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1 Introduction and statement of results

In this paper we study steady flow of an inviscid, incompressible medium through a
bounded, simply connected domain QCIR3. Our goal is to construct solutions with
nonvanishing vorticity of the boundary value problem

((x) V)u(x)+Vp(x)=0, xeQ, (1.1)
divo(x)=0, xeQ, (1.2)
n(x) v(x)=f(x), xeoQ, (1.3)

where v(x)e R® denotes the velocity and p(x)>0 the pressure of the flow. n(x)
denotes the exterior unit normal to the boundary dQ at x € 6Q. Of course, the given
function f must satisfy

[ f(x)dS.= [ n{x)-v(x)dS,= | divo(x)dx=0. (1.4)
on 02 2
It is well known that for simply connected domains Q the problem (1.1)(1.4) has

an irrotational solution (v, p), which is unique up to addition of constants to the
pressure. Namely, in such domains any velocity field v with

curlv(x)=0 (1.5)
for all xeQ is a gradient field
v(x)=Vo(x), (1.6)
and from (1.2) and (1.3) it follows that
Ap(x)=0, xeQ, (1.7

a—an- oX)=f(x), xedQ. (1.8)
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The Neumann boundary value problem (1.4), (1.7), (1.8) has a solution ¢, which is
unique up to constants. Therefore the velocity field v given by (1.6) is unique. To
construct the pressure p note that with the relation

(v-Vo=VE|v|?)—v x curly
the Eq. (1.1) can be written as
—vxcurlv+ VG2 +p)=0. (1.9)
From (1.5) we thus obtain that
1|v)> + p=const.

It is clear that the functions v, p thus constructed satisfy (1.1)+1.3).

It is much less obvious whether the problem (1.1)H1.3) has solutions
representing flows with nonvanishing vorticity. On physical grounds one expects
many such flows to exist. On the other hand, the conventional expectation is that
these flows are unstable and that in physical reality a steady flow governed by
(1.1)«1.3) would switch immediately into a turbulent flow because of the absence
of viscosity. A general experience in mathematical physics seems to be that lack of
stability of the objects under consideration introduces difficulties into the existence
proof for these objects, and in many cases these difficulties have not yet been
overcome. The fact that the existence of irrotational solutions of (1.1)}-(1.3) can
easily be proved would then be attributed to the introduction of artificial stability
by the requirement curlv(x)=0, which excludes turbulent motion.

We shall prove, however, that if (v, py) is a solution of (1.1}-(1.3) satisfying
vo(x)*0 for all xeQ and has sufficiently small vorticity, then there exist a
neighborhood of this solution and flows with nonvanishing vorticity in this
neighborhood, which satisfy (1.1}1.3) and two additional boundary conditions.
These additional boundary conditions hold only on that part of the boundary,
through which liquid is entering the domain €, and prescribe the vorticity of the
flow on this part of the boundary. They are necessary because the requirement
curly =0 used in the construction above is dropped. Moreover, we show that any
such flow is stable in the sense that in the neighborhood mentioned above it is the
unique flow satisfying (1.1}(1.3) and the additional boundary conditions, and that
it depends continuously on the boundary data. In particular, such flows with
nonvanishing vorticity exist in a neighborhood of the irrotational solution of
(1.1)~(1.3) constructed above.

To see what these additional boundary conditions should be, apply the
operator curl to (1.9). This yields

curl(v x curlv)=0. (1.10)
From the relation
curliv x z)=vdivz+(z- V)v—zdivo—(v- V)z (1.11)
and from dive=0 we conclude that (1.10) is equivalent to
(v-V)curlv=[(curlv)- V]v, (1.12)

the Vorticity Transport Theorem, also called Helmholtz’ equation, cf. [10]. The
Eqgs. (1.2), (1.3),(1.12) constitute the velocity-vorticity formulation of the boundary
value problem (1.1)1.3). In simply connected domains both formulations are
equivalent.
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If the velocity field v is known, then (1.12) can be considered to be a system of
first order partial differential equations for curly, the characteristics of which
coincide with the stream lines of v. This means that (1.12) can also be considered to
be a system of linear ordinary differential equations for curlv along stream lines. It
follows that if curlv is known at one point of a stream line, it can be computed
along the whole stream line from (1.12). By definition, stream lines 7+ w(t) are
solutions of the system
d
- (1) =v(o()
of ordinary differential equations. From this definition it immediately follows that
any stream line contains at most one point x € 02 with

n(x) - v(x)= f(x)<0,

and therefore it is possible to prescribe curlv(x) at any point x € 02 with f(x)<0.
On the other hand, in all the solutions with nonvanishing vorticity we construct,
the domain Q is covered by stream lines starting at such points. This follows from
the following properties of these solutions v: They are continuously differentiable,
satisfy v(x) %0 for all xeQ, and do not have closed stream lines. Moreover, the
length of all stream lines is uniformly bounded, and any stream line that is
tangential to the boundary at one point is completely contained in the boundary.
To assure that v has these properties it is necessary to make special assumptions
for the unperturbed flow v,. In particular, v, must have these properties, but since
the last property is not necessarily stable against perturbations, we must add
another technical condition, which is precisely formulated in the theorem stated
below.

It follows that curlu(y) is uniquely determined for all yeQ if we prescribe
curlv(x) for all xedQ with f(x)<0. Observe however, that it is not possible to
prescribe all three components of curlv independently, because (1.10) yields

n(x) - curl(v(x) x curly(x)) =0 (1.13)

for all x e 3Q, which implies by Stokes’ theorem that the component (v x curlv); of
(v x curlv),,, tangential to 0L is equal to the tangential gradient Vg of a function
g:0Q-R. Here and in the following we mean by (v x curlv), and V; g vectorsin R3
tangential to 0Q. As boundary conditions for curlv we therefore choose

n(x)-curlv(x)=h(x), (v(x)x curlo(x)); = Vrg(x) (1.14)

for all xe dQ with f(x)<0. h and g are given functions. From (1.9) it follows that
(1.14) is equivalent to the requirement that there exists a constant ¢ with

o)+ p(x)=g(x)+ ¢

for all x e 0Q with f(x)<0, and in the following we use this form of the boundary
condition (1.14), where we also normalize p such that c=0.
We remark that for any vector field z satisfying

(v-V)z=(z-Vp

the relations n(x) - curl(v(x) x z(x)) =0and divz(x)= 0 are equivalent on the set of all
x €082 with f(x)<0. To see this note that (1.11) yields

n-curl(vx z)=n-vdivz= fdivz.
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Therefore the condition imposed by (1.13) on the boundary values of the vector
field z=curly can be considered to be a consequence of the relation
divz=divcurlv=0.

