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Abstract

We study the existence theory to quasistatic initial-boundary value problems with
internal variables, which model the viscoelastic or viscoplastic behavior of solids
at small strain. In these problems a system of linear partial differential equations
coupled with a nonlinear system of differential equations or differential inclusions
must be solved. The solution theory is based on monotonicity properties of the
differential equations or differential inclusions. The article gives an essentially
complete account of the recent progress.

1 Introduction and statement of results

In this article we study existence and uniqueness of solutions to initial-boundary value
problems, which model the viscoelastic or viscoplastic deformation behavior of solids at
small strain. The initial-boundary value problems we study use differential equations
or differential inclusions to model the dependence of the stress on the strain history.

To formulate the initial-boundary value problem let Ω ⊆ R3 be an open bounded
set, the set of material points of a solid body. S3 denotes the set of symmetric 3× 3–
matrices. Unknown are the displacement u(x, t) ∈ R3 of the material point labeled x at
time t, the Cauchy stress T (x, t) ∈ S3 and the vector of internal variables z(x, t) ∈ RN .
The model equations are

−divx T (x, t) = b(x, t), (1.1)

T (x, t) = D(ε(∇xu(x, t))−Bz(x, t)), (1.2)

∂

∂t
z(x, t) ∈ f(ε(∇xu(x, t)), z(x, t)), (1.3)

which must hold for (x, t) ∈ Ω×[0,∞). The unknowns must satisfy the initial condition

z(x, 0) = z(0)(x), x ∈ Ω, (1.4)

and either the Dirichlet boundary condition

u(x, t) = γD(x, t), (x, t) ∈ ∂Ω× [0,∞), (1.5)

or the Neumann boundary condition

T (x, t)n(x) = γN(x, t), (x, t) ∈ ∂Ω× [0,∞). (1.6)
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Here ∇xu(x, t) denotes the 3× 3–matrix of first order derivatives of u, the deformation
gradient, (∇xu(x, t))T denotes the transposed matrix, and

ε(∇xu(x, t)) =
1

2

(
∇xu(x, t) + (∇xu(x, t))T

)
∈ S3,

is the strain tensor. B : RN → S3 is a linear mapping, which assigns to the vector z(x, t)
the plastic strain tensor εp(x, t) = Bz(x, t). One often assumes that all six independent
components of the symmetric matrix εp belong to the components of z, in which case
B would be the projection to these six components. Moreover, D : S3 → S3 is a linear,
symmetric, positive definite mapping, the elasticity tensor.

The given data of the problem are b : Ω × [0,∞) → R
3, the volume force, γD :

∂Ω × [0,∞) → R
3, the boundary displacement, γN : ∂Ω × [0,∞) → R

3, the traction
at the boundary, and z(0) : Ω → R

N , the initial data. n(x) in the Neumann boundary
condition denotes the exterior unit normal to ∂Ω at x.

The equation (1.2) and the differential inclusion (1.3) with a given function f :
S3 × RN → 2R

N
together determine the dependence of the stress T (x, t) on the strain

history s→ ε(∇x u(x, s)). They are the constitutive relations which model the inelastic
behavior of the body. Clearly, these constitutive relations cannot be chosen arbitrarily.
Instead, thermodynamical and mathematical requirements restrict the choice of f .

We first note that the formulation of equation (1.2) is based on the assumption
that the deformation gradient only assumes small values, which makes it possible to
additively decompose the strain tensor into an elastic and a plastic part:

ε(∇x u) = (ε(∇x u)− εp) + εp .

According to (1.2), the elastic part is the only source of stresses in the body.
The choice of the function f in equation (1.3) is restricted by the second law of

thermodynamics, which requires that to f there exists a free energy function ψ(ε, z)
such that the relations

ρ∇εψ(ε, z) = T

ρ∇zψ(ε, z) · ζ ≤ 0 (1.7)

hold for all ζ ∈ f(ε, z) and all (ε, z) ∈ S3 ×RN . Here ρ > 0 denotes the constant mass
density. A class of functions, for which these relations are automatically satisfied and
which has important mathematical properties consists of all f , for which a quadratic
positive definite or positive semi-definite free energy

ρψ(ε, z) =
1

2
[D(ε−Bz)] · (ε−Bz) +

1

2
(Lz) · z (1.8)

and a monotone function g : RN → 2R
N

with 0 ∈ g(0) exist such that for all (ε, z) ∈
S3 × RN

f(ε, z) = g
(
−ρ∇z ψ(ε(∇x u(x, t)), z(x, t))

)
. (1.9)

L in (1.8) is a symmetric positive definite or positive semi-definite N ×N–matrix. We
call the constitutive relation (1.3) of monotone type if f is of the form (1.9). This is
the class of constitutive relations we are interested in.

Thus, the aim of this article is to study the existence and uniqueness of solutions
to the quasistatic problems (1.1) – (1.6) with constitutive equations of monotone type.
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Using that (1.2) and (1.8) together yield −ρ∇z ψ(ε, z) = BTT − Lz, where BT : S3 →
R
N is the mapping adjoint to B, these problems can be written in the transparent form

−divx T (x, t) = b(x, t), (1.10)

T (x, t) = D(ε(∇xu(x, t))−Bz(x, t)), (1.11)

zt(x, t) ∈ g(BTT (x, t)− Lz(x, t)), (1.12)

z(x, 0) = z(0)(x), (1.13)

either with the Dirichlet boundary condition

u(x, t) = γD(x, t), (x, t) ∈ ∂Ω× [0,∞), (1.14)

or with the Neumann boundary condition

T (x, t)n(x) = γN(x, t), (x, t) ∈ ∂Ω× [0,∞). (1.15)

The class of constitutive relations of monotone type was introduced in [Alb98]. This
class generalizes the class of constitutive relations of generalized standard materials
defined by B. Halphen and Nguyen Quoc Son in [HS75]. For a generalized standard
material the function g is the gradient or subdifferential of a convex function. [Alb98]
contains a derivation of the dissipation inequality (1.7) from the second law of thermo-
dynamics. Also, examples of constitutive equations from engineering are considered in
this book and the problem is studied, whether these constitutive equations are of mono-
tone type. Suffice it to say here that the class of constitutive relations of monotone type
includes the classical constitutive models like the Norton-Hoff and the Prandtl-Reuss
laws, but that it is too small to include most models from engineering for the inelastic
behavior of metals. In fact, all these models can be written in the form (1.3) with f of
the form (1.9), but with non-monotone g. In the majority of cases the free energy ψ is
not positive definite, but only positive semi-definite. In particular, the Norton-Hoff law
and the Prandtl-Reuss law are constitutive equations with positive semi-definite free
energy, whereas models with linear hardening have positive definite free energy.

Nevertheless, it is an important mathematical goal to understand the existence
theory of initial-boundary value problems to constitutive equations of monotone type.
We give an incomplete survey of the literature to existence problems. More references
can be found in [Alb98].

For the classical constitutive models the existence theory started with [Mor71] and
[DL72]. Of the publications which appeared in the following years we only men-
tion [Joh76, Grö78], in which elasto-plastic constitutive equations were studied, and
[Joh78, Grö79], where the existence theory for constitutive equations with hardening
was investigated. In particular, in [Grö79] it was noticed that the presence of linear
hardening simplifies the existence proofs. For the elasto-plastic constitutive equation,
the Prandtl-Reuss law, the existence of a function representing the displacement re-
mained unclear in these publications. This question was solved in [Suq81], where it is
shown that the displacement belongs to the space of bounded deformations, a space
which was later studied in the book [Tem83] in connection with time independent prob-
lems of elasto-plasticity. We mention that the problem of existence of the displacement
function is connected with the existence of the Helmholtz and Weyl projectors in general
Banach spaces, which in the Lp-space we study in Section 2.

In [Tem86] it was clarified in what sense the solution satisfies the differential inclu-
sions appearing in the Prandtl-Reuss law, a rate independent model. The regularity
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of the stress field to the Prandtl-Reuss law was studied in [BF93, BF96]; it turned
out that the stress field belongs to the Sobolev space H2

1 if the data of the problem
are sufficiently smooth. Finally, the recent book [HR99] presents a treatment of the
Prandtl-Reuss model and of some models, which in our terminology belong to the class
of constitutive models with positive definite free energy.

These references are concerned with quasistatic problems. In the dynamic initial-
boundary value problem the quasistatic equation (1.1) is replaced by

ρutt − divx T (x, t) = b(x, t).

The existence theory of the dynamic problem to special models with linear hardening
is considered in [LeT90], whereas the article [AL87] is devoted to the investigation of
the dynamic problem to the Prandtl-Reuss law. The study of the existence theory for
the dynamic problems to constitutive equations of monotone type with positive definite
free energy was started in [Alb98]. In [Che97, Che01, CG00] this study is continued and
extended to special classes of models of monotone type with positive semi-definite free
energy. It is shown by these investigations that for the existence theory it is a principle
difference, whether the free energy ψ is positive definite or only positive semi-definite.

That the same division also exists for quasistatic initial-boundary value problems
to constitutive equations of monotone type is shown by the references [Alb01, Cheb,
Chea, Ebe], which besides other investigations contain studies of quasistatic problems
with positive definite free energy, and by the present article, which aims to develop a
more general and complete theory: We give existence proofs for problems with positive
definite free energy and, in particular, derive new existence results for the important and
more difficult case of positive semi-definite free energy. As a by-product we complete
the investigations in [Alb01], since several of the theorems stated and proved in the
section on problems with positive definite free energy are announced in that reference
and used without proof.

Our results on problems with positive definite free energy extend the results of the
manuscripts [Chea, Ebe], which are to be published, only slightly. However, the method
of proof used in Section 3, which we believe to be of principle interest, is new. Also, we
includ these results here since they complete the investigations in [Alb01] and since it
seems to be very desirable to have a unified treatment at hand which allows to compare
this case with the case of positive semi-definite free energy. Our results are precisely
discussed in the remainder of this introduction.

Statement of the main results. To state the results we need some notations and
definitions.

We always assume that Ω ⊆ R3 is a bounded open set with C1-boundary ∂Ω. Te
denotes a positive number (time of existence), and for 0 ≤ t ≤ Te we set

Zt = Ω× [0, t], Z = ZTe .

If w is a function defined on Zt and if 0 ≤ s ≤ t, we denote the function x 7→ w(x, s)
by w(s). For symmetric matrices σ, τ ∈ S3 we write

σ · τ =
3∑

i,j=1

σijτij , |σ| =
√
σ · σ.

By 1 < p, q < ∞ we denote numbers with 1
p

+ 1
q

= 1. The norms on Lp(Ω,S3) and

4



Lp(Ω,RN) are denoted by

‖u‖p,Ω =
[ ∫

Ω

|u(x)|p dx
]1/p

,

and for the canonical bilinear forms on the product spaces Lp(Ω,S3) × Lq(Ω,S3) and
Lp(Z,S3)× Lq(Z,S3) we use the symbols

(σ, τ)Ω =

∫
Ω

σ(x) · τ(x) dx , (σ, τ)Z =

∫
Z

σ(x, t) · τ(x, t) d(x, t) .

Since D : S3 → S3 is symmetric and positive definite, other bilinear forms on these
product spaces are

[σ, τ ]Ω = (Dσ, τ)Ω , [σ, τ ]Z = (Dσ, τ)Z .

Hp
1 (Ω,Rn) is the Banach space of functions in Lp(Ω,Rn), for which the components

have weak derivatives in Lp(Ω,Rn), and
◦
H
p
1(Ω,Rn) denotes the closure in Hp

1 (Ω,Rn)
of the space C∞0 (Ω,Rn) of all infinitely differentiable functions with compact support
contained in Ω. The norm of Hp

1 (Ω,Rn) is ‖u‖1,p,Ω. Clearly, for Z instead of Ω we use
the same notations.

In our investigations solutions of the boundary value problems of linear elasticity
theory in Lq–space with 1 < q <∞ play an important part. These problems are given
by the equations

−div T (x) = b̂(x) , x ∈ Ω, (1.16)

T (x) = D
(
ε(∇u(x))− ε̂p(x)

)
, x ∈ Ω, (1.17)

with the Dirichlet condition

u(x) = γ̂D(x), x ∈ ∂Ω, (1.18)

or the Neumann condition

T (x)n(x) = γ̂N(x), x ∈ ∂Ω . (1.19)

To define a weak solution of the Dirichlet problem, we insert (1.17) into (1.16), multiply

the resulting equation with v ∈
◦
H
p
1(Ω,R3) and integrate by parts. A weak solution is

sought in the form u = w + γ̂D with γ̂D ∈ Hq
1(Ω,R3) and w ∈

◦
H
q
1(Ω,R3). Insertion of

this representation in the resulting integral identity yields(
D(ε(∇w)− ε̂p), ε(∇v)

)
Ω

= (b̂, v)Ω −
(
D(ε(∇γ̂D)), ε(∇v)

)
Ω
, (1.20)

where we used that D((ε∇u(x))− ε̂p(x)) is a symmetric matrix.
To define a weak solution of the Neumann problem, we use (1.19) in the process of

partial integration and obtain for v ∈ Hp
1 (Ω,R3)(

D(ε(∇u)− ε̂p), ε(∇v)
)

Ω
= (b̂, v)Ω −

∫
∂Ω

γ̂N · v dS. (1.21)

Therefore we define weak solutions as follows:
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Definition 1.1 Let b̂ ∈ Lq(Ω,R3) and ε̂p ∈ Lq(Ω,S3) be given.
(i) Let γ̂D ∈ Hq

1(Ω,S3). A function (u, T ) ∈ Hq
1(Ω,R3) × Lq(Ω,S3) is a weak solution

of the Dirichlet problem (1.16) – (1.18), if (1.17) holds and if w ∈
◦
H
q
1(Ω,R3) exists with

u = w + γ̂D, such that (1.20) is satisfied for all v ∈
◦
H
p
1(Ω,R3).

(ii) Let γ̂N ∈ Lq(∂Ω,R3). A function (u, T ) ∈ Hq
1(Ω,R3)×Lq(Ω,S3) is a weak solution

of the Neumann problem (1.16), (1.17), (1.19), if (1.17) and the equation (1.21) hold
for all v ∈ Hp

1 (Ω,R3).

It is well known that for the case q = 2 the Dirichlet problem has a unique weak
solution, and that the Neumann problem has a weak solution u0 if b̂ and γ̂N satisfy the
equation ∫

Ω

b̂(x) · (a+ ω × x)dx =

∫
∂Ω

γ̂N(x) · (a+ ω × x)dS

for all a, ω ∈ R3. The function a+ ω × x is an infinitesimal rigid motion. All solutions
of the Neumann problem are obtained in the form u0(x) + a + ω × x with a, ω ∈ R3.
The proof of these assertions is based on Korn’s inequality stated later in Lemma 2.1.

It is generally believed, we cite [Val88] for this, that the same assertions also hold
for q 6= 2, and that the methods used for example in [Mey63, GT83, Sim72, SS92, SS96]
to prove results for boundary value problem to scalar partial differential equations in
Lq can be transfered to the system of linear elasticity theory to prove these assertions.
However, although important partial results are available even for systems with variable
coefficients, cf. [Gia93, Gre91, Kos62], to the best of our knowledge a general proof has
not been published. Therefore our results for positive semi-definite free energy, which
are based on the existence of solutions to the boundary value problems of linear elasticity
theory for q 6= 2, are proved under the assumption that the above assertions hold for
all 1 < q <∞ .

Next we give the definition of weak and strong solutions of the initial-boundary
value problems (1.10) – (1.15).

Definition 1.2 Assume that 1 < q ≤ 2 ≤ p < ∞, b ∈ L1(0, Te;L
p(Ω,R3)), z(0) ∈

L2(Ω,RN) , γD ∈ L1(0, Te;H
p
1 (Ω,R3)) and γN ∈ L1(0, Te;L

p(∂Ω,R3)).
A function (u, T, z) ∈ Lq(0, Te;Hq

1(Ω,R3)) × Lp(Z,S3) × C([0, Te], L
q(Ω,RN)) is a

strong solution of the Dirichlet problem (1.10) – (1.14) or the Neumann problem (1.10)
– (1.13), (1.15), respectively, if

(i) for almost every t ∈ [0, Te] the function (u(t), T (t)) is a weak solution of the
Dirichlet problem (1.16) – (1.18) or of the Neumann problem (1.16), (1.17), (1.19),
respectively, with ε̂p = Bz(t), b̂ = b(t), γ̂D = γD(t) and γ̂N = γN(t).

