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1 Introduction and statement of results.

We study a system of equations modelling the nonelastic deformation of metals. This
system has been proposed be E. W. Hart [3] and is in engineering use. We show that in
the uni-axial case the initial-boundary value problem for this system has global in time
solutions to all sufficiently small initial data, and study the asymptotic behavior of these
solutions as t --+ m. These equations contain several parametels, which must be adjusted
to fit the actual behavior of real metals. In our anaiysis we must choose a value for one of
these parameters which is not realistic for metals. The question whether similar existence
results can be proved for realistic values of this parameter is left to further investigations.

In the three-dimensional case the initial-boundary value problem is constituted by
the following equations: Let B g Rs be a body with boundary 0B,let U : (J(x,t):
B x [0, oo) * lR3 be the displacement field with components (J;(t,t),i: L,2.,8, and let p
be the density. We assume that p > 0 is constant. Then the equations are

pUt (s,t) : div S(r, t)
1

E(x,t) = ,(VU(r, t) + (Vi/(r, t))t)

S(c,t) : D(E(r,t) - E (n,t))

S(t,t)n(x):0,c e AB

I/(ll, 0) : [Io(a),U1(a,0) : Ut (r), t € B .

Here n(c) is the exterior unit normalto 08,

Y (J (r, ü : fftu,(a, t));,i-t,z,s,

E(a,,t)is the strain field, S(c,t) is the stress field, and D is the elasticity t"r,ror, which
we assume to be constant, symmetric and positive definite. [/0 and (Jt are given initial
data.

With the exception of (1.3) these are the ordinary equations of linear elasticity theory.
In (f.f) the strain E is additively decomposed into an inelastic part E"(n,t), and an
elastic part E(4, t) - E"(t,t). The stress depends linearly on this elastic puri.' (f .,e) is
one of the constitutive relations, but others are necessary which determine E'. Those are
the equations proposed by Hart.

The model of Hart belongs to the class of phenomenological models which aim to
describe the observed stress-strain relation by the introduction of a set of internal state
variables gr(a,t), ...,e^(n,t). E" is assumed to be a function of ,S and of qr, ...,e* i

En : E"(S,etr... re^) ,

and the qr are assumed to satisfy a system of evolution equations

(1.1 )

(1.2)

(1.3)

(1 4)

(1.5 )

0$;: Q(5,qt,..., g-), i : L,. .. )rn ,



which for every fixed a is a system of ordinary differential equations in t . In the nomen-
clature of [8] the model of Hart thus is of differential type. The functions E', Q, and the
number rn of state variables must be adapted to the metai. To find such functions and
internal variables Hart tries to model the observed stress-strain relation of real metals by
the stress-strain relation of the combination of two Hookeian elements, denoted by a and
ö in the figure, and two nonlinear viscous elements, denoted by p and / in the figure. This
figure is a schematic diagram helpful to understand the set of constitutive equations.

In this diagram S"(r,t),St(n,t),E"(u,t),Er{c,t), and En(*,t) are 3 x 3 tensors.
S"(c,i) is the stress fi,eld acting on the spring a and therefore aiso at the viscous element
p. Sf (a,t) is the stress field acting on the viscous element /, and E"(*,t), Ep(n,t), E^(t,,t)
are the corresponding strain fields.

To state the constitutive relations define for tensors R = (r;l);,i=1,...,8, T : (tri)t,i=r,...,3

R.T : l?l : (T .r1rrz

The figure suggests that S : S" * St. It is assumed, however, that the inelastic deforma-
tions are isochoric, and that ,S" and ^5/ therefore decompose the stress deviator

3

L "itti,i,j=L

s(2, t) = S(c, r) - ; :rl!@,t))I ,

where f is the identity matrix. So the constitutive equations are

s:S"*^9J
En :8" + EP

So = MEo

osEn =r.t#itfr
02EP :,1{;-1ro1ü))-r/^ *

01o : lSEPloT(c,l^t"l) .

(1 6)

(1.7)

(1.8)

(1.e)

(1.10 )

( 1.11)

( 1.12 )

Equation (1.9) is the constitutive equation for the spring o, whereas (1.3) is the consti-
tutive equation for the Hookeian element ö. The constitutive equations for the viscous
elements / and I, ate (1.10) and (1.11), respectively. The parameter o = o(a,t) > 0,

called hardness, increases with growing t and makes the viscous element harder. In this
way the process of strain-hardening is described. Following Cordts and I(ollmann [4] we

use for I the function

l(o,lS"l) - (1.13)(:)' (+)""



The constants e*, P,M,o*,M,rn,Ä,6rs- arä material parameters. Typical values for SS
304 stainless steel at 400o C are

e* : 3.lb s-L, g : I.2J.l}s Mpa, M =g.1. 104 Mpa,
o*:68.95 MPa, M -7.8, m:5, ):0.15, 6:0.183,

cf. [5]. Moreover

6=€*r*^(Q- (r 1\t*o(.;\n-r))
with additional positive constants €*, Q*,R,Ta.T is the temperature of the medium,
which we assume to be constant. The actual values of the dimensionless numberc M,),
and B la are of importance in our existence proof. For rn we must choose the value 0.
The values of the other parameters are irrelerant.

Finally, we require that the initial conditions

En(r,0): E''o(c),E"(t,0) = E"'o(r),o(*,0): oo(r) ,E e B

are satisfied. Here En'o , Eo'o, and a0 are given functions with

(1.14)

tr -B''o(z) : b E"'o(x) : o, oo@)) a ) 0 (1.15 )

for all n € B and with the property that E^'o(*) and E"'0(r) are symmetric 3 x 3 tensors
for every s € B. The equations (1.1)-(1.15) furnish the initial-boundary value problem to
be solved.

We formulated this problem'for mathematical reasons in this way. But it should be
noted that this initial-boundary value problem is usually formulated somewhat differently;
namely, instead of (1.1)-(1.4) and (1.8) it is only required that the time derivatives of the
functions on the right and left hand sides of these equations are equal. The reason is that
E'and Ep cannot be observed; only 1sEn and 01Ep can be measured, cf. [2]. But the
solvability of this modified initial-boundary value problem follows from the soirability of
(1.1)-(1.15), because a solution of (1.1)-(1.15) also satisfies the differentiated equations
(1.1)-(1.4) and (1.8), and, depending on the choice of the set of initial conditions for the
modified problem, because the initial data [/0, u',Un,o,.0",0, and o0 can be chosen such
that the initial conditions for the modified problem are satisfied.

Moreover, it is usually assumed that p = 0 in (1.1). In this case the problem is called
quasi-static and is of a different nature. For example, the number of initial conditions
must be reduced, and in the one-dimensional case, to which we concentrate our attention
in this paper, it turns out that as solution we obtain E : En, hence S : 0, and the
problem reduces to the solution of the system (1.9)- (1.15) of ordinary differential equa-
tions. Though the energy estimates derived beiow also apply to the quasi-static case, we
consider it only shortly in section 8.

We remark that background information on the continuous theory of dislocations can
be found in [6]

In the engineering literature the numerical solution of the system (1.1) - (1.tS) with
the modifications just described has been discussed, cf. [4,71. An essential difficulty in



these calculations is that lS"(",t)l can come very close to o(r,t). This makes IQEPI very
large, cf. (1.11) , and thus indicates large plastic flow of the material. This effect tends
to make the numerical integration process unstable. An integration scheme to overcome
this difficulty was proposed in [4]

To the author's knowledge, however, the fundamental question of existence of solu-
tions to this three-dimensional initial boundary value problem is open. The difficulty
distinguishing this system of equations from similar other nonlinear problems stems from
the behavior of the equations (1.10) and (1.11) at .9" : Sl : 0. Namely one has for
M>T

#,(".(g)

1

E"(t,W) : rlbarn'U(t),AP'U(ü))
+(r'S(t), D"(E - E'Xt)) + (D'5", D" E")l

M sl\
Fq)rs,=o

#,(' t:)- ('"'m') 
-"^ 

ä),,.=. 
: -

In a certain sense, the system ( 1.1) - (1.15) is therefore degenerate at S" : SJ = 0.

In this paper we prove a more modest result, since we only consider the one-
dimensional initial-boundary value-problem. We prove global in time existence of so-

lutions of this problem to small initiai data. Moreovei, we must assume in this proof that
rn: 0 in (f .f f ), which is an unrealistic choice of this parameter for metals.

Thus, let,L > 0 and B = {a € lR I 0 < ß <I}. In the following all initial data and all
the functions in (1.1)- (1.13) will only depend on t and on the single space variabie r € B.
We thus could change the formulation of (1.1) - (1.15) and regard E, En, Eo , El , S, S", S/
as vectors from lR3, but we shall stay with the old formulation and regard those functions
as depending on the variables t and g : (n,0,0) with values in the space lRe of 3 x 3

tensors, because such a change would bring no simplification of the formulation and of
the notations.

We also need the following notations. For ? ) 0 and X,Y : (0, r) x [0, ?) -+ lR& we
denote the function o H X(n,t) by X(t) and set

(x(r), Y(t)) _ # x(r,t) .Y(x't)tu,

llx(r)ll : U! lx(r,t)l2d,a)1/2 .

For a solution W = (U,E,Eo,En,,EP,S,5o, Sf ,o) of (1.1) - (1.13) we define the energy

t(t1 : €ft,W1 :

where for every multi-index a: (ot,or)

t.(t,w), (1.17)r
lol<t

( 1.16 )

(1.18)



Note that (1.9) and the assumption that D is positive definite imply

t.(t) > f,ln"u,tt)tr + !w"(E - E-)(t)ll, * +lD'T"(ql,, (1.1e)

with a suitable constant Do > 0. By f/r(O,lR&) we denote the usual Sobolev space of
functions defined on O with values in lRß. We now can state the existence result precisely.

Theorem l.L Letp)0,6) 0, M )L,0< ) --L. Moreoaer, letm,:A anillet

o<o.?8.
J

Then there exist suffi,cientlg small constants Cr,C, > 0 with the following property: As-
su,rne that the initial data from (1.5) and (1.lil satisfy

Uo e H2((o, r), R3), nt e r/r((0, r), R3), (1.20)

En,o, Eo,o € ä1((o, r), Re) , ao € f/r((o,r), R+)

uith E*,o(a),8",o(r) symrnetric and, with tr En,o(r) : tr E",o(r) : 0 for almost all
e € (0, L). Moreouer, suppose that

o 1 oo(a) .XB3 € [0, Z] , (1.21)

E"'o(o): E"'o(L):o, (L.22)

anil that the compatibilitg conditions

E"(0) : E''o(0), Eo(L) - E^'o(L) (1.23)

hold, where

no@): |1vno1c) + (Vr/o(r))t)\ / 2, \ / '\ - \-t/ /

Finally, suppose that

t@,w\ 1ct, lo' lu,oo1*)l2h < cr,

wheru the cornponents and, ileriaatiues of
Wo : (Uo, Eo, E*'o, Ev'o, ge,o, So t$o,o, g1,0, oo) are calculated, as aboae from the giuen
initial data anil from the equations (1.1) - (1.3), (1.s) - (1.1e) Then there exists a
globalsolutionW:10,tr] x [0,m) * lR3 x (lRe)? x lR+ o/ (1.1) - (1.1s) uith

tI e H2(Zy,lRt).

