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Abstract. While the basic idea of using Conceptual Graphs as query
interface to relational databases has already been stated very early in
[Sow84], no approach so far has covered the full expressiveness of modern
database query languages. Especially negation and the so-called aggre-
gating functions have not been treated.
In this paper, we present Nested Concept Graphs with Cuts which extend
the syntactical Concept Graph (which mathematize Conceptual Graphs)
to treat simultaneously negation and nesting. With these extensions they
have the expressiveness of database query languages (e. g. SQL), which
will be exemplified by selected queries.

1 Introduction

The goal of Conceptual Graphs has always been to provide a graphical repre-
sentation for logic which is able to support human reasoning. Many of the pos-
sible applications of such a logical representation system have been described in
[Sow84, Sow92, Sow00], but one of the maybe most interesting ones has not been
completely worked out until today: a consistent, graphical interface for database
interaction.

In [Dau03] one of the authors studied in depth a calculus for the mathematiza-
tion of Conceptual Graphs and their equivalence to first order predicate logic.
The relational algebra is also known to be equivalent to first order predicate
logic. However, modern database languages extend this expressivity. Consider-
ing especially aggregate functions, which operate on tuples instead of relations,
we developed Nested Concept Graphs with Cuts (in the following shortly called
NCGwC) which include hypostatic abstractions (cf. [Bur91]) as an important
extension.

We believe that the graphical language of Conceptual Graphs can provide a
simple, but universal interface to relational databases. In the following section,
we will illustrate the properties of NCGwCs via Nested Query Concept Graphs,
which may be used to visualize queries to relational databases.



The general idea of combining Conceptual Graphs and relational databases has
already been approached in [BCHL93, CH94, EGSW00, GE01] from various
angles, but aggregate functions and negation are not considered. NCGwCs rep-
resent thus a first approach to represent the full expressivity of modern database
languages, which exceeds the expressivity of first order predicate logic.

2 Simple Queries

For relational databases, the standard query language today is SQL (Structured
Query Language), which has been released in several major versions. The most
wide-spread version today is SQL2 from 1992, but the SQL3 standard from
1999 is gaining momentum with the more recent releases of the major database
systems.

For the purpose of explaining the crucial elements of Nested (Query) Concept
Graphs and their expressivity, we will translate some typical SQL queries into
the graphical representation of the corresponding Nested Query Concept Graph.1

Syntactically, the only difference between Nested Concept Graphs with Cuts and
the Nested Query Concept Graphs is the availability of query marks (written ?i)
as object name. Those query marks only need special treatment in the evaluation
of the graph.

Our examples are based on a small database, consisting of the tables Person
(with the columns Lastname, Firstname, and Age) and ResearchArea (with the
columns Lastname and Topic). The first example shows a rather simple query,
asking for the Lastname of people in the table Person whose age is below 30. In
SQL this might be expressed as follows:

SELECT Lastname FROM Person WHERE Age <= 30

The representation of the corresponding Nested Query Concept Graph is as
follows:

*STRING: PERSON

Lastname
Age INTEGER:  30

STRING: ?1

Firstname

Fig. 1. A simple query graph

Please note that we have used a simple graphical shortcut. The right-hand node
INTEGER:  30 is a short form for *INTEGER: INTEGER:30 . Every incoming arc
1 A more detailed version can be found in [DH03a].



is to be read to belong to the node with the asterisk. The same short form may
be used for the other comparison relations (<, ≤, >, ≥, =).

This simple example only uses the most simple primitives of graphs, no nest-
ing and no negation. Therefore, it is syntactically covered by the definitions of
[Dau03], if we add the query marks ?i to the object names. Likewise, the example
is comparable to the corresponding graphs in [BCHL93].

Of course, queries may also draw data from more than one table. For getting a
list of topics of the researchers below 30, a query in SQL might look like this:

SELECT Topic FROM Person, ResearchArea
WHERE Person.Lastname=ResearchArea.Lastname AND Age <= 30

This query builds the cross product of the tables Person and ResearchArea and
selects the entries in the column Topic, provided that the Lastnames in both
tables are the same and the Age is below 30. The condition of equal values in
certain columns is a standard condition for joining tables. For this reason, the
SQL standard provides the JOIN operation,2 with which we may reformulate
the SQL query as follows:

SELECT Topic FROM Person JOIN ResearchArea USING (Lastname)
WHERE Age <= 30

These two versions also represent different approaches one could take if one
wants to get the answer by constructing intermediate tables by hand. However,
most modern database systems will optimize the queries anyway, so the actual
process in the system will probably be the same for both versions. Interestingly,
the corresponding query graph looks also almost the same for both versions, as
shown in Figure 2.

