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Abstract

We construct and implement a new nonoscillatory relaxation scheme for multi-
dimensional hyperbolic systems of conservation laws. The method transforms
the nonlinear hyperbolic system to a semilinear model with a relaxation source
term and linear characteristics which can be solved numerically without using
either Riemann solver or linear iterations. To discretize the relaxation system
we consider a high-resolution reconstruction in space and a TVD Runge-Kutta
time integration. Detailed formulation of the scheme is given for problems in
three space dimensions and numerical experiments are implemented in both
scalar and system cases to show the effectiveness of the method.

1. Introduction

In this paper we are interested in solving numerically the multidimen-
sional hyperbolic system of conservation laws

oU  OR(U) | 9G(U)  OH(U)
ot ox dy 0z
U(t = O,.’E,y,Z) = Uo(x,y,z),

=0, t>0, (z,9,2) €,

(1)

where U(t,z,y,2) € RY is a vector of conserved quantities; F(U) € RV,
G(U) € RN and H(U) € RY are nonlinear flux functions; and U, € RV
is given initial data. We assume that the Jacobian 0F/0U, 0G/0U and
OH/0U are diagonalizable with real eigenvalues {A1,...,An}, {#1,..., 4N}
and {{1,...,€n}, respectively.
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The relaxation system we propose in this paper reads

ou ov oW 0Z
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ot + Ox 5(V (0)). )
oW _oU 1
o "B, T --(W-G(U)),
0z _0U 1
— +C— =-=(Z - H(U)),

ot 0z €

where V.€ RV, W € RY and Z € RY are relaxation variables; A =
diag{A4i,...,An}, B = diag{B,...,Bn} and C = diag{C},...,Cn} are
positive diagonal matrices; and ¢ is the relaxation time. The relaxation sys-
tem (2) has a typical semilinear structure with linear characteristic variables

V+VvVAU, W+vBU and Z++VCU. (3)

In the zero relaxation limit ¢ — 0, we recover the original system (1)
provided the subcharacteristic condition [4, 8, 6],

A2t &
Ao My Sy N 4
4, " to b V="ben )

holds in (2). Note that if we set the local equilibrium
V=F(U), W=G(U) and Z=H(U), (5)

then the first equation of (2) reduces to the original conservation law (1).

2. Third-order relaxation method

To design a relaxation scheme for the system (2), it is convenient to
treat the spatial discretization and the time discretization separately using
the method of lines.

2.1. Semi-discrete approximation We divide the spatial domain into
cells I; j , = [xi—é’xw%] X [yjfé,yﬂ%] X [zkfé,z,ﬁ_%] with uniform sizes Az,
Ay and Az and centred at (z; = iAz,y; = jAy, 2z, = kAz). We use the
notations U1, (t) = U, 251,95, 2k), Uyju1 1 (8) = Ut 26,551, 2k),

1 1 1 [%y [Yird [Tet}
Uigr() = - A Ut dzdyd
sak{1) AxAyAz/‘ ,é. ‘l (t,,y, z)dzdydz,

T, 1 1
i3 =3 k—
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to denote the point-values and the approximate cell-average of the func-
tion U at (t7 xii%ay]’a Zk)a (ta T, yjj:%a Zk)a (ta TiyYj, Zk;j:%)a and (ta Ty Yjs zk:)a
respectively. We also use the following difference notation

U U

Z,]+%,k o Uiaj_%ak
A ?
! (6)

Z+%7]7k - Uz_%a]ak

DzUi,j,k = Az )

DyU, k=

Uijnrt = Ut

DUk = AL

Then, the space discretization of (2) reads

dU; ik
# + Dz Vijk +DyWijk + D22 = 0,

Vi
g T AUk =

(Vi,j,k - F(U)z’,j,k) ) o

(Wi,j,lc - G(U)z’,j,k) )

(Zi,j,k - H(U)i,j,k> )

M| =M= M|

AW, ;
T:M +BDy Uk =

dZ; ;
& TOD:Uijk =

The v-th component of approximate solution is reconstructed by a piecewise
polynomial over the grid points as

Uu(xa Y, z, t) = Z Pi,j,k(xa Y, z; U)Xi,j,k ('Ta Y, Z), (8)
4,5,k

where x; ;i’s are the characteristic functions in the cell I; j ;. The poly-
nomials P; ;; are defined in I; ; » and reconstructed direction by direction
as

Pijk (2, Y, 2, U0) = Pi(2; U) + Pj(y; U) + Py (2 U).

