ′(x) : E → F making the following map continuous:

f̃x : Ũx → F, (y, t) 7→
{

f(x+ty)−f(x)
t

if t 6= 0
f ′(x).y if t = 0.

Lemma 1.17 Let E and F be topological vector spaces over a topological field K, U ⊆ E
be open, f : U → F be a map, and x ∈ U . If f is C1 or if K is a valued field, f is
continuous on U and totally differentiable at x, then f is feebly differentiable at x.

1.18 The Chain Rule holds for feebly differentiable maps: If f : E ⊇ U → F is feebly
differentiable at x and g : F ⊇ V → H is feebly differentiable at f(x) and f(U) ⊆ V , then
g ◦ f : U → H is feebly differentiable at x, with (g ◦ f)′(x) = g′(f(x)) ◦ f ′(x).

1.19 A map f : M → N between C1-manifolds modelled on topological K-vector spaces is
called feebly differentiable at x ∈M if it is continuous at x and y 7→ ψ(f(φ−1(y))) is feebly
differentiable at φ(x) for charts φ and ψ as in 1.15.

Cf. [1] for a comparative study of various differentiability properties at a point.

2 Homomorphisms between Lie groups

We prove preparatory results concerning differentiability properties of homomorphisms.

Lemma 2.1 Let f : G→ H be a C1
K-homomorphism between Lie groups over K ∈ {R,C},

where H is modelled on a locally convex space. Then f is C∞
K .

Proof. We show that f is Ck for each k ∈ N, by induction. By hypothesis, f is C1. Using
the trivialization τG : G × L(G) → TG, τG(g,X) := T1λg(X) (where λg : G → G, x 7→ gx
denotes left translation by g) and the corresponding trivialization τH : H × L(H) → TH,
the tangent map Tf can be expressed as

Tf = τH ◦ (f × L(f)) ◦ (τG)−1 . (4)

Since τG and τH are C∞-diffeomorphisms and the continuous linear map L(f) is smooth, (4)
shows that if f is Ck, then so is Tf . But then f being a C1-map into a manifold modelled
on a locally convex space with Tf of class Ck, the map f is Ck+1 (cf. [2, Prop. 7.4]). 2
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Lemma 2.2 Let f : G → H be a homomorphism between Lie groups modelled on topo-
logical vector spaces over a topological field K. Assume that f is feebly differentiable at 1
(this is the case if K is a valued field and f is totally differentiable at 1). Then f is C1

K. If
K ∈ {R,C} and the modelling space of H is locally convex, then f is C∞

K .

Proof. We let φ : U1 → U ⊆ L(H) be a chart of H around 1, such that φ(1) = 0. There
exists an open identity neighbourhood V1 ⊆ U1 such that V1V1 ⊆ U1; let V := φ(V1). Then

µ : V × V → U, µ(x, y) := x ∗ y := φ(φ−1(x)φ−1(y))

expresses multiplication on H in local coordinates. Let ψ : P1 → P ⊆ L(G) be a chart of G
such that f(P1) ⊆ U1, 0 ∈ P and ψ(1) = 0; let Q1 and S1 be open identity neighbourhoods
in G such that Q1Q1 ⊆ P1, f(Q1) ⊆ V1, S1 = (S1)

−1, and S1S1 ⊆ Q1. Then Q := ψ(Q1)
and S := ψ(S1) are open 0-neighbourhoods in L(G). Define ι : S → S, ι(x) := x−1 :=
ψ(ψ−1(x)−1) and ν : Q×Q→ P , ν(x, y) := x ∗ y := ψ(ψ−1(x)ψ−1(y)). Then

g := φ ◦ f |U1
P1
◦ ψ−1 : P → U

maps 0 to 0 and is continuous (since f is continuous, being a homomorphism which is
continuous at one point). Furthermore, g is feebly differentiable at 0 by hypothesis (resp.,
Lemma 1.17). For (x, y, t) ∈ S]1[ := {(x, y, t) ∈ S[1] : t 6= 0}, we have

t−1(g(x+ ty)− g(x)) = t−1(g(x) ∗ g(x−1 ∗ (x+ ty))− g(x))

= t−1(g(x) ∗ (0 + tt−1g(x−1 ∗ (x+ ty)))− g(x) ∗ 0)

= µ[1]((g(x), 0), (0, t−1g(x−1 ∗ (x+ ty))), t)

= µ[1]((g(x), 0), (0, t−1g(th(x, y, t))), t)

= µ[1]((g(x), 0), (0, g̃0(h(x, y, t), t)), t)

where h : S[1] → L(G), h(x, y, t) := ν [1]((x−1, x), (0, y), t) is continuous, and so is the

map g̃0 : P̃0 → L(H) (defined as in 1.16). Note that F : S[1] → L(H), F (x, y, t) :=
µ[1]((g(x), 0), (0, g̃0(h(x, y, t), t)), t) makes sense on all of S[1]. The map F is continuous
and, by the preceding, we have F (x, y, t) = 1

t
(g(x+ ty)− g(x)) for all (x, y, t) ∈ S]1[. Thus

g|S is C1, with (g|S)[1] = F . Hence f |S1 is C1 and hence so is f on all of G, by [6, La. 3.1].
If K ∈ {R,C} and L(H) is locally convex, this entails that f is C∞ (Lemma 2.1). 2

3 Hölder continuous homomorphisms are smooth

In this section, which is the core of the article, we establish the main result.

Definition 3.1 A sequence (xn)n∈N in a topological vector space E over a valued field K is
called Mackey-Cauchy if there exists a bounded subset B ⊆ E and elements µn,m ∈ K such
that xn − xm ∈ µn,mB for all n,m ∈ N and µn,m → 0 as both n,m → ∞ (cf. [14, p. 14]).
We say that E is Mackey complete if every Mackey-Cauchy sequence in E is convergent
(cf. [14, La. 2.2]).

7



Theorem 3.2 Let f : G → H be a homomorphism between smooth Lie groups modelled
on locally convex, real topological vector spaces. If the modelling space of H is Mackey
complete and f is Hölder continuous at 1, then f is smooth.

Proof. By hypothesis, f is Hα at 1 for some α ∈ ]0, 1]. The proof proceeds in two
steps. The first goal is to show that if α ∈ ]0, 1

2
], then f also is H 3

2
α at 1. Since the Hölder

exponent can be improved repeatedly, this means that f actually is Hα at 1 with α ∈ ]1
2
, 1].

Having achieved this, the second goal will be to show that f is totally differentiable at 1
and hence smooth, by Lemma 2.2.

