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ABSTRACT

Asymptotic expansions for solutions of linear differential-algebraic ordinary differen-
tial equation with variable matrix coefficients are considered. The solution is being
sought in the form of a formal power series. The coefficients of this series satisfies
linear infinite-dimensional system of the algebraic equations with triangular matrix
of coefficients. Existence and uniqueness theorem is proved for such equations and
initial manifolds are described. The Drazin inverse matrices are used to demonstrate
the existence of asymptotic expansion.

1. Introduction

Let’s consider a linear differential-algebraic equation with variable matrix coefficients
in a Cm space

A(t) · ẋ(t) + x(t) = f(t) (1)

with an initial condition
lim
t→0

x(t) = x0, t ∈ S, (2)

where S = {t ∈ C : 0 < |t| ≤ t0 ∧ α < arg t < β, −π/2 ≤ α < β ≤ π/2} - sector of com-
plex plane with a corner in zero (t0-some positive constant), A(t) is (m×m)−matrix
function of variable t, f(t) is (m× 1)−vector function of variable t. Vector function x(t)
is called the solution of initial problem (1)-(2), if it is holomorphic function in S and
satisfied the equation (1) and the condition (2) for all t ∈ S. Let A(t) and f(t) have the
following asymptotic expansions on S [1]

f(t) ∼
∞∑
r=0

frt
r, t→ 0, t ∈ S;

A(t) ∼
∞∑
r=0

Art
r, t→ 0, t ∈ S,

and holomorphic in sector S. Let’s find the solution in the such form

x(t) ∼
∞∑
r=0

xrt
r, t→ 0, t ∈ S,

where power series
∑∞
r=0 xrt

r satisfies the equation formally. It means that this power
series after inserting instead of x(t) into the equation (1) leads to the linear infinite-
dimensional system of the algebraic equations with triangular matrix of coefficients:
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A0x1 + x0 = f0

2 · A0x2 + (E + A1)x1 = f1

3 · A0x3 + (E + 2 · A1)x2 = f2 − A2x1

. . . (3)

(n+ 1)A0xn+1 + (E + n · A1)xn = fn − (n− 1)A2xn−1 − ...−
−2 · An−1x2 − Anx1, n = 0, 1, 2, ...

with a unique solution. Solving of this infinite-dimensional system of the algebraic equa-
tions has some difficulties so as detA0 = 0 [1]. However this system could be solved and
has a unique solution under some limitation on coefficients in asymptotic expansion of
matrix A(t). This task will be proved below (Lemma). Finally we will prove Theorem
that power series

∑∞
r=0 xrt

r is the asymptotic expansion for the unique solution x(t) of
differential-algebraic equation (1).

2. Solving the implicit system of algebraic equations

In this section we will prove that system (3) has unique solution under some limitation
on coefficients in asymptotic expansion of matrix A(t).

Definition. The index of an (m×m)−matrix A of complex numbers, denoted by
indA is the smallest integer k ≥ 0 such that rank (Ak) = rank (Ak+1).

Lemma. Let the system (3) of linear equation is given in a Cm space. Here x0−initial
vector, vectors fn are given, matrices An are also given and at least detA0 = 0. Let
indA = 1, and suppose that

rank P · (E + n · A1) = rank P, ∀n = 0, 1, 2, ..., (4)

where P : Cm → kerA0 is a projector onto null-space of A0. Then the implicit system has
unique solution {xn}∞0 for each vector x0 which satisfies the condition

(x0 − f0) ∈ ImA0. (5)

That system doesn’t have solutions for other vectors x0.

Proof: As indA = 1 then Cm = ImA0+̇ kerA0 and projector P exists such that

P : Cm → kerA0, G : Cm → ImA0, G · P = 0, G+ P = E.

From supposing of lemma rank A0 = p we get that rank G = p, rank P = m− p. From
Grassmann’s formula and the condition (4) we obtain that

rank

(
G

P · (E + n · A1)

)
= m, ∀n = 0, 1, 2, ... (6)

Matrix θ = A0 + P has the inverse one. So as from equation θ · x = 0 follow A0 · x = 0
and P · x = 0, i.e. x = 0. It’s easy to verify such correlations

θ−1 · A0 = G, P · θ−1 = P, θ−1 = P + θ−1 ·G. (7)
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Let’s denote

ϕn := fn − (n− 1)A2xn−1 − ...− 2 · An−1x2 − Anx1, n = 0, 1, 2, ...