STRING:*

RESEARCHAREA STRING:*

INTEGER:  30PERSON Age

TopicSTRING:?1
Lastname Firstname

Lastname

Fig. 2. A query graph joining two relations

The syntactical difference between the two formulations of the SQL query is
not reflected in the graph. Of course, we can interpret the construction of the
two SQL queries in graphical terms. The cross product of two relations means
2 JOIN is not considered in [BCHL93, CH94], but JOIN operations are equivalent to

operations using cross products and selects, thus are in the expressivity of the SQL
fragment used in those works.



simply juxtaposing the two corresponding graphs. The equality condition then
additionally joins the two concept boxes on the Lastname arcs with the equality
relation. The graph shown in Figure 2 then is a simple equivalent transformation,
merging these two nodes together. Interpreting the join of two graphs is even
simpler; when joining graphs you either have to join the two boxes that belong
to arcs with the same name (which has to be unique according to the SQL
standard), or you have to denote explicitly over which arcs the relations should
be joined (as it is done in our example). Then, you have the resulting joined
relation. Of course, the result is equivalent, and which graphical representation
is preferable depends on the taste of the user.

3 Negation in Queries

The examples we presented in the previous section were simple in the sense that
to evaluate them we need only positive knowledge about the data. But often
arise questions not about what is, but about what is not. Visualizing queries with
negation is rarely seen in commercial tools, probably because the visualization
of the negation seems to be difficult. However, Charles Sanders Peirce found a
way to do exactly this in his Existential Graphs (cf. [Pei92, PS00]). He used
ovals to mark the part of the graph which should be negated and developed a
calculus for this diagrammatic logic system. In [Dau03], the notion of cuts (as
Peirce called these ovals) has been adopted for the system of Concept Graphs.
Continuing this idea for our query graphs, we have thus a mechanism to make
negation available as a graphical primitive.

Our next example selects those people that are not focused on researching CGs,
but also have other research areas:

SELECT Person.Lastname,Firstname FROM Person,ResearchArea
WHERE Person.Lastname=ResearchArea.Lastname AND Topic <> ’CG’

RESEARCHAREASTRING:CG

PERSON Age

Topic STRING:?1

STRING:?2 INTEGER:*

*STRING:
Lastname Firstname

Lastname

Fig. 3. A query graph with cut (negation)

A similar question is: What researchers are not interested in CGs? Semantically,
there is only a small difference: in one case the question is if there are other
research areas, in the second if there are only other research areas. Hence, it
is intuitive to expect a similar graph. In the graphical version, this means the
same structure, but a different part of the graph is negated, as we can see in
Figures 3 and 4.



RESEARCHAREASTRING:CG

PERSON Age

Topic STRING:?1

STRING:?2 INTEGER:*

*STRING:
Lastname Firstname

Lastname

Fig. 4. Similar graph with different meaning

However, in SQL the second query is rather different:

SELECT Lastname,Firstname FROM Person WHERE Lastname NOT IN
( SELECT Lastname FROM ResearchArea

WHERE Topic=‘CG’)

We can easily see that this query has the same result as the query graph in
Figure 4. However, the graph is not the canonical translation of this SQL query
(this will be discussed at the end of the next section). Graphs are parallel in
nature, therefore we can write both queries (“Who works on CGs?” and “What
are the peoples names?”) side by side and make the necessary (negated) con-
nection. In SQL we could write a simple query if we had not the negation in
the question. Because of the negation, we get a completely different structure
and have to declare a subquery. This is part of the reason why SQL looks so
unapproachable for beginners; to solve related problems you have to write very
different SQL statements, and sometimes even learn new syntactical elements.

As elaborated in [Dau03], the tools we have presented so far provide the expres-
siveness of first order predicate logic. More specifically this means that we have
the usual set operations like intersection, union, and complement available. The
meaning of the latter naturally depends on the method used for the evaluation.
This topic is treated in the discussion on safety of queries in [AHV95], and the
approaches discussed there translate directly to approaches we can take for our
database application. An important point is to assume that the universe con-
tains only the objects known to the database (the closed-world-assumption), the
so-called domain of the database. In [Dau03], this happens naturally by using
the object set of the underlying power context family as domain.

