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1 Introduction and statement of results.

We study a system of equations modelling the nonelastic deformation of metals. This
system has been proposed be E. W. Hart [3] and is in engineering use. We show that in
the uni-axial case the initial-boundary value problem for this system has global in time
solutions to all sufficiently small initial data, and study the asymptotic behavior of these
solutions as ¢ — oco. These equations contain several parameters, which must be adjusted
to fit the actual behavior of real metals. In our analysis we must choose a value for one of
these parameters which is not realistic for metals. The question whether similar existence
results can be proved for realistic values of this parameter is left to further investigations.

In the three-dimensional case the initial-boundary value problem is constituted by
the following equations: Let B C R® be a body with boundary 8B, let U = U(z,t) :
B x [0,00) — IR® be the displacement field with components Ui(z,t),7=1,2,3, and let p
be the density. We assume that p > 0 is constant. Then the equations are

pUw(z,t) = div S(=z,t) | (1.1)
E(z,t) = -;—(VU(:c,t) +(VU(=, )7) (1.2)
S(z,t) = D(E(z,t) — E"(z,t)) (1.3)
S(z,t)n(z) =0,z € 8B ‘ (1.4)
U(z,0) = U°(z), Uy=,0) = U'(z),z € B. (1.5)

Here n(z) is the exterior unit normal to 9B,

VU(z,t) —( U(w t))ij=1.23

E(z,t) is the strain field, S5(z,t) is the stress field, and D is the elasticity tensor, which
we assume to be constant, symmetric and positive definite. U® and U? are given initial
data. _

With the exception of (1.3) these are the ordinary equations of linear elasticity theory.
In (1.3) the strain E is additively decomposed into an inelastic part E(z, t), and an
elastic part E(z,t) — E™(z,t). The stress depends linearly on this elastic part. (1. 3)is
one of the constitutive relations, but others are necessary which determine E™. Those are
the equations proposed by Hart.

The model of Hart belongs to the class of phenomenological models which aim to
describe the observed stress-strain relation by the introduction of a set of internal state
variables qi(z,t),..., gm(2,t). E™ is assumed to be a function of S and of ¢1,. .., qm :

E" = En(Svcha .- -,Qm) )
and the ¢; are assumed to satisfy a system of evolution equations

3tq,-=Q(S,q_l,...,qm),iz1,...,m,‘



which for every fixed z is a system of ordinary differential equations in t. In the nomen-
clature of [8] the model of Hart thus is of differential type. The functions E™, Q, and the
number m of state variables must be adapted to the metal. To find such functions and
internal variables Hart tries to model the observed stress-strain relation of real metals by
the stress-strain relation of the combination of two Hookeian elements, denoted by a and
bin the figure, and two nonlinear viscous elements, denoted by p and f in the figure. This
figure is a schematic diagram helpful to understand the set of constitutive equations.

In this diagram $%(z,t), S¥(z,t), E%(,t), E?(z,t), and E"(z,t) are 3 x 3 tensors.
S(z,t) is the stress field acting on the spring a and therefore also at the viscous element
p. S¥(z,t) is the stress field acting on the viscous element f, and E%(z,t), E”(z,t), E™(z,t)
are the corresponding strain fields.

To state the constitutive relations define for tensors R = (7;5)i j=1,..,3, T = (tij)ij=1,..3

3
R-T=Y rty, |T|=(T T)/2.

iy=1

The figure suggests that S = S® + Sf. It is assumed, however, that the inelastic deforma-
tions are isochoric, and that S® and S/ therefore decompose the stress deviator

s(z,t) = S(z,t) — %tr(S(m,t))I; (1.6)

where I is the identity matrix. So the constitutive equations are

s=8+5f | (1.7)
E"=E*+ E® (1.8)
5 = ME® (1.9)
n __ _x ISf‘ M Sf
agE =€ ( o ) 'I'S—,f—l (110)
8,EP = e(-Zy™(In(~2-)) 2 (1.11)
o* |Se| |52
8o = |8, EP|aT (0, |S%) . (1.12)

Equation (1.9) is the constitutive equation for the spring a, whereas (1.3) is the consti-
tutive equation for the Hookelan element b. The constitutive equations for the viscous
elements f and p are (1.10) and (1.11), respectively. The parameter o = o(z,t) > 0,
called hardness, increases with growing ¢ and makes the viscous element harder. In this
way the process of strain-hardening is described. Following Cordts and Kollmann [4] we

use for I’ the function : 5 5/
I(o,|5%) = (é) ('5 ') . (1.13)

(2 a



The constants e*, 8, M,o", M,m, ), 6, s* are material parameters. Typical values for SS
304 stainless steel at 400° C are :

e =3.155"", f=1.23-10° MPa, M =9.1-10* MPa ,
o* =68.95MPa, M =78, m=5,=0.15, § =0.133,

«=co (% (7-7))

with additional positive constants ¢*,Q*, R, 75. T is the temperature of the medium,
which we assume to be constant. The actual values of the dimensionless numbers M, ),
and §/o are of importance in our existence proof. For m we must choose the value 0.
The values of the other parameters are irrelevant.

Finally, we require that the initial conditions

E"(z,0) = E™(z), E*(z,0) = E*’(z), 0(z,0) = ¢°(z),z € B (1.14)

cf. [5]. Moreover

are satisfied. Here E™% E*% and ¢° are given functions with
tr E™(z) = tr E*%(z) = 0,0%z) > >0 , (1.15)

for all z € B and with the property that E™°(z) and E*°(z) are symmetric 3 x 3 tensors
for every z € B. The equations (1.1)-(1.15) furnish the initial-boundary value problem to
be solved.

We formulated this problem for mathematical reasons in this way. But it should be
noted that this initial-boundary value problem is usually formulated somewhat differently;
namely, instead of (1.1)-(1.4) and (1.8) it is only required that the time derivatives of the
functions on the right and left hand sides of these equations are equal. The reason is that
E™ and E? cannot be observed; only 8,E™ and 8,E? can be measured, cf. [2]. But the
solvablhty of this modified initial-boundary value problem follows from the solvability of
(1.1)~(1.15), because a solution of (1.1)-(1.15) also satisfies the differentiated equations
(1.1)-(1.4) and (1.8), and, depending on the choice of the set of initial conditions for the
modified problem, because the initial data U° U, E™®, E%° and ¢° can be chosen such
that the initial conditions for the modified problem are satisfied.

Moreover, it is usually assumed that p = 0 in (1.1). In this case the problem is called
quasi-static and is of a different nature. For example, the number of initial conditions
must be reduced, and in the one-dimensional case, to which we concentrate our attention
in this paper, it turns out that as solution we obtain E = E™ hence S = 0, and the
problem reduces to the solution of the system (1.9)- (1. 15) of ordinary differential equa-
tions. Though the energy estimates derived below also apply to the quasi-static case, we
consider it only shortly in section 8.

We remark that background information on the continuous theory of dislocations can
be found in [6] . ‘ .

In the engineering literature the numerical solution of the system (1.1) - (1.15) with
the modifications just described has been discussed, cf. [4,7]. An essential difficulty in
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these calculations is that |S%(z,t)| can come very close to o(z,t). This makes |8,EP| very
large, cf. (1.11), and thus indicates large plastic flow of the material. This effect tends
to make the numerical integration process unstable. An integration scheme to overcome
this difficulty was proposed in [4]

To the author’s knowledge, however, the fundamental question of existence of solu-
tions to this three-dimensional initial boundary value problem is open. The difficulty
distinguishing this system of equations from similar other nonlinear problems stems from
the behavior of the equations (1.10) and (1.11) at S = §/ = 0. Namely, one has for

M>1 M
d (1S sty
dSH\¢ s ) 157] =

ls!=0

a‘i m e \V* ga |
E’T%(E(F) ) i‘iﬂ){saﬂ:w'

In a certain sense, the system ( 1.1) - (1.15) is therefore degenerate at S = Sf = 0.

In this paper we prove a more modest result, since we only consider the one-
dimensional initial-boundary value-problem. We prove global in time existence of so-
lutions of this problem to small initial data. Moreover, we must assume in this proof that
m = 0 in (1.11), which is an unrealistic choice of this parameter for metals.

Thus, let L > 0and B = {z € R|0 < z < L}. In the following all initial data and all
the functions in (1.1)- (1.13) will only depend on ¢ and on the single space variable z € B.
We thus could change the formulation of (1.1) - (1.15) and regard E, E™, EP, E/, S, 52, S/
as vectors from IR®, but we shall stay with the old formulation and regard those functions
as depending on the variables ¢t and y = (z,0,0) with values in the space R® of 3 x 3
tensors, because such a change would bring no simplification of the formulation and of
the notations.

We also need the following notations. For T > 0 and X,Y : (0,L) x [0,T) — R* we
denote the function =z — X(z,t) by X(¢) and set

and

(X(®),Y(t) = f X(z,t)- Y(=,t)da,

(1.16)
[ X @)l = (F 1 X(z,t)]2dz)*/2.
For a solution W = (U, E, E°, E", EP,S, 52,5%,0) of (1.1) ~ (1.13) we define the energy

Et)=E@Et,W)= D E(t, W), (1.17)

lal<1

where for every multi-index a = (a1, a3)
£, W) = -;.[(patpa U(t),8,D°U (t)) (1.18)
+(D*S(t), D*(E — E™)(t)) + (D*S*, D*E®)] .
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Note that (1.9) and the assumption that D is positive definite imply
p a DO‘ -] n ./\/t @ na
Ea(t) 2 SID*VI* + |1 D*(E - EM)(t)|* + S ID*E*@)II* (1.19)

with a suitable constant Dy > 0. By H;(Q, IRk) we denote the usual Sobolev space of
functions defined on § with values in IR*. We now can state the existence result precisely.

Theorem 1.1 Letp > 0,6 > 0, M > 1,0 < X < 1. Moreover, let m = 0 and let

2
0<Q’_<§IB.

Then there ezist sufficiently small constants C1,Cy > 0 with the following property: As-
sume that the initial data from (1.5) and (1.14) satisfy

U° € H((0,L),R%), U € Hy((0, L), R®), (1.20)
E™ E*° ¢ H,((0,L),R®%),a° € Hy((0, L),RR*)

with E™(z), E*%(z) symmetric and with tr E™%(z) = tr E*%c) = 0 for almost all
z € (0,L). Moreover, suppose that

e <o) < %ﬁ,:c cl0,1], (1.21)
E*°(0) = E**(L) =0, | (1.22)

and that the compatibility conditions |
E°(0) = E™(0), E°(L) = E™°(L) ’ (1.23)

hold, where .
B%(z) = (VU(=) + (VU°(2))7)

Finally, suppose that
: L
£(0,W°) < C, / 18,0°(2)[2dz < C;
0

where the components and derivatives of

W = (U° E° E*° E™° EP° S° 50 S10 5% are calculated as above from the given
initial data and from the equations (1.1) - (1.8), (1.5) - (1.12) . Then there ezxists a
global solution W : [0, L] x [0,00) — IR® x (R®)” x R* of (1.1) - (1.15) with

U € Hy(Z7,R%)

E,E*,E",E? S, 8", 5 € Hy(Zr,R°) (1.24)
o c 'Hl(ZT, IR+) ,
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for every T > 0, where Zr = (0, L) x (0,T). Moreover,
| Et,W) < E(0,W°) (1.25)
for almost all t € (0,00), and |

g < ofz,t) <

Jé] ‘ (1.26)

W | N

for almost all (z,t) € (0,L) x (0, c0).

