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dinate to the Laplacian. The main tools are Littlewood-Paley theory and a
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1 Introduction

Consider a three-dimensional rotating rigid body with angular velocity w =
(0,0,1)T and assume that the complement, a time-dependent exterior domain
Q(t) C R3, is filled with a viscous incompressible fluid modelled by the
Navier-Stokes equations. By a simple coordinate transform we are led to the
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nonlinear system [6]

u—vAu+u-Vu— (wAz) - Vu+wAu+Vp = f in Q
divu = 0 in Q

u = WAz on 052

u — 0 at oo

(1.1)

for the unknown velocity v and pressure function p in a time-independent

exterior domain 2 C R® where v > 0 is the coefficient of viscosity. Looking

for stationary solutions of (1.1), i.e. for time-periodic solutions of the orig-

inal problem, and ignoring the nonlinear term u - Vu we arrive at a linear

stationary partial differential equation in 2.

The first step to analyze this problem is the Li—theory of the system

—vAu— (wAz) - Vut+wAu+Vp = f inR 12)

divu = g in R? '

in the whole space. Here for later applications we allow divu to equal an
arbitrarily given function g. The Coriolis force w A u = (—ug,u1,0)T can
be considered as a perturbation of the Laplacian. But the first order partial
differential operator (w A z) - Vu is not subordinate to the Laplacian due
to the increasing term w A x = (—m,z1,0)T. Using cylindrical coordinates
(r,0,23) € (0,00) x [0,27) x R we get

(wAzZ)-Vu=—2901u+ 1 Ogu = Opu

showing that the crucial term (w A z) - Vu is “just” an angular derivative of
u w.r.t. 6. Since

div(wAz) - Vu—wAu)=(wAz) Vdivu =0y g,
the pressure p will satisfy the equation
Ap =div f + vAg+ 0pg in R

which can easily be solved in L%-spaces. Given p and ignoring (1.2), we
arrive at the system

—vAu —Opu+wAu=f inR? (1.3)

with another right-hand side f. Note that (1.3) also makes sense for a two-
dimensional vector field v on R?; then w A u = (—ug,u;)” and (r,0) €
(0,00) x [0,27) denote polar coordinates in R.
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Theorem 1.1 (1) Let f € LY(R*")", n =2 orn =3, 1 < q < co. Then
(1.3) has a solution u € L (R™)" satisfying the estimate

loc

[ V2ully + [100u — w Aully < c [l fl- (1.4)

Its equivalence class in the homogeneous Sobolev space fIQ’q(R")" 18
UnLque.

(2) Let f € L2(R®)3 N L2(R3)3, 1 < q1, g2 < oo, and let uy and uy be
solutions as given by (1) corresponding to ¢ = q1 and q¢ = ¢, respectively.
Then there are o, B,7,0 € R such that uy, coincides with us up to an
affine linear vector field aw + Bw Az + (yx1, YT, 023)T, and any solution
remains a solution if one adds such a term. For n = 2 the terms aw
and (0,0,8z3)T have to be omitted.

(3) Let f € LYR*)", n = 2 orn = 3, and let g € HSU(R™) such that

(wAx)g,Vg € LIYR")", 1 < g < oo. Then (1.2) has a locally integrable
solution (u,p) satisfying the estimate

vV 2ullg + 185 — w Aullg + IVpllg < ¢ (Ifllg + 1vVg + (w A2)glly)

where (1.2), has to be understood in the sense Vdivu = Vg. Its equiv-
alence class in H>I(R™)" x H“(R") is unique. Moreover, if (uy,p)
and (ug,p2) are two such solutions, then p, equals ps up to a con-
stant and uy equals uy up to an affine linear vector field of the form
aw~+ Bw Az + (yT1, vT2, —2723)T, @, B,7 € R, and any solution remains
a solution if one adds such terms. For n = 2, uy equals us up to the
linear term B(—x2,71)T, B € R

The so-called homogeneous Sobolev spaces H k4(R™) in Theorem 1.1 are
defined as follows: Let I1;_; denote the space of polynomials of degree < k—1.
Then, using multi-index notation,

AR = {u € Li, (R")/Tly_1 : 0%u € LY(R") for all « € N}, || = k}

is equipped with the norm -, [|0%ul[,. Note that elements in H%4(R™)
are equivalence classes of Lj,.~functions being unique only up to polynomials
from IT,_;. Since H*4(R") can be considered as a closed subspace of L¢(R")¥
for some N = N(k,n) € N, it is reflexive for every ¢ € (1,00). For more
details on these spaces see Chapter II in [3]. Notice, however, that the space

I1I7 is not completely contained in the kernel of the operator

LZ—I/A—ag-i-LU/\



arising in (1.3).

