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Abstract

The accuracy and efficiency of several lower and higher order time integration
schemes in Eulerian-Lagrangian computations are investigated for solution of ad-
vection diffusion problems with nonlinear reaction terms. The implementation of
these schemes differ from their Eulerian counterparts in the fact that they are ap-
plied during each time step, along the characteristic curves rather than in the time
direction. The major focus is to examine the computational characteristics of a
class of implicit, explicit, and implicit-explicit time marching methods combined to
Eulerian-Lagrangian procedure. The obtained results for several benchmark prob-
lems are considered to be representative, and might be helpful for a fair rating of
solution schemes, particularly in long time computations.
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1 Introduction

A vast majority of phenomena in air pollution, fluid mechanics, atmospheric
motions, ocean circulation, porous media or meteorology has been modelled
by the transport-diffusion-reaction equations

φ(x)
∂u

∂t
+ v(t,x,u) · ∇u−∇ · (D(x)∇u) = f(t,x,u), in (0, T )× Ω,

α(x)u(t,x) + β(x)n · ∇u = g(t,x), on [0, T ]× Γ, (1)

u(x, 0) = u0(x), in Ω,
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where Ω is an open bounded subdomain in Rd (d = 1, 2 or 3) with smooth
boundary Γ, n denotes the outward normal on Γ, and [0, T ] is a time interval.
Here φ denotes, for example porosity or density of transport medium, u(t,x)
the concentration of some species, v (t,x,u) the velocity field, D(x) the dif-
fusion or dispersion tensor, and f(t,x,u) the reaction term or force source.
α(x), β(x) and g(t,x) are given boundary functions, and u0(x) is fixed ini-
tial condition. In the above and in what follows bold face types denote vector
quantities. We assume that v is divergence-free

∇ · v = 0 . (2)

Solving the equations (1) numerically is still a considerable task in the case of
convection dominated problems; particularly when certain nondimensional pa-
rameters reach high values. As example of these parameters the Reynolds num-
ber for Navier-Stokes equations and Peclet number for convection-diffusion
equations, this convective term is a source of computational difficulties and
oscillations. It is well known that the solutions of the equations (1) present
steep fronts and even shock discontinuities, which need to be resolved accu-
rately in applications and often cause severe numerical difficulties [13].

Eulerian methods use fixed grids and incorporate some upstream weighting
in their formulations to stabilize the schemes. Among the class of Eulerian
methods are the Petrov-Galerkin methods, the streamline diffusion methods
and also include many other methods such as the high resolution methods
from computational fluid dynamics, in particular, the Godunov methods and
the essentially non-oscillatory methods [6,20]. All of these Eulerian methods
are easy to formulate and to implement. However, time truncation errors dom-
inate their solutions that introduce numerical diffusion and are subject to the
Courant-Friedrichs-Lewy (CFL) stability conditions that put a restriction on
the size of the time steps taken in numerical simulations.

Eulerian-Lagrangian Methods (ELM), on the other hand, make use of the
transport nature of the governing equations (1). They combine the fixed Eu-
lerian grids with a particle tracking along the characteristic curves of the gov-
erning equations, compare [5,8,14,21,15,4]. The Lagrangian treatment in these
methods greatly reduces the time truncation errors in the Eulerian methods.
In addition, these methods alleviate the restrictions on the Courant number,
thus allowing for large time steps in the simulations.

Monotonicity and mass conservation are properties that may be relevant for
some problems and, therefore, their importance cannot be overlooked. In order
to overcome the principal drawback of ELM, that is the failure to conserve
mass, we consider in this paper an improved ELM with limiters to convert
the methods to quasimonotone and mass-conservative at minor additional
computational cost. Analysis of this method has been done in [7].
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The emphasis in this work is on the time integration of the resultant system
of ordinary differential equations (ODE) induced from discretization in space
variable along the characteristic curves. The proposed schemes range from im-
plicit procedures to explicit Runge-Kutta schemes and implicit-explicit split-
ting. These different methods lead to techniques all of which are occurring in
Eulerian framework since years. Theoretical considerations can provide some
ideas, concerning stability, convergence rates, restriction on time stepsizes, or
qualitative behavior of the solution, but a complete quantitative analysis is
not possible today. Therefore, the only way to make a judgment is to perform
numerical tests, at least for some problems which seem to be representative.
However, looking into the literature, it seems that there have not been many
studies of this type which can give satisfactory answers.