Note that (1.23) implies

§°(z)n(z) = 0 | |
for ¢ = 0 or z = L, where S%z) = D(E°=z) — E™°(z)), and where n(0)
(—1,0,0),n(L) = (1,0,0). (1.4) implies that the initial data must satisfy this condition.

The proof of this existence result is based on energy estimates. The problem involves
nonlinearities, which often lead to nonexistence of global in time solutions. In the present
case, however, the nonlinear dashpots f and p dissipate energy. We use this to derive
energy estimates, which show that for small initial values the energy of solutions and of
the first derivatives of solutions decrease as t increases. However, due to the degeneration
of (1.10) and (1.11) mentioned above, we are not able to show that the higher derivatives
behave in the same way. In fact, the properties of (1. 11) are such that we cannot expect
a solution with E? € C? to exist. In pr1nc1pa.l these energy estimates are valid for any
space dimension. But in the proof we need at several places a pointwise bound for some of
the functions in the solution, which we derive from the energy estimates using Sobolev’s
inequality. But since we have energy estimates only for the first derivatives, Sobolev’s
inequality yields pointwise bounds ornly in one space dimension, which is the reason for
the restriction of our existence result to one space dimension.

Theorem (1.1) is proved in sections 2-6. In section 2 a sequence of approximate solu-
tions is constructed, in section 3 the energy estimates are derived, in section 4 estimates
for the hardness o are derived, and in section 5 it is shown that terms appearing in the
energy estimates and which do not have a sign can be bounded by other terms with a sign.
In section 6 all these estimates are put together to show that the sequence of approximate
solutions converges to a solution of the initial-boundary value problem.

In section 7 we finally study the asymtotic behavior of the energy of the solution as
t tends to infinity. The nonelastic deformations dissipate energy, but since nonelastic
deformations are isochoric, cf. (1.6), (1.7), only part of the energy contained in a given
motion of a body is dissipated. Therefore we can derive decay estimates for the energy
only for isochoric motions and show that for such motions the energy tends to zero.
Precisely, the following result is proved in section 7:

Theorem 1.2 Assume that the elasticity tensor D maps tensors with vanishing trace
into tensors with vanishing trace. Let b > 0,K; > 0. Then there ezists a constant
K = K(h,K;) > 0 with the following property. Suppose that the initial data satisfies "

/OL U9(z)dz = /L UY(z)dz = 0 (1.27)

0
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and.
tr E(z,0) = tr E™(z) = tr E*%(2) =0 (1.28)
EF’(e) = E’(2) = 0

J J

forallz € [0, L] and i,j = 2,3. Let W be a solution of (1.1) - (1.15) with
U € C*([0, L] x [0, ), R®) -~ (1.29)
- E,E*, E" E®, 5,5, 57 € CY([0, L] x [0,00), R?)
and with

sup £(¢, W), sup |o(z,t)| < K, .
£>0 0<z<L ,

i>0 ‘
Then W 1is isochoric, i.e. tr E(z,t) =0 for all (z,t) € [0, L] x [0,00), and the energy of

the solution satisfies.

~

Eo(t+ A, W) < 1

‘ ) 2/(-1)
h(M-1)/2 K¢
( + [71; foh 50(1', W)dT](M-l)/Z) .

for allt > 0.

&o is defined in (1.18), and condition (1.27) essentially excludes rigid motions of the body,
which of course do not lead to decay of the energy to zero. M > 1 is the material
parameter from (1.10). We note that the assumptions (1.29) about the differentiability
of the solution can be easily weakened, but we leave this to the reader.

From this result we conclude that all the stresses S, 5%, S/, the strains E — E*, E® =
E™ — E?, and also the time derivatives 6,E™ and §,EP asymptotically tend to zero for
t — oco. However, this decay result is not strong enough to prove that the nonelastic strains
E™ and E? asymptotically tend to a function E*, which would be the accumulated strain.
Whether such an asymptotic convergence result can be proved remains an open question.

Acknowledgement. This paper resulted from a cooperation with the Forschergruppe
“Inelastische Probleme und Probleme der Bruchmechanik” at the Technische Hochschule
Darmstadt. The author wishes to thank Franz Kollmann for presentation of this problem
and for several interesting discussions. Thanks are also due to E. W. Hart for a long,
helpful discussion.

2 The sequence of approximate solutions

Let {N}2, with 0 = A; = A\; = A3 < Ay < ... be the eigenvalues (according to mul-
tiplicity) and {1}2, € C=([0, L], R®) be a system of eigenfunctions, orthonormal and
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complete in L,([0, L], R®), to the boundary value problem

d—i—zl/l(w) + /\le(z) =0 (2.1)

d d
(0) = u(L)=0.

vi(z) = a; cos <\//\7:c)

with a suitable vector a; € R®. We want to approximate the solution W(z,t) of (1.1) -
(1.15) by a sequence {Wy(z,t)},, where .

Clearly,

Wi = (Us, By, B2, B}, B, S, S5, SL, 1)
1s defined as follows: For k > 2 the function Uk is a linear cpmbinatiofx

U(z,t) = ;Qlk(t)uz(w) (2.2)

of v1,..., v with suitable functions oy, ..., ok [0,T) — IR. It is required that these
functions and the other components of W, satisfy the equations

1 ;
E, = §(VU)¢ + (VUk)T) : (2.3)
Sk = D(Ex — E}) (2.4)
(p 33Uk(t), 1/1) + (Sk, VV[) =0,l=1,...,k : (2.5)
) ‘
Sp = Sk - g(tl‘ Sk)f (2.6)
sk=Sg+ 5! (2.7)
E; = E; + E} ’ (2.8)
Sp = ME} (2.9)
' siNY sf
&Ep = e*x(k|Si|) ('—kl) —r (2.10)
$ |5 |
|5;2’|) Sk
8,Ff = P, 2.11
t ’ ( 7% ) |SE] (211)
Gor = x(k|SE) 6. B¢ 0wl (0w, |Sk]) (2.12)
Here x € C*(R™) is a smooth cut-off function with 0 < y < 1,x' >0, and
0, < 1/2
wo-{0 Esr (213)



P, € C*=([0,1),[0,00)) is a function satisfying

e(ln 1 "1/A’ 1 —<_ <1

am={((@m Fsb<t (2.14)

E(lnk) k&a OS{Sﬁa

1 , 1,
0 < iy Pi(€) < Pi8)E < LoPu(€) < Loe(ln Z) Mo<e<ye, (2.15)
£ .
IPHO < Lak(ln k)0 € < (216)
1 1

‘ |PY(E)¢] < Ly P(€), 7 S £ < 3 (2.17)
for suitable constants L;,...,Ls > 0 independent of k£ and £. In the appendix it is shown

how such a function can be constructed. The functions ¥ and Py are introduced to
regularize the singular behavior for the right hand sides of the equations (1.10) and (1.11).
Equations (2.2) - (2.12) form a system of ordinary differential equations. The necessary

initial conditions are .
(Uk(0), 1) = (U, 1)
(8.Uk(0), 1) = (U, )
EZ(0) = E'"'O,E,‘:(O) = E“'O,ak(O) =g°. (2.19)

o
If W), is a solution for (2.2) - (2.12) we denote by Tinax = Tmax(Wk) the extended real
number with 0 < T.x < oo such that W, is defined on [0, L] X [0, Tiax), but cannot be
extended to a domain [0, L] x [0,T) with T' > Tppay.-

=1,... .k (2.18)

Lemma 2.1 Let p > 0, and let 0 < A < 1,M > 1,0,6,8 > 0. Here § and 8 are the
parameters in the definition (1.13) of T'. Suppose that
U° € Hy((0,L),R®),U* € Hy((0,L),R3),
E™0 E*® € ¢*([0, L], R®),¢° € C=([0, L], R™)
with E™(z), E*°(z) symmetric and with tr E™(z) = tr E*%(z) = 0 for all z € [0, L).
Moreover, assume that
inf o%(z)> @,
0<x=<L ‘
VU°(0) = E™°(0) = E*°(0) = VU*(L) = E™*(L) = E**(L) = 0

and

IME*(2)| < o°(z)

for all z € [0, L].
(i) Then there exists T > 0 and a unique solution

Wi = (Us, Ex, B¢, B}, B}, St, St 1, 04)
€ c>=([0,L] x [0,T), R® x (R®)" x [, 0)).
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of (2.2) - (2.12) to the initial conditions (2.18) - (2.19) . )
(ii) Ex(z,t), EXz,t), E}(z,t), EL(z,t), Su(z,t), Si(z,t), Si(z,t) are symmetric and sat-

1sfy
trEl =trEp=trEL=tr Sf=1tr S5/ =0 (2.20)

and

Ey(z,t) = Ep(z,t) = Ep(z,t) = Ef(z,t) = Si(z,t) (2.21a)
= §%(z,t) = S{(z,t) =0,

O'k(:z:,t) = a’o(z) (2.21b)
forz =0 orz = L.
(35) If Tous(Wi) < 0 then
lim sup ||Wk(-,t)” = oo
t/‘TmI.X oo

or

aul(t) = SiC, ), = 0.

liminf
t/

max

Proof. We solve the equations (2.7) - (2.9) for S¢ and S/ in terms of sx, Ef and EI,
insert the result into (2.10), (2.11), (2.12), and obtain
sk = M(E} - EZ’)I)M st = M(B; — B)

sk — M(Ef — E¢)

ex(klox — M(E] - EB))) (

s*

M|Ep — EP|\ Ep— EP
&,EL = P, Bk 23
o= () (229
Bta'k = (224)
M|Ep — EF 5/ ) i
(kMg - B, (BB goot-oim g g ppypie
The equations (2.5) can be written as
k d2 k 1 T
p 2_(viy ) Zam(t) + 2 (5 DIV + (Vis)'], Vir)age(t) =
j=1 I=1
= (DEME), V)l =1,....k. (2.25)

From (2.4) and (2.6) it follows that S, and therefore also s; is a linear function of
Q1k, ...,k and EZ. It thus follows that (2.22) - (2.25) constitute a system of evolu-
tion equations for the unknown functions ai,. ..ok, E7, E;, o, where the coefficient
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matrix on the left hand side of (2.25) is invertible, since {1}, is hnearly independent.
We multiply (2.25) with the inverse of this matrix and set ﬁlk = alk This transforms
(2.22) - (2.25) into the first order system

L) = Fu(%l), (2.26)

with
V;c(t) = (alk, e,y Qkky Bk, - .. s Brk, E,':, E:, Uk) .
The initial condition is
Vi(0) = V¢, (2.27)
with
V;eo = (a?lﬂ e agkiﬂ]?ki e ’ﬂlgki En,O, EP'O) 00) 3
where af}, 8}, are determined by (2.18), and where EP® = E™® — Ea0 By definition in

(2.13) , x vanishes in a neighborhood of zero. Noting this fact and using that P(¢) =
e(Ink)=/*k¢ for 0 < ¢ < 1/(2k), we see by inspection of (2.22) - (2.25) that ’

Fy: D—+(IR’°) [C=([0, L], R®)]* x [0, )

is infinitely differentiable, where

‘ 1
D = {(a1k1 s 7akk7131k1 s HBkkv E;:" EZ) Uk) € (IRk)2 X [Coo([o, L]’ le)]z X ('2" g'_,OO) :

sup M|E] — Ef| < ak} .

z€0,L]
The assumptions for E™®, EP® 4% imply that V}° € D . Therefore it follows from the usual
theory of ordinary differential equations in Banach spaces, that there exists a 7' > 0 and
a unique solution Vi € C=([0,T), D) of (2.26) , (2.27). Moreover, it follows that the
solution can be continued as long as it stays in D. Since (2.12) shows that o} is non-
decreasing, it thus follows from the assumptions that ox(z,t) > ¢°(z) > ¢. From this we

conclude that if the solution Vj, exists in [0, Timax) With Tinax < 0o but cannot be extended
to [0,T) with T > T\pez, then

limsup ||Vi (-, t)|lo = o0
t

~or (2.28)
timint [ow(-,£) ~ MIBE(1£) ~ B2, )] [l = 0.