For simplicity in presentation, the subscript v will be omitted in (8). The
degree of the polynomials P;, P; and P is determined by the required
order of accuracy of the method. In this paper we consider the third order
CWENO reconstruction [5]. In the following we formulate the z-direction
polynomial P;(z; U), the formulation of P;(y; U) and Pk (z; U) can be done
analogously. Hence

Pi(z;U) = wr, Pr,(z) + wgPr(z) + wePe(z),
where the weights wy, [ € {L, R, C} are defined as

Q)
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Note that the normalizing factor ), o, is used here to guarantee ), w; = 1.
The smoothness indicators I.5; and the polynomials P;(x) are given by

IS, = Uik — Ui14k)%,
ISk = (Uiy1jk — Uijr)?,

13 1
IS¢ = & (Uit — 2V + Ui-1,3)* + 7 (Ui = Uicrk)

PL(.’L’) — Zéjyk + Z:]ak Axl lzjak (.’L’ _ ‘,EZ)’

Ujk  Uisijk — Uijn
PR(:L') — Zé]: + Z"’l;.jaAm %7, (.T _ -’LI’L)

Uik 1
Po() = =2 = 57 Uit h = 2V + Uio1p) +

U.+1, '7k — U'_lﬂ '1k (U+1, "k — 2U’ '1k + U'_ly ak)

: J2(Aa:)z (2 — my) + — (A;])Q b (g — 1)

We can now discretize the characteristic variables (3) as follows

(V£ VA1 = Pilz 1V £ VAU),
(W £VBU), jy1, = (yHl,W:I:\/_U) (9)
(Z£VCU), jps1 = Pilzy13Z £ VCU).

Notice U, V, W, Z, A,, B, and C, are the v-th (v =1,..., N) components
of U, V, W, Z, A, B and C, respectively. Solving (9) for the unknowns

Uit ik Vi bk Uiged oo Wige i Uigres and 2,1 gives
1
Uit Lik = 5 7a (P"(‘”H%;V +VAU) - Pipa(ey 43V - \/XU)) :
1
Vi+%,j,k =3 (’P(xH;;V + \/KU) +Pi+1(xi+_;;V — \/KU)) :
Uij+1k = 2\/— ( i (W3 W+ VBU) - Pi+1(y;415 W = \/_U)>

1
Wijtih =3 (Pj(yj+l;w +VBU) + Pi+1(yj+%;W - \/EU)) ;
Ui,j,k+% = 2\/_ (Pk(zk+1 :Z +V/CU) — P,H_l(zk_i_%; Z - \/EU)) ,
Zz’,j,lc—l—% D) (’Pk(zk+%; Z+ \/EU) + Pk+1(zk+%; Z— \/EU)) .
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Therefore, we obtain the following expressions for the numerical fluxes in
the semi-discrete equations (7)

T,+ T,—
o, = Ykt Uik Viengk = Vijk | Zigk © Tid1j
a0k 2 20WA, WA,
T,+ T,—
V — Wajak + VZ’+1=]ak _ A UZ+1=.75k B UZ:Jyk + o.iajﬂk B O-Z+1ijﬂk .
itggk = T o VAW 2 4 '
U U W W o.y;+ _|_ o.ya_
U . 1, = ijk + Vij+1,k W 41k — Wigk + 4,5,k 5,j+1,k
Loty ok 2 2B, 4B,
ya+ Y,—
W J— WZ!]JC + WZ:]"’Lk _ /B UZ,]"’Lk — UZ,Jak + Ui’j,k B 0-17.7+1’k
iaj+§7k - 2 v 2 4 ?
ot 40P
g2 Vet Uigerr - Wijker = Wik | gk ™ %igikt
ikt 2 2V/C, 4/C,
2+ _Z,—
7= ikt Lk /o Uijkt1 — Uik o Jigk ~ Tijkt
Z,],k+§ 2 v 2 4 ’
where az’ji, Uka and O'Z’j:,tk are the slopes of V + +vAU, W + +v/BU and