(ii) for almost every t ∈ [0, Te] the derivative d
dt
z(t) exists, belongs to Lq(Ω,RN), and

satisfies (1.12).

(iii) z(0) = z(0).

The function (u, T, z) is a weak solution of the Dirichlet initial-boundary value prob-
lem (1.10) – (1.14), or of the Neumann initial-boundary value problem (1.10) –
(1.13), (1.15), respectively, if there exists a sequence {kn}∞n=1 of functions kn ∈
L1(0, Te;L

q(Ω,RN)) , which converges in L1(0, Te;L
q(Ω,RN)) to 0, and if there exists a

sequence {(un, Tn, zn)}∞n=1 of strong solutions of the Dirichlet or Neumann problem with
(1.12) replaced by

∂

∂t
zn(x, t) ∈ g

(
BTTn(x, t)− Lzn(x, t)

)
+ kn(x, t) , (1.22)
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which converges in Lq(0, Te;H
q
1(Ω,R3))×Lp(Z,R3)×C([0, Te], L

q(Ω,RN)) to (u, T, z).

Positive definite free energy. Now we can state our main results for constitutive
equations with positve definite free engergy ψ, which are proved in Sections 3 and 6.
Note that ψ is positive definite if and only if the symmetric N×N–matrix L in (1.8) is
positive definite.

Theorem 1.3 Assume that

ρψ(ε, z) =
1

2
[D(ε−Bz)] · (ε−Bz) +

1

2
(Lz) · z

is a positive definite quadratic form and that g : RN → 2R
N

is a maximal monotone
function satisfying 0 ∈ g(0).

For i = 1 or i = 2 suppose that b ∈ H1
i (0, Te;L

2(Ω,R3)), γD ∈ H1
i (0, Te;H

2
1 (Ω,R3))

and γN ∈ H1
i (0, Te;L

2(∂Ω,R3)). Moreover, for the Neumann problem assume that b
and γN satisfy ∫

Ω

b(x, t) · (a+ ω × x)dx =

∫
∂Ω

γN(x, t) · (a+ ω × x)dSx (1.23)

to all vectors a, ω ∈ R3and almost all t in [0, Te]. Finally, assume that z(0) ∈ L2(Ω,Rn)
and that there is ζ ∈ L2(Ω,RN) such that

ζ(x) ∈ g(BTT (0)(x)− Lz(0)(x)) a.e. in Ω , (1.24)

where (u(0), T (0)) is a weak solution of the Dirichlet or Neumann problem (1.16) – (1.19),
respectively, to the data b̂ = b(0), ε̂p = Bz(0), γ̂D = γD(0), γ̂N = γN(0).

Then, for i = 1 there is a unique weak solution and for i = 2 a unique strong solution
of the Dirichlet initial-boundary value problem (1.10) – (1.14). Furthermore, for i = 1
there is a weak solution and for i = 2 a strong solution of the Neumann initial-boundary
value problem (1.10) – (1.13), (1.15). If (u0, T, z) is a weak or a strong solution of the
Neumann problem, then all solutions are obtained in the form (u0 +a+ω×x, T, z) with
a, ω ∈ L2([0, Te],R

3).

This theorem is proved in Sections 3. For the proof we reduce the initial-boundary
value problem to an evolution equation in the Hilbert space L2 with a maximal mono-
tone evolution operator. Theorem 1.3 then follows from well known results for such
abstract evolution equations. In the reduction we use projection operators to tensor
fields, which are symmetric gradients, and projection operators to tensor fields, for
which a generalized divergence vanishes. The projectiors of the latter type generalize
the classical Helmholtz and Weyl projections. We study these projectors in Section 2.

In Section 6 we present another proof of the existence and the uniqueness of global
in time solutions to the problem (1.10) – (1.13) with a positive definite free energy
function ψ. In that section we consider our problem with another boundary condition,
namely the condition of mixed type

u(x, t) = γD(x, t) for x ∈ Γ1 , T (x, t)n(x) = γN(x, t) for x ∈ Γ2 , t > 0, (1.25)

where Γ1 ,Γ2 ⊆ ∂Ω are relatively open subsets of ∂Ω satisfying Γ1∩Γ2 = ∅ , ∂Ω = Γ1∪Γ2

and |Γ1| > 0. Here |Γ1| denotes the 2-dimensional boundary measure of Γ1 . The method
used for the proof is based on the partial Yosida approximation. The main result of
Section 6 is stated in the following theorem:
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Theorem 1.4 Let us suppose that the boundary data γD, γN and the external force b
possess the regularity

b ∈ H∞2 (0, Te;L
2(Ω;R3))

γD ∈ H∞3 (0, Te;H
2
1/2(Γ1;R3)) , γN ∈ H∞2 (0, Te;H

2
−1/2(Γ2;R3)) ,

for all Te > 0, and that to the initial data z0 ∈ L2(Ω;RN) there is ζ ∈ L2(Ω,RN) such
that

ζ(x) ∈ g(BTT (0)(x)− Lz(0)(x)) a.e. in Ω ,

where (u(0), T (0)) is a weak solution of the problem formed by (1.16), (1.17), (1.25) with
t = 0, b̂ = b(0) and ε̂p = Bz(0). If the considered model is of monotone type with

the maximal monotone constitutive function g : ∆(g) ⊂ R
N → 2R

N
, which satisfies

0 ∈ g(0), and with a positive definite matrix L, then the system (1.10) – (1.13) with the
boundary condition (1.25) possesses a global in time, unique solution

(u, T, z) ∈ H∞1 (0, Te;H1(Ω;R3)× L2(Ω;S3 × RN)) for all Te > 0 .

Positive semi-definite free energy. We remarked earlier that there is a principle
difference between initial-boundary value problems with positive definite and positive
semi-definite free energy. Accordingly, to study problems with positive semi-definite
free energy we follow a different line of attack, which we introduce next. Since we can
only treat the case where the function g in (1.12) is single-valued, we assume in the
following that g is a function with values in RN .

If the free energy

ρψ(ε, z) =
1

2
[D(ε−Bz)] · (ε−Bz) +

1

2
(Lz) · z

is not positive definite, it follows that kerL 6= {0}. For constitutive equations of mono-
tone type it is required that the N × N–matrix M = BTDB + L is positive definite,
cf. [Alb98, p. 25], since otherwise the vector z of internal variables contains unneces-
sary components, which do not contribute to the strain-stress relation ε(∇x u) → T ,
and which can be eliminated. This requirement implies kerB ∩ kerL = {0}. There-
fore kerB + kerL is a subspace of RN , whose dimension is strictly greater than the
dimension of kerB. For technical reasons we assume in our investigation of constitutive
models with positive semi-definite free energy, that this subspace is equal to RN and
that dim(kerB) = N−6, dim(kerL) = 6. For all models from engineering this assump-
tion is satisfied. In the appendix it is shown that in this case the initial-boundary value
problems (1.10) – (1.15) can be written in the equivalent form

−divx T (x, t) = b(x, t) (1.26)

T (x, t) = D(ε(∇xu(x, t))− εp(x, t)) (1.27)

∂

∂t
εp(x, t) = g̃1(T (x, t),−z̃(x, t)) (1.28)

∂

∂t
z̃(x, t) = g̃2(T (x, t),−z̃(x, t)) (1.29)

εp(x, 0) = ε(0)
p (x), z̃(x, 0) = z̃(0)(x), (1.30)

with the Dirichlet boundary condition

u(x, t) = γD(x, t), (x, t) ∈ ∂Ω× [0,∞) (1.31)
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or the Neumann boundary condition

T (x, t)n(x) = γN(x, t), (x, t) ∈ ∂Ω× [0,∞). (1.32)

Here εp(x, t) ∈ S3 is the plastic strain tensor, z̃(x, t) ∈ RN−6 is a vector of internal
variables, and g̃1 : S3 × RN−6 → S3, g̃2 : S3 × RN−6 → R

N−6 are given functions such
that

(T, y)→ (g̃1(T, y), g̃2(T, y)) : RN → R
N

is a monotone vector field.
To prove existence of solutions to this initial-boundary value problem, we put it into

a more general setting:

Definition 1.5 Let F (Z,S3) be the set of all functions from Z to S3. A mapping
H : ∆(H)→ F (Z,S3) with ∆(H) ⊆ F (Z,S3) is called a history functional on F (Z,S3),
if it has the following property: For all 0 ≤ t ≤ Te and all τ1, τ2 ∈ ∆(H), which satisfy
τ1|Zt

= τ2|Zt
, it follows that H[τ1]|Zt = H[τ2]|Zt .

With a suitable history functional H on F (Z,S3) the equations (1.26) – (1.30) can now
be written in the form

−divx T = b (1.33)

T = D(ε(∇xu)− εp) (1.34)

∂

∂t
εp = H[T ] (1.35)

εp(x, 0) = ε(0)
p (x). (1.36)

To see this, let z̃(0) : Ω→ R
N−6 and T : Z → S3 be given and let (h, z̃) : Z 7→ S3×RN−6

be a solution of the initial value problem

h(x, t) = g̃1(T (x, t),−z̃(x, t)) (1.37)

∂

∂t
z̃(x, t) = g̃2(T (x, t),−z̃(x, t)) (1.38)

z̃(x, 0) = z̃(0)(x), (1.39)

for x ∈ Ω and t ∈ [0, Te]. Then a history functional Hz̃(0) on F (Z,S3) is defined by

Hz̃(0) [T ] = h. (1.40)

Insertion of Hz̃(0) for H into (1.35) reduces (1.33) – (1.36) to the equations (1.26) –
(1.30).

To obtain existence results for the initial-boundary value problems (1.26) – (1.32)
we now proceed as follows: In Section 4 we prove existence of solutions to the problems
(1.31) – (1.36) containing an abstract history functional. This history functional has to
satisfy monotonicity, boundedness and coercivity conditions. In Section 5 we consider
several examples of constitutive equations with positive semi-definite free energy, and
verify that the history functionals defined by these constitutive equations satisfy these
conditions.

The main result of Section 4 is stated in the following theorem: For numbers 2 ≤
p < ∞ and 1 < q ≤ 2 with 1

p
+ 1

q
= 1 let H : Lp(Z,S3) → Lq(Z,S3) be a history

functional, which satisfies the following four conditons:
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(H1) There is a constant C such that for all T ∈ Lp(Z,S3)

‖H(T )‖q,Z ≤ C
(
‖T‖

p
q

p,Z + 1
)
.

(H2) H is hemicontinuous and monontone with respect to the bilinear form (σ, τ)Z .

(H3) H satisfies a first coercivity condition:(
T,H[T ]

)
Z

1 + ‖H[T ]‖q,Z
→∞ for ‖T‖p,Z →∞ .

(H4) H satisfies a second coercivity condition:(
T,H[T ]

)
Z

‖T‖p,Z
→∞ for ‖T‖p,Z →∞ .

Theorem 1.6 Let H satisfy the conditons (H1) – (H4), and let b ⊆ Lp(Z,R3), ε
(0)
p ∈

L2(Ω,S3) be given functions. Then the following assertions hold:

(i) For γD ∈ Lp(0, Te;Hp
1 (Ω,R3)) there is a unique strong solution

(u, T, εp) ∈ Lq(0, Te;Hq
1(Ω,R3))× Lp(Z,S3)×Hq

1([0, Te], L
q(Ω,S3))

of the Dirichlet problem (1.33) – (1.36), (1.31).

(ii) Assume that γN ∈ Lp(∂Ω × [0, Te],R
3) and that for all infinitesimal rigid motions

a+ ω × x and for almost every t ∈ [0, Te] the equation∫
Ω

b(x, t) · (a+ ω × x)dx =

∫
∂Ω

γN(x, t) · (a+ ω × x)dSx (1.41)

holds. Then there exists a strong solution

(u0, T, εp) ∈ Lq(0, Te;Hq
1(Ω,R3))× Lp(Z,S3)×Hq

1([0, Te], L
q(Ω,S3))

of the Neumann problem (1.33) – (1.36), (1.32). All strong solutions of this problem are
abtained in the form (u, T, εp) = (u0, T, εp) + (w, 0, 0), where w(x, t) = a(t) + ω(t) × x
with a, ω ∈ Lq([0, Te],R3) is an infinitesimal rigid motion.

To prove this theorem we define and study in Section 2 the projection operators
not only on the Hilbert space L2, but also on the Banach space Lq. The proof of
Theorem 1.6 is given in Section 4, where we use these Lq–projections to reduce the
initial-boundary value problem to an evolution equation in the space of all Lq–tensor
fields with vanishing generalized divergence. Arguments from the theory of monotone
operators can then be used to prove existence of a solution.

In Section 5 we apply Theorem 1.6 to study two examples of constitutive models.
The first example is the Norton-Hoff law:

−divx T = b (1.42)

T = D(ε(∇xu)− εp) (1.43)

∂

∂t
εp = c|T |r T

|T |
(1.44)

εp(0) = ε(0)
p , (1.45)
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with constants c > 0, r > 1. The second example incorporates kinematic hardening:

−divx T = b (1.46)

T = D(ε(∇xu)− εp) (1.47)

∂

∂t
εp = c1|T − k(εp − εn)|r T − k(εp − εn)

|T − k(εp − εn)|
(1.48)

∂

∂t
εn = c2(k|εp − εn|)γ

εp − εn
|εp − εn|

(1.49)

εp(0) = ε(0)
p , εn(0) = ε(0)

n , (1.50)

where c1, c2, k > 0 and r, γ > 1 are constants, and where the internal variable εn(x, t) ∈
S3 is of the type of a strain tensor.

For both models we show that the conditions (H1) – (H4) are satisfied. Theorem 1.6
thus yields the following results:

Theorem 1.7 (Norton-Hoff law) Let c > 0 and r > 1 be constants, and let p =

1 + r, q = 1 + 1
r

. Then under the regularity assumptions for b, ε
(0)
p , γD and γN from

Theorem 1.6 the assertions of that theorem also hold for the Dirichlet and Neumann
initial-boundary value problems to the equations (1.42) – (1.45).

Theorem 1.8 (Kinematic hardening) Let c1, c2, k be positive constants and let the
constants r and γ satisfy γ > r > 1. Set p = 1 + r, q = 1 + 1

r
, p̂ = 1 + γ, q̂ = 1 + 1

γ
.

Suppose that b ∈ Lp(Z,R3) and ε
(0)
p , ε

(0)
n ∈ L2(Ω,S3). Then the following assertions

hold:
(i) For γD ∈ Lp(0, Te;Hp

1 (Ω,R3)) there is a unique strong solution

(u, T, εp, εn) ∈ Lq(0, Te;H
q
1(Ω,R3))× Lp(Z,S3)

×Hq
1([0, Te], L

q(Ω,S3))×H q̂
1([0, Te], L

q̂(Ω,S3))

of the Dirichlet problem to the equations (1.46) – (1.50) with εp − εn ∈ Lp̂(Z,S3).
(ii) Assume that γN ∈ Lp(∂Ω× [0, Te],R

3) and that b and γN satisfy (1.41). Then there
exists a strong solution

(u0, T, εp, εn) ∈ Lq(0, Te;H
q
1(Ω,R3))× Lp(Z,S3)

×Hq
1([0, Te], L

q(Ω,S3))×H q̂
1([0, Te];L

q̂(Ω,S3))

of the Neumann problem to the equations (1.46) – (1.50) with εp − εn ∈ Lp̂(Z,S3). All
strong solutions of this problem are obtained in the form (u, T, εp, εn) = (u0, T, εp, εn) +
(w, 0, 0, 0), where w(x, t) = a(t) + ω(t)× x with a, ω ∈ Lq([0, Te],R3).