4 Subqueries and Nested Graphs

So far, we have only considered relations between elements of our object set. The
examples presented so far are all covered by the work presented in [Dau03], but
in practice we need more expressivity. Not reasoning with, but reasoning about
relations is a topic that has not been addressed by Codd in [Cod70]. However,
queries aiming at summarizing or aggregating sets are very important in daily
(database) life. Therefore, Codds relational calculus had to be adapted on the
theoretical side (cf.[Klu88]). In the SQL standard, we find for this the term
set function. A set function does not relate objects to objects, but objects to



relations, thus set functions break the idea we have followed so far. The SQL
standard provides five such set functions. They are AVG (average), MAX, MIN,
SUM, and COUNT. All of them basically do one thing: They take a set as input
and return a simple element as output.

In his book ’A Peircean Reduction Thesis’ [Bur91], Robert Burch provides an al-
gebraization of Peirces logic system and analyzes Peirces thesis that any relation
may be constructed out of ternary relations. For his solution, he has to abstract
from the relations and use them as objects in other relations, he calls those
abstractions hypostatic abstractions. While a theory involving this concept may
look confusing at first, the concept itself is very natural. In reasoning, humans
sometimes consider the elements of a set and their properties, and sometimes
the set itself as an element on its own having other properties. This shift in
perspective transforms a relation into an object which then may be attached
to relations again. In visualization, we use nested concept boxes as known from
[Sow84, Sow92, Sow00].

To exemplify hypostatic abstractions, we consider the question about the average
age of the researchers. In SQL, we need for this the set function AVG and write:

SELECT AVG(Age) FROM Person

The difference to the previous queries is obvious: Before, we were interested in
what is in the relation Person, now we are talking about a summarizing property
of the relation itself. While the information we were looking for was contained
in the tuples of the relation before, no single tuple can provide the answer now,
only all of them together. Using the idea of hypostatic abstraction, we get the
query graph depicted in Figure 5. Intuitively, by drawing the box around the
description of a relation (in the example, of the plain relation Person), we trans-
form it into an object, where we may attach relations like AVG_2, which means
building the average on the second column. Of course, the two query marks ?1
that appear in the picture are not related, i. e. the query marks are only valid
in their respective contexts (see [DH03b] for details). Modeling the set functions
this way, we follow the presentation of the relational calculus with aggregate
functions in [AHV95, Chap. 20].

:*

STRING:?1 INTEGER:?2

AVG_2

Lastname

Firstname

PERSON Age

2

1 REAL:?1

STRING:?3

Fig. 5. A query graph with hypostatic abstraction



From the user point of view, an extension from this query to the question of av-
erage age per research topic seems rather simple. Using the graphical metaphor,
it is: simply add the ResearchArea relation and add a query mark for the Topic
string (cf. Figure 6). While this may look simple at first glance, it has also an
effect on the relation defined by the hypostatic abstraction – after all, we draw a
connection from the outer context into the box defining the relation! Connecting
a part of it to a node outside results either in a selection (if the node refers to a
constant) or in a grouping, where the tuples that have the connecting property
in common are grouped together.

In SQL we find the same idea, but we have to use a new syntactical construction,
the GROUP BY. Reading the standard, you find them writing about the result of a
GROUP BY being a set of groups. But because relations as elements of the resulting
relation are not allowed, it has to be assured that the result becomes flat again
by adding set functions. As we know from our own experience, this too confuses
beginners. The full SQL statement for the last question looks like this:

SELECT AVG(Age),Topic FROM Person, ResearchArea
WHERE Person.Lastname=ResearchArea.Lastname
GROUP BY Topic

:*

RESEARCHAREA

STRING:?1 INTEGER:?2

AVG_2

Topic

Lastname

Lastname

Firstname

PERSON Age

2

1 REAL:?1

STRING:?2

STRING:?3

Fig. 6. A query graph extending the previous query

The last complicated part of the query specification in the SQL standard is the
<having clause>. Again, this has to do with the fact that SQL has to take
different syntactical elements depending if they want to talk about elements or
groups. Roughly said, the <having clause> is analogue of the <where clause>
for groups. As our groups appear in the form of (complex) vertices in the graph-
ical representation, the translation of the <having clause> does not introduce
new graphical elements. Let us consider the GROUP BY query from the last ex-
ample. Now, we want to put an additional restriction on the groups, the average
age should be below 30, but we are not interested in the exact average age. So
we ask, for which research topics is the average age below 30? In the graphical
notation, the graph looks almost exactly as the former one, with a small change
in the obvious position (Figure 7).



