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1 Introduction

Let © C R? be the set of material points of a solid body. For many materials
the history dependent deformation behavior of this body can be modelled by the
equations

—div, T'(z,t) = b(z,t) (1.1)
T(z,t) = D(e(Vyu(z,t)) —ep(z,t)) (1.2)
Q@) = BTG5, ~5e.1) (13)
% Z(z,t) = Go(T(x,t),—Z2(x,t)) (1.4)
ep(2,0) = eW(x), Z(z,0)=z), (1.5)

with the Dirichlet boundary condition
u(z,t) =vyp(x,t), (x,t) € 0Q x (0,00) (1.6)
or the Neumann boundary condition
T(xz,t)n(x) =yn(x,t), (2,t) € 0Q x (0,00). (1.7)

Here u(z,t) : Q x (0,00) — R? denotes the displacement of the material point
labeled x at time ¢. With the 3 x 3-matrix V,u(z,t) of first order derivatives of
u with respect to the components z1, x5, x3 of x and with the transposed matrix
(Vou(z,t))T the strain tensor is defined by

e(Vyu(z,t)) = %(qu(x, t)+ (qu(a:,t))T> c S°.
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&% is the set of symmetric 3 x 3-matrices. T : Q x (0,00) — 8% is the Cauchy
stress tensor, €,(x,t) € S is the plastic strain tensor, Z(x,t) € RY is a vector
of internal variables. Moreover, D : S*® — &2 is a linear, symmetric, positive
definite mapping, the elasticity tensor, b: Q x (0,00) — R? is a given volume force,
vp : 02 x (0,00) — R? is a given boundary displacement, vy : 9 x (0,00) — R3 is
a given traction at the boundary, and 51(90), #0) are given initial data. Finally, n(z)
in the Neumann boundary condition denotes the exterior unit normal to 0f2 at z.
The constitutive equations (1.3), (1.4) with given functions g; : &3 x RY — &3,
Go : S? x RN — R¥ determine the inelastic behavior of the body.

A more general class of constitutive models consists of constitutive relations of
monotone type. These relations have the form

a(w,1) € 9oV (e(Vaula 1)), 2(.1) ) (18)

where z = (g,, %), and where p > 0 is the constant mass density. g : RY — 28" is
a given monotone mapping satisfying 0 € ¢(0), and v is the free energy, which is
assumed to be a positive definite or positive semi-definite quadratic form

(e, 2) = %[D@ _B2)| (e = B2)+ (L2) - =
L is a symmetric, positive definite or positive semi-definite matrix.

The class of constitutive equations of monotone type was introduced in [1]. It
generalizes the class of constitutive equations of generalized standard materials in-
troduced by Halphen and Nguyen Quoc Son in [6]. For a generalised standard
material, g is the gradient of a convex function.

It turns out that for most materials the free energy is only positive semi-definite,
but not positive definite. In this case, if we assume that the constitutive relation is
rate dependent and under a minor additional assumption the constitutive equation
(1.8) of monotone type can be transformed to the equations (1.3) and (1.4) with a
monotone vector field

(eps 2) = (91(ep, 2), Galep, 2)) : ST X RY — 8% x RY.

For initial-boundary value problem to constitutive equations of monotone type with
positive definite free energy a satisfactory and general existence theory is available,
cf. [7, 2, 3]. Moreover, the dynamic initial-boundary value problem to positive semi-
definite free energy has been treated in a number of articles, cf. [5] for example,
to mention just one. The aim of this note is to present existence results for the
quasi-static initial-boundary value problems (1.1) — (1.7) with positive semi-definite
free energy. For such initial-boundary value problems the existence theory is much
less complete.
Proofs are not contained in this note. These are to be published in [3].



2 Existence of solutions for initial-boundary value problems
with history functionals

To prove existence of solutions to the initial-boundary value problems (1.1) — (1.7) it
is first shown that a more general initial-boundary value problem with constitutive
relations given by a history functional can be solved. Subsequentially it is proved
that the constitutive equations (1.3) — (1.5) define such a history functional satisfying
the conditions needed in the existence proof. To present this approach, we need a
few notations:

Let © C R3 be a bounded open set with C'-boundary. 7, denotes a positive
number (time of existence), and for 0 < t < T, we set

Z,=Qx[0,t], Z=2Zr.

