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Abstract. We justify the formal homogenization of the quasistatic initial bound-
ary value problem with internal variables, called the microscopic problem, which
models the deformation behavior of viscoplastic bodies. To this end it is first shown
that the formally derived homogenized initial-boundary value problem has a solu-
tion. From this solution an asymptotic solution of the microscopic problem is con-
structed, and it is shown that the difference of the exact solution and the asymptotic
solution tends to zero if the lengthscale of the microstructure converges to zero. Our
results are proved for viscoplastic material behavior that can be modeled by con-
stitutive equations of monotone type with linear hardening terms. For technical
reasons we are only able to prove the convergence result locally in time and for
smooth data.

1 Introduction and statement of results

The numerical simulation of viscoplastic material behavior is expensive, since
the dependence of the stress field on the deformation history must be taken
into account. The difficulties increase for viscoplastic bodies with a micro-
structure caused by phase changes or by other spatial variations of the mate-
rial properties, because of the fine discretization required by the microstruc-
ture. If the lengthscale of the microstructure is small, effective numerical
simulations can thus not be based on a mathematical model which faithfully
describes this microstructure. For viscoplastic bodies it is therefore of partic-
ular interest to derive from this faithful model, which we call the microscopic
model, a homogenized or macroscopic model, which describes a body without
microstructure, but which shows the same overall behavior as the body with
microstructure.

In this article we study the justification of the formally derived homog-
enized model for a viscoplastic body. To this end we show that from the
solution of the homogenized model an asymptotic solution of the microscopic
model can be derived. We prove that the difference of the exact solution and
the asymptotic solution tends to zero if the lengthscale of the microstructure
converges to zero. For technical reasons we are only able to prove this result
locally in time and for smooth data.

The microscopic model consists of a quasistatic initial-boundary value
problem. The formulation of this problem is based on the assumption that
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only small strains occur: Let Ω ⊆ R3 denote the set of material points of the
body, let S3 denote the set of symmetric 3×3–matrices, and let u(x, t) ∈ R3

be the unknown displacement of the material point x at time t. Further-
more, T (x, t) ∈ S3 is the unknown Cauchy stress tensor and z(x, t) ∈ RN
denotes the unknown vector of internal variables. The model equations of the
microscopic problem are

−divx T (x, t) = b(x, t) , (1)

T (x, t) = D[
x

η
]
(
ε
(
∇xu(x, t)

)
−Bz(x, t)

)
, (2)

∂

∂t
z(x, t) ∈ f

(x
η
, ε
(
∇xu(x, t)

)
, z(x, t)

)
, (3)

z(x, 0) = z(0)(x) , (4)

which must hold for x ∈ Ω and t ∈ [0,∞). For simplicity we only consider
the Dirichlet boundary condition

u(x, t) = γD(x, t) , (5)

which must be satisfied for (x, t) ∈ ∂Ω × [0,∞). Here ∇xu(x, t) denotes
the 3×3–matrix of first order derivatives of u, the deformation gradient,(
∇xu(x, t)

)T denotes the transposed matrix,

ε
(
∇xu(x, t)

)
=

1
2

(
∇xu(x, t) +

(
∇xu(x, t)

)T) ∈ S3

is the strain tensor, and B : RN → S3 is a linear mapping, which assigns
to the vector z(x, t) the plastic strain tensor εp(x, t) = Bz(x, t). For every
y ∈ R3 we denote by D[y] : S3 → S3 a linear, symmetric, positive definite
mapping, the elasticity tensor. It is assumed that the mapping y 7→ D[y] is
periodic with a rectangular periodicity cell Y ⊆ R3. The number η > 0 is the
scaling parameter of the microstructure.

The given data are the volume force b : Ω × [0,∞) → R
3, the boundary

displacement γD : ∂Ω × [0,∞) → R
3 and the initial values z(0) : Ω → R

N

of the vector of internal variables. f : R3 × S3 × RN → 2R
N

in (3) is a
given function. The equation (2) and the differential inclusion (3) together
determine the dependence of the stress T (x, t) on the strain history s 7→
ε
(
∇xu(x, s)

)
. They are the constitutive relations which model the inelastic

behavior of the body. The choice of f is restricted by thermodynamical and
mathematical requirements. In this article we assume that (3) belongs to the
class of constitutive relations of monotone type with positive definite free
energy. For this class the function f can be written in the form

f(y, ε, z) = g
(
y,−ρ∇zψ(y, ε, z)

)
, (y, ε, z) ∈ R3 × S3 × RN , (6)
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with the constant mass density ρ > 0, with a suitable free energy ψ, which
is a positive definite quadratic form

ρψ(y, ε, z) =
1
2

[D[y](ε−Bz)] · (ε−Bz) +
1
2

(Lz) · z , (7)

with respect to the variables (ε, z), and with a suitable function g : R3×RN →
2R

N

, which satisfies 0 ∈ g(y, 0) and for which the function z 7→ g(y, z) : RN →
2R

N

is monotone for all y ∈ R3. In equation (7) we denote the scalar product
of two matrices σ, τ ∈ S3 by

σ · τ =
3∑

i,j=1

σijτij ,

and L denotes a symmetric N×N–matrix. It is easily seen that this matrix
is positive definite if and only if the quadratic form ψ is positive definite. We
assume also that the function y 7→ g(y, z) is periodic with periodicity cell Y
for all z ∈ RN .

We employ (2) and obtain by a simple computation −ρ∇zψ(y, ε, z) =
BTD[y](ε − Bz) − Lz = BTT − Lz, where BT : S3 → R

N is the mapping
adjoint to B. Using this equation we can write the microscopic problem in
the form

−divx T (x, t) = b(x, t) , (8)

T (x, t) = D[
x

η
]
(
ε
(
∇xu(x, t)

)
−Bz(x, t)

)
, (9)

zt(x, t) ∈ g
(x
η
, BTT (x, t)− Lz(x, t)

)
, (10)

z(x, 0) = z(0)(x) , (11)

u(x, t) = γD(x, t), (x, t) ∈ ∂Ω × [0,∞) . (12)

The class of constitutive equations of monotone type, which was introduced
in the book [1], extends the class of generalized standard materials introduced
by Halphen and Nguyen Quoc Son [23]. The class of generalized standard ma-
terials includes the classical constitutive equations like the Prandtl-Reuss and
Norton-Hoff laws, but it does not contain most constitutive equations devel-
oped in engineering in the last decades. To treat these constitutive equations
it is therefore necessary to seek larger classes, for which existence theorems
can be proved. One such class is the class of constitutive equations of mono-
tone type. It has been shown in [1] that most constitutive equations lie outside
even this larger class, and a further enlargement of this class by transfor-
mation methods has been discussed. Yet, a general mathematical existence
theory for most of the constitutive equations used in practice is not available
up to now. It is nevertheless an important mathematical goal to understand
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initial-boundary value problems to constitutive equations of monotone type
as a basis for the investigation of still more general equations. For a discus-
sion of these questions, for the existence theory and for an introduction to
the mathematical literature in viscoplasticity we refer to [1,3,4,15–18,21] and
to [19].

