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Abstract More than 20 years of theoretical development and practical
experience in the field of Conceptual Information Systems have made
available a wide variety of structure and procedures to gain new knowl-
edge from data or to present it in a user-friendly way, by restructuring
the data in a conceptual way to help the user interpret and understand
the meaning. Even longer, Database Theory has helped develop highly
efficient database systems, processing daily huge amounts of data. How-
ever, both theories can profit from a cooperation: on the one hand, data
and database modeling methodologies could be applied to the building of
Conceptual Information System, the connection between the presented
conceptual structures and the original data can be clarified. On the other
hand, database theory may profit from the experience and ideas for more
user-centered interfaces to the stored data, as well as profit from the
translation of theoretical results.
In this paper, we present the first necessary steps to perform a trans-
lation between the languages used in both domains. For this purpose,
we introduce basic notions from Database Theory with a focus on the
operations, which are basic for a first application: a more formal way to
describe the process of Relational Scaling [PW99] and the transforma-
tion of data for Conceptual Information Systems in general. Conversely,
we present an approach for a standard problem of database theory by
using methods from Formal Concept Analysis. Finally, we discuss the
next steps needed for the integration of these two theories.

1 Introduction

Conceptual Information Systems are tools to help the user create new knowledge
from the data he wants to explore and analyze. The computational power of
database systems has grown considerably in the recent decades and will probably
grow more in the future Therefore, we are today able to let those systems process
huge amounts of data. Database Theory has helped to develop highly efficient
database systems, performing many transactions and transformations on data.
Databases of banks, or telephone and travel companies show the power of the
techniques developed.

Nevertheless, the power to process those amounts of data gives not auto-
matically the power to analyze it. This problem is, for instance, approached by
Kimball in [Ki96], but, as others, he considers merely numerical results for his
analysis. In [St00, HSWW00, HS01] different approaches based on the concep-
tualization of the data were presented. Following the principles of Conceptual



Knowledge Processing presented there, a data analysis system should activate
the background knowledge of the user, help him to derive information based on
the notion of concepts from daily use. It has already been mentioned that often
interesting analysis results can only be obtained by clarifying and highlighting
the relation between the calculated results and their meaning in the domain of
the analyst (cf. [HSWW00]).

Several approaches have been presented to model the data in the form it is
used in the conceptually accessible information systems: the application of multi-
contexts for the modeling of databases has been used in [He00], the derivation
of a power context family from a database in [PW99, EGSW00]. The former
also introduced the idea of Relational Scaling, the transformation of a relational
database into a conceptual information system. While the resulting systems show
that this modeling is a fruitful approach, we still lack the language to formally
describe the transformation from the data level, where form and implementation
are highly influenced by technical and efficiency concerns, to the conceptual level
of the information systems. A formal description of this connection will help us
in the engineering of Conceptual Information Systems, as we are then able to
adapt those systems more easily to changing data sources. Still more important,
a bridge between those theories enables us to use concepts from one theory in
the other, as will be shown later.

In this paper, we present a pragmatic approach by providing a direct trans-
lation from relational databases into the language of power context families.
This enables us on the one hand to describe the process of relational scaling by
already established notations, on the other hand we will investigate how some
basic concepts from database theory translate into the language of Formal Con-
cept Analysis. The latter will be fruitful for more technical work when a human
expert has to actually build a Conceptual Information System using relational
scaling and related methods. Then, relational scaling will be explained as com-
posed of this direct translation and following transformations between power
context families, called intenstional enrichment.

In Section 2 we introduce basic terminology from relational database the-
ory and a more formal definition of the relational algebra and its operators
as they are used in this domain. In the following section we briefly recall how
concept graphs and power context families are used to model information. The
sections 4 and 5 finally introduce the translation from the relational database
into a power context family and the process of relational scaling using the lan-
guage presented before. We conclude this paper with a discussion of further
possibilities and research topics initiated by the integration approach presented.