By 1 < p, ¢ < oo we denote numbers with % + % = 1. The norms on LP(£2,S3) and

LP(2,RY) are denoted by
1/p
o = [ [t ae] .

The same notation is used for Z instead of 2. For the scalar product of two sym-
metric matrices o, 7 € 8% we write

3
g-T = E UijTij-

ij=1

With this notation the canonical bilinear forms on the product spaces LP(£2,S%) x
Li(Q,83) and LP(Z,83%) x L1(Z,83) are given by

(0,7)q = /Qo(m) 7(x)de, (o,7)7 = /Za(x,t) c7(x,t) d(z,t) .

A history functional is defined as follows:

Definition 2.1 Let F(Z,8?) be the set of all functions from Z to S*. A mapping
H : A(H) — F(Z,8%) with A(H) C F(Z,8%) is called a history functional on
F(Z,8%), if it has the following property: For all 0 <t < T, and all 7,72 € A(H),

which satisfy ny, =" it follows that H[Tl]‘zt = H[Tz]‘zt )

With a suitable history functional H on F(Z,8%) the equations (1.1) — (1.5) can
now be written in the form
—div,T = b (
T = D(E(Veu) —ep) (
0
e = M) (
ep(2,0) = (). (



To see this, let 2@ : Q — RN, T : Z — 8% be given and let (3,h) : Z — RN x S3
be a solution of the initial value problem

Wz, t) = §i(T(x,1),—3(x,t)) (2.5)
%Z(x,t) = go(T(x,t), —Z(z,1)) (2.6)
2(2,0) = 2O0(x), (2.7)

for z € Q and ¢ € [0,T,]. Then a history functional H;©) on F(Z,S?) is defined by
H s [T] = h. (2.8)

Insertion of H;) for H into (2.3) reduces (2.1) — (2.4) to the equations (1.1) — (1.5).
Next we state the existence result for the Dirichlet or Neumann initial-boundary
value problems to the equations (2.1) — (2.4) containing an abstract history func-
tional. We need the following assumptions:
For numbers 2 < p < oo and 1 < ¢ < 2 with % + % = 1 let the history functional

be a mapping H : LP(Z,8%) — L%(Z,83), which satisfies four conditons:

(H1) There is a constant C' such that for all T € LF(Z, S?)

IH(D)llgz < C(ITN, +1).

(H2) H is hemicontinuous and monontone with respect to the bilinear form (o, 7") 7 .

(H3) H satisfies a first coercivity condition:

(T’H[TDZ
IH[TTllq.2

— oo for |[|Tpz — o0

(H4) H satisfies a second coercivity condition:

(T’ H[TD z

——% s 00 for [T,z — oo.
I1Tllp.z !

Theorem 2.2 Let H satisfy the conditons (H1) — (H4), and let b C LP(Z,R3), e ¢
L3(2,83) be given functions. Then the following assertions hold:

(i) For vp € LP(0,T.; HY(Q,R3)) there is a unique solution
(0,T,2,) € 190, Ty; HHQ,BY)) x 12(Z, &%) x HA([0, T.], [7(52, 5%))

of the Dirichlet problem (2.1) - (2.4), (1.6).
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(ii) Assume that vy € LP(0Qx [0,T.], R3) and that for all infinitesimal rigid motions
a+w X x and for almost every t € [0,T¢] the equation

/Q b(x,t) - (a+w x x)dx + /(9Q v(z,t) - (a+w x x)dS, =0 (2.9)

holds. Then there exists a solution
(uo, T, e,) € LU0, To; HI(Q,R?)) x LP(Z,8%) x H{([0,T,], L, S?))
of the Neumann problem (2.1) — (2.4), (1.7). All solutions of this problem are ab-

tained in the form (u,T,e,) = (up, T,ep) + (w,0,0), where w(z,t) = a(t) + w(t) x x
with a,w € L([0,T.],R3) is an infinitesimal rigid motion.