We note that separate L9—estimates of the terms wAu and dyu in Theorem
1.1 are not possible unless f satisfies an additional set of compatibility condi-
tions, see Remark 2.3 and Proposition 2.4 below; in particular u or w A u are
not necessarily L7—integrable. Furthermore Proposition 2.1 indicates that
the main solution operator does not define a classical Calderén-Zygmund
integral operator.

The underlying problem of the flow around a rotating obstacle has at-
tracted much attention during the last years. Weak solutions have been con-
sidered in [1, 2], whereas one of the present authors proved the existence of a
unique instationary solution in an L?-setting using semigroup theory [6, 7]. It
is a remarkable fact that the operator —vAu — Jyu + w A u does not generate
an analytic semigroup, but a contractive C°—semigroup. Several auxiliary
linearized equations without the crucial term Oyu have been considered in
[8]. An L?- and an L3/2~theory of problem (1.2) have been established in [4],
where the nonlinear problem is also solved for non-Newtonian, second-order
fluids and rigid bodies moving due to gravity. Pointwise decay estimates for
the linear and nonlinear case are obtained in [5]. For further references on
moving bodies in fluids see [4, 5].

2 Preliminaries

To find the fundamental solutions of (1.2) and of (1.3), see also [6, 7], we use
the Fourier transform F =", i.e.,

. 1

u(é) = @ne /Rn e y(x)da .

Note that in &'(R"), the space of tempered distributions, @ = 4£;0 and
T;u = i0u/0¢;, 1 < j < n. Hence (1.3) is related to the problem

N

v’ — O, +wAl=f (2.1)

where s = €| and 0, = —&,0/0& + £0/0& = (w A &) - Ve is the angular
derivative in Fourier space when using polar or cylindrical coordinates for
£ € R? or £ € R3, resp. Ignoring for a moment the term w A 4 the ordinary
differential equation —d,@ + vs>i = f yields the solution

(p A
a((p) — 6”82(‘0@0 _ eus2<p/ e*us%f(t)dt’ ﬂo c Rn’ (2.2)
0



when omitting in @, f the variables s = |£] or s’ = (€2 4 £€2)!/2, &3, resp. Due
to the 2r—periodicity of & w.r.t. ¢ the unknown 4, is given by

2w
do = (1 —e2™")7 / e vt f(t)dt
0

Using for s # 0 the geometric series expansion of (1 — 6_27”/82)71 and the
om—periodicity of f w.r.t. t we get Gy = [ e e™s*t f(t)dt. Then (2.2) yields

a(p) = / e f (o + t)dt. (2.3)
0
Let O(t) denote the orthogonal matrix
cost —sint 0 cost —sint
O(t)=| sint cost 0 or O(t) = ( . )
0 0 1 sint cost

describing the rotation around the &3—axis or in the plane by the angle ¢,
resp. Thus, in the variable &,

ie)= [ e fowme

is the solution of (2.1) when w A u has been ignored. To deal with the term
w A u note that 0,0(¢) = w A O(¢p) in the sense of linear maps. Applying
O()T to (2.1) the unknown 9(¢) = O(p)Td(p) will satisfy the ordinary
differential equation vs%9(p) — 8,8(p) = O(p)T f(p). Hence by (2.3) d(y) =

fo —vs’t O(p+1t)T f(gp + t)dt and consequently

€)= [ e 0wy fome. 4)
0
Since e /€** multiplied by (27) /2 is the Fourier transform of the heat kernel
1 |2|2
E = e W
t(w) (47TVt)n/2 e

o ——

and since f(O(t)z) = f(O(t)€), (2.4) yields the formal solution

I~

() = / " OB, * 1(0(1))(@)dt (2.5)

of (1.3).



Note that for n = 3 and f € S(R?)3, the integrals (2.4) and (2.5) do in
fact converge absolutely and define a distributional solution v € S'(R?)? of
(1.3).

