A NOTE ON p-STABLE SURFACES WITH PRESCRIBED
CONSTANT MEAN CURVATURE

STEFFEN FROHLICH

Using a generalized stability condition we give an upper
bound of the principle curvatures of certain constant mean
curvature surfaces which implies a theorem of Bernstein type.

1. Introduction

Let B := {(u,v) € R? : u? + v < 1} be the open unit disc, B C R? its
topological closure. We consider immersions X € C3T%(B,R3) N C°(B,R?),
a € (0,1), of prescribed constant mean curvature H(X) = hy € [0, +00).
Introducing conformal parameters (u,v) € B, such an immersion satisfies
the nonlinear elliptic system

AX(u,v) = 2ho(Xy A Xy),
| Xu? =W =[X,]?, X, -X!=0 inB,
where W := | X, A X,,| > 0 denotes the surface element with the usual cross

product A between two vectors in R3. By
M) s lt2) A Xy (00
X (1, 0) A X (1, 0)
we denote the spherical map of the surface X = X (u,v).
Definition 1.1. The immersion X € C3+%(B,R3) N C°(B,R3), a € (0,1)

of prescribed mean curvature H(X) = hg € [0, 4+00) is of class C(B,R3), if
it has finite Dirichlet integral

/ VX (u,)? dudv < +o0
B
and satisfies the above nonlinear elliptic system.

Furthermore, the immersion X = X (u,v) is called stable if
/ IVo(u,v)? dudv > 2//(2hg — K)Wo(u,v)? dudv
B

B

holds true for all test functions ¢ € C§°(B,R). Assuming stability, the
oscillation of the spherical image can be controlled in the following way:
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Let Z € R? be an arbitray unit vector, and w € (0,47). Then we define the
spherical cap S2(Z) := {X € R? : X-Z! > cosw} of polar angle w € (0,47)
and center Z € 5%, §% := {X € R : |X| = 1}. For wy € B and real

€ (0,1—]wp|) we consider the open disc By, (wp) :={w € B : |[w—wq| < v}.
If the spherical image fulfills

N (9B, (wp)) C 52%(2), wo € B, ve (0,1 — |wol),
then it follows that N (B, (wg)) C S2(Z) (cp. [Sa2]).
2

Proving a modulus of continuity of the spherical image is a crucial step in
estimating the first and second derivatives of the immersion. In the next
section we give a variant of this result for immersions of prescribed constant
mean curvature which are p-stable in the sense of

Definition 1.2. The immersion X € C(B,R?) with prescribed constant
mean curvature hy € [0, 400) is called p-stable with a real number p > 0 if

/ IVeo(u,v)|? dudv > ,LL//(Qh% — K)Wo(u,v)? dudv
B B
holds true for all test functions ¢ € Cj°(B,R).

As shown in section 3, p-stability can be realized by assuming
//(2h% — K)W dudv < wy

B

with a real constant wy € (0,47). In section 4 we apply our result to give an
upper bound for the principle curvatures of these immersions and derive a
result of Bernstein type.

2. Projectivity

Lemma 2.1. Let X € C(B,R?) be u-stable with a real constant p € (1,2].
For wg € B and real v € (0,1 — |wp|) we assume

2
N(u,v)-(0,0,1)" > = —1 for all (u,v) € OB, (wo).
I
Statement: Then the inequality
2 _
N(u,v)-(0,0,1)' > = —1 for all (u,v) € B,(wp)
I

holds true. In particular, X|§V(wo) represents a graph over the plane per-
pendicular to the vector (0,0,1).

REMARK 2.2. This result as well as its method of proof are motivated by
Hilfssatz 6 from [Sal].
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Proof of Lemma 1: Let ¢* :== N - (0,0, 1)*. We consider the function
— 2
1!}(”71}) = w*(u’ ’U) — (.,L), (U, U) e By(wo), w = ; — 1

Since AN +2gN = 0, ¢ := (2h3 — K)W > 0, holds true for the normal
mapping of the surface, by multiplication with the vector (0,0, 1) we obtain

AY* = =2qu*" = =2q1p — 2qw = A in By, (wy).
We define
¢~ (u,v) := min (¢ (u,

and it remains to prove ¢~ =
0 € (0,v) with supp (¢7) C
CY(B,(wp), R) together with

vp- ] & =0
¥ _{w, ifp <0 °

€ H{ (B, (wo),R) N C°(B,(wo),R),

v),0)
0. On account of ¥|gp > 0 there exists a radius
B,y(wp). That means ¢~ € HY2(B,y(wy),R) N

Partial integration yields (we set B* := B,(wp) and omit dudv)

J[rwee == [[wsv=u [[advPee-w [[dvPe2o [[a
B* B* B* B* BY

For the admissable test function
o(u,v) ==~ (u,v) + ex(u,v), x € C°(B",R), e €R,

the p-stability condition implies

//|w—12+25//w—'vx+52/ IV x|?
B* B* B*
> u//qw_\2+2u€//qw_x+u€2//qx2-
B B B

Therefore we have

25//w vx+5/ |Vx|?
p2) //qw o™ +2w//qw |+2ue//qw X+ e // X2
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Since —1 —w <Y~ <0and p — 2 <0 we deduce the estimate

25//V¢ -V + € / IVx|? dudv
(1+w)(p—2) //qlw |+2W//QI¢ |+2u€//qw X + pe //
= 2u€//q¢x+u€2//qx2