The proof of this theorem is based on the reduction of the Dirichlet initial-boundary
value problem (2.1) — (2.4), (1.6) to an initial value problem for an evolution equation
in the space

Hgol,D = {0 € L1, 8% | div(Do) = 0},

the Neumann initial-boundary value problem is reduced to an initial value problem
in the space

H, = {0 € L9, 8% | div(Do) = 0, (Do)|, n =0}

This initial value problem is

Ort) = QUI-Dr +a)), 0<i<T. (2.10)

7(0) = Qe (2.11)
where Q : L9(Q,8°%) — LI(Q2,S8?) is the projection onto the closed subspace HY |,

with ker @ = {¢(Vu) | u € IZT’{(Q,R%} in the Dirichlet case, and onto the closed
subspace H, y with ker @ = {¢(Vu) | u € H}(2,R?)} in the Neumann case. The
solution 7 satisfies 7 = Q)¢,, and for almost every ¢ the function x — &(x,t) is the
Cauchy stress in the solution of the linear boundary value problem, which consists
of the equations (2.1), (2.2) with €, = 0, and the Dirichlet or Neumann boundary
condition. Using arguments from the theory of evolution equations to monotone
operators, cf. [4], it can be shown that the initial value problem (2.10), (2.11) has a
unique solution.

3 Existence of solutions for two examples of constitutive
models

We apply the preceding result to study the existence of solutions to the initial-
boundary value problems (1.1) — (1.7) for two examples of constitutive models.
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The first example is the Norton-Hoff law:

—div, T = b (3.1)
T = D(E(Vuu) —¢p)
0 T
— = dT|"— :
EP(O) = 8;20)7 (34)
with constants ¢ > 0,7 > 1. The second example incorporates kinematic hardening;:
—div, T = b (3.5)
T = D(Ee(Vuu) —¢p) (3.6)
0 T —k(e,—en)
— = T —k(ep, —en)|” P .
ot €p Cl| (gp € )’ |T _ ]{5(€p — 6n)| (3 7)
0 Ep — €
—e, = kle, — e,|)T 22— .
5o = oalkley — e = 39
&0) = &, e(0)=eY, (3.9)

where cy,co,k > 0 and r,v > 1 are constants, and where the internal variable
en(w,t) € 83 is of the type of a strain tensor.

For both models it can be shown that the history functional defined by the
constitutive equations satisfies the conditions (H1) — (H4). This yields the following
results:

Theorem 3.1 (Norton-Hoff law) Let ¢ > 0 and r > 1 be constants, and let
=14r,g=1+ % . Then under the regularity assumptions for b, 51(30), vYp and
v~ from Theorem 2.2 the assertions of that theorem also hold for the Dirichlet and

Neumann initial-boundary value problems to the equations (3.1) - (3.4).

Theorem 3.2 (Kinematic hardening) Let ¢1,co, k be positive constants and let
the constants v and v satisfy v >r > 1. Setp=1+r, ¢q=1+21,p =1+,

g=1 +% . Suppose that b € LP(Z,R3) and 5;5,0)7620) € L*(Q,83). Then the following
assertions hold:
(i) For vp € LP(0,T,; HY(Q,R?)) there is a unique solution
(u,T,ep,6,) € LU0, T.,; HI(Q,R?) x LP(Z,8?)
x  HI([0,T.], L, 8%) x H{([0,T.], LI(22. %))
of the Dirichlet problem to the equations (3.5) — (3.9).
(ii) Assume that vy € LP(0Q x [0,T.],R3) and that b and vy satisfy (2.9). Then
there exists a solution
(uo, Ty epyen) € LU0, T.; HY(Q,R?)) x LP(Z,8%)
x  H{([0,T.], L(2,8%)) x H{([0, T.]; LY(2, 5%))
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of the Neumann problem to the equations (3.5) — (3.9). All solutions of this problem
are obtained in the form (u,T,ep,€,) = (uo, T, €p, ) + (w,0,0), where w(z,t) =
a(t) + w(t) x z with a,w € LI([0, T.], R?).