In this paper, first, Lagrangian and Eulerian stages in ELM methods are intro-
duced. Thereafter, time stepping techniques employed to integrate the semi-
discrete problem are presented. After experiments with the different time inte-
gration schemes for a variety of advection-diffusion reaction benchmark prob-
lems, accuracy and efficiency of the time integration schemes are discussed.

2 Eulerian-Lagrangian Methods

The ELM methods we consider in this paper consist on two fractional steps.
The first step is the Lagrangian interpretation for the advection part of (1) by
the modified method of characteristics, while the second step uses the Eulerian
coordinates for discretization of the reaction-diffusion part in (1).

2.1 Lagrangian Stage

Let first consider the homogeneous advective part of the problem (1)

Du

Dt
= φ(x)

∂u

∂t
+ v(t,x,u) · ∇u = 0, in (0, T )× Ω ,

u(t,x) = 0, on [0, T ]× Γ , (3)

u(0,x) = u0(x), in Ω .

Recall that Dw
Dt

measures the rate of change of the function w following the
trajectories of the flow particles. The fundamental idea of ELM is to impose
a regular grid at the new time level, and to backtrack the flow trajectories to
the previous time level. At the old time level, the quantities that are needed
are evaluated by interpolation from their known values on a regular grid.
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Let the time interval [0, T ] be divided into N subintervals [tn, tn+1] of length
∆t such that tn = n∆t and T = N∆t. Following [15,8], the characteristic
curves of the equation (3) are the solution of initial-value problem for ODE

dX (τ ; tn+1,x)

dτ
= v (τ,X (τ ; tn+1,x),u) , τ ∈ [tn, tn+1] ,

(4)
X (tn+1; tn+1,x) = x .

Note that X (τ ; tn+1,x) is the departure point at time τ of a particle that will
arrive at x at time tn+1. The ELM do not follow the flow particles forward in
time, as the Lagrangian schemes do, instead their trace backwards the position
at time tn of particles that will reach the points of a fixed mesh at time tn+1.
By so doing, the ELM methods avoid the grid distortion difficulties that the
conventional Lagrangian schemes have.

The solution of (4) can be expressed as

X (tn; tn+1,x) = x−
∫ tn+1

tn
v (τ,X (τ ; tn+1,x),u) dτ . (5)

To compute X (tn; tn+1,x) we used a method first proposed by [22] in the con-
text of semi-Lagrangian schemes to integrate the weather prediction equations.
Thus, we estimate the integral in (5) by a fourth order explicit Runge-Kutta
scheme which is accurate enough to maintain a particle on its curved trajec-
tory. The velocity is extrapolated at both, tn+ 1

2
and tn+1, and an iterative

process is used to decouple the equations, see [18,19] for details.

Once the characteristics feet X (tn; tn+1,x) are known, the conventional ELM
advect the solution of (3) at instant tn+1 as

u(tn+1,x) = ū(tn+1,x) = u (tn,X (tn; tn+1,x)) . (6)

In general, the departure points X (tn; tn+1,x) do not coincide with the spatial
position of a gridpoint. A requirement is then that the scheme to compute
X (tn; tn+1,x) be provided with a search-locate algorithm to find the host ele-
ment where such point is located. A general, efficient and easy to implement
scheme to perform this step in arbitrary grids is presented in [2]. Assuming
that a suitable approximation is made for X (tn; tn+1,x), then velocity v in (5)
and function ū in (6) must be obtained by interpolation from known values
at the grid points. The interpolation procedure we used in this paper is the
bicubic Lagrange interpolations most commonly used in practice [22,5,18].

Note that the divergence-free condition (2) implies that∫
Ω

v · ∇u dx = −
∫

Ω
u∇ · v dx = 0 ,
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and consequently leads for (3) to the conservation law∫
Ω
φ(x)u(t,x) dx =

∫
Ω
φ(x)u0(x), ∀ t ∈ [0, T ] , (7)

In many situations, the ELM methods do not preserve the condition (7)
straightforwardly. However, techniques have been studied in literature to con-
vert the conventional ELM methods to quasimonotone and mass conservation
methods. For instance, authors in [5] used so-called monotone interpolation,
this implies that a value obtained by interpolating in a grid cell, lies between
the maximum and minimum value in the vertices of this grid cell. The analysis
of stability and convergence of this method is detailed in [3]. Another way to
preserve (7) is to consider an ELM with adjusted advection. Here we briefly
describe the procedure and for further details and analysis we refer to [7].
Given u(tn,x), the solution at the next time level u(tn+1,x) is obtained in the
following steps:

Compute the departure point X (tn; tn+1,x) from (5), identify the element
of the mesh where such a point is located, and compute the approximation
ū(tn+1,x) = u (tn,X (tn; tn+1,x)) employing the bicubic Lagrange interpola-
tion. Evaluate the conservation integrals

C(tn) =
∫

Ω
φ(x)u(tn,x) dx, and C̄(tn+1) =

∫
Ω
φ(x)ū(tn+1,x) dx .