To state the main result of this paper we need some spaces of functions defined
on the part of the boundary dQ where f is negative. To introduce the norms of
these spaces we now state several definitions and notations, some of them are
standard.

For an open set I'CIR? and for any nonnegative integer k let H, (I = H, (I',R™)
denote the usual Sobolev space of functions from I' into R™ with norm

leelly, r= ( 2§ |Df‘u(x)|2dx>”2.
IBISk T
Here f=(B,, ..., B,) is a multi-index. We assume that the bounded domain QCR?
is of class C*. As usual, this means that there exist open subsets U, ..., U, of R?
n
with dQ¢C | ) U,, and diffeomorphisms &,: D;—> U, where
i=1

D,={yeR’:|y|<1},
such that
UindQ=d(D;n{x3;=0})
and
UinQ=®,(D;n{x;>0}).
H,(0Q,R™) denotes the usual trace space. The functions y;: D,—0Q with
Wil€1,£2)=D(£1,¢2,0)

define coordinate systems on 0Q. Let a,, ..., x,: 02— 1R be a partition of unity on
02 with 0 <o, £1, supe; Sy(D,), and with o0 p, € CF (D,). As norm of H (02, R™)
we use

lalhea= 3 % 1o vdDgvdlo.n, (115

For fe H,(02,R) let
0Q_=0Q _(f)={xedQ: f(x)<0},

(1.16)
00, =0Q,(f)={xedQ: f(x)>0}.
0Q_, 0Q, are open subsets of the C*-manifold 092, because f is continuous.
Therefore they are themselves C®-manifold. The boundary of 6Q, in 02 is
denoted by

80Q, =30, NO\00,).

We say that a bounded domain GCIR? has Lipschitz boundary, if the following
two properties are satisfied.

a) About every x,€dG there is an open neighborhood UCIR? and ie{1,2},
such that the set 6GnU has the representation

xj':g(xi)’ xiEU,’



Existence of steady inviscid flows 497

where je {1,2} and j=+i, where U’ is the projection of U on {x;=0}, and where
g:U'—> R is a Lipschitz continuous function.

b) The set UnG is either contained in the half cylinder {x;> g(x,)} or in the half
cylinder {x;<g(x,)}.
We say that 0Q_(f) has Lipschitz boundary, if the function &,,...,®, can be
chosen such that for every i=1, ..., 4 the domain

Dy=y;'(0Q.)
is empty or has Lipschitz boundary.

The norms for the functions with domain 0Q_ are defined as follows. For
q:0Q_—-R"™and k<2 let

lgllx.00- = ﬁll ng (ot e w)D*(q > i, o5 (1.17)

m
[9lk,00_ = )
i=1 Bl +]y|sk

(1.18)

0,D;

(o OWi)Dﬂ < > D'(qow)

lallco. = 5

i=1 |BI+1B[+ vk

>

1

feow
1 1

;ow;)DP D¥ ——»)DV o,

vy <f°‘Pi> (f"ll’i (@ w)o,m

(1.19)

if these expressions are finite. The last two norms are finite only if g and its
derivatives vanish sufficiently rapidly at the boundary 02 _. Note that there exist
constants c¢,, ¢, >0, depending on f, with

H‘I“k,m_ Zcilgli s =c,lllglilk, a0 - (1.20)
Our main result is

Theorem 1.1. Let the bounded, simply connected domain Q be of class C*. Assume
that f e H,(0RQ,R) satisfies (1.4) and is such that 0Q_ = 0Q_(f) is a manifold with
Lipschitz boundary.

Let (vg, po) € H3(Q) be a solution of (1.1)+(1.3) satisfying curlv, e H4(2) and

vo = inf |14(x)]>0. (2.21)
xef2

Moreover, assume that v, does not have closed stream lines and that the least upper
bound Lq of the length of all stream lines of v in Q is finite. Finally, assume that
there exist constants ¢>0, t >0 such that

dist(3Q_(f), x +tvy(x)) = ét (1.22)
for all xed0Q_(f) and for all 0<t<t, and
dist(0Q,(f), x —tvp(x)) = ét (1.23)

for all xedoQ.(f) and for all 0t <t
Then there exist constants

P =7v,,2)>0,
K.:Ki(Lo,Qo, lvolls, e £,9,2)>0, i=1,..,3

with the following properties:
Let ge Hy(0Q_,R), he H,(0Q_,R) and v, satisfy

1(g, h,curlvg) <K, (1.24)
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with

h |
g, h,curlyy) = ||— — V.
(g 0) “f “f T8

+ +|D* curlvgly a0
2,80Q- 2,00-

1
+ Zo D™ curlvg|ll; — m, 00 -
—

+

(n-curly,) + [lcurlvgl; o.

2,002-

‘1
f

Here D™ curlv, denotes the vector

D™ curly,=(D*? (curll’o)f){ﬁ 123

(curlvy); are the components of curlv,, and f=(B,, B,, B3) is a multi-index. Then
there exists a solution (v, p)e H3(2,R* xR) of (1.1)1.3) with

n(x) - curlv(x) = h(x) + n(x) - curlvy(x) (1.25)
310(x)|? + p(x) = g(x) + 5100 (X)|* + po(x) (1.26)

Jor all )fe.(?Q_.
v satiefies lo—voll5,057, (1.27)

and (v,p) is the only solution of (1.1)1.3), (1.25), (1.26) from H,(2,R3xR)
satisfying this estimate.

If (g0, KY) and (g2, h®) are two sets of boundary data on 0Q _(f) both satisfying
(1.24), and if ('Y, pM), 2, p?) are solutions of (1.1)1.3), (1.25), (1.26) to the
boundary data (g, h'V) and (g@, h'®), respectively, both satisfying (1.27), then

||v‘“—v‘2)|| 1,9§K2(|h“)—h(2)|o,an- +|Vr(g(1)*g(2’)lo,m_), (1.28)
1P —p?| 1,Q§K3(Ihm“h(2)lo,aﬂ_ +|Vr(g(1)_g(2))|o,aﬂ-
+1gM—gPo,50.)- (1.29)

We comment on some points in this theorem:

The estimates (1.28) and (1.29) can be improved. It is possible to estimate the
difference of the solutions in the H;-norm, but the calculations are technical.