2 The Relational Database Model

A database model provides the means for specifying the data structures and for
operating on the data. One of the best studied and most often applied database
models is the relational model. When E. F. Codd introduced it in [Co70] as a
model for databases, this term refered to a specific data model with relations as
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data structures and an algebra for specifying queries. With [Co72] he additionally
introduced data integrity constraints – namely functional dependencies. Since
then, ongoing research has produced languages and new operations based on
this model, and also some variations on the algebra and calculus with varying
expressive power. Similarly, a rich theory of constraints has been developed.
Thus, the term relational model today refers to a whole class of database models,
but they all have relations as basic data structures and provide at least some of
the basic algebraic operations.

Basic Notations

In the following, we introduce the basic notions for data tables and the basic
operations as used in database theory. Two traditions have been developed to
describe data tables. The first is nearer to the mathematical notion of relations,
considering a data table to be a set of tuples, which is called the unnamed
perspective. The second way involves the notion of attributes of a data table,
thus allowing the specification of columns by names instead of only numbers.
This is called the named perspective and is used in most implemented relational
databases management systems and also by the standard data modeling tech-
niques. As pointed out in [AHV95], the differences are mainly syntactical, while
the expressivity is the same. While more simple to read, the named perspective
adds unnecessary complexity to formal treatment. For this reason, we will use
the unnamed perspective in this paper.

When discussing the design of a relational database, one usually starts on an
abstract level, sometimes called the conceptual level (see [MR91] for instance),
using some kind of data modeling method. Starting from this conceptual level, an
iterative process of normalization and decomposition takes place, to make the
implemented database as efficient as possible. The resulting database schema
may combine facts about different conceptual entities in one data table and
separate facts about one entity into several tables. While this helps the efficiency
of the database (usually the update efficiency), it makes it hard to understand
the structure of the database without having information about the conceptual
model.

In practice however, information about the conceptual model is usually not
available. When applying data analysis techniques to already existing databases,
one of the hardest parts is to re-engineer the conceptual model based on the
informations about the implemented database. In more complex cases, this in-
volves the consultation of domain experts to understand the relationship of the
data in the database with the objects of the domain. Technically, this process
is called Relational Scaling, as exemplified in [PW99]. Now, we introduce some
basic notions from the theory of relational databases by example.

Example 1. According to [VG01], wine-growing has a long-standing tradition
in Bulgaria. Based on archeological findings, one supposes that already more
than 3000 years ago grapes have been cultivated. When the romans entered
the province of Thrakia, they found a well established wine-growing culture.
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Figure 1. The principal regions and districts of wine-growing in Bulgaria

Geographically, the country is divided in five principal regions: North, East,
South, Southwest, and the South-Balkan region, as can be seen in Fig. 1. For
our example, we sampled some information about these regions and the wine
districts from [VG01].
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Grape Region
Misket South-Balkan
Gamza South-Balkan
Riesling South-Balkan
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Sakar South
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Grape Region
Mavrud South
Cabernet Sauvignon South
Merlot South
Pamid South
Misket red South
Pinot Noir South

Figure 2. Data tables showing the wine districts in the South and South-Balkan
region and the grapes growing there

Fig. 2 shows some simple data tables: “Southdistricts” and “Southbalkan-
districts” with the main wine districts in the South and South-Balkan region,
and the tables “Southgrapes” and “Southbalkangrapes” with the grapes growing
there. The descriptors of the table columns (“District”, “Region”, and “Grape”)
are called (table) attributes. They are used in the named perspective when treat-
ing the the data tables and are provided in our examples for convenience.

Each line of a table represents a tuple. The entries of the tuple are taken
from a set of constants called domain, that may include, for example, the set
of integers, strings, and Boolean values. Usually, we have some data tables for
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reference in a database, which have a name – as “Southdistricts”, “Southbalkan-
districts” and so on in our example. However, not every data table has to have
a name of its own (e. g. when creating new tables on the fly by some relational
operations)

The following definition of a relational database can only be considered to
be very basic (due to space limitations), e. g. we do not address the question
of different value domains for different attributes, neither do we use the named
perspective.