In SQL, we use the keyword HAVING and get:

SELECT Topic FROM Person,ResearchArea
WHERE Topic.Lastname=ResearchArea.Lastname
GROUP BY Topic
HAVING AVG(Age) < 30

:*

RESEARCHAREA

STRING:?1 INTEGER:?2

AVG_2

Topic

Lastname

Lastname

Firstname

PERSON Age

2

1

STRING:?2

STRING:?3

REAL:<30

Fig. 7. A query graph corresponding to a SQL query with HAVING

At the end of the discussion how to represent SQL queries in a graphical form,
we return to the query of the previous section, where we presented the graph
in Figure 4 which was equivalent but not the canonical translation of the given
SQL query. After having introduced the hypostatic abstraction, we can now also
represent the more direct representation as graph, as is shown in Figure 8.

STRING:*

RESEARCHAREA

STRING:CG
:*

STRING:?1

Lastname

Topic

IN_1

PERSON Age

STRING:?1

INTEGER:*

Firstname

Lastname

Fig. 8. A query graph for a SQL subquery

Subqueries are indeed a delicate part of SQL. Some common databases (e. g.
MySQL, on which we tested all example queries except the subquery one) do
not provide this functionality. The documentation proposes to use temporary
tables, which is conceptually the same while being more effort to the user. For
our concerns, we have to investigate the IN_i relation shown in the picture. It



means, that the given element is an element of the first column of the connected
relation. It is easily comprehensible that those relations are not essential for the
diagrammatic representation of queries. To be or not to be in the set of elements
having some property is of course equivalent to having this property or not.
This is the reason why we did not need the concept of hypostatical abstraction
to represent the query. However, for didactical reasons it might be preferable to
have the IN_i relations available in a real system.

5 The Structure of Nested Concept Graphs with Cuts

In this section, we define the underlying structure of NCGwCs. As can be seen in
the last sections, we will have two different kinds of vertices: simple vertices, and
complex vertices (named hypostatic abstractions, HAs), which contain further
elements, like other vertices or edges, of the graph. A vertex is considered to be
an HA if and only if it contains other elements of the graph, i. e. we can already
see from the underlying structure, not from the (later introduced) labelling of
vertices and edges, whether a vertex is a simple vertex or a HA.

Definition 1. A structure (V,E, ν,>, Cut, area) is called a Nested Relational
Graph with Cuts if

– V , E and Cut are pairwise disjoint, finite sets whose elements are called
vertices, edges and cuts, respectively,

– ν : E → ⋃
k∈NV

k is a mapping,
– > is a single element, called the sheet of assertion, and
– area : V ∪̇Cut∪̇{>} → P(V ∪̇E∪̇Cut) is a mapping such that

a) area(k1) ∩ area(k2) 6= ∅ ⇒ k1 = k2 for k1, k2 ∈ V ∪̇Cut∪̇{>}
b) V ∪ E ∪ Cut =

⋃
{area(k) | k ∈ V ∪̇Cut∪̇{>}},

c) x /∈ arean(x) for each x ∈ V ∪ {>} ∪ Cut and n ∈ N
(with area0(x) := {x} and arean+1(x) :=

⋃
{area(y) | y ∈ arean(x)}).

For an edge e ∈ E with ν(e) = (v1, . . . , vk) we define |e| := k and ν(e)
∣∣
i

:= vi.
Sometimes, we will write e

∣∣
i

instead of ν(e)
∣∣
i
, and we will write e = (v1, . . . , vk)

instead of ν(e) = (v1, . . . , vk). We set E(k) := {e ∈ E | |e| = k}.
For v ∈ V we set Ev := {e ∈ E | ∃ i.ν(e)

∣∣
i

= v}. Analogously, for e ∈ E we set
Ve := {v ∈ V | ∃ i.ν(e)

∣∣
i

= v}.
We set HA := {v ∈ V | area(v) 6= ∅}. The elements of HA are called hypostatic
abstractions.3 The elements of V \HA are called simple vertices.