Z + v/CU on the cell I; j ., respectively. They are defined by
k=L ((V VAU —(V + \/AuU)z'—l,j,k)
+ wi ((V £ VAU) i1 — (V £ \/AVU)i,j,k)

P (R 5 A

n % ((V + VA i1k — 20V VAT )i+ (V £ \/A_VU)Z'—LJ"’“)
_ % ((V + VA )i jr1 =2V £ VAU + (V£ \/A_uU)z',j—l,k)
_ % ((V £ VA jpr —2(V £ VAU )i+ (V £ \/A_VU)Z'J”H) ’

Y.+ _
gk

((W +BU)ijx— (Wt \/B_VU)i,j—l,k:)
((W £ /B,U)iji1p— (W= \/BiuU)i,j,k>

W /BU)iji1h— (W BuU)i,jfl,k)

W+ Vv BuU)z’—H,j,k — 2(W + \/B,/U)i,k,j + (W + vV BuU)z’—l,j,k>

© ‘QSH- © ‘QEH- © ‘QEH- B ‘QEH- h o

(
(W £ VB ji1s = 200 £ VBD)ig+ (W £ VB 1)
(
(

W £/ BVU)i,j,k+1 —2(W + \/BUU)i,k,j + (W + \/BUU)i,j’kfl) ,
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(2% Va4~ 2+ VOU)41)
((Z + \/C_G/U)i,j,k+1 - (Z+ \/CTUU)z',j,k)

((Z + +/ CI/U)i,j,k+1 —(Zx CVU)i,j,k:—l)
+
+ 28 (24 VUi = 2Z 4 VOV + (2O U)igpon)

+
w
— TC (Z + +/ CVU)z'+1,j,k — 2(Z + v CVU)i,j,k + (Z =RV CVU)i—laj,k)
+
w
— 2C (2 VOD)iger = 2AZ £ VOU)iga+ (2O U)ig1)
The weight parameters wf, wp and wC for afji are given by
+
wi = , l,me{L,R,C}, «F = , CL=Cr=-, Cc==,
L Y LIsE)? 4 2

2
15F = ((V + VA — (V£ \/AuU)i—l,j,k) ;
2

1S3 = ((V VAU ) i1 — (VEVAD)ijk) »

13

2
1S = 3 ((V VAU )iy 6 —2(VEVAU) ke + (V£ AuU)iq,j,k)

1 2
— ((V VAU )it — (V £ \/AI/U)z'—l,j,lc) :
ik or oz’jjfk are obtained by

The corresponding weight parameters for o; g

changing V ++/A,U to W ++/B,U or Z ++/C,U in the above formulas and
differentiating respect to y-direction or z-direction, respectively. We would
like to point out that in this higher order scheme we approximate F(U) ik
G(U), ;1 and H(U), ; , in (7) using the fourth-order Simpson quadrature
rule as opposed to the Midpoint Rule which was used in the first and second
order reconstructions in [4].

2.2. Fully-discrete approximation The semi-discrete system (7) can
be written as a system of ordinary differential equations of form

dY 1
O —B(Y) - —U(Y), 10
5 (Y) - -¥(Y) (10)
where the time-dependent vector functions
Ui jk 0
y=| YiE | gy | Vieeo F(@ise |
Wik Wik — G(U)ijk
Zijk Z;jr — H(U)ijx



—DzVijk —DyWijk — D:Zijk
—AD; Uik
—BD, W,
—CD,Z;

When ¢ — 0, the equations (10) become highly stiff and any explicit treat-
ment of the right hand side in (10) requires extremely small time stepsizes.
This fact might restrict any long term computation in (2). On the other
hand, integrating the equations (10) by implicit scheme, either linear or
nonlinear algebraic equations have to be solved at every time step of the
computational process. To find solutions of such systems is computationally
very demanding. In this paper we consider an alternative approach based on
implicit-explicit (IMEX) Runge-Kutta splitting. The non stiff stage of the
splitting for @ is treated by an explicit Runge-Kutta scheme, while the stiff
stage for U is approximated by a diagonally implicit Runge-Kutta (DIRK)
scheme. Compare [2, 9] for more details.