E,E",E,,E',S,S", Sf e H{Z|,lRs) (1.24)

o e H{27, R+) ,



for euery T ) 0, wherv Zr - (0, r) x (0, ?). Moreouer,

t(t,w) < t(o,wo)

,
o1o(r.t\<:ß. , , - 3,

(1.25)

(1.26 )

for almost all t € (0,a),, and.

for almost all (n,t) € (0,I) x (0, co).

Note that (1.23) implies
S"(a)z(z) : O

for a : 0 or c : .L, where So(r) : D(Eo(c) - E,o(r)). and where z(0) :
(-1,0, 0),n(L) - (1,0,0). (1.4) impiies that the initiai data must satisfy this condition.

The proof of this existence result is based on energy estimates. The problem involves
nonlinearities, which often lead to nonexistence of global in time solutions. In the present
case, however, the nonlinear dashpots / and p dissipate energy. We use this to derive
energy estimates, which show that for small initial values the energy of solutions and of
the first derivatives of solutions decrease as t increases. However, due to the degeneration
of (1.10) and (f .f f ) mentioned above, we are not able to show that the higher derivatives
behave in the same way. In fact, the properties of (1.11) are such that we cannot expect
a solution with EP e C2 to exist. In principal these energy estimates are valid for any
space dimension. But in the proof we need at'several places a pointwise bound for some of
the functions in the solution, which we derive from the energy estir4ates using Sobolev's
inequality. But since we have energy estimates only for the first derivatives, Sobolev's
inequality yields poiirtwise bounds only in one space dimension, which is the reason for
the restriction of our existence result to one space dimension.

Theorem (1.1) is proved in sections 2-6. In section 2 a sequence of approximate solu-
tions is constructed, in section 3 the energy estimates are derived, in section 4 estimates
for the hardness t are derived, and in section 5 it is shown that terms appearing in the
enetgy estimates and which do not have a sign can be bounded by other terms with a sign.
In section 6 all these estimates are put together to show that the sequence of approximate
solutions converges to a solution of the initial-boundary value problem.

In section 7 we finally study the asymtotic behavior of the energy of the solution as

t tends to infinity. The nonelastic deformations dissipate energy, but since nonelastic
deformations are isochoric, cf. (1.6), (1.7), only part of the energy contained in a given
motion of a body is dissipated. Therefore we can derive decay estimates for the energy
only for isochoric motions and show that for such motions the energy tends to zero.
Precisely the following result is proved in section 7:

Theorem L.2 Assurne that the elasticity tensor D rnaps tensors with uanishing trace
into tensors with aanishing trace. Let h ) 0, Kr > 0. Then there exists a constant
K - K(h,Kr) > 0 with the following property. Suppose that the initial data satisfies

: 
Io"l"' Uo(r)dt Ul(r)dx, : o (t.27)



tr E(x,,O) : tt E^'o(*): tr E"'o(n) :0
Eiio("): Eiio(r):o

for all c € [0, L] andi, j:2.,3. LetW be a solution "f (1 1) - (1.15) with

U e C2(lo,trl x [0, oo),1R3)

E, 8", En, Eo,S, So, Sr e C1(t0, L] * [0, oo), lRe)

and with

:If t(t,w),,::1, la(a' t)l 1 Kr '

?>0'

ThenW is isochoric, i.e. tr E(a,t) : O for all (c,t) € [0,2] x [0,*), and the
the solution satisfies.

(1.28)

(1.2e)

energy of

eou + h,w) s

forallt>0.

t6 is defined in (t.t8), and condition (1.27) essentially excludes rigid motions of the body,
which of course do not lead to decay of the energy to zero. M > 1 is the material
parameter from (t.10). W" note that the assumptions (1.29) about the diferentiability
of the solution can be easily weakened, but we leave this to the reader.

From this result we conclude that all the stresses S, S", ^S/, the strains E - 8", Eo :
En - Ep, and also the time derivatives äsE' and 1rEc asymptotically tend to zero for
t -r oo. Eowever, this decay result is not strong enough to prove that the nonelastic strains
E' and EP asymptoticallytend to a function E-, which would be the accumulated strain.
Whether such an asymptotic convergence result can be proved remains an open question.
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"Inelastisdre Probleme und Probleme der Bruchmechanik" at the Technische Hochschule
Darmstadt. The author wishes to thank Franz Kollmann for presentation of this problem
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helpful discussion.

2 The sequence of approximate solutions

Let {.\1}p, with o = )r - )z : )g ( )r
tiplicity) and {a},!, q C-([0, r], R3) be a system of eigenfunctions, orthonormal and

(tr*-,t,x, +
)'z/(M-1)ts(r,W)dr)@-r)/2



complete in ^[2([0, tr], Rt), to the boundary value problem

d2

*n(*)*)121(a) :6 Q.1)

dd
a*'{o): *w(L):o'

Clearly,

u1(a):@r cos (,Ar)
with a suitable vector or € lR3. We want to approximate the solution
(1.15) by a sequence {W1,(t, t)}Er, where

Wr, : (Ux, Ex, Et, Et, EI, Sr", Si, S{,o1")

is defined as follorn's: For A ) 2 the function Lr6 is a linear combination

W(r,t) of (t.1) -

k
U*(r,t) : I a1p(t)u1(t)

l=1

of u1,. . .,1/k with suitable functiors o16, .. .,ekk : [0, ?) -* lR. It is required that these
functions and the other components of.w1" satisfy the equations

nr:'r(vur. + (v[/r)r)

Sx: D(E* - Ei)

b AIU'"(I),y) * (Sn,Yv) :0, / : I,...,k
sr : s& - |{r, r*;,

sr:Sf*Sl
Ei:Ei+Ei
St: MEi

x&tsrt,(s).#' 01El : s*

an|:P- fisl) g-"\o* )lstl
01op = x(klstl) l1rEil a6l(a7,, l,Sf | )

Here X € C-(lR') is a smooth cut-offfunction with 0 1X1I,X,) 0, and

(2.2)

(2.3 )

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.e)

(2.10)

(2.11)

(2.r2)

*({) :{?, [: :t' (2.1 3 )



Pr € C*([0;1), [0, m)) is a function satisfying

P,o(€): 
{ :[l"|l,l ,)*,,,ä::=';, (2.t4)

(2.15)

(2.16)

(z.tz)

for suitable constants trr,. ..,Ln > 0 independent of h and €. In the appendix it is shown
how such a function can be constructed. The functions 1 and Pp are introduced to
regularize the singular behavior for the right hand sides of the equations (i.tO) and (1.t1).
Equations (2.2) - (2.12) form a system of ordinary differential equations. The necessary
initial conditions are

(2.18)

(2.1e)

If. Wn is a solution for (2.2) - (2.t2) we denote by ?iu* : T,,,o*(W*) the extended real
number with 0 ( 4,,., ( oo such that Wn ip defined on [0,.L] x [0,4,,o,), but cannot be
extended to a domain [0,.[] x [0, ?) with ? ) 7i.*

Lemma 2.L Let p ) 0, and letO < ) I L,M ) I,o,6,0 > 0. Here 6 and B are the
parameters in the definition (1.13) of l. Suppose that

Uo e H2((0, tr),lRt), Ltt € f/r((o,r), Rs),

En'o, Ea,o € C-([0,.0], Re), o0 e C-([0, r], R+)

with E",o(a),8",o(r) symmetric and with tr E^,o(r) - tr E",o(t) = 0 for all a e [0,L].
Moreoaer' assurne that 

inf ao(x,\ > o -oliSt- \-,,

VU0(0): E*,0(0) : E"'o(0):Vt/o(I) : E^,o(L): E"'o(L):o
and

lME"'o(a)l < "o(r)
forallce[0,.L].
(i) Then there exists ? > 0 and a unique solution

Wn - (tlt", E*, Ei, Et, Et, Sx,Si, S/, o1)

€ C-([0,I] x [0, ?),lRt x (lRe)7 x [a, oo)) .

0 1 Lt#"*fri s 4(f )e s Lzp*(€) < ,L3e (ln 
ä)-'r^, 

0 < { < Llz ,

l4'(€)fl < Lak(lnlr)-'/^,0 < € S ;,
lP['({)fI t LnPi"G),i =' =i

(t/u(O), v7) - (Uo,u1)

(A,Uk(o), v1) : ((Jt,r,) 
t = r''''' ft

Et@) - En,o,E;(o) - Eo,o,"r(o) : co .



"f (2.2) - (2.12) to the initial conditions (2.15) - (2.19) .

(ä) 8 1,(r, t), Ef;(a, t), El(a, t), Ef,(x,t), 56(o, t), 5f ( o, t), S {@, t) are
itfv

tr Ei : tr Et : tr EI : tr Si : b S{ : 0

and

syrnmetric and sat-

(2.20)

E*(r,t) - Ei@,,t) = Et@,t) : El,(r',t) - S,,(a, t) (2.27a)

: Sf(c, t) - S{(a,t) : 0,

Proof. We solve the equations (2.7) - (2 9) for Sf and Sf in terms of s1, Ei and 4f,,
insert the result into (2.10) , (2.11) , (2.L2), and obtain

fora-0orr:L.
(üi) rf 7k".(r44) <

The equations (2.5) can be written as

oP(a,t): oo(*)

q then

limsup llt-f ,t)ll- : -t./T^"t

I'pllf ll",( , t) - s."( ,,)ll- = o .

(2.21b)

(2.22)apt :
e-y(kls1, - M(Et- Efl)l) (l'- - 

vtztE'f - uf ll;'

apf,:"(4!#)ffi
01op:

xftMlEt - EIDPr (*tut,-
\ar

s*-M(Et-Ef)
lsn-M(Et-Eill

96 or-6 -ß / a, 
lM (Et _ E[)1e t' r

ETr)

(2.23)

(2.24)

(2.25)

o fQ,,,; fi*ir(O + f;finlY v i * (Y, )' l, v v)a 6(t) :
: (DEt(t),Vur),I : L,. . .,k .

From (2.4) and (2.6) it follows that ,91 and therefore also sp is a linear function of
dr/c,...,dkh and Ef. It thus follows that (2.22) - (2.25) constitute a system of evolu-
tion equätions for the unknown functions d1p,...dkktEt,EI,a6, where the coefficient

10



matdxon the left hand side of (2.25) is invertible, since {",}E, is linearlyindependent.
We multiply (2.25) with the inverse of this matrix and set ßm : *o,o. This transforms
(2.22) - (2.25) into the first order system

d

irro: Fk(vk(t)),

Vh(t) : (oto,. -.,o,kk, Frt",.. -, gt"x, Ei, *f,,o1,) .

(2.26)

with

The initial condition is
vk(o) : v: , (2.27)

with
Vf : (alr,. .., alr, |ft,. . ., 1f;u, En'o, Ee,o, oo),

where o?*,0f* are determined by (2.18), and where Ep,o : Enp - E"p.By definition in
(2.13) , 1- vanishes in a neighborhood of zero. Noting this fact and using that Pp({) :
e(tn/c)-llr&f for 0 < € <Ll(Zk), we see by inspection of (2.22) - (2.25) that

F1,: D -* (R&)2 x [C-([o, r], Re)]'z x [0, oo)

is infinitely differentiable, where

( \ ,.^1. 1D : 
{(otr,...,ekkt9*,...,/xx,Et,EI,ar) e (lR*)'x [C-(fO,r],Re)]2 x (io,oo) :

,r.än r 

MlEt - E"rl. "r) .