The solution W, of (2.2) - (2.12) , (2.18) - (2.19) is obtained from V; using (2.2) , (2.3)

y (2.4) , and (2.6) - (2.9). Because »; € C*([0, L]) it follows that W, € C>=([0, L] x

[0,T), R* x (R®)" x [g,00)). This proves (i). Statement (iii) is directly obtained from
(2.28). o '
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To prove (ii) note that we can modify the elasticity tensor D such that its restriction
to the space of symmetric tensors is unchanged, and such that the space of all skew
tensors are mapped to zero by D. We show now that for this modified tensor D inserted
in (2.4) the tensors Ey, B¢, E}, E}, Sk, S, and S} obtained as solution of the system of
differential equations are symmetric. But then (2.4) remains valid if the original tensor D
is substituted back into (2.4) , since it is only applied to the symmetric tensor £, — EY.
Thus we have a solution of (2.2) — (2.12), (2.18) - (2.19), and the first statement of (ii)
follows from the uniqueness of the solution.

Thus, let D map skew tensors to zero. Since the elasticity tensor D maps symmetric
tensors to symmetric tensors, cf. [1], DR is symmetric for every tensor R , whence S is
symmetric. Moreover,

(DR = DR = D(%(RJr RT) + %(R— RTY) =
- D(—;—(R +RT) - %(R _RT)) = D(RY).
Using this relation in (2.4) we see by inspection that the function
WE = (Ue, EL, (ER)T (BR) (ED)T, St (ST, (S)T, ov)
is a solution of (2.2) - (2.12) , (2.18) with (2.19) replaced by
(ER)T(0) = (B™)T, (E2)T(0) = (B*°)T, au(0) = o°.

But, by assumption E™® and E*° are symmetric. Therefore Wj and W[ are solutions of
the same initial value problem. Since the solution is unique, it follows that W, = W[,
whence the symmetry of By, E2, EP, E?, Sk, S2, 5{. To prove (2.20), note that (2.22) and
(2.23) yield

8(tr E}) = —e'M (k{S,,()(lSkl) J-f—(t Ep —tr EE)

Oi(tr EY) = MP, (‘S I) —tr E3),

Bl
which is a linear system of differential equations with infinitely differentiable coefficients
for the functions tr E} and tr E}. Since by assumption tr Ef(z,0) = tr E™°(z) =
tr Ef(z,0) = tr EP%(z) = tr E™°(z) — tr E*%(z) = 0, it follows from the uniqueness of
the solution of linear differential equations that (2.20) is satisfied.

~ To prove (2.21a) note that (2.20) yields tr (8, D*E?) = 0 for every multi-index a,
hence, from (2.6) and (2.7) ,

. «
DSk 8,D°Ey = (D%si + 3tr (D*Si)]) - 8,D°E} (2.29)
= D%s - 8,D°E} =(D*S¢ + D*S{)- 8,D*E} .

12



Setting & = 0 we obtain from this equation and from (2.4), (2.8)- (2.11) -

= [31D(Eu(,) ~ Bie, )] (Bale, )~ B, 0) + S Eb(e )]

= Sp-(8.E.—8ED) + S¢ B,E: =
= S 0B, — Sp-8.Ep — S[-8.E; + S; - 8,E} — Sp - 8,E
< Si(z,t) - BiEx(z,t).
From (2.1) — (2.3) we obtain
Ei(0,t) = 8,Ex(0,t) = Ex(L,t) = 8,Ex(L, ) _ 0 (2.30)

for t > 0, whence, forz =0orz =1L,
1 n n M a 2
5 (D(Eu(z,t) =~ Ei(2, )] - (Bw(z,t) = B (2,t)) + - | Ei (2, t)]

< ID(Bu(z,0) ~ B(z,0))) - (Bx(2,0) ~ B{(2,0)) + - |Bi(z,0) =0,

N |

where we used the hypothesis E™?(z) = E*°(z) = 0 for z = 0 or ¢ = L. From this
inequality, from (2.30) , and from the assumption that D is positive definite we obtain
(2.21a). Equation (2.21b) is a direct consequence of (2.21a) and of (2.12) . The proof of
Lemma (2.1) is complete.

3 Energy estimates

In this and the following sections we prove energy estimates for the solution W, con-
structed in the last section, which show that neither of the relations of Lemma 2.1 (iii)
is satisfied, which implies that W} exists on the domain [0, L] x [0,00). Moreover, these
energy estimates show that the sequence {W;}32, has a subsequence, which converges to
a solution of (1.1) - (1.15).

For simplicity in notation we mostly drop the index k in the followmg sections and
assume that W € C*([0, L] x [0, T)) is a solution of (2.2) - (2.12) to the initial conditions
(2.18) - (2.19). The subscripts t or & denote differentiation with respect to ¢ or z.

Lemma 3.1 Let W € C*([0,L] x [0,T')) be a solution of (2.2) - (2.19). Then

%&;(t, W) = —(S7(t), BE™(t)) — (S°(¢), B, EP(t)) (3.1)

e* L L
=5 [} xBISIDIS! (@, = [ ]5%(z, )] Bz, )z <0,

Here &, is the energy defined in (1.18).

13



Proof. From the symmetry of S and from (2.3) we obtain for any multi-index o
DS . DE, = %D"S (DAY, + (D*VU,)T) (3.2)
= %(D"‘S) (D*VU,) + %(D"‘S)T - (D*VU,) = D*S - (D°VU,).
Using this equation and (2.4) , (2.9), (2.2), (2.29), (2.8) , and (2.5) we obtain

d
—€g(t) = (pUs,Us) + (D(E — E™),E, — E") + M(E®, E})

= (pUu, Ue) + (S, VU,) — (S, E7) + (8% E¢)

k ’ . )
2PV, 1) + (S, Vn)] Baun(t) — (S° + S7, E7) + (S°, ET — EP)

=1

= —(S%,E) - (5%, EP).

il

(3.1) follows from this equation and from (2.10) , (2.11) . The proof of Lemma (3.1) is
complete.
For |a| < 1 we introduce the notation

A(D%|S%) = Aq(t, D|S°) | (3.3)
_ L 1 I Isa(zvt)l aloa z 2 T
- /(; a'(:c,t)Pk( (T(.’E,t) )(D IS( 1t)l) d |
Ao(D%|ET]) =

Aq(t, D*|EY)) (34)

— L 0'(.’!: t) a D 2
=/ Fy(egty (07 B )

Lemma 3.2 Let W € C*([0, L] x [0,T)) be a solution of (2.2) - (2.19) . Then we have
for every multi-indez o with || =1

%a,(t, W) = —(D*$%, D*E}) — (D*S$°, D*EY), (3.5)
where

—(D*S?,D*EM) = (3.6)

[ XM 1872, 0 D77 + (01 — 1)(D|57)] e

s*M

*

L
~ 7 [ kxX'(KIS! ]IS 1M (1D 5]z < o,

M
$*7 Jo

14



and
L {EP
| Sel

L |qa S|\ D=
+/ [5°) P,;(' |) 7 p*|5°|da
0 g ag . g

—(D*S$°, D*EF) = / [ID*S$2[2 — (D=|S°|)?]dz — Ay (t, D°|5°))

L lsal a P (2 al P2
= |EP1“D El (D IEtl) ]d:l:

— Aq(t, D*|EP)) / 1592 D°‘|E”|dm
Note that for any function R(z,t) € R™ and for any multi-index a with |a| = 1
[21RI(D|R)| = |D*(IR))?| = |D*(R- R)| =|2R-(D°R )[ < 2|R| |D*R],

hence

|(D*|R])| < |D*R|.

Since o(z,t) > ¢ > 0 and since (2.14) , (2.15) imply P,(¢) > w > 0 with a suitable
constant w, 1t follows that all terms on the right hand sides of (3.7) with the exception of

the two terms containing D® are non positive.

Proof. From (2.4), (2.5), and (3.2) we obtain

= [(082U(2), 82U (%)) + (8.5 (), B(E ~ ) =

dt 2
= (p8:8;U(t), B{U(t)) + (8.5(t), 8}(E — E™))
= (pB:8;U(t), {U(t)) + (8.5(t), 8VU) — (8,5(t), B2E™)
k 2
=3 [(00:82U(t), 1) + (8.5(2), V)] %azk( t) - (8:5(2), 07 E™)
= 3 5 (02U )+ (500, 9] rau(t) - (4510, .87)
From (2.1), (2.4), (2.5), (2.21a), and (3.2) we obtain similarly
d1

75 [(p8.0:U(2), 8:8:U (1)) + (8:5(t), 8:(E — E™))] =

(pB:02U (t), 8:0,U(t)) + (8.5(t), 8:8:(E — E™))
= (p8,08U(t), 8:8.U(t)) + (8.5(t), 8:8,VU) — (8,5(t), 8,0, E™)

= —A_ij [(p82U(2), 8200) + (S(t), 82V mn)] %alk(t) — (8:5(t), 8.EP)

15
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= 3 M [(e82U(8), ) + (5(2), Tw0) %azk(t)—(aﬁ(t),amw)
= —(8,5(t), 8,E7).

From (1.18) , (2.8), (2.9), (2.29), and from (3.8), (3.9) we obtain for |a| = 1

= &a(t) = —(D°S(t), D°E(t)) + (D*5%(t), D*E{(t))
= —(D*S°+ D*S!, D*E}) + (D*S®, D*E} — D*EF)
= —(D*S’,D*E?) — (D*S*, D*E?).
This proves (3.5)
The equation (3.6) follows immediately from (2. 10) and from S/ - D*§f = 1D=(57 -
§f) = ID|Sf)? = |Sf| D= |Sf|. The right hand side of (3.6) is non-positive, since we

assumed M > 1 and ¥’ > 0.
To prove (3.7) we use (2.11) and proceed as follows.

14
_(Dasa,DaE{') — __(Dasa,Da(|l§ ||Sa)) —

lE;-' a a o ca |EP a aca
—(|SG|D37DS)'—(( |S|)S DS)

| E%| /L | E¢|
— D*S5%, D*5%) — D= S| D*|S%|dz

(i3 )- [ oIS

Ef @ qa a ca o aica EP ajca
—(IIS;I'D 5¢,D*S )—/0 D*|E?|D*|S Id:c+/ I|5a|(D 15])?dz

Now compute D%|Ef| from (2.11) and insert the result into this equation to obtain the
first equality in (3.7) .
Similarly,

—(D=S®, D*EF) = —(D%( I|I§”IIEP) DEP) =

15l
(&
15
(&

«15°]
| E¢|

D°EP, D*E?) — ((D YE?, D*EY)

D“lEfl)zd

D°E7, D°BY) - [ D°15° D*|Belde + [ 17
0

- Compute D*|S%| from (2.11) and insert the result into this equation to obtain the
second equality in (3:7) .

16



4 Estimates for the hardness

We cannot conclude directly from Lemma 3.2 that £,(t) is decreasing, because (3.7) shows
that (D*S*, D*E}) contains terms which do not have a sign. Therefore these terms must
be estimated. As preparation we derive in this section estimates for the functions ¢ and
Oz .