For the moment, we only know that α ∈ ]0, 1]. We let φ : U1 → U ⊆ L(H) be a chart
of H around 1, such that φ(1) = 0. There exist open, symmetric3 identity neighbourhoods
V1 ⊆ U1 and W1 ⊆ V1 such that V1V1 ⊆ U1 and W1W1 ⊆ V1; let V := φ(V1) and
W := φ(W1). Then

µ : V × V → U, µ(x, y) := x ∗ y := φ(φ−1(x)φ−1(y))

expresses the multiplication of H in local coordinates. Products of more than two elements
are formed from left to right; for example, x∗y∗z := (x∗y)∗z. Of course, (x∗y)∗z = x∗(y∗z)
whenever both products are defined (and likewise for products of more than three factors).
Since 0 ∗ 0 = 0 and µ′(0, 0).(x, y) = x+ y, the map

σ : W ×W → U, σ(x, y) := x ∗ x ∗ y

satisfies σ(0, 0) = 0 and σ′(0, 0)(u, v) = 2u + v for u, v ∈ L(H). Hence, using the Taylor
expansion of σ about (0, 0), we have

σ(x, y) = 2x+ y +R(x, y) for all x, y ∈ W ,

where R(x, y) := R1((0, 0), (x, y), 1) (cf. Proposition 1.5). Let ψ : P1 → P ⊆ L(G) be a
chart of G around 1, such that f(P1) ⊆ U1 and ψ(1) = 0; let Q1 ⊆ P1 and B1 ⊆ Q1

be symmetric identity neighbourhoods such that Q1Q1 ⊆ P1, B1B1 ⊆ Q1, f(Q1) ⊆ V1,
and f(B1) ⊆ W1. Set Q := ψ(Q1) and B := ψ(B1). Define ι : Q → Q, ι(x) := x−1 :=
ψ(ψ−1(x)−1) and ν : Q×Q→ P , ν(x, y) := x ∗ y := ψ(ψ−1(x)ψ−1(y)). Then

g := φ ◦ f |U1
P1
◦ ψ−1 : P → U

is continuous, maps 0 to 0, and is Hα at 0.

We now adapt the ideas explained in the Introduction for the special case of one-parameter
groups to the present, fully general situation. To this end, let A ⊆ B be a balanced, open
0-neighbourhood such that A ∗ A ⊆ B, ι(A) ∗ ι(A) ⊆ B, and ι(A) ∗ ι(A) ∗ A ⊆ g−1(W ).
We abbreviate (1

2
x)−2 := ι(1

2
x) ∗ ι(1

2
x) for x ∈ A and define

h : A→ W, h(x) := g((1
2
x)−2 ∗ x) . (5)

3Recall that an identity neighbourhood X is symmetric if X = X−1.
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We have g(x) = g((1
2
x)2 ∗ (1

2
x)−2 ∗ x) = g(1

2
x)2 ∗ g((1

2
x)−2 ∗ x) = σ(g(1

2
x), g((1

2
x)−2x)) =

2g(1
2
x) + g((1

2
x)−2x) +R(g(1

2
x), g((1

2
x)−2x)) for x ∈ A and hence

g(1
2
x) = 1

2
g(x)− 1

2
h(x)− 1

2
R(g(1

2
x), h(x)) , (6)

with h as in (5). Since also 1
2
x ∈ A, likewise g(1

4
x) = 1

2
g(1

2
x)− 1

2
h(1

2
x)− 1

2
R(g(1

4
x), h(1

2
x)).

Inserting the right hand side of (6) for g(1
2
x) here, we arrive at

g(1
4
x) = 1

4
g(x)− 1

4
h(x)− 1

4
R(g(1

2
x), h(x))− 1

2
h(1

2
x)− 1

2
R(g(1

4
x), h(1

2
x)) .

Proceeding in this way, we obtain

g(2−nx) = 2−ng(x)−
n∑

k=1

2−n+k−1
(
h(21−kx) +R(g(2−kx), h(21−kx))

)
(7)

for all n ∈ N0, by induction. Hence

2ng(2−nx) = g(x)−
n∑

k=1

2k−1
(
h(21−kx) +R(g(2−kx), h(21−kx))

)
(8)

for all x ∈ A and n ∈ N0. The following lemma provides estimates on the summands in
(8); later, these estimates will be used to show that the series is summable (see (18)).

Lemma 3.3 Let q be a continuous seminorm on L(H). Then there exists a continuous
seminorm p on L(G) such that Bp

1(0) ⊆ A,

‖h(x) +R(g(1
2
x), h(x))‖q ≤ ‖x‖2α

p for all x ∈ Bp
1(0), (9)

and ‖g(x)‖q ≤ (‖x‖p)α for all x ∈ Bp
1(0).

Proof. As a consequence of Lemma 1.6, there exists a continuous seminorm r on L(H)
such that Br

1(0) ⊆ W and

‖R(y, z)‖q ≤ 1
2
(max{‖y‖r, ‖z‖r})2 for all y, z ∈ Br

1(0) ; (10)

after replacing r with r + q, we may assume that r ≥ q. Since g is Hα at 0, there is a
continuous seminorm s on L(G) such that Bs

1(0) ⊆ P , g(Bs
1(0)) ⊆ Br

1(0), and

‖g(x)‖r ≤ 1
2
(‖x‖s)

α for all x ∈ Bs
1(0). (11)

We now consider the smooth map j : A → Q, j(x) := (1
2
x)−2 ∗ x. Then j(0) = 0

and j′(0) = 0, entailing that there exists a continuous seminorm p on L(G) such that
Bp

1(0) ⊆ A, j(Bp
1(0)) ⊆ Bs

1(0), and

‖j(x)‖s ≤ (‖x‖p)2 for all x ∈ Bp
1(0) (12)

9



(cf. Lemma 1.6); we may assume that p ≥ s. Then ‖h(x)‖q ≤ ‖h(x)‖r = ‖g(j(x))‖r ≤
1
2
(‖j(x)‖s)

α ≤ 1
2
(‖x‖p)2α for all x ∈ Bp

1(0), by (11) and (12). Also ‖g(1
2
x)‖r ≤ 1

2
(‖1

2
x‖s)

α ≤
(‖x‖s)

α ≤ (‖x‖p)α and ‖h(x)‖r ≤ 1
2
(‖x‖p)2α ≤ (‖x‖p)α, whence ‖R(g(1

2
x), h(x))‖q ≤

1
2
(‖x‖p)2α, by (10). Using the preceding estimates, we obtain ‖h(x) + R(g(1

2
x), h(x))‖q ≤

‖h(x)‖q + ‖R(g(1
2
x), h(x))‖q ≤ 1

2
(‖x‖p)2α + 1

2
(‖x‖p)2α = (‖x‖p)2α for all x ∈ Bp

1(0). Thus
(9) holds. We also have ‖g(x)‖q ≤ ‖g(x)‖r ≤ 1

2
(‖x‖s)

α ≤ (‖x‖s)
α ≤ (‖x‖p)α. 2

Lemma 3.4 If f is Hα at 1 with α ∈ ]0, 1
2
], then f also is H 3

2
α at 1.

Proof. Given a continuous seminorm q on L(H), we let p be as in Lemma 3.3. In the
following, we show that

‖g(y)‖q ≤ K 2
3
2
α(‖y‖p)

3
2
α for all y ∈ Bp

1(0), (13)

for a suitable constant K ∈ [0,∞[. Thus g will be H 3
2
α at 0, and hence f will be H 3

2
α at 1.