The class of constitutive equations of monotone type requires the free
energy to be positive semi-definite. In this article we only consider the sub-
class of constitutive equations of monotone type with positive definite free
energy because of the strong existence theorems available for this subclass, cf.
[4,21], which allow to derive regularity and stability estimates. Constitutive
equations with linear hardening are of this type.

The investigations in this article thus only form the beginning of the study
of homogenization in viscoplasticity; in particular, homogenization of models
to constitutive equations with positive semi-definite free energy remains to
be considered in the future.

We are interested in the solution of (8) – (12) to quasiperiodic initial data
of the form

z(0)(x) = z(0)
η (x) = z

(0)
0 (x,

x

η
) , (13)

with a given function z(0)
0 : Ω×R3 → R

N , such that for all x ∈ Ω the function
y 7→ z

(0)
0 (x, y) is periodic with periodicity cell Y . We denote a solution of the

microscopic problem to such initial data by (uη, Tη, zη). Since for small values
of η the function x 7→ z

(0)
0 (x, xη ) is close to a periodic function with periodicity

cell ηY , and since x 7→ D[xη ] and x 7→ g(xη , z) are periodic with this periodicity
cell, one expects that also (uη, Tη, zη) will be close to a quasiperiodic function
(ûη, T̂η, ẑη) of the form

ûη(x, t) = u0(x, t) + ηu1(x,
x

η
, t) , (14)

T̂η(x, t) = T0(x,
x

η
, t) , (15)

ẑη(x, t) = z0(x,
x

η
, t) , (16)

where the function (x, y, t) 7→ (u1, T0, z0)(x, y, t) : Ω × R3 × [0,∞) → R
3 ×

S3 ×RN is required to be periodic with respect to y and to have periodicity
cell Y . In [2] it has been shown that if (ûη, T̂η, ẑη) is asymptotically equal to
the solution (uη, Tη, zη) for η → 0, then (u0, u1, T0, z0) and the overall stress
T∞ must satisfy the homogenized initial-boundary value problem formed by
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the equations

−divx T∞(x, t) = b(x, t) , (17)

T∞(x, t) =
1
|Y |

∫
Y

T0(x, y, t)dy , (18)

−divy T0(x, y, t) = 0 , (19)

T0(x, y, t) = D[y]
(
ε
(
∇yu1(x, y, t)

)
−Bz0(x, y, t) (20)

+ ε
(
∇xu0(x, t)

))
,

∂

∂t
z0(x, y, t) ∈ g

(
y,BTT0(x, y, t)− Lz0(x, y, t)

)
, (21)

z0(x, y, 0) = z
(0)
0 (x, y) , (22)

which must hold for (x, y, t) ∈ Ω×Y × [0,∞), and by the boundary condition

u0(x, t) = γD(x, t) , (23)

which must hold for (x, t) ∈ ∂Ω× [0,∞). The symbol |Y | in (18) denotes the
measure of Y .

Note that for x fixed the equations (19) – (22) together with the require-
ment that y 7→ (u1, T0)(x, y, t) must be periodic, which can be considered
to be a boundary condition, define an initial-boundary value problem, the
cell problem, in the domain Y × [0,∞), the representative volume element.
The cell problem is of the same form as the microscopic problem. u1 is the
microdisplacement, T0 the microstress; the overall stress T∞ is obtained via
(18) by averaging of T0 over the representative volume element, u0 is the
macrodisplacement. The term ε(∇xu0(x, t)) in (20) can be considered to be
a homogeneous strain imposed on the representative volume element by the
macrodisplacement. If the history t 7→ ε(∇xu0(x, t)) of the macrostrain is
known, then the function (y, t) 7→ (u1, T0, z0)(x, y, t) and therefore also the
function t 7→ T∞(x, t) can be determined from the cell problem. This depen-
dence of T∞ on ε(∇xu) defines a history functional[

t 7→ ε
(
∇xu0(x, t)

)]
7→
[
t 7→ T∞(x, t) = F

s≤t

(
ε
(
∇xu0(x, s)

))]
,

the constitutive relation for the homogenized material modeled by the balance
law (17), by this constitutive relation and by the boundary condition (23).

The goal of this article is to prove that indeed the solution (uη, Tη, zη) of
(8) – (12) with initial data given by (13) is asymptotically equal to (ûη, T̂η, ẑη)
for η → 0 , with u0, u1, T0, z0 determined from (17) – (23). However, since our
estimates are not sharp enough to decide whether the term ηu1 is present in
(14), we actually prove that the solution is asymptotically equal to (u0, T̂η, ẑη).
Moreover, because of technical reasons we are only able to prove that this
result holds in a finite interval of time, and for smooth data and smooth
functions D and g.
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Rigorous mathematical investigation of homogenization has been carried
out for many problems. Of particular importance for our problem are the
investigations to the linear theory of elasticity. Other examples are the inves-
tigations to the nonlinear theory of elasticity, to the transport of neutrons, to
problems of hydrodynamics and porous media, to linear viscoelasticity and
electrodynamics, cf. for example [5–11,13,22,24–30,34,36]. However, the only
rigorous mathematical investigations of homogenization in the theory of plas-
tic or viscoplastic solids known to the author are [2,21]; this is in contrast to
the importance of homogenization in solid mechanics, which is demonstrated
by the many engineering publications devoted to the study of different as-
pects of homogenization in plasticity and viscoplasticity; we only mention
[31–33,35,37–41].

In this article we study periodic microstructures. In [21] a homogenization
result has been proved for a material with a random microstructure in one
space dimension. This result is strictly one-dimensional and cannot be trans-
fered to higher space dimensions, since in one space dimension the amplitude
of the fast oscillations of the stress tends to zero when the lengthscale of the
microstructure decreases to zero. This is not true in the higher dimensional
case studied here.

Statement of the main results. To state the main results we need some
notations and preparations.

If not stated otherwise we assume that Ω ⊆ R3 is a bounded open set with
C1-boundary ∂Ω. The periodicity cell Y ⊆ R3 is a parallelepiped. Let ∂Yi
and ∂Y−i be parallel faces for i = 1, 2, 3, and let yi ∈ R3 be the vector such
that ∂Yi = yi + ∂Y−i. We make Y into a manifold Yper without boundary
by identifying the points x and x + yi for all x ∈ ∂Y−i, and by choosing
the appropriate topology and parametrization. It is clear that every function
on Yper can be identified with a function on R3, which is periodic and has
periodicity cell Y . If a function belongs to Cm(Yper), then the corresponding
periodic function belongs to Cm(R3).

By Te we denote a positive number (time of existence), and for 0 ≤ t ≤ Te
we set

Ωt = Ω × [0, t], Yper,t = Yper × [0, t], (Ω × Yper)t = Ω × Yper × [0, t] .

If w is a function defined on Ωt, Yper,t or (Ω × Yper)t and if 0 ≤ s ≤ t, we
denote the function x 7→ w(x, s) by w(s). For a suitable subset Γ of Rn the
scalar products on L2(Γ,Rm) and on L2(Γ,S3) are denoted by

(σ, τ)Γ =
∫
Γ

σ(x) · τ(x) dx .

