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Using a generalized stability condition we give an upper
bound of the principle curvatures of certain constant mean
curvature surfaces which implies a theorem of Bernstein type.

1. Introduction

Let B := {(u, v) ∈ R2 : u2 + v2 < 1} be the open unit disc, B ⊂ R2 its
topological closure. We consider immersions X ∈ C3+α(B,R3)∩C0(B,R3),
α ∈ (0, 1), of prescribed constant mean curvature H(X) ≡ h0 ∈ [0,+∞).
Introducing conformal parameters (u, v) ∈ B, such an immersion satisfies
the nonlinear elliptic system

4X(u, v) = 2h0(Xu ∧Xv),

|Xu|2 = W = |Xv|2 , Xu ·Xt
v = 0 in B,

where W := |Xu ∧Xv| > 0 denotes the surface element with the usual cross
product ∧ between two vectors in R3. By

N(u, v) :=
Xu(u, v) ∧Xv(u, v)
|Xu(u, v) ∧Xv(u, v)|

we denote the spherical map of the surface X = X(u, v).

Definition 1.1. The immersion X ∈ C3+α(B,R3) ∩ C0(B,R3), α ∈ (0, 1),
of prescribed mean curvature H(X) ≡ h0 ∈ [0,+∞) is of class C(B,R3), if
it has finite Dirichlet integral∫∫

B

|∇X(u, v)|2 dudv < +∞

and satisfies the above nonlinear elliptic system.

Furthermore, the immersion X = X(u, v) is called stable if∫∫
B

|∇ϕ(u, v)|2 dudv ≥ 2
∫∫
B

(2h2
0 −K)Wϕ(u, v)2 dudv

holds true for all test functions ϕ ∈ C∞0 (B,R). Assuming stability, the
oscillation of the spherical image can be controlled in the following way:
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Let Z ∈ R3 be an arbitray unit vector, and ω ∈ (0, 4π). Then we define the
spherical cap S2

ω(Z) := {X ∈ R3 : X ·Zt ≥ cosω} of polar angle ω ∈ (0, 4π)
and center Z ∈ S2, S2 := {X ∈ R3 : |X| = 1}. For w0 ∈ B and real
ν ∈ (0, 1−|w0|) we consider the open disc Bν(w0) := {w ∈ B : |w−w0| < ν}.
If the spherical image fulfills

N(∂Bν(w0)) ⊂ S2
π
2
(Z), w0 ∈ B, ν ∈ (0, 1− |w0|),

then it follows that N(Bν(w0)) ⊂ S2
π
2
(Z) (cp. [Sa2]).

Proving a modulus of continuity of the spherical image is a crucial step in
estimating the first and second derivatives of the immersion. In the next
section we give a variant of this result for immersions of prescribed constant
mean curvature which are µ-stable in the sense of

Definition 1.2. The immersion X ∈ C(B,R3) with prescribed constant
mean curvature h0 ∈ [0,+∞) is called µ-stable with a real number µ > 0 if∫∫

B

|∇ϕ(u, v)|2 dudv ≥ µ
∫∫
B

(2h2
0 −K)Wϕ(u, v)2 dudv

holds true for all test functions ϕ ∈ C∞0 (B,R).

As shown in section 3, µ-stability can be realized by assuming∫∫
B

(2h2
0 −K)W dudv < ω0

with a real constant ω0 ∈ (0, 4π). In section 4 we apply our result to give an
upper bound for the principle curvatures of these immersions and derive a
result of Bernstein type.

2. Projectivity

Lemma 2.1. Let X ∈ C(B,R3) be µ-stable with a real constant µ ∈ (1, 2].
For w0 ∈ B and real ν ∈ (0, 1− |w0|) we assume

N(u, v) · (0, 0, 1)t >
2
µ
− 1 for all (u, v) ∈ ∂Bν(w0).

Statement: Then the inequality

N(u, v) · (0, 0, 1)t >
2
µ
− 1 for all (u, v) ∈ Bν(w0)

holds true. In particular, X|Bν(w0) represents a graph over the plane per-
pendicular to the vector (0, 0, 1).

Remark 2.2. This result as well as its method of proof are motivated by
Hilfssatz 6 from [Sa1].
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Proof of Lemma 1: Let ψ∗ := N · (0, 0, 1)t. We consider the function

ψ(u, v) := ψ∗(u, v)− ω, (u, v) ∈ Bν(w0), ω :=
2
µ
− 1.

Since 4N + 2qN = 0, q := (2h2
0 − K)W > 0, holds true for the normal

mapping of the surface, by multiplication with the vector (0, 0, 1) we obtain

4ψ∗ = −2qψ∗ = −2qψ − 2qω = 4ψ in Bν(w0).