Condition (1.24) implies that s, V; g and curlv, must vanish sufficiently rapidely
at the boundary 002 _(f). This condition can be compared to the compatibility
conditions needed in initial-boundary value problems for hyperbolic equations.

It is assumed that fe H,(0Q), but because of (1.3) the condition vy € H4(Q)
implicitly requires more regularity of f. It is on the other hand assumed that
ge H;(0Q2_)and he H,(0Q _), which is more than the trace theorem would require.
Namely, (1.25) shows that h is the normal component of the trace of
curl(v—vo)e H,(Q), and (1.26) shows that g is the trace of 1[v|?+p—3|vel?
— Do € H5(€2). Therefore the trace theorem indicates that either it would suffice to
assume ge H;,,(0Q2_) and he H;,(9Q ), or else that the solution (v, p) is of higher
regularity than H,(£2). We believe that it is possible to prove such results by a
refined analysis, but we do not investigate this question here.

The conditions (1.22) and (1.23), which are stable with respect to perturbations
of vy, are needed to show that not only the unperturbed flow v, but also every flow
v which satisfies (1.3) and is close to vy has the property that any stream line which
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is tangential to the boundary at one point is completely contained in the boundary.
From (1.3) it follows that v(x) is tangential to 0 for all xeddQ _(f)uéoR2..(f).
Therefore (1.22) means that the flow is directed outward of dQ_(f) at the
boundary, and it is not possible that particles move tangentially along the
boundary until they reach 02 _( f), where they would be transported into 2 by the
flow. (1.23) has a similar meaning for the set 0Q ,(f), where the flow leaves Q.

As a simple example for € and v, satisfying the hypotheses of the theorem
consider the cylinder

Z={x}+x}<a® —b<x;<b}.
Close this cylinder by two half balls
S, ={x}+x}+(x3—b)?*<a? x;=b}
S_={x{+x3+(x3+b)*<a? x;<—b}

and set Q=ZuS,uUS_. For v, take the constant flow v4(x)=(0,0,1). In this
example 0Q2_(f)and 0Q, (f) coincide with the spherical parts of the surfaces of S _
and S..

The assumption that Q be simply connected is needed in Theorem 2.4 and
therefore also in Theorem 1.1.

There exists a larger literature dealing with the nonstationary version of the
problem (1.1)-(1.3). The early investigations concern the case when the liquid is
confined to Q. In the two-dimensional case existence global-in-time was proved by
Wolibner [14] and Holder [3], whereas in the three-dimensional case existence
local-in-time was proved by Kato [4], Ebin and Marsden [2], Bourguignon and
Brezis [1], and Temam [11]. In the case when the liquid can pass through the
boundary of Q the nonstationary problem was treated in Kochin [7], Kazhikhov
[5], Kazhikhov and Ragulin [6], Yudovich [15], and Zajaczkowski [16-22]. Also
in the nonstationary problem it is necessary to prescribe additional boundary
conditions on the inflow part of the boundary.

This short account on the existing literature is not complete. More references
can be found in the cited literature.

Theorem 1.1 is proved in the remainder of this paper. The proof is based on a
contraction argument and on Banach’s fixed point theorem. In Sect.2 the main
lines of the proof are given and results and estimates needed in the proof are stated
in a sequence of lemmas and theorems. Some of these lemmas and theorems are
proved in Sect. 2, the rest is proved in Sects. 3-35.

We conclude this introduction by discussing some directions, into which the
results of Theorem 1.1 might be extended. The estimates (2.27) indicate that the
constant in (1.24) satisfies

. 1
K, ~ e (1.30)
for Ly—0, where L, is the least upper bound for the length of the stream lines of v,,.
This is because the constant Min (2 27) does not explicitly depend on L,, and since
the constants K,, K in (2.27) remain bounded for L,—0, as noted in Theorem 2.3.
It would follow that we could construct solutions with nonvanishing vorticity for
large values of g, b, and curlo,, if the domain Q is “short”. However, M, K,, and K ,
all depend on the shape of Q. The reason is that in the derivation of (2.13) and (2.14)
in Sects. 4 and 5 at several places Sobolev’s inequality and embedding theorems for
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Sobolev spaces are used. To prove (1.30) would therefore require to show that the
constants M, K ,, K, remain bounded for all sufficiently “short” domains Q. We do
not study this question here.

Along the same lines of thought one could try to proceed as in hyperbolic
problems and continue the solution into a second short domain after it has been
constructed in a first short domain. This procedure is not immediately possible,
however, because (1.25) and (1.26) are initial conditions, but (1.3) is a boundary
condition, which must be satisfied on the whole boundary.

As a final remark we note that the fact that the flows v, and v must be different
from zero everywhere might indicate that a steady state flow is unstable at points
where the velocity vanishes.

2 Outline of the proof

In this section we lay out the main lines of the proof of Theorem 1.1. The basic idea
is to construct an operator B in a subspace V of H,(2,R*) with the property that
for a fixed point u of B the function v=v,+u is the velocity field of a solution of
(1.1)1.3), (1.25), (1.26). We start with the definition of V and B.

Let V be the space of all functions we H;(£,IR3) satisfying

divw(x)=0, xeQ (2.1
n(x) - wx)=0, xedQ. (2.2)

V is a closed subspace of H;(2,IR?) and therefore also a Hilbert space with the
scalar product (u,w); o. For y>0 let V, be the closed ball of all weV with
wlls, 2=7: To define the operator B: V—>V let ueV, let WeH,(Q,R? with
divW=0in €, and let z: Q—»R? be the solution of

[(wo+u)-V]z=(z - V)(vg+u)—(u - VIW+(W Vu (2.3)
Zjog_ =1, 24
where the components of 1:9Q_ —IR? are defined by the equations
n(x) - n(x) = h(x) (253
h 1 1
nr(x)= 7 (vo +u)r(x)+ 7 (n Wur(x)— 7 n(x) x Vpg(x) (2.6)

with xe 0Q_ and with the functions f, g, and h from the conditions (1.3), (1.25),
(1.26). The vector field W in (2.3) and (2.6) will later be replaced by curlv,. For later
use we note that if W=curly, and if (2.5) is satisfied, then (2.3) is equivalent to