For 1 ≤ p ≤ ∞ and for a Banach space V the Sobolev space of all functions
which together with their weak derivatives up to order m belong to Lp(Γ, V )
is denoted by Hp

m(Γ, V ). The norm of Lp(Γ, V ) is ‖u‖Γ,p , and the norm of
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Hp
m(Γ, V ) is ‖u‖Γ,p;m ; for p = 2 we set ‖u‖Γ = ‖u‖Γ,2 , ‖u‖Γ ;m = ‖u‖Γ,2;m .

Also,
◦
Hm(Γ, V ) denotes the closure of C∞0 (Γ, V ) in Hm(Γ, V ) = H2

m(Γ, V ).
We assume that the symmetric linear mapping D[y] : S3 → S3 is pos-

itive definite uniformly with respect to y, and that the mapping y 7→ D[y]
is bounded, periodic with periodicity cell Y and measurable. Measurability
means that the coefficients in the tensorial representation of D[y] are mea-
surable functions of y. These assumptions imply that a bounded, selfajoint,
positive definite linear mapping σ 7→ Dσ : L2(Yper,S3) → L2(Yper,S3) is
defined by

(Dσ)(y) = D[y]σ(y) , y ∈ Yper .

With this mapping

[σ, τ ]Ω×Y = (Dσ, τ)Ω×Y

is a scalar product on L2(Ω × Yper,S3). The norm associated to this scalar
product is equivalent to the norm ‖·‖Ω×Y .

If we fix t in the equations (17) – (20), (23) we obtain a linear boundary value
problem, which slightly extends the classical homogenized problem of linear
elasticity theory. Since we need solutions of this problem in the formulation of
our results and in the proofs, we introduce and shortly discuss this problem
here: To given functions b̂ : Ω → R

3, γ̂D : ∂Ω → R
3 and ε̂p : Ω × Y → S3 we

seek a solution (u0, u1, T∞, T0) with (u0, T∞) : Ω → R
3 × S3 and (u1, T0) :

Ω × Yper → R
3 × S3 of the equations

−divx T∞(x) = b̂(x) , (24)

T∞(x) =
1
|Y |

∫
Y

T0(x, y) dy , (25)

−divy T0(x, y) = 0 , (26)

T0(x, y) = D[y]
(
ε
(
∇xu0(x)

)
+ ε
(
∇yu1(x, y)

)
− ε̂p(x, y)

)
, (27)

u0(x) = γ̂D(x) , x ∈ ∂Ω . (28)

To define a weak solution of this problem assume that b̂ ∈ L2(Ω,R3), ε̂p ∈
L2(Ω × Y,S3) and γ̂D ∈ H1(Ω,R3). We combine (24) and (25), multiply the

resulting equation by v0 ∈
◦
H1(Ω,R3) and integrate by parts. If we identify

v0 with the function (x, y) 7→ v0(x), the resulting equation can be written as(
T0, ε(∇xv0)

)
Ω×Y = (b̂, v0)Ω×Y , (29)

where we also used that T0(x, y) is a symmetric matrix, hence T0 · ∇xv0 =
T0 · ε(∇xv0). Furthermore, we multiply (26) by v1 ∈ L2

(
Ω,H1(Yper,R

3)
)
,

integrate by parts and add the resulting equation to (29) to obtain(
T0, ε(∇xv0) + ε(∇yv1)

)
Ω×Y = (b̂, v0)Ω×Y .
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Insertion of (27) yields

[ε(∇xu0 +∇yu1)− ε̂p , ε(∇xv0 +∇yv1)]Ω×Y = (b̂, v0)Ω×Y . (30)

A function

(u0, u1, T∞, T0)
∈ H1(Ω,R3)× L2

(
Ω,H1(Yper,R

3)
)
× L2(Ω,S3)× L2(Ω × Yper,S3)

is called weak solution of (24) – (28), if (25), (27) hold, if u0 can be represented

in the form u0 = γ̂D + w0 with w0 ∈
◦
H1(Ω,R3), and if (30) is satisfied for

all (v0, v1) ∈
◦
H1(Ω,R3)× L2

(
Ω,H1(Yper,R

3)
)
.

The following existence result is well known:

Lemma 1 Let b̂ ∈ L2(Ω,R3), γ̂D ∈ H1(Ω,R3) and ε̂p ∈ L2(Ω × Yper,S3).
Then there is a unique weak solution (u0, u1, T∞, T0) of the Dirichlet problem
(24) – (28) satisfying∫

Y

u1(x, y) dy = 0

for all x ∈ Ω. Moreover, there is a constant C such that for b̂ = γ̂D = 0 the
solution satisfies

‖u0‖1,Ω +
(∫

Ω

‖u1(x, ·)‖21,Y dx
)1/2

≤ C‖ε̂p‖Ω×Y . (31)

Proofs can be found for example in [7,30]. [6, pp. 1494] contains an existence
proof for the corresponding scalar boundary value problem; the formulation
of the homogenized boundary value problem given there is similar in spirit
to (24) – (28), and the proof can be generalized to (24) – (28).

Before we can state our existence theorem for the homogenized problem of
viscoplasticity, we finally need some assumptions and definitions for the func-
tion g: We assume that the mapping y 7→ g(y, z) : R3 → 2R

N

is periodic with
periodicity cell Y for all z ∈ RN . As usual, z 7→ g(y, z) is said to be monotone
if

(ζ − ζ̂) · (z − ẑ) ≥ 0

for all z, ẑ ∈ RN and all ζ ∈ g(y, z) , ζ̂ ∈ g(y, ẑ) . This function is said to
be maximal monotone if it does not have a proper monotone extension. It
is well known that if z 7→ g(y, z) is maximal monotone, then the mapping
z 7→ z + λg(y, z) has a single valued inverse jλ[y] : RN → R

N for all λ > 0.

Theorem 2 (Existence and uniqueness of solutions for the homog-
enized problem of viscoplasticity) Assume that the N×N–matrix L in
(21) is positive definite and that the mapping g : R3 × RN → 2R

N

satisfies
the following three conditions:
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(i) 0 ∈ g(0) .

(ii) z 7→ g(y, z) is maximal monotone for all y ∈ R3.

(iii) y 7→ jλ[y](z) : R3 → R
N is measurable for all λ > 0 and all z ∈ RN .

Suppose that b ∈ H1
2

(
0, Te;L2(Ω,R3)

)
and γD ∈ H1

2

(
0, Te;H1(Ω,R3)

)
. Fi-

nally, assume that z(0)
0 ∈ L2(Ω × Yper,R

N ) and that there is ζ ∈ L2(Ω ×
Yper,R

N ) such that

ζ(x, y) ∈ g
(
y,BTT (0)(x, y)− Lz(0)

0 (x, y)
)
, a.e. in Ω × Yper , (32)

where (u(0)
0 , u

(0)
1 , T

(0)
∞ , T

(0)
0 ) is a weak solution of the linear problem (24) –

(28) to the data b̂ = b(0), ε̂p = Bz
(0)
0 , γ̂D = γD(0).