Using (7) and the estimates from Lemma 3.3, we obtain

‖g(2−nx)‖q ≤ 2−n‖g(x)‖q +
n∑

k=1

2−n+k−1‖h(21−kx) +R(g(2−kx), h(21−kx))‖q

≤ 2−n +
n∑

k=1

2−n+k−1(‖21−kx‖p)2α ≤ 2−n +
n∑

k=1

2−n+k−122α−2αk

=

(
2−(1− 3

2
α)n + 22α−12−(1− 3

2
α)n

n∑
k=1

2(1−2α)k

)
2−

3
2
αn (14)

for all x ∈ Bp
1(0) and n ∈ N0. Since limn→∞ 2−(1− 3

2
α)n = 0, there is K1 ∈ [0,∞[ such that

2−(1− 3
2
α)n ≤ K1 for all n ∈ N0. The summation formula for the finite geometric series yields

n∑
k=1

2(1−2α)k =
2(1−2α)(n+1) − 21−2α

21−2α − 1
≤ 2(1−2α)(n+1)

21−2α − 1
= c 2(1−2α)n

with c := 21−2α

21−2α−1
. We therefore obtain the following estimates for the second term in (14):

22α−12−(1− 3
2
α)n

n∑
k=1

2(1−2α)k ≤ c 22α−12−(1− 3
2
α)n2(1−2α)n ≤ K2 2−

1
2

αn ≤ K2

for all n ∈ N0, with K2 := c 22α−1. Using the estimates just established, (14) yields

‖g(2−nx)‖q ≤ K 2−
3
2
αn for all x ∈ Bp

1(0) and n ∈ N0, (15)

with K := K1 + K2. Then (13) holds with K as just defined. To see this, let y ∈ Bp
1(0).

If ‖y‖p = 0, then ‖g(y)‖q ≤ ‖y‖α
p = 0 ≤ K2

3
2
α‖y‖

3
2
α

p , as desired. If ‖y‖p > 0, then there

10



exists n ∈ N0 such that 2−n−1 ≤ ‖y‖p < 2−n. Thus 2−n ≤ 2‖y‖p. Since y = 2−nx with
x := 2ny ∈ Bp

1(0), (15) yields

‖g(y)‖q = ‖g(2−nx)‖q ≤ K(2−n)
3
2
α ≤ K(2‖y‖p)

3
2
α = K2

3
2
α(‖y‖p)

3
2
α ,

whence (13) also holds if ‖y‖p > 0. This completes the proof of Lemma 3.4. 2

If α ∈ ]0, 1
2
], there exists k ∈ N such that (3

2
)k−1α ≤ 1

2
and β := (3

2
)kα ∈ ]1

2
, 1]. Repeated

application of Lemma 3.4 shows that f is Hβ at 1. After replacing α with β, we may
assume throughout the following that α ∈ ]1

2
, 1].

In the remainder of the proof, we show that g is totally differentiable at 0. The main point
is to construct a candidate Λ for the derivative g′(0). We first construct λ = Λ|A on the
0-neighbourhood A ⊆ L(G) (from above).

Lemma 3.5 The limit λ(x) := limn→∞
g(2−nx)

2−n exists in L(H), for each x ∈ A. For

each continuous seminorm q on L(H), the convergence of g(2−nx)
2−n in (L(H), ‖.‖q) is locally

uniform in x. The map λ : A→ L(H) is continuous.

Proof. Fix x0 ∈ A. Given a continuous seminorm q on L(H), we let p be as in Lemma 3.3.
There is N ∈ N such that 2−N‖x0‖p < 1. Then S := Bp

2N (0)∩A is an open neighbourhood

of x0 in A such that 2−NS ⊆ Bp
1(0) ⊆ A. Abbreviate C := 22αN and K := C22α−1

1−2−(2α−1) . Let
M ≥ N . For all m,n ≥M (where m ≥ n, say), using (8) we obtain for all x ∈ S:

∥∥2mg(2−mx)− 2ng(2−nx)
∥∥

q
=

∥∥∥∥∥
m∑

k=n+1

2k−1
(
h(21−kx) +R(g(2−kx), h(21−kx))

)∥∥∥∥∥
q

≤
m∑

k=n+1

2k−1‖h(21−kx) +R(g(2−kx), h(21−kx))‖q

≤ ‖x‖2α
p︸ ︷︷ ︸

≤C

m∑
k=n+1

2k−122α(1−k) ≤ C 22α−1

m∑
k=n+1

2−(2α−1)k (16)

≤ K · (2−(2α−1))n+1 ≤ K · (2−(2α−1))M+1 , (17)

using (9) to pass to the third line, then using that 2−(2α−1) < 1 since α ∈ ]1
2
, 1]. Here, the

final expression tends to 0 as M →∞, uniformly in x ∈ S.
By the preceding considerations, (2ng(2−nx0))n∈N0

is a Cauchy sequence in L(H) in
particular. Hence, if L(H) is sequentially complete, the limit

λ(x0) := lim
n→∞

2ng(2−nx0) = g(x0)−
∞∑

k=1

2k−1(h(21−kx0) +R(g(2−kx0), h(21−kx0))) (18)

exists in L(H). As we shall presently see, the limit also exists when L(H) is Mackey
complete. Assuming the validity of this claim for the moment, letting m→∞ in the lines

11



before (17) we obtain
∥∥λ(x) − 2ng(2−nx)

∥∥
q
≤ K · (2−(2α−1))M+1 for all n ≥ M . Hence∥∥λ(x)− 2ng(2−nx)

∥∥
q
→ 0 uniformly in x ∈ S, proving the second assertion of the lemma.

The preceding also entails that λ is continuous.

To complete the proof, it only remains to prove our claim that the limit (18) exists. Since
L(H) is Mackey complete, we only need to show that (vn)n∈N is a Mackey-Cauchy sequence,
where vn := 2ng(2−nx0). To this end, pick a ∈ ]2−(2α−1), 1[ and define rn,m := amin{n,m}+1.
Then rn,m → 0 as both n,m→∞, and

vn − vm ∈ rn,m Ω for all n,m ∈ N ,

where Ω := {r−1
n,m(vn − vm) : n,m ∈ N}. If we can show that Ω is bounded in E, then

(vn)n∈N will be Mackey-Cauchy. To prove boundedness, assume that q is a continuous
seminorm on L(H). Let p, N and K be as before. For all n,m ∈ N, we have, abbreviating
` := max{N + 1,min{n,m}+ 1}:

‖r−1
n,m(vn − vm)‖q ≤ a−min{n,m}−1

max{n,m}∑
k=min{n,m}+1

2k−1‖h(21−kx0) +R(g(2−kx0), h(21−kx0))‖q

≤ Cq + a−min{n,m}−1

max{n,m}∑
k=`

2k−1‖h(21−kx0) +R(g(2−kx0), h(21−kx0))‖q

≤ Cq + a−min{n,m}−1K(2−(2α−1))`

≤ Cq + K(a−12−(2α−1))min{n,m}+1 ≤ Cq +K ,

where Cq := a−N−1
∑N

k=2 2k−1‖h(21−kx0) +R(g(2−kx0), h(21−kx0))‖q is an upper bound for
the sum of all terms with k ≤ N , for which we do not have estimates available. Passing
to the third line, we tackled the summands with k > N as in the proof of (17). The final
inequality holds because a−12−(2α−1) < 1, by the choice of a. Thus ‖v‖q ≤ Cq + K for all
v ∈ Ω, entailing that Ω is indeed bounded. 2

Before we can prove that λ extends to a continuous linear map, we need another technical
result analogous to Lemma 3.3.