Let At be the time step and Y" denotes the approximate solution at
t = nAt. We formulate the IMEX scheme for the system (10) as

-1

KZ_Y”+AtZalm Zalm 1=1,2,...,s,
m=l (11)
Y = Y”+Ath@ K)) - Zbl\IJ K)).
=1

The s x s matrices A = (ayy), Gym = 0 for m > 1 and A = (ay,,) are chosen
such that the resulting scheme is explicit in ®, and implicit in ¥. The s-
vectors b and b are the canonical coefficients which characterize the IMEX
s-stage Runge-Kutta scheme [9]. They can be given by the standard double
tableau in Butcher notation,

Here, ¢ and c are s-vectors used in non autonomous cases. The implementa-
tion of the IMEX algorithm to solve (10) can be carried out in the following
steps:

1. Forl=1,...,s,

1-2
(a) Evaluate K} as: Kj = Y" + At Z Ay @ (Kp,) + Atay— 1 9(K;_1).

m=1



At 2 At
(b) Solve for Ki: K; = Kj — = Y am ¥ (Kpn) — —ay ¥ (Ky).
3 el 3

S S

- At
2. Update Y™ as: YL =Y+ AtY ho(K;) — — ) yU(K)).
pdate as + ;:1 12 (K;) 6 lE:ll (Ki)

Note that, using the above relaxation scheme neither linear algebraic equa-
tion nor nonlinear source terms can arise. In addition the high order relax-
ation scheme is stable independently of £, so the choice of At is based only
on the usual CFL condition

C,—

FL = — —,B,—
C max (h ,AVA.'L', VAy, I/AZ

At At At At)
<1,
1<v<N

(12)

where h denotes the maximum cell size, h = max(Az, Ay, Az).
In this paper we use the third order IMEX scheme proposed in [2], the
associated double tableau can be represented as

0 0 0 0 0 0 0 0
Y Y 0 0 v |0 Y 0
l—v|~v—-1 2-2y O 1—-~410 1-2y v

o 5 R

where v = %. Other IMEX schemes of third and higher order are also
discussed in [9]. It is clear that, at the limit (¢ — 0) the time integration
procedure tends to a time integration scheme of the limit equations based
on the explicit scheme given by the left table.

3. Numerical examples

We present numerical results for some of hyperbolic equations in two and
three space dimensions using our third order relaxation scheme. We consider
both scalar and systems of nonlinear equations of conservation laws. In all
the computational results presented in this section the relaxation rate ¢ is
set to 107® and the characteristic speeds A,, B, and C, are chosen as

OF
A 1., = max U
i+ 5,0,k UE{U’ = } 8U,,( ) 3
itk iS5k
0G
B . i,= max U 13
Z7]+§7k UE{U7 U+ } aUy( ) ’ ( )
it Sk itk
OoH
= U)
Z,],k—l—% _ max . U, ( 3
UE{Ui,j,k+%’Ui,j,k+%} v
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where the values at the cell boundary point are given by

— o, . + o, . .
Uibpan = P00 Uiy = Pi (@33 U);

- — . . + — . . .
Ui,j—|—%,k _pj(yj+%aU)a Ui,j—l—%,k _p]+1(yj+%aU)a

- _ . + _ .
Uijkat = Pi(%1.430), Uiiksd = Pi+1(%44.15 U)-

In order to avoid initial and boundary layer in (2), initial and boundary
conditions are chosen to be consistent to the associated local equilibrium
(5). For instance, if Dirichlet boundary condition is given, U = Uy, then
boundary and initial conditions for (2) are given by

V(ta X) =F (Ub) ) W(ta X) =G (Ub) ’ Z(ta X) =H (Ub) 3 ( )
14
V(O,X) =F (UO(X)) ) W(07 X) =G (UO(X)) 3 Z(O,X) =H (UO(X)) .

A simplified flow chart for the relaxation scheme used to approximate
solutions to system of equations (1) is presented in figure 1. First the
semilinear relaxation system of hyperbolic equations (2) with initial and
boundary-value independent variables is transformed into an ODE initial-
value problem by approximation of the spatial derivatives with the third
order reconstruction (8) on a dimension by dimension basis. Starting by an
initial condition, the ODE problem is integrated in time by the higher order
IMEX methods (11). As can be seen from the figure, the relaxation solution
of (1) is a modular algorithm into which any higher order spatial discretiza-
tion scheme and any higher order ODE solver can easily be incorporated.