The elements of Cut∪̇HA∪̇{>} are called contexts. As every x ∈ V ∪ E ∪ Cut
is directly enclosed by exactly one context k ∈ Cut∪̇HA∪̇{>}, we can write
k = area−1(x) for every x ∈ area(c), or more simple and suggestive: k = ctx(x).
3 In [Pre98], the are called complex vertices.



NCGwCs will be constructed from Nested Relational Graph with Cuts by addi-
tionally labelling the vertices and edges with names. There is a crucial difference
between Concept Graphs and most other languages of logic: Usually, the well-
formed formulas of a language are built up inductively. In contrast to that,
NCGwCs are defined in one step. The structure of a formula in an inductively
defined language is given by its inductive construction. Although definded in
one step, NCGwCs bear a structure as well: Similar to simple Relational Graphs
with Cuts, a context k of a Nested Relational Graph with Cuts may contain
other contexts l in its area (i. e. l ∈ area(k)), which in turn may contain further
contexts, etc. Is has to be expected that this idea induces an order ≤ on the con-
texts which should be a tree, having the sheet of assertion > as greatest element.
This order reflects the structure of the graph. The näıve understanding of ≤ is to
set l < k iff l is ‘deeper nested’ than k. The next definition is the mathematical
implementation of this näıve idea. Furthermore the definition extends this idea
to the set of vertices and edges. This order will be important in the evaluation
of contexts (cf. [DH03b]).

Definition 2. Let (V,E, ν,>, Cut, area) be a Relational Graph with Cuts. De-
fine β : V ∪ E ∪ Cut∪̇{>} → Cut∪̇HA∪̇{>} by

β(x) :=
{

x for x ∈ Cut∪̇HA∪̇{>}
ctx(x) for x ∈ (V \HA) ∪ E .

We set x1 ≤ x2 :⇔ ∃n∈N0.β(x1) ∈ arean(β(x2)) for x1, x2 ∈ V ∪̇E∪̇Cut∪̇{>}.

In order to avoid misunderstandings, let x < y :⇐⇒ x ≤ y ∧ y 6≤ x, x � y :⇐⇒
x ≤ y ∧ y 6= x, and x ∼ y :⇐⇒ x ≤ y ∧ y ≤ x. Moreover, for c ∈ Cut∪̇{>},
we define shortcuts for the ideals ≤[c] := {x ∈ V ∪ E ∪ Cut∪̇{>} |x ≤ c} and
�[c] := {x ∈ V ∪ E ∪ Cut∪̇{>} |x � c}.
The following is an example of a well-formed Nested Relational Graph with
Cuts, its diagram (we have written the names for the vertices end edges inside
them), its mapping β and the induced relation ≤. We see that ≤ is a quasiorder
and that each equivalence class of the induced equivalence relation ∼ contains
exactly one context. This will be elaborated after the example.

G := ({v1, v2, v3, v4, v5, v6, v7, v8}, {e1, e2, e3, e4, e5, e6},
{(e1, (v1, v6)), (e2, (v3, v1)), (e3, (v5, v3)), (e4, (v5)), (e5, (v2, v7), (e6, (v7, v8))},
>, {c1, c2}, {(>, {v1, v2, v6, e1, c1}), (c1, {v3, v4, e2, e3}),

(v4, {v5, e4}), (v6, {v7, e5, c2}), (c2, {v8, e6})})

e1v1e2

v2

v3

v4

c1

e3

e4
e5 e6v

v7 v8
5

v6 c2



x > v1 v2 v3 v4 v5 v6 v7 v8 e1 e2 e3 e4 e5 e6 c1 c2
β(x) > > > c1 v4 v4 v6 v6 c2 > c1 c1 v4 v6 c2 c1 c2

>, v1, v2, e1

c1, v3, e2, e3

v4, v5, e4

v6, v7, e5

c2, v8, e6

�� @@

As already mentioned, it is conjecturable that ≤ is a quasiorder. This is not
immediately clear from the definitions, but it can be proven. Analogously to
[Dau03], we get the following lemma:

Lemma 1. Let (V,E, ν,>, Cut, area) be a Nested Relational Graph with Cuts.
We have ≤[k] =

⋃
{arean(k) |n ∈ N0} and �[k] =

⋃
{arean(k) |n ∈ N} for

each k ∈ Cut∪̇HA∪̇{>}. Moreover, ≤ is a quasiorder such that the restritction
≤ |Cut∪̇HA∪̇{>} is an order on Cut∪̇HA∪̇{>} which is a tree with the sheet of
assertion > as greatest element.