Let Z ⊆ A be an open 0-neighbourhood such that Z + Z ⊆ A. We define j : Z × Z → Q,
j(x, y) := y−1 ∗ x−1 ∗ (x+ y). Then j(Z × Z) ⊆ g−1(W ). The map τ : W ×W ×W → U ,
τ(x, y, z) := x ∗ y ∗ z is smooth, with τ(0, 0, 0) = 0 and τ ′(0, 0, 0)(u, v, w) = u + v + w for

all u, v, w ∈ L(H). Let R̃1 : (W ×W ×W )[1] → L(H) be the first order Taylor remainder

of τ . Abbreviating D(x, y, z) := R̃1((0, 0, 0), (x, y, z), 1), we then have

τ(x, y, z) = x+ y + z +D(x, y, z) for all x, y, z ∈ W . (19)

Lemma 3.6 For every continuous seminorm q on L(H), there is a continuous seminorm p
on L(G) such that Bp

1(0) ⊆ Z and∥∥ g(j(x, y)) + D
(
g(x), g(y), g(j(x, y))

) ∥∥
q
≤ (max{‖x‖p, ‖y‖p})2α for all x, y ∈ Bp

1(0).
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Proof. There exists a continuous seminorm r on L(H) such that Br
1(0) ⊆ W ,

‖D(x, y, z)‖q ≤ 1
2
(max{‖x‖r, ‖y‖r, ‖z‖r})2 for all x, y, z ∈ Br

1(0) , (20)

and r ≥ q (cf. Lemma 1.6). Since g is Hα at 0, there exists a continuous seminorm s on
L(G) such that Bs

1(0) ⊆ P , g(Bs
1(0)) ⊆ Br

1(0), and

‖g(x)‖r ≤ 1
2
(‖x‖s)

α for all x ∈ Bs
1(0). (21)

Since j is smooth, j(0, 0) = 0 and j′(0, 0) = 0, there exists a continuous seminorm p on
L(G) such that Bp

1(0) ⊆ Z, j(Bp
1(0)×Bp

1(0)) ⊆ Bs
1(0), and

‖j(x, y)‖s ≤ (max{‖x‖p, ‖y‖p})2 for all x, y ∈ Bp
1(0) (22)

(cf. Lemma 1.6); we may assume that p ≥ s. Then ‖g(j(x, y))‖q ≤ ‖g(j(x, y))‖r ≤
1
2
(‖j(x, y)‖s)

α ≤ 1
2
(max{‖x‖p, ‖y‖p})2α for all x, y ∈ Bp

1(0), by (21) and (22). Furthermore,
‖g(x)‖r ≤ 1

2
(‖x‖s)

α ≤ (‖x‖s)
α ≤ (‖x‖p)α, likewise ‖g(y)‖r ≤ (‖y‖p)α, and ‖g(j(x, y))‖r ≤

1
2
(max{‖x‖p, ‖y‖p})2α ≤ (max{‖x‖p, ‖y‖p})α, entailing that ‖D(g(x), g(y), g(j(x, y)))‖q ≤

1
2
(max{‖x‖p, ‖y‖p})2α, by (20). We now obtain ‖g(j(x, y)) + D(g(x), g(y), g(j(x, y)))‖q ≤

(max{‖x‖p, ‖y‖p})2α for all x, y ∈ Bp
1(0), using the triangle inequality. 2

Lemma 3.7 There exists a continuous linear map Λ: L(G) → L(H) such that λ(x) = Λ(x)
for all x ∈ A.

Proof. If we can show that

λ(x+ y) = λ(x) + λ(y) for all x, y ∈ A such that x+ y ∈ A, (23)

then, by [12, Cor. A.2.27], the continuous map λ extends to a continuous homomorphism
of groups Λ : L(G) → L(H). Being a continuous homomorphism between real topological
vector spaces, Λ will be continuous linear.

To prove (23), fix x, y ∈ A such that x + y ∈ A. There is n0 ∈ N such that 2−nx ∈ Z
and 2−ny ∈ Z for all n ≥ n0. For any such n, (19) shows that

g(2−n(x+ y)) = g(2−nx+ 2−ny)

= g(2−nx) ∗ g(2−ny) ∗ g((2−ny)−1∗(2−nx)−1∗(2−nx+ 2−ny))

= g(2−nx) ∗ g(2−ny) ∗ g(j(2−nx, 2−ny))

= g(2−nx) + g(2−ny) + rn ,

where rn := g(j(2−nx, 2−ny)) +D(g(2−nx), g(2−ny), g(j(2−nx, 2−ny))). Thus

2ng(2−n(x+ y))− 2ng(2−nx)− 2ng(2−ny) = 2nrn for all n ≥ n0. (24)

Note that the left hand side of (24) converges to λ(x+ y)− λ(x)− λ(y) as n→∞. Hence
λ(x+ y) = λ(x) +λ(y) will hold if we can show that 2nrn → 0 in L(H) as n→∞. To this

13



end, given a continuous seminorm q on L(H), let p be as in Lemma 3.6. There is n1 ≥ n0

such that 2−nx, 2−ny ∈ Bp
1(0) for all n ≥ n1. For any such n, the cited lemma yields

‖2nrn‖q = 2n‖rn‖q ≤ 2n(max{‖2−nx‖p, ‖2−ny‖p})2α ≤
(
2−(2α−1)

)n · (max{‖x‖p, ‖y‖p})2α,
which tends to 0 as n→∞. Thus 2nrn → 0. 2

Lemma 3.8 g is totally differentiable at 0, with g′(0) = Λ.

Proof. Given a continuous seminorm q on L(H), Lemma 3.3 provides a continuous semi-
norm p on L(G) such that Bp

1(0) ⊆ A and (9) holds. Choosing n := 0 and letting m→∞
in the first half of (16), we find that

‖Λ(x)− g(x)‖q ≤ c‖x‖2α
p for all x ∈ Bp

1(0),

where c := 22α−1
∑∞

k=1 2−(2α−1)k <∞. Since 2α− 1 > 0, given ε > 0, there exists ρ ∈ ]0, 1]
such that cρ2α−1 ≤ ε. Then Bp

ρ(0) ⊆ A, and for each x ∈ Bp
ρ(0) we have

‖g(x)− g(0)− Λ(x)‖q = ‖g(x)− Λ(x)‖q ≤ c‖x‖2α−1
p ‖x‖p ≤ cρ2α−1‖x‖p ≤ ε‖x‖p .

Hence g is totally differentiable at 0, with g′(0) = Λ. This completes the proof of
Lemma 3.8. 2

Having proved Lemma 3.8, also Theorem 3.2 is now fully established. 2

Note that Lemma 3.4 does not make use of the Mackey completeness of L(H). Beyond
the real case (and independent of Mackey completeness of L(H)), we still have:

Proposition 3.9 Let K be a valued field, α ∈ ]0, 1], and f : G → H be a homomorphism
between Lie groups modelled on polynormed K-vector spaces. Then f is Hölder continuous
of degree α at 1 if and only if f is Hölder continuous of degree α.