[(vo+u) - V](z+curlvg)=[(z +curlvy) - VI (vo+u), 2.7)
and (2.6) is equivalent to
[(@o +u) (x) X (17 + curlvg) ()7 = Vr(g(x) + 31vo(X)|> + po(x)) (2.8)

for x e 0Q . The equivalence of (2.3) and (2.7) is seen if one expands (2.7) and uses
that v, satisfies (1.12), since (v, po) is a solution of (1.1), (1.2). To see that (2.6) and
(2.8) are equivalent multiply (2.6) by f and use (1.3), (2.2), (2.5) to obtain

n-Npe+ur+n Whur—n-@o+ur—n-ulWr=nxVyg.
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The left hand side of this equation is not changed if the tangential components are
replaced by the vectors themselves. Therefore the last equation is equivalent to

nx[(wo+uw)xnl+nx[ux Wl=nxVrg

or

[(wo+w)xnlp+[ux Wlp=Vrg. (2.9)
If one replaces W by curly, then this equation is equivalent to (2.8) since

[vo x curlvg]r = V(3 lvol* + po).

This equation holds since (vy, py) solves (1.1) and therefore also (1.9).

Note that (2.3) is an inhomogeneous linear system of ordinary differential
equations for z along integral curves of vy + u. Therefore (2.4) and (2.3) determine z
on the subset of Q covered by integral curves starting at dQ _(f). Below it will be
shown that this set is equal to ©, if y and therefore also {ul|; g, is chosen sufficiently
small. In Sect. 3 we show that the solution satisfies divz=0. In Sects. 4 and 5 we
prove that ze H,(Q).

From these properties and from Theorem 2.4 we deduce that there exists a
unique we V with

curlw=z. (2.10)
We define

Bu)=w. (2.11)

This completes the definition of B: V,» V.

Note that B depends on the functions g, h, W, and v,, hence B= B[ g, h, W, v,],
and from (2.3)H2.6), (2.10) it follows that the mapping (g h W)
> Bl g, h, W,vo](u)e V is linear. We set

Bl g, h,v,]=Bl[g, h,curlvy, v,].

We state now a sequence of lemmas and theorems which show that B is well
defined and has a fixed point. They also establish the correspondence between
fixed points of B and solutions of (1.1)(1.3), (1.25), (1.26). Some of the assertions are
proved in this section, the remaining proofs are postponed to the following
sections.

Lemma 2.1. Let v,€ H,(Q,R?) satisfy the hypotheses of Theorem1.1. Then there
exist constants C>0 and y,>0 with the following three properties
(P1) The vector field v=vy+u with ueV, satisfies

p= inf [o(x)|Z1o—Cllull,02 00— Cyy>0.
xe2

(P2) No vector field vevy+V,, has closed integral curves. For 0<y<y, let L,
denote the least upper bound of the length of allintegral curves of all the vector fields
vevy+V,. Then L,< o and

11_{1’(1) L), == LO .
(P3) If an integral curve of vevy,+V, is tangential to the boundary 0Q at one
point, then it is completely contained in the boundary.
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This lemma is proved in Sect. 3. Remember that an integral curve w(t) is a

solution of %w(t)=v(w(t)). Since vevy+ V,, satisfies (1.3), the statements of this

lemma together imply that every integral curve of v that passes over a point xe Q
meets the boundary in exactly one point from dQ_(f), the starting point of the
integral curve, and in exactly one point from 0Q,(f), the endpoint of this integral
curve. Therefore Q is completely covered by integral curves of v starting at 0Q2 _(f).
It also follows that every integral curve that starts at 0Q_ has its endpoint in 082,
and does not meet the boundary in a third point.

From now on y, =7,(v,) always means the constant from the preceding lemma.
Also the following lemma is proved in Sect. 3.

Lemma 2.2. ForeveryueV, withy <y, and every We H;(Q2,R?) with divW =0 the
unique solution z of (2.3}+2.6) exists in all of Q and satisfies divz=0.

Of course, this solution depends on g, h, W, v,, and ue V., hence
z=2z[g,h, W,vy,u]. We set z[g, h,v,, u] =z[g, h, curlv,, vy, u].

‘Theorem 2.3. There exists a constant M= NM(Q)>0, and to any y<y, constants
Ki=K;(L,, vo, llvgl 3,0, £, 7,2)>0,1=1, ..., 3, which remain bounded for L,~0, such
that for all uweV,

llz[g, h, W, 04, u] “o,géLmIa[lhlo,an, +n- Wlo,an-

+1Vrglo,o0_+ Wll3, 0l (2.12)
lzLg, b, vo, ull| 2,05 Llylzﬁzl(g, h, curlv,) (2.13)
12Lg, b, vo, 4] —2[8, B, vo, W1 llo, o S L}/ * K I(g, h, curlvg)lu—wl, o (2.14)
and,
| BLg, h, W,vo] (W)l 1,0
<ML R\ [Mhlo, 00 +1n Wlo,00_ +1Vrglo,ca- + 1 Wll3,0] (2.15)
I1BLg, b, vo] @)ll 3,0 < ML)* K, (g, h, curlvy) (2.16)
IBLg, b, vo] (u)— Blg, b, 0] W)l o < ML? K5 1(g, b, curlvg) u—wly o
2.17)
with

+1D? curlvyly 50

I(g, h,curlvy)= Hlb—
2,00 -

1
+ ||~V
Pz a0 ”‘f T8

1
+ Y lID™curlvolllz -, 50
me=

1
f

where D™ curly, denotes the vector

+

(n-curlvy) +|lcurlvg| 5, 0, (2.18)

2,00-

D™ curlvy = (D#(curlv,); s123
Blsm

Here (curlvy); are the components of curlv,, and §=(B, f,, B3} is a multi-index.
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The norms in the expression for I(g, h, curly,) are defined in (1.18), (1.19). It is
clear that the estimates (2.15)2.17) are immediate consequences of (2.12)2.14), of
(2.10), (2.11), and of the following theorem. It therefore remains to verify the
estimates (2.12)+2.14), the proof of which is given in Sects.4 and 5.

Theorem 2.4. Let ze H,(2,IR3) satisfy divz =0 and let Q € C® be a bounded, simply
connected domain. Then there exists a unique function we H4(2,IR?) with

curlw(x)=1z(x), xeQ, (2.19)
divw(x)=0, xeQ, (2.20)
n(x)  wix)=0, xedQ. (2.21)
Moreover, there exists a constant M, only depending on Q, such that
1wll3.e<M|zl2.q- (2.22)

A proof that the solution w exists and is unique can be found in [9], and (2.22) is
proved in [12].