The assumptions ior En'o , Eo'o, oo imply that V1,0 € 2 . Therefore it follows from the usual
theory of ordinary differential equations in Banach spaces, that there exists a T > 0 and
a unique solution Vr € C*([0, f), D) of. (2.26) , (2.27). Moreover, it follows that the
solution can be continued as long as it stays in D. Since (2.L2) shows that op is non-
decreasing,it thus follows from the assumptions that op(x,,t) > oo(") ) a. From this we
conclude that if the solution fi, exists in [0, ?L"*) with 7i"* ( m but cannot be extended
to [0, ?) with T > T^o", then

limsup llY*(., t)ll* : *t/T^.*

(2.28)

}XXI llo*(', t) - MlEt(,t) - Eor(,t)l ll- : o .

The soluti on w* of. (2.2) ' (2.L2), (2.18) - (2.19) is obtained from vl, using (2.2) , (z.B)
, (2.4) , and (2.6) - (2.9). Because q € C*([0, r]) it follows that Wr" e C-([0,.t] x
[0, ?), lR3 x (lRe)' * lq,m)). This proves (i). Statement (iii) is directly obtained from
(2.28).

11



To prove (ii) note that we can modify the elasticity tensor D such that its restriction
to the space of symmetric tensors is unchanged, and such that the space of all skew

tensors are mapped to zero by D. We show now that for this modified tensor D inserted
in (2.a) the tensors E1,,El,Et,E'o,S*,5t, and ^9f obtained as solution of the system of
differential equations are symmetric. But then (2.a) remains valid if the original tensor D
is substituted back into (2.a) , since it is only applied to the symmetric tensor Ex - ET.

Thus we have a solution of (2.2) - (2.12), (2.18) - (2.19), and the first statement of (ii)
follows from the uniqueness of the soiution.

Thus, let D map skew tensors to zero. Since the elasticity tensor D maps symmetric
tensors to symmetric tensors, cf. [1], DRis symmetric for every tensor -R , whence Sr is
symmetric. Moreover,,

(DR), : DR : ltltn + Rr)+ :(A - R')) :.2. , 
2

rtltn + R')- lt" - R')) - D(Rr)..2. ' / 2,

Using this relation in (2.a) we see by inspection that the function

w{ : (u r, EI, (Et)', (uil' @il',, s[,( q )t, (s t)', 
" 

o)

is a solution of (2.2) - (2.12), (Z.ra) with (2.19) replaced by

(Ef)t(o) = (E 'o)', (E;)t(o) - (8",o)r, ou(0) : oo .

But, by assumption En,o and Eo,o ate symmetric. Therefore W1" and WI are solutions of
the same initial value problem. Since the solution is unique, it follows that W* : W{,
whence the symmetry of Er, Et,, Ei, Ef,,Sr, Sf , S/. To prove (Z.ZO1, note that (2.22) and

(2.23) yield

as(tr E[) = -e.My(ktsft ) (S)'üT (tr Ei - tr Et)

asgr Et) = MPx(#) #,,, Ei - ft Et) ,

which is a linear system of differential equations with infinitely differentiable coefficients

for the functions tt Ei and tr Ef. Since by assumption tr Ei@,0) : tt E''o(c) - 0,
tr Ef,(a,0) : tr Eo,o(a) : tr En'o(a) - tr..E"'o(*) : 0, it follows from the uniqueness of
the solution of linear differential equations that (2.20) is satisfied.

To prove (2.21a) note that (2.20) yields ft (02D" Ef) : O for every multi-index a,

hence, from (2.6) and (2.7) ,

Do sr,. aJ" Et - (D'rr* är, (D'sfr)r) . aP'Et

= Do sk . \tD' Et : (D'St + 
''SJ) 

. AtD'Et .

(2.2e)

t2



Setting a = 0 we obtainfrom this equation and from (2.4), (2.8)- (2.11)

a l!1n1no@,t) - Et@,t))]. (81"(a,t) - E[(r, r)) + !Wa,,Af]at Lz

: St '(\tE* - ArEil + Si' ApE :
: Sr"' \tEx- S;' ErEt - Sfr' Arü+ S&"' \rEi - ü' APP;

From (2.1) - (2.3) we obtain

Er(O, t) = 0rEÄ0, t) : Ex(L,t) = LrEr(L,t) - 0 (2.30)

for t ) 0, whence, for o : 0 or z - L,
1

|@{rr{*,t) - Ei@, r))l . (Er(*,t) - Ei@,al + {@i@,,t)1'z
'l

s'rlntnr(",0) - Et@,0))l . (Er(c, 0) - Et@,u) + {@i@,0)l' 
: 0,

where we used the hypothesis E''o(z) : E"'o(r) = O for a : 0 or c : Z. From this
inequality, from (2.30) , and from the assumption that D is positive definite we obtain
(2.21a). Equation (2.21b) is a direct consequence of (2.2La) and of (2.12). The proof of
Lemma (2.1) is complete.

3 Energy estimates

In this and the following sections we prove energy estimates for the solution Wp con-

structed in the last section, which show that neither of the relations of Lemma 2.1 (iii)
is satisfied, which implies that Wn exists on the domain [0,.1] x [0, -). Moreover, these

energy estimates show that the sequence {},7e};-1, has a subsequence, which converges to
a solution of (1.1) - (1.15).

For simplicity in notation we mostly drop the index b in the following sections and

assume lhat W € C-([0,.0] x [0, T)) is a solution of (2.2) - (2.12) to the initial conditisns
(2.18) - (2.19). The subscipts t or c denote differentiation with respect to t or r.

Lemma 3.L LetW eC*([0,.[] x [0,f)) be a solution of (22) - (2.19). Then

*tUr,w): -(st(r), a,E"(t))- (s"(r), a,Eo(t\)

: -ft lot xt,lstl)lst(", t)lM+Lda - lrt ls"(', t)llEl(n,t)ldrc t0.

Here €s is the energy defined in (1.15).

(3.1)

13



Proof. From the symmetry of ,S and from (2.3) we obtain for any multi-index a

Do s . Do Er : 
i,o" 

t . (D,vUt + (D"vu)r) (3 2)

- f,tn" il . (D'vu) + lrto" s)r . 1D'vur) : D, s . (D'vut).

using this equation and (2.4) , (2.9), (2.2), (2.29), (2.8) , and (2.s) we obtain

*tu, : (p(J,r,u,) + (D(E - E.), E, - E:) + M(8., Ei)

: (pUrr,Ur) * (S, VU,) - (S, En + G", Ef)
k

= D[burr,rt) + (s,vu)]0p11"(r) - (s" * sr, En + (s", E: - Ei)
l=1

: -(.gt, En - 6", El).

(3.f ) follows from this equation and from (2.10) , (2.11) . The proof of Lemma (3.1) is
complete.
For lal ( 1 we introduce the notation

^l(r"ls"l) 
: 

^1(t, 
r'l^9"1) (3.3)

= l,' in", (#),'" ts"(,,t)t)z dz

Lr(D"lull) = Lr(t, D'lqll) (3.4)

f 
L o(n,t): J, 4ffi(D"lE!(a't)l)2h'

Lemma 3.2 Letw ec*([0,-[] x [0,?)) be asorution of lrq - e.lg) . Thenwehaue
for eaery multi-index a with lal : f

fta4,w) = -(D'st , D" En - (Do so, D'Er) ,

wherc

' (D" St , D" Ei) : (8.6)

= -S lo' x&rlstl) l,sr(", llu-t .[ln"st1, + @- lXD. lstl)r)da

e* 1L
- ;;" l" kx'(klst Dl5t 1u (D' st 11'da < o,

(3.5)

1,4



and

-(Doso,D"E!) : - f^t HlD-s"1, - (D.ls"l)rld,n- A,(r,r.ls"l)ro lJ*l

* l,'Yrt(+) Dlo p'1s"1d*

: - [" 4,#uo"rll, - @"l*i]rldn (3 z)lo lüil, L' \-

- A,(t, D"wrl) - l,t 6"1t!p"p!ld.r.
Note that for any function R(t,t) € lR'and for any multi-index a with lol - r

lz1n11n"lnl)l : lr6al),1 :lo"1a n)l = lzn.1n"n)l s z;n1 lD"Rl ,

hence

l(r"lnl)l < l,"Rl.
Since o(a,t) ) o ) 0 and since (2.14), (2.15) imply p;(€) ) cr ) 0 with a suitable
constant ar, it follows that all terms on the right hand sides of (3.7) with the exception of
the two terms containing Doo are non positive.

Proof. From (2.4),(2.5), and (3.2) we obtain

d,t,
äiltru:r(t),a:u\)) + (ars(r) ,0,(E - s'))] : (3.8)

: (pata:uu),a:uuD + (a,^t(r), \rt@ _ E"))

_ batalug),a?u(t)) + (ar^s(r), a?vu) _ (a,s1r1, alE^)
Ia: tyru,ri(t(t),u1)+ (a,s(r), vn)lfr"rr(t) - (a,s(r), a?E^)

l=1 - wv

kt: 
ä*[tea?u@,zs) 

+ (s(t) ,o,)7 fi,*{r)- (a^s(r), a,E?)

From (2.1), (2.4), (2.5), (2.21a), and (8.2) we obtain similarly

fitrxouru,u(t),ap,u(r)) + (a"s(r), a,(E -E'))l : (3.e)

: QA"AIU(t),AIA,U(t)) + (ä"s(r) ,ap,(E _ E ))
: @a,alug),ao,u(t)) + (ä"s(r), ap,yu) _ (ä"s(r), ap"E^)

&: - tlou:u (t), 0!u1)+ (s(t), aiv n)l *r,,r(t)- (a,s1r;, a,Ei)
l=1

15



k: I r, ftna,'U(t),u1)+ (s(r), vrsl fi*,*(t) - (a,s(r), O,Ei)
l=1 qu

: _(a"s(r), a"Er).

From (1.18) , (2.8), (2.9), (2.29), and from (3.8), (3.9) we obtain for lal : 1

dil
dt -ott) : -(D"s(r), D" E:(t)) + (D" sc(t), D" Ei(t))

: -(D'S" + Do St ,, D" Er) + (D'5", D'Er - D" El)

: -(D'St , D" Ei) - (Do 5", D" E!).

This proves (3.S)

- The_equation (3.6)follows immediatelyfrom (2.10) and from 5f . pagt : lD"1St .

St) : f,n"1St1' : lstl D" lstl. The right hand side of (3.6) is non-positive, iince we
assumed M>l andX')0.

To prove (3.7) we use (2.11) and proceed as follows.

-(Do so, D" E!) - -(D'5", r"(ffit")) :
: -rffir"so,Doso)- ((D'ffi,r., D.s")

: -rffio" so, Do so) - Io' @"ffiltr"t, 'ls"ld,a

: -,1är" so, Do so) - l"' D'wru'p"ld* * 
1"" jfrr"tr "l)" d*.

Now compute DolEfl from (2.11) and insert the result into this equation to obtain the
first equality in (3.7) .

