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1 Introduction

Let Ω ⊆ R
3 be the set of material points of a solid body. For many materials

the history dependent deformation behavior of this body can be modelled by the
equations

−divx T (x, t) = b(x, t) (1.1)

T (x, t) = D(ε(∇xu(x, t))− εp(x, t)) (1.2)

∂

∂t
εp(x, t) = g̃1(T (x, t),−z̃(x, t)) (1.3)

∂

∂t
z̃(x, t) = g̃2(T (x, t),−z̃(x, t)) (1.4)

εp(x, 0) = ε(0)
p (x), z̃(x, 0) = z̃(0)(x), (1.5)

with the Dirichlet boundary condition

u(x, t) = γD(x, t), (x, t) ∈ ∂Ω× (0,∞) (1.6)

or the Neumann boundary condition

T (x, t)n(x) = γN(x, t), (x, t) ∈ ∂Ω× (0,∞). (1.7)

Here u(x, t) : Ω × (0,∞) → R
3 denotes the displacement of the material point

labeled x at time t. With the 3 × 3–matrix ∇xu(x, t) of first order derivatives of
u with respect to the components x1, x2, x3 of x and with the transposed matrix
(∇xu(x, t))T the strain tensor is defined by

ε(∇xu(x, t)) =
1

2

(
∇xu(x, t) + (∇xu(x, t))T

)
∈ S3.
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S3 is the set of symmetric 3 × 3–matrices. T : Ω × (0,∞) → S3 is the Cauchy
stress tensor, εp(x, t) ∈ S3 is the plastic strain tensor, z̃(x, t) ∈ RN is a vector
of internal variables. Moreover, D : S3 → S3 is a linear, symmetric, positive
definite mapping, the elasticity tensor, b : Ω× (0,∞)→ R

3 is a given volume force,
γD : ∂Ω× (0,∞)→ R

3 is a given boundary displacement, γN : ∂Ω× (0,∞)→ R
3 is

a given traction at the boundary, and ε
(0)
p , z̃(0) are given initial data. Finally, n(x)

in the Neumann boundary condition denotes the exterior unit normal to ∂Ω at x.
The constitutive equations (1.3), (1.4) with given functions g̃1 : S3 × RN → S3,
g̃2 : S3 × RN → R

N determine the inelastic behavior of the body.
A more general class of constitutive models consists of constitutive relations of

monotone type. These relations have the form

zt(x, t) ∈ g
(
−ρ∇z ψ(ε(∇x u(x, t)), z(x, t))

)
, (1.8)

where z = (εp, z̃), and where ρ > 0 is the constant mass density. g : RN → 2R
N

is
a given monotone mapping satisfying 0 ∈ g(0), and ψ is the free energy, which is
assumed to be a positive definite or positive semi-definite quadratic form

ρψ(ε, z) =
1

2
[D(ε−Bz)] · (ε−Bz) + (Lz) · z.

L is a symmetric, positive definite or positive semi-definite matrix.
The class of constitutive equations of monotone type was introduced in [1]. It

generalizes the class of constitutive equations of generalized standard materials in-
troduced by Halphen and Nguyen Quoc Son in [6]. For a generalised standard
material, g is the gradient of a convex function.

It turns out that for most materials the free energy is only positive semi-definite,
but not positive definite. In this case, if we assume that the constitutive relation is
rate dependent and under a minor additional assumption the constitutive equation
(1.8) of monotone type can be transformed to the equations (1.3) and (1.4) with a
monotone vector field

(εp, z̃)→ (g̃1(εp, z̃), g̃2(εp, z̃)) : S3 × RN → S3 × RN .

For initial-boundary value problem to constitutive equations of monotone type with
positive definite free energy a satisfactory and general existence theory is available,
cf. [7, 2, 3]. Moreover, the dynamic initial-boundary value problem to positive semi-
definite free energy has been treated in a number of articles, cf. [5] for example,
to mention just one. The aim of this note is to present existence results for the
quasi-static initial-boundary value problems (1.1) – (1.7) with positive semi-definite
free energy. For such initial-boundary value problems the existence theory is much
less complete.

Proofs are not contained in this note. These are to be published in [3].

2



2 Existence of solutions for initial-boundary value problems
with history functionals

To prove existence of solutions to the initial-boundary value problems (1.1) – (1.7) it
is first shown that a more general initial-boundary value problem with constitutive
relations given by a history functional can be solved. Subsequentially it is proved
that the constitutive equations (1.3) – (1.5) define such a history functional satisfying
the conditions needed in the existence proof. To present this approach, we need a
few notations:

Let Ω ⊆ R3 be a bounded open set with C1-boundary. Te denotes a positive
number (time of existence), and for 0 ≤ t ≤ Te we set

Zt = Ω× [0, t], Z = ZTe .