Let’s multiply each equality (3) by matrix θ−1 and using the first equality (7), we obtain
equivalent equation

(n+ 1) ·G · xn+1 + θ−1 · (E + n · A1) · xn = θ−1 · ϕn.

After applying the projectors G, P we have

(n+ 1) ·G · xn+1 +G · θ−1 · (E + n · A1) · xn = G · θ−1 · ϕn, (8)

P · θ−1 · (E + n · A1) · xn = P · θ−1 · ϕn. (9)

Equation (9) is simplified by using the second correlation (7):

P · (E + n · A1) · xn = P · ϕn. (10)

At n = 0 equality (10) gives us the limitation of the initial vector P · x0 = P · f0, i.e.
(x0 − f0) ∈ ImA0. From (8),(9) follows that

(n+ 1) ·G · xn+1 = −G · θ−1 · (E + n · A1) · xn +G · θ−1 · ϕn
P · (E + (n+ 1) · A1) · xn+1 = P · ϕn+1

(11)

For fixed n we assume that vectors xn, ϕn, ϕn+1 are known and consider (11) as system
of 2m linear algebraic equations regarding m components of vector xn+1. The matrix(

(n+ 1) ·G G · ξn
P · (E + (n+ 1) · A1) P · ϕn+1

)
, ξn = θ−1 · (ϕn − (E + n · A1) · xn),

has the rank m, so as matrices ((n+ 1) ·G G · ξn) and (P · (E + (n+ 1) · A1) P · ϕn+1)
have p and (m− p) linear independent lines respectively. System (11) has a unique
solution by the theorem of Kronecker-Capelli. Solving the system (11) sequentially at
n = 0, 1, ..., we obtain the claim of lemma.

3. The main asymptotic theorem

In this section we will prove the main asymptotic theorem for solutions of linear
differential-algebraic equation (1).

Definition: If A is an n× n matrix of complex numbers, then the Drazin inverse of
A, denoted by AD, is the unique solution of three equations

AX = XA,

XAX = X,

XAk+1 = Ak, k = Ind(A)
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Theorem. Let matrix A(t) in differential-algebraic equation (1) satisfies the condi-
tions rank A(t) = const and indA(t) = 1 for ∀ t ∈ S̄. Suppose that the coefficients Ar in
asymptotic expansion of A(t) satisfy the conditions of lemma. If series

∑∞
0 xrt

r satisfies
the equation (1) formally and x0 satisfies the condition (5) of lemma then the solution
x = x(t) of the initial problem (1)-(2) exists and unique in the sector S, and

x(t) ∼
∞∑
r=0

xrt
r, t→ 0, t ∈ S.

Proof:
1). Existence of asymptotic expansion. Let’s consider a closed sector S1 such that

S1 ⊂ S. Using the constant rank of matrix A(t), the form of matrix AD(t) [2] and
theorem 1 [3] we get that matrix AD(t) is holomorphic in S1. From integral form of
matrix AD(t) [5] we can prove that AD(t) has asymptotic expansion on S1. It follows
from opportunity to choose the constant way of integration so as matrix A(t) has con-
stant rank and is holomorphic in S. Using the theorem 9.3 [1] we obtain that ∃x̂ ∈ S1

such that

x̂(t) ∼
∞∑
r=0

xrt
r, t→ 0, t ∈ S1.

Let’s suppose that x(t) = z(t) · et + x̂(t),where function z(t) must be defined. After trans-
formation the equation (1) we obtain

A(t) · ż(t) + z(t) = ϕ(t, z) (12)

Here ϕ(t, z) = −A(t) · z(t)− e−t · a(t) and a(t) = A(t) · x̂(t) + x̂− f(t) ∼ 0, t→ 0, t ∈ S1.
Now we must prove that the solution of equation (12) has asymptotic expansion which
equals zero. Differential equation (1) has been written in the form (12). It’s necessary for
preparing the next step consisted of transformation the differential equation to the integral
equation. Let us multiply (12) by matrix

(
E − AD(t) · A(t)

)
. According to the definition

of AD(t) and the conditions of theorem the correlation
(
E − AD(t) · A(t)