Similarly,

-(Do so, D" E!)= -(r"(#i Er), D" El) :

= -,#r" El,D.El)- ((D. 
ffilur,D.Er)

: -rffio"El,D'E!) - I"' r'l^5"1 D'lrfld,n * lo' ffi,r" lrfl)'zd'x,.

Compute r"ls"l from (2.11) and insert the result into this equation to obtain the
second equality in (3,7) .

16



4 Estimates for the hardness

We cannot conclude directly from Lemma 3.2 that t"(t) is decreasing, because (3.7) shows
that (D'^9", D" Ef) contains terms which do not have a sign. Therefore these terms must
be estimated. As preparation we derive in this section estimates for the functions a and
oa.

Differentiation of (2.12) yieids

cat : h(a,,t)a, + Wf E ol(o,ls'l)1(,bl.S'l) (4.1)

+ Wfll(a, lS" l)l\x&ls"l) + olrls"lx'(/rls"l)l ff
with

h(t,t) : wil r(o, l^e"l) x(els"l) lt - , - !o+ h (#))] @.2)

Thus

a,(8, t) : o,(*, o)eli n@'dan (4.3)

+ 
lo' "l:h@,rt)d,l itrrt" 

)Ty+ (Fx+ okls"ly,)wr1#,=] t
Lemma 4,1 Let 0 > 0 . There exists a constant Kt > 0 with the following property : Let
W e C*(10,,[] x [0,?)) be a solution of (2 2) - (2.19) and assume that

o < a 1 o(a,q S h, ls"(', ql 
=;o(a,t)

for all (a,t) e [0,tr] x [0,?) , where B is the parameter appearing in the definition (t.tS1
of the function L Then

1t 1t

l, U(r,r)dr < K, t,(S",Ef) + A1(r, lS"l") + Ar(", l0!1")dr .

Proof. We set

fu(n,t) : ClEl(a, t)l lS"(o, t)l'*'
with

ct:-: r4)'.'|rt+e \o )
A simple calculation yields

1_6_ g_g+lr,€)< {r,o' ao

L7



for 0 < { < 1. From (4.2),(1.13) and from 0 < y< l it thus follows

h(c,t) : xtrit (3)' (#)u'" l, - 6 - !r, *'" T )]

s ; (i)'*' tu,,(#)"" '

s i(t")'*o tut (#)'.'
S h1(x,t) ,,

where we used rhat lS"llo< 1 and 9lo - 0 > I + 0.

From ls"(r, t)l < p 12 and from Sobolev's inequality we therefore obtain

h(Y't)

Moreover,

lo" lt r,{r,t)ld,a - t, !o'I trf t" l^s"l'*' + l*il(ls"l'+d)' ldz

s c, 
| 1," fu(E!1")'z 

d,r * 1,"'+ F" r*" d,*)

+ c1(1 * ,l 
t 1" 

ei(F) 
(s"1,)2dn * l"'-f*, ls'1" @if d.J

S c1;2(t,loll") + c1(1 + 0)^1(t,ls"l") 
(4'5)

.t,(t)" Io'4(+) ffp"p,+c1(l +q I" ##ffi g"ttxttd'n

1 C1It2(t, WfE) + Cl (1 + d)^l(t, ls"l")

- "'(*)" 
,,rro, Eil + t, ,# P"(s", Er) ,

where we used (2.15) and (2.11), which togetherwith lS"ll" 31/2 yield

4(#)$ 
= 

L,Pr(ry): rztEtl

18



and

I

The statement of the lemma follows from (4.4) and (a.5).

Lemma 4.2 There exist constants K1,Kz ) 0 with the following property: LetW €
C-([0,^t] x [0, f\ be a solution of (2.2) - (2.19),let01) < 1 , and assume that

o 1 o(r,q 
=?8, lSo(r, t)l SLro(a,t)

for all (n,t) e [0,.0] x [0,?) . Then

lo" lo,1r,t)l2d,n ( 2 exp fzr, !"'ts" , Ef)* Ar(r, ls"l") * Az(r, l*i}dr)

llr" lo,(r,0)l2d,r * o, 
lo'G", 

E?)* Ä1(r, ls"l,)d,r Io' 
nr(r,l,s"l,) r tt2(r,l*il)drf

Proof. Note that (2.13) implies X'(€) : 0 for { ) 1, hence

0 < Fx(klS"D * oklS"ly'(els"l) 3 g +omaxx'({)

with
E - sup [" h@,r)drt

o;i"'i;"'

we thus obtain from (4.3)

tL

J" lo,(*,t)l2d,r (4.0)

sz",rll," lo,(*,0)l2d.x * I"' (1"' n"lrfl" f l + IOErE ff,,0,;'o*1.
Now (2.11), (1.13), and Cauchy-schwarz'inequality yield

I' (1,'uopn,rl + tF tzlr ffrr)'r,
s, 1," lJ,' E"ro,] ll' (trl,"Äl'n * l,' (tnrwä ff)'a,fa,
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= 
, 

f ,?"ä lo' tr"t,o,l l(f)'o lo" !o' ((#)""-'wt,)

.u, (t)" lo" fo' (g (Y) 
u'"-' 

:,,.,") 
' 
o,0,1

dr dx,

(4.7)

(4.8)

From (2.15) and from ls"ll" < 112, 9lo - 312 ) 0 we conclude

(:)u'"-' : tt*]''' (:)u'"-'''lo^+, #] 
''' o-'''

s lt*'i "*Y,] 
"' 

= [?,'" 
2)-'l1t fu]''',

and, noting (2.11),

ffi (#)u'"-' : s ## l'"tisErl''' ä(#)'' i
s l+3*+r $arfr'"ü]"'(#) -'''*

s Vry';h(ü)'-'rr] 
'/'

/ I uL, '"tt"\1t'

We insert these estimates into (4.7) and obtairr with (3.3) and (3.a) that the right hand
side of (4.7) can be estimated by the term

* L*21 lo' lt"l'0,] [l'n,," ,lEll,)+ Ä,(r, ;s"1";a"]

with a suitable constant Kg.

Finally, Sobolev's inequality and Cauchy- Schwarz' inequality yield

,g,"ä(l' 1s"12a,y s ,ll"' I,' 1s'1'd,, a, + 
lo' 

I *,(,' 1r:"yo,1p,f

s " l, I' I' 1s"12 d, a, + lo' lo' 
{lr"D, o" o,f



= " [r.,?+:,ffi 
) l"' @i, s").r* *g,,tffiI l'

= " f',,?.+:, ffi", fo't't,s")dr *f,v' l"'

sf,otrt, fo'tt!,s") + Ä1(2, ls"l" )d,) ,

nr(", lS"l")dt]

Ar(", tr"t")r"]

where we applied (2.11) and used that (2.la) and (2.15) imply

4(€) >

whenceP;(€) 2 * t 0forasuitableconstant r.rindependent of ,b and {. Combinationof
this estimate with (4.6), (4.7), (a.8) and appiication of Lemma 4.1 yields the statement

of the lemma.

Lemma 4.3 LetW e C*(10,tr] x [0,?)) be a solution

o I o(t,t) S p, lS"(c, t)l <

for all (o,t) e [o,I] x [o,T) . Then

(i) o 1 a(n,t) < min{oo1o;, a01l;} + Q 1"" lor(y,t)l'ds)'t' ,

(ii) o< o1(r,t)s(*)'B"fO"2)-r/x

for aII (c,t) e [0,.1] x [0,?) .

Proof. (i) From (2.21b) we obtain

o(z,t) S min{a(0, t),o(L,t)} + l, lon@,t)ld.y

assumption 0 ( y 1 L it follorvs from (2.12), (2.11), (t.f s;, and (2.t+),

o 1 o1(r,t) s ,t;(r"irrT)-''^ o()' (ry)t'"

*r"n1-',^6fu , *.tsI
i('ä)-"^+, fs€<1,

e(ln /c)-1116 , o<€ r*

of (2.2) - (2.19) and assurne that

1

,o(t,t)

(ii) Since by
(2.15) that

2L



5 Estimates for the mixed terms

In this section we derive estimates for the terms without sign in (g.z).

Lemma 5.1 LetW eC*({0,.[] x [0,?)) be asolution of (g.g) - (2.19) and, assumethat

o l-o(x,t) S p, lS"(r,r)l S ; o@,t)

for all (r, t) e [0,.1] x [0, f) . Then

I,'Y,;t#l Iv"t,a,l

= *rr'2)-t/x (*)' lls"(r)ll- w,@!,s") + 
^i(r, 

l^s"L)l ,

where

lls"(t)ll* : o?&1 ls"(c, t)l .

L2 and, Ls are the constants from (2.15)

Proof. (2.11) and (2.15) imply

Y r^Y) < r,r*1fl.): L,lE|.
The assumptions of the lemma therefore imply

I'rypxYtfts:t,a.l

=,?"?-,(? 
rll," Y' ,^Yro. * I,' 4(#) )ur"t,yo,l

<,ä% Qllr', !o" lr"ll*fld,a+ 
^,(r, 

ls"l,)]

= ,ää(: )ltr@i,,s") + 
^,(t, 

ls"l,)] .

Since lS"ll" < L12 it follou's from (2.12), (2.15), and (1.13)

,?"ä(?) s .p"15lril r(a, ls"l)

(5.1)



Insertion of this estimate into (5.1) yields the statement of the lemma.

Lemma 5.2 There erists a constant Ks > 0 with the following property: Let W €
C-([0,I] x [0,fD be a solution of (Z C) - (p.19) and, assume that

o 1 a(n,t), lS"(', Al Slo@,t)

for aII(a,t) e [0,tr] x [0,?) . Then

1"" rypxYt|F"t,a'l
. *,(: p,f d,r1rlzlU * L" lo,lz da)(El, s")+ 

^1(r, 
l,s"l,)

* (lnk)-ll^(r + tlo" lo,l'aü'/')t(t,w1'n].

Proof. The assumptions imply

1," ry pxYtlts"ba*l

= ll,' t,,t' 
d,f''' 

ll,' (# 4( #))' j $"t,r o,l'

so-,/zll"'r,ro.]"',** [(#)' ,xytf''' (b 2)

ll,' I'xfltg't')'d''f 
/

Observe that (2.16) , (2.17) imply for { - lS"ll" < Llz

lf'P;'({)l S t4€pi,G) + k(ln r,y u^!).

rUsing this estimate, Sobolev's inequality, and (2.1s) several times, we obtain

"?"?11(Y)',4(#)]

= "( f (Y)' pi,(+)d, * 
Io'lr" ((#)'qr#r) 

I 
*)

s c (!wr,,s") + I"' lr? r^#, * (#)' ri:(+)ll+ - + ?l*)
23



s + (Er,s") + c(z * r,a) I"' ry pU*l lS"l" lS"l o,l ,

--t(ZJ
o 6 ol

* 
" Iot 

Lak(Lnk)-vtL lS"l" lS"l o" L
o c ol

=!ef,,s") + c(z +2,.; 
[n,{r, 

ls"l") * 1," # r^T,*]

+ c(2* r,a)11"" ,,"ro,f''' ll," (#) ' ) rt(Y)'*]'''

* c L a(rn k)-r r x 

{+[l',,r" t,), o,]'

s c r,x)+ (2 + Ln *) (Er, s") + c(2* tr4)A'(r, ls"l,)

* f,"p + Ln)11," v,ro*7'''

['er I (#)' pxät] . 
ä /" (#)' *,'xYt*l

+ cLa(tnk)-trtl+ * *tl,' ld,a*yn]Mln te,wltn

1 cLz[i-i,, * tn] *'r"r, *

+ c(2+ r4)^1(r, ts"t") * i g"5 [(+)'4(#)]
I cL,4ML/21ro1,1-trtl+ * *t/," IoÄ,anyrzl t(t,w1ttz

In the course of the calculations we also used (1.17) - (1.19) and set

t: d ull," v,rn,l-'''

From this inequality we finally obtain

,?"111(#)'4(#)]

* il!," v"ro*f''' 
ll"" 

,,,ya*f'' \

r), Io lo,lzd.r *f wr, t"l
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< 2c L2 (; - p + r,^1) *)"p a Ln), * 1"" 1o,1,a,) (Er, s")

+ zc(z+ ,4)^1(r, ls"l") 
(5'3)

+ 2c L 4Mt / 2 (rn k)- r r t 
l+ * *t 1," lo,lz dnlt / zf t u, w ), /, .