Remarks. 1.) Existence results for the Norton-Hoff law are known since long, cf.
[Tem86, LeT90]. These authors use different methods to treat the problem and must
impose regularity assumptions on the time derivatives ∂b

∂t
, ∂γD

∂t
, ∂γN

∂t
of the data, in

contrast to our result in Theorem 1.7, which holds without any assumption for these
time derivatives.
2.) The existence and regularity result from Theorem 1.8 is new. We surmise that the
restriction γ > r is not necessary to obtain solutions. However, for γ < r the Cauchy
stress T will be less regular and belong to the space L1+γ, and not to the smaller space
Lp = L1+r. Since our method of proof automatically yields solutions in the space Lp, it
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cannot be applied to find solutions in the larger space L1+γ. It is thus an open problem
to prove existence of solutions for γ ≤ r.
3.) A related problem is connected with the stress deviator. Instead of T , constitutive
models usually contain the stress deviator T − 1

3
trace(T )I. Therefore it is important

to study the systems (1.42) – (1.45) and (1.46) – (1.50) with T in (1.44) and (1.48)
replaced by the stress deviator. Again, our method of proof fails, we surmise for the
same reason: the coercivity condition (H4) cannot be verified in Lp, hence the stress
T will not lie in Lp, but in a larger space, and our method cannot yield the solution
either. To prove existence of solutions is an open problem also in this case.
4.) More generally, for the case of positive semi-definite free energy an important open
problem is to prove existence of solutions for constitutive relations with right hand
sides, which grow faster than a power or which are multivalued. Multivalued right
hand sides are needed to formulate rate independent constitutive relations. We already
mentioned that constitutive models used in engineering are rarely monotone. Both for
positive definite and positive semi-definite free energy the final goal is therefore to prove
existence of solutions for a class of non-monotone constitutive equations large enough
to include most models used in practice.

2 Helmholtz and Weyl projections in Lp

In the proofs of Theorems 1.3 and 1.6 we need projection operators in Lp to spaces of
tensor fields, which are symmetric gradients and to spaces of tensor fields, for which
a generalized divergence vanishes. The projection operators of the second type are
generalizations of the classical Helmholtz or Weyl projections in spaces of vector fields.
Though the topic is completely classical, for p 6= 2 these projections have not been con-
sidered before; we refer to the remark after Definition 1.1. In this section we introduce
and study these projections.

To this end we need two results, which we state without proof. As always we assume
that Ω ⊆ R3 is a bounded open set with C1–boundary.

Lemma 2.1 Let
R0 = {u ∈ Hp

1 (Ω,R3) | ε(∇u) = 0 on Ω}.

(i) The linear space R0 consists of all infinitesimal rigid motions, i.e.

R0 = {u : Ω→ R
3 | u(x) = a+ ω × x; a, ω ∈ R3}.

In particular, R0 does not depend on p. Let

Rp = {Hp
1 (Ω,R3) | (u, v)Ω + (∇u,∇v)Ω = 0 for all v ∈ R0} .

Rp is a closed subspace and Hp
1 (Ω,R3) = Rp +R0.

(ii) (Korn’s first inequality.) There is a constant cD such that

‖u‖p,1,Ω ≤ cD‖ε(∇u)‖p,Ω (2.1)

for all u ∈
◦
H
p
1(Ω,R3).

(iii) (Korn’s second inequality.) There is a constant cN such that

‖u‖p,1,Ω ≤ cN‖ε(∇u)‖p,Ω (2.2)

for all u ∈ Rp.
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A proof of this lemma can be found for example in [KO88] or in [Par92].

The second result concerns existence of solutions in Lp of the Dirichlet or Neumann
boundary value problems (1.16) – (1.19) with partly homogeneous data: To a given
function ε̂p : Ω → S3 we seek u : Ω → R

3 and T : Ω → S3 satisfying the partial
differential equations

−div T (x) = 0, x ∈ Ω, (2.3)

T (x) = D(ε(∇u(x))− ε̂p(x)), x ∈ Ω, (2.4)

and the homogeneous Dirichlet boundary condition

u(x) = 0, x ∈ ∂Ω, (2.5)

or the homogeneous Neumann boundary condition

T (x)n(x) = 0, x ∈ ∂Ω. (2.6)

By Definition 1.1, to a given function ε̂p ∈ Lp(Ω,S3) the pair (u, T ) ∈
◦
H
p
1(Ω,R3) ×

Lp(Ω,S3) is a weak solution of (2.3)–(2.5) if (2.4) holds and if

(D(ε(∇u)− ε̂p), ε(∇v))Ω = 0 (2.7)

for all v ∈
◦
H
q
1(Ω,R3). Also, (u, T ) ∈ Hp

1 (Ω,R3)× Lp(Ω,S3) is a weak solution of (2.3),
(2.4) and (2.6) if (2.4) holds and if (2.7) is satisfied for all v ∈ Hq

1(Ω,R3) .
The following existence theorem for this problem is stated under the assumption

discussed after Definition 1.1:

Theorem 2.2 (i) To every ε̂p ∈ Lp(Ω,S3) there exists a unique weak solution (u, T ) ∈
◦
H
p
1(Ω,R3)× Lp(Ω,S3) of the Dirichlet problem (2.3) - (2.5). This solution satisfies

||ε(∇u)||p,Ω ≤ cD||ε̂p||p,Ω (2.8)

with a constant cD independent of ε̂p.
(ii) Also, to every ε̂p ∈ Lp(Ω,S3) there exists a unique weak solution (u, T ) ∈ Rp ×
Lp(Ω,S3) of the Neumann problem (2.3), (2.4), (2.6). This solution satisfies

||ε(∇u)||p,Ω ≤ cN ||ε̂p||p,Ω (2.9)

with a constant cN independent of ε̂p. All solutions of the Neumann problem are given
by

u+ a+ ω × x

with arbitrary vectors a, ω ∈ R3.

With these results we can construct the projections. First we define subspaces GpD and
GpN of Lp(Ω,S3) by

GpD = {ε(∇u) | u ∈
◦
H
p
1(Ω,R3)}

GpN = {ε(∇u) | u ∈ Hp
1 (Ω,R3)} = {ε(∇u) | u ∈ Rp} .

(GpD, ‖·‖p,Ω) and (GpN , ‖·‖p,Ω) are normed spaces, and from Korn’s inequalities we obtain
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Lemma 2.3 The bounded linear mappings

u 7→ ε(∇u) :
◦
H
p
1(Ω,R3)→ GpD , u 7→ ε(∇u) : Rp → GpN

have bounded inverses V p
D : GpD →

◦
H
p
1(Ω,R3), V p

N : GpN → Rp .

Proof. The existence and boundedness of V p
D is an immediate consequence of (2.1),

whereas (2.2) implies the existence and boundedness of V p
N .

As a consequence of this lemma, GpD and GpN are closed subspaces of Lp(Ω,S3), hence
(GpD, ‖·‖p,Ω) and (GpN , ‖·‖p,Ω) are Banach spaces. Clearly, in the Hilbert space case p = 2
this implies that there exist bounded projection operators PD : L2(Ω,S3)→ L2(Ω,S3)
onto G2

D and PN : L2(Ω,S3) → L2(Ω,S3) onto G2
N , which are orthogonal with respect

to the scalar product [σ, τ ]Ω. This means that these projections are selfadjoint with
respect to this scalar product. From the preceding existence theorem it follows that
projections with analogous properties exist for all 1 < p <∞:

Definition 2.4 Let the linear operators PD = P p
D : Lp(Ω,S3) → Lp(Ω,S3) and PN =

P p
N : Lp(Ω,S3)→ Lp(Ω,S3) be defined by

PDε̂p = ε(∇uD) , PN ε̂p = ε(∇uN) ,

for every ε̂p ∈ Lp(Ω,S3), where uD ∈
◦
H
p
1(Ω,R3) is the weak solution of the boundary

value problem (2.3) – (2.5) and uN ∈ Rp is the weak solution of the boundary value
problem (2.3), (2.4), (2.6) to the given function ε̂p .

The solutions uD and uN exist and are unique by Theorem 2.2.

Lemma 2.5 For every 1 < p < ∞ the mapping PD = P p
D is a bounded projection

operator onto the subspace GpD of Lp(Ω,S3) and PN = P p
N is a bounded projection

operator onto the subspace GpN . The projections (P p
D)∗ and (P p

N)∗ adjoint with respect
to the bilinear form [σ, τ ]Ω on Lp(Ω,S3)× Lq(Ω,S3) satisfy

(P p
D)∗ = P q

D , (P p
N)∗ = P q

N ,

where 1
p

+ 1
q

= 1. This implies ker (P p
D) = Hp

sol,D and ker (P p
N) = Hp

sol,N , where

Hp
sol,D = {σ ∈ Lp(Ω,S3) | [σ, τ ]Ω = 0 for all τ ∈ GqD} , (2.10)

Hp
sol,N = {σ ∈ Lp(Ω,S3) | [σ, τ ]Ω = 0 for all τ ∈ GqN} . (2.11)

Remark. 1.) In the following we drop the indices p and q if they are understood from
the context. Thus for P p

D and P q
D we simply write PD, for P p

N and P q
N we write PN .

Also, if a statement is valid for PD and PN , then we drop D and N and write P instead.
Similarly, we write Gp if a statement is valid for GpD and GpN .
2.) We note that [σ, τ ]Ω = 0 holds for all τ ∈ Gq if and only if

(Dσ,∇v)Ω = (Dσ, ε(∇v))Ω = [σ, ε(∇v)]Ω = 0

for all v ∈
◦
H
q
1(Ω,R3) if Gq = GqD and for all v ∈ Hq

1(Ω,R3) if Gq = GqN . Here we used
that Dσ(x) is a symmetric matrix for all x ∈ Ω. Using this observation, we formally
obtain

Hp
sol,D = {σ ∈ Lp(Ω,S3) | div(Dσ) = 0}

Hp
sol,N = {σ ∈ Lp(Ω,S3) | div(Dσ) = 0 , (Dσ)|∂Ω

n = 0} ,
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where n(x) is the exterior unit normal to ∂Ω at x ∈ ∂Ω. Therefore the projection
operators

Qp
D = (I − P p

D) , Qp
N = (I − P p

N) : Lp(Ω,S3)→ Lp(Ω,S3)

with Qp
D(Lp(Ω,S3)) = Hp

sol,D and Qp
N(Lp(Ω,S3)) = Hp

sol,N are generalizations of the
classical Helmholtz and Weyl projections.

Proof of the lemma: Obviously, the range of PD belongs to GpD and the range of PN
belongs to GpN , by definition of these spaces. Moreover, the estimates (2.8) and (2.9)
yield

||PDε̂p||p,Ω ≤ cD||ε̂p||p,Ω, ||PN ε̂p||p,Ω ≤ cN ||ε̂p||p,Ω,
hence PD and PN are bounded linear mappings.

To prove that PD is a projection onto GpD let ε̂p ∈ GpD. Then there is u ∈
◦
H
p
1(Ω,R3)

such that ε̂p = ε(∇u). Thus, by definition of PD we have PDε(∇u) = PDε̂p = ε(∇uD),

where uD is the unique function in
◦
H
p
1(Ω,R3) which satisfies (2.7) for all v ∈

◦
H
q
1(Ω,R3).

Clearly u satisfies (2.7), hence uD = u and PDε̂p = ε(∇u) = ε̂p , which shows that PD
projects onto GpD. In the same way it follows that PN projects onto GpN .

We now drop the indices D and N . Since P pσ ∈ Gp for all σ ∈ Lp(Ω,S3), the
definition of P q implies for all τ ∈ Lq(Ω,S3)

[P pσ, τ − P qτ ]Ω = 0.

Similarly, since P qτ ∈ Gq, the definition of P p implies for all σ ∈ Lp(Ω,S3)

[σ − P pσ, P qτ ]Ω = 0.

Thus, for all σ ∈ Lp(Ω,S3), τ ∈ Lq(Ω,S3)

[σ, (P p)∗τ − P qτ ]Ω = [P pσ, τ ]Ω − [σ, P qτ ]Ω = [P pσ, P qτ ]Ω − [P pσ, P qτ ]Ω = 0 ,

whence (P p)∗ = P q.
Finally,

kerP p = (R((P p)∗))⊥ = (R(P q))⊥ = (Gq)⊥ = Hp
sol .

The proof of the lemma is complete.

Corollary 2.6 Let (BTDP pB)T be the operator adjoint to BTDP pB : Lp(Ω,RN) →
Lp(Ω,RN) with respect to the bilinear form (z, ẑ)Ω on the product space Lp(Ω,RN) ×
Lq(Ω,RN). Then (BTDP pB)T = BTDP qB : Lq(Ω,RN)→ Lq(Ω,RN).

Proof For z ∈ Lp(Ω,RN) and ẑ ∈ Lq(Ω,RN) we have

(BTDP pBz, ẑ)Ω = (DP pBz,Bẑ)Ω = [P pBz,Bẑ]Ω = [Bz, P qBẑ]Ω

= (DBz, P qBẑ)Ω = (Bz,DP qBẑ)Ω = (z, BTDP qBẑ)Ω ,

which implies (BTDP pB)T = BTDP qB .

Corollary 2.7 Hp
sol is a reflexive Banach space with dual space Hq

sol.

Proof: Qp = I − P p is a bounded projection on the reflexive Banach space Lp(Ω,S3)
with adjoint projection (Qp)∗ = I − (P p)∗ = I − P q = Qq. Thus, by an easy to prove
result from functional analysis the range Hp

sol = Qp(Lp(Ω,S3)) of the projection Qp is a
reflexive Banach space with dual given by the range Hq

sol = Qq(Lq(Ω,S3)) of the adjoint
projection.
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3 Positive definite free energy

In this section we prove Theorem 1.3. First we reduce the initial-boundary value prob-
lem (1.10) – (1.15) to an evolution equation. To this end we note that (1.11) yields

BTT − Lz = BTD(ε−Bz)− Lz = BTDε−Mz ,

with the symmetric, positive semi-definite N ×N -matrix M = BTDB + L. Therefore
(1.8) can be written as

zt ∈ g(BTDε(∇xu)−Mz) . (3.1)

Assume now that (u, T, z) is a solution of the Dirichlet or Neumann initial-boundary
value problem (1.10) – (1.15). If z(t) is known, then (1.10), (1.11), (1.14) or (1.10),
(1.11), (1.15) form boundary value problems for the components u(t) and T (t) of the
solution. These functions are obtained in the form

(u(t), T (t)) = (ũ(t), T̃ (t)) + (û(t), σ̂(t)),

where (û(t), σ̂(t)) is a solution of the Dirichlet or Neumann boundary value problem
(1.16) – (1.19) to the data b̂ = b(t), ε̂p = 0, γ̂D = γD(t), γ̂N = γN(t), and (ũ(t), T̃ (t))
is a solution of the boundary value problem (2.3) – (2.6) with data ε̂p(t) = Bz(t). The
definition of the projector P in Definition 2.4 thus yields

ε(∇xu(t)) = ε(∇xũ(t)) + ε(∇xû(t)) = PBz(t) + ε(∇xû(t)). (3.2)

Using that σ̂(t) = Dε(∇xû(t)), we obtain by insertion of this equation into (3.1) that

zt(t) ∈ g
(

(BTDPB −M)z(t) +BT σ̂(t)
)
. (3.3)

Since σ̂ is computed from the data b, γD, γN , and thus is known, (3.3) is an evolution
equation for z. With the evolution operator A(t) defined by

A(t)z = −g
(

(BTDPB −M)z +BT σ̂(t)
)
,

this evolution equation can be written as

zt(t) + A(t)z(t) 3 0 .