If Q is not simply connected and has genus v, then the solvability of (2.19)+2.21)
is guaranteed only if z satisfies v additional conditions, cf. [9,13]. This is why in
Theorem 1.1 we need the assumption that € be simply connected.

Corollary 2.5. For every y with 0<y=<y,(v,) the operator B[g,h,vy] maps V, into

itself if
Y
I(g, h,curlyy) £ —. (2.23)
(& o= FIPR,
The operator B[g, h,v,] has a unique fixed point in V, if (2.23) is satisfied and if
1
I( ,h,curlv )< TR . (224)
5 0 MLJ*K,

If gV, Y and g'®, h'? are two sets of boundary data on 0Q_(f), both satisfying
(2.24), and if vV, uP eV, are fixed points of B[gV,h'"),v,] and B{g'®,h'?,v,],
respectively, then

MIY*K
W _ 2 < - ik Bt
lu U9 0= 1 —MLly/ZKg,I(g(l), Y, curlv,)
X (KD —=hPy s +IVr@D~gPo,n ). (229)

Proof. The inequalities (2.16) and (2.23) together imply that Bfg, h,v,] maps V,
intoitself. To see that B has a fixed point if (2 23) and (2.24) are satisfied, note that V
isa closed subset of H,(€, R?). For, let {u,},%, SV, convergetoue H,(£, R3)in the
norm of this space. Since ||u,{3 o =7, this sequence is bounded in H,(Q, ]R3) and
therefore has a subsequence which converges weakly in H;(2,R?) to w. V, is closed
and convex, hence weakly closed, which implies we V. But this subsequence
converges also weakly in H 1(Q R3) to w, since any contmuous linear functional on

H ,(2,R3)is also continuous in the norm of H;(2, R?), if we restrict it to this space.
Since limits with respect to the norm are also weak limits, it follows that u=we V.
This shows that V, is a closed subset of H (€2, ]R3) Since (2.17)and (2.24) imply that
B:V.CH,(Q)—H 1(Q) is a contraction mappmg, it follows from Banach’s fixed
pomt theorem that B has a unique fixed point in V.
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To prove (2.25), note that (2.17) and (2.15) yield
[u® —u®||y o=1BLg™, bV, 0] (M) — Blg®, A, v, ] )1 o

<|IBLg™, kY, 0] (M) — B[g'V, b, v, ] (u®)] 1,0
+ |1 B[g™, B, curly,, v,] (u'?) — B[g?, i), curlog, 0] ()] o

SMI*R (g™, kY, curlog) [[u® —u®, o
+BLg" —g@, hD —h,0,v,] )|l o

<ML R 1™, kD, curlv) [[u™ —u@| | o
+ Mﬂy/zle[lh“’— hm'o,agf +1Vr (g _g(z))|o,m;] .

Here we use the linearity of (g, h, W)— Bl g, h, W,v,](u). (2.25) follows from this
estimate.

Lemma 2.6. (i) Let ueV, with 0<y=<y,. Then u is a fixed point of
B=B[g,h,vo}:V,=»V if and only if v=v,+u is the velocity field of a solution
(v,p)e H3(2,IR* xR) of (1.1)-(1.3), (1.25), (1.26).

(1) If (v,p), (7, p) e H3(2,IR? x R) are solutions of (1.1)+1.3), (1.25), (1.26) with
v="70, then also p=p.

Proof. Assume that u is a fixed point of B, and let v=v,+u. Then divv=0 and
N Vpg=Mn-vo,, +n Ue=1f,
so (1.2) and (1.3) are satisfied. (2.10) and (2.11) imply
curlv=curlv, + curlu=curlv, +curl Bu)=curlvy+z.
Therefore (2.7), (2.4) yield
(v-V)curlv=[curlv-V]v, curlyp,_=n+curly,, . (2.26)

This shows that the Vorticity Transport Theorem (1.12) and therefore also (1.10) is
satisfied. We now show that p e H,(€) can be constructed satisfying (1.9) and (1.26).
To construct this p, define first p by (1.26) on dQ _(f), and continue it to all of Q by
setting 4|v|>+p equal to a constant along the integral curves of v. From the
properties of the integral curves summarized after Lemma 2.1 it follows that p is
defined in all of Q in this way. p is continuously differentiable. To see this, let
x(y)e dQ _(f) be the starting point of the integral curve of v passing over ye Q.
From Sobolev’s embedding theorem it follows that the vector field v is
continuously differentiable, because ve H;(€). Since integral curves w(r) are
solutions of the system

2 of=tlo0)

of ordinary differential equations, and since integral curves meet 0€2_ transvers-
ally, it follows from the theory of ordinary differential equations that the mapping
x(y) is continuously differentiable. But then also

p(y) =) + p(x(y) — o)l
is continuously differentiable, since by definition p is continuously differentiable on

0Q_(f)-
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From (1.26), (2.8), and (2.26) it follows that
(%) - (o(x) x curlv(x)) = (x) - V(3 |o(x)|* + p(x))
for all xedQ_(f) and for every unit vector 1(x) tangential to 62 at x. Thus,
10001 + p(x) = ({ o) VW) + p(y)ds, +C
= ({ ™(y) - (v(y) x curlu(y))ds, + C

for all xe dQ_(f), connected to a fixed point x, by an arc @ in dQ_(f). t(y) is
a unit tangent vector to this arc. Since

7(x) - (v(x) x curlpy(x))=0
if 7(x) is a unit vector parallel to 1(x), it follows

lo()I* + p(x) = (}; (v(y) x curlu(y)) - 1(y)ds, + C

for all xeQ connected to x, by an arc w in @, if w only consists of arcs in 6Q2_(f)
and of integral curves of v. From (1.10) and from Stokes’ theorem we conclude that

o)1 +p(x)= | (o(y) x curlu(y)) - w(y)ds, + C
for any curve o’ in Q connecting x, to x, hence
VGI(x)I? + p(x) = v(x) x curlv(x)

for all x € Q, which is (1.9). Because ve H;(£2,IR3), it also follows from this equation
and from H(Q)H ()< H (Q) for v=min{k,m,k+m—2}, which is a well known
consequence of Sobolev’s embedding theorem [ 8, p. 72] and of Holder’s inequality,
that Vpe H,(Q,IR?), hence pe H,(€2). Summing up, (v, p) satisfies (1.26), (1.2), (1.3),
and (1.9), hence also (1.1). From (2.26) and (2.5) it follows that

n(x) - curlo(x)=n(x) - n{x)+ n(x) - curlvy(x) = h(x)+ n(x) - curlvy(x)

for all xe dQ _(f), which is (1.25). Thus (v, p) is a solution.