Differentiation of (2.12) yields

Gu = h(&,8)00 + | BVl oT(o, 1S )x(kIS?)) (4.1)
+ 1BE| 1571 [B(b1S°1) + bl (41 5°0)]
with Ga
b t) = BT s DxksD [L-s - Saem(Eh)) . )
Thus
0a(2,t) = ou(z, 0)edo HEMn (4.3)

t t : ‘ Sa z
+ [ eJreman [IEfIz oTx + (Bx + ok|S°[x') |EF|T " Sa'l } dr .

Lemma 4.1 Let § > 0. There ezists a constant K; > 0 with the following property: Let
W e C>=([0,L] x [0,T)) be a solution of (2.2) - (2.19) and assume that

B

<go t) <
0<¢g< oz, )__1+29,

15%(2,8)| < —;—a(z,t)

for all (z,t) € [0,L] X [0,T), where 3 is the parameter appearing in the definition (1.13)
of the function T'. Then

t t
[ b r)dr < K [ (5% B+ Ma(r,15°1) + Aol | BELL)dr

Proof. We set
hi(z,t) = C1|Ef(z,t)||S%(z, t)['+

. ' 146
om s ()
651+ \ o

1-5-Za4my < Lee

with

A simple calculation yields

17



for 0 < ¢ < 1. From (4.2), (1.13) and from 0 < x <1 it thus follows

Mert) = Wﬂ()(fﬂw
()
("2

S h1 (C,t
~ where we used that |S¢|/c<land B/o—02>21+9.
From |S%(z,t)| < 8/2 and from Sobolev’s inequality we therefore obtain

1-5-Zaem 1,

IN

<

) =

L L .
h(y,t) < ha(y,t) < C( /0 ha(z, t)de + /o |h1a(z, 8)ldz) (4.4)
< 001@)0 (5%, EP)+ C /OL Ihe(z, )] dz .

Moreover,

L L
[ haalat)ldz = 0 [ 1B1 15714 + EEI(15°1+).

dz

L g P k(l ) a|2+28
<O [ e (B0 ot [T 5ol
[Ead}
Ci(1+6 ’°( )sa 2 — |S5°|% |E?|? dz
raao [T +/}wﬂﬂ|| " da] .
< Cuha(t, | EFl2) + Ca(1 + 6)As(t, [S°L). |

B\* |w|w . S| Bf| | ca
+Cl(§ /OP,,( )2 |s%lde + ¢, 1+9)/ W]SHEPI&B

< C1Aq(t, |EP2) + C1(1 + 6)A1(2,|5°%z)

(1+96)

20/ qa P
ST B (S D),

,B 26
+ Cl (—2‘) ' Lz(Sa, Etp) + Cl

where we used (2.15) and (2.11), which together with |5%|/o < 1/2 yield

IS"l |5

Pk( < LyPr(— ) Ly |E?|

18



and

27| 20 Pe()  cape o 1 (a)cwg“
— e 10 = —mrsro |0 < +—lo o*
EEETTT T R = ) (5
1 26
- ‘2L169

The statement of the lemma follows from (4.4) and (4.5).

Lemma 4.2 There ezist constants Ky, K, > 0 with the following property: Let W €
C>=([0,L] x [0,T)) be a solution of (2.2) - (2.19), let0 < X < 1, and assume that

for all (z,t) € [0,L] x [0,T). Then
L . t
[ lou@ e < 2exp 263 [(5 BD) + Aa(r,[5%]2) + Al EELL)r |
0 0 »
L " t t
. [/0 loz(z, 0)|*dz + K, /0 (5%, E?) + Ay, |S°{z)dr/‘; Av(7,]5%2) + Az, |Ef|z)dr} .
Proof. Note that (2.13) implies x'(¢) = 0 for £ > 1, hence

0 < Bx(kIS?|) + ok|S*|x'(k|S?]) < B + o max x/(¢)

< ,8(1+§ma.xx’) = 8.

With . ~ .
h = sup h(z,n)dn
0<r<r<tYT
0<z<
we thus obtain from (4.3)
i ,
/ |0a(z, t)|2de (4.6)
0

. — L L t _ |Sa| 2
2k 2 P P @
< 2e [/(; loz(z,0)|*dz +/0 (/0 (le|EY|T| + |B|EFIT 5e] DdT) dz} .

Now (2.11), (1.13), and Cauchy-Schwarz’ inequality yield

L/ pt » o 15%a 2~
[ ([ to1zpr+ BlEET e ir ) da
o \Jo |Se]

Lyt -t T \2 t/; T 'lsalz)z ]
a2 P — p
<2 [ [1spar] | [ (122 I"“’|5a|) i+ [ (15218 S 52 ) 1%
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<[ [ 1] (&) (1 (e e
( ) // (I|§:l (15°)é/a_1§]3a|2) drd:c].

From (2.15) and from |S°%|/o <1/2, 8/0 — 3/2 > 0 we conclude

Cor 1/2
©/ gay Blo-1 - / gay Blo-3/2 - 15°1. 159 1/2 o
(—0—") = P! Eid] (—> Pk( ) 4
| P ) o o o
1 ’ 1/2 1/2
a L2 |Sal el _ o
< |\ P S ST e
| Pi(=) ¢ a a PL(E)

and, noting (2.11),

|Efl (|5a|)5/0—1 1 . Pk(!i“[) [l ( o )]1/2 - (Isa])l/z 1
— n D —
15l \ o o - [ln(rs‘%|)11/2 |Sel”l 155\ o /o2

|5, 159 S 12 1galy-1/2 1
< |+ Bd=EhE g &y 2 (BT L
Ll c’ o |Se| o o
< 1 pk( )Lael ( o )l—l/A 1/2
= | Lo |54

[ ’ Isal 1/2
S EL3 (lnz)l—l/A P]:(_—o-—)}

Q.3L1L2 o

We insert these estimates into (4.7) and obtain with (3.3) and (3.4) that the right hand
side of (4.7) can be estimated by the term

max / 15| de] [ /0 tAg(T,IEfI,,)+A1(T,|S°]z)d‘r] (4.8)

[0<::<L

with a suitable constant Ks.

Finally, Sobolev’s inequality and Cauchy-Schwarz’ inequality yield

/OL/Ot|sa|2drdx+/oL|%([)‘|5412dr)|dz]
c [2 /OL/: 15°\2dr dz + /OL /ot(]S“}z)zdr dm]

20

ma# (/t |Se2dr) < C

0<z<L " Jo




52, t i
<C / P cayg / .
202122(@5) o (B2 57) T+orsnzast(P,;(L5L|)) 0 Ma(r 15%2)dr
| 0<r<t 0Zr<t 2
El oo 2 t
<C 2%2%( Pk(-‘fj')”) /0 (Ef, $%)dr + Spw /0 As(,]8°%.)dr

< 28002 [ (B, 5%) + M(n,|5)dr)

where we applied (2.11) and used that (2.14) and (2.15) imply

e(lnk) Yk, 0<¢< 5
: -t — <z
P&) =24 2 (Ink) €lnl’ 5% <¢S %

6(1 1>-1/A 1 1<€ )
| 3\PE) EmI BSCT T

whence Pj(¢) > 1 > 0 for a suitable constant w independent of k and ¢. Combination of
this estimate with (4.6), (4.7), (4.8) and application of Lemma 4.1 yields the statement
of the lemma. : -

Lemma 4.3 Let W € C=([0, L] x [0, T")) be a solution of (2.2) - (2.19) and assume that
c<o(et)<B, |5°(e1)l < ;0o
for all (z,t) € [0,L] x [0,T). Then
. . 0 0 L 2 1/2
(i) ¢ < o(z,t) < min{a®(0),°(L)} + (L /0 loy (3, ) dy) 2
(ii) 0 < gy(=,t) < (g)sﬂe Z—z(ln 2)71/2

for all (z,t) € [0,L] x [0,T).
Proof. (i) From (2.21b) we obtain

L
o(z,t) < min{o(0,8),0(L,t)} + [ loy(y,t)ldy

< min{o%(0),e"(L)) + LV [ loy(y, 1)) .

(ii) Since by assumption 0 < x < 1 it follows from (2.12), (2.11), (1.13), and (2.14),
(2.15) that

2(nggm) o) (B
< < {1 Lo = 1
0 < ¢z, t) < st n 5] o{> =
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< e é—‘:(lnz)‘l/" 5(?)6 .

5 Estimates for the mixed terms

In this section we derive estimates for the terms without sign in (3.7).
Lemma 5.1 Let W € C=([0, L] x [0, T)) be a solution of (2.2) - (2.19) and assume that

a<lo(z,t)<pB, [S%z,t)| < -;—a(m,t)
for all (z,t) € [0,L] x [0,T). Then
/(; lSa|Pk(' l Ut |Sa‘td '

< S22 (£) I° 0 (222, 57) + Mute 1571

where

156 = gmax 5%, 1)
Ly and L3 are the constants from (2.15).
Proof. (2.11) and (2.15) imply

se| . |5e ge
B py 15l < 2 = e,

The assumptions of the lemma therefore imply

A |Sa| k(lsa|)at|5a’ de

<) [ T [ S Ly

0<z<L" o o
| (51)
Ot [ L a P a
< @ax () | L [ 157 |B7 de + Aa(t, 1)

= max (2 )[Lz(Ef, S“)+A1(t,|5"|t)].

0<z<L
Since |S$¢|/o < 1/2 it follows from (2.12), (2.15), and (1.13)

I a
maX( ) < pax | E7|T(o,|5%)

0<z<L |
< %ea 22(2) s [(@)ﬂ“-l ts:l]
< (1 2)" 1/*( ) 15%(8)]
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Insertion of this estimate into (5.1) yields the statement of the lemma.

Lemma 5.2 There exists a constant Ks > 0 with the following property: Let W €
C*=([0,L} x [0,T)) be a solution of (2.2) - (2.19) and assume that

2<o(zt), 15, < 5 olzt)
for all (x,t) € [0,L] x [0,T). Then

L |Ga 5%, 0z | e
[ a2 5wl

< Ka( [ loulde) (14 [ louf dz) (8,59 + Ma(t, 1571

L
+ (k)1 + ([ loaPde) ) £t W)
- o
Proof. The assumptions imply

[ a2z s

/OL l%]de]l/z [/(; (IS“I k(|5a|)> 2(|Sa[z)2d$]l/2
< g2 [/OL |0'=|2d:c] v max [(|i“|)2p,:(|ia|)] e . (5.2)

([ 2 ]

< oIl [/ o dz] 2[max[('5°') ('S“’>1+A1(t 15 )]

0<z<L 2

IN

Observe that (2.16), (2.17) imply for £ = |5°%|/d < 1/2
1 —ipl
€2 P ()] < La(€P(€) + k(ln k)7 1”;) :
“Using this estimate, Sobolev’s inequality, and (2.15) several times, we obtain

mex () AT

g

we( [ (£ e

C(Lz B, 5°

[ () ) o)

se e S| |18k _ 1s°1 o
ll)+<| I) ,,I Il _ 15t e

oc.
23

dz)




cL Lisel  18% 115%. |5 o
<—(E£’,S")+C(2+L)/I /(| )\'5| 5% 22 | 4,
(22 (o4
1115%,  |5% o
Az 217
+c/ Lik(ln k)P o[22 - 1 22 g
_CL S |se
~2(B7,5%) + C(2+ L) [Al(t 152, +/’ T & ‘)d]

coen[Nlerad] [ () Sn(Z))w]”
+ CLy(ln k)-l’/*{%ﬁ [ / L(IS“|z)zd:z:] " | o
s xsalzczm]m [ oot "

< OLa( +(2+ Ba) o) (BE,S°) + 02+ LM(, 15°1.)