Definition 1. Formally, we define a (relational) database to be a tuple D :=
(dom, N) with dom being the domain of the database and N being the set of
named (data) tables in the database.

In general, a data table is any element D ∈
⋃
i∈N0

P(domi). The arity of D
is the (smallest1) i ∈ N0 such that D ∈ P(domi) and is written arity(D). For a
tuple t∈D we write t[j] with 1≤j≤arity(D) to denote the jth value of the tuple.

Example 2. The data tables shown in Fig. 2 belong to a database we formally
define as V := (dom, N), where dom includes (at least) the set of all geo-
graphical regions, wine growing districts and grapes of Bulgaria. The set N of
named tables consists of the tables “Northgrapes”, “Northdistricts”, “South-
grapes”, “Southdistricts”, “Eastgrapes”, “Eastdistricts”, “Southbalkangrapes”,
“Southbalkandistricts”, “Southwestgrapes”, and “Southwestdistricts”. They ei-
ther contain pairs of a sort of grape and a region to indicate that this grape
grows in this region (the “. . . grapes” tables), or a wine district and a region, if
the district lies in this region (the “. . . districts” tables). As you can see by the
description of the tables, they all have arity 2.

The Relational Algebra

Of course, a static representation of data is not sufficient for a database model,
we also need the ability to operate on the data, to retrieve specific informations
from the tables. For this purpose Codd introduced in [Co70] the first relational
query language, a named algebra and showed it to be essentially equivalent to
first-order predicate calculus in [Co72]. The algebra presented here is based on
the unnamed version of the relational algebra in [AHV95], which is called the
SPCU−-Algebra. The elements of this algebra are – of course – the data tables,
i. e. all elements of D. The operations of the algebra are defined as follows (we
will use D,E to denote arbitrary data tables):

Definition 2. There are two kinds of selection operators. The first is written
in the form σi=c with i ∈ N0 and c ∈ dom. It removes from a relation all tuples
that do not have the specified value c as i-th value.

Dσi=c :=

{
{t ∈ D |D[i] = c} if i ≤ arity(D)

∅ otherwise
1 For every non-empty relation there is exactly one i. For the empty relation the arity

is 0.
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The second kind is of the form σi=j with i, j ∈ N0. This form selects only
those tuples, that have the same value on the i-th and the j-th place:

Dσi=j :=

{
{t ∈ D |D[i] = D[j]} if i, j ≤ arity(D)

∅ otherwise

Definition 3. The projection operators reduce a relation by removing whole
columns. For this, we select a set {x1, x2, . . . , xk} ⊂ N0, and retain only the
columns specified by X. The arity of the resulting data table is |X| if X ⊆
{1, 2, . . . , arity(D)}.

We suppose x1 ≤ x2 ≤ . . . ≤ xk.

DπX :=

{
{(t[x1], t[x2], . . . , t[xk]) | t ∈ D} if xk ≤ arity(D)

∅ otherwise

Definition 4. The cross-product is the first operation of the algebra to operate
on two data tables. The arity of the resulting data table is the sum of the arities
of the two constituting tables.

D × E := {(t[1], t[2], . . . , t[arity(D)], s[1], s[2], . . . , s[arity(E)]) | t ∈ D, s ∈ E}

Definition 5. The union operator merges data tables of the same arity.

D ∪ E :=


{(t | t ∈ D or t ∈ E} if arity(D) = arity(E)

E if D = ∅
D if E = ∅
∅ otherwise

Definition 6. The difference operator is the set theoretic minus operation. If
the arity of the data tables are different, the result is the first data table.