)
· A(t) = 0 is

true and then we obtain

z(t) = AD(t) · A(t) · z(t) + ξ(t), (13)

where ξ(t) = − (E − AD(t) · A(t)) · e−t · a(t). After taking the derivative (13) and multi-
plying the result equation by AD(t) · A(t) we obtain

AD(t) · A(t) · dξ
dt

= −AD(t) · A(t)
dADA

dt
· z(t), (14)

and thereto using the definition of matrix AD(t):

AD(t) · A(t) · ξ(t) = 0, (15)

AD(t) · ξ(t) = 0, A(t) · ξ(t) = 0 (16)

A(t) · dξ
dt

= −A(t)
dADA

dt
· ξ(t), (17)
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For getting equality (18) we use the definition of ξ(t) and properties of matrix AD(t) [5].
The solution z(t) of the equation (12) satisfy the following correlation

ADA2dz

dt
+ ADA2(AD +

dADA

dt
)z − ADA2dA

DA

dt
ξ − ADA2ADϕ(t, z) = 0. (18)

It follows from (14), (15), (17) and that matrix AD(t) · A(t) is a projector. From the
equation (18) we get such vector δ(t) ∈ kerA(t) exists and the following correlation is
true for it:

dz

dt
= −

(
AD +

dADA

dt

)
z +

dADA

dt
ξ + ADϕ(t, z) + δ(t). (19)

Let Z(t) is fundamental matrix of system (19). It’s known [4] that Z(t) can be the solution
of the following matrix Cauchy’s task:

dZ (t)

dt
= −

(
AD +

dADA

dt

)
Z(t), Z(a) = E, a ∈ S1, t ∈ S1.

Let us multiply (19) by matrix Z−1(t) and integrate the result equation from a to t:

∫ t

a
Z−1 dz

dτ
dτ = −

∫ t

a
Z−1

(
AD +

dADA

dτ

)
zdτ +

∫ t

a
Z−1

(
dADA

dτ
ξ + ADϕ+ δ

)
dτ.

After using the integration by parts for the left side of the last equation, a correlation
dZ−1/dt = Z−1 ·

(
AD + d(ADA)/dt

)
, Z−1(a) = E and multiplying by the matrix Z(t) we

get the result

z(t) = Z(t) · z(a) + Z(t)
∫ t

a
Z−1(τ) ·

(
dADA

dτ
· ξ(τ) + AD(τ) · ϕ(τ, z) + δ(τ)

)
dτ. (20)

Note that the next correlation is true:

η(t) ≡ AD(t) · A(t) · Z(t) ·
∫ t

a
Z−1(τ) · δ(τ)dτ ≡ 0, (21)

so as, using the definition of Z(t), δ(t) ∈ kerA(t) and properties of matrix AD(t) we obtain
that η(t) is the solution of the system:

dη(t)

dt
=

(
−AD +

dADA

dt

)
· η(t), η(a) = 0, a ∈ S1, t ∈ S1.

This system has only zero solutions because this is the Cauchy’s task with zero initial
data. It verifies directly. Substituting (20) in (13) and using (21) we obtain that z(t)
satisfies the integral equation:

z(t) = AD · A · Z · z(a) + AD · A · Z
∫ t

a
Z−1 ·

(
dADA

dτ
· ξ + AD · ϕ

)
dτ + ξ(t). (22)

Now let’s prove that the integral equation (22) is equivalent to the differential equation
(12). Let z(t) is the solution of the integral equation (22). Then it looks like

z(t) = AD(t) · A(t) · z(t) + ξ(t), (23)
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and z(t) satisfies the correlation (19) at δ(t) ≡ 0. Therefore using (17), (23) we obtain

A · dz
dt

= A ·
(
dADA

dt
· z + AD · A · dz

dt
+
dξ

dt

)
= A · dA

DA

dt
· z + A · dA

DA

dt
· ξ −

− AD · A · z − A · dA
DA

dt
· z + AD · A · ϕ+ A · dξ

dt
= −z + ξ + AD · A · ϕ.