By 1 < p, q <∞ we denote numbers with 1
p

+ 1
q

= 1. The norms on Lp(Ω,S3) and

Lp(Ω,RN) are denoted by

‖u‖p,Ω =
[ ∫

Ω

|u(x)|p dx
]1/p

.

The same notation is used for Z instead of Ω. For the scalar product of two sym-
metric matrices σ, τ ∈ S3 we write

σ · τ =
3∑

i,j=1

σijτij .

With this notation the canonical bilinear forms on the product spaces Lp(Ω,S3) ×
Lq(Ω,S3) and Lp(Z,S3)× Lq(Z,S3) are given by

(σ, τ)Ω =

∫
Ω

σ(x) · τ(x) dx , (σ, τ)Z =

∫
Z

σ(x, t) · τ(x, t) d(x, t) .

A history functional is defined as follows:

Definition 2.1 Let F (Z,S3) be the set of all functions from Z to S3. A mapping
H : ∆(H) → F (Z,S3) with ∆(H) ⊆ F (Z,S3) is called a history functional on
F (Z,S3), if it has the following property: For all 0 ≤ t ≤ Te and all τ1, τ2 ∈ ∆(H),
which satisfy τ1|Zt

= τ2|Zt
, it follows that H[τ1]|Zt = H[τ2]|Zt .

With a suitable history functional H on F (Z,S3) the equations (1.1) – (1.5) can
now be written in the form

−divx T = b (2.1)

T = D(ε(∇xu)− εp) (2.2)

∂

∂t
εp = H[T ] (2.3)

εp(x, 0) = ε(0)
p (x). (2.4)
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To see this, let z̃(0) : Ω → R
N , T : Z → S3 be given and let (z̃, h) : Z 7→ R

N × S3

be a solution of the initial value problem

h(x, t) = g̃1(T (x, t),−z̃(x, t)) (2.5)

∂

∂t
z̃(x, t) = g̃2(T (x, t),−z̃(x, t)) (2.6)

z̃(x, 0) = z̃(0)(x), (2.7)

for x ∈ Ω and t ∈ [0, Te]. Then a history functional Hz̃(0) on F (Z,S3) is defined by

Hz̃(0) [T ] = h. (2.8)

Insertion of Hz̃(0) for H into (2.3) reduces (2.1) – (2.4) to the equations (1.1) – (1.5).
Next we state the existence result for the Dirichlet or Neumann initial-boundary

value problems to the equations (2.1) – (2.4) containing an abstract history func-
tional. We need the following assumptions:

For numbers 2 ≤ p <∞ and 1 < q ≤ 2 with 1
p

+ 1
q

= 1 let the history functional

be a mapping H : Lp(Z,S3)→ Lq(Z,S3), which satisfies four conditons:

(H1) There is a constant C such that for all T ∈ Lp(Z,S3)

‖H(T )‖q,Z ≤ C
(
‖T‖

p
q

p,Z + 1
)
.

(H2) H is hemicontinuous and monontone with respect to the bilinear form (σ, T )Z .

(H3) H satisfies a first coercivity condition:(
T,H[T ]

)
Z

‖H[T ]‖q,Z
→∞ for ‖T‖p,Z →∞ .

(H4) H satisfies a second coercivity condition:(
T,H[T ]

)
Z

‖T‖p,Z
→∞ for ‖T‖p,Z →∞ .

Theorem 2.2 LetH satisfy the conditons (H1) – (H4), and let b ⊆ Lp(Z,R3), ε
(0)
p ∈

L2(Ω,S3) be given functions. Then the following assertions hold:

(i) For γD ∈ Lp(0, Te;Hp
1 (Ω,R3)) there is a unique solution

(u, T, εp) ∈ Lq(0, Te;Hq
1(Ω,R3))× Lp(Z,S3)×Hq

1([0, Te], L
q(Ω,S3))

of the Dirichlet problem (2.1) – (2.4), (1.6).
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(ii) Assume that γN ∈ Lp(∂Ω×[0, Te],R
3) and that for all infinitesimal rigid motions

a+ ω × x and for almost every t ∈ [0, Te] the equation∫
Ω

b(x, t) · (a+ ω × x)dx+

∫
∂Ω

γN(x, t) · (a+ ω × x)dSx = 0 (2.9)

holds. Then there exists a solution

(u0, T, εp) ∈ Lq(0, Te;Hq
1(Ω,R3))× Lp(Z,S3)×Hq

1([0, Te], L
q(Ω,S3))

of the Neumann problem (2.1) – (2.4), (1.7). All solutions of this problem are ab-
tained in the form (u, T, εp) = (u0, T, εp) + (w, 0, 0), where w(x, t) = a(t) + ω(t)× x
with a, ω ∈ Lq([0, Te],R3) is an infinitesimal rigid motion.