D − E := {t ∈ D | t 6∈ E}

Functional Dependencies

Another important topic of database theory is the question how to avoid sev-
eral kind of anomalies. “Anomaly” here means that changing something that
is supposed to be a single bit of information implies the manipulation of many
tuples. To avoid anomalies, a database may be transformed several times, each
time reaching a new level of normal form. Those normal forms are defined in
form of basic assumptions and statements about dependencies between tables
and their attributes (or columns in the unnamed perspective). The first normal
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form is so basic that we usually take it for granted: any entry in a data table (or
more precisely in the tuples of a table) has to be atomic, not a set. This idea is
basic for relational databases and was introduced by Codd in [Co70], the more
elaborated higher normal forms were introduced in the following years by Codd
himself and others. Those use notions of several kind of dependencies, the most
important arguably being the functional dependency.

Definition 7. Let D be a data table and X,Y ⊆ N0. Then, D fulfills the func-
tional dependency D : X → Y (or short X → Y if the concerned data table
is un-ambiguous), if for all tuples s, t ∈ D πX(s) = πX(t) implies that also
πY (s) = πY (t).

There are some simple inference rules, let X,Y, Z ⊆ N0:
Reflexivity If X ⊆ Y then Y → X
Augmentation If X → Y , also X ∪ Z → Y ∪ Z
Transitivity If X → Y and Y → Z, we have X → Z

Example 3. Let’s consider the table “Southbalkandistricts” from Fig. 2. There,
we have only two rows, so for any pair of sets X,Y ⊆ N0 we have only to study
a few conditions. As the table has only two columns, we are only interested in
functional dependencies involving subsets of {1, 2} (all functional dependencies
involving other sets are a mere by-product from our extension of the partial to
full operators, and bring no useful information about the data table). As you
can easily verify, the only non-trivial functional dependency in this context is
∅ → {2}, all others follow by reflexivity or augmentation.

3 Conceptual Modeling with Formal Concept Analysis

Formal Concept Analysis has been developed around the formalization of the
concept ’concept’, providing a rich theory to describe and analyze hierarchies
of concepts derived from a given context. We assume the reader to be familiar
with the notions of formal contexts and concept lattices as defined in [GW99].
For the treatment of representation of more complex situations involving the
relations between concepts, Sowa developed the theory of conceptual graphs
[So84] which inspired the development of Contextual Judgment Logic (cf. [Pr98]).
In conceptual graphs, boxes represent objects and information about their type,
while ovals represent relations between the objects in the boxes connected to the
oval.

Figure 3. A simple conceptual graph

Example 4. Fig. 3 shows as an example a simple conceptual graph. The two
boxes show information about two objects, in particular they indicate that the
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object “Chardonnay” is of type “Grape” and the object “East” is of type “Re-
gion”. The oval in the middle indicates that these two objects are related, and
this relation is called “grow”. As changing the location of nodes in a graph should
not change its meaning, it is important to differentiate the meaning of the arcs
going from a relation oval to the boxes. For this purpose the arcs are numbered
from 1 up to n. The number of arcs going out from a relation is called the arity
of the relation.

In [Wi97] Wille outlines an integration of the conceptual graphs and the
constructions known from Formal Concept Analysis. In the following, Prediger,
Wille and others developed for the Contextual Judgment Logic a mathematiza-
tion of conceptual graphs (see for instance [PW99, Wi01]). The fundamental idea
presented in [Wi97] is the transformation of Conceptual Graphs into a family of
formal contexts, called a power context family.

Definition 8 (Power Context Family). A power context family ~K := (Kn)n∈N0

is a family of formal contexts Kk := (Gk,Mk, Ik) such that Gk ⊆ (G0)k for
k = 1, 2, . . .. The formal contexts Kk with k ≥ 1 are called relational con-
texts. The power context family ~K is said to be limited of type n ∈ N0 if
~K = (K0,K1, . . . ,Kn), otherwise, it is called unlimited.