Note that the algorithms presented in this paper can be highly optimized
for the vector computers, because they not require nonlinear solvers and
contain no recursive elements. Some difficulties arise from the fact that for
efficient vectorization the data should be stored continuously within long
vectors rather than three-dimensional arrays.

3.1. Two-dimensional problems

3.1.1. Burgers equation We start by considering the invscid Burgers
equation in two space dimensions

u o u’ u?
% +(5).+ (7)y —0, t>0, (zy)€0,1]x][0,1], s
u(t = 0,z,y) = sin®(7z)sin®(7y), (z,y) €[0,1] x [0, 1],

augmented with periodic boundary conditions. By setting the flux functions



Input: t =0
U°, v = F(UY%, W = G(U?), Z° = H(U")

Subdivide the spatial domain
into Nx x Ny x Nz gridpoints

Impose boundary conditions to U™
For V", W",  Z" boundary
conditions are set according to (14)

Compute the characteristic
speeds A, B and C such as (13)

Update Ul v+l Wntl and
Z™*! using (8) and (11)

Check

No: t =t+ At convergence Yes: t =T

in time ?

Change: U™ « U™, V7 Vil

W7 W”+1, zn Zn+1 OUtPUt: Un+1

FIGURE 1. Flow chart of relaxation schemes for the three-dimensional problem (1).
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the associated relaxation system to (15) can be formulated as in (2) with
A = diag{a} and B = diag{b}. We discretize the space domain uniformly
into 50 x 50 gridpoints and we compute the solution using a = 1.0, b = 1.0
and CFL = 0.87.

i

‘:\\

R
N 05
i\

TN

S

\}
N
N
\\\{%\‘ \\
AN
&
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FIGURE 2. Results for the inviscid two-dimensional Burgers equation (15).

The obtained results are shown in figure 2 at four different times, £ = 1,
2, 3, and 4. The solutions are completely free of spurious oscillations and
the shocks are well resolved by the third order relaxation scheme.

3.1.2. Inviscid gas Fuler equations The Euler equations for an ideal gas
in two dimensions are given by the system (1) where

p gu pv
u=| ™|, roy=| P | guy=| A (16)
pv puv pv°+p
E u(E + p) v(E + p)

In (16), p is the density, u is the z-velocity, v is the y-velocity, £ = pe =
%p(u2 + v?) is the total energy, e is the internal energy of the gas, p =
(7 — 1)pe is the pressure, and =y is the ratio of specific heats. The associated
relaxation system can be formulated as (2), where A = diag{ A1, Az, A3, As}
and B = diag{Bl, BQ, B3, B4}
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The eigenvalues of the Jacobian matrix 0F (U)/0U (or 0G(U)/9U) are
M=u—c, =3 =wand \y =u+c(orpuy =v—c pg = g = v
and p4 = v+c). These are the characteristic speeds for one-dimensional gas
dynamics and are needed here only for the estimation of relaxation variables.
Thus, in all our numerical tests with equations (16) we used

Ay = Ay = A3 = Ay = max(sup|u — c|, sup|u|, sup|u + c|),
(17)
By =By =DBs=By= ma.x(sup|v — ¢|,sup|v|, sup|v + c|)

The following test examples are chosen:

The double Mach reflection problem: This test example consists
of the canonical double Mach reflection problem [10]. The spatial domain
Q2 =[0,4] x[0,1]. The reflecting wall lies at the bottom of the computational
domain starting from z = %. Initially a right-moving Mach 10 shock is
positioned at x = %, y = 0 and makes a 60° angle with the x-axis. For the
bottom boundary, the exact post-shock condition is imposed for the part
fromxz =0toxz = % and a reflective boundary condition is used for the rest.
At the top boundary of the domain €2, the flow values are set to describe
the exact motion of the Mach 10 shock. For comparison reasons, we use two
different uniform meshes of 240 x 60, and 480 x 120 gridpoints.

Ax = Ay = 1/60

0.8

0.6

0.4

0.2

3.5 4

0.8

0.6

0.4

0.2

3.5 4

FIGURE 3. Density contours for the double Mach reflection problem on two different
meshes.

12



Figure 3 shows 30 equi-distributed contour plots of the density at time
t = 0.2 with At = 0.0005. We note that there is a very strong increase
in resolution as the grids are refined due to the high order accuracy of
the relaxation scheme. We can also see the complicated structures being
captured by the new relaxation scheme.