1 L 1/2
+5C(2+Ly) [/ {az|2dz]
0

[ [(5) 0]+ 5 [ (F) SrShed

1/2
+ CLy(ln k)™ [Pa— +

1 L
] tonpaste| agerege, e

< CLZ{ +(2+L4) + - C(2+L4)2/ o, |*dz E’.—] (E?,S%)

+0@+ LML 157) + § max [('S°') 7|

o

LY/?

+ CLy MY (In k)~ 1/*[ + -[f |am|2dz]1/2] E(t, W)/,

In the course of the calculations we also used (1.17) - (1.19) and set

_.1/
02+L4 [/ '”’lzdz] '

From this inequality we finally obtain -

SN2 5]
max |(SH) P
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<2CL, G 2+ L4) i 0(2 + L) = /L {az[zdm) (E?, 5°)

(5.3)
+2C(2 + La)Aq(t,]5%2)

L1/2

1 /L
1/2 ~1/2 27 \1/2 1/2
+ 2CLyMY*(Ink) [ z + 7 (/; loe|*dz) } E(t, W)=,

Insertion of this estimate into (5.2) yields the statement of the lemma.

Lemma 5.3 There ezists a constant K¢ with the following property. Let W € C*=(]0, L]
[0,T)) be a solution of (2.2) - (2.19) and assume that

2<o(zt), 15%2,0) < ; olz,t)
for all (z,t) € [0,L] x [0,T). Then
L o,
| [ 15122 B2 de)
L L ' ,
< Kol [ loa'de) |1+ [ loaPde) (BE, 5% + Ma(t, 15°)) + Aa, [E71L)
L
k) A ([ o)) £t W)
. 0
Proof. As at the beginning of the proof of Lemma 5.2 we obtain

| [ 1571 %2 2

<o | [l " B (GO v k)]

0<2<L o
The statement of the lemma is obtained from this inequality and from (5.3).

Lemma 5.4 There ezists a constant K such that for every solutzon W e C>=([0,L] x
[0,T)) of (2.2) - (2.19) and fori = 0,1

6 NELEQI + BB @) + LB (@)]* + |6U(¢)*
’ t . . .
< Kolt max €0, W)™ [(01ST, 0B ar + £, W) + 8L E)

) IBE@I +[0E D) + 8O < Krs(t, W)

(i) U <S¢ [ e wydr +2UO)]7.
‘ p Jo
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Proof. (i) We prove this inequality for ¢ = 1. For ¢ = 0 the proof is analogous. From
(2.10) we obtain

L
/ 18, E™(, t)|2dz (5.4)
0
L t
= ["1 [ 6Br(k,t)dr + 8.E™(2,0)da
0 0
<2 / “ / BN, t)|dr)do + 2 /L 18, E™ (2, 0)[2de
= o o iy ) 0 £ y

L pt
<2 / / |8, E7(z, £)[2dr dz + 2||0, E(0)|?
0 JO

e* 2 L st , ' _ _
=2(Sp) [ [ |s? Pt + (1 - 1)t |57,

2
+ x|SHM-1 Sf| dr dz 4 2||8.E™°))?

* 2
€ 7 _ f M-1
<4 (Sr) tlmarx(©) + M — 1) goax 572

. /otLL(kXIISf|M -+ (M - l)xiSfIM—l)(lsf{z)zdm d';"

* 2 ) t pL
+4(5) tma IS’ ONE [ [ s’ |s2Pdzdr + 20,57
s*

0<r<t

e*

t
! f M-1 f n n,012
< 4 (maxx'(€) + M)t max [[57(7)l|o /0(825 0 B¢ )dr + 21|18, ™77,

S

where we applied (3.6) in the last step. We also uséd that x/({) = 0 for £ > 1, hence
(k]S [571% < maxx'(6) |51
Note that (1.17), (1.19), Sobolev’s inequality, and (2.4), (2.6), (2.7), (2.9) imply
1Ol < (WP |
Insertion of this inequality into (5.4) yields
0. E*(®)I* < Cat gma, £(r, W)M-2 [ (0.7, 8,E1)dr + 2|10, ™|,

which proves the estimate for ||8,E™(t)||* stated in the lemma. The estimates for
|8LE(t)||> and ||8.E?(t)||* are obtained from this estimate and from (1.17), (1.19), and
(2.8), and the estimates for ||65U,(t)||* are obtained from the estimates for ||8% E(t)||? and
from (2.3).
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(i) is a consequence of (1.19) and (2.3), which imply -

1B.E@) = IIBt%(VU(tH(VU(t)_)T)II < VUl

2
= il < 2wy
p .
Again, the estimates for |3, E™(t)||* and ||8,E(t)||* are obtained from this result and from

(1.19), (2.8).
(iii) is obtained by integration of U, and application of (1.19).

6 Existence of a solution

In this section we first derive uniform bounds for the energy norms of the solutions W}, of
(2.2) - (2.19). We then use these bounds to construct a subsequence, which converges to
a solution of the initial-boundary value problem (1.1) - (1.15).

Lemma 6.1 Let the initial data U°,U?, E™® E*° o° satisfy the hypotheses of .Lemma

2.1, let m =0 in (1.11), and let W, be the solution of (2.2) - (2.19) obtained in Lemma
2.1. Then we have

1Uk(0) = U°ll2,  [18:Uk(0) = U}y — 0 (6.1)

£(0, Wi — W°) — 0 (6.2)

for k — oo, where || - ||; denotes the norm of the'Sobolev space H;((0,L)), and where

the components and derivatives of W° = (U°, E° E*° E™° EP0 §° 520 §10 5%} are
calculated from the given initial data and from the equations (1.1) - (1.3), (1.5) - (1.12).

Proof. Since we assumed in Lemma 2.1 that U? ¢ Hyi((0,L),R%), it follows as usual
from the spectral theorem for the boundary value problem (2.1) that

j
lim ||U* — chVlHI =0,
I =1
with ¢, = (U', ). From (2.2) and (2.18) we thus obtain
Btalk(0)=ct, (21,...,19,

hence
o0

18:Uk(0) ~ U3 = 32 (14 Ae)e; — 0 (6.3)
l=k+1

for £k — oo. In the same way we obtain
o J
lim ||U” = ) dlly =0
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with d, = (U%,v,), and -
1Uk(0) = U°|I} — 0 (6.4

for k — oo. Since (8,14, 8,v5) = Aby; and since U° € H,((0, L), R®) with VU°(0) =
VU°(L) = 0, we conclude that

(3:U0, l/[) = (UO, 332:1/[) = —/\ldt ,

~—

hence o
102U(0) — BZU°|* = 3° Nidi — 0 (6.5)
{=k+1
for k — oo. (6.3) - (6.5) prove (6.1). To prove (6.2), note that (2.19), (2.3), and (6.4),
(6.5) yield ’

I(Ew(0) - EZ(0)) - (E® — E™)|I7 | (6-6)
= | B(0) ~ E°|}: = 3 [(VUL(0) ~ VU°) + (VUL(0) — VUO)T || — 0
for k — 0o. From this relation, from (2.4), (6.3) from
EZ(0)=E**, S¢(0)=5*°,
which are consequences of (2.19), (2.9), and from the definition of £, in (1.18) we obtain
Eo(0, Wi = W°) + E1,0)(0, Wi —W°) - 0, k— .
To prove (6.2) it thus remains to show that

16204(0) — B2U°]l, [|8.Bx(0) — 8,E”],
| (6.7)
18.E5(0) — 3.E"°|, [|.E£(0) — 8,E%°|| — 0

for £ — oo. To this end iet II; be the projection from L2((0 L), R®) to the space spanned
by v1,...,v. (2.5) shows that

1 ,
8t2Uk(O) = Hk' (; div Sk(O))
and (6.6), (1.3), and (2.4) imply
|| div Si(0) — div S°|| - 0.
Therefore we obtain from (1.1)
UL(0) = (> div S(0))
p

1 1
= Hk(; div SO) + ; Hk(dlv Sk(O) —div SO)
= T (82U°) + lHk(div S(0) — div §°) — 82U°,
P
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where the convergence is in L,((0, L), R®). This proves the first relation of (6.7). The
second relation of (6.7), namely

[16:Ex(0) — 8,E°|| - 0,

is a direct consequence of (6.3) and (1.2), (2.3). Observe next that (6.6), (1.3), and (2.4)
also imply
15(0) = $°ll, — 0.
From $3(0) = §*°, from (1.6), (1.7), (2.6), (2.7) and from Sobolev’s inequality we thus
obtain
15{(2,0) = $"°(2)| < 2|Sk(2,0) - (=)
< CY5i(0) - 8% — 0

for k — oo and all z € [0, L]. (1.10) and (2.10) therefore yield
8 E™(z) — 8,EZ(z,0)

*

57 [1 = x(k|S{(=,0)|]]S7°(2) M 57(z)

S xS, 0D [159(2)15%(a) - |5{(z,0)*51(z,0)

— 0, k- oo,
uniformly with respect to z € [0, L], since by definition of x in (2.13)
|1 — x(kIS{(=,0)]) 1S"°()|™ < k=M

Thus, we obtain '
|8, ER(0) — 8, E™°|| — 0, (6.8)
which is the third relation of (6.7).

Using (2.14), (2.15), and S§(0) = S*°, 04(0) = o2, cf. (2.19), (1.9), (2.9), we obtain from
(1.11) and (2.11) -
|8, EP°(z) ~ 8,EE(0)| < e(Ink)~/*

for all z € [0,L]. This inequality, (6.8), and (1.8), (2.8) yield the last relation of (6.7).
The proof of (6.2) is complete.

Observe that from (1 17), (1.19), from Sobolev’s inequality, and from (2.4), (2 6),
(2.7), (2 9) it follows that there exists a constant K3 such that

”Ut(t)’ E(t) - En(t)? Ea(t)’ S(t)’ Sa( )1 ( )”00 < I{Sg(t, W)1/2 (6'.9)
for every solution W of (2.2) - (2.19). For ¢ > 0 we define the function

“Klf(/ |0%(2)[2dz + 64K,€?) (6.10)

where K; and K, are the constants from Lemma 4.2.
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Theorem 6.2 Let the initial data U°,U*, E™° E*°, o° satisfy the hypotheses-of Lemma
2.1, letm =0 in (1.11), let
< 2
a<-f
377

and let Wy, be the solution of (2.2) - (2.19). Moreover, assume that ¢° and the energy
£(0, W) satisfy the following conditions:
There exists a constant § > 0 such that

Ks(£(0,W°) +6)!/% < %z (6.11)
(1 + L) % (In2)~*/* (95 Ks(E(0,W°) + )2 < 1/4 (6.12)
(Ks + Ke) QEO, W) +6) /2 <1/2 (6.13)
e (Ks + Ko) QEO, W) + )2 [1 + QEO, W) +6)] < 1 (6.14)
min{c®(0), e®(L)} + [LOUE(O, W") + 92 < %ﬂ : (6.15)

Then there ezists C > 0,ko and to all k > ko a solution W € C*([0, L] % [0, Trmax))
of (2.2) - (2.19) with
Tex = max(Wk) >T = C(ln k)l//\ . _ (616)

The solution satisfies for all t € [0, T%)
E(t, W) < (% (Ink)™**t + 5(0,Wk)1/2)2 (6.17)

and _ |
185 Bu()I12 + 10 BR(OII* + 18LER (B + 1827 Uu()II

<Ko [tmax (W)@  (6.18a)
. -(E(O,Wk)+%(lnk)‘z/*tz+(1nk)‘1/‘5(0,Wk)1/2t)
+E(L W) + B, =01
18.Ee(t)]? + |8 ER (E)I* + 10 ER(2)II* < K2E(t, W) - (6.18b)
. 4 ¢ N
U2 < =t | E(r, Wi)dr + 2| U(0)]” - (6.18¢)
p Jo
L
/ |8z0%(, t)|2dz < QE0, W) + :11-(111 k)~2 2 4+ (Ink)~H* E(0, Wi)'/?t) . (6.18d)
V]
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/OL |Bsan(z,t)2dz < L.[(ﬁ)éﬂe %—:—(ln 2)_1/’\} . (6.18e)

g
Proof. Since we assumed that the hypotheses of Lemma 2.1 are satisfied, we get from

this lemma that T, and a solution Wj, € C*([0, L] X [0, Timax)) of (2.2) - (2.19) exist.
To prove that Tiax(Wi) > Tk, it suffices to show that (6.17) is satisfied for all ¢ with

0 < t < min(Tmax, Tk) , : (6.19)
and that for these ¢ )
1Sk(®)lleo < S 2, (6.20)
hence )
lox(t) = (Ol 2 32 >0 (6.21)

For, (6.9), (6.17), and (2.4), (2.10), (2.11), (2.12) imply for these ¢ that

IWi(t)lleo < Cr

with a constant C; depending on k, but independent of ¢t. From this inequality, from
(6.21), and from Lemma 2.1 (iii) we conclude that Ty > T .