However, if n = 2, then both integrals fail to converge in &'(R?)?, even
when f € S(R?)?. This is not surprising, in view of a similar phenomenon for
the Poisson equation in dimension 2. In this case, we need to modify (2.4),
by defining a solution u € §'(R?)? e.g. by means of the convergent integral

<U,90> = <1AL, §b> = /|;|>1 Am e,ys2t0(t)Tf(O(t)§) gb({-“) dt de
’ A/ e O FO1)8) - (§(€) — p(0)) dt de

for all ¢ € S(R?)?; here “denotes the inverse Fourier transform.

Then, in both dimensions n = 2,3, for f € S(R")", we have constructed
a solution u € §'(R™)" of (1.3). Moreover, in the next section we shall prove
that u satisfies inequality (1.4) in Theorem 1.1(1). In particular, ||V2ul|, <
c||f]lq < oo for 1 < g < oo, yielding u € L], (R")". We will conclude that, for

loc
any f € LI(R")", there is a solution u € L;,.(R")™ of (1.3) satisfying (1.4).
To this end, consider the sequence of balls B,,(0) C R* and choose a
sequence {f;} C S(R™)™ converging to f in LI(R™)". Let u; be the solution of
(1.3) corresponding to f;. The proof of completeness of H24(R") in [3] reveals
that we can find a sequence of polynomials {r;} C II7 and @ € Lj,.(R")" such

that for j — oo
1V ((uj +r5) = @) [lg = 0
and
(uj +7)| B, — @lp, in LI(By)" forall meN (2.6)

Then (2.6) implies that Lu; + Lr; — L@ in the sense of distributions, which
shows that Lr; — Lu — f in D'(R")". And, since LII} is closed, as a linear
subspace of the finite-dimensional space 117, we see that Lu— f = Lr, for some
r € I17. Thus, if we put u = @ —r, then v € L}, (R*)" and ||V?ul|, < ¢||f]l4
so that u satisfies (1.4).

Observe next that formula (2.5) may be rewritten by using

E;+ f(Ot))(z) = (Bt x f)(O(t)z),

the proof of which is based on the radial symmetry of Ey(-).



For n = 3 we arrive at the identity
@) = [ T )y .1)
with the fundamental solution
[(z,y) = /000 Ot)"Ey(O(t)x — y)dt . (2.8)

Furthermore Au(z) can be represented — as u(z) in (2.7) — with the help of
the kernel

K(z,y) = AT(x,y) = /000 A, O E (O(t)r — y)dt
PN | n |0@t)z -yl —0(t)x -y
- A o) (4mvt)n/? (- 2wt * (2vt)? ) exp ( 4vt )t
(2.9)

for n =2 or n =3, cf. (3.4) below.

The following proposition indicates that K(z,y) = A,'(z,y) does not
define a classical Calderon-Zygmund integral operator.

Proposition 2.1 (1) Let n = 3. Then, for |z|, |y| — oo, the fundamental
solution T'(x,y) is not bounded by C|z — y|™'. Actually there ezists an
a > 0 such that for suitable x, y € R® with |z|, |y| — oo

log|z —y
I(e,0)| > o 2B
|z —y|
(2) Let n = 2 or n = 3. Then there exists an o > 0 and suit-

able z,y € R™ with |z|, |y| — oo such that the kernel Ki(x,y) =

s e~ 10Wz—yl/tqt satisfies the estimate

o

Ki(z,y) 2 —.
) 2y

The same result holds for the kernel Ko(z,y) where the term % in the

definition of K is replaced by |O(t)x — y|?/t2, cf. (2.9).

Proof (1) Considering only the component I's 3(z,y) and points z,y € R?
with equal third component z3 = y3 and of equal norm r = |z| = |y| we
use complex notation. Thus we may omit the third component of z, y and
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we restrict ourselves to complex numbers z = r and y = re??, 0 < 0 < ,
yielding

and |z—y| = 2r|sin ¢|. Now '3 3(z,y) is bounded from below by S o (7, 0),
where N = [2r? sin? 9] and

, , 6
O(t)x —y| =r|e™ — | = 2r| sin

360/2+2kn 1 , ) 0_+
1u(r,0) = Ar )32 — r¥sin® |——|/(vt))dt.
(r:) /9/2+2k7r (4mvt)3/? exp( rosin | 9 ‘/(V ))

We find constants «; > 0 independent of r, # and of £ such that for £ > 1

) > 2 [ exp (= o)

I (r, Z—/ exp ( — apr“t®/k)dt

k3/2 _o)2 2
201 r8/(2Vk)

= exp ( — a282)ds.