See Appendix B for the precise definitions and the proof.

4 Homomorphisms between p-adic Lie groups

We now formulate a (slightly weaker) analogue of Theorem 3.2 for p-adic Lie groups. The
proof carries over rather directly, whence we only indicate the most important changes.

Theorem 4.1 Let f : G → H be a homomorphism between smooth Lie groups modelled
on polynormed Qp-vector spaces. If f is Hölder continuous at 1 and the modelling space
of H is Mackey complete, then f is C1

Qp
.
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Proof. By hypothesis, f is Hα at 1 for some α ∈ ]0, 1]. We let φ : U1 → U ⊆ L(H) be a
chart of H around 1, such that φ(1) = 0. There exist open, symmetric identity neighbour-
hoods V1 ⊆ U1 and W1 ⊆ V1 such that V1V1 ⊆ U1 and (W1)

2p+1 := W1W1 · · ·W1︸ ︷︷ ︸
2p+1

⊆ V1; let
V := φ(V1) and W := φ(W1). Define

µ : V × V → U, µ(x, y) := x ∗ y := φ(φ−1(x)φ−1(y)) .

Then the k-fold products x1∗x2∗· · ·∗xk are defined (and contained in V ), for all k ≤ 2p+1,
x1, . . . , xk ∈ W , and every choice of brackets in this product. The map σ : W ×W → U ,
σ(x, y) := xp ∗ y satisfies σ(0, 0) = 0 and σ′(0, 0)(u, v) = pu + v for u, v ∈ L(H). The
Taylor expansion around (0, 0) yields

σ(x, y) = px+ y +R(x, y) for all x, y ∈ W ,

where R(x, y) := R1((0, 0), (x, y), 1). Let ψ : P1 → P ⊆ L(G) be a chart of G around 1,
such that f(P1) ⊆ U1 and ψ(1) = 0; let Q1 ⊆ P1 and B1 ⊆ Q1 be symmetric identity
neighbourhoods such that Q1Q1 ⊆ P1, f(Q1) ⊆ V1, (B1)

2p+1 ⊆ Q1, and f(B1) ⊆ W1. Set
Q := ψ(Q1) and B := ψ(B1). Define ν : Q×Q→ P , ν(x, y) := x ∗ y := ψ(ψ−1(x)ψ−1(y)).
Then g := φ ◦ f |U1

P1
◦ ψ−1 : P → U is continuous, maps 0 to 0, and is Hα at 0. Let A ⊆ B

be a balanced, open 0-neighbourhood such that g(x−p ∗ px) ∈ W for all x ∈ A. We define

h : A→ W, h(x) := g(x−p ∗ px) . (25)

For x ∈ A, we have g(px) = g(xp ∗ (x−p ∗ px)) = g(x)p ∗ g(x−p ∗ px) = σ(g(x), h(x)) =
pg(x) + h(x) + R(g(x), h(x)). Likewise, g(p2x) = pg(px) + h(px) + R(g(px), h(px)) =
p2g(x) + ph(x) + pR(g(x), h(x)) + h(px) +R(g(px), h(px)) and similarly

g(pnx) = png(x) +
n∑

k=1

pn−k
(
h(pk−1x) +R(g(pk−1x), h(pk−1x))

)
(26)

for all x ∈ A and n ∈ N0, by induction. Hence

g(pnx)

pn
= g(x) +

n∑
k=1

p−k
(
h(pk−1x) +R(g(pk−1x), h(pk−1x))

)
(27)

for all x ∈ A and n ∈ N0. As in the proof of Lemma 3.3, we see:

Lemma 4.2 Let q be a continuous seminorm on L(H). Then there exists a continuous
seminorm b on L(G) such that Bb

1(0) ⊆ A,

‖h(x) +R(g(x), h(x))‖q ≤ ‖x‖2α
b for all x ∈ Bb

1(0),

and ‖g(x)‖q ≤ (‖x‖b)
α for all x ∈ Bb

1(0). 2

Using Lemma 4.2, we obtain by a simple adaptation of the proof of Lemma 3.4 (where now
p ∈ Qp with |p| = p−1 plays the role of 1

2
∈ R):
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Lemma 4.3 If f is Hα at 1 with α ∈ ]0, 1
2
], then f also is H 3

2
α at 1. 2

By the preceding, we may assume now that α ∈ ]1
2
, 1].

Lemma 4.4 The limit λ(x) := limn→∞
g(pnx)

pn exists in L(H), for each x ∈ A. For each

continuous seminorm q on L(H), the convergence of g(pnx)
pn in (L(H), ‖.‖q) is locally uniform

in x. The map λ : A→ L(H) is continuous.

Proof. The arguments from the real case are easily adapted. To prove that vn :=
p−ng(pnx0) is a Mackey-Cauchy sequence for x0 ∈ A, pick 0 < θ ∈ Q such that p−θ ∈
]p−(2α−1), 1[; set rn,m := p[θ(min{n,m}+1)] ∈ Qp, where [.] is the Gauss bracket (integer part).
Thus |rn,m| = p−[θ(min{n,m}+1)] → 0 as n,m→∞. Now complete the proof as above. 2

Let Z ⊆ A be an open 0-neighbourhood such that Z+Z ⊆ A and Z−1 ∗Z−1 ∗(Z+Z) ⊆ A.
We define j : Z × Z → A, j(x, y) := y−1 ∗ x−1 ∗ (x + y). Then j(Z × Z) ⊆ g−1(W ).
The map τ : W ×W ×W → U , τ(x, y, z) := x ∗ y ∗ z is smooth, with τ(0, 0, 0) = 0 and

τ ′(0, 0, 0)(u, v, w) = u + v + w for all u, v, w ∈ L(H). Let R̃1 : (W ×W ×W )[1] → L(H)
be the first order Taylor remainder of τ . Then τ(x, y, z) = x + y + z + D(x, y, z) for all

x, y, z ∈ W , with D(x, y, z) := R̃1((0, 0, 0), (x, y, z), 1). Lemma 3.6 carries over:

Lemma 4.5 For every continuous seminorm q on L(H), there is a continuous seminorm b
on L(G) such that Bb

1(0) ⊆ Z and∥∥ g(j(x, y)) + D
(
g(x), g(y), g(j(x, y))

) ∥∥
q
≤ (max{‖x‖b, ‖y‖b})2α for all x, y ∈ Bb

1(0).2

Lemma 4.6 λ extends to a continuous Qp-linear map Λ: L(G) → L(H).