Insertion of this estimate into (s.z) yields the statement of the iemma.

Lemma 5.3 There exists a constant Ka with the following property. Letw e c-1J0, 11*
[0,?)) be a solution of (2 2) - (2.19) and assume that

ol-o(c,t), lS"(",tll Sl o@,t)

for all (a,t) e [0, tr] x [0, ?) . Then

I1"" ls"lllnil,a*l

s ou(lo" lo",1rdr1rtrl, * lr" lo,lzd,") (El , s")+ 
^r(r, 

ls"l") + Lz(t,lEil,)

* (ln&)-1l^(r + tfo" lo,l,aür/r)t(t,wytzf .

Proof. As at the beginning of the proof of Lemma 8.2 we obtain

I !,' lt"llwrba*1

so-'l/z fl,'r"ro']"'[,*"ul(+)'4(#)] + rvz(t,rEr,)] '

The statement of the lemma is obtained from this inequality and from (b.3).

Lemma 5.4 There ecists a constant Kz such that for euery solution w e c*([0, tr] x
[0,7)) "f (2 2) - (2.1e) anit for i : 0,1

(i) lla;E(r)ll2 + lla:E (r)ll, +',lla:Ep(ql!, + lla:u"(üll,

< xz(to?lä t(", wfnr-\rz 
fo' 

tu:t, , aiil)dr + t(t, w) + lla:E^,oll\

(ii) W,E(t)ll' + lloJ-(t)lill' + lla,,no(r)ll' s Kzt(t,w)

(iii) llu(r)ll, =I, lo"t,w)d,r+ 2llrl(0)ll, .
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Proof. (i) We prove this inequality for i : 1. For i : 0 the proof is analogous. From
(2.10) we obtain

!o" la,n^tx,,t)l2ita (5.4)

= lo" I !o' 
a,n7gr,t)d,r t o,En(x,o)l2d,r

s z lrt tl"' ll,Ei@,,t)ldr)2d,a * , Io' ll,E^(n,0)l2d,c

s u 
Io" Io' ll,Ei@,t)l2d,r d,a -t 2ll0,E'(0)ll'

:, (ft)' , 
1"" Io'ltnx'Ftl*-' + (M - t)ylst(-2;si ;sr;"

+ ylStlu-, s{1" a, d,c + 2la,E^,oll2

/e*\2
< n (;uJ t (*erx'(€) + M - 1),?pö llsr(")llg-'

. 
ln',lot {r*'lstl* + (M - 1)xlsrlt-'Xlstl" )2d,n itr

/e*\2.rtrL- - (#) , pry,llsi(")ll5-' l,r Io" xlstl*-' lsll'zdn d.r + 2ll0,E^'oll2

= 
n ft(**x'(f) + M)to?pä llsr(")llg-' lo'{u,r',0,*i)d,r + zla,E^'ollz ,

where we applied (3.6) in the last step. We also used that X'({) : 0 for ( > 1, hence

kx'(klstDlstl* S pi x'(€) lstl' '
Note that (1.17), (t.tS), Sobolev's inequality, and (2.4), (2.6), (2.7), (2.9) imply

llsr(r)ll- < cf(t,,w)r/, .

Insertion of this inequality into (5.a) yields

lla" E^ (qll2 1 C z to?pä S(", W fm -\ r z 

fo' tu, t,, 0, Ei ) d,r + 2lla, E-,o ll2,

which proves the estimate'for lll"E^(t)llz stated in the lemma. The estimates for
llAlE(t)ll'z and llli9e(t)ll2 are obtained from this estimate and from (1.17), (1.19), and
(2.8), and the estimates for llAi[(t)ll2 are obtained from the estimates ftot llAiEft)ll2 and
from (2.3).
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(ii) is a consequence of (1.19) and (2.3), which imply

lla,r'1t)11 : lla,;(vu(t) + (vu(t))')ll s llvu,ll

t;: lla,u,ll 
= ,l;t(t,w)'/2 ?

Again, the estimates for ll\&"(t)ll'z andlllz0P(t)ll2 are obtained from this result and from
(1.1e), (2.8).

(iii) is obtained by integration of [/t and application of (1.19).

6 Existence of a solution

In this section we first derive uniform bounds for the energy norms of the solutions W6 of.

(2.2) - (2.19). We then use these bounds to construct a subsequence, which converges to
a solution of the initial-boundary value problem (1.1) - (1.15).

Lemma 6.L Let the initial data Uo,Ut.,En,',8"'o,oo satisfy the hypotheses of Lernma
2.1, letm:0 in (t.tl), andletWp be the solution of (2.2) - (2.19) obtained in Lemm,a
2.1. Then we haae

llri.(o) - uollr, llä,r/*(0) - r/'ll, -- s

t(0,Wk - Wo)--- 0

for k --r oo , where ll - lli denotes the norrn of the.soboleu space I/r((0, L)) , and where
the components and deriaatiues of Wo : (Uo , Eo , Eo,o, En'o , Ep'o , So ,,So'0, 5;1,0, oo) are
calculatd, from the giuen initial data anil from the equations (1.1) - (1.3) , ( 1.5) - (1.12)

Proof. Since we assumed in Lemma 2.1 that t/l e I4((0, tr), R3) , it follows as usual
from the spectral theorem for the boundary value problem (2.1) that

j

,t:'g llU' - t c2v2ll1 - Q,
l=7

with c1 : (Ut,z1) . trlorn (2.2) and (2.18) we thus obtain

0gs"(0) : ct t I = L,...,k,

lla,n*10; - (J'll?: i tt -t )2)cl-- o
l=lc*1

(6.1)

(6 2)

hence

(6.3)

for fr --+ oo. In the same way we obtain

I
lim llt/o - ldlzlllr: s
j--" 

7_, 
! !t
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with d, : (Uo,v1) , and

llu*(o) - nolll -* o (6.4)

for fr'-+ m. Since (0"rt,O,ui) - \gq and since [/o € /12((0,r),R3) with VUo(0) :
VUg(L): 0, we conclude that

@:flo, rt) : (Uo, 02,u2) : -)tdt,
hence

llo:uk(o) - a:uoll2 : i 
^?td\ 

--o (6.s)
l=k*!

for & --+ oo. (6.3) - (6.5) prove (6.1). To prove (6.2), note that (Z.rS;, (2.3), and (6.4),
(6.5) yield

(6.6 )''iLj;:hl:il]'i) -vu.) +(vue(') -vu.)', ?-0
for fr --+ oo. From this relatioo, ,]o* Q.4),(6.3) from

4(o) : Eo'o ' s*"(o) : so'o ,

which are consequences of (2.19), (2.9), and from the definition of t" in (1.18) we obtain

to(O,Wk - W) * t1r,o;(0, Wp - Wo) -, 0 , /c -.' oo .

To prove (6.2) it thus remains to show that

la?uk(o) - o?uoll, lla,Er(o) - a,Eoll ,

llar';101 - Lrr-,oll, llä,8*"10; - a,E",oll --+ o 
(6'7)

for & -+ m . To this end iet 116 be the projection from Lr((O,r), R3) to the space spanned
by ,r,...,1/k. (2.5) shows that

alur(o) : rr* (1div sp(o))
p

and (6.6), (1.3), and (2.+) imply

lldiv s;(0) - div Soll --+ 0.

Therefore we obtain from (1.1)

aluk(o) : n.(1div Sp(o))
p

' : II*(l div S0) + | u*1ai,, sr(o) - div S0)I *\P ' P 
&\

: nkjJlu\+ 1n*(air,,sr(0) - div so) -* O:uo ,
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where the convergence is in tr2((0, -t), R3). This proves the first relation of (6.2). The
second relation of (6.7), namely

lla,Er(o) - ?rEoll -1 o ,

is a direct consequence of (6.3) and (1.2), (2.3). observe next that (6.6), (1.3), and (2.a)
also imply

llsl,(o) - soll, -* o.
From sf;(O) - s"'0, from (1.6), (1.7), (2.6), (2.2) and from sobolev's inequality we thus
obtain

lsl,(*,o) - sr'o(r)l

for /c --+ m and all c € [0, r] . (1.10) and (2.t0) therefore yield

A&*'o(a) - 02Ei@,,0)

e*.: *r [t - x(elsl(', o)l] lsr'o(')lt-'sr,o(')

e*
+ + x(kls{(x,0)l ) [ lsr,o( t)lu-t 5t'o(r) - ls{@,0)l]l4-1sf 1r, o;1

st

* 0, 6--+oor

uniformly with respect to s € [0, r] , since by definition of 1 in (2.t3)

lr - x(,blsl(', o)l ; Jsr'o1c;;M < k-M .

Thus, we obtain

llatq@) - 1rE ,oll ---.,0, (6 8)

which is the third relation of (6.7).

Using (2.L4), (2.15), and 
^Sp"(O) 

: li4'0, o*(0) : co , cf. (2.19), (1.9), (2.9), we obtain from
(1.11) and (2.11)

lQEP,o(a) - &rf(01; < e(ln k)-t1x
for all a € [0,I] . This inequality, (6.8), and (1.8), (Z.a) yieta the last relation of (6.7).
The proof of (O.Z) is complete.

observe that from (1.17), (1.19), from sobolev's inequality, and from (2.4) , (2.6),
(2.7), (2.9) it follows that there exists a constant Ks such that

llu,(t), E(t) - E-(t), E"(t),s(r), ^s"(r),st(r)ll- < KEE(t,w)'/' (6.e)

for every solution w of. (2.2) - (2.19). For f ) 0 we define the function

o(€) : z"rn*,r(lot lo!(t)lrd,c + 64K2t\, (6.10)

where Kr and Kz ate the constants from Lemma 4.2.
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Theorem 6.2 Letthe initial data(Io,U',Enp,Eo'o,co satisfg the hgpotheses of Lemma

2.1, Ietrn:0 in (1.11),let 
o.?ß.