We define

ψ−(u, v) := min (ψ(u, v), 0) ∈ H2
1 (Bν(w0),R) ∩ C0(Bν(w0),R),

and it remains to prove ψ− ≡ 0. On account of ψ|∂B > 0 there exists a radius
% ∈ (0, ν) with supp (ψ−) ⊂ B%(w0). That means ψ− ∈ H1,2(B%(w0),R) ∩
C0

0 (B%(w0),R) together with

∇ψ− =
{

0, if ψ ≥ 0
∇ψ, if ψ < 0

.

Partial integration yields (we set B∗ := B%(w0) and omit dudv)∫∫
B∗

|∇ψ−|2 = −
∫∫
B∗

ψ−4ψ = µ

∫∫
B∗

q|ψ−|2+(2−µ)
∫∫
B∗

q|ψ−|2+ 2ω
∫∫
B∗

qψ− .

For the admissable test function

ϕ(u, v) := ψ−(u, v) + εχ(u, v), χ ∈ C∞0 (B∗,R), ε ∈ R,

the µ-stability condition implies∫∫
B∗

|∇ψ−|2 + 2ε
∫∫
B∗

∇ψ− · ∇χ+ ε2

∫∫
B∗

|∇χ|2

≥ µ

∫∫
B∗

q|ψ−|2 + 2µε
∫∫
B∗

qψ−χ+ µε2

∫∫
B∗

qχ2 .

Therefore we have

2ε
∫∫
B∗

∇ψ− · ∇χ+ ε2

∫∫
B∗

|∇χ|2

≥ (µ− 2)
∫∫
B∗

q|ψ−||ψ−|+ 2ω
∫∫
B∗

q|ψ−|+ 2µε
∫∫
B∗

qψ−χ+ µε2

∫∫
B∗

qχ2 .
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Since −1− ω ≤ ψ− ≤ 0 and µ− 2 ≤ 0 we deduce the estimate

2ε
∫∫
B∗

∇ψ− · ∇χ+ ε2

∫∫
B∗

|∇χ|2 dudv

≥ (1 + ω)(µ− 2)
∫∫
B∗

q|ψ−|+ 2ω
∫∫
B∗

q|ψ−|+ 2µε
∫∫
B∗

qψ−χ+ µε2

∫∫
B∗

qχ2

= 2µε
∫∫
B∗

qψ−χ+ µε2

∫∫
B∗

qχ2

taking (1 +ω)(µ− 2) + 2ω = 0 into account (note ω = 2µ−1− 1). Therefore

2ε
∫∫
B∗

(∇ψ− · ∇χ− µqψ−χ) + ε2

∫∫
B∗

(|∇χ|2 − µqχ2) ≥ 0

holds true for all ε ∈ R, and we find∫∫
B∗

(∇ψ− · ∇χ− µqψ−χ) = 0

for all χ ∈ C∞0 (B∗,R). Since q ∈ Cα(B∗,R), the well known Lemma of Weyl
yields ψ− ∈ C2

0 (B∗,R) (cp. [Hl], chapter 4.2). Now

4ψ + 2qψ = −2qω ≤ 0 in Bν(w0) , ψ > 0 on ∂Bν(w0)

holds true. We set

ψ+(u, v) := max (ψ(u, v), 0), (u, v) ∈ Bν(w0),

where we note ψ(u, v) = ψ+(u, v) + ψ−(u, v), (u, v) ∈ Bν(w0). Here the
functions are continued by 0. We get ψ+ ∈ C2(Bν(w0),R), since ψ ∈
C2(Bν(w0),R) and ψ− ∈ C2(Bν(w0),R), and arrive at

4ψ+ + 2qψ+ ≤ 0 in Bν(w0), ψ+ ≥ 0 on Bν(w0).

Assuming ψ− 6≡ 0, there exists a point w∗ ∈ B∗, such that ψ−(w∗) < 0, and
therefore ψ+(w∗) = 0 holds true. We conclude ψ+ ≡ 0 by [He], Lemma 6,
and this contradicts ψ > 0 on ∂Bν(w0). q.e.d.

3. A result of Ruchert-type

By 4∗ we denote the Laplace-Beltrami operator on S2. The proof of the
next result follows the lines of [Ru].

Lemma 3.1. Let X ∈ C(B,R3). Assume that

Q :=
∫∫
B

(2h2
0 −K)W dudv < ω0
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holds true, where ω0 ∈ (0, 4π) is a real positive constant. Finally, let S2
ω ⊂ S2

be a spherical cap with the property AreaS2
ω = ω0, and µ > 0 be its first

eigenvalue of the spherical Laplacian 4∗ w.r.t. the Dirichlet-problem

4∗ψ + λψ = 0 on S2
ω , ψ = 0 on ∂S2

ω .