This is a non-autonomous evolution equation. In the following we show that in the
case of positive definite free energy it is possible to transform this equation into an
autonomous evolution equation. Moreover, we prove that the resulting time indepen-
dent evolution operator is maximal monotone in the Hilbert space L2(Ω,RN). This
permits to apply the strong existence results known for such evolution equations. This
good behavior of the initial-boundary value problem with positive definite free energy
is a consequence of the following property of the linear mapping BTDPB −M in the
evolution equation (3.3):

Lemma 3.1 Assume that the free energy ψ defined in (1.9) is positive definite. With
the symmetric matrix L from (1.8) let M = BTDB + L, and let P = P 2

D or P = P 2
N

be the projection in L2(Ω,S3) onto G2
D or G2

N . Then the linear operator M −BTDPB :
L2(Ω,RN)→ L2(Ω,RN) is bounded, symmetric and positive definite with respect to the
scalar product (z, ẑ)Ω.

16



Proof: M −BTDPB is obviously bounded. With p = q = 2 we obtain from Corollary
Corollary 2.6 that BTDPB is symmetric. Since M is symmetric, we conclude that also
M−BTDPB is symmetric. To see that this mapping is positive definite, note that ψ is
positive definite if and only if the matrix L is positive definite. Thus, for z ∈ L2(Ω,RN),

((M −BTDPB)z, z)Ω = (Lz, z)Ω + (D(I − P )Bz,Bz)Ω

= (Lz, z)Ω +
[
(I − P )Bz,Bz

]
Ω

= (Lz, z)Ω +
[
(I − P )Bz, (I − P )Bz

]
Ω

≥ (Lz, z)Ω ≥ µ‖z‖2
Ω,

with a positive constant µ. Here we used that P is orthogonal with respect to the scalar
product [σ, τ ]Ω on L2(Ω,S3) and that L is positive definite. This proves the lemma.

In particular, this lemma implies that M−BTDPB has a bounded, symmetric, positive
definite inverse.

To transform (3.3) to an autonomous equation we insert

h = (BTDPB −M)z +BT σ̂

into (3.3) and obtain
ht ∈ (BTDPB −M)g(h) +BT σ̂t . (3.4)

Definition 3.2 Let the evolution operator C : L2(Ω,Rn) → 2L
2(Ω,RN ) be defined as

follows: For h ∈ L2(Ω,RN) set

Ch =
{

(M −BTDPB)ζ
∣∣∣ ζ ∈ L2(Ω,RN), ζ(x) ∈ g(h(x)) a.e. in Ω

}
.

The domain of C is
∆(C) = {h ∈ L2(Ω,RN) | Ch 6= ∅}.

With this operator C the evolution equation (3.4) on L2(Ω,RN) can be written as

ht(t) + Ch(t) 3 BT σ̂t(t). (3.5)

We prove now that the operator C is maximal monotone if the vector field g is maximal
monotone. The standard theory for evolution equations to such operators implies then
that (3.5) has a unique solution for suitable functions σ̂t. To prove this, we need that
by Lemma 3.1

〈z, ẑ〉Ω =
(

(M −BTDPB)−1z, ẑ
)

Ω

is a scalar product on L2(Ω,RN). Well known considerations show hat

‖(M −BTDPB)−1‖−1〈z, z〉Ω ≤ ‖z‖2
2,Ω ≤ ‖M −BTDPB‖〈z, z〉Ω.

Whence the associated norm
|z|Ω = 〈z, z〉1/2Ω

is equivalent to ‖z‖2,Ω.

Theorem 3.3 (i) Let the mapping g : RN → 2R
N

be monotone. Then the operator C
is monotone with respect the scalar product 〈z, ẑ〉Ω.
(ii) If g is maximal monotone and satisfies 0 ∈ g(0), then C is maximal monotone with
respect to this scalar product.
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Proof: Let z1, z2 ∈ ∆(C). Then for ζ1 ∈ Cz1, ζ2 ∈ Cz2 the functions ξi = (M −
BTDPB)−1ζi satisfy ξi(x) ∈ g(zi(x)) a.e. in Ω, for i = 1, 2. Thus,

〈ζ1 − ζ2, z1 − z2〉Ω =
(

(M −BTDPB)−1(ζ1 − ζ2), z1 − z2

)
Ω

= (ξ1 − ξ2, z1 − z2)Ω =

∫
Ω

(
ξ1(x)− ξ2(x)

)
·
(
z1(x)− z2(x)

)
dx ≥ 0

since the monotonicity of g implies (ξ1(x)− ξ2(x)) · (z1(x)− z2(x)) ≥ 0. Therefore C is
monotone.
(ii) We first show that the maximal monotone mapping g : RN → 2R

N
with g(0) = 0

defines a mapping G : L2(Ω,RN)→ 2L
2(Ω,RN ), which is maximal monotone with respect

to the scalar product (z, ẑ)Ω. For z ∈ L2(Ω,RN) we set Gz = {ζ ∈ L2(Ω,RN) | ζ(x) ∈
g(z(x)) a.e. in Ω}. The domain is ∆(G) = {z ∈ L2(Ω,RN) |Gz 6= ∅}. Monotonicity of
G is seen similarly as in (i). The mapping G is maximal monotone if and only if I +G
is surjective. To prove surjectivity, it must be shown that to every h ∈ L2(Ω,RN) the
equation

h ∈ z +Gz (3.6)

has a solution z ∈ L2(Ω,RN). Since g is maximal monotone, (I + g) : RN → 2R
N

has
an inverse j : RN → R

N , which satisfies |j(ζ)− j(ζ ′)| ≤ |ζ − ζ ′| for all ζ, ζ ′ ∈ RN . Thus
j is Lipschitz continuous. From 0 ∈ g(0) it follows that j(0) = 0, whence

|j(ζ)| = |j(ζ)− j(0)| ≤ |ζ − 0| = |ζ|. (3.7)

For h ∈ L2(Ω,RN) we now define z(x) = j(h(x)) for all x ∈ Ω. Clearly, z solves (3.6) if
z ∈ L2(Ω,RN). To see that z belongs to this space, note that z is measurable, since h is
measurable and j is Lipschitz continuous. Moreover, (3.7) implies |z(x)| ≤ |h(x)|, hence
z ∈ L2(Ω,RN). Consequently, z solves (3.6) and we conclude that I + G is surjective.
Hence G is maximal monotone.

With this result we can show that I + C is surjective. Since C = (M −BTDPB)G,
it must be shown that to every h ∈ L2(Ω,RN) there is a solution z ∈ L2(Ω,RN) of

h ∈ z + (M −BTDPB)Gz. (3.8)

We apply (M −BTDPB)−1 to (3.8) and obtain the equivalent equation

(M −BTDPB)−1h ∈ (M −BTDPB)−1z +Gz. (3.9)

To prove that (3.9) has a solution z we note that since (M − BTDPB)−1 is positive
definite, there is µ > 0 such that

(M −BTDPB)−1 − µI

is positive definite on L2(Ω,RN). As a bounded mapping, it is Lipschitz continuous.
Thus, G+((M−BTDPB)−1−µI) is maximal montone as sum of the maximal monotone
mapping G and a Lipschitz continuous monotone mapping, cf. [Bré73, p. 34]. This
implies that

G+ ((M −BTDPB)−1 − µI) + µI = G+ (M −BTDPB)−1

is surjective. Therefore (3.9) and as a consequence also (3.8) has a solution z ∈
L2(Ω,RN). This implies that I + (M − BTDPB)G = I + C is surjective, whence C
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is maximal monotone. The proof of Theorem 3.3 is complete.

With this result we can apply standard existence results to the evolution equation (3.5).
To state two of these results we need the following definitions (cf. [Bré73, p. 64], [Bar76,
p. 123, 134]):

Definition 3.4 Let k ∈ L1(0, Te;L
2(Ω,RN)). A function h ∈ C([0, Te], L

2(Ω,RN)) is
called a strong solution of the equation

dh

dt
+ Ch 3 k, (3.10)

on the interval (0, Te), if it satisfies

(i) t 7→ h(t) is absolutely continuous on every compact subset of (0, Te),

(ii) h(t) ∈ ∆(C), a.e. on (0, Te),

(iii) dh
dt

(t) + Ch(t) 3 k(t), a.e. on (0, Te).

We remark that if X is a Hilbert space (more generally, if it is a reflexive Banach space),
then every absolutely continuous function t 7→ h(t) : (0, Te)→ X is almost everywhere
differentiable, cf. [Bré73, p. 145].

Definition 3.5 Let k ∈ L1(0, Te;L
2(Ω,RN)). A function h ∈ C([0, Te], L

2(Ω,RN))
is called a weak solution of the equation (3.10), it there exists a sequence {kn}∞n=1 of
functions kn ∈ L1(0, Te;L

2(Ω,RN)), which converges in L1(0, Te;L
2(Ω,RN)) to k, and

if there exists a sequence {hn}∞n=1 of strong solutions hn ∈ C([0, Te], L
2(Ω,Rn)) of dhn

dt
+

Chn 3 kn, which converges to h in C([0, Te], L
2(Ω,RN)).

Theorem 3.6 If g : RN → 2R
N

is a maximal monotone function satisfying 0 ∈ g(0),
then the following assertions hold:

(i) Let σ̂ ∈ H1
1 (0, Te;L

2(Ω,S3)) and let h(0) ∈ ∆(C) ⊆ L2(Ω,RN). Then the evolution
equation

ht + Ch 3 BT σ̂t

has a unique weak solution on [0, Te] satisfying

h(0) = h(0).

(ii) Let σ̂1, σ̂2 ∈ H1
1 (0, Te;L

2(Ω,S3)), and let h1, h2 be weak solutions of

hit + Chi 3 BT σ̂it, i = 1, 2.

Then

‖h1(t)− h2(t)‖2,Ω ≤ ‖h1(s)− h2(s)‖2,Ω +

∫ t

s

‖BT (σ̂1t(η)− σ̂2t(η))‖2,Ω dη ,

for all 0 ≤ s ≤ t ≤ Te.

Proof: Theorem 3.3 shows that C is maximal monotone under the assumptions
of this theorem. Since for σ̂ ∈ H1

1 (0, Te;L
2(Ω,S3)) the function BT σ̂t belongs to

L1(0, Te;L
2(Ω,RN)), this theorem is therefore an immediate consequence of [Bré73,

Lemma 3.1 and Theorem 3.4, p. 64, 65].
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Theorem 3.7 Suppose that g : RN → 2R
N

is maximal monotone and satisfies 0 ∈ g(0).
Also, let σ̂ ∈ H1

2 (0, Te;L
2(Ω,S3)) and let h(0) ∈ ∆(C). Then the evolution equation

ht + Ch 3 BT σ̂t (3.11)

has a unique strong solution on [0, Te] with

h(0) = h(0). (3.12)

Moreover, h belongs to the space H∞1 (0, Te;L
2(Ω,RN)) and satisfies

‖ht(t)‖2,Ω ≤ |||Ch(0) +BT σ̂t(0)|||+
∫ t

0

‖BT σ̂tt(s)‖2,Ω ds a.e.,

where |||Ch(0) +BT σ̂t(0)||| = inf{‖ζ‖2,Ω | ζ ∈ Ch(0) +BT σ̂t(0)}.

We remark that for a Hilbert space X (more generally, for a reflexive Banach space X),
the space H∞1 (0, Te;X) coincides with the space of Lipschitz continuous functions on
[0, Te] with values in X, cf. [Bré73, p. 143-145]. Therefore the solution in this theorem
is Lipschitz continuous.

Proof: Since C is maximal monotone und since for σ̂ ∈ H1
2 (0, Te;L

2(Ω,S3)) the func-
tion BT σ̂t belongs to H1

1 (0, Te;L
2(Ω,Rn)), this theorem is an immediate consequence

of [Bar76, Theorem 2.2, p. 131].

Proof of Theorem 1.3: We first prove that strong solutions of the Dirichlet problem
are unique and strong solutions of the Neumann problem are of the multiplicity stated
in Theorem 1.3. Thus, assume that (ui, Ti, zi) for i = 1, 2 are two strong solutions of
the Dirichlet problem or of the Neumann problem to the data b, γD, γN and z(0). We
set (u, T , z) = (u1 − u2, T1 − T2, z1 − z2).

By Definition 1.2 of strong solutions, (u(t), T (t)) is a weak solution of the Dirichlet

or Neumann problem (2.3) – (2.6) to the data ε̂p = Bz(t) with u ∈ L2(0, Te;
◦
H2

1(Ω,R3))
in the case of the Dirichlet problem. In the case of the Neumann problem we can
assume that u ∈ L2(0, Te;R2) with the space R2 introduced in Lemma 2.1. Otherwise
we add the function a(t) + ω(t) × x with suitable coefficients a and ω to achieve this.
Since, again by Definition 1.2, zt(t) exists for almost all t and belongs to L2(Ω,RN), we
conclude from the regularity properties of the linear elliptic boundary value problems

(2.3) – (2.6) that ut(t) exists for almost all t with ut(t) ∈
◦
H2

1(Ω,R3) or ut(t) ∈ R2.
Using that weak solutions satisfy (2.7), we thus obtain

d

dt

∫
Ω

ρψ(ε(∇xu(t)), z(t)) dx

=

∫
Ω

(D(ε(∇xu(t))−Bz(t))) · ε(∇xut(t)) +∇z ψ(ε(∇xu(t)), z(t)) · zt(t) dx

= −
∫

Ω

[
BTD(ε(∇xu(t))−Bz(t))− Lz(t)

]
· zt(t) dx (3.13)

= −
∫

Ω

(BTT (t)− Lz(t)) · zt(t) dx ≤ 0.

Here we used that the relation zit(x, t) ∈ g(BTTi(x, t) − Lzi(x, t)) a. e. and the
monotonicity of g together imply (BTT (x, t)− Lz(x, t)) · zt(x, t) ≥ 0 a. e. Since
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u(0) = z(0) = 0, it follows that
∫

Ω
ρψ(ε(∇xu(0)), z(0)) dx = 0. Hence (3.13) implies

ψ(ε(∇xu(x, t)), z(x, t)) = 0 almost everywhere, which yields ε(∇xu) = z = 0, since ψ
is positive definite. From Lemma 2.1 we now conclude that u = 0 in the Dirichlet case
and that u = a(t) + ω(t) × x with a, ω ∈ L2([0, Te],R

3) in the Neumann case. This
proves the uniqueness statements for strong solutions in Theorem 1.3.

To prove existence of strong solutions, let b, γD, γN and z(0) satisfy the assumptions

of Theorem 1.3 with i = 2, and let (û(t), σ̂(t)) ∈
◦
H2

1(Ω,R3)×L2(Ω,S3) or (û(t), σ̂(t)) ∈
R2 × L2(Ω,S3), respectively, be a solution of the Dirichlet problem (1.16) – (1.18) or
of the Neumann problem (1.16), (1.17), (1.19), respectively, to the data b̂ = b(t), γ̂D =
γD(t), γ̂N = γN(t) and ε̂p = 0, for almost every t. From the regularity properties of
these elliptic boundary value problems we conclude under the assumptions for b, γD and
γN of Theorem 1.3 that σ̂ ∈ H1

2 (0, Te;L
2(Ω,S3)). With a solution (ũ(0), T̃ (0)) of the

Dirichlet or Neumann problem (2.3) – (2.6) to the data ε̂p = Bz(0) we obtain a solution
(u(0), T (0)) = (ũ(0) + û(0), T̃ (0) + σ̂(0)) of the equations (1.10), (1.11), (1.14) or (1.10),
(1.11), (1.15) for t = 0, and the definition of the projector P in Definition 2.4 yields

T (0) = D(ε(∇xũ(0))−Bz(0)) +Dε(∇xû(0)) = D(P − I)Bz(0) + σ̂(0).

With M = BTDB + L we thus conclude that h(0) defined by

h(0) = (BTDPB −M)z(0) +BT σ̂(0)

satisfies h(0) = BTD(P − I)Bz(0) − Lz(0) + BT σ̂(0) = BTT (0) − Lz(0), and thus
belongs to ∆(C), by (1.24). Whence the assumptions of Theorem 3.7 are satis-
fied, and consequently there is a unique strong solution h of (3.11), (3.12). Set
z = (BTDPB − M)−1(h − BT σ̂), and for almost every t let (ũ(t), T̃ (t)) be a weak
solution of the Dirichlet or Neumann boundary value problems (2.3) – (2.6) to the data
ε̂p = Bz(t). We leave it to the reader to verify that (u, T, z) = (ũ + û, T̃ + σ̂, z) is a
strong solution of the Dirichlet or Neumann problems (1.10) – (1.15). This concludes
the proof of the statements of Theorem 1.3 for strong solutions.