3',

anilletW* be the solution of (2.2) - (2.19). Moreooer, a,ssurne that oo and the enetgg

€(O,Wo) satisfy the following conditions:
There erists a constant0 > 0 suchthat

l'\

Kr(t(o, wo) + il't' SLtu

(r + r'2)ftV"Z)-t/t (f)' /(8(t(0, wo) + 0)'/' < tl+

(Ku * K6)o(t(0, Wo) + 0)'t' < tlz

(Ks * n6)o(t(O, wo) + 0)1/21+ o(t(o, wo) + d)l < t

min{a'(o), oo(r)} + [ro(s(o ,wo) + 0)1r/z 
=Xp

Then there exists C ) o.,ks and to all lr ) ko a solutionWx € C-([0,tr] x

"f (2 2) - (2.t9) with rn _,rjmax - ,*"*(trVl,) 2 Tt" = C(ln b)1/r

The solution satisfies for all t e [0, fi')

t(t,wk) S (| fr" k)-trtt + t(0, wr)'/')' (6.17 )

(6.11)

(6.12 )

(6.13)

(6.14)

(6.15 )

[0, 7L".))

(6.16)

and

+ ll1:EtT) ll'z + lla;s[(t) ll' + ll a]+1 ur.(t) ll'?

o?pä 
t(", WrlV-t)/z

llarE&(t)ll'? + WtEtU)ll' + lla'ai(t)ll' s K7t(t,wn)'

llt ,(t)ll'z t1' 
Io' 

t?,w1")d';r+ 2llt4,(0)ll'? '

lL,op(a,t)l2d,n S o(t(o, Wr) + | {t'n;-"^ t2 -p (ln k)-t1t E(0,W1)tt2l '

llalEr(t)ll,

s x,lt

. (t(0, wr,) * | {to *;-"^ t2 + (ln /c)-r/r t(0,w1)tt2t)

+ t(t,wn) *lla;r'nll'], 2 = o, 1 .

(6.18a)

(6.18b)

(6.18c)

(6,18d)
1""
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lo" tu,ou1*,t)lzdn= , 
[(f)o 

o, f{r'z)-,r^]' (6.rse)

Proof. Since lrye assumed that the hypotheses of Lemma i.1 ur. satisfied, we get from
thislemmathat[,,o*andasolutionW*e C-([0,^L] x[0.,7k..)) of (2.2) -(2.19) exisr.
To prove ihat [',"*(W*)2T6,it suffices to show that (6.17) is satisfied for all t with

0 < t a min(?-"*,7*), (6.19)

and that for these t

llsf(r)ll- =tr", (6.20)

hence

llar(t)-s;(t)ll- r|uro. (6.21)

For, (6.9), (6.17), and (2.4), (2.10), (2.11), (2.Lz)imply for these t that

llr,Tr*(r)ll- 1ct,
with a constant C1 depending on &, but independent of t. From this inequality, from
(6.21), and from Lemma 2.1 (iii) we conclude that T',^*) 71,.

I

To prove (6.17) we use (6.2) and choose &0 such that

t(o,Wk) < t(0, Wo) + 0lz (6.22)

for all k )_ ko. Observe next that

rL

J" lol(n)l2h < o(€)

for all { > 0. Lemma 4.3 and (6.15) therefore yield

llo,(t)ll-.?B (6.23)

for t = 0, and (6.9), (6.11), (6.22) imply

llsf(r)ll- .f,"SLro@,t). (6.24)

for t : 0. Moreover, (6.13) and (6.1a) yield

(Ku + xd(I, 10,o1"(t,t)l2d'Qt/z <Ll2 (6.25)

(Ks + Ki(lo" 10,o1"(n,ü12d,ü1/2 0 + I, 10,o1"(r,t)l'zd'r) < | (6.26)
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for t = 0. Finally, (6.9), (6.22), and (6.12) imply

$ + Lü#(rn2)-llr (t)'lls;ll- < rl4 (6.27)

for t = 0 . Since Wp is infinitely differentiable, it follows that there exists a largest 7 with
0 <T <T,ou*(Wp) such that (6.23) - (6.27) holdfor allt € [0,"). We show that

7 ) min(?6, ?*"*) , (6.28)

where

Tr" : 2fttto, wo) + 0),/' - (t(0, r4lo) * !rt,'l (tn /c)1/r . (6.2e)

To this end note first that (3.7) implies

-6:, Ef,) S -f,.nrrr,ls"l") - f, nrrr,Wf l,)

*t, 1," Yrl,9ls"t,d. -; lo" lr"lflnil"a,.

From (6.23) and (6.2a)it follows that in the domain [0, tr] x [0, f ) the function l,tr/p satisfies

all the hypotheses of the lemmas in section 3 - 5. The last estimate, Lemma 3.1, 3.2, 5.1,

5.2, 5.3 and (0.2s) - (6.27) thus yield for 0 ( t < T

ficp,rs : ,D,*rir,*o)
: - t l(D"sd,D'api)+(D"si,D"apf,)l

lal(t

s -(,sJ, a,ET)- (as;, a,afit\ (6.30)

- | t'f, a,EI)- |n,{t, lsf,l.) - in,,t, lsf,l,)

- Inr4,@,Ell,)* (tn /c)-llt t(r, wr)'/' ,

where we use that

ir*r+ K.) {lot @"orl'dr1'/'(L + (1" la,ool2d'z)l/2)

=t1t*r+ 
K6) tlot la,orl'd,r)'/'Q + I, l0"o1"l2dn). | . t ,

by (6.25) and (6.26). In particular, (6.30) implies

* tU,w*) 3(ln /c)-1lr te,wk)t t2

to.)a



for 0 S t < T. We integrate this differential inequality and obtain

1

t(t,wk) S (i (t" k)-ttx r + t(0, wr)'/r)'. (6.31)

Insertion of this estimate into (6.30) and integration gives

lr' I {s {, a,Eil + (a,s {, o,o1Ei) ld.r

Lrt* ; lr[Fi,arEil * A1(r, l^sfl") * 3Ä1(r,lsf l') + tt2(r,10fif,1"))d"

< t(0, w*) + | {tr, n;-"^ t2 + (ln k)-t1t t(0,wy)1/2 t . (6.32)

If we use (6.22) and choose fi, as in (6.29), then ii follows by a simple calculation that
for 0 ( t --Tn the right hand sides of (6.31) and (6.32) both are bounded by

t$,wo)+e-60),

with a function 6 satisfying 6(t) 2 c(Tx -t), where c: 
"(e) 

> 0 is a suitable constant.
As a consequence we obtain from (6.31), (6.32)

t(t,wk) < t(o,wo)+0 -6(t) (6.33)

fo'tti,lpl,)d, , lo' nr(r,lsftl")d,r , lo' 
Lr1r,l0pll,)d,r < 4(t(0, wo) + 0 - 6(t)) (6.34)

forall k) ko andalltwith 0 < t < min(?,fi,). Weuse (6.34)toestimatealltheintegrals
in the term on the right hand side of the inequality stated in Lemma 4.2. Together with
(6.10) we obtain

rL

l" 10,:o1,(c,t)l2h

where c1 ) 0 is a suitable constant. This inequality, Lemma 4.3, and (0.15) yield

llo*(t)ll-

s ie - c26(t) 
(6'36)

with c2 > 0. (6.9), (6.33), and (6.11) yield 
r

lls;(r)ll- < Ka(r(0, wo) + 0 - t1t11tt' S:q- cs6(t) (6.32)
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with ca > 0. (6.35) and (0.13) imply

(Ku *"') ( lo" lu,or1r,t1Y ar)'/

S (Ku * xa) [o(t(o, W) + 0) - c15(t)]1/2 (6.s8)

s: - ca6(t)

with ca > 0. (6.35) and (0.r+) yleld

(Ku *"') ( lo" lu,oo1,,fif ar)'/

with c5 > 0. Finally, (6.9), (O.gg), and (6.12) imply

(L + L2) fty"Z)-rn (t)' 1s;ll* s i - c66(t)

O+ l, 10,o1"(t,,t)l'zdQ< 1-c56(r) (6.3e)

(6.40)

with c6 > 0. since- (6.36) - (6.40) hold for all 0 < t < min(?,Tn) ,, and since 6(t) >
"(Tn- 

t) , we conclude that ? 2 min(?*" *,Tr) . For, if we would have T a min(L"-;"-t
then Wp € c-([0,.[] x [0, ?*".)) and (6.36) * (6.40) would imply that there exists ?'
with ? < T' < ?*",, such that (6.23) - (6.27) hold for all t € [0, ?,), in contradiction
to the definition of ? as largest time with this property. This proves (6.28). But (6.2g)
impiies that (6.31) and therefore (6.17) hold for all t satisfying (6.19). By definition of
T , (6.24) and therefore (6.20) hold for all t e [0, f), hence fo, all t satisfying (6.t9). The
remark at the beginning of this proof shows that (6.16) and at the same time (6.t2) is
proved. (6.18d) is a consequence of Lemma 4.2, (6.10), and (6.32), and (6.18e)is a diiect
consequence of Lemma a.3 (ii). (6.18a) - (6.18c) are the estimates from Lemma b.4, where
in the derivation of (o.t8a) we used (6.92) to estimate the terms J.*(a;sl, 0i018fld.r. The
proof of Theorem 6.2.is complete.

Proof of rheorem 1.1 r.) we first assume that the initial data
Uo,U' , En'o , Eo'o, co satisfy besides the hypotheses of Theorem 1.1 also the conditions

En'', Eo'o,ao e C*([o, r])

vuo(O): vLlo(tr) _ 0,
hence, because of (1.23)

Eo(o) = E''o(o) : Eo(L) - E"p(L) : o .

This means that the hypotheses of Lemma 2.1 are satisfied. Choose the constants C1 and
C2 oL Theorem 1.1 small enough such that the conditions (6.11)- (6.15) of Theorem 6.2
are fulfilled. It follows from (6.16) that for every ? > 0 and for all sufficiently large fr the

and

(6.41)

(6.42)
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solution Wr of (2.2) - (2.19) is defined in the domain [0, tr] x [0, 
"). 

(6.12) implies that
there exists a constant Cr with

t(t,wk) < cl (6.43)

for all 0 < t ( ? and all sufficiently large ,b. It therefore follows from Lemma 6.1, from
(1.19), and from (6.18a) - (6.18c) that there exists C2 such that

llur,llr,z,*llEn-Eillr,r,+llfltli,z,+llF,rllr,z,+llfiillr,z,+ll}erllt,z, 1cz
for all these,h, where zr - (0,r) x (0,?), and wher"ll.lli,z, denotes the norm of the
Sobolev space HiQr)

From this estimate and from (2.4), (2.6), (2.7), (2.9), we also get

llsrll',t, * llr*llr,z' + llsillr,z, + llsl li,z, I C, .

Finally, from (6.18d), (6.18e), and from Lemma 4.3 (i) we obtain

llorllr,r, S cn.

Using Rellic.h's selection theorem for every positive integer {. we can therefore choose a
subsequen* {Wt}:=, such that {Uf }:, "oor,..g"sin H1(22) and such rhat

{ni,qr, Ei,', EIl, s!,, "tr,qr, sJr}Il
converges in L2(21). The diagonal sequence thus converges in Hr(Zr) and in Lr(Zr),
respectivelg for every T > 0, and we can choose this sequence slch that it converges
for almost all (c,t) e (0,r) x (0,m). we denote this sequence by {t*}:r. The limit
function is denoted by W : (u,E,E",En,Eo,s,so, st,o), and it is contained in the
space

y((0,r)): Hr(Zr,lR3) x [Hr(Zr,lRn)]' x H{Zy;lR+).
Moreover, we can choose the subsequence {t"}:, such that it converges weakly to W
in I/((0,/)) for every t> 0, which implies that {14lr1(o,r)x(r1,",)}1, "ono"rges 

weakly to
W1p,r,1*1rr,?r; in V((Tr,"z)) for every 0 < 71 I Tz. We shall prötre now that W is a
solution of (1.1) - (1.15).