Now it is easy to describe the mapping ctx in a purely order-theoretic way.
It can be shown that we have ctx(x) = min{k ∈ Cut∪̇HA∪̇{>} |x � k} for
each element x ∈ V ∪̇E∪̇Cut∪̇{>} of a Nested Relational Graph with Cuts
(V,E, ν,>, Cut, area). This characterization of the mapping ctx is adopted for
hypostatic abstractions. Sometimes we have to consider all elements which are
enclosed by an hypostatic abstraction, even if they are deeper nested in some
cuts, but not if they are contained by a deeper nested hypostatic abstraction.
These are the elements x with ha(x) = h. In order to to this, it is evident to
define a mapping ha (which corresponds to ctx for contexts) and encl (which
corresponds to area for contexts) as follows:

Definition 3. Let (V,E, ν,>, Cut, area) be a Nested Relational Graph with Cuts.
We set

ha :
{
V ∪̇E∪̇Cut→ HA∪̇{>}

x 7→ min{h ∈ HA∪̇{>} |x � h}
Now, we define a mapping encl : HA → V ∪̇E∪̇Cut by: encl1(h) := area(h),
encln+1(h) :=

⋃
{area(c) | c ∈ encln(h) ∩ Cut}, and finally encl(h) :=⋃

{encln(h) |n ∈ N}.

Similar to the order-theoretic description of ctx, it can be shown that we have
encl(h) = {x ∈ V ∪̇E∪̇Cut |ha(x) = h} for a HA h ∈ HA in a graph G :=
(V,E, ν,>, Cut, area).

We will only consider graphs in which vertices must not be deeper nested than
any relation they are incident with. This applies to all contexts, that is to cuts
as well as to hypostatic abstractions.



Definition 4. Let G := (V,E, ν,>, Cut, area) be a Nested Relational Graph
with Cuts. If ctx(e) ≤ ctx(v) for every e ∈ E and v ∈ Ve, then G is said to have
dominating nodes.

6 Syntax for Nested Concept Graphs with Cuts

6.1 Types and Names

With simple Concept Graphs, we can denote relations between the objects of a
given set of objects with relation names. Relations always have a fixed arity. For
this reason, we assign in the syntax of simple Concept Graphs (and other logic
languages like first order logic as well) to each relation name an arity.

The set functions like COUNT or SUM of SQL can be understood as relations
between numbers and relations. For example, our understanding of COUNT is that
COUNT is the following dyadic relation: A number n stands in relation COUNT to a
relation R if and only if R contains exactly n tuples. So COUNT is not a classical
relation on the set of objects, but a relation between objects and relations. To
describe the structure of such relations, we will use signatures instead of arities.
A signature will not only give the arity of a relation, but they will furthermore
describe for each place of a tuple the structure of the entries in that place, e. g.
whether the entry is an object of our ground set or a relation itself. We will use
the sign ? to denote an arbitrary object of our ground set. A ’classical’ k-ary
relation on our ground set will be therefore described by the signature (?, . . . , ?)
(with k stars ‘?’). In particular, signatures are a generalization of arities.

Definition 5 (Signatures).

Let ‘?’ be a sign. We set it to be a signature, and if S1, . . . , Sn, n ∈ N0 are
signatures, then (S1, . . . , Sn) is a signature. The set of all signatures is denoted by
Sig. We partition Sig into the following types of signatures: The sign ? is called
object signature, the signature () is called boolean signature, every signature
(?, . . . , ?) is called simple relation signature, and all remaining signatures are
called nested relation signatures. We set furthermore Sig0 := Sig\{?}.

Next we have to define an alphabet for NCGwCs. In the case of simple Concept
Graphs, we had relation names and assigned to each relation name its arity. Thus,
for NCGwCs, the approach which suggest itself is to assign signatures to relation
names. But this approach is problematic, which can be again explained with the
relation COUNT in SQL. We have in fact an infinite number of COUNT-relations,
namely a relation COUNT between natural numbers and unary relations, a relation
COUNT between natural numbers and dyadic relations and so on. But when COUNT
is applied in a SQL-statement, it is applied to a relation where its signature is
known, so we know which of the different COUNT-relations should be used. Thus
we define names as pairs of so-called plain names and their signatures, i. e. a plain
name can be used together with different signatures (in the terminology of object-
oriented languages: We overload names). This yields the following definition.