For 1 <k < N ~ r?6? and rf > 1, we find a3 > 0 such that I (r,0) > <
Summing up we are led to the inequality

log )

LIS
k=

Mz

F3,3(‘ray) 2 Z r, 9 2

k=1 k=1

with a constant a4 > 0 independent of r and of 8 when 70 > 1.
(2) Again we use complex notation and consider points x = r, y = re
0 < 0 < 7, where now 720 > 1. Then K(z,y) is bounded from below by

10

/ t’”/Qexp(—4r23in2\—|/t)—
0—V0/r 2 t

(e%1 /ﬂ/r ( 2 2/0)
> — exp ( — aor-t dt
91+n/2 0

1
i —aps?
77‘01/”"/2/0 e ds.

Hence Ki(z,y) > g7t/ - Lhe kernel K(z,y) can be estimated analo-

v

gously. ]

Before proving Theorem 1.1 in Section 3 below we consider the much
simpler case ¢ = 2, the question of separate estimates for uy and w A u and
a variation of (2.10) when the integrals w.r.t. ¢ extend from 27 to oo.



Proposition 2.2 Given f € L*(R")", n = 2 or n = 3, the solution u of
(1.3) given by (2.5) satisfies the estimate

IV2ulls + l[(w A ) - Vi = w Aullz < cl| ]z (2.10)

Proof By Plancherel’s theorem, Fubini’s theorem and the inequality of
Cauchy- Schwarz (with s = [¢])

1aul = [ s [T et o fowe a de

< / n ( /0 " et dt) - ( /0 " 2o f(O(t)§)|2dt>d§
= o [ ([ seriomer)

-/ ([ i de)
= 7

Furthermore, for any second order partial derivative

A A 1
19;9kull> = lIg&xalla < lI€Fall> = [[Aulla < —[If--
|

Remark 2.3 Inequality (2.10) cannot be improved in the sense that both
lwAwu|lz and ||(w A z) - Vul|z are finite or can even be estimated by || f||2- In
the two-dimensional case let

1(—sind 1
u(z) = u(r,0) = a(r);( cosd ) =a(r)=z

where z is obtained from z by rotation with the angle Z and a € C*(R})
satisfies a = 1 for large r and a = 0 for r € [0,1). Obviously u € C*(R?)?
is solenoidal, |V?u(z)| ~ = for large r yielding V*u € L*(R?)*, supp Au C
suppa and w A u = @(:‘;’;g) = uy. Consequently w A u — uy = 0 and
the right-hand side f = —vAu € L*(R*)?, but |w Au| ~ 1 ¢ L*(R?). An
analogous result holds in Li-spaces, ¢ # 2, when choosing u(z) = a(r)r >zt
for suitable A > 0.

Proposition 2.4 Let f € LY(R?)? satisfy the compatibility conditions

fm(r) : :

=5 /0% OB f(r,0)dd =0 for a.a. 7 >0. (2.11)



Then one can find a suitable representative u of the unique solution in
H?1(R?)? of (1.3) given by Theorem 1.1, satisfying the estimate

IV ully + [10pully + llully < cllfll,-

An analogous result holds for n = 3 where (2.11) is replaced by the assumption
L [JTO0)7f(r,0,25)d =0 for a.a. v = /27 + 23 > 0, 73 € R.

Proof The main idea is to show that the integral mean

iy () = % /O " 0(0) u(r, 0) do

vanishes for a.a. r > 0, for a suitable representative u; for n = 3 the integral
mean U, (r, z3) is defined analogously. Then the identity O(8)0(O(0)Tu) =
Opu — w A u and Wirtinger’s inequality will imply that

o) 27
||u||g = / r/ \O(O)Tu(r, 0)|? dfdr < c||89(0(0)Tu)||g < ¢||Opu — w /\u||Z,
0 0

and Theorem 1.1(1) will complete the proof for n = 2 and also for n = 3.
In order to prove that u,,(r) = 0 notice that, for n = 2, @4(z) = O(8)um(r)
satisfies (1.3) with f replaced by f = 0 since

L() = L(O(0)um(r)) = O(0)(Lu)m(r) = O(0) fm(r) = 0.