Then to every Te > 0 there are solutions

(u0, u1, T∞, T0, z0) ∈ L2
(
0, Te;H1(Ω,R3)

)
× L2

(
ΩTe ,H1(Yper,R

3)
)

×L2(ΩTe ,S3)× L2
(
(Ω × Yper)Te ,S3

)
× C

(
0, Te;L2(Ω × Yper,R

N )
)

of the homogenized initial-boundary value problem (17) – (23). If a solution
is given by (u0, u1, T∞, T0, z0), then all solutions are obtained in the form
(u0, u1 + a, T∞, T0, z0) with a ∈ L2(ΩTe ,R

3).

We are able to show that the function (u0, T̂η, ẑη) is asymptotic to the solution
of the microscopic problem and thus justify the homogenized problem only
when the solution of this homogenized problem is of higher regularity as given
in this theorem. When g is a single valued function, i.e. g : Yper×RN → R

N ,
and when g, D, the domain Ω and the data are regular, one can show that
up to a certain time the solution is regular. This result is formulated in the
following

Theorem 3 (Higher regularity locally) Let n ≥ 1 be an integer, suppose
that the assumptions of the preceding theorem are satisfied and that Ω ∈ Cn,
g ∈ Cn(Yper ×RN ,RN ), b ∈ Cn(Ω × [0,∞),R3), γD ∈ Cn(∂Ω × [0,∞),R3),
z

(0)
0 ∈ Cn(Ω × Yper,R

N ). Furthermore, suppose that y 7→ D[y] is n–times
continuously differentiable on Yper . Then there exists a time Tr > 0 such that
the solution of the homogenized problem satisfies (u0, T∞) ∈ Cn(ΩTr ,R

3×S3)
and (u1, T0, z0) ∈ Cn(Ω × Yper)Tr ,R

3 × S3 × RN ).

Remark. y 7→ D[y] is n–times continuously differentiable on Yper if the
coefficients of the tensorial representation of D[y] belong to Cn(Yper) .

Theorem 4 (Justification of the homogenized problem)
(i) Suppose that Ω, L, D, g, b, γD and z(0)

0 satisfy the assumptions of Theo-
rem 2. Let Te > 0 and η > 0. Then there is a unique solution

(uη, Tη, zη) ∈ L2
(
0, Te;H1(Ω,R3)

)
× L2(ΩTe ,S3)× C

(
0, Te;L2(Ω,RN )

)



10 Hans-Dieter Alber

of the microscopic problem (8) – (12) to the inital data z(0)(x) = z
(0)
0 (x, xη ).

(ii) Suppose that additionally the assumptions of Theorem 3 are satisfied
with n = 3. Let (u0, u1, T∞, T0, z0) be a solution of the homogenized initial-
boundary value problem (17) – (23), and let Tr be the positive time given in
Theorem 3 such that this solution is 3–times continuously differentiable for
t ∈ [0, Tr]. Let the functions T̂η and ẑη be defined by the equations (15)and
(16). Then (u0, T̂η, ẑη) is asymptotic to the solution (uη, Tη, zη) of the micro-
scopic problem in the time interval [0, Tr], i.e. for all 0 ≤ t ≤ Tr

lim
η→0

[
‖uη(t)− u0(t)‖Ω + ‖Tη(t)− T̂η(t)‖Ω + ‖zη(t)− ẑη(t)‖Ω

]
= 0 . (33)

The proof of Theorems 2 is given in Section 2, whereas the proof of Theo-
rem 3 is only sketched there. Theorem 4 is proved in Section 3. In the proof
of Theorem 4 we apply a well known homogenization result for the linear
boundary value problem of elasticity theory derived by the energy method of
Tartar, cf. the proof of Lemma 14 in Section 3. At one place in this proof we
need that ∂tdivx T0(x, y, t)

∣∣∣
y= x

η

and ∂trotx∇y u1(x, y, t)
∣∣∣
y= x

η

belong to com-

pact subsets of H loc
−1 , where T0 and u1 are the functions in the solution of

the homogenized problem (17) – (23). The regularity of the global solution
obtained from Theorem 2 is slightly too small to prove this. There are other
subtleties in the proof of Theorem 4, but this is the main point why we need
higher regularity and why we can only prove the convergence result (33) lo-
cally in time. We surmise, however, that a similar inequality is valid for the
global solution obtaind from Theorem 2 without the regularity assumptions
of Theorem 3.

2 The homogenized initial boundary value problem

In this section we prove Theorem 2 and sketch the proof of Theorem 3. The
proof of Theorem 2 is based on the reduction of the homogenized initial-
boundary value problem (17) – (23) to an evolution equation in the Hilbert
space L2 with a maximal monotone evolution operator. Existence of solutions
of the initial-boundary value problem follows from the standard existence the-
orems for such evolution equations. This proof follows in the essential details
the proof of existence for the microscopic initial-boundary value problem in
[4], and we thus refer several times to that proof.

We start with a definition based on Lemma 1.

Definition 5 Let the linear operator P : L2(Ω×Yper,S3)→ L2(Ω×Yper,S3)
be defined by

P ε̂p = ε(∇xu0 +∇yu1)

for every ε̂p ∈ L2(Ω × Yper,S3), where (u0, u1, T∞, T0) is the unique weak
solution of the Dirichlet boundary value problem (24) – (28) to b̂ = γ̂D = 0
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given by Lemma 1. Furthermore, with the identity I we define the linear
operator Q = I − P .

Lemma 6 (i) The operators P and Q are bounded projection operators or-
thogonal with respect to the scalar product [σ, τ ]Ω×Y on L2(Ω × Yper,S3).
(ii) The operator BTDQB : L2(Ω×Yper,R

N )→ L2(Ω×Yper,R
N ) is selfajoint

and non-negative with respect to the scalar product (z, ẑ)Ω×Y .

Proof: (i) The boundedness of P follows from (31). To see that P is a projec-
tion, assume that ε̂p belongs to the range of P , hence ε̂p = ε(∇xw0+∇yw1) for
a suitable pair (w0, w1). Thus, by definition of P we have Pε(∇xw0+∇yw1) =

P ε̂p = ε(∇xu0 +∇yu1), where (u0, u1) ∈
◦
H1(Ω)×L2

(
Ω,H1(Yper,R

3)
)

is the
unique function with

∫
Y
u1(x, y)dy = 0 satisfying (30) for b̂ = 0. Clearly, if

we insert (w0, w1) for (u0, u1) then (30) is satisfied, hence (u0, u1) = (w0, w1)
and P ε̂p = ε(∇xw0 + ∇yw1) = ε̂p, which shows that P is a projection. To
prove that P is orthogonal, note that for all τ ∈ L2(Ω×Yper,S3) the function
Pτ is of the form ε(∇xv0 +∇yv1). Therefore we can plug Pτ into the second
argument of the scalar product in (30) and obtain by definition of P for all
σ ∈ L2(Ω × Yper,S3)

[Pσ − σ, Pτ ]Ω×Y = 0 .

Interchanging the roles of σ and τ yields

[Pτ − τ, Pσ]Ω×Y = 0 .

From these two equations we conclude for all σ, τ ∈ L2(Ω × Yper,S3)

[τ, Pσ]Ω×Y = [Pτ, Pσ]Ω×Y = [σ, Pτ ]Ω×Y = [Pτ, σ]Ω×Y .