The proof of this theorem is based on the reduction of the Dirichlet initial-boundary
value problem (2.1) – (2.4), (1.6) to an initial value problem for an evolution equation
in the space

Hq
sol,D = {σ ∈ Lq(Ω,S3) | div(Dσ) = 0},

the Neumann initial-boundary value problem is reduced to an initial value problem
in the space

Hq
sol,N = {σ ∈ Lq(Ω,S3) | div(Dσ) = 0 , (Dσ)|∂Ω

n = 0} .

This initial value problem is

∂

∂t
τ(t) = QH[−Dτ + σ̂](t), 0 ≤ t ≤ Te (2.10)

τ(0) = Qε(0)
p , (2.11)

where Q : Lq(Ω,S3) → Lq(Ω,S3) is the projection onto the closed subspace Hq
sol,D

with kerQ = {ε(∇u) | u ∈
◦
H
p
1(Ω,R3)} in the Dirichlet case, and onto the closed

subspace Hq
sol,N with kerQ = {ε(∇u) | u ∈ Hp

1 (Ω,R3)} in the Neumann case. The
solution τ satisfies τ = Qεp, and for almost every t the function x 7→ σ̂(x, t) is the
Cauchy stress in the solution of the linear boundary value problem, which consists
of the equations (2.1), (2.2) with εp = 0, and the Dirichlet or Neumann boundary
condition. Using arguments from the theory of evolution equations to monotone
operators, cf. [4], it can be shown that the initial value problem (2.10), (2.11) has a
unique solution.

3 Existence of solutions for two examples of constitutive
models

We apply the preceding result to study the existence of solutions to the initial-
boundary value problems (1.1) – (1.7) for two examples of constitutive models.
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The first example is the Norton-Hoff law:

−divx T = b (3.1)

T = D(ε(∇xu)− εp) (3.2)

∂

∂t
εp = c|T |r T

|T |
(3.3)

εp(0) = ε(0)
p , (3.4)

with constants c > 0, r > 1. The second example incorporates kinematic hardening:

−divx T = b (3.5)

T = D(ε(∇xu)− εp) (3.6)

∂

∂t
εp = c1|T − k(εp − εn)|r T − k(εp − εn)

|T − k(εp − εn)|
(3.7)

∂

∂t
εn = c2(k|εp − εn|)γ

εp − εn
|εp − εn|

(3.8)

εp(0) = ε(0)
p , εn(0) = ε(0)

n , (3.9)

where c1, c2, k > 0 and r, γ > 1 are constants, and where the internal variable
εn(x, t) ∈ S3 is of the type of a strain tensor.

For both models it can be shown that the history functional defined by the
constitutive equations satisfies the conditions (H1) – (H4). This yields the following
results:

Theorem 3.1 (Norton-Hoff law) Let c > 0 and r > 1 be constants, and let

p = 1 + r, q = 1 + 1
r

. Then under the regularity assumptions for b, ε
(0)
p , γD and

γN from Theorem 2.2 the assertions of that theorem also hold for the Dirichlet and
Neumann initial-boundary value problems to the equations (3.1) - (3.4).

Theorem 3.2 (Kinematic hardening) Let c1, c2, k be positive constants and let
the constants r and γ satisfy γ > r > 1. Set p = 1 + r, q = 1 + 1

r
, p̂ = 1 + γ,

q̂ = 1 + 1
γ

. Suppose that b ∈ Lp(Z,R3) and ε
(0)
p , ε

(0)
n ∈ L2(Ω,S3). Then the following

assertions hold:
(i) For γD ∈ Lp(0, Te;Hp

1 (Ω,R3)) there is a unique solution

(u, T, εp, εn) ∈ Lq(0, Te;H
q
1(Ω,R3))× Lp(Z,S3)

× Hq
1([0, Te], L

q(Ω,S3))×H q̂
1([0, Te], L

q̂(Ω,S3))

of the Dirichlet problem to the equations (3.5) – (3.9).
(ii) Assume that γN ∈ Lp(∂Ω × [0, Te],R

3) and that b and γN satisfy (2.9). Then
there exists a solution

(u0, T, εp, εn) ∈ Lq(0, Te;H
q
1(Ω,R3))× Lp(Z,S3)

× Hq
1([0, Te], L

q(Ω,S3))×H q̂
1([0, Te];L

q̂(Ω,S3))
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of the Neumann problem to the equations (3.5) – (3.9). All solutions of this problem
are obtained in the form (u, T, εp, εn) = (u0, T, εp, εn) + (w, 0, 0), where w(x, t) =
a(t) + ω(t)× x with a, ω ∈ Lq([0, Te],R3).