The forward facing step problem: This is again a standard test
problem for numerical schemes in two-dimensional Euler equations of gas
dynamics (16). The setting of the problem is the following [10]:

A right going Mach 3 uniform flow enters a wind tunnel of 1 unit wide
and 3 units long. The step is 0.2 units high and is located 0.6 units from the
left hand end of the tunnel. The problem is initialized by a uniform, right
going Mach 3 flow. Reflective boundary conditions are applied along the
walls of the tunnel and inflow and outflow boundary conditions are applied
at the entrance and the exit of the tunnel, respectively.

AX = Ay = 1/40

—

0.6

0.4

0.2

0.6

0.2f

o
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[¢,]
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—_
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N
o
w

FIGURE 4. Density contours for the forward facing step problem on two different meshes.
The corner of the step is a singularity, which has to be treated carefully

in numerical experiments. Unlike in [10] and many other papers, we do not
modify our relaxation scheme near the corner. However, we use different
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grid refinements to decrease the entropy layer at the downstream bottom
wall. In figure 4 we show 30 equi-distributed contour plots of the density at
time ¢ = 4.0 using two different uniform meshes of 120 x 40, and 240 x 80
gridpoints. We can clearly see that the resolution in the solution improves
and the artifacts caused by the corner decrease as long as the gridpoints on
the mesh increase.

3.2. Three-dimensional problems

3.2.1. Advection problem We consider a three-dimensional linear advec-
tion problem introduced and carefully studied in [7]. The deformation flow
in this problem is obtained by superimposing deformation in z-y plane with
deformation in the z-z plane. The problem statement is

ou ou ou ou 3
E‘*’vl%‘*"l&_y'*'v?’_ =0, tE(OaT]a (3%@/,2) € [051] ) (18)

where the velocities are given by

v1(z,y, z) = 2sin’(rz) sin(2ry) sin(272)g(t),
v1(z,y, z) = 2sin®(rz) sin(2my) sin(272)g(t), (19)
v1(z,y, z) = 2sin®(rz) sin(2my) sin(272)g(t).

The function ¢(¢) is used to introduce time dependence in the flow domain
and is defined as

it

g(t) = cos(?), t € (0,7].

As reported in [7], the flow slows down and reverses direction in such a
way that initial condition should be recovered at time 7' (i.e. u(0,z,y,2) =
u(T, z,y,z)). This is a very useful test example since the analytical solution
at time T is known even though the flow structure becomes complicated at
this time. Here we use T' = 1.5, and the discontinuous initial condition

1, if x<%,
0, if z>4.

u(0,z,y,2) = {

For this initial data, the interface at z = % deforms in a fully three-
dimensional way and return to its initial location at time ¢t = T. It is
easy to verify that the velocity field (19) is divergence free, i.e.

ov ov ov

L2 Ty,

ox oy 0z
This condition allows us to write the equation (18) in a conservative form
as (1), where the flux functions are taken as

F(u) = vu, G(u) = vou, and H(u) = v3u.

14



Therefore, the associated relaxation system to (18) is constructed as (2)
with characteristic speeds given by (13). We discretize the flow domain in
50 x 50 x 50 uniform cubes and a At = 0.5Az is used in our computations.
In figure 5 we display the obtained result at times ¢t = %, t= % and t =T,
respectively. In this figure, the surface plots of the solution are shown only
on the subdomain [0, 1] x [0, 1] x [0, 1]\ [3, 1] x [3, 1] x [0, 1] for better insight,
while the contour plots are taken by cross section at z = 0.425 as in [7].

e )
01 02 03 04 05 06 07 08 09 0.1 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

FIGURE 5. Results for the three-dimensional advection equation (18).

At t = % the interface appears disconnected and at ¢ = T the initial
interface is recovered with an non avoidable smearing introduced by the full
three-dimensional deformation. The results shown here agree well with those
presented in [7]. we would like to comment on the method used in [7] to
solve the equation (18). Thus, the author in [7] proposed a high resolution
scheme based on upwind techniques where direct or approximate Riemann
solvers are needed. In contrast, our relaxation scheme does not require any
Riemann solver and gives results which are comparable to those obtained
by upwinding in [7].