To prove (6.17) we use (6.2) and choose ko such that
E(0, W) < E(0,W°) +6/2 (6.22)
for all £ > ky. Observe next that \
‘ . 2
| le¥@)Pdz < ae)
0
for all ¢ > 0. Lemma 4.3 and (6.15) therefore yield
2 7 N
loa(B)lleo < 58 (6.23)
for t =0, and (6.9), (6.11), (6.22) imply
1 1
15Ol < 32 < 2o(a,t). (6.24)
for t = 0. Moreover, (6.13) and (6.14) yield

. L
(Ks + Ke) ( /0 18,0z, ¢)[2dz)M? < 1/2 (6.25)

(Ks + Ke)(/OL |80 (z, £)]2dz) 2 (1 +‘/0L |8.0%(, t)2dz) < 1 (6.26)
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for t = 0. Finally, (6.9), (6.22), and (6.12) imply

1+ Lz)i—% (In2)"*/> (g)'S 15200 < 1/4 (6.27)

for t = 0. Since W} is infinitely differentiable, it follows that there exists a largest T with
0 < T < Trax(Ws) such that (6.23) - (6.27) hold for all ¢ € [0,T). We show that

T > min(Tk, Trax) (6.28)

where
T, =2 [(5(0, W)+ 8)M2 — (£(0, W°) + g)m] (ln k)| (6.29)

To this end note first that (3.7) implies

1 1
~(53,BL) £ —3M(t15%) — 5 Aalt,|BEl)

1 LlSﬂ] 1 Oz a 1 L aa-"-‘ 14
+2/0 aPk}—ISl,d:c—-zfo|S|0|Et(,,da:.

From (6.23) and (6.24) it follows that in the domain [0, L] x [0, T') the function W, satisfies
all the hypotheses of the lemmas in section 3 — 5. The last estimate, Lemma 3.1, 3.2, 5.1,
5.2, 5.3 and (6.25) - (6.27) thus yield for 0 <t < T

d d
—g(t,Wk) = Z -—Ea(t,Wk)
dt S dt
= — Y [(D*S{,D*8,E}) + (D*S;, D*6,E%)]
laj<1
< —(S{,8.E}) - (8.5{,0.0.E}) (6.30)

1 a 1 a 3 a
- Z(SkaatEi’ - ZAl(t, |Skle) — ’4'A1(t1 |Skle)

1
- Z Az(t, |aﬂE£'=) + (ln k)_l/A S(t7 Wk)llz y
where we use that

1 L 2 3 \1/2 L 2 7.\1/2
> (Ks + Ko) ([ 10:0u[*d2)'/* (1 +( [ 820 d) /)

1 L L 3
< (Ks+Ko) ([ 10.0ufda) 22+ [ 10scnltde) < 5 <1,
2 0 0 4

by (6.25) and (6.26). In particular, (6.30) implies

%S(t,Wk) < (Ink) Y E(t, Wi)V/?
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for 0 <t < T. We integrate this differential inequality and obtain
1
£t We) < (5 (Ink)™Y*t 4+ £(0, Wi ) /?)?. (6.31)
Insertion of this estimate into (6.30) and integration gives
t
L 1(st,8B7) + (0.5, 6.0,E7) ar
1 t
+ 3 [USEAED) + Ma(r,15212) + 381(7, 1S3h) + Aa(r, [8.B L) Jdr
< (0, W) + i—(ln R 6 4 (In k)" £(0, Wi )2t (6.32)

If we use (6.22) and choose T} as in (6.29), then it follows by a simple calculation that
for 0 <t < T} the right hand sides of (6.31) and (6.32) both are bounded by

EO,W°) +6—6(t),

with a function § satisfying 6(t) > c(T% — t), where ¢ = ¢(k) > 0 is a suitable constant.
As a consequence we obtain from (6.31), (6.32)

E(t, Wi) < E(0,W°) + 6 — §(t) (6.33)

¢ ¢ t
[stamar, [ mnistl)r, [ Asr, 10,87 )dr < 460, W) +6 - 8(2)) (6.34)
forall k > ko and all £ with 0 < ¢ < min(T, T%). We use (6.34) to estimate all the integrals

in the term on the right hand side of the inequality stated in Lemma 4.2. Together with
(6.10) we obtain

/oLla.,‘ak(a:,t)|2dm < QEO, WO) + 6 — §(t))

. (6.35)
< QEO, W)+ 6) — 18(¢)
where ¢; > 0 is a suitable constant. This inequality, Lemma 4.3, and (6.15) yield
. [0 0 0 1/2
lox®)lw < min{e®(0),0°(L)} + [L (QUEQ, W) +6) — c:6(2))]
o, (6.36)
< §ﬂ — c26(t)
with ¢, > 0. (6.9), (6.33), and (6.11) yield

I152(8))lm < KalE(0, W) +0 — 6(2))/* < 2 0 — exs(t) (6.37)
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with c3 > 0. (6.35) and (6.13) imply : ' -

(Ks + Ks)( /0 ¥ 1.0uz, t)lzdm)l/z
< (Ks + Ke) [UE(0, W°) + 8) — ¢, 8(¢)]/? (6.38)
< % — c46(2)

with ¢4 > 0. (6.35) and (6.14) yield

L 1/2 L
(Ks + Ks)(/ |a,ak(z,t)jzdm) 1+ [ |oeon(e,t)Pds) S 1—ces(t)  (6.39)
0 0
with ¢s > 0. Finally, (6.9), (6.33), and (6.12) imply

el 8 1

(1+12) 2 (lm2) (5‘) 52l < § = cob2) (6.40)
with ¢s > 0. Since (6.36) — (6.40) hold for all 0 < ¢ < min(T,T}), and since 8(t) >
(T, —t), we conclude that T > min(Tiay, Ti) . For, if we would have T' < min(Tmax, Tk) ,
then Wi € C%([0, L] x [0, Tnax)) and (6.36) — (6.40) would imply that there exists T"
with T < T < Trax, such that (6.23) - (6.27) hold for all t € [0,7"), in contradiction
to the definition of T' as largest time with this property. This proves (6.28). But (6.28)
implies that (6.31) and therefore (6.17) hold for all ¢ satisfying (6.19). By definition of
T, (6.24) and therefore (6.20) hold for all ¢ € [0, T'), hence for all ¢ satisfying (6.19). The
remark at the beginning of this proof shows that (6.16) and at the same time (6.17) is
proved. (6.18d) is a consequence of Lemma 4.2, (6.10), and (6.32), and (6.18¢€) is a direct
consequence of Lemma 4.3 (ii). (6.18a) - (6.18c) are the estimates from Lemma 5.4, where
in the derivation of (6.18a) we used (6.32) to estimate the terms f(8:S7, 8.8,Ep)dr. The
proof of Theorem 6.2 is complete.

Proof of Theorem 1.1 1.) We first assume that the initial data
U°, U, E™®, E*° o° satisfy besides the hypotheses of Theorem 1.1 also the conditions

E™ E*° c° e C=([0,L]) - (6.41)

and v
vU°(0)=VU(L) =0, (6.42)

hence, because of (1.23)
E°(0) = E™°(0) = E°(L) = E™*(L) = 0.

This means that the hypotheses of Lemma 2.1 are satisfied. Choose the constants C, and
C: of Theorem 1.1 small enough such that the conditions (6.11) - (6.15) of Theorem 6.2
are fulfilled. It follows from (6.16) that for every T' > 0 and for all sufficiently large & the
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solution W, of (2.2) - (2.19) is defined in the domain [0, L] x [0,T). (6.17) implies that
.there exists a constant C; with :
E(t, W) <4y (6.43)

for all 0 < ¢ < T and all sufficiently large k. It therefore follows from Lemma 6.1, from
(1.19), and from (6.18a) - (6.18¢) that there exists C, such that

|Ukll2,20 + | Bk — Egllv2e + | ERll22 + | Ekllnze + | ERl1,22 + | EEll2, < Ca

for all these k, where Zr = (0,L) x (0,T), and where || - ||; 2, denotes the norm of the
Sobolev space H i(Zr).
From this estimate and from (2 4), (2.6), (2.7), (2.9), we also get

1Skll1.22 + llslla.zz + I1SEll1.20 + {11122 < Cs .
Finally, from (6.18d), (6.18¢), and from Lemma 4.3 (i) we obtain
loxllzr < Ca.

Using Rellich’s selection theorem for every positive integer £ we can therefore choose a
subsequence {W,f} such that {U,f} converges in H1(Z;) and such that

{Ekv El:'lv El:l'l> Ek, ? Sli, Siv Sl:,[: SI{’£ k=1
converges in L3(Z;). The diagonal sequence thus converges in Hy(Z7) and in Ly(Z;),
respectively, for every T > 0, and we can choose this sequence such that it converges
for almost all (z,t) € (0,L) x (0,00). We denote this sequence by {Wk}k—1' The limit
function is denoted by W = (U, E, E®,E™, E?, S5,5% Sf,0), and it is contained in the
space , :
V((0,T)) = Hx(Zr, R®) x [Hi(Z7,R®) )" x Hy(Zr; RY).

Moreover, we can choose the subsequence {Wk}:o . such that it converges weakly to W

in V((0,¢)) for every £ > 0, which implies that {Wk}(o L)x(Ty T,)}w converges weakly to

W (o,Lyx(Ty, 1) in V((Tl,Tz)) for every 0 < T7 < T;. We shall prove now that W is a
solution of (1.1) - (1.15). i

It is clear that (1.2), (1.3), and (1.6) - (1.9) are satisfied. To prove that (1.1) is
satisfied note that (2.5) implies for every ¢ € C§°((0, 00)) and for every £

L eatue),eemade = - [T (080(0), bt it
= - hm/ (patUk(t) Oup(t)vy)dt
= lim /0 (P87 Uk(t), p(t)ve)dt
= - lim Ow(S‘k,W(t)w)dt

- - /O " (5, Vet
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hence
| (pOU, %)(0,L)x(0,00) = (diV S,%)(0,L)x(0,00)

for every ¢ € Cg°((0,L) x (0,00)), which implies (1.1). To see that (1.4) is fulfilled
observe that by the trace theorem the mapping .