Definition 6 (Alphabet).

An alphabet is a pair (C,N ), where

– (C,≤C) is a finite ordered set whose elements are called concept names, and
– (N ,≤N ) is a finite ordered set which consists of pairs (N,S) with S ∈ Sig.

Each element (N,S) ∈ N is called signed name. For the signed name (N,S),
we call N the (plain) name of (N,S) and S the signature of (N,S). We
demand that only names with the same signature can be compared, that is
we demand (N1, S1) ≤ (N2, S2) =⇒ S1 = S2 .

Let (N,S) ∈ N be a signed name. If S = ?, then (N,S) is called object name.
The set of all object names is denoted by NG. If S = (), then (N,S) is called
boolean name. The set of all boolean names is denoted by NB. If S = (?, . . . , ?),
then (N,S) is called simple relation name. The set of all simple relation names
is denoted by NR,s. All remaining signed names (N,S) are called nested relation
name. The set of all nested relation names is denoted by NR,n.

Simple relation names and nested relation names are both called relation names.
The set of all relation names (i. e. NR,s∪̇NR,n) is denoted by NR.

We demand that we have a plain name .= with ( .=, (S, S)) ∈ N for each S ∈ Sig.

6.2 Nested Concept Graphs with Cuts

NCGwCs are built from nested relational graphs with Cuts by additionally la-
belling the vertices and edges with names. There are two important points we
have to meet:

First of all, when writing the diagram of a NCGwC, it is desirable that it is
sufficient to use plain names.4 That is, if we use a plain name in the diagram
of a Concept Graph, it has to be clear from the context which signed name is
denoted by the plain name.

Secondly, it is important that the labelling is (syntacti-
cally) reasonable, i. e. that the graph can be interpreted
in a model. To get an impression of this reflections, con-
sider the two diagrams on the right: (where C is the plain
part of a concept name and g is a plain name):

G1 :=
:g

C:?1

G2 := C: *
:g

The hypostatic abstraction (that is the outer vertex) in G1 shall describe a
(unary) simple relation, which can be seen from the inner vertex, which is labelled
with a query marker ?i. So G1 can only be the diagram of a NCGwC if g is the
plain part of the simple relation name (g, (∗)). Analogously, G2 can only be the
diagram of a NCGwC if g is the plain part of the boolean name (g, ()).
4 This again corresponds the the overloading of function names in object oriented

languages. When we have a function-call in the program code, it has to be clear
from the context which implementation of the function is meant.



Furthermore, we have another problem
which may occur. Consider the graph
on the right. Again we have the ques-
tion which signature g should have.

G3 :=

:g
C:?1 :

D: *
?1

From the first vertex in the outer hypostatic abstraction we conclude that g is
a unary simple relation name, but from the second vertex in the outer hypo-
static abstraction we conclude that g is a unary nested relation name. This is
contradictory, so G3 should not be the diagram of a well-formed NCGwC.

For the graphs G1, G2, G3, the discussions of the signature of the name g had
to refer not only to the underlying structure (the Nested Relational Graph with
Cuts) of the graph, but to other other names in the graph as well. For this reason,
the definition of NCGwCs is done in two steps. In the first step, we label the
vertices and edges of a Relational Graph with Cuts with signed names. This will
yield quasi nested concept graphs with Cuts. Based on the labelling, we can assign
to each hypostatic abstraction h (and to other vertices and to the edges) a set of
signatures which is derived from the subgraph enclosed by h (G3 shows that we
sometimes can not derive a unary signature for a given hypostatic abstraction).
After that, we only consider quasi nested Concept Graphs with Cuts where each
vertex and edge has a uniquely determined signature and where all vertices and
edges are labelled accordingly to these signatures.

Definition 7 (Quasi Nested Concept Graph with Cuts).

A quasi nested Concept Graph with Cuts over the alphabet (C,N ) is a structure
G := (V,E, ν,>, Cut, area, κ, ρ) where

– (V,E, ν,>, Cut, area) is a Nested Relational Graph with Cuts that has dom-
inating nodes,

– κ : V ∪ E → C∪̇{>}∪̇N is a mapping such that κ(V \HA) ⊆ C∪̇{>},
κ(HA) = {>} and κ(E) ⊆ NR, and

– ρ : V → N
.
∪ {∗}

.
∪ {?i | i ∈ N} is a mapping such that for all h ∈ HA exists

a natural number ar(h) ∈ N0 with

{i | ∃v ∈ encl(h) with ρ(v) =?i} = {1, . . . , ar(h)} .