Hence the correlation

θ = A · dz
dt

+ z − ϕ = −z + ξ + AD · A · ϕ+ z − ϕ = ξ − (E − AD · A) · ϕ = 0.

is true. And thus the equivalence of equations (12) and (22) is proved. So as the integrand
function in the right part of (22) is continuous at the zero, then we can make the limit
transformation at a approaching to 0 and the integral from zero to t exists and does not
depend on the way of integration if the way of integration belongs to S1. Let’s choose the
straight line way of integration.

z(t) = AD(t) · A(t) · Z(t)
∫ t

0
Z−1(τ) ·

(
dADA

dτ
· ξ(τ) + AD(τ) · ϕ(τ, z)

)
dτ + ξ(t). (24)

We will seek the solution of the equation (24) using iterative method. Let z0(t) ≡ 0
and define zr+1(t) by the recurrent way, i.e.

zr+1(t) = −AD · A · Z
∫ t

0 Z
−1 · AD ·

(
A · zr(τ) + (E + A · dADA

dτ
) · e−τ · a(τ)

)
dτ−

−(E − AD(t) · A(t)) · e−t · a(t).
(25)

Note that ‖a(t)‖ ≤ c · |t|l, t ∈ S1 so as a(t) ∼ 0, where l is any positive integer number
and c is some constant which depends on l. Let’s denote

k1 = max

{
sup
t∈S1

‖E − ADA‖, sup
t∈S1

‖Z−1AD(t · E + A
dADA

dt
)‖
}

sup
t∈S1

‖ADAZ‖ ≤ k2

sup
t∈S1

‖Z−1ADA‖ ≤ k3, and k :=
k2 · k3

l + 1
.

Then one can find that

‖zr+1 − zr‖ ≤ c · k1 · kr · |t|l+r · (
k2

l + 1
+ 1) (26)

and the norm of zr+1(t)

‖zr+1(t)‖ = ‖
r∑
i=o

(zi+1 − zi)‖ ≤
r∑
i=o

‖(zi+1 − zi)‖ ≤ c · k1 · (
k2

l + 1
+ 1) ·

r∑
i=o

ki · |t|l+i.

At |t| < 1/k the last numerical series converges as geometrical progression then

‖zr+1(t)‖ ≤ c · k1 · (
k2

l + 1
+ 1) · |t|l

1− k · |t|
(27)
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Inequality (27) does not break the condition of the arbitrariness of t0, because we can
choose number l, such that t0 < 1/k. Let’s prove that such limit exists

z(t) = lim
r→∞

zr(t). (28)

From (26) we obtain that series

∞∑
r=0

‖zr+1 − zr‖

may be majority by convergent series on the set S1. Therefore the series

∞∑
r=0

(zr+1 − zr)

converges uniformly on the set S1 according to K.Weierstrass’s theorem. It means that
following limit exists

lim
r→∞

zr(t) = lim
r→∞

r∑
i=0

(zi+1 − zi)

and the limit function z(t) is holomorphic in S1 . So zr(t) converges to z(t) uniformly on
the set S1 at r →∞. Let’s prove that z(t) satisfies integral equation (24). Let’s consider

‖zr(t) + AD · A · Z
∫ t

0
Z−1 · AD ·

(
A · z(τ) + (E + A · dA

DA

dτ
) · e−τ · a(τ)

)
dτ −

+(E − AD · A) · e−t · a(t)‖ = ‖AD · A · Z
∫ t

0
Z−1 · AD · A · (z(τ)− zr−1(τ))‖ ≤

≤ k2 · k3 · t0 ·max
t∈S1

‖z(t)− zr−1(t)‖ → 0

at r →∞. Hence z(t) satisfies integral equation (24). Let’s prove uniqueness of z(t).
Suppose that y(t) is the other solution of the integral equation (24). The solutions y(t)
and z(t) are different. The function y(t) is holomorphic and satisfies the initial condition
limt→0 y(t) = 0 for ∀t ∈ S1and

sup
t∈S1

‖y(t)‖ ≤M,

where M - some constant.

y(t) = AD(t) · A(t) · Z(t)
∫ t

0
Z−1(τ) ·

(
dADA

dτ
· ξ(τ) + AD(τ) · ϕ(τ, y)

)
dτ + ξ(t).

Using the method of induction, the last correlation and the definition of zr(t) we obtain
the inequality

‖y(t)− zr(t)‖ ≤M · (k2 · k3)r · tr

r!
, t ∈ S1,

hence

y(t) = lim
t→∞

= z(t), t ∈ S1.
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So z(t) is the unique solution of the integral equation (24), hence it’s also the solution
of the differential equation (12). Using (27), (28) and formulas for the calculation of
coefficients of asymptotic expansion [1] we obtain

z(t) ∼ 0, t→ 0, t ∈ S1.