Proof. The proof of Lemma 3.7 is easily adapted. 2

In view of Lemma 2.2, Theorem 4.1 follows from the next lemma, whose proof directly
parallels that of Lemma 3.8:

Lemma 4.7 g is totally differentiable at 0, with g′(0) = Λ. 2

A Proofs for the auxiliary results from Section 1

In this appendix, we prove the results stated without proof in Section 1. Not all techniques
from the real case carry over to general valued fields K, whence some of the proofs may look
slightly unfamiliar. In particular, given an element x of a polynormed K-vector space E
and a continuous seminorm q on E such that ‖x‖q > 0, there need not be an element
r ∈ K such that ‖rx‖q = 1. As a substitute for normalization, we shall frequently fix an
element a ∈ K× such that |a| < 1, and consider a−kx where k ∈ Z is chosen such that
|a|k+1 ≤ ‖x‖q < |a|k.

16



Proof of Lemma 1.6. We use the second order Taylor expansion of f ,

f(x+ ty)− f(x)− tdf(x, y) = t2a2(x, y) + t2R2(x, y, t) for (x, y, t) ∈ U [1].

Since R2(x0, 0, 0) = 0 and a2(x0, 0) = 0, there exists ρ ∈ ]0, 1] and a continuous seminorm
s on E such that Bs

2ρ(x0) ⊆ U ,

‖R2(x, y, t)‖q ≤ 1 for all x ∈ Bs
ρ(x0), y ∈ Bs

ρ(0) and |t| < ρ,

and ‖a2(x, y)‖q ≤ 1 for all x ∈ Bs
ρ(x0) and y ∈ Bs

ρ(0). Pick a ∈ K× such that |a| < 1;

define δ := ρ2|a| < ρ, c := 2/(ρ|a|)2, and p := max{1
ρ
,
√

c
C
}s. Let x ∈ Bp

1(x0) and

y ∈ Bp
1(0); then x ∈ Bs

δ(x0) and y ∈ Bs
δ(0). If ‖y‖s > 0, there exists k ∈ Z such that

|a|k+1 ≤ ρ−1‖y‖s < |a|k. Then ‖a−ky‖s < ρ and |ak| ≤ |a|−1ρ−1‖y‖s < ρ. If ‖y‖s = 0, let
ε ∈ ]0, ρ[ and choose k ∈ N so large that |a|k < ρ and 2|a|2k < ε. Then, in either case,

f(x+ y)− f(x) = f(x+ aka−ky)− f(x) = df(x, y) + a2ka2(x, a
−ky) + a2kR2(x, a

−ky, ak)

with r :=‖a2ka2(x, a
−ky)+a2kR2(x, a

−ky, ak)‖q ≤ |a|2k(‖a2(x, a
−ky)‖q +‖R2(x, a

−ky, ak)‖q)
≤ 2|a|2k. If ‖y‖s > 0, the preceding formula shows that r ≤ 2|a|−2ρ−2‖y‖2

s = c‖y‖2
s ≤

C‖y‖2
p. If ‖y‖s = 0, we have r < ε and thus r = 0 ≤ C‖y‖2

p, as ε was arbitrary. Hence
‖f(x+ y)− f(x)− df(x, y)‖q ≤ C‖y‖2

p for all x ∈ Bp
1(x0) and y ∈ Bp

1(0). 2

Proof of Lemma 1.9. (a) and (b) are trivial; (c) follows from Lemma B.2 (a) and (e).

(d) Let E, F and H be polynormed K-vector spaces, U ⊆ E and V ⊆ F be open, x ∈ U
and f : U → F , g : V → H be maps such that f(U) ⊆ V , f is Hα at x, and g is Hβ at f(x).
Given a continuous seminorm q on H, there exists a continuous seminorm p on F such
that Bp

1(f(x)) ⊆ V and ‖g(z) − g(f(x))‖q ≤ ‖z − f(x)‖β
p for all z ∈ Bp

1(f(x)). There is a
continuous seminorm r on E such that Br

1(0) ⊆ U and ‖f(y)− f(x)‖p ≤ ‖y − x‖α
r ≤ 1 for

all y ∈ Br
1(x). Then ‖g(f(y))−g(f(x))‖q ≤ ‖f(y)−f(x)‖β

p ≤ ‖y−x‖αβ
r for all y ∈ Br

1(0).2

Proof of 1.12. If h is tangent to 0, let q be a continuous seminorm on F . For W := Bq
1(0)

we then find V and θ : I → K as in 1.11. We may assume that V is balanced and
I = Br(0) ⊆ K for some r > 0. There exists a continuous seminorm p on E such that
Bp

1(0) ⊆ V and Bp
1(0) ⊆ U − x. Replacing V with Bp

1(0), we may assume that V = Bp
1(0).

Fix a ∈ K× such that |a| < 1. Given ε > 0, there exists δ ∈ ]0, 1] such that |θ(t)|
|t| < ε|a| if

|t| < δ. Then Bp
δ (0) ⊆ Bp

1(0) ⊆ U − x. Let y ∈ Bp
δ (0); we claim that ‖h(y)‖q ≤ ε‖y‖p. If

‖y‖p = 0, then t−1y ∈ V for each 0 6= t ∈ I, whence h(y) = h(t(t−1y)) ∈ θ(t)W and thus
‖h(y)‖q ≤ |θ(t)|. Hence ‖h(y)‖q = 0 ≤ ε‖y‖p. If ‖y‖p > 0, then there is k ∈ N0 such that
|a|k+1 ≤ ‖y‖p < |a|k. Set t := ak. Then t−1y ∈ V and thus h(y) = h(t(t−1y)) ∈ θ(t)W ,
whence h(y) = θ(t)w with w ∈ W . Hence ‖h(y)‖q = |θ(t)|·‖w‖q ≤ |θ(t)| ≤ ε |a| |t| ≤ ε‖y‖p.

Conversely, assume that the condition from 1.12 is satisfied. Given a 0-neighbourhood
W ⊆ F , there exists a continuous seminorm q on F such that Bq

1(0) ⊆ W . We choose
a continuous seminorm p on E as described in 1.12. Let (an)n∈N be a sequence in K×

such that limn→∞ an = 0. For each n, there exists δn > 0 such that Bp
δn

(0) ⊆ U − x and
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‖h(y)‖q ≤ |an|·‖y‖p for all y ∈ Bp
δn

(0). We may assume that δ1 > δ2 > · · · and limn→∞ δn =
0. Now set V := Bp

1(0) and define θ : I → K on I := Bδ1(0) ⊆ K via θ(0) = 0, θ(t) := ant
if |t| ∈ [δn+1, δn[. Then θ(t) = o(t) and IV ⊆ Bp

δ1
(0) ⊆ U −x. Furthermore, h(tv) ⊆ θ(t)W

for t ∈ I and v ∈ V : This is trivial if t = 0, and also if t 6= 0 and ‖v‖p = 0, because then
‖h(tv)‖q ≤ |an| · ‖tv‖p = 0 (for any n) and hence h(tv) ∈ q−1({0}) ⊆ θ(t)W . Otherwise,
0 < ‖tv‖p ∈ [δn+1, δn[ for some n and thus ‖h(tv)‖q ≤ |an| · ‖tv‖q = |tan| · ‖v‖q < |tan|,
whence h(tv) ∈ Bq

|tan|(0) = tanB
q
1(0) = θ(t)Bq

1(0) ⊆ θ(t)W . Hence h is tangent to 0. 2

Proof of 1.13. Let f , g be as in 1.13, and W1 ⊆ H be a 0-neighbourhood. There is a
balanced 0-neighbourhood W ⊆ H such that W + W ⊆ W1. As g is totally differentiable
at f(x) and g′(f(x)) continuous linear, we find balanced 0-neighbourhoods P1 ⊆ F , I ⊆ K
and a map θ : I → K which is o(t), such that g′(f(x)).P1 ⊆ W , IP1 ⊆ V − f(x), and
h2(tP1) ⊆ θ(t)W for t∈I, where h2 :V−f(x) → H, h2(z)= g(f(x)+z)−g(f(x))−g′(f(x)).z.
There is a balanced 0-neighbourhood P ⊆ F such that P + P ⊆ P1.