Furthermore, since @ € S'(R?)?, the proof of Theorem 1.1(2), see Section 3
below, implies that % € I12. Replacing u by u — %, we may then assume that
um = 0. This argument easily extends to the case n = 3. |

Remark 2.5 The difficulties in the proof of Theorem 1.1 when estimating
Au with u given by (2.5) arise from the corresponding integrals on (0, ¢),
e > 0. Actually, consider the operator S on L?(R™) given by

Sf(z) = / " (CA)YOWT By« F(O()) (@)t

™

i.e., in Fourier space

Sie = [ 2 MOWTHOWE)d:, s = €]

27
Since O(t) is 27—periodic and s2 350 | e~ 2k™s" = g2=2ms’ (] — g=2mvs")~1 —
m(§), we get that

SFE) = m(€) / ) e o) f(O(1)€) dt

= m@F( [ 0w Es 500 @)
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Obviously m(&) satisfies the classical Michlin-H6rmander multiplier condi-
tion, cf. [9], and due to properties of the heat kernel

|| / (7 E, + F(O()7)(@)dt]], < / 1FO)) g dt = 2717,

Then multiplier theory yields the estimate ||Sf|l, < ¢||f]l, for every ¢ €
(1,00) with a constant ¢ = ¢(m, q).

3 Proof of Theorem 1.1

Due to the well-known estimate ||0;0,u||, < c||Aully, 1 < ¢ < 00,1 <5,k <
n, cf. [9], it suffices to consider only Au. The main ideas are Littlewood-
Paley theory and a decomposition of the integral operator

750) = [ T A0 (B HOWd = [ K@y fwdy  (3.1)

R”

in Fourier space where each integral kernel has compact support. Since

F(— A0 (E,# £)(O(1)-) (€) = O#)"[€Pe < F(O(1)¢)
define ¢ € S(R™) by

D) = (2m) 2 |e eIl = (CA)Ey (3.2)
and
hi(e) = t‘”%(%) L (&) = D(VEg) = (2m) AP (3.3)
Thus the kernel K(z,y) may be written in the form
* d
Kzy)= [ 00" w00z - T (3.4
0

To decompose 1 choose 3, ¥ € C’(‘)’o(%, 2) such that 0 < @, ¥ <1 and

o

. © d 1
Z xX(27r)=1, / @(ST)Q—S =5 forallr > 0.
0 s

j=—o0

Then define for £ € R and for j € Z, s > 0
Xi(€) = x27lel),  @s(€) = p(Vsl€l)
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yielding

supp X; C A(2771,2711) = { e R* : 2771 < [¢] < 277},

(3.5)
supp ¢s C A(55 5 7)) 3
moreover [o. ¢s(z)dz = 0 and
0 00 d
S u©=1 [ 2T =1 €20, (3.6
0

j=—o0

The family of functions {¢; : s > 0} will be used in Littlewood-Paley theory,
see 1§8.23 in [10], yielding the inequalities

allfllg < H (/OOO ls * f()]? %)1/2

with constants ¢1,c; > 0 depending on g € (1,00), but independent of f €
L4(R™)". Furthermore we decompose K by defining ¢/ € S(R") by

, < llfll (3.7)

Yl = (2m)"2x; x ¢ or equivalently o7 =x;-v, jEZ, (3.8)

yielding ¢ = 337 1; and, cf. (3.4),

Kiwy)= [ 0w OG-0, jez.  (9)

Given K; we define the operator

dt

1,7(0) = [ Kyt f)dn= [ 00T 61+ )O3

Rn™

(3.10)

such that formally and even w.r.t to the operator norm topology T =
> Tj, see the proof below.

j=—00
Lemma 3.1 The functions wg’ have the following properties:

(1) Forj€Z andt>0

2i—1 9j+l

i)

supp 1[1?{ C A(

12



(2) Form > 2 let h(z) = (L + |z[>) ™ and, cf. (3.3), hu(z) =t *h(
Then there exists a constant ¢ > 0 independent of j € Z such that

17 (x)| < 272 hyoj(x) for all z € R™ .

5

In particular _ '
[l < e27200.