On the other hand, assume that u € ¥} and that v =v,+ u is the velocity field of
the solution (v, p). We show that u is a fixed point of B[g, h,v,]. v satisfies (1.12),
which can be written as

[(vo+u) - V] (curlu+ curlvy) = [(curlu + curlwg) - V] (vy +u).

Comparing this with (2.7) we see that curlu and the function z[ g, h, vy, u] used in the
definition of B[g, h,v,](u) satisfy the same differential equation. From (1.9) and
(1.26) we obtain

[(vo +u) (x) x (curlu + curlvg) (x)]r = Vr(g(x) + 3|vo(x)|* + po(x))
for all xe dQ_(f). Moreover, from (1.25) we obtain

n(x) - curlu(x)= h(x)
for all xedQ_(f). Comparing the last two equations with (2.4), (2.5), (2.8), we see
that curlu also satisfies the same initial conditions as z[ g, h, vy, u], hence z=curlu.
By definition of Bu € V in(2.10), (2.11) we obtain for the function Bu—u e H;(Q,R?)

curl(Bu—u)=curl Bu—curlu=z—curlu=0,
div(Bu—u)=divBu—divu=0,

n-(Bu—u)aq=n Bujgg—n-uy,=0.



506 H. D. Alber

By Theorem 2.4 there exists exactly one function satisfying these equations, hence
Bu—u=0, and u is a fixed point of B. This proves (i).
To prove (ii), note that (1.1) implies j=p+ const, and (1.26) yields const=0.

Proof of Theorem 1.1. Let y4="7,(v,) be the constant from Lemma 2.1 and choose
for § any constant with 0 <<y, With the constants
Ki=Ki(Ly’ o, IVoll3, 0 £,9,9), =23
from Theorem 2.3 and M from Theorem 2.4 choose for K, >0 any constant with
R,< Ri< oo . 2.27)
'= ML?K,” ' T MLPK,

From (1.24) it then follows that the assumptions (2.23) and (2.24) of Corollary 2.5
are satisfied, whence B:V,—V has a unique fixed point ueV,, and Lemma 2.6
implies that a solution (v, p)e H,(2,R3 xR) of (1.1)1.3), (1. 25) (1.26) exists with
v=v,+u, hence

||U_Uo“3,n= ||u||3,9§)9,

which is (1.27). If (5, p) € H5(€,R? x R) is any solution of (1.1)}+1.3), (1.25), (1.26)
satisfying (1.27), then Lemma 2.6(i) implies that u=05—v, €V, is the unique fixed
point of B, hence #=v, and therefore p = p, by Lemma 2.6(ii). This shows that (v, p)
is the only solution satisfying (1.27).

To prove (1.28), note that u'Y =o' —p, and u!? =v? —y, are fixed points of
B[g®, h,v,]: V,—>V, i=1,2. The 1nequa11ty (1.24) and thus also the inequality
(2.24) is sausﬁed for (g‘” hY) and (g®,h'?). Therefore the assumptions of
Corollary 2.5 are satisfied, and (2.25), (1.24) yield

[ =] o< K, (h"— hPlo,aa_ +IVr(8" ~2@o,20 ) (2.28)
where
R = ML“ZKI
- M‘LI/ZK° R’

and where K, =K, (L,, v, [0o]l3,0, f;, Q) is the constant from Theorem 2.3. Note
that our choice of K, in (2.27) yields 1 — MI}/*K, K, >0. This proves(1.28).
To prove (1.29) we use (1.1) and (2.28) to obtain

“VP“)—VP(Z)HO,Q
— |l(v(2) . V)vm—(v‘” . V)Um”o,g
P V) @B —0vW)lg o+ I [P — D) VI D4 o
< Hv(z)an(m ”U(z)*v(l)“ Lot ”VU“)”L""(Q) HU(Z)“‘U(I)HO.Q
SCIvMV 5, 0+ 1623 o) VP =0V o
<Gyl =o'V g, (2.29)
where

[0P) 2= sup WP, VoV ieq=sup ¥ [D*v'V(x)?,
xeQ xef |f]=1

and
C,=2C(llvpll3.0+79)-
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We also used that

I|U(2)||L°°(Q)<C1 “U(Z)”:«),Q, ||VU(1)“L°°(Q)§ C, ”Um“ 3,02

with the constant C, only depending on Q. This is a consequence of Sobolev’s
inequality. To complete the proof we need the following lemma, which is proved at
the end of the appendix.

Lemma 2.7. There exists a constant K,=K,(L,,vo, [05]3.0, f;,7)>0 with

lgllo.e = K4(lgllo,00_ +1Vgllo,0)
Jor all ge H ((£).
We apply this estimate to p*’—p? and use (2.29) to obtain
1PV =pP .0 SU+R)C, 0P =P o+ R PV =pPllo,0a_ . (2:30)
From (1.26) we obtain as in the derivation of (2.29) that

||P(1)'P(2)||o.ag_
=gV =310 — @+ Ho Pl o, 00
= ﬂgm"g(z)“o,m_ +%(”U(””3..Q+ “v(z)ﬂs.n) ”U(I)—U(z)no,m_
<18 —8o,00- +Ivols,0+9) [0 =P 50
<18 —8%lo,00_ +(Ivoll3,0+NC3 10— 5.
In the last step we used the trace theorem. Combination of the last estimate with
{2.28) and (2.30) yields (1.29).

To complete the proof of Theorem 1.1 it remains to prove Lemma2.1,
Lemma 2.2, the first three estimates of Theorem 2.3, and Lemma 2.7.

3 The integral curves

In this section we prove Lemma 2.1 and Lemma 2.2.
Proof of Lemma 2.1. Sobolev’s inequality implies for v—v,=ueV, and all xe Q

v= in!f) o) 20— sup |u(x)| 20— Cyllulls 0, (3.1)
which proves (P1). _

To prove (P2) and (P3) we need some definitions and notations. For xe Q and
ue ¥V, with y<y, let t+> w(t, x, u) € £ be the integral curve of v with ®(0, x, u}=x.
The function w is the solution of

% a(t, x, u)=v(w(t, x, u)) 3.2)
It is defined on a maximal closed interval containing 0. By assumption ¢t — w(t, x, 0)
is defined on an interval of length not larger than L,/v,.