4 The coercivity conditions

Here we discuss the meaning of the coercivity conditions (H3) and (H4). For sim-
plicity we only consider the Neumann problem with homogeneous boundary data.
Assume that (u, T, εp) is a solution of the Neumann initial-boundary value problem
to the equations (2.1) – (2.4). For the positive semi-definite free energy

ρψ(ε∇x u), εp) =
1

2
[D(ε(∇x u)− εp)] · (ε(∇x u)− εp)

we then obtain by formal differentiation and partial integration that

d

dt

∫
Ω

ρψ(ε(∇x u), εp) dx =

∫
Ω

T · (ε(∇x ut)− εpt) dx

=

∫
Ω

(−divx T ) · ut − T · H[T ] dx =

∫
Ω

b · utdx− (T,H[T ])Ω .

It follows that (T,H[T ])Z is the energy dissipated during the time interval [0, Te]
due to plastic deformation.

For the Norton-Hoff law the definition (2.5) – (2.8) of the history functional
reduces to the equation

H[T ] = f(T )

with f(T ) = c|T |r T|T | . Assume now that there is a volume force b : Ω → R
3 with

the following property: To the stress field σ̂ in the solution (û, σ̂) of the (time
independent) Neumann boundary value problem to the equations (3.1), (3.2) with
data b and with εp = 0 there is a stress function (x → σ(x)) ∈ DHp

sol,N such that
f(σ + σ̂) is a gradient field, i.e.

f(σ + σ̂) ∈ {ε(∇x v) | v ∈ Hq
1(Ω,R3)} . (4.1)

Thus, to these σ̂ and σ there is a function v with ε(∇x v) = f(σ + σ̂). We set

ε(0)
p = ε(∇û)−D−1σ.

Then (u, T, εp) with

u(x, t) = û(x) + tv(x), T (x, t) = σ(x) + σ̂(x), εp(x, t) = tf(σ(x) + σ̂(x)) + ε(0)
p (x)

is a solution of the homogeneous Neumann initial-boundary value problem to the
equations (3.1) – (3.4) with volume force b(x, t) = b(x). Though the volume force
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b is constant in time, this solution shows indefinite plastic deformation. Condition
(H3) excludes that a sequence σn ∈ Hp

sol,N exists with ‖σn‖p,Ω → ∞ for n → ∞,
such that f(σn + σ̂) ∈ {ε(∇x v) | v ∈ Hq

1(Ω,R3)}. For, this would imply

(σn + σ̂,H[σn + σ̂])Z = (σn + σ̂, f(σn + σ̂)Z

= (σn + σ̂, ε(∇x v))Z = (σ̂, ε(∇x v))Z = (σ̂,H[σn + σ̂])Z ,

which immediately shows that (H3) cannot be satisfied. Hence, (H3) excludes that
solutions of the type just constructed exist for large stress fields σn + σ̂.

These observations are connected to the collapse of solutions for elasto-plastic
constitutive relations: To see this, replace (3.3) by a rate independent constitutive
relation, for example by the Prandtl-Reuss law,

∂

∂t
εp ∈ ∂χ(T ), (4.2)

with the subdifferential ∂χ of the characteristic function χ : S3 → [0,∞] of a closed
convex set K ∈ S3,

χ(T ) =

{
0 , T ∈ K
∞ , T ∈ S3\K,

cf. [1][p. 31]. Let b, û, σ̂, σ, ε
(0)
p be as above, and instead of (4.1) suppose that there

is a nonvanishing function v ∈ Hq
1(Ω,R3) such that

ε(∇x v(x)) ∈ ∂χ(σ(x) + σ̂(x)) (4.3)

for almost all x ∈ Ω. Then for every function κ : [0, Te]→ [0,∞) with κ(0) = 0 the
function (u, T, εp) defined by

u(x, t) = û(x) + κ(t)v(x), T (x, t) = σ(x) + σ̂(x), εp(x, t) = κ(t)ε(∇x v(x)) + ε(0)
p (x)

solves the homogeneous Neumann initial-boundary value problem to the equations
(3.1), (3.2), (4.2), (3.4). In particular, for every Te > 0 we can choose κ such that
κ(t)→∞ for t→ Te . Thus, if (4.3) holds we can construct solutions which blow up
(or collapse, in another terminology) in an arbitrarily short time. Therefore in any
existence theory for the Prandtl-Reuss law the possibility that (4.3) can hold must
be excluded by a save-load condition slightly stronger than the coercivity condition
(H3). It is known that such a safe-load condition restricts the choice of the volume
force and the boundary data, cf. [8].
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