This yields P ∗ = P , whence P is selfajoint. Therefore P is an orthogonal
projection, which clearly implies that also Q = I − P is an orthogonal pro-
jection.

(ii) For z, ẑ ∈ L2(Ω × Yper,R
n) we have

(BTDQBz, ẑ)Ω×Y = (DQBz,Bẑ)Ω×Y = [QBz,Bẑ]Ω×Y
= [QBz,QBẑ]Ω×Y = [Bz,QBẑ]Ω×Y = (DBz,QBẑ)Ω×Y
= (Bz,DQBẑ)Ω×Y = (z,BTDQBẑ)Ω×Y ,

which implies that BTDQB is selfajoint and non-negative. This completes
the proof.

Since by assumption the symmetric N × N–matrix L is positive definite, it
follows from this lemma that the operator L+BTDQB : L2(Ω×Yper,R

N )→
L2(Ω × Yper,R

N ) is bounded, selfadjoint and positive definite. Therefore

〈z, ẑ〉Ω×Y =
(
(L+BTDQB)−1z, ẑ

)
Ω×Y
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defines a scalar product on L2(Ω×Yper,R
N ). The associated norm z Ω×Y =

〈z, z〉1/2Ω×Y is equivalent to the norm ‖z‖Ω×Y .

After these preparations we can reduce the initial-boundary value problem
(17) – (23) to an evolution equation. To this end we note that (20) yields

BTT0 − Lz0 = BTD
(
ε(∇xu0 +∇yu1)−Bz0

)
− Lz0 . (34)

Assume that (u0, u1, T∞, T0, z0) is a solution of the initial-boundary value
problem (17) – (23). We fix t. If z0(t) is known, then (17) – (20), (23) is
a boundary value problem for the components u0(t), u1(t), T∞(t), T0(t) of
the solution, the homogenized problem from linear elasticity theory. Conse-
quently, these functions are obtained in the form(

u0(t), u1(t), T∞(t), T0(t)
)

=
(
ũ0(t), ũ1(t), T̃∞(t), T̃0(t)

)
+
(
v0(t), v1(t), σ∞(t), σ0(t)

)
,

with a solution
(
v0(t), v1(t), σ∞(t), σ0(t)

)
of the Dirichlet boundary value

problem (24) – (28) to the data b̂ = b(t), γ̂D = γD(t), ε̂p = 0, and with a
solution

(
ũ0(t), ũ1(t), T̃∞(t), T̃0(t)

)
of the boundary value problem (24) – (28)

to the data b̂ = γ̂D = 0, ε̂p = Bz0(t). With the projector P from Definition
5 we thus obtain

ε((∇xu0 +∇yu1)(t))−Bz0(t) = (P − I)Bz0(t) + ε((∇xv0 +∇yv1)(t)) .

We insert this equation into (34) and obtain that (21) can be written in the
form

∂

∂t
z0(t) ∈ G

((
BTD(P − I)B − L

)
z0(t) +BTσ0(t)

)
, (35)

with the mapping G : L2(Ω × Yper,R
N )→ 2L

2(Ω×Yper,R
N ) defined by

G(z) = {ζ ∈ L2(Ω × Yper,R
n) | ζ(x, y) ∈ g

(
y, z(x, y)

)
a.e.} .

Since σ0 is computed from the data b and γ, and thus is known, (35) is an
evolution equation for z0. If we define the evolution operator A(t) by

A(t)z0 = −G
(
− (BTDQB + L)z0(t) +BTσ0(t)

)
and note that Q = I − P , this evolution equation can be written as

∂

∂t
z0(t) +A(t) z0(t) 3 0 .

To transform this equation to an autonomous equation, insert

h = −(BTDQB + L)z0 +BTσ0

into (35). This yields the evolution equation

∂

∂t
h(t) ∈ −

(
BTDQB + L

)
G(h(t)) +BT

∂

∂t
σ0(t) . (36)
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Definition 7 We define the operator C : L2(Ω×Yper,R
N )→ 2L

2(Ω×Yper,R
N )

and the domain ∆(C) of C by

C = (L+BTDQB)G, ∆(C) = {h ∈ L2(Ω × Yper,R
N ) | Ch 6= ∅} .

With this operator we finally write the evolution equation (36) on L2(Ω ×
Yper,R

N ) in the form

ht(t) + Ch(t) 3 BTσ0t .

The existence proof is now based on the following fundamental

Theorem 8 (i) Let the mapping z 7→ g(y, z) : RN → 2R
N

be monotone for
all y ∈ Yper. Then the operator C is monotone with respect to the scalar prod-
uct 〈z, ẑ〉Ω×Y .
(ii) If g and jλ satisfy the conditions of Theorem 2, then C is maximal mono-
tone with respect to this scalar product.

We omit the proof of this theorem, since it coincides essentially with the
proof of Theorem 3.3 in [4].

Corollary 9 Suppose that g and jλ satisfy the conditions of Theorem 2.
Also, let σ0 ∈ H1

2

(
0, Te;L2(Ω × Yper,S3)

)
and let h(0) ∈ ∆(C).

Then the evolution equation

ht + Ch 3 BTσ0t (37)

has a unique solution h ∈ H∞1
(
0, Te;L2(Ω × Yper,R

N )
)

with

h(0) = h(0) . (38)

This solution satisfies

ht(t) Ω×Y ≤ |||Ch(0) +BTσ0t(0)|||+
∫ t

0

BTσ0tt(s) Ω×Y ds a.e.,

where

|||Ch(0) +BTσ0t(t)||| = inf{ ζ Ω×Y | ζ ∈ Ch(0) +BTσ0t(0)} .

Proof: Since C is maximal monotone and since for σ0 ∈ H1
2 (0, Te;L2

(
Ω ×

Yper,S3)
)

the function BTσ0t belongs to H1
1

(
0, Te;L2(Ω × Yper,S3)

)
, this

theorem is an immediate consequence of [12, Theorem 2.2, p. 131].

The proof of Theorem 2 follows from this corollary, since it can be easily
shown that the reduction of the initial-boundary value problem (17) – (22)
to the evolution equation (37) can be reversed and that a solution of the
initial value problem (37), (38) yields a solution of the initial-boundary value
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problem (17) – (22). The assumptions for z(0)
0 in Theorem 2 guarantee that

the inital data h(0) = −
(
BTDQB + L

)
z

(0)
0 +BTσ0(0) belong to the domain

∆(C). We omit the proof, since it is essentially the same as the proof of
Theorem 1.3 in [4].

The proof of Theorem 3 is based on the standard construction of local
solutions to the evolution equation (35) in the Banach space Cn(Ω×Yper,R

N )
using contraction estimates. Since by assumption Ω belongs to the class Cn

and y 7→ D[y] is n–times continuously differentiable, it can be shown by
the usual regularity theory for the boundary value problem (24) – (28) that
the operator P from Definition 5 maps Cn(Ω × Yper,S3) boundedly into
itself. Therefore BTD(P − I)B − L maps Cn(Ω × Yper,R

N ) boundedly into
itself, which together with the assumed regularity of g allows to prove local
contraction estimates for the operator

z0 7→ G
(
(BTD(P − I)B − L)z0 +BTσ0

)
.

We omit the details of the proof.