The integral curves o can be extended to functions ¢ — d(t, x, u) defined for all
teIR as follows: By Calderon’s extension theorem [8, p. 80] there exists a constant
C, and to every vector field we H5(€2,IR3) an extension to H,3(R3IR3), also
denoted by w, such that

(wllsrs=CalWlls,0- (3.3)
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We apply this theorem to the vector fields v, and ueV, and consider these
functions now to belong to H5(R3,IR3). It is clear that with the extended function
v=1,+ue H;(R3R?) the solution é(t, x, u) of (3.2) now exists for all teR and
defines the extension sought. Of course, w is the restriction of @ to the largest
interval I that contains 0 and satisfies &(t, x,u)e Q2 for all te I. By £(w(-, x, u)) we
denote the arc length of w, which we take to be infinite if w is closed.

To prove (P2) we first note that the mapping

u£f(w(-,x,u):V, »[0, 0]

is upper semi-continuous at 0 € ¥, uniformly with respect to x € Q. By this we mean
that to all ¢>0 there exists y>0 with

Lo, x, u) Zl(w(-,x,0)+¢ (3.4
for all (x,u)e Q2 x V,.

The proof follows by standard methods from the continuity of the mapping
(x, u)> d(t, x, u) and uses the compactness of Q. We leave it to the reader. From
(3.4) we obtain

L,= sup sup £(o(-,x,u)) < sup Lo, x,0)+e=Ly+e¢,

xef ueV,

hence limsup L, < Lo, and therefore lim L, =L, since L, = L. This proves(P2).

-0 -0
To przwe (P3) let the integral curve (yu(t) = at, y,u) be tangential to the boundary
at the point x, = w(ty) € Q2. We must show that it is completely contained in the
boundary.
Let [t,,t,] be the largest interval containing t, such that w(t) e 0Qfor te[ty,t,].
This definition implies that the vector v(w(t)) is tangential to 02 for all te[t,,¢t,],
since

(w(t)) = %w(t).

The domain of definition of w is a bounded interval containing [t,,t,]; we must
show that the domain of definition is equal to [£,,¢,]. With the extension & of ®
defined above let

inf |6 —y, )eQ

D(t)= yeoQ ~
— inf |B()—y|, &@)eR}\Q.
yed2
We show that there exist d,, 4, >0 with

D(t)<0 (3.5)

forallte(—38,+t,, t;1u[t,, t,+3,), which means that the extended integral curve
& leaves Q at t, and t, and therefore proves that [t,,¢,] is the domain of definition
of w. Consequently, to finish the proof of (P3) it suffices to verify (3.5).

To prove this estimate we derive now a differential inequality for D(z). Note that
if &(t) is sufficiently close to 0Q then there exists a unique x(t) € 0Q2 with

D)=+ inf |&(t)—yl= L|D()—x(1)|. (3.6)
yedf2

Of course, x(t)e 6Q is the solution of
(@) —x(t) - Ty(x(t) =0, i=1,2,
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where t,, 7, : 0Q—IR3 are linearly independent tangential vector fields of Q. From
this equation and the implicit function theorem it follows that x is a continuously
differentiable function of ¢, since w is continuously differentiable. Moreover,

o) (1) — { ) —x(On(x(r),  bl1)eQ
() —x(OIn(x(1),  d(t)eRNQ.
Together with (3.6) this equation yields

d . em-x) 4
ar PO0= % {50 =00 (dt ) ’“”)

sttt (4 ot~ & x(r)) = —n(x(0) - & (0

= —n(x(1)) v(d(r))
—n(x(t)) - [ADd(2)) — v(x(e)] — [ (x(1)), (3.7
because %x(t) is tangential to the boundary. In the last step we used (1.3).

To prove that (3.5) holds for te[t,,t,+35,] with a suitable §,, note that
D(t,)=0, so that (3.7) is valid in a suitable interval [¢,,, + 0%). In this interval we
thus obtain from (3.6) and (3.7)

& D) SI((0)~o(x(O)]— 1 (x(1)
< sup 19001000 —x(0)] — (x(0)

. =a(t)D(1) — f(x(1))
with

a(t)=(sign D(z)) sup IVo(y)l -

This is the differential inequality for D(t). Integration yields

(n) n I (n)dn

D(t)< e Dit,) — i ¢!

S ((z)de

I a(ndn

- f (o) (38)

for t, £t <t,+ 6, because D(t,)=0.
It is clear that (3.5) is a consequence of this inequality if there exists §, with

0<é,=<4, such that
Jx(#)=z0 (3.9)

for all tet,,t,+8,).
It thus remains to prove (3.9). Observe first that x(z,)¢oQ._(f), since
x(t,)=w(t,) and since v(w(t,)) is tangential to 02, as we noted above, hence

F(x(£2))= fla(t2)) = n(w(t,)) - vlw(t,))=0.

Therefore it remains to distinguish the two cases x(t,)edQ\dQ_(f) and
x(t,) € 80Q _(f). In the first case (3.9) clearly holds, because t+— x(t):IR—-0Q is a
continuous function of ¢, and since 0Q\0Q _(f) is an open subset of 02 with f =0in
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this set. To prove (3.9) in the second case, note that the fact that w,(t,) is tangential
to the boundary at t, implies

d d
dt x(t;)= dt ofty)=v(w(t,)).
From the hypothesis (1.22) we thus obtain

dist(9Q_(f), x(t)) 2 dist(02 (1), o) + (1 =t )v((t,)))
— [x() — ot ) — v((t2)) (£ — t,)|
2dist(0Q_(f), wlt,) + (t — tr)vg(wl(t,))
— (¢ — t2) [(@(t,)) — voleo(t,))]|
— |x(t) — ot2) — v(w(t2)) (£ — t,)]
2t —t5)—|w(xt,))| |t —t,| = Clt—1,]*>0

for all sufficiently small, positive t — ¢, and forallue V,

o if 7o > 01s chosen so small
that

A

W@t S, luls,0 S CaroS 5.