It is clear that.(r.2), (1.3), and (1.0) - (1.9) are satisfied. To prove that (1.1) is
satisfied note that (2.5) implies for every {p € Cf ((0, m)) and for every /

f@ foo

l" fualu(t),eQ)v2)dt : - l, Q01u(t),0e(t)u2)dt

: -I3 fo* tra,Üo(t),0,e(t)u1)dt

: 
J1T l* Qa!Ü1"$),e1)v2)dt

: -,lim [* 6r,Ye(t)v1)dta+@./O

f@: - J" Q,ve$)u2)dt,
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hence

bAlU,ü)10,r;"10,-, : (div S, r/)10,.a1"10,-;

for every rlt e C7110,-t) x (0,-)), which implies (1.1). To see that (1.4) is fulfilled
observe that by the trace theorem the mapping

^9 -r 71(S) : ,S110,.a1x10,") : I4((0 , L) * (0, 
")) 

-+ L2({0,I} x (0, 
"))

is linear and continuous, hence weakly continuous. Thus

rt(s) : r,(.;I* 5*) : r;:* rr(,9r) : s ,

since 
sp@,t): D(E*(*,t) - Ei@,t)) : o

for r = 0 or s : L,by (2.a) and (z.zta). This proves (t.+). (1.14) is obtained in exactly
the same way. To prove (1.S) we use Lemma 6.1 and obtain with ,y2(U) : t/l(o,r)"{o}

U,(0) : lz(to- lim ArÜü : .;I- tr@rÜx)

: Jita'r4(0) : uL .

The equation t/(0) : [/0 is a direct consequence of (6.1) and of the trace theorem, since
[ft converges to [/ in H{Zy). This proves (1.5). To prove (1.10)we use (2.10) to conciude
that it suff.ces to show

1", 1,"
.- 1 ls' (n,t)l \M sr(c, t)'\ s* ) 1st1n,t11

(6.44)

- e-x(kt 3{,@,,)t) (ryl)I)' m l', 
a,a, -- o

for ß --+ oo . Note first that by our choice of the subsequenc., 3{1*,t) converges for almost
all (a, t) e Zy to St(z,t). Exactly as in the proof of Lemma 6.1 it thus follows that

-( lSt(r,t)l\t St(x,t)'\ ' ) Wfet
: m e-vfttsd@.')l) (f+'X) " m

for almost all c € 27. From (6.9) and (6.43) we conclude that

ls/(', t)l S K,cll2 ,

for almost all (a, t) e Zy and all h . Thus (6.44) is a consequence of Lebesgue's dominated
convergence theorem. That (1.11) holds with rn : 0 follows from (2.11) in exactly the
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same \4ray. This proof yields that At4f(a,t) + \2Ee(c,t) for almost all (2, t), and that
QEf,(a,t) is uniformly bounded with respect to (o, t) and to ,b. Using these facts we can
use the same proof to conclude from (2.12) that ( 1.12) is satisfied. Thus W is a solution
of (1.1) - (1.15) satisfyins (t.24).

To see that (1.25)is satisfied, note that the definition of t in (1.17), (1.18) shows that
for0(Tr1Tz

w ,- []' tO,w)dt:v((71,7'r)) --] tRf
JTr

is a convex and continuous, hence weakly lower semicontinuous function. From the weak
corrvergenc. fur ^ W in V((Ty,T2)) it thus follows that

Il, tu,w)dt s l,-1,Jr lr, tu,wulat s (r,- r,)r(0, wo) ,

where we applied (6.2) and (6.17). From Lebesgue's integration theory it thus follows
that for almost all ?r € (0, oo)

'l rTz
t(T',w) : lT-, y, - 7, Jr, t(t,w)dt < t(0, wo) ,

which is (1.25).
Finally, (1.26) is an immediate consequence of the fact that o I op(r,t) S 3B and

that öp(t,t) -+ o(r,t) for almost all (c,t) € (0,I) x (0,oo). This proves Theorem 1.1

for initial data satisfying (6.al) and (6.a2).

II.) To prove this theorem for initiai data that satisfy (6.41) but not (6.42), let

üo(,) : uo(,) + *[u:(ox, - L), - ul1r1r,] ,

A(,) : ] ;"'tolt' - L) - Eor,;)af ,

and
Et"o(") : E^'o(r) + A(a) '

Then Üo,U',fi,n,o,go,o,c ate initial data satisfying (6.41), (6.42), and ail conditions of
Theorem 1.1. Note in particular, that tr E"'o(*) : 0, since by assumption E0(0) :
E''o(9) , Eo(L) 

^: 
E^'o(L) 

^and 
tr E^'o(r) : 0, hence tr A(r) : o .

Let W : (U,,E,E",EnrEo,S,S", St,o) be the solution just constructed to these new
initial data. ThenW = (U,E,Eo,En,Eo,S,S",Sf ,a) is a solution of (1.1) - (t.tS) to
the original initial data, if we set

u(n,t) : Ü(,,r) - *lnj1ol1c - L), - ul(r,1n f ,
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E(a,t) : E(a,t) - A(*) ,

E-(c,t) : E-(r,t) - A(x,) ,

Ee(c,t) : Eo(*,t) - A(c) .

The proof of this statement is by inspection, which we leave to the reader.
Finally, to prove the theorem for initial data that satisfy all the hypotheses of

the theorem, but not (6.a1), approximate En,o,Eo'o,oo in ^FI1((0,r)) by a sequence

{tt'o,nt'o,"2\7, of infnitely differentiable functions, solve the initial$oundary value
problem to these new initial data, and repeat exactly the approximation process described
in the first part of this proof, to show that the sequence {Wr}}, of solutions converges
to a solution of the initial-boundary value problem of the original initial data.

7 Decay of isochoric deformations for I -) oo

Lemma 3.1 shows that the energy decreases by the amount of work done to inelastically
deform the body. But equation (2.20) shows that the inelastic deformations of the material
are isochoric, and some considerations show that there exist materials, that is elasticity
tensors D, which allow one-dimensional deformations rdithout inelastic component. The
energy of such deformations does not decay as t --+ co. For isochoric deformations,
however, the energy decays with a certain late, as we shall show now. By definition, a

deformation is isochoric if tr E(a,t) : 0, which in the case of deformations depending
only on one space variable and on the time reduces to Es(t,t) : O. Of course, such
deformations occur in incompressible materials. But even in compressible materials such
deformations are possible. For example, suppose that the materiai is isotropic, which
implies that

S - 21t(E - E") * )tr(E - E^)I ,

cf. [1, p. 76] and (1.3), and assume that the initial data satisfies

Ytt(t): Yi(") : En'o(a) - EP'o(c) : o

forall 0 < s < L. Examinationof (1.1) -(1.15)thenshows that Ur(r,t):0, hence
Etr(*,t) - 0 for all (a, t) € (0, ,) x (0, oo) which means that the deformation is isochoric.

In this section we consider solutions W - (U,E,Eo,En,Eo,S,S",Sl, o) oI (1.1) -
(1.15) with

U e C2([0,tr] x [0, oo),1R3)

E, E", En, E, ,S, S", Sl e C1([0 , L] * [0, oo), lRe) .

For these solutions it is immediately seen that instead of (e.t) we have

*t"u,r, = -(sr, En - G", Er)
(7.1)

lst(', t)lM+ritr - 1""
e* 1LI-fi1" I S"(r, t)l lE! (n,t)l dn .



In the introduction we already noted that the results stated in this section can be easily
extended to more general solutions. The essential requirement is that a version of (7.1)
is satisfied by these solutions.

We first consider the case p :0, the quasi-static case, and prove

Theorem 7.L Assume that the elasticitg tensor D maps tensors with uanishing trace into
tensorswithuanishingtrace, andletp:0tTTL:0, M ) L, K1 ) 0. Thenthere exists a

constant K - K(Kt) such that for ang solution W of (1.1) - (1.15) with tr E(n,t) : g

and with lo(a,,t)1, lS"(r, t)l S K, for all (a,t) e [0, ^l] x [0, -) we haue

to(t,w)
(xt + to(o,w)-t#)*=

Proof. We have

S(c, t) . (E - E^)(*,t) + .5"(c, t). E"(r,t)
'l: (s - ; (rr s)/) . (E - E") + s" . 8"

: (,s" + st) . D-|s + ls" . s"

: LD-L(s"+ st)l . [s - ] tr, slrl + hso 
. so

: D-r(S' + Sr) .(S" + St) + h t" . t"

s * ls" + stl'+ lE"f

= *U s"l'+ l^stl') + 4E"f
,2 1 ..

s (n+ 
tutX ls"l'+ lstl') .

Moreover, Hölder's inequality yields

ls"l'+ lsil' < [(ls"l')+ + (lstl')ti*] # zH
IorM)1,since

M -t 1

M +lt @ = 1'

We thus obtain

[r t" - E")+ so . t"]"#
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* lSilar+t;

I eolM
+ @il ls"l(äf )l

*u*( #,ffi) (p'rrtr n1+r *w1v-t)
Now

I edlM 1

ffi : ls"lM lrtrül)'/^ . c,ls"y (lr-rT )*,' . c,K{ ,

so that Eölder's inequality and the above estimates yierd

toQl*# = [ lrt tt . @ - E,) + s" . E")ac]ry

{ tv* lrt F. (E - E,) + s" . E"f#a,

From (7.f ) we thus obtain 
d,

itr(r) ( -c-'ro(r)+
Integration yields the statement of the theorem with l{ - m:! g-t .'we 

use this result to prove Theorem 1.2. This theorem concerns the case p > 0, whichis more complicated. To prove the theorem, we need the following
Lemma 7.2 Let h > 0, Kt ) 0 , and let

€.(t) :] lrrrrl, @ - E")(r)) + (s"(r), E"(r))l .

ff;:#::: :;;f";::;:;":"1, - c(h, K) such that ror anv sotution w satisryins the

:lp t(t), süp lo(t,t)l < K1t>o o(c(-D
T>0

(s"1u+r

lls'1**'

<2ry(3-.1 i9\Do ' 14)

sza#(*. hln
<zM#(L . 1 t9\Do ' 1t4)

we haae

lr'*' ilu,1r)ll'd, s , I l,'* t- (r)dr * l,'*n [Gt , Ei)+ (,s", Er)] drl
and tr E(a,t) = 0 for all (a,t) .

40



Proof. We first note that the hypothesis (1.28) and the assumption that D maps tensors
with vanishing trace into tensors with vanishing trace imply for the solution Irll

tr S(o, t) - tr E(n,t) : tr E"(r,t) : O (7.2)

and
Eri(',t): Eii@,t) -0 (7'3)

for all (a,t) and for all i,,j = 2,3. The proof is by inspection of (1.i) - (t.tS;. Define

next

21r,t1 : (1,(r,t) : (Ey(n,,t),2821(a,t),28n(x, t))t ,

Z" 1t,t) = (Eir@,t),2Eir@,,t),2Eir@,t))r,

and

Thus

Moreover, (1.1)

(7.4)
Io' ,"r*,,t)d.n : o

and (1.a) imply
)Z tL

* J" u@'t)dx'

From (L.27) we thus obtain

lo" v{r,tya, : lo" ,r,,o)d,n *, * Ir" u(a,t)itnp=o

: 
loL 

uolrya, + t lo' 
(IL(r)d,a: o .