3 Justification of the homogenized problem

Here we prove Theorem 4. In the proof we need a stability estimate for the
microscopic problem (8) – (12), which is obtained using the framework of
the proof of existence of solutions for this problem. This existence proof is
given in [4,21]; it is similar to the proof of Theorem 2, as mentioned in the
preceding section. To set up this framework, we first give the definitions and
state the results from [4] needed in the proof of Theorem 4, which follows
afterwards:

To begin with, consider the boundary value problem formed by the equa-
tions (8), (9), (12): To given functions b̂ : Ω → R

3, γ̂D : ∂Ω → R
3, ε̂p : Ω →

S3 and to a given number η > 0 we seek solutions (u, T ) : Ω → R
3 × S3 of

the equations

−divx T (x) = b̂(x) , (39)

T (x) = D[
x

η
]
(
ε
(
∇xu(x)

)
− ε̂p(x)

)
, (40)

u(x) = γ̂D(x), x ∈ ∂Ω . (41)

This is the linear problem of elasticity theory. To define weak solutions let
b̂ ∈ H−1(Ω,R3), ε̂p ∈ L2(Ω,S3) and γ̂D ∈ H1(Ω,R3). A function (u, T ) ∈
H1(Ω,R3)×L2(Ω,S3) is called weak solution of (39) – (41), if (40) is satisfied,
if the equation(

D(
·
η

)
(
ε(∇xu)− ε̂p

)
, ε(∇xv)

)
Ω

= (b̂, v)Ω (42)
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holds for all v ∈
◦
H1(Ω,R3), and if u can be represented as u = γ̂D +w with

w ∈
◦
H1(Ω,R3).

Since y 7→ D[y] is bounded and uniformly positive definite, it follows that(
D(
·
η

)σ, τ
)
Ω

is a scalar product on L2(Ω,S3), for which constants c1, c2 exist such that

c1‖σ‖Ω ≤
(
D(
·
η

)σ, σ
)1/2
Ω
≤ c2‖σ‖Ω

holds for all σ ∈ L2(Ω,S3) and all η > 0. Using this fact, we obtain by
the well known theory for the boundary value problem (39) – (41) that to
b̂ ∈ H−1(Ω,R3), ε̂p ∈ L2(Ω,S3), γ̂D ∈ H1(Ω,R3) and η > 0 there is a unique
weak solution (u, T ) satisfying

‖u‖1,Ω + ‖T‖Ω ≤ C(‖b̂‖Ω;−1 + ‖ε̂p‖Ω + ‖γ̂D‖1,Ω) , (43)

with a constant C independent of η.

Definition 10 To η > 0 let the linear operator Pη : L2(Ω,S3)→ L2(Ω,S3)
be defined by

Pη ε̂p = ε(∇xu)

for every ε̂p ∈ L2(Ω,S3), where (u, T ) is the unique weak solution of the
Dirichlet problem (39) – (41) to ε̂p and to b̂ = γ̂D = 0. Also, we define
Qη = I − Pη .

Lemma 11 Let η > 0.
(i) The operators Pη and Qη are projection operators bounded uniformly with
respect to η and orthogonal with respect to the scalar product

(
D( ·η )σ, τ

)
Ω

on
L2(Ω,S3).
(ii) The operator BTD( ·η )QηB : L2(Ω,RN ) → L2(Ω,RN ) is selfadjoint and
non-negative with respect to the scalar product (z, ẑ)Ω. Moreover, there is a
constant C > 0 such that

‖BTD(
·
η

)QηBz‖Ω ≤ C‖z‖Ω , (44)

for all η > 0. Hence BTD( ·η )QηB is bounded uniformly with respect to η.

The proof is essentially equal to the proof of Lemma 6 if we use the estimate
(43) instead of (31).

Since L is positive definite, it follows from this lemma that the operator
L+BTD( ·η )QηB is uniformly positive definite. This implies that

〈z, ẑ〉Ω,η =
((
L+BTD[

·
η

]QηB
)−1

z, ẑ
)
Ω
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defines a scalar product on L2(Ω,RN ). Furthermore, together with (44) we
obtain that to the associated norm

z Ω,η = 〈z, z〉1/2Ω,η

there are constants C1, C2 > 0 such that for all η > 0 and all z ∈ L2(Ω,RN )

C1‖z‖Ω ≤ z Ω,η ≤ C2‖z‖Ω . (45)

Using the projection Qη we define an evolution operator Cη : ∆(Cη) ⊆
L2(Ω,RN )→ 2L

2(Ω,RN ) by

Cηh (46)

= {(L+BTD(
·
η

)QηB)ζ | ζ ∈ L2(Ω,RN ), ζ(x) ∈ g(
x

η
, h(x)) a.e. in Ω} .

Theorem 12 If g satisfies the conditions of Theorem 2, then the operator
Cη is maximal monotone with respect to the scalar product 〈z, ẑ〉Ω,η .

The proof is obtained by a slight modification of the proof of Theorem 3.3
in [4].

Corollary 13 For all Fi ∈ H1
1 (0, Te;L2(Ω,RN )) and h(0)

i ∈ ∆(Cη), i = 1, 2,
the initial value problem

∂

∂t
hi + Cηhi 3 Fi , (47)

hi(0) = h
(0)
i , (48)

has unique weak solutions hi ∈ H∞1 (0, Te;L2(Ω,RN )). These solutions satisfy

h1(t)− h2(t) Ω,η ≤ h
(0)
1 − h

(0)
2 Ω,η +

∫ t

0

F1(s)− F2(s) Ω,η ds. (49)

Proof: Cf. [14, Lemma 3.1 and Theorem 3.4, pp. 64, 65].

After these preparations we come to the
Proof of Theorem 4: We assume that the data b, γD and z(0)(x) =
z

(0)
0 (x, xη ) have the properties required in Theorem 4.

Let
(
vη(t), ση(t)

)
be a solution of the boundary value problem (39) – (41)

to the data

b̂ = b(t) , ε̂p = 0 , γ̂D = γD(t) . (50)

By the same procedure as in in the preceding section it is shown in [4] that
if (uη, Tη, zη) is the solution of the microscopic problem (8) – (12), then the
function

hη = −
(
BTD(

·
η

)QηB + L
)
zη +BTση (51)
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satisfies the initial value problem

hηt(t) + Cηhη(t) = BTσηt(t) , (52)

hη(0) = −
(
BTD(

·
η

)QηB + L
)
zη(0) +BTση(0). (53)

The approximate solution (u0, T̂η, ẑη) constructed from (u0, u1, T∞, T0, z0),
the solution of the homogenized problem (17) – (23), can be reduced to the
solution of the same initial value problem, however with different data. For,
observing (17) – (23), we obtain by a simple computation that (u0, T̂η, ẑη)
satisfies the equations

−divx T̂η(x, t) = −divx T0(x, y, t)
∣∣∣
y= x

η

, (54)

T̂η(x, t) = D[
x

η
]
(
ε(∇xu0(x, t))−Bẑη(x, t) (55)

+ ε(∇yu1(x, y, t))
∣∣∣
y= x

η

)
,

∂

∂t
ẑη(x, t) = g

(x
η
, BT T̂η(x, t)− Lẑη(x, t)