3.2.2. Burgers equation the second test example is the three-dimensional
Burgers equation

% + (u;)x + (u;)y + (u;)z =0, t>0, (z,y,2)€[0,13, (20)



subject to periodic boundary conditions and to the Riemann initial data

1.5, if z24y?+2%2<0.01,

. (21)
1, otherwise.

U(O’ '/1:’ y’ z) = {

Note that the application of equation (20) to the initial data (21) results
in a circular shock centred at the origin of the cube and moving along the
main diagonal of the unit cube. The relaxation system that gives at the
limit equation (20) is formulated as (2) with

FIGURE 6. Results for the three-dimensional Burgers equation (20).

As in the previous example, we discretize the spatial domain uniformly
into 50 x 50 x 50 gridpoints and we set At = 0.005. The obtained results are
shown in figure 6 at three different times ¢t = 0.1, £ = 0.3 and ¢t = 0.5. Here in
the three-dimensional plots only a part of the unit cube, [0,1] x [0, %] x [0, %],
is shown. Whereas, the two-dimensional plots represents a cross section at
T = % The third relaxation scheme captures accurately the evolution of
the shock along the main diagonal of the computational domain without

diffusing the fronts neither introducing oscillations near steep gradients.
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3.2.3. Riemann problem in gas dynamic The three-dimensional system
of inviscid Euler equations can be written in conservative form as (1) with

p pu
pU pu2 +p
U=| pv |, F(U) = puv ,
pw puw
E u(E + p)
pv { pw
puv puw
G(U) = p?+p |, H(U) = pow
pLW pw2 +p
v(E + p) w(E + p)

where p, u = (u,v,w)”, p, and E denote respectively the mass density,
the flow velocity, the thermal pressure and the total energy. The thermal
pressure and total energy and related by the equation of state

p=(y-1)(E-Lu), (22)

The example we consider here, is inspired by the standard one-dimensional
Sod tube shock problem [1]. Similar test example but in two dimensions is
proposed in [3]. The computational domain is the unit cube Q = [0,1] X
[0,1] x [0,1]. To define initial conditions for this problem we first divide the
domain into eight equally subcubes as: Q1 = I} X I; X I}, Qo = I} X I, X I,
Qg:I,,-XIlXIl,94:I,,-XI,,-XIZ,Q5:IZXIIXI,,-,Q6:IlXIrXIT,
Q7 =1, x I x I, Qg = I, x I, x I, with I; = [0, 3] and I, = [3,1]. Then,
velocity is set to u = 0 in 2, density and pressure are alternated between
these subcubes as follows

T ~[(0.1,0.)T i (z,y,2) € 0 UQUQUQy,
(p, )" (0,2,9,2) = {(l,l)T if (z,y,2) € QU3 U Q5 U Q.

Homogeneous Neumann boundary condition were used, and At = 0.001.
The obtained results for the density variable at ¢ = 0.16 on a mesh of
50x 50 x 50 gridpoints are illustrated in figure 7. Here, the three-dimensional
surface plots represent the distribution of density on the whole cube 2 and
on the part Q. [0, 2] x [0, 1] x [0, 1] of the cube, while the two-dimensional
plot represents the projection of density on the z-y plane at z = % Our
relaxation scheme performs well for this test problem and high resolution of

the scheme is clearly visible even on coarse mesh as the one we used.
4. Concluding remarks

Relaxation schemes of first and second order accuracy were introduced
in [4]. In this paper we have reconstructed high order relaxation schemes
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FIGURE 7. Results for the three-dimensional inviscid Euler equations.

by using WENO ideas and a class of TVD high order Runge-Kutta time
integration methods. We have generalized the relaxation method for multi-
dimensional hyperbolic systems of conservation laws. This procedure com-
bines the attractive attributes of the two methods to yield a procedure for
either scalar or system of hyperbolic equations. The new method retains all
the attractive features of central schemes such as neither Riemann solvers
nor characteristic decomposition are needed. Furthermore, the scheme does
not require either nonlinear solution or special front tracking techniques.

The third-order relaxation method have been tested on Burgers equa-
tions and systems of inviscid gas Euler in two and three space dimensions.
The obtained results indicate good shock resolution with high accuracy in
smooth regions and without any nonphysical oscillations near the shock ar-
eas.
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