Proof (1) is obvious due to (3.3), (3.5) and (3.8). To prove (2) we show first
of all the pointwise estimate
27191947 (€)| < e 272In(277€)) (3.11)

for all ¢ € R*, j € Z, for all multi-indices o € Nj and with a function
n € C°(1,4), 0 < n < 1. By the definition of X;, (3.5) and the pointwise
estimates

jg[max©2=IED e <1

|3'3¢(§)|S0ﬂ,zv{ , BeNg,
€17 , lEl=1

for every N € N, cf. (3.2), Leibniz’s formula yields the estimate

Zelompe)] < e Y 2MNOTIRETIEN 107h()]

0<B<a
< ey 227 |07 (6)].
0<<a

For j > 0 where only |£| ~ 27 has to be considered, we get (3.11) immediately,
even with 27Vl replacing 27271, For j < 0 and |¢| ~ 27 < 1 the right-hand
side of the last inequality is bounded by

¢ S n(2ife]) 27 812 < o2l
0<8<a

Now (3.11) is proved.
To estimate 17 (z) we use for m > 2 the identity

(el = ﬁ /Rn(l — 29 D)™ (€) e

By (3.11) ' N _ '
(1= 292)" I (€)] < Crw 2 2VIn(2 7€)
for all j € Z and £ € R”. Hence
(1 - 25 A)" ), < G2
and consequently |(1 + |27z|2)™ 7 (x)| < ¢ 221l proving part (2). ]

13



Lemma 3.2 For j € Z let M? denote the mazimal operator

Mig(a) =sup [ (] + lg)(OTo)

t
where A, = [L,16r]. Then for ¢ € (2,00) the operator Tj satisfies the
estimate

inl/2 i1111/2
IT5£lla < el 15" [11M 1Ly 1l

with a constant ¢ > 0 independent of j € N. The term ||| M?||| 42y denotes
the operator norm of the sublinear operator MJ on L(/?) (R™), where ((1/%)/ +

1
2= 1.
Proof To estimate ||T} f||, we use the Littlewood-Paley decomposition (3.7)
of T;f and find a function 0 < g € L2 (R") with lgllq/2y = 1 (note that
q > 2) such that

1 ds
ITf2 < = > —
1

[ e mise)

C

1 [ ds
= _2/ |§03*ij|29d$_-

Cl 0 Rn S

S llg/2

By (3.9), (3.10)

dt

e Tif@) = [ 0w vl x HOW T

where due to (3.5) ¢, x ¥/ = 0 unless t € A(s,j) := [2%~%s, 2%145]. Since

Jie Als.d) & — Jog 28 for every j € Z, s > 0, the inequality of Cauchy-Schwarz

and the associativity of convolutions yield
; dt
oot TP < e[ I (o D)OWR
57.7

dt

< el [ (Wllelpne P00 T
5]

Here we used the inequality

(@] (05 % D) WP < 10711 (193] * s % f1%) (v)

and that [[¢7[|; = [|¢|| for all ¢ > 0. Thus
IT3f1lg < C||1/)j||1/ /A( )/ (1971 % lps + F17)(2) 9(O(=t)x)dw — — .
0 8,7 n
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In the inner integral on R™ note that ¢ = |1/J§ | is radially symmetric; thus for
arbitrary functions f and h we get [(¢ * f)hdx = [ f ¢ * hdx. Then the
elementary identity ¢ « [g(O(—t)-)] = (¢ x )(O(—1)-) implies that

t s

' > - dt d
01 < el [ [ oo 1P [ 10Ot T T e

Here the inner integral on A(s, j) is bounded by MJg(x) uniformly in s > 0.
Now Hoélder’s inequality and (3.7) show that

) ds\ /2 2/q )
5z < el ([ (floo 2 5)" do) " 1mtigliany
< el 1AM gy Nl -

Since [|g||(g/2y = 1, the proof is complete. u

N

Lemma 3.3 Let M denote the classical Hardy-Littlewood mazximal operator
on R, i.e.,

1
Myg(z) = sup
r>0 |Br ()] B, (z)

and let Mvgg denote the “angular” mazimal operator

19(y)| dy,

Mog(z —sup/ lg(O

r>0

where A, = [~ , 16r]. Then M’ in Lemma 3.2 satisfies the estimates
16

Mig(z) < c272W M(Mveg)(x) for a.a. x € R",

IMIglly < 2729 lg]l, Jor1<g<oo.

Proof By Lemma 3.1 (2) |[¢(z)| < ¢2 29|y (x) and consequently

, ) dt
Mig(a) < 2 sup [ (o + lg)(O(0)"0)
r>0 J A, 13
There exists a constant ¢ > 0 independent of 7, j such that hp-2 < chpo-2;
for all ¢ € A,. Hence

Migla) < 2% sup b+ [ g0
Ar

r>0

< ¢2 W sup hy x /{/lvog(x) :
£>0
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Note that h is a nonnegative, radially decreasing function and that f hydx =
co > 0 for all £ > 0. Therefore we conclude by II§2.1 in [10] that

sup hy * Mog(z) < coM(Myg) ()

>0
proving the first assertion.