Perturb the characteristics curves according to

X+ = X (tn; tn+1,x) + δh, and X− = X (tn; tn+1,x)− δh ,

where h denotes the diameter elements to be introduced in the space dis-

cretization, and δ = ξ
v

φ
∆t, with ξ is a fixed constant in [0, 1). Then, set

ũ(tn+1,x) =

max(u (tn,X+),u(tn,X−)) , if C(tn) > C̄(tn+1) ,

min(u (tn,X+),u(tn,X−)) , if C(tn) ≤ C̄(tn+1) ,

and calculate the corresponding conservation integral

C̃(tn+1) =
∫

Ω
φ(x)ũ(tn+1,x) dx .

If C̄(tn+1) 6= C̃(tn+1), calculate the limiting coefficient θ = θ(tn) in such a way
that

C(tn) = θC̄(tn+1) + (1− θ)C̃(tn+1) .

Update the new solution u(tn+1,x) by

u(tn+1,x) = θū(tn,x) + (1− θ)ũ(tn+1,x) . (8)
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It is easy to see that∫
Ω
φ(x)u(tn+1,x) dx = θC̄(tn+1) + (1− θ)C̃(tn+1) = C(tn) ,

or C(tn+1) = C(tn), and the new adjusted solution (8) conserves the mass.
This adjusted ELM which requires additional computational work can be eas-
ily implemented in an existing conventional ELM codes.

2.2 Eulerian Stage

In order to differentiate in the characteristic direction s = s(x) associated
with the operator D

Dt
, we first define

γ(x) =
[
φ(x)2 + ‖v(t,x,u)‖2

] 1
2 ,

where ‖ · ‖ is the Euclidean norm. Then,

∂

∂s
=

1

γ(x)

D

Dt
,

and the first equation in (1) is transformed to

γ(x)
∂u

∂s
−∇ · (D(x)∇u) = f(t,x,u) .

Based on the approach presented in [8], the characteristic derivative is approx-
imated by

γ(x)
∂u

∂s
≈ γ(x)

u(tn+1,x)− ū(tn,x)

[‖x−X‖2 + (∆t)2]
1
2

= φ(x)
u(tn+1,x)− ū(tn,x)

∆t
.

The ELM methods can be applied in combination with finite element, finite
difference or spectral methods. In particular, the application of ELM in the
framework of finite element is known as the Characteristic-Galerkin method
[4]. The first application to transport-diffusion problems is due to [8], the
authors combined the finite element and finite difference methods with the
method of characteristics to treat the one-dimensional form of the problem
model (1) without reaction term (i.e. f = 0).

Define a numerical mesh over Ω with grid-points xh for spatial scale h. We
use the notations wn(x) = w(tn,x), wh(t) = w(t,xh) and wnh = w(tn,xh)
unless otherwise stated. Finite element or finite difference methods used for
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the space discretization of the resulting problem from the Lagrangian stage,
leads to the semi-discrete problem

φh
duh
dt
−Dhuh = fh(t, uh), t ∈ (0, T ] ,

(9)
uh(0) =u0(xh) ,

where Dh denotes the space discretization of the diffusion operator with the
boundary conditions included. The initial-value problem (9) can be rewritten
in common ODE notation as

dU

dt
= F(t,U) , (10)

where U and F are vector-valued functions with the entries uh and 1
φh

(Dhuh+
fh(t, uh)), respectively. Note that the well known method of lines applied di-
rectly to (1) results also in a system of ODE like (10), however, here the
convective term which cause many difficulties in Eulerian semi-discretization
has been moved from the right hand side in (10) using the Lagrangian step in
ELM formulation.