Example 5. Following the transformation described in [Wi97], the conceptual
graph shown in Fig. 3 is transformed into the following power context family:

K0 G
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e
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io

n

Chardonnay ×
East ×

K2 g
ro

w

(Chardonnay,East) ×

Figure 4. The power context family describing the simple conceptual graph
above

Conversely, we can derive concept graphs from a given power context family,
by using the concepts of the formal contexts Kk with k ≥ 1 as the concepts for
the relations, and write the objects in the tuples from the extent of this concept
in adjacent boxes [PW99]. The concepts of K0 then correspond to the types,
so we can write their names in a box, if the descriptor objects there are in the
corresponding extent. It can easily be seen that the conceptual graph in Fig. 3
may be derived in this fashion from the power context family in Fig. 4. For
a more precise description and a formal treatment of these transformation for
simple concept graphs see [PW99].

4 From Relational Databases to Power Context Families

As noted in the last section, the concepts of the relational contexts of a power
context family are considered to be the relations in the mathematization of
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conceptual graphs. This leads naturally to the idea of treating the relations of
relational databases as relational attributes, too. This canonical database trans-
lation of a database to a power context family is the first step in the process we
call relational scaling:

Definition 9. The power context family ~K(D) resulting from the canonical database
translation of the relational database D = (dom, N) is constructed in the follow-
ing way: we set K0 := (dom, ∅, ∅) and, for k ≥ 1, let Gk be the set of all k-ary
tuples and Mk ⊆ N be the set of all named data tables of arity k. The relation
Ik is defined by (g,m) ∈ Ik :⇔ g ∈ m.

Example 6.
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(Gamza,North) ×
(Cabernet Sauvignon,North) ×

(Chardonnay,North) ×
(Sauvignon Blanc,North) ×

(Aligoté,North) ×
(Dimiat,North) ×

(Novo Selo,North) ×
(Pavlikeni,North) ×
(Svistkow,North) ×
(Suhindol,North) ×
(Lositza,North) ×

(Liaskowets,North) ×
(Roussenski Briag,North) ×

(Mavrud,South) ×
(Cabernet Sauvignon,South) ×

(Merlot,South) ×
(Pamid,South) ×

(Misket red,South) ×
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1. The top half of K2 of the power context family derived from V
To illustrate the definition, we consider the power context family derived from

our database example. As said in Example 2, all ten tables have arity 2. In Fig. 1
we see the top of the formal context K2 of the power context family derived from
the relational database V. Every tuple from the database belongs to exactly one
attribute, giving the context a diagonal form. This is a typical effect, as it rarely
happens that the same combination of values occurs in different relations.

The formal context K0 is not shown here. This context has no attributes –
which is also clear from the definition, as there are no 0-ary relations in databases.
The set of objects is huge. For our purposes, the exact set G0 is not important.
At least, it includes all values that appear in any tuple of the object set from
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K2. Of course, depending from the implementation of the database, the set may
be much larger, e. g. it may include all possible character strings.

As we have now a representation of the database using the notations from
Formal Concept Analysis, we can easily apply methods from this theory. For
example, since the very start of the development of Formal Concept Analysis,
the investigation of dependencies between attributes has been of major interest.
For details, we refer to [GW99], where the first algorithm is presented for the
calculation of a base of implications in a given context, the so called Duquenne-
Guigues-Basis. There are freely available programs to automatically calculate
the base (e. g. ConImp from Peter Burmeister [Br01] or Concept Explorer from
Sergey Yevtushenko). Based on similar results presented in [GW99], we have a
simple procedure to determine a base of all functional dependencies of a data
table.

Definition 10. Let ~K be a power context family, and let m ∈Mk be an attribute
of the kth context. Than the formal context of functional dependencies of m
with regard to ~K is defined as FD(m, ~K) := (mIk × mIk , {1, 2, . . . , k}, J) with
((g, h), i) ∈ J :⇔ πi(g) = πi(h) with g, h ∈ mIk and i ∈ {1, 2, . . . , k}.