)
, (56)

ẑη(x, 0) = z
(0)
0 (x,

x

η
) , (57)

u0(x, t) = γD(x, t) , x ∈ ∂Ω . (58)

Since these equations have the same form as the equations of the microscopic
problem, we can again employ the procedure from the last section and obtain
that if

(
v̂η(t), σ̂η(t)

)
is the solution of the linear boundary value problem (39)

– (41) to the data

b̂(x) = −divx T0(x, y, t)
∣∣∣
y= x

η

, (59)

ε̂p(x) = −ε
(
∇yu1(x, y, t)

)∣∣∣
y= x

η

, (60)

γ̂D(x) = γD(x, t) , (61)

then the function

ĥη = −
(
BTD(

·
η

)QηB + L
)
ẑη +BT σ̂η (62)

satisfies the initial value problem

ĥηt(t) + Cηĥη(t) = BT σ̂ηt(t) , (63)

ĥη(0) = −
(
BTD(

·
η

)QηB + L
)
ẑη(0) +BT σ̂η(0). (64)
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Thus, if we note that ẑη(x, 0) = zη(x, 0) = z
(0)
0 (x, xη ) and apply Corollary 13,

it follows from (52), (53) together with (63), (64) that for all 0 ≤ t ≤ Tr

hη(t)− ĥη(t) Ω,η ≤ BT (ση(0)− σ̂η(0)) Ω,η (65)

+
∫ t

0

BT
(
σηt(s)− σ̂ηt(s)

)
Ω,η ds .

We next use that
(
BTD[ ·η ]QηB + L

)−1 is uniformly bounded with respect
to η. Consequently (62) and (51) yield that there is a constant C3 such that

‖zη(t)− ẑη(t)‖Ω ≤ C3

(
‖hη(t)− ĥη(t)‖Ω + ‖ση(t)− σ̂η(t)‖Ω

)
, (66)

for all 0 ≤ t ≤ Tr and all η > 0 . This estimate, (45) and (65) imply for
0 ≤ t ≤ Tr

‖zη(t)− ẑη(t)‖Ω ≤ C4

(
‖ση(0)− σ̂η(0)‖Ω +

∫ Tr

0

‖σηt(s)− σ̂ηt(s)‖Ω ds
)
,

(67)

with a constant C4 independent of t and of η. Thus, we can estimate the
difference zη − ẑη if estimates for the differences ση(0)− σ̂η(0) and σηt − σ̂ηt
can be obtained. Since the functions ση and σ̂η both are solutions of the same
elliptic boundary value problem, the problem of linear elasticity theory, we
obtain such estimates from the well known homogenization theory for this
boundary value problem. The estimates are stated in the following lemma,
whose proof is postponed:

Lemma 14 For all 0 ≤ t ≤ Tr

lim
η→0
‖∂it
(
vη(t)− v̂η(t)

)
‖Ω = 0 , i = 0, 1 , (68)

lim
η→0
‖∂it
(
ση(t)− σ̂η(t)

)
‖Ω = 0 , i = 0, 1 . (69)

Moreover, there is a constant K such that for all 0 ≤ t ≤ Tr and all η > 0

‖σηt(t)− σ̂ηt(t)‖Ω ≤ K. (70)

From (69) we conclude that the term ‖ση(0)−σ̂η(0)‖Ω tends to zero for η → 0,
and we conclude that the integrand in (67) tends to zero for η → 0, pointwise
for every s. Since this integrand is uniformly bounded, by (70), Lebesgue’s
convergence theorem implies that the right hand side of (67) tends to zero
for η → 0, whence

lim
η→0
‖zη(t)− ẑη(t)‖Ω = 0 , (71)

for all 0 ≤ t ≤ Tr.
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To obtain the estimate (33) we observe that the equations (8), (9), (12)
form a boundary value problem for (uη, Tη), and that the equations (54),
(55), (58) form a boundary value problem for (u0, T̂η). The Definition 10 of
Pη and the definitions of (vη, ση) and (v̂η, σ̂η) thus yield the decomposition

uη = wη + vη , Tη = D[
·
η

](Pη − I)Bzη + ση ,

u0 = ŵη + v̂η , T̂η = D[
·
η

](Pη − I)Bẑη + σ̂η ,

where wη(t), ŵη(t) ∈
◦
H1(Ω,R3) are the unique functions from Definition 10

which satisfy ε(∇xwη(t)) = PηBzη(t) and ε(∇xŵη(t)) = PηBẑη(t) . We thus
have

ε
(
∇x(wη − ŵη)

)
= PηB(z − ẑη) , (72)

Tη − T̂η = −D[
·
η

]QηB(zη − ẑη) + (ση − σ̂η) , (73)

uη − u0 = (wη − ŵη) + (vη − v̂η) . (74)

From (69), (71), (73) and the uniform boundedness of D[ ·η ]QηB we infer that

lim
η→0
‖Tη(t)− T̂η(t)‖Ω = 0 .

Since (wη − ŵη)(t) ∈
◦
H1(Ω,R3), we infer from the first Korn’s inequality

‖(wη−ŵη)(t)‖Ω;1 ≤ c‖ε(∇x(wη−ŵη)(t))‖Ω and from (71), (72) that ‖wη(t)−
ŵη(t)‖Ω;1 → 0 for η → 0; from (74) and (68) we thus conclude

lim
η→0
‖uη(t)− u0(t)‖Ω = 0

for all 0 ≤ t ≤ Tr . These two relations and (71) together yield (33).

To finish the proof of Theorem 4 it thus remains to verify Lemma 14. This
lemma is a consequence of the following well known result from homoge-
nization theory; similar results can be found in many places, cf. for example
[7,30]:

Lemma 15 Let the functions τ ∈ L2(Ω,S3), b ∈ L2(Ω,R3) satisfy

b− div τ = 0,

and let the families {τη}η>0 and {κη}η>0 with τη ∈ L2(Ω,S3) and κη ∈
L2(Ω,R3×3) have the following properties:

(i) τη ⇀ τ for η → 0, weakly in L2(Ω,S3),

(ii) The set {div τη}η>0 is a subset of a compact subset of H loc
−1(Ω,R3),

(iii) κη ⇀ 0 for η → 0, weakly in L2(Ω,R3×3),
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(iv) The set {rotκη}η>0 is a subset of a compact subset of H loc
−1(Ω,R3×3).

Let (vη, ση) ∈
◦
H1(Ω,R3) × L2(Ω,S3) be a weak solution of the boundary

value problem formed by the equations

−div ση = b− div τη , (75)

ση = D[
·
η

]
(
ε(∇ vη) + ε(κη)

)
, (76)

which must hold in Ω, and by the boundary condition

vη(x) = 0 , x ∈ ∂Ω . (77)

Then

lim
η→0

(‖vη‖Ω + ‖ση‖Ω) = 0. (78)

For completeness we present the short proof, which is based on the energy
method of Tartar:

We first observe that the symmetry of the matrix ση(x) and the equations
(75) – (77) yield∫

Ω

(D[
x

η
]−1 ση) · ση dx =

∫
Ω

(
ε(∇ vη) + ε(κη)

)
· ση dx (79)

=
∫
Ω

(∇ vη + κη) · ση dx =
∫
Ω

vη · b+∇ vη · τη dx+
∫
Ω

κη · ση dx .