3 Time Integration Schemes

In this section we briefly review some of the methods used to integrate the
system of ODE (9) subject to the computed solution in the Lagrangian stage

ūnh = u (tn,Xh(tn; tn+1,xh)) . (11)

Difficulties often appears when the Jacobian of F, ∂F/∂U, has large eigen-
values. This may rise to stiffness. Thus, time integration schemes for ELM
depend strongly on the diffusion coefficients and the grid refinements, and for
these reasons it is preferable that these schemes have to be either implicit or
explicit with large stability regions. On other hand, results on convergence
analysis of ELM reported in [8,14,4] showed that the spatial error of ELM
methods is O(hα) with 2 ≤ α ≤ 3. Therefore, we consider only second or
higher order time discretization. We further demand that the methods pro-
posed are not diffusive (do not introduce extra numerical diffusion) and avoid
the order reduction. The following time integrators are selected:
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3.1 Eulerian-Lagrangian Crank-Nicolson (ELM-CN)

The most popular time integrator for (9) in the ELM framework is the Crank-
Nicolson method. Let ūnh being computed as in (11), then the ELM-CN scheme
solves for un+1

h

φh
un+1
h − ūnh

∆t
− 1

2
Dhun+1

h − 1

2
Dhūnh =

1

2
fn+1
h (un+1

h ) +
1

2
fnh (ūnh) , (12)

Notice that the conventional Crank-Nicolson and ELM-CN schemes are un-
conditionally stable, so that the choice of ∆t may be based on accuracy con-
siderations. To find the solution un+1 from (12) one has to solve, at each time
level, a linear/nonlinear system of algebraic equations. For instance, in pure
advection-diffusion problems (i.e. f = 0) only linear systems arise, and Krylov
subspace methods can be used as linear solvers.

3.2 Eulerian-Lagrangian Explicit Runge-Kutta (ELM-RK4)

The fourth order Runge-Kutta formulae [10] to solve (9) can be written as

K
(1)
h =Dhūnh + fh (tn, ū

n
h) ,

K
(2)
h =DhK(1)

h + fh

(
tn +

∆t

2
, ūnh +

1

2
K

(1)
h

)
,

K
(3)
h =DhK(2)

h + fh

(
tn +

∆t

2
, ūnh +

1

2
K

(2)
h

)
, (13)

K
(4)
h =DhK(3)

h + fh
(
tn + ∆t, ūnh +K

(3)
h

)
,

un+1
h = ūnh +

∆t

6φh

(
K

(1)
h + 2K

(2)
h + 2K

(3)
h +K

(4)
h

)
.

Because ELM-RK4 evaluate explicitly the right-hand side of the system (9),
then it has to satisfy a stability criterium. Based on the analysis in [16] a
stability criterium can be derived in such a way that the ELM-RK4 scheme is
stable if the time stepsize ∆t satisfies

∆t ≤ h2

σh2 + 2dd̄
, (14)

where d̄ is the upper bound of the diffusion matrix D, d is the dimension of
the space domain Ω, and σ is the maximum of the Jacobian |∂f/∂u|.
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3.3 Eulerian-Lagrangian Explicit Runge-Kutta Chebychev (ELM-RKC)

The Runge-Kutta Chebychev (RKC) method [23] has been designed for ex-
plicit time integration of systems of parabolic equations. The scheme possesses
an extended real stability interval. To solve (9), the RKC scheme takes the
form

K
(0)
h = ūnh ,

K
(1)
h =K

(0)
h + µ̃1F

(0)
h

K
(j)
h =µjK

(j−1)
h + νjK

(j−2)
h + (1− µj − νj)K(0)

h + (15)

µ̃jF
(j−1)
h + γ̃jF

(0)
h , 2 ≤ j ≤ s ,

un+1
h =K

(s)
h .

The coefficients are define for arbitrary s ≥ 0 as follows. Consider the Cheby-
shev polynomial of the first kind of degree j

Tj(z) = cos(jarcosz), −1 ≤ z ≤ 1 .

Then

ε =
2

13
, q0 = 1 +

ε

s2
, q1 =

T ′s(q0)

T ′′s (q0)
,

bj =
T ′′s (q0)

(T ′s(q0))2
, (2 ≤ j ≤ s), b0 = b2, b1 = b2 ,

and

µ̃1 = b1q1, µj =
2bjq0

bj−1

, νj =
−bj
bj − 2

, µ̃j =
2bjq1

bj−1

,

γ̃j = (1− bj−1Tj−1(q0))µ̃j, (2 ≤ j ≤ s) .

In(15) the stage F
(j)
h = ∆t

φh

(
DhK(j)

h + fh(tn + cj∆t,K
(j)
h )

)
. The cj’s are

cj =
T ′s(q0)

T ′′s (q0)

T ′′s (q0)

T ′s(q0)
≈ j2 − 1

s2 − 1
(2 ≤ j ≤ s), c1 =

c2

T ′2(q0)
≈ c2

4
, cs = 1 .