Analogously to the approach taken by [GW99, Proposition 28], we can now
formulate the following proposition:

Proposition 1. Let D be a relational database and m a k-ary table in D. For
two sets X,Y ⊆ {1, . . . , k} we have the following equality: The columns Y are
functionally dependent from the columns X if and only if X → Y is an impli-
cation in FD(m, ~K(D).

Example 7. Let us consider the small table “Southbalkandistricts” shown in
Fig. 2. Then, the context FD(SouthBalkanDistricts,V) looks as follows:

1 2

(Sungurlare,South-Balkan),(Sungurlare,South-Balkan)) × ×
(Sungurlare,South-Balkan),(Rozova Dolina,South-Balkan)) ×
(Rozova Dolina,South-Balkan),(Sungurlare,South-Balkan)) ×

(Rozova Dolina,South-Balkan),(Rozova Dolina,South-Balkan)) × ×

The only implication in this context is easy to find, it’s ∅ → {2}, which
corresponds indeed to the only functional dependency found in example 3. The
important point is that Formal Concept Analysis provides a rich set of meth-
ods to treat implications, and that those methods can directly be applied to
functional dependencies. Of course, the two-column tables from our example do
not provide much complexity, but nevertheless the principal procedure should
become clear.2

2 Actually, there is still much room for efficiency improvements, but this is beyond
the scope of this paper.

10



5 Relational Scaling

Conceptual Information Systems connect theory and practice. The data to be
analyzed and presented comes from the real world and is usually stored in some
kind of (relational) database. The data structures and the algorithms are images
of the theory. The transition between these two domains consists in building up
the connection between the data and the application used to build the Concep-
tual Information System, e. g. by coding SQL-Queries into the data files of the
TOSCANA-Systems. After this, the system could be applied to the database.
Even if the underlying data, the tuples, were changing, the system needed no fur-
ther adaption, as all definitions in the system depend solely on the not changing
properties.

However, in another way those systems were not apt to change. If the inten-
sional side, the schema of the database changed, the system often was difficult to
adapt – if not the original author of the system was available, the way how the
data had to be transformed became quickly obscure. Using the methods intro-
duced in this paper, we can formally describe this procedure, make transparent
where external information is introduced, and clarify where corrections have to
be made.

The canonical database translation introduced in the last section helps us, to
use mainly the language of Formal Concept Analysis to describe all the necessary
transformations.

Example 8. Let ~K := ~K(V). For a start, we will perform the construction of a
(very small) TOSCANA system.3 This means, we have to derive a formal context
L from the given power context family.

A TOSCANA system is used to analyze objects of the same type. In our
database, we have several homogeneous subsets of objects, for now we select the
grapes. To define new sets and attributes, we have to consider, that in Formal
Concept Analysis concepts are not relations in the usual sense, but their extents
are. Therefore, we can use the relational operators on the extents of concepts.
As long as the meaning is clear, we will omit the extent operator and write e. g.
m := n× o which means that m is a new attribute whose extent is defined to be
the cross-products of the extents from concepts specified by n and o.

Thus, we define for L as object setG := Northgrapesπ{1}∪Southgrapesπ{1}∪
. . . Southwestgrapesπ{1} .

For the attributes we can define for every region an attribute “grows in . . . ”,
e. g. for the South-West region by grows in SouhWest := Southwestgrapesπ{1} .
All those definitions yield the attribute set M of L.

Subsets of M may be grouped together as scales. In case of TOSCANA-like
systems we also provide line diagrams for the concept lattices of the scales.

With the introduction of relational scaling in [PW99], a new level of com-
plexity has been added to this process. We do not only want to build up one
3 We select TOSCANA here as it is the best known. We could have written the name

of any existing program that uses basically a formal context as the basic structure
of investigation.
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single formal context, but a complete power context family. Not only attributes
of objects, but also relations between objects have to be defined. Of course, this
can be done too using intensional enrichment.