S = m(S) = Sio.ryx(o,r) : H1((0, L) x (0,T)) — Lp({0,L} x (0,T))
is linear and continuous, hence weakly continuous. Thus
y1(S) = 71(wk—— lim $) = w - lim 4(S) =0,
since E ) )
Sk(z,t) = D(Ex(z,t) — Ef(z,t)) =0

forz =0orz =L, by (2.4) and (2.21a). This proves (1.4). (1.14) is obtained in exactly
the same way. To prove (1.5) we use Lemma 6.1 and obtain with v2(U) = Ujco,L)x {0}

U0) = v(w—1lim 8,0,) = w —hm 72(5tUk)

k—oco

= Jim 3,U.(0) = U*.

The equation U(0) = U° is a direct consequence of (6.1) and of the trace theorem, since
U converges to U in Hy(Zr). This proves (1.5). To prove (1.10) we use (2.10) to conclude
that it suffices to show

|Sf(a,- t)\M S¥(z,t)
( > |S#(z, t)|

(6.44)

of z, M Sf(y
—e*x(k| 8] (=, t)l)(lsk( t)|> ]?;‘Em’gl

for k — oo . Note first that by our choice of the subsequence, S ,‘: (z,t) converges for almost
all (z,t) € Zr to S¥(z,t). Exactly as in the proof of Lemma 6.1 it thus follows that

18z )\ M Si(z,t)
e( 5 ) 157(z,2)]

i 55 M &t

= Jim e x(M5{(e, ) (Y Sile)

koo 5 |Sk(m7t)l

for almost all z € Zr. From (6.9) and (6.43) we conclude that
15{(2,)| < KsC?,

for almost all (z,t) € Z7 and all k. Thus (6.44) is a consequence of Lebesgue’s dominated
convergence theorem. That (1.11) holds with m = 0 follows from (2.11) in exactly the
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same way. This proof yields that 8 EP(z,t) — 0,E?(z,t) for almost all (z,t), and that
0.E(z,t) is uniformly bounded with respect to (z,t) and to k. Using these facts we can
use the same proof to conclude from (2.12) that (1.12) is satisfied. Thus W is a solution
of (1.1) — (1.15) satisfying (1.24).

To see that (1.25) is satisfied, note that the definition of £ in (1.17), (1.18) shows that
for0<Ty < Ty

T;
WH/T E(t, W)dt : V((T1, T3)) — RE

is a convex and continuous, hence weakly lower semicontinuous function. From the weak
convergence Wy — W in V((T3,T?)) it thus follows that

fT £(t, W)dt <liminf E(t Wi)dt < (Ty — Ty)E(0, W°)

where we applied (6.2) and (6.17). From Lebesgue’s integration theory it thus follows
that for almost all T3 € (0, 00)

Tz
(1]
E(T,W) = lim 7 /T CE(W)dt < E(0, W),

which is (1.25). :

Finally, (1.26) is an immediate consequence of the fact that ¢ < ax(z,t) < % B and
that &r(z,t) — o(z,t) for almost all (z,t) € (0,L) x (0,00). This proves Theorem 1.1
for initial data satisfying (6.41) and (6.42).

I1.) To prove this theorem for initial data that satisfy (6.41) but not (6.42), let

()

UU+—W%M—)—@mﬂ,
Alz) = E [E°(0)(= - L) — E°(L)z]

and

E™(zg) = E™(z) + A(z).
Then U°,U*, E™®, E*° o are initial data satisfying (6. 41) (6.42), and all conditions of
Theorem 1.1. Note in particular, that tr E"%(z) = 0, since by assumption E°(0) =
E™9(0), E°(L) = E™°(L) and tr E™°(z) = 0, hence tr A(z) =0.
Let W = (U E,E°, E~ Er, S, 5% 57, o) be the solution just constructed to these new
initial data. Then W (U E, E" E™ E?,S,5%,5%,0) is a solution of (1.1) - (1.15) to
the original initial data, if we set '

Uz t) = e t) - -2% [U2(0)(e - L - (L))
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A

E(z,t) = E(z,t)— A(z),
Ez,t) = E"(z,t)— A(z),
E*(z,t) = EP(z,t)— A(z).

The proof of this statement is by inspection, which we leave to the reader.

Finally, to prove the theorem for initial data that satisfy all the hypotheses of
the theorem, but not (6.41), approximate E™® E*° ¢® in H,((0,L)) by a sequence
{E,:"o, EZ’O, 0'2}:_ of infinitely differentiable functions, solve the initial-boundary value
problem to these new initial data, and repeat exactly the approximation process described
in the first part of this proof, to show that the sequence {W}}-, of solutions converges
to a solution of the initial-boundary value problem of the original initial data.

7 Decay of isochoric deformations for ¢t — oo

Lemma 3.1 shows that the energy decreases by the amount of work done to inelastically
deform the body. But equation (2.20) shows that the inelastic deformations of the material
are isochoric, and some considerations show that there exist materials, that is elasticity
tensors D, which allow one-dimensional deformations without inelastic component. The
energy of such deformations does not decay as ¢ — oo. For isochoric deformations,
however, the energy decays with a certain rate, as we shall show now. By definition, a
deformation is isochoric if ¢tr E(z,t) = 0, which in the case of deformations depending
only on one space variable and on the time reduces to Ey;(z,t) = 0. Of course, such
deformations occur in incompressible materials. But even in compressible materials such
deformations are possible. For example, suppose that the material is isotropic, which
implies that
S =2u(E—E"*)+ Atr(E - EMI,

cf. [1, p. 76] and (1.3), and assume that the initial data satisfies
Up(z) = Ui(z) = B™(z) = E*(z) = 0

for all 0 < z < L. Examination of (1.1) - (1.15) then shows that U;(z,t) = 0, hence
Ey1(=,t) = 0 for all (z,t) € (0, L) X (0,00) which means that the deformation is isochoric.

In this section we consider solutions W = (U, E, E®, E™, E?, S, S%, 5%, ) of (1.1) -
(1.15) with :

U € C*((0, L] x [0,00), R®)
E,E*,E" E?,S,5°, 5 € CY([0, ] [0, 00), R°).

For these solutions it is immediately seen that instead of (3.1) we have

d
5 St W) = —(57,B) - (5°, EY)
(7.1)
e~ L . L
= —5 [ 1570 e - [ 15%(2,)| | EX (2, b)) da

38



In the introduction we already noted that the results stated in this section can be easily
extended to more general solutions. The essential requirement is that a version of (7.1)
is satisfied by these solutions.

We first consider the case p = 0, the quasi-static case, and prove

Theorem 7.1 Assume that the elasticity tensor D maps tensors with vanishing trace into
tensors with vanishing trace, andletp =0, m =0, M > 1, K; > 0. Then there ezists a
constant K = K(K1) such that for any solution W of (1.1) - (1.15) with tr E(z,t) = 0
and with |o(z,t)|, |S*(z,t)| < K1 for all (z,t) € [0, L] x [0,00) we have .

1

Eolt, W) <

2

(Kt + &(0, W) *5*) ™

Proof. We have
S(z,t) - (E — E™)(z,t) + S%(z,t) - E%(=z,t)

=('S—%(trS)I)-(E—E")—i—S“-E“

1
=($°+S8fH.D 'S+ —5°.5°
(5% +57) + |

1 1
= [D7}8* + SN)]-[S -  (tr S)I] + — §*- 5°
(DTS + 5] [S = 3 (tr S+ =S
=D-1(5“+sf)-(5°+sf)+isa.sa
M
1 1
< - lge sz _Sa2
_DOIS+ I+M| |
2 1
< Sa2 SfZ __Sa.z
< oIS +187P) + 5715°]
2 1
< (= el SaZ Sf2 .
< (g + 7P +1S)
Moreover, Holder’s inequality yields

2 M-1

S + 1S712 < [(1S°[1) 57 + (187 ) ] 7 o ¥

for M > 1, since

=
l

=
+
i
+
~|§
A
[y

We thus obtain

1

[$-(E-E") +8° E]£L
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_<_2M2——1(Di+%)M;_I(ISGIM-H'F‘S}[M-H)
M1, 2 1,41 M4 P| | ca ‘SGIM
S2T G-+ ) T 1S E) )57 il
~1 M4l .S*M alM e*
< ) e R G i)
Now s ,M . y
e _ lca T 1y a g \M/2
BT = IS O < aulser () < o,

so that Holder’s inequality and the above estimates yield

M+

&) = [/OL(S-(E—E")+S°-E“)dm]—’L

M+1

< L#/OL[S-(E—E")+S"-E"]+dz

< C/OL (;M |71+ 4 |B7) 5%} dar = C[(Sf,E[‘)+(S“,E§’)]_

From (7.1) we thus obtain

d—difo(t) < —CTig ()

Integration yields the statement of the theorem with K = Mﬁ,;l c-t.
We use this result to prove Theorem 1.2. This theorem concerns the case p > 0, which
1s more complicated. To prove the theorem, we need the following

Lemma 7.2 Let b > 0, Ky >0, and let

1) = 5[50, (B - B)0) + (5702, Bo(e)]

Then there ezists a constant ¢ = C(h, K1) such that for any solution W satisfying the
hypotheses of Theorem 1.2 and

sup £(¢), sup |o(z,t)| < K,
2 e
t-

we have
/ o < © [/ e )i 4 / (st By 4 (s, Ep))dr]

and tr E(z,t) = 0 for ail (z,t).
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Proof. We first note that the hypothesis (1.28) and the assumption that D maps tensors
with vanishing trace into tensors with vanishing trace imply for the solution W

tr S(z,t) = tr E(z,t) =tr E*(z,t) =0 (72)
and
E,-j(:c,t) = E:;(.’B,t) =0 . (73)
for all (z,t) and for all ¢,j = 2,3. The proof is by inspection of (1.1) - (1.15). Define
next

Z(z,t) = Us(z,t)=(En(,t),2En(s,t),2Eu(z,1))"
Z"(=z,t) = (Bh(=,t),2E5(=,1),2E5(2,1))"
and . 1 L ‘
z(e,t) = [ Zriende -1 [ 2 e an.
Thus L ‘
/ Z™(z,t)dz=0. (7.4)
0
Moreover, (1.1) and (1.4) imply
d? (L L : L
E/0 Uz, t)de = /0 Un(e, t)dz = /0 div S(z, ¢)dz
= S(L,t)n(L)+ S(0,¢)n(0) =0.
From (1.27) we thus obtain

L L d L
/OU(:v,t)d:c = /; U(z,O)dm-{-tEt-/; U(a:,t)d:clt=o

: i (7.5)
= / U°(z)dz +t/ Ul (z)dz =0.
0 o
After these prepartions we derive the first estimate.
Let ¢ € C((¢,t + ), R) with 0 < o(7) < 1. Then
t+h 2 t+h n t+h n n
/t ollU: — Z7%dr = /t o(Us, Us — Z1)dr —/t o( 20Uy — ZP)dr
t+h t+h
< —/ &'(U, U — Z")dr -/ o(Us, U — Z™)dr
t t
1 t+h ny2 1 t+h ny2
+3 [ elv— a4 5 [ plzr)er
t+h
< _/ o(div (D(E — E™)), U — Z™)dr
t
‘ , § rt+h ) 1 pt+h -
+maxle/(D) [5 [ 10APdr + 55 [V~ 27Pdr]

| n2 1 pith ny2
w3 [ el -zt + 5 [ el
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where we used (1.1) and (1.3). Using (1.4) it follows by partial integration that
t+h t+h
/ ollUs - Z7|2dr < / o(D(E — E™), VU — VZ")dr (7.6)
t t
/ § ft+h , 1 pt+h o
tmaxle(n)| [5 [ Wl + o [0 - 27ar
1 pt+h 1 rt+h
+5 [ el zritar+ S [ ellzzar
t 2 J¢

As in the proof of Lemma 2.1 (ii) it follows that E™ and S = D(E — E™) are symmetric.
From the symmetry of E™, from (7.3), and from the definition of Z™ we conclude that

1
Er=2(VZ"+ (vz)Ty.
The symmetry of D(E — E™) thus implies
(D(E ~ E"), VU - V2") = (D(E - B"), E - E") < | D|| | & - E"|].