It is worth remarking that the number of stages s in ELM-RKC and the
conventional RKC schemes varies with ∆t such that (see e.g. [23])

s = 1 + entier

(1 +
(σh2 + 2dd̄)∆t

0.65h2

) 1
2

 . (16)

However ELM-RKC differs from RKC in the fact that ELM-RKC is applied
during each subinterval [tn, tn+1], along the characteristic curves, rather than
in the time direction.
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3.4 Eulerian-Lagrangian Implicit Runge-Kutta (ELM-SDIRK3)

In [10], a third order Singly Diagonal Implicit Runge-Kutta (SDIRK3) scheme
has been introduced. Applied to (9) ELM-SDIRK3 can be implemented as

K
(1)
h = ūnh + γ

∆t

φh

(
DhK(1)

h + fh
(
tn + γ∆t,K

(1)
h

))
,

K
(2)
h = ūnh + (1− 2γ)

∆t

φh

(
DhK(1)

h + fh(tn + (1− γ)∆t,K
(1)
h )

)
+

(17)

γ
∆t

φh

(
DhK(2)

h + fh(tn + (1− γ)∆t,K
(2)
h )

)
,

un+1
h = ūnh +

∆t

2φh

(
DhK(1)

h + fh(tn, K
(1)
h ) +DhK(2)

h + fh(tn, K
(2)
h )

)
,

where γ = 3−
√

3
6

. Note that the new solution un+1
h in (17) is independent

of any explicit process within the integration step. At each time step the
ELM-SDIRK3 involves the storage of two levels of the solution ūnh, and re-
quires two linear/nonlinear equation solvers per step. For efficiency reasons it
is recommendable that the resultant nonlinear algebraic equations are solved
iteratively with multigrid techniques to speed up the computational work.

3.5 Eulerian-Lagrangian Rosenbrock Scheme (ELM-ROS3P)

The significant shortcomings that time integration schemes for (9) might suffer
is the order reduction [17]. In order to avoid this disadvantage in the standard
Rosenbrock methods, the authors in [12] proposed a third-order improved
Rosenbrock method (ROS3P). Applied to the equations (10) the combined
ELM to ROS3P (ELM-ROS3P) scheme reads

(
I

γ∆t
− ∂Fn/∂U

)
K(i) = F

tn + αi∆t,U
n +

i−1∑
j=1

aijK
(j)

+

i−1∑
j=1

cij
∆t

K(j) + γi∆tF(tn,U
n), i = 1, 2, 3 ,

Un+1 = Un +
3∑
i=1

miK
(i) , (18)

where I is the identity matrix and ∂Fn/∂U is the matrix Jacobian of F(t,U)
with respect to U evaluated at (tn,U

n). The other parameters are taken from
[12] such as:
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γ = 7.886751345948129E − 01

a21 = 1.267949192431123E + 00 c21 = −1.607695154586736E + 00

a31 = 1.267949192431123E + 00 c31 = −3.464101615137755E + 00

a32 = 0.000000000000000E + 00 c32 = −1.732050807568877E + 00

α1 = 0.000000000000000E + 00 γ1 = 7.886751345948129E − 01

α2 = 1.000000000000000E + 00 γ2 = −2.113248654051871E − 01

α3 = 1.000000000000000E + 00 γ3 = −1.077350269189626E + 00

m1 = 2.000000000000000E + 00

m2 = 5.773502691896258E − 01

m3 = 4.226497308103742E − 01

Notice that during the ELM-ROS3P integration loop no nonlinear equation
solvers are needed. All what is needed, however, is the Jacobian matrix eval-
uated analytically or computed using forward difference formula. The linear
solvers can be again a Krylov subspace method. See [12] for numerical tests
with ROS3P in Eulerian form.

3.6 Eulerian-Lagrangian Implicit-Explicit Splitting (ELM-IMEX)

The last time integration scheme we present in this section is the diagonally
Implicit-Explicit (IMEX) Runge-Kutta methods frequently used for time in-
tegration of partial differential systems which contain stiff and non stiff terms,
we refer to [1] for more details and further references are therein. Let split the
equation (10) as

dU

dt
= Fexp(t,U) + Fimp(t,U) , (19)

where Fexp(t,U) and Fimp(t,U) are the parts of F to be treated explicitly and
implicitly, respectively. In practice, in order to avoid nonlinear iterations, Fexp

contains the nonlinear non stiff part (e.g. reaction terms), and Fimp includes
the linear stiff part (e.g. diffusion terms). Hence, setting Fexp = f and Fimp =
Dh in (19), the combined ELM to IMEX (ELM-IMEX) scheme we consider
for the semi-discrete problem (9) consists of
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K
(i)
h = ūnh +