Define h1 : U −x→ F , h1(y) := f(x+ y)− f(x)− f ′(x).y. There are 0-neighbourhoods
Q ⊆ E, J ⊆ K and a map ξ : J → K which is o(t), such that JQ ⊆ U−x, f ′(x).Q ⊆ P , and

h1(tQ) ⊆ ξ(t)P . After shrinking I and J , we may assume that I = J and
∣∣ ξ(t)

t

∣∣ ≤ 1 for all
0 6= t ∈ I. Define η : I → K via η(t) := θ(t) if |θ(t)| ≥ |ξ(t)|, η(t) := ξ(t) if |θ(t)| < |ξ(t)|.
Define A := g′(f(x))◦ f ′(x) and h : U −x→ H, h(y) := g(f(x+ y))− g(f(x))−A.y. Then

h(y) = g(f(x) + f ′(x).y + h1(y)) − g(f(x))− A.y

= g(f(x)) + g′(f(x)).z + h2(z)− g(f(x))− A.y

= g′(f(x)).h1(y) + h2(f
′(x).y + h1(y)) ,

where z := f ′(x).y + h1(y). Let t ∈ I and y ∈ Q. Then h1(ty) ∈ ξ(t)P ⊆ ξ(t)P1 ⊆ η(t)P1

as P1 is balanced, and thus g′(f(x)).h1(ty) ∈ η(t)W . Furthermore, f ′(x).ty ∈ tP and
h1(ty) ∈ ξ(t)P ⊆ tP (as |ξ(t)| ≤ |t|), whence f ′(x).ty + h1(ty) ∈ t(P + P ) ⊆ tP1 and
thus h2(f

′(x).ty + h1(ty)) ∈ θ(t)W ⊆ η(t)W , using that W is balanced. Hence h(ty) =
g′(f(x)).h1(ty)+h2(f

′(x).ty+h1(ty)) ∈ η(t)(W +W ) ⊆ η(t)W1, and thus h(tQ) ⊆ η(t)W1.
We have shown that h is tangent to 0; the assertions follow. 2

Proof of Lemma 1.14. We consider the second order Taylor expansion of f :

f(x+ tv) = f(x) + t df(x, v) + t2a2(x, v) + t2R2(x, v, t) for all (x, v, t) ∈ U [1] (28)

(see Proposition 1.5). Fix x ∈ U . The map f ′(x) := df(x, •) : E → F being continuous
linear, to establish total differentiability of f at x we only need to show that

h : U − x→ F, h(y) := f(x+ y)− f(x)− f ′(x).y

is tangent to 0. To this end, let W be a 0-neighbourhood in F . There exists a 0-
neighbourhood W1 ⊆ F such that W1 +W1 ⊆ W . As R2(x, 0, 0) = 0 and R2 is continuous,
there is a 0-neighbourhood V ⊆ E and a 0-neighbourhood I ⊆ K such that (x, v, t) ∈ U [1]

and R2(x, v, t) ∈ W1 for all v ∈ V and t ∈ I. Since a2 is continuous and a2(x, 0) = 0, after
shrinking V we may assume that furthermore a2(x, v) ∈ W1 for all v ∈ V . Define

θ : I → K, θ(t) := t2 .
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Then θ(t) = o(t). For each t ∈ I and y ∈ tV , say y = tv with v ∈ V , we have

h(y) = t2(a2(x, v) +R2(x, v, t)) ∈ t2(W1 +W1) ⊆ t2W = θ(t)W ,

using (28). Hence h is indeed tangent to 0. 2

Proof of Lemma 1.17. If f is C1, set f ′(x) := df(x, •). Then f̃(y, t) = f [1](x, y, t) is
continuous.

Now assume that K is a valued field, f is continuous on U and totally differentiable
at x. Define f̃x : Ũx → E as in 1.16, using the total differential f ′(x). Since f is continuous,

so is f̃x|A. By a theorem of Bourbaki and Dieudonné [3, Exerc. 3.2 A (b)], the map f̃x is

continuous if its restriction f̃x|A∪{(y,0)} is continuous for each y ∈ E. This will hold if

we can show that f̃x(yα, tα) → f̃x(y, 0) for each net (yα, tα) in A converging to (y, 0) for
some y ∈ E. To see that this condition is satisfied, let W1 ⊆ F be a 0-neighbourhood.
There is a balanced 0-neighbourhood W ⊆ F such that W + W ⊆ W1. Since f is totally
differentiable at x, there exists an open 0-neighbourhood V ⊆ E and a function θ : I → K
on some 0-neighbourhood in K such that I · V ⊆ U − x holds, θ(t) = o(t), and

f(x+ sv) ∈ f(x) + sf ′(x).v + θ(s)W for all v ∈ V and s ∈ I. (29)

Pick r ∈ K× such that ry ∈ V . As (yα, tα) → (y, 0), there exists β such that f ′(x).(yα−y) ∈
W , vα := ryα ∈ V , sα := r−1tα ∈ I, and |θ(sα)|/|sα| ≤ |r| for all α ≥ β. For any such α,
(29) applied to x+ tαyα = x+ sαvα shows that

f̃x(yα, tα)− f̃x(y, 0) ∈ f ′(x).yα − f ′(x).y +
θ(sα)

tα
W ⊆ W +

θ(sα)

rsα

W ⊆ W +W ⊆ W1 .

Thus indeed f̃x(yα, tα) → f̃x(y, 0). 2

Proof of 1.18. We define f̃x : Ũx → F and g̃f(x) : Ṽf(x) → H as in 1.16 and abbreviate
h := g ◦ f : U → H. For any y ∈ E and t ∈ K× such that x+ ty ∈ U , we calculate

h(x+ ty)− h(x)

t
=

g
(
f(x) + t f(x+ty)−f(x)

t

)
− g(f(x))

t
= g̃f(x)

(
f̃x(y, t), t

)
= h̃x(y, t)

where h̃x : Ũx → H, h̃x(y, t) := g̃f(x)

(
f̃x(y, t), t

)
is continuous, and the map h̃x(•, 0) =

g′(f(x)) ◦ f ′(x) is continuous linear. Thus h = g ◦ f is feebly differentiable at x. 2

B Hölder continuity at 1 entails Hölder continuity

So far, we only considered Hölder continuity at a point. We now discuss globally Hölder
continuous maps. Basic facts are provided and a proof for Proposition 3.9 is given.
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Definition B.1 Let E and F be polynormed vector spaces over a valued field K, and
U ⊆ E be open. A map f : U → F is called Hölder continuous of degree α (or Hα, for
short) if, for every x0 ∈ U and continuous seminorm q on F , there exists a continuous
seminorm p on E and δ > 0 such that Bp

δ (x0) ⊆ U and ‖f(y)− f(x)‖q ≤ ‖y − x‖α
p , for all

x, y ∈ Bp
δ (x0). If f is H1, we also say that f is Lipschitz continuous .