Moreover we set V ∗ := {v ∈ V | ρ(v) = ∗}, V ? := {v ∈ V | ρ(v) =?i, i ∈ N}, and
V G := {v ∈ V | ρ(v) ∈ N}. The nodes in V ∗ are called generic nodes, the nodes
in V ? are called query nodes, and the nodes in V G are called object nodes.

If a quasi nested Concept Graph with Cuts is given, we can assign to all vertices
and edges a set of signatures.



Definition 8 (Signatures of Vertices, Edges, Hypostatic Abstractions).

Let G := (V,E, ν,>, Cut, area, κ, ρ) be a quasi nested Concept Graph with Cuts
over the alphabet (C,N ). We assign sets of signatures to vertices, edges and
hypostatic abstractions as follows:

1. For v ∈ V \HA, we set sig(v) := {?}.
2. Let h ∈ HA. We set sig(h)|i := {sig(v) | v ∈ V with ha(v) = h and

ρ(v) =?i} for 1 ≤ i ≤ ar(h), and sig(h) := sig(h)|1 × . . .× sig(h)|ar(h).
3. For e ∈ E with |e| = k, we set sig(e) = sig(e|1)× . . .× sig(e|k).

We will only consider graphs where the signatures of hypostatic abstractions
(and hence for edges, too) are uniquely determined. Furthermore, we demand
that the signed names we assign to vertices and edges match the signatures of
the vertices and edges, respectively. This yields the following definition:

Definition 9 (Nested Concept Graphs with Cuts).

A nested Concept Graph with Cuts over the alphabet (C,N ) is a quasi nested
Concept Graph with Cuts G := (V,E, ν,>, Cut, area, κ, ρ) over the alphabet
(C,N ), where:

– For each h ∈ HA, we have |sig(h)| = 1. For x ∈ V ∪̇E, we write sig(x) = S
instead of sig(x) = {S}. Moreover, for 1 ≤ i ≤ ar(h), we have
sig(h)|i = {S} for an S ∈ Sig, and we write sig(h)|i = S instead of
sig(h)|i = {S}.

– If v ∈ V G\HA and ρ(v) = (N,S), then S = ? (i. e. (N,S) is an object
name).

– If h ∈ V G ∩HA and ρ(h) = (N,S), then S = sig(h).
– If e ∈ E and κ(e) = (N,S), then S = sig(e).

If we have HA = ∅ and if ρ : V → N∪̇{∗} holds, then G is called simple Concept
Graph with Cuts.

For the set E of edges, let Eid := {e ∈ E |κ(e) = .= } and analogously Enonid :=
{e ∈ E | κ(e) 6= .= }. The elements of Eid are called identity-links.

For each vertex and each edge, we can read the signature of the vertex and edge
from the graph, thus we can reconstruct the signature of the names which are
assigned to the vertices and edges. Furthermore, we know that all vertices and
edges are labelled with names which match their signatures. For this reason, in
the diagrams of the graphs it is sufficient to label edges and vertices with plain
names instead of signed names.

7 Outlook

As said in the introduction, this is only the beginning of a mathematical founda-
tion for NCGwCs, and there is more work to do. A first step towards extensional



semantics of NCGwCs can be found in [DH03b], where nested power context
families are introduced as models, and where it is shown how NCGwCs are eval-
uated in these models. These semantics have to be further adapted for databases,
where some relations are stored in tables (and these relations are always simple,
i. e. they are relations on the elements of the domain), while all other relations
(esp. the set-functions) are computed on the fly by the database engine.

Incorporating the fact that the ground domain of a database is typed (by built-in
types like INT, REAL or STRING will yield a reasonable syntactical and semantical
extension of [DH03b]. Therefore, a theory with typed signatures is desirable.
First attempts have shown that this approach leads to surprising difficulties.

Moreover, it has to be investigated whether the expressiveness of the graphs is
restricted enough such that a sound and complete calculus is possible, and a
caluculus should be developed, if this is the case.

Finally, it is desirable that there will be implementations of these graphs to query
existing databases: Only human interaction can show whether the considerations
of [DH03a] and this paper yield working and comprehensible query graphs for
databases.
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