∆t

φh

i−1∑
j=1

ãijfh
(
tn + c̃i∆t,K

(j)
h

)
+

∆t

φh

s∑
j=1

aijDhK(j)
h ,

(20)

un+1
h = ūnh +

∆t

φh

s∑
i=1

w̃ifh
(
tn, K

(i)
h

)
+

∆t

φh

s∑
i=1

wiDhK(i)
h ,

where s is the number of stage, aij are the stage weights, ci the abscissas, and
bi are the main scheme weights. The s × s matrices Ã = (ãij); A = (aij) and
the s-vectors c̃, c; w̃; w are the standard coefficients which characterize the
IMEX s-stage Runge-Kutta scheme, and they are given by the usual double
Butcher tables. In our numerical computation we consider the third order
IMEX scheme developed in [1], the associated double Butcher tables can be
represented as

0 0 0 0 0 0
1
2

1
2

0 0 0 0
2
3

11
18

1
18

0 0 0
1
2

5
6

−5
6

1
2

0 0

1 1
4

7
4

3
4
−7

4
0

1
4

7
4

3
4
−7

4
0

0 0 0 0 0 0
1
2

0 1
2

0 0 0
2
3

0 1
6

1
2

0 0
1
2

0 −1
2

1
2

1
2

0

1 0 3
2

−3
2

1
2

1
2

0 3
2

−3
2

1
2

1
2

The left and right tables represent the explicit and the implicit Runge-Kutta
methods. Note that in the splitting (20) only linear solvers are required.

4 Numerical Examples

In order to illustrate as well as to compare the performance and accuracy of
the schemes introduced in the previous section, we have run some numerical
tests for two-dimensional version of advection-diffusion reaction equation (1)
i.e. x = (x, y)T and v = (v1, v2)T . We assumed constant diffusion coefficient
D(x) = D and we set φ(x) = 1. We defined the CFL number as follows

CFLx = max |v1|
∆t

∆x
, CFLy = max |v2|

∆t

∆y
, CFL =

√
CFL2

x + CFL2
y . (21)

For the two first examples the analytical solution is known, so that we can
evaluate the error function e as

enh = unh − u(tn,xh),

where u(tn,xh) and unh are the exact and numerical solutions, respectively, at
grid-points xh and time tn. The following error norms are defined
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‖e‖L∞t = max
1≤n≤N

‖en‖L∞s ,

‖e‖L1
t

= ∆t
N∑
n=0

‖en‖L1
s
,

‖e‖L2
t

=

(
∆t

N∑
n=0

‖en‖2
L2
s

) 1
2

.

Here ‖.‖Lps = ‖.‖Lp(Ω) and ‖.‖Lpt = ‖.‖Lp([0,T )) denote the discrete Lp-norms in
the space domain Ω and time interval [0, T ), respectively. These error norms
along with the elevation of contour plots give a good idea of the accuracy of the
procedure. The efficiency of the solvers is compared in the CPU time context
on a PC with AMD-K6 200 processors running Fortran codes under Linux 2.2.
In all our computations, the spatial domain Ω is uniformly discretized with
∆x = ∆y = h, we used finite difference method for the space dicretization
with a fourth-order centred difference for the the diffusion operator Dh using
the nine stencil points. The resulting algebraic systems of linear equations were
solved using the preconditioned conjugate gradient. We used the diagonal as
preconditioner and a tolerance of 10−6 to stop the iterations.

4.1 Example 1

First we check the accuracy of the schemes in terms of temporal error norms.
We consider the problem model (1) in the unit square with v = (x,−y)T . The
reaction term f , boundary and initial conditions are chosen in such a way

u(t, x, y) = sin(πxy(1 + t))

is the analytical solution of the problem. In table 1 we summarize the relative
error norms and the CPU time obtained at t = 1 for different time and space
sizes keeping D fixed to 5× 10−3.

In terms of accuracy table 1 shows that only ELM-SDIRK3 and ELM-ROS3P
have preserved the expected third order of accuracy, while the order of accu-
racy has been reduced in other schemes. For instance, the ELM-RK4 suffer
seriously from the order reduction, it also goes unstable when the grid size is
refined to 1

128
(due to the stability condition (14)).

Regarding to the efficiency of the schemes, the CPU time in table 1 gives
advantage to the ELM-RKC scheme. Needless to say that by decreasing the
space step h the number of stages s in ELM-RKC increases according to the
formula (16). On the other hand, we have noted that the main part of the CPU
time in ELM-SDIRK3 and ELM-SDIRK3 was used for solving the associated
linear systems using the preconditioned conjugate gradient subroutine.