4 The coercivity conditions

Here we discuss the meaning of the coercivity conditions (H3) and (H4). For sim-
plicity we only consider the Neumann problem with homogeneous boundary data.
Assume that (u, T, ,) is a solution of the Neumann initial-boundary value problem
to the equations (2.1) — (2.4). For the positive semi-definite free energy

POV, u). ) = SID(E(Taw) = )] (2(Vaw) — &)

we then obtain by formal differentiation and partial integration that

d

dat QP@D(S(Vx u),gp) dr = /QT. (e(Va ) — ) da

= /(—divac T) u— T -H[T|dx = / b-udx — (T, H[T])q -
Q Q
It follows that (T, H[T])z is the energy dissipated during the time interval [0, 7]
due to plastic deformation.
For the Norton-Hoff law the definition (2.5) — (2.8) of the history functional
reduces to the equation

H[T] = f(T)

with f(T) = c|T|T‘T7|. Assume now that there is a volume force b :  — R3 with
the following property: To the stress field ¢ in the solution (@,d) of the (time
independent) Neumann boundary value problem to the equations (3.1), (3.2) with
data b and with e, = 0 there is a stress function (v — o(z)) € DH, y such that

f(o + &) is a gradient field, i.e. ”
flo+06)e{e(Vov)|ve HI(Q,RY}. (4.1)
Thus, to these ¢ and o there is a function v with e(V,v) = f(o + &). We set
e = ¢(Va) — Do,
Then (u,T,¢,) with
u(z,t) = u(z) + tu(x), T(x,t) =o(x) +d(z), ep(z,t) =tf(o(z) +o(x)) + elgo)(x)

is a solution of the homogeneous Neumann initial-boundary value problem to the
equations (3.1) — (3.4) with volume force b(x,t) = b(x). Though the volume force
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b is constant in time, this solution shows indefinite plastic deformation. Condition

(H3) excludes that a sequence o, € H[ y exists with |[o,[/, o — oo for n — oo,

such that f(o, +06) € {e(V,v) | v e HI(Q,R?)}. For, this would imply

(on+0,Hlon+6))z = (0p+ 0, flon+ )z
= (0, +0,6(Ve0))z = (6,6(Vev))z = (6, H|on + 7))z,

which immediately shows that (H3) cannot be satisfied. Hence, (H3) excludes that
solutions of the type just constructed exist for large stress fields o,, + 7.

These observations are connected to the collapse of solutions for elasto-plastic
constitutive relations: To see this, replace (3.3) by a rate independent constitutive
relation, for example by the Prandtl-Reuss law,

0
a&fp S 8X(T), (42)

with the subdifferential dx of the characteristic function x : 8 — [0, 00| of a closed

convex set K € 83,
(1) 0, Tek
)= o , TeS\K,

of. [1)[p. 31]. Let b, @, 6, 0,25 be as above, and instead of (4.1) suppose that there
is a nonvanishing function v € H{(2, R?) such that

e(Vau(z)) € Ox(o(x) + 0(x)) (4.3)

for almost all x € Q. Then for every function & : [0, T,.] — [0, 00) with x(0) = 0 the
function (u,T,¢,) defined by

u(e,t) = a(2) + K(O(2), T(x,t) = o(z) +6(x), e, t) = K(t)=(Vav(2)) + 0 (2)

solves the homogeneous Neumann initial-boundary value problem to the equations
(3.1), (3.2), (4.2), (3.4). In particular, for every T, > 0 we can choose k such that
k(t) — oo for t — T, . Thus, if (4.3) holds we can construct solutions which blow up
(or collapse, in another terminology) in an arbitrarily short time. Therefore in any
existence theory for the Prandtl-Reuss law the possibility that (4.3) can hold must
be excluded by a save-load condition slightly stronger than the coercivity condition
(H3). It is known that such a safe-load condition restricts the choice of the volume
force and the boundary data, cf. [8].
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