Thus we may conclude that power series
∑∞
r=0 xrt

r is asymptotic expansion for the solution
of equation (1) on set S, i.e.

x(t) ∼
∞∑
r=0

xrt
r, t→ 0, t ∈ S.

2).Uniqueness of solution. Let two solutions x1(t) and x2(t) exist and satisfy the
equation (1). Then let’s consider the following initial problem

A(t) · u̇(t) + u(t) = 0, lim
t→0

u(t) = 0,

where u(t) = x1(t)− x2(t).
Let’s make transformation u(t) = N(t) · w(t), w(t) = (w1(t), w2(t))tr and multiply the

result correlation by matrix N−1(t). In result we obtain the equivalent system

w1(t) = 0

ẇ2(t) = I−1(t) ·M(t) · w2(t)

where M(t) is some matrix of the blocks of matrix N−1(t) · Ṅ(t) and I(t) is an invertible
Jordan’s block of matrix A(t). Let’s prove that the following initial problem has zero
solution:

ẇ2(t) = I−1(t) ·M(t) · w2(t), lim
t→0

w2(t) = 0. (29)

For that let’s consider simply connected regionD such that S1 ⊂ D and matrix I−1(t) ·M(t)
is holomorphic in it. The initial condition (29) has equivalent form

lim
t→0

w2(t) = 0 ⇔ ∀{tn}∞n=0 ⊂ D : t→ 0 ⇒ lim
n→∞

w2(tn) = 0.

Let’s fix tn. Let W (t) is fundamental matrix of system (29). It’s known [4] that W (t) can
be the solution of the following matrix Cauchy’s task:

dW (t)

dt
= I−1(t) ·M(t) ·W (t), W (tn) = E, tn ∈ D, t ∈ D.

After multiplying (29) by matrix W−1(t) and integrating from tn till t we obtain∫ t

tn
W−1(τ) · dw2(τ)

dτ
dτ =

∫ t

tn
W−1(τ) · I−1(τ) ·M(τ) · w2(τ)dτ.

Applying integration by parts to the right part of the last equation and taking into account
the correlation

dW−1(t)

dt
= −W−1(t) · I−1(t) ·M(t), W−1(tn) = E, tn ∈ D, t ∈ D,
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we obtain W−1(t) · w2(t) = W−1(tn) · w2(tn), and after multiplying by matrix W (t) we
obtain the final result

w2(t) = W (t) ·W−1(tn) · w2(tn) = W (t) · w2(tn).

After applying the limit transformation at n→∞, one can see w2(t) = 0. So as for
∀t ∈ S1 detN(t) 6= 0 then u(t) = 0 and the theorem is proved completely.

4. Examples

Example 1: For illustration of the theorem let’s consider the homogeneous system

A(t)ẋ(t) + x(t) = 0, t ∈ S, (30)

where A(t) =

(
t+ 1 1

(t+ 1)2 t+ 1

)
, S is arbitrary sector which satisfies the conditions of

the theorem. Then A(t) ∼ A0 + A1t+ A2t
2, where

A0 =

(
1 1
1 1

)
, A1 =

(
1 0
2 1

)
, A2 =

(
0 0
1 0

)
, A3 = ... = 0.

It’s evident that the lemma condition (4) is satisfied as det(E + (n+ 1)A1) = (n+ 2)2 6= 0.
All conditions of the theorem are satisfied and the obtained solution is:

x(t) ∼
(

1
1

)
+
∞∑
r=1

(
(−1)r

0

)
tr, t→ 0, t ∈ S.

Example 2: The conditions of the theorem can not be weakened. Let’s consider the
system (30) at m = 3 on the set S = {t ∈ C : |t| > 0 ∧ | arg t| < α, 0 < α ≤ π/2} with
matrix

A(t) =

 cos t− t 0 0
0 − sin t 0
0 0 0

 , A(t) ∼
∞∑
r=0

Art
r,

where Ar = 1
r!

 cos(πr/2)− t(r) 0 0
0 − sin(πr/2) 0
0 0 0

.

Matrix A(t) has not a constant rank. In this case we have rank(E + A1) < dim kerA0.
Condition (4) is not satisfied at n = 1. It’s evident that solution of the system (3) is not
defined uniquely by the initial vector and that’s way we can’t get asymptotic expansions
for solutions of this system.
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