13



Table 1
Results for the accuracy test problem with D = 5×10−3. Here — means instability
of the scheme and the CPU time is given in seconds.

∆t h L∞t -error L1
t -error L2

t -error CPU

10−2 1
64 3.85E-04 3.61E-04 3.66E-04 1.96

ELM-CN 5× 10−3 1
64 9.99E-05 9.85E-05 9.89E-05 3.91

5× 10−3 1
128 9.97E-05 9.59E-05 9.81E-05 9.57

10−2 1
64 2.21E-04 2.03E-04 2.19E-04 2.56

ELM-RK4 5× 10−3 1
64 5.07E-05 4.95E-05 4.97E-05 5.71

5× 10−3 1
128 — — — —

10−2 1
64 3.85E-04 3.61E-04 3.67E-04 1.73

ELM-RKC 5× 10−3 1
64 1.26E-05 1.14E-05 1.16E-05 3.02

5× 10−3 1
128 1.17E-05 1.02E-05 1.07E-05 8.78

10−2 1
64 1.36E-04 1.29E-04 1.31E-04 2.97

ELM-SDIRK3 5× 10−3 1
64 1.81E-05 1.70E-05 1.72E-05 7.53

5× 10−3 1
128 1.75E-05 1.61E-05 1.69E-05 19.71

10−2 1
64 1.44E-04 1.40E-04 1.43E-04 2.71

ELM-ROS3P 5× 10−3 1
64 2.00E-05 1.93E-05 1.94E-05 6.94

5× 10−3 1
128 1.90E-05 1.72E-05 1.76E-05 18.13

4.2 Example 2

This example considers the advection-diffusion of rotating Gaussian pulse.
The equations are of the form (1) with f = 0, v = (−4y, 4x)T , initial and
boundary conditions are taken from the analytical solution

u(x, y, t) =
σ2

σ2 + 4Dt
exp

(
−(x̄− x0)2 + (ȳ − y0)2

σ2 + 4Dt)

)
,

where x̄ = x cos(4t) + y sin(4t), ȳ = −x sin(4t) + y cos(4t), x0 = −0.25, y0 = 0
and σ2 = 0.002. The computational domain is [−0.5, 0.5]× [−0.5, 0.5] and the
time period required for one complete rotation is π

2
. We set D = 10−4 and

we display in table (2) the maximum, minimum, the spatial relative L2-error
norms and the CPU time after one complete revolution.
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Table 2
Results for the Gaussian pulse after one revolution with D = 10−4 and different
CFL numbers. The CPU times are listed in minutes.

h CFL umax umin L2
s-error CPU

Analytical 1
64 0.8642 0.0

1
64 2.5 0.8357 0.0 1.52E-03 1.50

ELM-CN 1
64 1.25 0.8279 0.0 1.51E-03 2.87

1
128 2.5 0.8491 0.0 4.08E-04 6.19

1
64 2.5 0.7810 −0.0001 1.03E-03 1.91

ELM-RK4 1
64 1.25 0.7323 −0.0001 1.02E-03 4.30

1
128 2.5 0.8114 0.0 2.64E-04 9.16

1
64 2.5 0.7701 −0.0002 1.54E-03 1.02

ELM-RKC 1
64 1.25 0.7319 −0.0005 1.52E-03 2.41

1
128 2.5 0.7921 0.0 4.22E-04 5.33

1
64 2.5 0.8639 0.0 3.63E-04 3.02

ELM-SDIRK3 1
64 1.25 0.8633 0.0 3.61E-04 5.93

1
128 2.5 0.8641 0.0 8.39E-05 13.17

1
64 2.5 0.8640 0.0 3.60E-04 3.11

ELM-ROS3P 1
64 1.25 0.8634 0.0 3.59E-04 6.07

1
128 2.5 0.8641 0.0 8.81E-05 14.28

Table (2) reflects the expected spatial order of accuracy in ELM schemes
and the quasi-monotonicity of the ELM when it combined with implicit time
integration schemes (compare for instance the minimum and the maximum in
ELM-SDIRK3 or ELM-ROS3P). In figure (1) we plot the results obtained for
two different values of D, h = 1

64
and CFL = 2.5 using the ELM-SDIRK3.

4.3 Example 3

This example consists to test the ability of ELM methods to compute the
steady state solution of incompressible Navier-Stokes problem. Here we con-
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Fig. 1. The plots of u after one revolution using ELM-SDIRK3 scheme.

sider the canonical two-dimensional lid-driven cavity flow from [9]. We used
the same geometry and boundary condition as in [9]. The time loop in our
computations was terminated when the difference between two consecutive
computed solutions in L∞-norm is less than 10−5.