Lemma B.2 For maps between open subsets of polynormed K-vector spaces, we have:

(a) If f : E ⊇ U → F is Hα, then f is Hα at each x ∈ U .

(b) If f is Hα then f is continuous.

(c) If α ≥ β and f is Hα, then f is Hβ.

(d) If f and g are composable maps such that f is Hα and g is Hβ, then g ◦ f is Hα·β.

(e) Any C1-map is Lipschitz continuous.

Proof. (a), (b) and (c) are obvious; (d) can be proved as Lemma 1.9 (d).

(e) We use the first order Taylor expansion f(x + ty) − f(x) = tdf(x, y) + tR1(x, y, t)
of the C1-map f : E ⊇ U → F . Here

R1(x, y, 1) = tR1(x, t
−1y, t) for t ∈ K× and (x, y) ∈ U × E such that x+ y ∈ U .

Fix x0 ∈ U . Let q be a continuous seminorm on F . Pick a ∈ K× such that |a| < 1.
Since df(x0, 0) = 0, using the continuity of df we find a continuous seminorm r on E
such that Br

1(x0) ⊆ U and ‖df(x, y)‖q ≤ |a| for all x ∈ Br
1(x0) and y ∈ Br

1(0), whence
‖df(x, y)‖q ≤ ‖y‖r for all x ∈ Br

1(x0) and y ∈ E. Since R1(x0, 0, 0) = 0, we find a
continuous seminorm p on E and ρ ∈ ]0, 1] such that Bp

2ρ(x0) ⊆ U and ‖R1(x, y, t)‖q ≤ 1
for all x ∈ Bp

ρ(x0), y ∈ Bp
ρ(0) and t ∈ Bρ(0) ⊆ K; we may assume that p ≥ r. Define

δ := 1
2
ρ2|a|. Given x, y ∈ Bp

δ (x0), set z := y − x. If ‖z‖p > 0, there is k ∈ Z such
that |a|k+1 ≤ ρ−1‖z‖p < |a|k. Then ‖a−kz‖p < ρ and |ak| ≤ |a|−1ρ−1‖z‖p < ρ, whence
‖R1(x, z, 1)‖q = |ak| ‖R1(x, a

−kz, ak)‖q ≤ |ak| ≤ |a|−1ρ−1‖z‖p and thus ‖f(x+z)−f(x)‖q ≤
‖df(x, z)‖q + ‖R1(x, z, 1)‖q ≤ (1 + |a|−1ρ−1)‖z‖p. Hence

‖f(y)− f(x)‖q ≤ (1 + |a|−1ρ−1)‖y − x‖p . (30)

If ‖z‖p = 0, given ε > 0 pick t ∈ K× such that |t| < min{ρ, ε}. Then ‖df(x, z)‖q = 0
and ‖R1(x, z, 1)‖q = |t| ‖R1(x, t

−1z, t)‖q ≤ |t| ≤ ε, whence ‖R1(x, z, 1)‖q = 0 (as ε was
arbitrary). Thus (30) also holds if ‖z‖p = 0. 2

Definition B.3 Let f : M → N be a map between C1
K-manifolds modelled on polynormed

K-vector spaces, and α ∈ ]0, 1]. We say that f is Hölder continuous of degree α (or briefly:
f is Hα), if f is continuous and, for each x0 ∈ M , there exist a chart φ : U1 → U of M
around x0 and a chart ψ : V1 → V of N around f(x0), such that φ(f−1(V1) ∩ U1) → V ,
y 7→ ψ(f(φ−1(y))) is Hα. (This then holds for any choice of φ and ψ, by Lemma B.2).
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Proof of Proposition 3.9. Let f be Hα at 1. If we can show that f |U is Hα for an open
identity neighbourhood U ⊆ G, then f |xU = λH

f(x)◦f |U ◦λG
x−1|UxU (with left translation maps

as indicated) will be Hα by Lemma B.2 (d) and (e), for each x∈G, whence f will be Hα.

We choose charts φ : P1 → P ⊆ L(G) and ψ : Q1 → Q ⊆ L(H) around 1 of G and
H, respectively, such that φ(1) = 0, ψ(1) = 0 and f(P1) ⊆ Q1. There are symmetric
identity neighbourhoods X1, U1 ⊆ G and Y1, V1 ⊆ H such that X1X1 ⊆ P1, U1U1 ⊆ X1,
Y1Y1 ⊆ Q1, V1V1 ⊆ Y1, f(X1) ⊆ Y1, and f(U1) ⊆ V1; set X := φ(X1), U := φ(U1),
Y := ψ(Y1), and V := ψ(V1). We write µ : X × X → P and ν : Y × Y → Q (or “∗”)
for the local multiplications obtained from the respective group multiplication, and define
g := ψ ◦ f |P ◦φ−1|P : P → Q. Let q be a continuous seminorm on L(H), and x0 ∈ U . As ν
is H1, there is a continuous seminorm p on L(H) such that Bp

1(g(x0))×Bp
1(0) ⊆ V ×V and

‖ν(u, v)− ν(u′, v′)‖q ≤ max{‖u′ − u‖p, ‖v′ − v‖p} for all u, u′ ∈ Bp
1(x0), v, v

′ ∈ Bp
1(0).

Now g being Hα at 0, there exists a continuous seminorm r on L(G) such that Br
1(0) ⊆ X

and ‖g(x)‖p ≤ ‖x‖α
r for all x ∈ Br

1(0). The map h : U × U → X, h(u, v) := u−1 ∗ v being
Lipschitz continuous, there is a continuous seminorm s ≥ r on L(G) such that Bs

1(x0) ⊆ U ,
h(Bs

1(x0)×Bs
1(x0)) ⊆ Br

1(0), and

‖h(u, v)− h(u′, v′)‖r ≤ max{‖u− u′‖s, ‖v − v′‖s} for all u, u′, v, v′ ∈ Bs
1(x0).

For any x, y ∈ Bs
1(x0) ⊆ U , we obtain

‖g(y)− g(x)‖q = ‖g(x) ∗ g(x−1 ∗ y)− g(x)‖q = ‖ν(g(x), g(x−1 ∗ y))− ν(g(x), 0)‖q

≤ max{‖g(x)− g(x)‖p, ‖g(x−1 ∗ y)‖p} = ‖g(x−1 ∗ y)‖p

≤ ‖x−1 ∗ y‖α
r = ‖h(x, y)− h(x, x)‖α

r ≤ ‖y − x‖α
s.

Hence g|U is Hα indeed. 2
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[9] —–, Conveniently Hölder homomorphisms are smooth in the convenient sense, in
preparation.
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