B* B*

taking (14 w)(u —2) + 2w = 0 into account (note w = 2~ —1). Therefore
2 //(V@b‘ VX — pgx) + 62/ (IVx[* = uax®) 2 0
B*

B*

| V

holds true for all € € R, and we find
//(vw— VX — g~ x) =0
B*

for all x € C§°(B*,R). Since ¢ € C*(B",R), the well known Lemma of Weyl
yields ¢~ € C3(B*,R) (cp. [HI], chapter 4.2). Now

A4+ 2qp = —2qw <0 in By(wg), >0 on dB,(wp)
holds true. We set
U (u, ) = max ((u,0),0),  (u,v) € By (wo),

where we note ¥(u,v) = ¥ (u,v) + ¥~ (u,v), (u,v) € B,(wp). Here the
functions are continued by 0. We get = € C?(B,(w),R), since 1) €
C?(B,(wp),R) and ¢~ € C?(B,(wp),R), and arrive at

APt +2qpT <0 in By(wg), T >0 on B,(wp).

Assuming ¥~ # 0, there exists a point w* € B*, such that ¥~ (w*) < 0, and
therefore 1" (w*) = 0 holds true. We conclude ¢+ = 0 by [He], Lemma 6,
and this contradicts ¢ > 0 on 9B, (wy). q.e.d.

3. A result of Ruchert-type

By A* we denote the Laplace-Beltrami operator on S2. The proof of the
next result follows the lines of [Ru].

Lemma 3.1. Let X € C(B, R3 Assume that

Q= // (2h3 — K)W dudv < wy
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holds true, where wy € (0,47) is a real positive constant. Finally, let S? C S?
be a spherical cap with the property Area S? = wo, and p > 0 be its first
eigenvalue of the spherical Laplacian AN* w.r.t. the Dirichlet-problem

A*Y4+Mp=0 onS:, =0 ondS>.
Statement: Then the surface is p-stable with this number p > 0.

Proof: Using conformal parameters, the Gaussian curvature K = K (u,v) of
the surface satisfies

K(u,v) = —% A(log VIV).

We set x := 2h% — K, and for the Gaussian curvature K = K(u,v) wrt.
the metric (@'j)i’jzlg with §11 = XW = /5522, §12 =0= §21, one finds

~ 1

Furthermore, we have K < 1 in B (cp. [Ru], Lemma 2.3). Now, let A denote

the Laplace-Beltrami operator w.r.t. the metric given by the g;j, 7,5 = 1,2,
and by A; > 0 we mean the first eigenvalue of the problem

Agp—I—)\cp:O in B, =0 ondB.

Let S2 ¢ 5%, w € (0,47), be a spherical cap with the property Area (S?) =
Q, and A7 > 0 means the first eigenvalue of the spherical Laplacian of the
problem

A  + X =0 inS%2, ¢*=0 ondS?.

Since K < 1, Proposition 3.3 and Proposition 3.16 of [BAC2] yields AT < A1
By assumption, S2 is contained in a spherical cap with first eigenvalue p > 0.
By the monotonicity of the first eigenvalue we deduce 1 < A}, and therefore

/ |Vo|? dudv

<N <A < B
/ / ©?(2h — K)W dudv
B
for all o € H2(B,R)\ {0}, ¢lsp = 0.
The statement follows. q.e.d.

REMARK 3.2. In the minimal surface case, the immersion is stable if the
area of its spherical image is smaller than 27 (cp. [BAC1]).
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4. An a priori bound for the principle curvatures

We assume that the immersion X € C***(B,R3) N CY(B,R3), a € (0,1),
is a geodesic disc B,(Xy) of radius » > 0 with the center Xy = X(0,0).
In geodesic polar coordinates we have the representation Z = Z(p,¢) :

[0,7] x [0,27] — R3. For its line element we find
dsp = |Z,[* do +2Z 0~ Zyp dodp + | Z,[* dp = do® + P(o, ¢) dy”.
From [Sa2], Proof of Theorem 3, we obtain the following results.

Lemma 4.1. Let X € C(B,R3) be p-stable, y > %, and let it represent a
geodesic disc B (Xp).

Statement: Then the estimate

r 2w

21p o
= VP <
// (&sod@dso_%_lr
0 0

for its area A(Z) holds true.

Lemma 4.2. Let X € C(B,R3) be p-stable, and let v € (0,1).
Statement: Then the energy of the spherical image satisfies the inequality

8
VN (u,v)|? dudv < —772 .
v
| <1—v
Now we can apply Theorem 1 from [Sa2] to obtain
Theorem 4.3. Let X € C(B,R?) be p-stable, pn > 1 5, and let it represent a

geodesic disc B, (Xo) of radius r > 0 with center XO = X(0,0).
Statement: Then there exists a constant © = O(hor, 1) such that the esti-
mate
k1(0,0)* + £2(0,0)* < %2 © (hor, 1)
holds true for the principle curvatures k1 and k2 of X = X (u,v).

REMARK 4.4. In [Sa2], section 5, a curvature estimate for constant mean
curvature surfaces is established under the integral condition

//(hg — K)W dudv < 4.

B
The method is based on a comparison surface of Bonnet type and an isoperi-
metric inequality.
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In the case hy = 0 we immediately obtain the

Corollary 4.5. Let the reqular, complete and p-stable minimal surface X :
R? — R3, pu > %, be given.

Statement: Then the surface represents a plane in R3.

REMARK 4.6. In [Fr|, an adequate p-stability condition is applied to im-
mersions of minimal surface type. Corollary 4.5 is then contained in the
Bernstein results of that article.
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