In table 3 we compare the results for different Reynolds numbers and grid sizes.
We have observed that ELM-ROS3P scheme gives exactly the same results as
[9]. Furthermore, the plots of stream function, computed using ELM-ROS3P
scheme, in figure 2 are in good agreement with those presented in [9].
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Fig. 2. The stream function plots using the ELM-ROS3P scheme.

4.4 Example 4

Our final test consists of applying the ELM-IMEX scheme to an advection-
diffusion problem with nonlinear reaction source. The problem statement adds
the convection-diffusion term to the standard Brusselator problem. This non-
physical problem is much harder than the previous tests, both because the
coupling equations through the reaction terms, and because the nonlinearity
of this reaction terms. The problem without convection was solved in [23]
using the conventional RKC. The governing system is

∂u1

∂t
+ v.∇u1 −D∆u1 = 1 + u2

1u2 − 4.4u1 ,

(22)
∂u2

∂t
+ v.∇u2 −D∆u2 = 3.4u1 − u2

1u2 ,

18



subject to homogeneous Neumann boundary conditions and the following ini-
tial conditions,

u1(0, x, y) = 1.5 + y, u2(0, x, y) = 1 + 5x.

The diffusion coefficient D used is 2×10−3 and the velocity field v is given by

v = (1− e−t)
(
−∂w
∂y

,
∂w

∂x

)T
, where w(x, y) = sin2(πx) sin2(πy) .

This problem was run on the unit square. In figure 3 we plot the behavior of

Table 4
Results for the Brusselator with convection-diffusion at t = 1.5 with D = 2× 10−3

and ∆t = 10−2. The CPU time is listed in minutes

h u1,min u1,max Relative mass CPU

ELM-RK4 1
64 0.268 4.866 0.978 1.29

ELM-RKC 1
64 0.267 4.866 0.997 0.73

ELM-ROS3P 1
64 0.268 4.867 1.0 2.15

ELM-IMEX 1
64 0.268 4.867 1.0 6.27

ELM-RK4 1
128 —– —– —– —–

ELM-RKC 1
128 0.266 4.863 0.999 2.93

ELM-ROS3P 1
128 0.267 4.864 1.0 8.31

ELM-IMEX 1
128 0.267 4.864 1.0 23.39

the u2 component using the ELM-IMEX scheme with h = 1
64

and ∆t = 10−2.
Some other accuracy results are listed in table 4. It is apparent that the mass
is conserved in the ELM schemes presented in this paper.

5 Concluding Remarks

In this paper we have selected several time integration schemes to be combined
with a modified method of characteristics for solutions of advection-diffusion
reaction problems. These schemes included fully explicit, fully implicit and
implicit-explicit approaches which have been widely used in the method of
lines to integrate the space semi-discretized partial differential equations. The
main difference between method of lines and the Eulerian-Lagrangian methods
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Fig. 3. The plots of the component u2 obtained by ELM-IMEX scheme.

presented here is that the convective term that has to be treated carefully in
method of lines has been moved from ELM methods by using the Lagrangian
interpretation of the transport nature of the equations. This fact makes the
ELM very attractive for the convection dominated flow problems where the
steady state computations are needed and the time stepsize is restricted by
the CFL conditions.

In order to show clearly the effects of time integration schemes for ELM com-
putations we have modified the conventional ELM to decrease for instance,
interpolation effects and spatial errors. Hence, we have used an ELM with
adjusted advection to ensure conservation of mass at each time step, we also
used high order (fourth order Runge-Kutta) scheme to calculate the depar-
ture points and high order interpolation (bicubic Lagrange) procedures. Fur-
thermore, we have used high order space discretization (fourth order centred
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difference). All these ingredients together are combined and turned into accu-
rate time marching ELM scheme to tackle some difficulties in the numerical
integration of the advection-diffusion reaction problems.

Numerical experiments have been carried out on two-dimensional advection-
diffusion problems with linear and nonlinear reaction terms. Using different
diffusion regimes and grid refinements, we have compared the accuracy and
the efficiency of the schemes in terms of relative errors and CPU times.

Finally, we want to point out that due to the use of the Lagrangian coordinates,
the ELM methods require more implementation work than Eulerian methods
which are relatively easy to formulate and to implement.

Acknowledgements. The author would like to thank J. Lang for many stim-
ulating discussions about the implementation of ROS3P scheme.
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