To prove the statements for weak solutions, we note that from the preceding unique-
ness and existence proof it follows in particular that (u, T, z) is a strong solution of the
initial-boundary value problems (1.10) – (1.15) if and only if h = (BTDPB−M)z+BT σ̂
is a strong solution of (3.11), (3.12). For kn ∈ L1(0, Te;L

2(Ω,RN)) it can be shown in
exactly the same way that (un, Tn, zn) is a strong solution of the problems (1.10) –
(1.15) with (1.12) replaced by (1.22) if and only if hn = (BTDPB −M)zn + BT σ̂ is a
strong solution of d

dt
hn + Chn 3 BT σ̂t + (BTDPB −M)kn . Using this result it can be

verified in a straightforward way that (u, T, z) is a weak solution of the problems (1.10)
– (1.15) if and only if h = (BTDPB−M)z+BT σ̂ is a weak solution of ht+Ch 3 BT σ̂t,
h(0) = h(0). The statements about weak solutions in Theorem 1.3 now follow from
Theorem 3.6.

4 Constitutive equations with history functionals

In this section we prove Theorem 1.6. As in the preceding section, the proof is based
on the reduction of the initial-boundary value problems (1.31) – (1.36) to an evolution
equation.

To derive this evolution equation, let (u, T, εp) be a solution of the equations (1.33)
– (1.36) to the Dirichlet condition (1.31) or to the Neumann condition (1.32). Following
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the reasoning used to derive equation (3.2), we obtain for the strain tensor

ε(∇x u(t)) = Pεp(t) + ε(∇x û(t)),

where (û(t), σ̂(t)) is a solution of the Dirichlet or Neumann boundary value problem
(1.16) – (1.19) to the data b̂ = b(t), ε̂p = 0, γ̂D = γD(t), γ̂N = γN(t). Since σ̂(t) =
Dε(∇x û(t)), we thus obtain from (1.34) that

T (t) = D(P − I)εp(t) +Dε(∇x û(t)) = −DQεp(t) + σ̂(t),

where Q = I−P is the projection onto the kernel Hsol of P , which was introduced after
Lemma 2.5. Insertion of this equation into (1.35) yields

∂

∂t
εp(t) = H[−DQεp + σ̂](t).

We apply Q to the left of this equation and obtain for the component τ = Qεp in Hsol

of the plastic strain εp the evolution problem

∂

∂t
τ(t) = QH[−Dτ + σ̂](t), 0 ≤ t ≤ Te (4.1)

τ(0) = Qε(0)
p . (4.2)

Next we show that this initial value problem has a unique solution if H satisfies the
conditions (H1) – (H4) stated before Theorem 1.6. As preparation we need the following

Lemma 4.1 Let the history functional H satisfy the conditions (H1) – (H4), let Q =
Qq : Lq(Ω) → Hq

sol be the projection operator in Lq, and suppose that σ̂ ∈ Lp(Z,S3).
Then the history functional H′ : Lp(0, Te;Hp

sol)→ Lq(0, Te;H
q
sol) defined by

H′[τ ] = −QH[σ̂ −Dτ ]

has the following properties:

(H1’) H′ is hemicontinuous and monotone with respect to the bilinear form [σ, τ ]Z on
the product space Hp

sol ×H
q
sol.

(H2’) H′ is bounded: There is a constant C1 such that for all τ ∈ Lp(0, Te;Hp
sol)

‖H′[τ ]‖q,Z ≤ C1(‖τ‖
p
q

p,Z + 1). (4.3)

(H3’) H′ is coercive:
[τ,H′[τ ] ]Z
‖τ‖p,Z

→∞ for ‖τ‖p,Z →∞. (4.4)

Proof: (H1’): The mapping Q : Lq(Z,S3) → Lq(0, Te;H
q
sol) ⊆ Lq(Z,S3) is bounded.

Hence it is continuous with respect to the weak topology. Since by condition (H2) the
history functional H : Lp(Z,S3) → Lq(Z,S3) is hemicontinuous, it follows that the
composition H′ = −QH[σ̂ − D ·] is hemicontinuous. To prove monotonicity, note that
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by Lemma 2.5 the projection adjoint to Qq with respect to the bilinear form [σ, σ̂]Z is
Qp, which projects to Lp(0, Te;H

p
sol). Hence, for τ, τ̂ ∈ Lp(0, Te;Hp

sol) we obtain

[ τ − τ̂ , H′[τ ]−H′[τ̂ ] ] = [ τ − τ̂ , −QqH[σ̂ −Dτ ] +QqH[σ̂ −Dτ̂ ] ]Z

= [Qp(τ̂ − τ) , H[σ̂ −Dτ ]−H[σ̂ −Dτ̂ ] ]Z

=
(
D(τ̂ − τ) , H[σ̂ −Dτ ]−H[σ̂ −Dτ̂ ]

)
Z

=
(

(σ̂ −Dτ)− (σ̂ −Dτ̂)) , H[σ̂ −Dτ ]−H[σ̂ −Dτ̂ ]
)
Z

≥ 0,

since by condition (H2) the functional H is monotone with respect to the bilinear form
(σ, τ)Z . This proves that H′ is monotone.

(H2’): To prove the estimate (4.3), we use that p
q
> 1. Consequently r 7→ r

p
q is a convex

function on [0,∞), which yields that ((a + b)/2)
p
q ≤ (a

p
q + b

p
q )/2 for all a, b ≥ 0. The

boundedness of Q and the condition (H1) thus imply for τ ∈ Lp(0, Te;Hp
sol)

‖H′[τ ]‖q,Z = ‖ −QH[σ̂ −Dτ ]‖q,Z ≤ C1‖H[σ̂ −Dτ ]‖q,Z ≤ C1C(‖Dτ − σ̂‖
p
q

p,Z + 1)

≤ C1C
(

2
p
q
−1(‖Dτ‖

p
q

p,Z + ‖σ̂‖
p
q

p,Z) + 1
)
≤ C2(‖τ‖

p
q

p,Z + 1),

with a suitable constant C2. This is (4.3).
(H3’): To verify (4.4), let τ ∈ Lp(0, Te;Hp

sol). As in the proof of the monotonicity we
use that (Qq)∗ τ = Qpτ = τ. Together with Hölder’s inequality we thus obtain

[ τ , H′[τ ] ]Z = [ τ , −QH[σ̂ −Dτ ] ]Z = [−τ,H[σ̂ −Dτ ] ]Z = (−Dτ , H[σ̂ −Dτ ] )Z

= ( σ̂ −Dτ , H[σ̂ −Dτ ] )Z − ( σ̂ , H[σ̂ −Dτ ] )Z

≥ ( σ̂ −Dτ , H[σ̂ −Dτ ] )Z − ‖σ̂‖p,Z‖H[σ̂ −Dτ ]‖q,Z . (4.5)

Condition (H3) implies that there is C > 0 with

( σ̂ −Dτ , H[σ̂ −Dτ ] )Z
1 + ‖H[σ̂ −Dτ ]‖q,Z

≥ 2‖σ̂‖p,Z

for all ‖τ‖p,Z ≥ C, hence

1

2
( σ̂ −Dτ , H[σ̂ −Dτ ] )Z =

1

2

( σ̂ −Dτ , H[σ̂ −Dτ ] )Z
1 + ‖H[σ̂ −Dτ ]‖q,Z

(
1 + ‖H[σ̂ −Dτ ]‖q,Z

)
≥ ‖σ̂‖p,Z‖H[σ̂ −Dτ ]‖q,Z

for ‖τ‖p,Z ≥ C. From this estimate and from (4.5) we obtain for ‖τ‖p,Z ≥ C

[ τ , H′[τ ] ]Z ≥
1

2
( σ̂ −Dτ , H[σ̂ −Dτ ] )Z . (4.6)

Condition (H4) implies

( σ̂ −Dτ , H[σ̂ −Dτ ] )Z
‖τ‖p,Z

=
( σ̂ −Dτ , H[σ̂ −Dτ ] )Z

‖σ̂ −Dτ‖p,Z
‖σ̂ −Dτ‖p,Z
‖τ‖p,Z

→∞

for ‖τ‖p,Z → ∞. This relation and (4.6) yield (4.4). The proof of Lemma 4.1 is
complete.
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Theorem 4.2 Suppose that the history functional H satisfies the conditions (H1) –
(H4). Then to every σ̂ ∈ Lp(Z,S3) and to every τ (0) ∈ H2

sol there is a unique function

τ ∈ Lp(0, Te;Hp
sol) ∩ C(0, Te;H

2
sol)

with τt ∈ Lq(0, Te;Hq
sol) such that

τt(t)−QH[−Dτ + σ̂](t) = 0 a.e. on [0, Te] (4.7)

τ(0) = τ (0). (4.8)

Proof: To prove this theorem we modify the proof of Theorem 4.2 in [Bar76, p. 166].
In the proof we only need that the functionalH′ has the properties (H1’) – (H3’) verified
in Lemma 4.1.

By Corollary 2.7, Hp
sol is a reflexive Banach space with dual space Hq

sol. Therefore
Lp(0, Te;H

p
sol) is a reflexive Banach space with dual Lq(0, Te;H

q
sol). Also, L2(0, Te;H

2
sol)

is a Hilbert space, which satisfies

Lp(0, Te;H
p
sol) ⊆ L2(0, Te;H

2
sol) ⊆ Lq(0, Te;H

q
sol),

since q ≤ 2 ≤ p and since Ω is bounded. As bilinear form on the product space
Lp(0, Te;H

p
sol)× Lq(0, Te;H

q
sol) we use [σ, τ ]Z . Define the operator B : Lp(0, Te;H

p
sol)→

Lq(0, Te;H
q
sol) by

Bτ = τt ,

for τ from the domain

∆(B) = {σ ∈ Lp(0, Te;Hp
sol) | σt ∈ L

q(0, Te;H
q
sol), σ(0) = τ (0)}.

We note that ∆(B) is well defined, since the Sobolev imbedding theorem implies
that every function σ ∈ Lp(0, Te;H

p
sol) with derivative σt ∈ Lq(0, Te;H

q
sol) belongs to

C(0, Te;H
2
sol) and thus has traces σ(t) ∈ H2

sol. The operator B is maximal monotone
with respect to the bilinear form [σ, τ ]Z , cf. [Bar76, Lemma 4.1, p. 167]. By the
properties (H1’) and (H2’) the operator H′ is everywhere defined on Lp(0, Te;H

p
sol),

bounded, hemicontinuous and monotone. These properties of B and H′ imply that
the sum B +H′ is maximal monotone, cf. [Bar76, Corollary 1.1, p.39]. Furthermore,
B +H′ is coercive. To see this, note that τ ∈ ∆(B) satisfies τ(0) = τ (0), by definition
of the domain, whence

[τ,Bτ ]Z =

∫
Z

(Dτ(x, t)) · τt(x, t) d(x, t) = [τ(t), τ(t)]Ω − [τ (0), τ (0)]Ω ≥ −[τ (0), τ (0)]Ω .

From the property (H3’) we thus conclude

[τ , Bτ +H′[τ ] ]Z
‖τ‖p,Z

=
[τ,Bτ ]Z + [τ,H′[τ ] ]Z

‖τ‖p,Z
≥ [τ , H′[τ ] ]Z − [τ (0), τ (0)]Ω

‖τ‖p,Z
→∞,

for ‖τ‖p,Z → ∞. Thus, B +H′ is coercive, which implies that the inverse of B +H′ is
bounded, whence it follows that B +H′ is surjective, cf. [Bar76, Theorem 1.6, p. 45].
The surjectivity and the monotonicity imply that the equation

Bτ +H′[τ ] = 0

has a unique solution τ ∈ ∆(B +H′) = ∆(B). This proves the theorem.
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Proof of Theorem 1.6: We first prove the uniqueness part of the theorem. Thus,
assume that (ui, Ti, εpi) ∈ Lq(0, Te;Hq

1(Ω,R3))× Lp(Z,S3)×Hq
1([0, Te], L

q(Ω,S3)), i =
1, 2, are two solutions of the Dirichlet or the Neumann initial-boundary value problem.
Then

(u, T, ε̂p) = (u1 − u2, T1 − T2, εp1 − εp2)

is a solution of the Dirichlet or Neumann boundary value problem (2.3)–(2.6) for almost
every t ∈ [0, Te]. Since ε(∇x(a(t) + ω(t)× x)) = 0, the definition of the projector P in
Definition 2.4 yields ε(∇x u) = P qε̂p , hence

T = D(ε(∇x u)− ε̂p) = D(P q − I)ε̂p = −DQqε̂p . (4.9)

Since T ∈ Lp(Z,S3), ε̂p ∈ Hq
1([0, Te], L

q(Ω,S3)), this equation implies for Q = Qq that

Qε̂p ∈ Lp(Z,S3), Tt ∈ Lq(Z,S3).

Also, for ε(∇x u)− ε̂p = D−1T we obtain

ε(∇x u)− ε̂p ∈ Lp(Z,S3), (ε(∇x u)− ε̂p)t ∈ Lq(Z,S3).

The Sobolev imbedding theorem now yields that T and ε(∇x u) − ε̂p have traces

T (t), (ε(∇x u) − ε̂p)(t) ∈ L2(Ω,S3). Since ε̂p(0) = ε
(0)
p − ε

(0)
p = 0, for the traces at

t = 0 we have (ε(∇x u)− ε̂p)(0) = T (0) = 0. Thus, for 0 ≤ s ≤ Te,

0 ≤
(
D(ε(∇x u)− ε̂p)(s) , (ε(∇x u)− ε̂p)(s)

)
Ω

=
(
Tt , ε(∇x u)− ε̂p

)
Zs

+
(
T , (ε(∇x u)− ε̂p)t

)
Zs

= (DQε̂p,t , Qε̂p)Zs + (DQε̂p , Qε̂p,t)Zs = (Dε̂p,t , QpQqε̂p)Zs + (DQpQqε̂p , ε̂p,t)Zs

= 2(ε̂p,t , DQqε̂p)Zs = −2(H[T1]−H[T2] , T1 − T2)Zs ≤ 0,

where in the last step we used the differential equation (1.35) and the fact that H is
monotone with respect to the bilinear form (σ, τ)Z , by condition (H2). Clearly, this
computation implies T1 = T2 and ε(∇x u1) − εp1 = ε(∇x u2) − εp2. From (1.35) and
(1.36) we then conclude that εp1 = εp2, and so ε(∇x u1) = ε(∇x u2). For the Dirichlet
problem Lemma 2.3 now yields u1 = u2, whereas for the Neumann problem Lemma 2.3
together with Lemma 2.1 implies that u2(x, t) = u1(x, t) + a(t) + ω(t)× x. This proves
the uniqueness part of Theorem 1.6, and it remains to prove the existence of solutions.