After these prepartions we derive the first estimate.
Let s € Cf((t, t + h),,R) with o < p(") ( 1. Then

lr'*n rllvr- zillzd,r -- !r'*'*{u,,u,- zi)d'r - Ir'*n e4i,ul- zi)d'r

zn(r,t) : l, Z^(€,t)d,e - l, lr" lr' 7'(t,t)d,{ d,rt .

= lot 
u,r(r,t)d.r : 

!o" 
aiu s(n,t)dn

= S(L,t)n(L) + S(0, t)z(o) : o .

(7.5)

*: I,'*^ ellu, - zill2dr *tt I,'*^ ellzill'zd.r

+ me+lp'(,)l l: I,'.^ \lu,fzdr * * I,'*n llu - z^ll,d,r]

*tr l,'*n ellu, - zill2d,r *; l,'*n ellzillzd,r ,
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where we used (1.1) and (1.3). Using (1.4) it follows by partial integration that

l,'*' ,llu, - zill'zd'r

**.J lp,?)lL|, I,'.^ llu,ll,d,r * * I,'*'llu - z^ll,drl

*, I,'*' pllu, - zillzd,r *; |,',*' ellzill,d,r .

As in the proof of Lemma 2.1 (ii) it follows that E' and ^5 
: D(E - E") are symmetric.

From the symmetry of En,from (7.3), and from the definition of Zn we conclude that

En : trt, t" + (v z\r) .

The symmetry of D(E - E') thus implies

(D(E - E^),vu -vz^) _(D(E -E ),8 _ E*) < llrll ll4 _ E^llr.
Insertion of this result into (7.6) results in

fi+h^ft+h_ft+h
l, ellullzdr

+ 4 {llDll l,'*o ut - E^llzd.r

+ TA# lp'?)l{t I,'*^ llulll'zd,r * * I,'*o llu - z^ll'a,}} .

Below it will be shown that

(7.7)

(7.8)

(7.e )

uzrr drl .

+ 
lr'*n {s' , Ei)dr + lr'*o {s", Ei)d,rl .

From this inequality and from (7.7) we thus obtain
rtlh

l, llull'zdr

s c, 
I lr'*o ,*(r)0, * Ir'*^(st,Ei)* (s", E!)dr

* I,'*n lll - E*ll'd,r t 4c(m"* lp'l)' l,'*n Uu -
Ifere we set 6 = (4C max lp'l)-t . (7.4) and (7.5) yield

1L

J, U(r,t) - Z"(r,t)d,x :0 .

I'*^,u1ll2d'r

rt*h
z"llzdr * 

J,
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We conclude from this that there exists ai(t) with

u;(r"og),t) - zi@L(t), t; : 6

fori= L,,2,3. Hence

llu - z.ll, : 
*1,' Ku, - zi)@,t)lzdx

3 ,L,a: 
'>,1, J,*rt(u' - zi)'G't)'(u' - znc't)ld'( d'x

3 rLrz: 
'nL L*,JQ' - znc't)'(u' - zi)G't)ld( dc

s zl,'llz -z.llllu - z*lld,n

: 2LllZ - z^llllu - Z'll .

This yields

llu - z"ll < 2Lll2 - 2-ll < z,/i r,ll4 - E*ll .

The inequality (7.9) therefore implies

l,'*o uu,y'n

+ (r + 32c(max lp'l)'L') I,'*^ ,, - E ll2dr *'fr'*n llzillrdrl

+ l,'*^ {s, , En + (s", E!)dr * I,'*^ llzillrdrl ,

with r - 1+ * (t + 32C( max lp'l)'L'). In the last step we used an inequality analogous
to (1.19) to estimat.llD - E"llr.Note that

llzi?)ll, : lo' Itit*,r)l2d,x

: 
1"" | 1," 

hiL,,)dt - +, l"'L' zi',r)d,( d,rtr2d,a

s 1," lr{1," lz16,4ld€)' * rtl 
1," 1," lziG,r)ld( dTi,f da

: 4Lrnzr(4r < sL,llEi?)ll, .
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Insertion of this inequality into (7.10) finaily yields

rtlh - rt|h

J, llutlf dr

+ l,'*n {s, , Ei) + g", E!)d,r + BL2 l,'*^ llrrtr)ll2d,r

But, from (1.10),

lr.'lt :". f El\ 
* 

= {*(,?"ä lsr(,, t)lM-1) 1sr1 .Lt 
\ r. / r>o

Note that (1.6), (r.7) and (7.2) imply

lSt(",t)l < ls(o,t)l+ ls"(c,t)l < ls(r,t)l* lS"(a,r)l .

The definition of t.(t) and (1.3), (r.9) thus yield

lls/(r)ll' < c28-(t) .

Similarly, Sobolev's inequality and the definition of t(t) yield

lSt(', t)l < ls(c, t)l + l^S"(r,t)l < C2t(t) 1 C2K1 - Kz .

(7.11)

(7.12)

So

l,'*^ lluitr)ll2d,r s (ä)' o3*-' l,'*^ llr'1,)ll'd'
rt*h

Jt

Combination of this inequality with (7.11) implies

lr'*^ llurf ilr .-c1 ltr + BL2K) 
lr'*^ ,-(r)0, * lr'*o(st,Ei)+ (,s", Eildrl

This is the statement of the lemma. It thus remains to prove (7.S). To this end note that
(7.1) yields for 4 ) 0

to(t+rt) - so(t) : f,ttu,tr+üll'- lttu,@ll, + t-(t+,i - t-(t)

l'+,1st, n) + g", E!)d.r .- t,
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Now.let I e Cf((t,t+ h))with 0 < p(r)( I and p(r) :1 for r *q 1 r 1. t*2q,where
r - th.Then (7.r2) yields

I,'*n lu,(r)ll2dr : l::," llu,(r)ll2dr *7 l::," t-(r)d,r

Jt \

Lemma 7.2 yields

. M+r
lntlh\2

(,1 lluill'zdr ) s

( 7.13 )

- 
n I,*' t- (r)d,r *'; l,*' U,"*' ,r' , E) + (s" , E)drf dr

s l,'*n v{4llu1(r)ll2d,r *X I,*' t.(r)d,r

n rt*n rtlht' t' t l(st, En+G",Ef)ld,rdr'pJ, It t

: 
l,'*^ vllulllzd,r *X l,*^ t-(r)d,r *# I,*^

Moreover, (7.I2) also yields

[,]"lnusf dr
"tt*ht

Since

l,'*^ llr,l'0, 
= I,'* llutllzdr * lr'*^ ellulll,dr * I:r,lu1ll2d.r,

we obtain (7.8) from (7.13) and (7.t4). 
Tn" 

proof of Lemma T.2is complete.

Proof of Theorem 1.2.
In the proof of Theorem 7.1 it was shown that

s.(t1!!# s c [(sr, En +(s", Er)] ,

hence, from Hölder's inequality

, ,M+1

(1,*^ t-?)a,)u s uE I,'* te)#a,

6t , E:) + (s", Ef)dr .

(7.15)

45



s c, 
I Ir'*' ,-rr)a, + l,'*n 

(st , Ei)+ (.9", nilar)ry

= 
trl( 

lr'*^ t- 1r1or1*# 1 ( lr'*^ 1r' , En + (s" , E!)d,r1+lz*+

s z+=1 crlc n# 
l,'*n ,rt , En + (s" , Ef)d,r -r

* (1,'*n (tt , Ei)+ (s", nylarl'* 
l,'*o *r, , En + e", E!)d,f

s za+ c, (cn'+ + [/*1st , Ei) + (s' , E!)d.r] *) 
L'*n ,r, , En + (s", E!)d,r

. zY crgnv* + to(0)9 ) l,'*n ts, , En + (s",, E!)d,r,,

where we used (7.1) in the last step. Together with (7.15) we obtain

(1,r.^ ,"t")0")** : (, l,'.^ ilu1il'?d,r * l,'*n e't")',)

. zFUu, I,'*^ llutll'zdr)t+ * tl,'* t-(r)dr)alLl

s cr [(r + to(o)# ) l,'*o tr, , En + (s",n!)d,r * !,'*n {s, ,8:) + (s",n!)d,rf

: cz(2+ to(o)F ) l,'*^ 1r, , En + (s", E!)d,r.

Inequality (7.16) and (7.1)yield

* I,'*^ ts(r)d.r : l,'*n frtog1a,

ft+h- J, Gt , Ei) * (s", E!)dr <

s -c;'(z+ to(o)# )-.-(1,'*^ to(r)d.r)Y .

Integration of this differential inequality gives as in the proof of Theorem 7.1

l,'*o

where X : TC;' (Z + tr(0)#)-1 . Equation (7.1) shows that te(t) decays monoton-
ically. Using this fact we obtain

hto(t + r) s I,'* ts(r)ilr ,

(7.16 )



whence

toft +ä) < 1
e('\e I ''' = 

lo* xt + (i I: tr(")or;;;+'
which is the statement of the theorem. tr E(a,t) : O follows from Lemm a 7 .2.

Appendix

We show that a function P1, with the properties (2.14) - (2.LT) exists. With the function
l from (2.13) let

pr(€) : e(tn k)-trx/,€ [1 - x(e6) ] + 6 (h ä)-"^ x&il

This function satisfies (2.1a). For 0 < € S e-(r+l)/r the function (ln f )-1l) is concarre,

which implies for all ,b ) max (2,e0+t)/t) and 0 < € < Llk

' (1n&)-1lr n€ s (r" ä)-"^ ' '

hence

Pr(€) s , (r" ä)-"^ (A 1)

and

min(1,)ln2)t 
ä"-,r, s P;(€)

= e(ln k)-trxell - x) + ,(t" i)-"^ tr ä*
(A.2)

* ["(t" ä)-"^ - 
e(rn k)-'/^*€f r,x'

< [max(l , frl + 2,1]?ä x'(')] ä"-,r,
To derive the last inequality we used that

#;fr=,(#)-"^=,
for fr S € S I s mi"(ä, e-(r+t)/r;, whence

"(t" ä) 

-"^ n*' s "(t" ä)-''^ t*'
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: f t'(r" ä)-"^ rr - xr + , (r" ä)-"^"1

€

: '= r-f qrnaxy'
{-"tt

Inequality (2.15) is a consequence of (A.1) and (A.2).
To prove (2.16) and (2.17) note that

PtiJt : ,l'(t 
ä)-"^ + - e(rn k)-trt k€lr,,x'

+rr(L 1\-1l) tlxt11 rk2u", \ -. ;) - e(ln tr)-'/^t'el tk'x"

+ "(r,,ä)-"^ #T (i# -') ä"
The first two terms vanish ftor Llk < € S Il2 and the iast term is bounded by LaPi,$) tot
these {. For 0 < f SUk all three terms are boundedby Lak(logft)-tlr, since y(i61: o
for 0 ( € su?k)
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