Example 9. We want to extend the system from the last example. Therefore,
we not only derive grapes as object set, but the wine districts and the regions
too. Additionally, we want to keep information about the relations between the
objects.

The goal is to construct a system using concept graphs as shown in Fig. 3
as user interface to enable the user to ask queries like “which districts lie in the
southern region” without restricting the set for responses to only one object set.4

Furthermore, the system could allow the user to construct new relations based
on the existing ones. This way, the user can adapt the system more easily to his
own conceptualizations.

In our new system, the object set of L0 is larger than it was in the last
example. Now, it is the complete set dom (or at least the set of all entries that
are present in any tuple in any table) Additionally, the meaning of attributes in
L0 should now be seen as that of “type” in the technical sense of the concept
graph example above.

Formally, the definition of attributes of the higher level attributes from Li

with i ≥ 1 is basically the same as in the last example. To avoid confusion
between attributes of L0 and L1 as well as to enhance the readability, we now
note the arity of the attribute to by writing e. g. (2, grows in) := Northgrapes∪
Southgrapes∪ . . .∪ Southwestgrapes to underline that the attribute grows in
is of arity 2.

So far, we only transformed already present information to get a more nat-
ural model. Often, when constructing a Conceptual Information System, new
informations are added that were implicitly in the minds of the domain experts
and users before. Here this could be information about the color and origin of
the grapes or informations about the wine districts. In our language, those in-
formation can be represented as a new relation that is added as a whole from
some external data source.

These were simplistic descriptions of the engineering process when building
Conceptual Informaton Systems. Using the presented notation it can be clarified
how the conceptual scales of the information system are constructed by defining
new attributes and how exactly they depend from the underlying data source.
Additionally, we can see where external knowledge gets introduced into the sys-
tem, e. g. by using a specific classification of values for building a conceptual
scale. Those transformations enrich the meaning of the representation, why we
call them intensional enrichment.

4 The use of conceptual graphs as a query language has already been proposed by
Sowa in [So84].
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6 Further Research

This article presents only first steps towards an integration of Database Theory
and Formal Concept Analysis. So far, we have shown some basic notational
devices to describe the process of relational scaling as a two-step procedure
consisting of the canonical database translation, which transforms the database
into a power context family, and the intenstional enrichment, which transforms
the resulting power context family into another, which is closer to the conceptual
model.

Some of the topics to be approached next can certainly bring some enhance-
ments for our work on conceptual structures, for example the use of the named
perspective for the presentation and construction of concept graphs. This would
ease the communication using those graphs as well as enhance their expressive-
ness for their application in the realm of data modeling.

A topic that has been intensively covered in database theory and has not
at all been addressed by this paper is the question of domain independence.
This relates to the question if a query alway yields the same result independent
from the actual content and schema of the database. Translated to the area of
Conceptual Information System we have of course the same problem: Is the power
context family that is the result of intensional enrichment (whose definitions are
independent from the actual content) different if we choose a different set dom?
Do the answers to user queries change if G0 is enlarged?

When we studied the transition from one power context family to another
by intensional enrichment, we also noted that sometimes new knowledge may
be introduced. This naturally increases the amount of information stored in the
power context family. However, currently we lack a notion of equivalence for two
power context families that may be derived one from the other without adding
new knowledge. This may be done by extending the notion of conceptual content
in [Wi00]. However, for this we have to be able to distinguish the cases when
new information is introduced and when not.

Furthermore, while the relational database model is well studied and very
successful applied in the real world, the concept of the tuple as basic information
unit seems too restrictive for many in the field of data modeling. For this reason,
an investigation of forthcoming data models from semantic and object-oriented
databases [HK87, ABD+89] may be helpful.
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