We construct a solution as follows: With the given initial data ε
(0)
p let τ (0) = Qε

(0)
p ,

and to almost every t ∈ [0, Te] let (û(t), σ̂(t)) ∈ Hp
1 (Ω,R3) × Lp(Ω,S3) be a solution

of the Dirichlet or Neumann boundary value problem (1.16) – (1.19) with the data
b̂ = b(t), γ̂D = γD(t), γ̂N = γN(t), ε̂p = 0. This defines a function σ̂ ∈ Lp(Z,S3). Let
τ ∈ Lp(0, Te;Hp

sol) be the unique solution of the initial value problem (4.7), (4.8) to the
functions τ (0) and σ̂ thus defined. With this function τ let εp ∈ Hq

1(0, Te;L
q(Ω,S3)) be

the solution of

∂

∂t
εp(t) = H[σ̂ −Dτ ](t), a.e. in [0, Te], (4.10)

εp(0) = ε(0)
p . (4.11)
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Finally, for almost every t ∈ [0, Te] let (ũ(t), T̃ (t)) ∈ Hq
1(Ω,R3)×Lq(Ω,S3) be a solution

of the Dirichlet or Neumann boundary value problem (2.3) – (2.6) to the data ε̂p = εp(t).
Then

(u, T, εp) = (ũ+ û, T̃ + σ̂, εp) ∈ Lq(0, Te;Hq
1(Ω,R3))× Lq(Z,S3)×Hq

1(0, Te;L
q(Ω,S3))

is a solution of the Dirichlet or Neumann initial-boundary value problem (1.31) – (1.36).
To see this, note that by construction (u(t), T (t), εp(t)) solves the Dirichlet or Neu-

mann boundary value problem formed by the equations (1.31) – (1.34), almost every-
where in [0, Te]. To see that (1.35) also holds, note that application of Qq to (4.10) and
(4.11) yields

(Qqεp)t = QqH[σ̂ −Dτ ] = τt, Qεp(0) = Qε(0)
p = τ (0) = τ(0),

whence Qqεp = τ ∈ Lp(0, Te;Hp
sol). The reasoning which leads to (4.9) is valid also in

the present situation, hence T̃ = −DQqεp = −Dτ , and therefore

T = σ̂ + T̃ = σ̂ −Dτ ∈ Lp(Z,S3).

Insertion of this equation into (4.10) shows that also the equations (1.35) and (1.36)
are satisfied, hence (u, T, εp) satisfies the initial-boundary value problem and has the
regularity properties stated in Theorem 1.6. The proof is complete.

5 Positive semi-definite free energy

In this section we study examples for initial-boundary value problems to constitutive
equations with positive semi-definite free energy, and prove Theorems 1.7 and 1.8. In
the proofs we need the following lemma, which shows that history functionals defined
by monotone constitutive equations are itself monotone.

To state the lemma we need some definitions: Let g̃1 : S3 × RN−6 → S3, g̃2 :
S3 × RN−6 → R

N−6 and z̃(0) ∈ L2(Ω,RN−6) be given, assume that 1 < q̂ ≤ p̂ are
numbers with 1

p̂
+ 1

q̂
= 1, and suppose that for every T ∈ Lp(Z,S3) the system of

equations

h(x, t) = g̃1(T (x, t),−z̃(x, t)) (5.1)

∂

∂t
z̃(x, t) = g̃2(T (x, t),−z̃(x, t)) (5.2)

z̃(x, 0) = z̃(0)(x) (5.3)

has a unique solution (z̃, h) ∈ Lp̂(Z,RN−6)× Lq(Z,S3) with ∂
∂t
z̃ ∈ Lq̂(Z,RN−6). Then

Hz̃(0) [T ] = h (5.4)

defines a history functional Hz̃(0) : Lp(Z,S3)→ Lq(Z,S3).

Lemma 5.1 Assume that the vector field (T, z̃) → (g̃1(T, z̃), g̃2(T, z̃)) is monotone.
Then the history functional Hz̃(0) is monotone with respect to the bilinear form (σ, τ)Z
on the product space Lq(Z,S3)× Lp(Z,S3).
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Proof: Let T1, T2 ∈ Lp(Z,S3) and let z̃1, z̃2 ∈ Lp̂(Z,RN−6) be the solutions of the
initial value problem (5.2), (5.3) with T1 or T2 inserted for T . Then the monotonicity
of (g̃1, g̃2) and the equations (5.1) – (5.4) yield

(Hz̃(0) [T1]−Hz̃(0) [T2] , T1 − T2)Z

= (g̃1(T1,−z̃1)− g̃1(T2,−z̃2) , T1 − T2)Z + (g̃2(T1,−z̃1)− g̃2(T2,−z̃2) , −z̃1 + z̃2)Z

− (g̃2(T1,−z̃1)− g̃2(T2,−z̃2) , −z̃1 + z̃2)Z

≥ (
∂

∂t
z̃1 −

∂

∂t
z̃2 , z̃1 − z̃2)Z =

1

2
|z̃1(Te)− z̃2(Te)|22,Ω −

1

2
|z̃1(0)− z̃2(0)|22,Ω ≥ 0 ,

since z̃1(0) − z̃2(0) = z̃(0) − z̃(0) = 0 . Note that z̃i has traces z̃i(t) ∈ L2(Ω), since
z̃i ∈ Lp̂(Z) and ∂

∂t
z̃i ∈ Lq̂(Z).

5.1 Example 1 (Norton-Hoff law)

We consider the equations

−divx T = b (5.5)

T = D(ε(∇xu)− εp) (5.6)

∂

∂t
εp = c |T |r T

|T |
(5.7)

εp(0) = ε(0)
p , (5.8)

with constants c > 0 , r > 1 . Equation (5.7) is the Norton-Hoff law. These equations
can be written in the form (1.26) – (1.30) if we define g̃1 : S3 → S3 by

g̃1(T ) = c |T |r T

|T |
. (5.9)

The variable z̃ and the equation (1.29) are not needed in this example. Consequently,
the definition (5.1) – (5.4) of the history functional Hz̃(0) = H reduces to the equation

H[T ] = g̃1(T ) = c|T |r T
|T |

. (5.10)

We set p = 1 + r and q = 1 + 1
r
. Then 1

p
+ 1

q
= 1 , and we obtain the following

Lemma 5.2 The history functional defined by (5.10) is a mapping H : Lp(Z,S3) →
Lq(Z,S3), which satisfies the conditions (H1) – (H4).

Proof: We remind the reader that the conditions (H1) – (H4) are stated before Theo-
rem 1.6.
(H1) For T ∈ Lp(Z, S3) we have

‖H[T ]‖qq,Z = ‖c |T |r T

|T |
‖qq,Z = cq

∫
Z

|T |1+r d(x, t) = cq ‖T‖pp,Z ,

hence H is everywhere defined on Lp(Z,S3) as a mapping with values in Lq(Z,S3) and
satisfies

‖H[T ]‖q,Z ≤ c ‖T‖
p
q

p,Z .
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(H2) To show that H is monotone, define the convex function ϕ : S3 → R by ϕ(T ) =
c

r+1
|T |r+1. Then g̃1 given by (5.9) satisfies

g̃1(T ) = c |T |r T

|T |
= ∇ϕ(T ) ,

hence g̃1 is monotone as gradient of a convex function. From Lemma 5.1 we now
conclude that H is monotone.

To prove that H is hemicontinuous, it suffices to show that H is demicontinuous,
i.e. that Tn → T in Lp(Z,S3) implies H[Tn] ⇀ H[T ] weakly in Lq(Z,S3). Thus, let
T, Tn ∈ Lp(Z,S3) with ‖T −Tn‖p,Z → 0 for n→∞. Then (H1) shows that {H[Tn]}∞n=1

is a bounded sequence in Lq(Z,S3). Therefore we can choose a subsequence {T ′n}∞n=1,
which converges pointwise almost everywhere, and for which {H[T ′n]}∞n=1 converges
weakly. Since {H[T ′n]}∞n=1 converges pointwise almost everywhere to H[T ], it follows
that {H[T ′n]}∞n=1 converges weakly to H[T ]. The same construction shows that every
subsequence of {Tn}∞n=1 has a subsequence {T ′′n}∞n=1, for which {H[T ′′n ]}∞n=1 converges
weakly to H[T ], hence the sequence {H[Tn]}∞n=1 converges weakly to H[T ]. This proves
that H is demicontinuous.

(H3) For T ∈ Lp(Z, S3) we have

(T,H[T ])Z =

∫
Z

c |T (x, t)|r+1 d(x, t) = c ‖T‖pp,Z , (5.11)

and

‖H[T ]‖qq,Z =

∫
Z

(c |T (x, t)|r)1+ 1
r d(x, t) = cq‖T‖pp,Z ,

hence
(T,H[T ])Z = c ‖T‖pp,Z = β0 ‖H[T ]‖qq,Z ,

with β0 = c1−q > 0 . This yields (H3), since q > 1.

(H4) Equation (5.11) implies

(T,H[T ])Z
‖T‖p,Z

= c ‖T‖p−1
p,Z →∞

for ‖T‖p,Z →∞, since p− 1 = r > 1 . This completes the proof of Lemma 5.2.

Proof of Theorem 1.7: From Lemma 5.2 we see that the history functional H defined
by the constitutive equation (1.44) satisfies the assumptions of Theorem 1.6. That
theorem immediately yields Theorem 1.7.

5.2 Example 2 (Kinematic hardening)

We study the equations

−divx T = b (5.12)

T = D(ε(∇xu)− εp) (5.13)

∂

∂t
εp = c1|T − k(εp − εn)|r T − k(εp − εn)

|T − k(εp − εn)|
(5.14)

∂

∂t
εn = c2(k|εp − εn|)γ

εp − εn
|εp − εn|

, (5.15)

εp(0) = ε(0)
p , εn(0) = ε(0)

n , (5.16)
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where c1, c2, k > 0 and r, γ > 1 are constants, and where εp(x, τ), εn(x, τ) ∈ S3 are
inelastic strain tensors. This is a model, which incorporates kinematic hardening. For
other constitutive models, which are developed for the application in engineering and
which incorporate kinematic and isotropic hardening we refer to [Alb98].

With the definition z̃ = k1/2(εp − εn) we obtain the equivalent equations

−divx T = b (5.17)

T = D(ε(∇xu)− εp) (5.18)

∂

∂t
εp = c1|T − k

1
2 z̃|r T − k 1

2 z̃

|T − k 1
2 z̃|

(5.19)

∂

∂t
z̃ = k

1
2 c1|T − k

1
2 z̃|r T − k 1

2 z̃

|T − k 1
2 z̃|
− c2k

1
2 |k

1
2 z̃|γ z̃

|z̃|
, (5.20)

εp(0) = ε(0)
p , z̃(0) = k1/2(ε(0)

p − ε(0)
n ). (5.21)

These equations can be written in the form (1.26) – (1.30) if we choose N = 12, identify
R

6 with S3, and define g̃ = (g̃1, g̃2) : S3 × S3 → S3 × S3 by

g̃1(T, z̃) = c1|T + k
1
2 z̃|r T + k

1
2 z̃

|T + k
1
2 z̃|

, (5.22)

g̃2(T, z̃) = k
1
2 c1|T + k

1
2 z̃|r T + k

1
2 z̃

|T + k
1
2 z̃|

+ k
1
2 c2|k

1
2 z̃|γ z̃

|z̃|
. (5.23)

For the convex function ϕ : S3 × S3 → R given by

ϕ(T, z̃) =
c1

r + 1
|T + k1/2z̃|r+1 +

c2

γ + 1
|k1/2z̃|γ+1

we have
g̃(T, z̃) = ∇ϕ(T, z̃) ,

whence g̃ is monotone as gradient of a convex function.
The history functional Hz̃(0) generated by the constitutive equations (5.14), (5.15),

or equivalently by (5.19), (5.20), is defined by (5.1) – (5.4) with the functions g̃1 and
g̃2 from (5.22) and (5.23) inserted. We study now this history functional and always
assume that g̃1 and g̃2 are equal to these functions.

We set p = 1 + r, q = 1 + 1
r
, p̂ = max(1 + r, 1 + γ), q̂ = min(1 + 1

r
, 1 + 1

γ
). Then

1
p

+ 1
q

= 1 and 1
p̂

+ 1
q̂

= 1 .

Lemma 5.3 Let z̃(0) ∈ L2(Ω,S3).
(i) To every T ∈ Lp(Z,S3) the initial value problem (5.2), (5.3) has a unique solution
z̃ ∈ Lp̂(Z,S3) with ∂

∂t
z̃ ∈ Lq̂(Z,S3).

(ii) The equations (5.1) – (5.4) define a history functional Hz̃(0) : Lp(Z,S3)→ Lq(Z,S3),
which satisfies the conditions (H1) and (H2). If γ > r, then also the coercivity conditions
(H3) and (H4) are satisfied.
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Proof: For notational convenience we set y = εp − εn = k−1/2z̃ and y(0) = ε
(0)
p − ε(0)

n .
From (5.1) – (5.4) and (5.22), (5.23) we see that y satisfies the equations

Hz̃(0) [T ] = c1|T − ky|r
T − ky
|T − ky|

, (5.24)

yt = c1|T − ky|r
T − ky
|T − ky|

− c2|ky|γ
y

|y|
, (5.25)

y(0) = y(0) . (5.26)

Proof of (i): We can use the same results from the theory of monotone operators
as in the proof of Theorem 4.2 to show that for given functions y(0) ∈ L2(Ω,S3)
and T ∈ Lp(Z,S3) the initial value problem (5.25), (5.26) has a unique solution
y ∈ Lp̂(Z,S3) with yt ∈ Lq̂(Z,S3) . In fact, for the proof it suffices to show that
this initial value problem satisfies conditions analogous to the conditions (H1’) – (H3’)
stated in Lemma 4.1. These conditions can be verified directly by a computation, which
we leave to the reader.

Proof of (ii): To show that the conditions (H1) – (H4) are satisfied, we derive estimates
for the solution y of the initial value problem (5.25), (5.26). Thus, let y(0) ∈ L2(Ω,S3)
and T ∈ Lp(Z,S3). For brevity we set

η = c1|T − ky|r
T − ky
|T − ky|

, κ = c2|ky|γ
y

|y|
.

Note first that (5.25) implies for 0 ≤ t ≤ Te that

∂t
k

2
|y(x, t)|2 = ky · yt = η · ky − κ · ky = −η · (T − ky)− κ · ky + η · T

≤ −c1|T − ky|r+1 − c2|ky|γ+1 + |η| |T | (5.27)

≤ −c1|T − ky|r+1 − c2|ky|γ+1 +
δq

q
|η|q +

1

pδp
|T |p

= −c1|T − ky|r+1 +
δq

q
(c1|T − ky|r)1+ 1

r − c2|ky|γ+1 +
1

pδp
|T |p ,

for a constant δ > 0 . Here we used Young’s inequality. Now choose δ such that
δqcq1
q

= c1
2

. Since r(1 + 1
r
) = 1 + r = p, integration of this inequality over the domain Z

yields∫
Ω

k

2
|y(Te)|2 dx+

c1

2
‖T − ky‖pp,Z + c2‖ky‖γ+1

γ+1,Z ≤
∫

Ω

k

2
|y(0)|2dx+ C1‖T‖pp,Z , (5.28)

with C1 = 1
pδp

> 0 . This inequality and the triangle inequality together yield

‖ky‖p,Z ≤ ‖T‖p,Z + ‖T − ky‖p,Z ≤
[ 2

c1

(
k

2
‖y(0)‖2

2,Ω + C1‖T‖pp,Z)
]1/p

+ ‖T‖p,Z . (5.29)

The function y must belong to Lγ+1(Z), which is implied by (5.28), and to Lp(Z), which
is implied (5.29), hence y ∈ Lp̂(Z,S3), as we stated.
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We set γ′ = 1 + 1
γ
. Using inequality (5.28) again and noting (5.24) we obtain

‖η‖qq,Z = ‖Hz̃(0) [T ]‖qq,Z =

∫
Z

(c1|T − ky|r)1+ 1
r d(x, t) = cq1‖T − ky‖

p
p,Z

≤ 2cq−1
1

(
C1‖T‖pp,Z +

k

2
‖y(0)‖2

2,Ω

)
, (5.30)

‖κ‖γ
′

γ′,Z =

∫
Z

(c2|ky|γ)1+ 1
γ d(x, t) = cγ

′

2 ‖ky‖
γ+1
γ+1,Z

≤ cγ
′−1

2

(
C1‖T‖pp,Z +

k

2
‖y(0)‖2

2,Ω

)
. (5.31)

(5.30), (5.31) and the equation (5.25) imply

yt = η − κ ∈ Lmin(q,γ′)(Z,S3) = Lq̂(Z,S3),

again, as we claimed above. Moreover, (5.30) implies that the history functional is a
mapping Hz̃(0) : Lp(Z,S3) → Lq(Z,S3), and that the estimate from condition (H1) is
satisfied.