For ¢ € (1, 00) the maximal operator M is bounded on L4(R"). Concern-
ing My we consider for given g € L7(R™) its restriction

g?‘(o) = g(r, 9) Or  Grzs (9) = g(T, 0’ $3)

for n = 2 or n = 3, resp., when using polar or cylindrical coordinates. For

= 2 g,(0) € L%0,2m) for a.a. r > 0 by Fubini’s theorem, and with
the classical one-dimensional Hardy-Littlewood maximal operator M; on
L9(0, 27)

|Mog(r,8)| < c(M1g,)(8) foraa. r>0. (3.12)
Thus

o0

— o0
Mgl < [ riMugfuanydr < c [ rllaclfuagndr =l
due to the L%-boundedness of M;. For n = 3 the proof is analogous. |

End of the proof of Theorem 1.1 (1) Let g € (2,00). Then by Lemmata 3.1
-3.3
1T fllq < c2 .27 1 f1lq -

Thus Z].EZTJ- converges in the Li-operator norm and T = ZjeZTj is
bounded on LI(R™)™ for ¢ > 2.

Closely related to T is the operator T*f(z) = [ K*(z,y)f(y)dy with
kernel

t

Analogous arguments as before show that 7* is bounded on LI(R"™)™ for every
q > 2. Now let ¢ € (1,2). Then for f € LY(R*)", g € L (R*)"

(Tr 9= LT g < fllqcllglly

implying the L9-boundedness of 7. The case ¢ = 2 had been considered in
Proposition 2.2. [ ]

K*(z,y) = / T w0ty — )0 %

Proof of Theorem 1.1 (2) It suffices to prove that every solution u € §'(R?)3
of (1.3) when f = 0 and V?u € LY(R®) equals a polynomial of the form

16



aw~+BwAT+(yx1, VT2, 613)T. Given u define 9(s', @, &) = O(p)T a(s, p, &3) €
S'(R®)? using cylindrical coordinates for £ € R? and s' = /(&2 + £2). Then,
cf. Section 2,

v[€*d — 9,0 =0 in S'(R*)>.
Let us show that (9,v) = 0 for all ¢ € C°(R*\{0})3. Given v define

2
Vo', 0, 6) = e Ve / P (s ) i

—0o0

Obviously 1y € C*(R3\{0})? and (v[£]? 4 0,)1y = 1. Consequently

(0,9) = (0, (V[€]* + 0y )vh0) = ((VIE]* = 0,)0, ) = 0

proving that supp ¢ C {0} and also supp@ C {0}. Hence u is a polynomial.
Since V2u € L(R®), u is even affine linear, u(z) = a + Bx for a € R3,
B € R®»3. Then (1.3) with f = 0, i.e.,, (WA ) - Vu = w A u, shows that
w A a = 0 or equivalently a = aw, a € R. Furthermore Bx must be of the
form Bz = fw Az + (Y21, yZo, dz3)" with constants 3,v,6 € R. For n = 2
one easily obtains that ¢ = 0 and Bx = fw Az + vyz. ]

Proof of Theorem 1.1 (3) As explained in Section 1 problem (1.2) may be
reduced to (1.3) by solving the equation

Ap=divf+vAg+ dpg =divF inR" (3.13)

where F' = f+vVg+ (wAz)g satisfies the estimate || F||, < c¢(|| fll;+|[¥Vg+
(wAz)gllq). Thus div F' may be considered as a continuous linear functional
on HW (R™). Since the operator A is easily seen to be an isomorphism
from H'“9(R") to its dual H“¢(R")* there exists a unique p € H"“(R")
solving Ap = div F' and satisfying ||Vp||, < ¢||F||;- Then part (1) yields a
u € H>I(R")" satisfying —vAu — pu + w Au = f — Vp and the estimate
|V2ul| g+ |0pu —w Aully < (|| fllq+ I VPllg) - In particular (—vA —dp)divu =
div f — Ap and consequently (—vA — 0p)(divu — g) = 0. By the reasoning
of part (2) we may conclude that divu — g is a polynomial and due to the
integrability assumptions even a constant. Replacing u by u — (z1, 72,0)7,
if necessary, we get a solution (u,p) of (1.2) satisfying also divu = g. The
uniqueness assertion is proved as in part (2). [ |
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