Insertion of this result into (7.6) results in

t+h 2
[ elviar

VAN

t+h ni2 t+h ny2
2 [ elzzitar+2 [ elv - Zrdr

1. ft+h
< @+4) [ elizrer
ah (7.7)
+4{1p) [ 1B - B ar
t
§ rtt+h 1 pt+h
1 - 2 il __ m7n({2
+maxle'(D {5 [ 10dPdr+ o [ U - 27|Par})
Below it will be shown that
t+h t+h t+h
[ arer < o [T elviar + [T e r)ar (7.8)
t t t :

+ (st Bryar + / (52, BD)ar] .

From this inequality and from (7.7) we thus obtain

t+h 2
[

t+th t+h PR . ;
<Gl e+ [T + (5%, B (7.9)

t+h 2 2 t+h t+h 2

+ [ IE = Brrdr + 4C(maxly Y [ U - 2nar 4 [T 127)%r] .
t t

Here we set § = (4C max|¢'|)~'. (7.4) and (7.5) yield

L
[ UGt - 27, t)dz = 0.
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We conclude from this that there exists z(t) with

Us(zo(t),t) = Z7(zi(t),t) = 0
for:=1,2,3. Hence

3. L
=27 = 3 [I(0 - 20w, )
= 22 ), /zm [(Ui = 202 (6,1) - (Ui — Z7)(&, 8) d€ da

= 22//W (Zi= Z7)(&t) (U = Z0)(6, 1) dE do

< 2 [ 1Z-2 1V - 27 da
0

= 2L||Z - Z"||lU - 27|

This yields o
\U—-2"<2L)|Z2 - 2" <2V2L||E-E.

The inequality (7.9) therefore implies
t+h t+h t+h
/ IU2dr < C [/ 8*(r)dr+/ (S?,Er) + (8°, EP)dr (7.10)
t t t
t+h ptth
+(1+320(max|g| L) [ B - B dr+ [ |27 )]
t t
t+h
< afr / £*(r)dr
h t

t+h t+h
+ [ B (s B+ [ | zpfan]
t t

with' =1+ Dio (1+32C(max|¢'| )?L?). In the last step we used an inequality analogous
to (1.19) to estimate ||E — E™||?. Note that

122 = [ 120G )

= [z e~ 1 [ Zoie e anfrae
[l e ey + 2 [ 120 e e ny) do
< an(z [C 1zt mIPde + 1 [ 120 )

= 4L’|Z7(r)|* < 8L*||EX(r)|.

IN
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Insertion of this inequality into (7.10) finally yields

t+h t+h
/ |U[2dr < 01[1*/ £ (r)dr (7.11)
t t
t+h t+h
+ [ B+ (sn EDar + 812 [ |Bp(n)|ar ]
t

But, from (1.10),

|EP| = " 15°] M< e ( max |87(z, £)M-) |57
t sx - S*M 0$;SL ) .
>0

Note that (1.6), (1.7) and (7.2) imply
|87, )] < s(z,8)| + 15°(2, 8)| < |S(2, )| + |S°(=2, )]
The definition of £*(¢) and (1.3), (1.9) thus yield
ST < 0o (e).
Similarly, Sobolev’s inequality and the definition of £(t) yield
|57z, )] < |S(=,t)] + |5°(=, )| < C2E(¢) < C2Ky = K, .

So

t+h e* \?2 ., [t+h
L@ < (Sp) K [ s

s*
t+h
< K3/ E*(r)dr.
t

Combination of this inequality with (7.11) implies

t+h t+h t+h
/t |Ti%dr < ¢ [(T +8L2K3)/t £*(r)dr +/t (87, Ep) + (S°, E)dr] .

This is the statement of the lemma. It thus remains to prove (7.8). To this end note that
(7.1) yields for n > 0

Eo(t + ) — &(t)

N+ mIP = ST + (¢ +m) - £°(2)
v (7.12)
= = [ (" Br) + (5% B
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Now let p € C§*((t,t + h)) with O <ep(r)<land o(r)=1fort+n < 7 < t+2n, where
7 = Lh. Then (7.12) yields

t+n 2 t+2n 2 2 rt+2n .
dr = z
[ = [ o+ 2 [ e (ryar (7.13)

2 rtin 2 pt+n T+n
—2 [Terryar + ;/ [/ (S, EP) + (5°, EP)dr| dr
t t T

p

IN

t+h 2 pt+h
[ emunitar + = [ e r)dr
¢ pJt

92 pt+n ptth
LS B (s arar
t

t+ * 2h f n a | P
/t ol|Ui2dr + 2 / £ dr+—/t (87, EP) + (5° EP)dr .
Moreover, (7.12) also yields ‘

t+h . t+2n 2 2 rt+2n
L el < [ o+ 2 [ e (ryar (7.14)
t+2n t+n p Jitn

t+h ) 9 ptt+h
/t o||T:)|*dr + ;/; E(r)dr

t+h . t+n . t+h . h )
L wdrdr < [ wdtar + [ oluipar+ [ joupar,
t t t t+2n

we obtain (7.8) from (7.13) and (7.14). The proof of Lemma 7.2 is complete.

IN

Since

Proof of Theorem 1.2.
In the proof of Theorem 7.1 it was shown that

)5 <o [(s7, B + (52, ED)],

hence, from Holder’s inequality

M+l

t+h 2 _1 [ft+h 1 .
(/ 5’"(1‘)d7’) < hM—z‘/ £ () dr | (7.15)
t t

t+h
S By + (50, B

AN
Q
>

‘Lemma 7.2 yields

([ hoarar) *
t
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t+h Mi1
<c [/ TdT+/ (57,B7)+ (8%, EP)dr|
<cC [ / £*(r)dr) 5 4 ( / (5%, B}) + (5%, Bf)dr) "5 |27
M1 t+
Al / (87, EP) + (8, EP)dr +
t
t+h _, [tk
+([ (S B + (57, B T [T (57, Bp) 4 (57, BY)dr
t t
1 o M-1 t+h
< 1(0h,“’T+[ (8% By + (57, B )ar] )/, (ST, BY) + (8%, Ef)dr
M—1 t+h
<2 OO +&(0)"F) [T (87, ) + (57, BY)r,

where we used (7.1) in the last step. Together with (7.15) we obtain

M+1 M+1

t+h 2 _(r t+h . t+th 2
(/t 50(1')d7'> = (2/; | Uel|*dr +/t & (T)d‘l’) (7.16)
M_ir p t+h ) M41 tth v \
<2 B[ [T S+ ([ € ()]
: +h t+h
<G (7, B0+ (5%, EDydr + [ (S, B7) + (5°, ER)dr]

t+h
= Cy(2 + £(0)™ (S%,E7) + (S°, EP)dr

Inequality (7.16) and (7.1) yield
d rt+h ) t+h {
2{[ go(T)dT = /; E&)(T)d‘l‘

t+h .
= — [ B + (57, BY)r <

IN

072+ &0 ) ([ &o(r)an)

Integration of this differential inequality gives as in the proof of Theorem 7.1

t+h 1
/ Eo(r)dr < —,
; (Kt + (J3 Eo(r)dr)~"F*] ™7

where K = ¥=1C;1 (2 + 50(0)#) - Equation (7.1) shows that &(t) decays monoton-
ically. Using this fact we obtain

hEo(t + h) < / Eo(r)dr
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whence 1
Elt+h) <

M1

[h T Kt + (%foh So(r)dr)‘%—'l]m

which is the statement of the theorem. tr E(z,t) = 0 follows from Lemma 7.2.

Appendix

We show that a function P, with the properties (2.14) — (2.17) exists. With the function
x from (2.13) let

Pu) = el ke 1= x(k) ) + e (1n 7)™ xthe).

This function satisfies (2.14). For 0 < ¢ < e~(*+1)/2 the function (In %)‘1/’\ is concave,
which implies for all k > max(2,e*t/*) and 0 < ¢ < 1/k

(Ink)~ /P ke < (ln %) o ,

hence an
Pi(6) < ¢(In ;) (A1)
and
min (1, A1n 2) /\li% = Pe(€) < P(8)
= e(lnk) VA R[L ~ ] + s(ln %) o Mi% %x

1 -1/ -1 1
+[€(lng) — e(lnk) ™ ke] kx

1 gl
< [max(1, )t 2or<q§>;x(7‘)] ng(f)-
To derive the last inequality we used that

In 1)-1/A -1/
(In}) <2(ln(2k)) <

(Ink)-1/2k¢ = Ink

for - < ¢ < 4 <min(}, e=?*/3) | whence

1\ -1/> 1\ -1/*1
€ ln—) kx! < e(ln—) —-x'
( &) ™ £/ X
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_ X E (m %)—w [1-x]+ e(In %)_I/AX]

3
% max x [2s(ln k)2 k(1 — x] + 2¢(In %)_I/Ax]
2

= : Pe(é)maxx’.

Inequality (2.15) is a consequence of (A.1) and (A.2).
To prove (2.16) and (2.17) note that

PIe)E = 2[e(lné1—,>—1/)‘/\11 - — e(ln k)" ke] by’

+ [:-:(ln %) o —¢(In k)'l/Akf] Ek2x"

A S 1
«(mg) " smr Gt Dx

The first two terms vanish for 1/k < ¢ < 1/2 and the last term is bounded by L4P(€) for
these {. For 0 < ¢ < 1/k all three terms are bounded by L.k (log k)~/* | since x(k¢) = 0
for 0 < ¢ <1/(2k). '

References

[1] Gurtin, M.E.: The linear theory of elasticity. In: S. Fliigge (ed.): Handbuch der
Physik, Springer Verlag, Berlin (1972).

(2] Hart, EEW.: A phenomenological theory for plastic deformation of polycrystallme
metals. Acta Metallurgica 18 (1970), 599-610

3] Hart, E.W.: Constitutive relations for the nonelastic deformation of metals. Trans.
ASME, J. Engng. Mat. Technol. 98 (1976), 193-202.

[4] Cordts, D.; F.G. Kollmann: An implicit time integration scheme for inelastic con-

stitutive equatlons with internal state variables. International Journal for Numerical
Methods in Engineering 23 (1986), 533-554.

[5] Kollmann, F .G.; V. Simon: A semi-analytical solution for deformation of elasto-
viscoplastic circular thin plates under axisymmetric loading, manuscript (1989).

[6] Kréner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer
Verlag, Berlin (1958).

48



[7] Kumar, V.; M. Morjaria, S. S. Mukherjee: Numerical integration of some stiff consti-
tutive models of inelastic deformation. Trans. ASME , J. Engng. Mat. Technol. 102
(1980), 92-96.

[8] Renardy, M.; W.J. Hrusa, J.A. Nohel: Mathematical problems in viscoelasticity.
Longman, Harlow (1987).

49



St

— L0

50

—