Next we verify that condition (H2) is fulfilled. Before Lemma 5.3 we showed that the
vector field g̃ is monotone, hence the monotonicity of Hz̃(0) follows from Lemma 5.1. As
in Example 1 we use that the hemicontinuity of the history functional is a consequence
of the demicontinuity. To prove demicontinuity, we first derive an estimate for the
difference of two solutions of the initial value problem (5.25), (5.26):

Thus let T1, T2 ∈ Lp(Z,S3), and let y1, y2 be the corresponding solutions of (5.25),
(5.26). As above we set

ηi = Hz̃(0) [Ti] = c1|Ti − kyi|r
Ti − kyi
|Ti − kyi|

, κi = c2|kyi|γ
yi
|yi|

,

for i = 1, 2. Let T = T1 − T2, y = y1 − y2, η = η1 − η2, κ = κ1 − κ2. Then (5.25) yields
for 0 ≤ t ≤ Te that

∂t
k

2
|y(x, t)|2 = ky · yt = η · ky − κ · ky (5.32)

= −η · (T − ky)− κ · ky + η · T ≤ η · T ≤ (|η1|+ |η2|) |T | .

Here we used that

(η, κ) =
(
c1|T − ky|r

T − ky
|T − ky|

, c2|ky|γ
ky

|ky|

)
= (∇ϕ1)(T − ky, ky)

with ϕ1(z) = ϕ1(z′, z′′) = c1
r+1
|z′|r+1 + c2

γ+1
|z′′|γ+1. Since ϕ1 is convex, the vector field

∇ϕ1 is monotone, which implies that

η · (T − ky) + κ · ky ≥ 0 .

Using that y(0) = 0, we obtain from (5.32) by integration that∫
Ω

k

2
|y(t)|2dx ≤

∫
Z

(|η1|+ |η2|)|T | d(x, t)

≤ ( ‖η1‖q,Z + ‖η2‖q,Z ) ‖T‖p,Z ≤ C2

(
M(T1, T2) + 1

) 1
q ‖T‖p,Z ,
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with M(T1, T2) = max (‖T1‖pp,Z , ‖T2‖pp,Z) and with a suitable constant C2. To get the
last inequality sign we employed (5.30). Therefore

k

2
‖y‖2

2,Z =
k

2

∫ Te

0

‖y(t)‖2
2,Ω dt ≤ TeC2

(
M(T1, T2) + 1

) 1
q ‖T‖p,Z . (5.33)

Now we can prove the demicontinuity. Let {Tm}∞m=1 be a sequence which converges
in Lp(Z,S3) to T ∈ Lp(Z,S3). Setting T = Tm − T in (5.33), we see that {ym}∞m=1

converges to y in L2(Z,S3). Consequently, we can select a subsequence {T ′m}
∞
m=1,

which converges pointwise almost everywhere in Z to T , such that {y′m}
∞
m=1 converges

pointwise almost everywhere in Z to y. Thence, Hz̃(0) [Tm] = c1|Tm − kym|r Tm−kym
|Tm−kym|

converges pointwise almost everywhere to Hz̃(0) [T ] . From (5.30) we see that the se-
quence {Hz̃(0) [Tm]}∞m=1 is uniformly bounded in Lq(Z,S3). Therefore we can select
a subsequence {T ′′m}

∞
m=1 of {T ′m}

∞
m=1, such that {Hz̃(0) [T ′′m]}∞m=1 converges weakly in

Lq(Z,S3). Since weak and pointwise limit coincide, {Hz̃(0) [T ′′m]}∞m=1 converges weakly to
Hz̃(0) [T ]. Moreover, these considerations show that any weakly converging subsequence
of {Hz̃(0) [Tm]}∞m=1 must converge to Hz̃(0) [T ]. Thus, the sequence {Hz̃(0) [Tm]}∞m=1 con-
verges to Hz̃(0) [T ] weakly. This implies that Hz̃(0) is demicontinuous, and we conclude
that condition (H2) is fulfilled.

To prove that the coercivity conditions (H3) and (H4) are satisfied if γ > r, note
first that (5.25) yields similarly as in (5.27)

T · Hz̃(0) [T ] = T · η = ∂t
k

2
|y|2 + (T − ky) · η + ky · κ

= ∂t
k

2
|y|2 + c1|T − ky|r+1 + c2|ky|γ+1.

Integration yields

(T,Hz̃(0) [T ])Z =
k

2
‖y(Te)‖2

2,Ω −
k

2
‖y(0)‖2

2,Ω + c1‖T − ky‖pp,Z + c2‖ky‖γ+1
γ+1,Z

≥ c1‖T − ky‖pp,Z −
k

2
‖y(0)‖2

2,Ω . (5.34)

Furthermore, set β = (Te|Ω|)
γ−r

(γ+1)p . Then (5.28) implies for all T ∈ Lp(Z,S3) with
C1‖T‖pp,Z ≥ β1 = k

2
‖y(0)‖2

2,Ω that

‖ky‖p,Z ≤ β‖ky‖γ+1,Z

≤ β
[ 1

c2

(
C1‖T‖pp,Z + β1

)] 1
γ+1 ≤ β

(2C1

c2

) 1
γ+1‖T‖

r+1
γ+1

p,Z .

We set α = β(2C1/c2)1/(γ+1) and obtain with the inverse triangle inequality from the
last estimate

‖T − ky‖p,Z ≥ ‖T‖p,Z − ‖ky‖p,Z ≥ ‖T‖p,Z − α‖T‖
r+1
γ+1

p,Z ≥
1

2
‖T‖p,Z , (5.35)

for ‖T‖p,Z ≥ max(ω, (β1/C1)1/p) , where ω > 0 is the solution of the equation 1
2
ω =

αω
r+1
γ+1 . Here we use that r+1

γ+1
< 1 . Combination with (5.34) results in

(T,Hz̃(0) [T ])p,Z
‖T‖p,Z

≥
c1(1

2
‖T‖p,Z)p − β1

‖T‖p,Z
→∞
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for ‖T‖p,Z →∞, which proves that condition (H4) is satisfied.
To verify (H3) we first observe that (5.30) and (5.35) imply

‖Hz̃(0) [T ]‖q,Z = c1‖T − ky‖
p
q

p,Z ≥ C2(‖T‖p,Z)
p
q →∞ (5.36)

for ‖T‖p,Z →∞. Furthermore, noting again (5.30), we derive from the inequality (5.34)
that

(T,Hz̃(0) [T ])Z ≥ c1−q
1 ‖Hz̃(0) [T ]‖qq,Z − β1 .

Since q > 1, this inequality and (5.36) together imply that condition (H3) is satisfied.
The proof of the lemma is complete.

Proof of Theorem 1.8: For ε
(0)
p , ε

(0)
n ∈ L2(Ω,S3) we have z̃(0) = k1/2(ε

(0)
p − ε(0)

n ) ∈
L2(Ω,S3). Therefore the assumption of Lemma 5.3 is satisfied, and we conclude from
this lemma that the history functional Hz̃(0) defined by the constitutive equations (1.48)
– (1.50) satisfies the assumptions of Theorem 1.6. That theorem yields all statements of
Theorem 1.8 concerning the functions u, T and εp. The statements for εn are obtained
from Lemma 5.3(i), since z̃ = k1/2(εp − εn).

6 Coercive models - the method based on the Yosida approx-
imation

In this section we present another method to prove existence of global in time solutions
for the quasistatic problem (1.10) - (1.13) possessing a positive definite free energy.
Namely, we transfer the method used in [CG00, Che01] to investigate the dynamical
problem and use the Yosida approximation Gλ of the maximal monotone constitutive
multifunction g to verify Theorem 1.4. In the first step of the proof we replace g(BT −
Lz) by a global Lipschitz function f and show that the theory of differential equations
in Banach spaces yields global in time solutions of the resulting initial-boundary value
problem. This result is formulated in Theorem 6.1. In the second step we use this result
to construct a sequence of approximate solutions {(uλ, T λ, zλ)}λ>0 and prove a priori
estimates, which allow to pass to the limit λ→ 0+. These estimates are formulated in
Theorems 6.2 and 6.3.

For brevity we use in this section the notation

ε(u(x, t)) =
1

2
(∇xu(x, t) +∇T

xu(x, t)) .

Since we study positive definite free energy ψ in this section, the matrix L is assumed
to be positive definite.

Let us start our investigation with the following problem of the type (1.10) - (1.13)
containing only global Lipschitz nonlinearities

divx T (x, t) = −b(x, t) , (6.1)

T (x, t) = D(ε(x, t)−Bz(x, t)) , (6.2)

ε(x, t) =
1

2
(∇xu(x, t) +∇T

xu(x, t)) , (6.3)

zt(x, t) = f(ε(x, t), z(x, t)) , (6.4)

z(x, 0) = z(0)(x) , (6.5)
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where the nonlinear constitutive function f is everywhere defined and global Lipschitz,
which means that

∃ L > 0 ∀ (ε1, z1), (ε2, z2) ∈ S3 × RN

|f(ε1, z1)− f(ε2, z2)| ≤ L(|ε1 − ε2|+ |z1 − z2|) . (6.6)

We are going to prove existence of global in time solutions for the system (6.1) - (6.5)
with the boundary conditions (1.25). Let us denote by B⊥ the orthogonal projector of
R
N onto the subspace {(εp, y) ∈ RN : εp = 0}. Then equation (6.4) can be written in

the components (εp, y)

−D−1Tt(x, t) + ε(ut(x, t)) = B f(ε(u(x, t)), z(x, t)) , (6.7)

yt(x, t) = B⊥f(ε(u(x, t)), z(x, t)) , (6.8)

where z = (ε(u) − D−1T, y). Hence, this system describes the evolution of the triple
(u, T, y). Obviously, in general we cannot expect that the system (6.7) - (6.8) possesses
unique solutions. However, if we add to this system the equation of motion (6.1) then
we can use the “orthogonality” of the functions T and ε(u). Let us define some Hilbert
spaces in which we will solve our problem:

H1,Γ1(Ω;R3) = {u ∈ H1(Ω;R3) : u|Γ1 = 0},
L2

Γ2,sol(Ω;S3) = {T ∈ L2(Ω;S3) : div T = 0, T n|Γ2 = 0}.

H1,Γ1(Ω;R3) is the space of vectorial Sobolev functions with traces vanishing on Γ1,
and L2

Γ2,sol(Ω;S3) is the space of L2-functions with vanishing divergence and with trace
in the normal direction to the boundary vanishing on Γ2. Note that for functions
T ∈ L2(Ω;S3) with div T ∈ L2(Ω;R3) the trace in the normal direction to the boundary
is well defined and belongs to the space H2

−1/2(∂Ω;R3) (see for example [Tem83] p. 14).
Moreover, let us denote by

H(Ω) = H1,Γ1(Ω;R3)× L2
Γ2,sol(Ω;S3)× L2(Ω;RN−6)

the Hilbert space in which we solve the system (6.7) - (6.8). In this space we redefine
the scalar product as follows

〈 (u1, T 1, y1), (u2, T 2, y2) 〉H = (Dε(u1), ε(u2))Ω + (D−1T 1, T 2)Ω + (y1, y2)Ω . (6.9)

By the assumption |Γ1| > 0 the scalar product 〈· , ·〉H is equivalent to the standard
scalar product.

The next step in our investigation is the cancellation of the given data (the external
force and the boundary data). Hence, let us assume that our data b, γD, γN have the
following regularity

b ∈ C1(R+;L2(Ω;R3)) , (6.10)

γD ∈ C1(R+;H2
1/2(Γ1;R3)) , γN ∈ C1(R+;H2

−1/2(Γ2;R3)) (6.11)

and denote by (u∗, T ∗) the global in time solution of the linear problem

divx T
∗(x, t) = −b(x, t) , (6.12)

T ∗(x, t) = Dε(u∗(x, t)) , (6.13)

u∗(x, t)|Γ1 = γD(x, t) , T ∗(x, t)n(x)|Γ2 = γN(x, t) . (6.14)
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The solution of this problem has the regularity

u∗ ∈ C1(R+;H1(Ω;R3)) , T ∗ ∈ C1(R+;L2(Ω;S3)) . (6.15)

Thus for the differences ũ = u− u∗ and T̃ = T − T ∗ we obtain the following evolution
problem in the space H(Ω)

(ũt, T̃t, yt) = A(t)(ũ, T̃ , y) , (6.16)

where the operator A(t) is defined by:

∀ (v, S, w) ∈ H(Ω)

〈A(t)(ũ, T̃ , y), (v, S, w) 〉H = (DB f(ε(ũ) + ε(u∗(t)), z̃ + z∗(t)) , ε(v)) (6.17)

−(B f(ε(ũ) + ε(u∗(t)), z̃ + z∗(t)) , S) + (B⊥ f(ε(ũ) + ε(u∗(t)), z̃ + z∗(t)) , w) ,

where z̃ = (ε(ũ)−D−1T̃ , y) and z∗(t) = (ε(u∗(t))−D−1T ∗(t), 0). The initial value for
the function y is known and equal to B⊥z(0), but for the functions ũ and T̃ we have
to compute the initial values from the initial value for the plastic strain εp(0) = B z(0).
Hence, ũ(0) is the unique solution of the problem

divxD(ε(ũ(0))− εp(0)) = 0 , (6.18)

ũ(0)|Γ1 = 0 , D(ε(ũ(0))− εp(0))n|Γ2 = 0, (6.19)

and we define T̃ (0) = D(ε(ũ(0))− εp(0)).

Theorem 6.1 For initial data (εp(0), y(0)) ∈ L2(Ω;RN) the problem (6.16) possesses
a global, unique solution

(ũ, T̃ , y) ∈ C1(R+;H(Ω)) . (6.20)

Proof: Let us choose t1, t2 ∈ R+ and (u1, T 1, y1), (u2, T 2, y2), (v, S, w) ∈ H(Ω). The
Lipschitz continuity of the function f yields

〈A(t1)(u1, T 1, y1)−A(t2)(u2, T 2, y2), (v, S, w) 〉H

≤ C

∫
Ω

{
|ε(u1)− ε(u2)|+ |T 1 − T 2|+ |y1 − y2|+ |ε(u∗(t1))− ε(u∗(t2))|

+|T ∗(t1)− T ∗(t2)|
}
· (|ε(v)|+ |S|+ |w|) dx

≤ L
{
‖(u1, T 1, y1)− (u2, T 2, y2)‖H

+ sup
τ∈(t1,t2)

(‖ε(u∗t (τ))‖2,Ω + ‖T ∗t (τ)‖2,Ω)|t1 − t2|
}
‖(v, S, w)‖H ,

where the constants C and L do not depend on t. Consequently the family of operators
A(t) is continuous with respect to t and global Lipschitz in the space H(Ω) with the
Lipschitz constant L independent of t. Thus from the theory of differential equations
in Banach spaces it follows that the evolution problem (6.16) possesses global in time,
unique solutions having the regularity (6.20).

We use Theorem 6.1 to construct a sequence of approximate solutions to the problem

35



(1.10) - (1.13). To this end we replace g by the Yosida approximation Gλ = λ−1(I−Jλ),
where Jλ = (I + λg)−1 and λ > 0. This yields the following sequence of approximate
problems

divx T
λ(x, t) = −b(x, t) , (6.21)

T λ(x, t) = D(ελ(x, t)−Bzλ(x, t)) , (6.22)

ελ(x, t) =
1

2
(∇xu

λ(x, t) +∇T
xu

λ(x, t)) , (6.23)

zλt (x, t) = Gλ

(
BTT λ(x, t)− Lzλ(x, t)

)
, (6.24)

zλ(x, 0) = z(0)(x) (6.25)

with the boundary condition (1.25). Assuming that the external force b and the bound-
ary data γD, γN have the regularity required in (6.10), (6.11) and noting that Gλ is
globally Lipschitz continuous we conclude from Theorem 6.1 that for all initial data
z(0) ∈ L2(Ω;RN) the system (6.21) - (6.25) possesses global in time solution

(uλ, T λ, zλ) = (ũλ, T̃ λ, zλ) + (u∗, T ∗, 0) with (ũλ, T̃ λ, B⊥zλ) ∈ C1(R+;H(Ω)) .