Condition (i) of the lemma implies that the set {τη | η > 0} is bounded in
L2(Ω), hence the set of functions {b− div τη | η > 0} on the right hand side
of (75) is bounded in H−1(Ω). Moreover, condition (iii) implies that the set
{ε(κη) | κ > 0} is bounded in L2(Ω). Since the problem (75) – (77) coincides
with the boundary value problem (39) – (41), we thus obtain from (43) that
there is C with

‖ση‖Ω + ‖vη‖Ω;1 ≤ C

for all η > 0. Consequently, we can choose a sequence {ηk}∞k=1 with ηk → 0
such that {vk}∞k=1 = {vηk}∞k=1 converges strongly in L2(Ω,R3) to a function

v ∈
◦
H1(Ω,R3), and such that

∇ vk ⇀ ∇v , σk ⇀ σ̃ , (80)

weakly in L2(Ω,R3), with a suitable function σ̃. Equation (75) and condition
(ii) of the lemma imply that {div σk}∞k=1 belongs to a compact subset of H loc

−1 .
Furthermore, rot(∇ vk) = 0. These properties, the properties (i) - (iv) of τk
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and κk, and the rot-div-Lemma imply that we can pass to the limit on the
right hand side of (79) and obtain with a constant c > 0

c‖σk‖2Ω ≤
∫
Ω

(D[
x

ηk
]−1 σk) · σk dx (81)

→ (v, b)Ω + (∇v, τ)Ω + (0, σ̃)Ω = (v, b− div τ)Ω = 0 .

Observe next that (76), (81) and the property (iii) of the lemma together
yield

ε(∇ vk) ⇀ 0 for k →∞ ,

weakly in L2(Ω,S3). Since ∇ vk ⇀ ∇v, by (80), it follows that ε(∇v) = 0.

Using that v ∈
◦
H1(Ω,R3) we conclude from Korn’s first inequality that v = 0.

Relation (78) follows from this result, from the fact that vk converges to v
strongly in L2(Ω,R3), and from (81). The proof of Lemma 15 is complete.

Proof of Lemma 14: We fix t and set

τη(x) = −T0(x,
x

η
, t) , κη(x) = −∇yu1(x, y, t)

∣∣∣
y= x

η

, τ = −T∞(t) ,

vη = vη(t)− v̂η(t) , ση = ση(t)− σ̂η(t) , b = b(t) ,

and verify that under the assumptions of Theorem 4 these functions satisfy
the hypotheses of Lemma 15.

Note first that (19) yields

div τη(x) = −divx T0(x, y, t)
∣∣∣
y= x

η

.

Since by definition
(
v̂η(t), σ̂η(t)

)
is a solution of the boundary value problem

(39) – (41) to the data

b̂(x) = −divx T0(x, y, t)
∣∣∣
y= x

η

= div τη(x), (82)

ε̂p(x) = −ε(∇yu1(x, y, t)
∣∣∣
y= x

η

) = ε(κη(x)), (83)

γ̂D = γD(t), (84)

cf. (59) – (61), and since
(
vη(t), ση(t)

)
is a solution of the same boundary

value problem to the data b̂ = b(t), ε̂p = 0, γ̂D = γD(t), cf. (50), it follows that
(vη, ση) is a solution of the boundary value problem (75) – (77). Moreover,
(17) implies

b− div τ = b(t) + divx T∞(t) = 0.
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It thus remains to verify the conditions (i) – (iv) of Lemma 15. The condition
(i) is satisfied, since by assumption T0 ∈ C3

(
(Ω × Yper)Tr ,S3

)
, from which

it can be shown by a modification of the proof given in [20, pp. 21] that for
w ∈ L2(Ω,S3)

lim
η→0

(τη, w)Ω = − lim
η→0

∫
Ω

T0(x,
x

η
, t)w(x)dx

= − 1
|Y |

∫
Ω

∫
Y

T0(x, y, t)dy w(x)dx = −(T∞, w)Ω = (τ, w)Ω .

Clearly, this relation implies (i). Also, divx T0 ∈ C2
(
(Ω × Yper)Tr ,R

3
)

yields

‖div τη‖Ω = ‖divx T0(·, y, t)
∣∣∣
y= ·η

‖Ω ≤ ‖divx T0(t)‖Ω×Y,∞|Ω|1/2 ,

from which we conclude that condition (ii) holds. To prove (iii) we note that
∇yu1 ∈ C2

(
(Ω × Yper)Tr ,R

3×3
)

implies for w ∈ L2(Ω,R3×3) that

lim
η→0

(κη, w)Ω = − lim
η→0

∫
Ω

∇y u1(x,
x

η
, t)w(x)dx

= − 1
|Y |

∫
Ω

∫
Y

∇y u1(x, y, t)dy w(x)dx = 0,

hence κη ⇀ 0, weakly in L2(Ω,R3×3). Again this is shown by a modification
of the proof in [20, pp. 21]. Finally, to verify (iv) we note that

rotx κη(x) = [rotx∇yu1(x, y, t)]y= x
η
.

Thus, rotx(∇yu1) ∈ C1
(
(Ω × Yper)Tr ,R

3
)

implies

‖rotκη‖Ω = ‖[rotx∇yu1(x, y, t)]y= x
η
‖Ω ≤ ‖rotx

(
∇yu1(t)

)
‖Ω×Y,∞|Ω|1/2 .

Condition (iv) is a consequence of this estimate.
Thus, we can apply Lemma 15 and obtain from (78)

lim
η→0

(‖vη(t)− v̂η(t)‖Ω + ‖ση(t)− σ̂η(t)‖Ω) = 0,

which yields (68) and (69) for i = 0. To obtain these relations for i = 1, we
replace the functions vη, v̂η, ση, σ̂η, T0, u1, T∞, b by their time derivatives and
argue in exactly the same way.

Finally, to prove (70) we note that
(
v̂ηt(t), σ̂ηt(t)

)
and

(
vηt(t), σηt(t)

)
,

respectively, are solutions of the boundary value problem (39) – (41) to the
data

b̂ = −divx T0t(t)
∣∣∣
y= x

η

, ε̂p = −ε
(
∇yu1t(t)

)∣∣∣
y= x

η

, γ̂D = γDt(t) ,
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cf. (59) – (61), and

b̂ = bt(t) , ε̂p = 0 , γ̂D = γDt(t) ,

cf. (50), respectively. Since by the regularity assumptions of Theorem 4 we
have divx T0t ∈ C1

(
(Ω × Yper)Tr

)
, ∇yu1t ∈ C1

(
(Ω × Yper)Tr

)
, bt ∈ C2(ΩTr ),

γDt ∈ C2(∂ΩTr ), we conclude from (43) that there is a constant K with

‖σηt(t)− σ̂ηt(t)‖Ω ≤ ‖σηt(t)‖Ω + ‖σ̂ηt(t)‖Ω ≤ K

for all 0 ≤ t ≤ Tr and all η > 0. This completes the proof of Lemma 14.
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