Statement: Then the surface is µ-stable with this number µ > 0.

Proof: Using conformal parameters, the Gaussian curvature K = K(u, v) of
the surface satisfies

K(u, v) = − 1
W
4(log

√
W ).

We set χ := 2h2
0 − K, and for the Gaussian curvature K̂ = K̂(u, v) w.r.t.

the metric (ĝij)i,j=1,2 with ĝ11 = χW = ĝ22, ĝ12 = 0 = ĝ21, one finds

χK̂ = K − 1
2W
4(logχ).

Furthermore, we have K̂ ≤ 1 in B (cp. [Ru], Lemma 2.3). Now, let 4̂ denote
the Laplace-Beltrami operator w.r.t. the metric given by the ĝij , i, j = 1, 2,
and by λ̂1 > 0 we mean the first eigenvalue of the problem

4̂ϕ+ λϕ = 0 in B, ϕ = 0 on ∂B.

Let S2
ω ⊂ S2, ω ∈ (0, 4π), be a spherical cap with the property Area (S2

ω) =
Q, and λ∗1 > 0 means the first eigenvalue of the spherical Laplacian of the
problem

4∗ϕ∗ + λ∗1ϕ
∗ = 0 in S2

ω , ϕ∗ = 0 on ∂S2
ω .

Since K̂ ≤ 1, Proposition 3.3 and Proposition 3.16 of [BdC2] yields λ∗1 ≤ λ̂1.
By assumption, S2

ω is contained in a spherical cap with first eigenvalue µ > 0.
By the monotonicity of the first eigenvalue we deduce µ < λ∗1, and therefore

µ < λ∗1 ≤ λ̂1 ≤

∫∫
B

|∇ϕ|2 dudv

∫∫
B

ϕ2(2h2
0 −K)W dudv

for all ϕ ∈ H1,2(B,R) \ {0}, ϕ|∂B = 0.

The statement follows. q.e.d.

Remark 3.2. In the minimal surface case, the immersion is stable if the
area of its spherical image is smaller than 2π (cp. [BdC1]).
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4. An a priori bound for the principle curvatures

We assume that the immersion X ∈ C2+α(B,R3) ∩ C0(B,R3), α ∈ (0, 1),
is a geodesic disc Br(X0) of radius r > 0 with the center X0 = X(0, 0).
In geodesic polar coordinates we have the representation Z = Z(%, ϕ) :
[0, r]× [0, 2π]→ R

3. For its line element we find

ds2
P = |Z%|2 d%+ 2Z% · Zϕd%dϕ+ |Zϕ|2 dϕ = d%2 + P (%, ϕ) dϕ2 .

From [Sa2], Proof of Theorem 3, we obtain the following results.

Lemma 4.1. Let X ∈ C(B,R3) be µ-stable, µ > 1
2 , and let it represent a

geodesic disc Br(X0).
Statement: Then the estimate

A(Z) :=

r∫
0

2π∫
0

√
P (%, ϕ d%dϕ ≤ 2πµ

2µ− 1
r2

for its area A(Z) holds true.

Lemma 4.2. Let X ∈ C(B,R3) be µ-stable, and let ν ∈ (0, 1).
Statement: Then the energy of the spherical image satisfies the inequality∫∫

|w|≤1−ν

|∇N(u, v)|2 dudv ≤ 8π
µν2

.

Now we can apply Theorem 1 from [Sa2] to obtain

Theorem 4.3. Let X ∈ C(B,R3) be µ-stable, µ > 1
2 , and let it represent a

geodesic disc Br(X0) of radius r > 0 with center X0 = X(0, 0).
Statement: Then there exists a constant Θ = Θ(h0r, µ) such that the esti-
mate

κ1(0, 0)2 + κ2(0, 0)2 ≤ 1
r2

Θ(h0r, µ)

holds true for the principle curvatures κ1 and κ2 of X = X(u, v).

Remark 4.4. In [Sa2], section 5, a curvature estimate for constant mean
curvature surfaces is established under the integral condition∫∫

B

(h2
0 −K)W dudv < 4π.

The method is based on a comparison surface of Bonnet type and an isoperi-
metric inequality.
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In the case h0 = 0 we immediately obtain the

Corollary 4.5. Let the regular, complete and µ-stable minimal surface X :
R

2 → R
3, µ > 1

2 , be given.

Statement: Then the surface represents a plane in R3.

Remark 4.6. In [Fr], an adequate µ-stability condition is applied to im-
mersions of minimal surface type. Corollary 4.5 is then contained in the
Bernstein results of that article.
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