Let us assume that (ε, z) ∈ L2(Ω;S3×RN) and define the total energy associated with
the problem (1.10) - (1.13) by

E(ε, z) =

∫
Ω

ρψ(ε, z) dx =
1

2

∫
Ω

D(ε−Bz) · (ε−Bz) dx+
1

2

∫
Ω

Lz · z dx . (6.26)

Note that the positive definiteness of the matrix L implies that the right-hand side of
(6.26) induces in the space L2(Ω;S3 × RN) a norm equivalent to the standard norm.
This norm will be denoted by ‖(ε, z)‖ψ. Moreover, let us denote by T (0)(x) the initial
stress obtained as the solution of the problem

divx T
(0)(x) = −b(x, 0) , (6.27)

T (0)(x) = D(ε(u(0)(x))− εp(0)) , (6.28)

u(0)(x)|Γ1 = γD(x, 0) , T (0)(x)n(x)|Γ2 = γN(x, 0) . (6.29)

Also, we set

∆(g) = {h ∈ L2(Ω;RN) | there is ξ ∈ L2(Ω;RN) such that ξ(x) ∈ g(h(x)) , a.e.} .

Theorem 6.2 Suppose that the external force b and the boundary data γD, γN satisfy

b ∈ H∞2 (0, Te;L
2(Ω;R3)) , (6.30)

γD ∈ H∞3 (0, Te;H
2
1/2(Γ1;R3)) , γN ∈ H∞2 (0, Te;H

2
−1/2(Γ2;R3)) , (6.31)

for all Te > 0. Moreover, assume for the initial data z(0) ∈ L2(Ω;RN) that

BT T (0) − Lz(0) ∈ ∆(g) ,

where the initial stress T (0) is defined as the solution of the system (6.27) - (6.29).
Then for all Te > 0 the solution of the approximate problem (6.21) - (6.25) satisfies the
following inequality

sup
t∈(0,Te)

‖(ελt (t), zλt (t))‖ψ ≤ C(Te) ,

where the constant C(Te) does not depend on λ.
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Proof: Let us fix Te > 0 and for h > 0 let us denote by (ελh(t), z
λ
h(t)) the shifted

functions (ελ(t+ h), zλ(t+ h)). Then for the time differences we obtain

d

dt

1

2
‖(ελh − ελ, zλh − zλ)‖2

ψ =

∫
Ω

D(ελh − ελ −Bzλh +Bzλ) · (ελh,t − ελt −Bzλh,t +Bzλt ) dx

+

∫
Ω

L(zλh − zλ) · (zλh,t − zλt ) dx = (using the notation vλ = uλt )

=

∫
Ω

(vλh − vλ) · (bh − b) dx+

∫
∂Ω

(vλh − vλ) · (T λh − T λ)n dσ

−
∫

Ω

{
Gλ(B

TT λh − Lzλh)−Gλ(B
TT λ − Lzλ)

}
· ((BTT λh − Lzλh)− (BTT λ − Lzλ)) dx

≤ (by the monotonicity of the function Gλ)

≤
∫

Ω

(vλh − vλ) · (bh − b) dx+

∫
∂Ω

(vλh − vλ) · (T λh − T λ)n dσ . (6.32)

The boundary integral is defined in the following sense∫
∂Ω

(vλh − vλ) · (T λh − T λ)n dσ = 〈 (T λh − T λ)n , (vλh − vλ) 〉∂Ω , (6.33)

where the brackets 〈 · , · 〉∂Ω denote the duality form between the spaces H2
1/2(∂Ω;R3)

and H2
−1/2(∂Ω;R3). Using the boundary conditions we get

d

dt

1

2
‖(ελh − ελ, zλh − zλ)‖2

ψ ≤ 〈 (γN,h − γN) , (vλh − vλ) 〉Γ2 (6.34)

+〈 (T λh − T λ)n , (∂tγD,h − ∂tγD) 〉Γ1 +

∫
Ω

(vλh − vλ) · (bh − b) dx .

Next we integrate (6.34) with respect to t, divide by h2 and shift the difference operators
from the velocity and from the stress to the given data (for more details see [CG00],
Theorem 4). Finally we pass to the limit h→ 0+ and arrive at the inequality

‖(ελt (t), zλt (t))‖2
ψ ≤ ‖(ελt (0), zλt (0))‖2

ψ + 2

∫ t

0

‖γN,tt(τ)‖−1/2,2,Γ2‖vλ(τ)‖1/2,2,∂Ω dτ

+2

∫ t

0

‖T λ(τ)n‖−1/2,2,∂Ω‖γD,ttt(τ)‖1/2,2,Γ1 dτ + 2

∫ t

0

‖vλ(τ)‖2,Ω‖btt(τ)‖2,Ω dτ

+C
{

sup
t∈(0,Te)

‖γN,t(t)‖−1/2,2,Γ2 sup
t∈(0,Te)

‖vλ(t)‖1/2,2,∂Ω

+ sup
t∈(0,Te)

‖γD,tt(t)‖1/2,2,Γ1 sup
t∈(0,Te)

‖T λ(t)n‖−1/2,2,∂Ω

+ sup
t∈(0,Te)

‖vλ(t)‖2,Ω sup
t∈(0,Te)

‖bt(t)‖2,Ω

}
, (6.35)

where the constant C > 0 is independent of λ. The boundary norms ‖vλ‖1/2,2,∂Ω and
‖T λ n‖−1/2,2,∂Ω appearing in the right-hand side of inequality (6.35) can be estimated
using the continuity of the trace operator

‖vλ‖1/2,2,∂Ω ≤ C ‖vλ‖1,2,Ω , (6.36)

‖T λ n‖−1/2,2,∂Ω ≤ C (‖T λ‖2,Ω + ‖div T λ‖2,Ω) , (6.37)
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where the constant C > 0 depends on the domain Ω only. Inserting (6.36) and (6.37)
into (6.35) yields

‖(ελt (t), zλt (t))‖2
ψ ≤ ‖(ελt (0), zλt (0))‖2

ψ + C(Te, α)

+α sup
t∈(0,Te)

‖vλ(t)‖2
1,2,Ω + α sup

t∈(0,Te)

‖T λ(t)‖2
2,Ω , (6.38)

where α > 0 is any positive number and the constant C(Te, α) does not depend on
λ. Thus we have only to estimate the L2-norm of the stress and the H1-norm of the
velocity. The first one can be estimated by the time derivative of the stress

‖T λ(t)‖2,Ω ≤ ‖T λ(0)‖2,Ω +
√
t

∫ t

0

‖T λt (τ)‖2,Ω dτ , (6.39)

and the second one can be estimated using the ellipticity of the equation of motion

‖vλ(t)‖1,2,Ω ≤ C (‖bt(t)‖−1,2,Ω+‖ελp,t(t)‖2,Ω+‖γD,t(t)‖1/2,2,Γ1+‖γN,t(t)‖−1/2,2,Γ2) , (6.40)

where the constant C > 0 depends on the set Ω only. Inserting (6.39) and (6.40) into
(6.38) and choosing α sufficiently small we arrive at the inequality

‖(ελt (t), zλt (t))‖2
ψ ≤ C(Te) (‖(ελt (0), zλt (0))‖2

ψ + 1) . (6.41)

Finally, the assumption BT T (0)−Lz(0) ∈ ∆(g) and the properties of the Yosida approx-
imation (see [AC84] paragraph 3) imply that the sequence ‖(ελt (0), zλt (0))‖ψ is bounded.
The proof is complete.

From Theorem 6.2 we conclude that the sequence {(ελ, zλ)}λ>0 is bounded in H∞1 (L2),
and this together with (6.22) implies that the sequence {T λ}λ>0 is bounded in H∞1 (L2).
Hence, we can pass to the weak limit λ→ 0+ in the system (6.21) – (6.24) and obtain
that the limit functions satisfy the following system of equations

divx T (x, t) = −b(x, t), (6.42)

T (x, t) = D(ε(x, t)−Bz(x, t)), (6.43)

ε(x, t) =
1

2
(∇xu(x, t) +∇T

xu(x, t)), (6.44)

zt(x, t) = χ(x, t), (6.45)

where χ(x, t) = w−limλ→0+ Gλ(B
TT λ − Lzλ). To end the proof of existence of global

solutions to our system (1.10) – (1.13) it remains to show that

χ(x, t) ∈ g(BTT (x, t)− Lz(x, t)) for a.e. (x, t) ∈ Z . (6.46)

Note that by the L2- weak-strong closedness of the graph of the maximal monotone
operator g the inclusion (6.46) follows immediately from the strong L2-convergence of
the sequence {BTT λ − Lzλ)}λ>0.

Theorem 6.3 Suppose that the boundary data γD, γN , the external force b and the
initial data z0 satisfy the assumptions from Theorem 6.2. Then for all λ, µ > 0 and for
all Te > 0 the inequality

‖(ελ − εµ, zλ − zµ)‖2
ψ ≤

1

2
(λ+ µ)C2(Te)Te (6.47)

holds, where C(Te) is the constant from Theorem 6.2.
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Proof: The proof of this theorem is standard (see for example the proof of Theorem 3.1,
p. 54 in [Bré73]). Nevertheless, for completeness we present it here. Proceeding simi-
larly as in the proof of Theorem 6.2, we obtain for the difference of two approximation
steps (ελ − εµ, zλ − zµ) that

d

dt

1

2
‖(ελ − εµ, zλ − zµ)‖2

ψ = (6.48)

−
∫

Ω

{
Gλ(B

TT λ − Lzλ)−Gµ(BTT µ − Lzµ)
}

((BTT λ − Lzλ)− (BTT µ − Lzµ)) dx .

Let us denote by wi = BTT i − Lzi for i = λ, µ. Using Gλ = λ−1(I − Jλ) we obtain

−
∫

Ω

(wλ − wµ)(Gλ(w
λ)−Gµ(wµ)) dx

= −
∫

Ω

(λGλ(w
λ) + Jλ(w

λ)− µGµ(wµ)− Jµ(wµ)) · (Gλ(w
λ)−Gµ(wµ)) dx

≤ (by the inclusion Gi(w
i) ∈ g(Ji(w

i))) (6.49)

≤ −
∫

Ω

(λGλ(w
λ)− µGµ(wµ)) · (Gλ(w

λ)−Gµ(wµ)) dx

≤ 1

4
(λ+ µ)(‖Gλ(w

λ)‖2
2,Ω + ‖Gµ(wµ)‖2

2,Ω) .

We use Theorem 6.2 and equation (6.24) to see that ‖Gi(w
i)‖2,Ω is uniformly bounded

for 0 ≤ t ≤ Te. Insertion of (6.49) into (6.48) and integration with respect to t ends the
proof.

Proof of Theorem 1.4: From Theorem 6.3 we conclude that the sequences {ελ}λ>0

and {zλ}λ>0 are L2-Cauchy sequences (note that the energy norm ‖ · ‖ψ is equivalent
to the standard L2 norm). Consequently, the sequence {BT T λ − Lzλ}λ>0 is a Cauchy
sequence in L∞(L2) which implies that the inclusion (6.46) holds. Therefore a solution
with the properties stated in Theorem 1.4 exists. Uniqueness follows as in the proof of
Theorem 1.3 in Section 3.

Appendix

In this appendix we study the transformation of constitutive equations.

Lemma A1 Let

T = D(ε−Bz) (A1)

zt = g(−ρ∇zψ(ε, z)) = g(BTT − Lz) (A2)

z(0) = z(0) (A3)

be constitutive equations of monotone type with a linear mapping B : RN → S3 and
with a linear, symmetric, positive semi-definite mapping L : RN → R

N such that

dim(kerB) = N − 6, dim(kerL) = 6, kerB + kerL = RN . (A4)

Then these constitutive equations can be transformed to equations of the form (1.27) –
(1.30) with a monotone vector field g̃ = (g̃1, g̃2).
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Conversely, equations of the form (1.27) – (1.30) with a monotone vector field g̃ can
be transformed to constitutive equations of the form (A1) – (A3), which are of monotone
type with mappings B and L satisfying (A4).

Proof: We first consider a linear isomorphism V = (V1, V2) : RN → S3 × RN−6. The
adjoint mapping V T : S3 × RN−6 → R

N is given by

V T (T, y) = V T
1 T + V T

2 y ,

for all (T, y) ∈ S3×RN−6. We use this isomorphism to assign to a vector field g : RN →
R
N another vector field g̃ = (g̃1, g̃2) : S3 × RN−6 → S3 × RN−6 by

g̃ = V ◦ g ◦ V T .

This defines an invertible mapping between vector fields. The inverse is

g̃ 7→ g = V −1 ◦ g̃ ◦ V −T .

Clearly, this mapping and the inverse map monotone vector fields to monotone vector
fields: g is monotone if and only if g̃ is monotone. Moreover, it is obvious that a function
(ε, z) : Z → S3 × RN satisfies the equations

T = D(ε− V1z), (A5)

zt = g(V T
1 T − V T

2 V2z), (A6)

z(0) = z(0), (A7)

if and only if the function (ε, V z) = (ε, V1z, V2z) : Z → S3 × S3 × RN−6 satisfies the
equations

T = D(ε− V1z) ,

(V z)t = V g(V T
1 T − V T

2 V2z) = V g(V T (T,−V2z)) = g̃(T,−V2z) ,

V z(0) = V z(0) .

With the notation εp = V1z, z̃ = V2z the latter system can be written in the form

T = D(ε− εp) (A8)

εpt = g̃1(T,−z̃) (A9)

z̃t = g̃2(T,−z̃) (A10)

εp(0) = V1z
(0), z̃(0) = V2z

(0) . (A11)

Hence, these equations, which coincide with (1.27) – (1.30), are equivalent to the equa-
tions (A5) – (A7).

Assume now that g,B and L are given such that (A4) holds and such that (A1), (A2)
are constitutive equations of monotone type. We specialize V such that (A5), (A6)
become equal to (A1), (A2). Note first that L is symmetric and positive semi-definite.
Therefore there exists the symmetric and positive semi-definite square root L1/2. Let
C : RN → R

N−6 be a surjective linear mapping with

kerC = kerL ,
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such that C|R(L)
: R(L) → R

N−6 is an isometric isomorphism. With this mapping

define V : RN → S3 × RN−6 by

V z = (V1z, V2z) = (Bz,CL1/2z) . (A12)

This mapping is invertible, since

kerV = kerB ∩ ker(CL1/2) = kerB ∩ kerL1/2 = kerB ∩ kerL = {0} ,

by (A4). Hence, V is a linear isomorphism. Moreover, because kerC = kerL = kerL1/2

and because C|R(L)
: R(L)→ R

N−6 is an isometric isomorphism, it follows that CTC :

R
N → R

N is the orthogonal projection onto (kerL)⊥ = R(L) = R(L1/2). Therefore
I − CTC is the projection to kerL1/2, which implies that

L = L1/2(CTC + (I − CTC))L1/2 = L1/2CTCL1/2 = V T
2 V2 ,

by (A12).
We insert this equation into (A6) and use V1 = B to see that with this definition of

V the system (A5) – (A7) takes the form of the equations (A1) – (A3). Hence (A1) –
(A3) can be transformed to the equations (A8) – (A11), where εp = Bz, z̃ = CL1/2z.

Conversely, assume that a monotone vector field g̃ = (g̃1, g̃2) : S3×RN−6 → S3×RN−6

is given. Then for any isomorphism V = (V1, V2) the equations (A8) – (A11) are
equivalent to (A5) – (A7) with g = V −1 ◦ g̃ ◦ V −T , and (A5) – (A7) take the form of
(A1) – (A3) if we define B and L by

B = V1, L = V T
2 V2 .

Note that L is symmetric and positive semi-definite, and that these mappings satisfy
(A4). Therefore the equations (1.27) – (1.30) can always be written in the form of
constitutive equations of monotone type with positive semi-definite free energy.
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