Here we used Sobolev’s inequality. For these ¢ we thus have x(t)e dQ\0Q2_(f),
which implies (3.9) and thus proves (3.5) in the case te{t,,t, +9,).
To prove (3.5) in the case te(—3d, +1t,,t,] we use (3.7) to derive the estimate

ty 'a
D)< | e f(x(hdr, -6, +t,<t<t,
t

analogous to (3.8), and use the hypothesis (1.23) to conclude that f(x(t))<0in an
interval (—d, +t,,t,]. We leave the obvious modifications to the reader. The
proof of Lemma 2.1 is complete.

Proof of Lemma 2.2. Since the integral curves of v are the characteristic curves of
the first order partial differential equation (2.3), we can solve this partial differential
equation as usual by integrating along the integral curves of v. As noted after
Lemma 2.1, Q is covered by integral curves starting at dQ _, where the initial data
for z are prescribed by (2.4)H2.6). We recall the fact that every integral curve
starting at Q _ ends at 3Q, and does not meet the boundary 0Q in a third point.
Therefore the solution z of (2.3)(2.6) is uniquely determined in all of Q.

From our assumptions vy, u, We H;(£2) we cannot conclude that z(x) has
classical derivatives, but the estimate (2.13) proved in Sects.4 and 5 shows that
ze H,(Q). Here we assume that this is true and prove that divz=0 under this
assumption. Since vy, u, We H;(Q)< C,() we can differentiate (2.3) and obtain

3
(v-V)divz+ Y (0,0 V)z
i=1
=(z - V)divo—(u-V)divW +(W - V) divu
3 3 3
+ ¥ @z Vo= ¥ @u- VWit 3 0, W V.
i=1 i=1 i=1
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But divo=divW =divu=0,

3 3 3
2 (axiz ’ V)vi': . Z (axizj) (axJ vi): Z (axJU ' V)Zj9
and i=1 i,j=1 ji=1

3 3
2 (O u-VIW= 3 (0 W -V,
whence =l =l

(v-V)divz=0.

This means that divz is constant along integral curves of v and therefore vanishes
identically if (divz),o_ =0, which we prove now. (1.11) and (2.3) yield

curl(v x z)+curl(u x W)=vdivz
and (2.4), (2.9) imply

n(x) - [curl(v(x) x z(x) + u(x) x W(x))]=0

for xe 0Q2_, which can be seen for example by application of Stokes’ theorem.
Combination of these two equations and of (1.3) yields

Sfix)divz(x)=(n(x) - v(x))divz(x)=0

for all xe 0 _, whence divz{x)=0.

4 Estimates for the solutions of the Vorticity Transport Theorem

This section and the following are devoted to the proof of the estimates
(2.12)+2.14) in Theorem 2.3. The proof is given in a sequence of lemmas. The
results proved in these lemmas are collected at the end of Sect. 5 to prove
Theorem 2.3. To see the purpose of every lemma proved in this and the next section
the reader is therefore advised to first look at the proof of Theorem 2.3 at the end of
Sect. 5.

As in the preceding section, for ueV, and yedQ_(f) let t— w(t, y,u) be the
integral curve of v=v,+u with (0, y,u)=y. By s+—wl(s, y, u) we denote the arc
length parametrization of this integral curve. This means that w(s, y,u) is the
solution of

iw(s U= —
ds VPO (ufels, y, )

For convenience, if u is understood, then we write for the arc length

y)=2((-, y,u),
and we drop the index y and write

o(ofs, y,w),  @(0,y,u)=yedQ_(f).

L=L,= sup sup Z(w(-,y,u)).
ueV, yedQ-
For xeQlet y=y(x) e 82 _(f)and s= s(x) € [0, £(y)] be the points with x = (s, y, u).
(s(x), y(x)) are the “integral curve coordinates” of x. If ¢ is a function with domain
contained in @, then we write for brevity

q(s, y)=q(o(s, y, u)),
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and if y is understood, ¢(s)=q(s, y). For a function g=(q,, ..., g,): T SR*->R™ we
denote by Vg(x) the matrix of first derivatives of g, and for k=0 let

m 1/2
gl (x)=1qli(s, y) = <.-; Im};k ID"q,-(X)V) :

Fina'fly%or ueV, and We H;(Q) let
E(x)= E(u, W, x) =(W(x) - V)u(x) — (u(x) V)W(x), (4.1)

which belongs to H,(R) since H (Q)H,,(Q) CH,Q for v=min{k,m,k+m—2}.

We investigate now the solution z of (2.3}(2.6) and derive estimates for the
L,-norms of this solution and its first and second derivatives. As mentioned in the
proof of Lemma 2.2, we cannot conclude from the assumptions that z has classical
derivatives. But by formal differentiation of (2.3}+2.6) we derive in this and the
following section a-priori estimates for the first and second derivatives of z, and
one can use these estimates to show by standard considerations that z has weak
L,-derivatives up to second order. But since these considerations are technical, we
omit them here.

Lemma 4.1. The solution z of (2.3)+2.6) satisfies

s|”|1(1)d
(8)| = lets, pl S ed 10 <1 O+ ] 1 ) 42
Proof. From (2.3) we obtain
d d d
@s Z(S)= = Z(OJ(S))=VZ(S)' - CU(S)— m (v(s) - V)z(s)
= el ()' [(z(s) - V)o(s) + E(s)] -
This implies
IZ(S)|~ - (lZ(S)| Hiz = 2N(s ( T 22(5) - Z(S)
- Z(S)| ol [(z(s) - V)o(s)+ E(s)]
< ! ( i (Iz(s)| Iol 1 (s) + | ECs))) - (4.3)

Integration of this differential inequality yields (4.2).

Lemma 4.2. The solution z of (2.3)2.6) satisfies
|z],(s) =zl (s, y)

sioli(r)
2
< ST * [|Z|

p !vlz(r)
+ (lor+ )5 o 9

for almost all (s, y).
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Proof. We use the notation gq;;= g and obtain by formal differentiation of (2.3)

9
0x;
whence (- V)zi+ (@ V)z=(z); Viv+(z- Vo, + Ey;, 4.5)

4, _ ﬂ) <i) _ Eu
is’ H(” Viz= (H V)” <|v| Vet V) ety

for i=1,2,3. We apply the triangle inequality and obtain

L )T L G ) )
(e T
L) 8 L)
LGl L)

<Lls lz-lzlvl} {i \vnz\}

=|U| ie=1 It i,/=1 I e
12 L o 1/2 1

+ —{ L Pl E

= m (12l vl + Izl vl + 2] [o]2 + |El).-
As in (4.3) we obtain from this inequality

d 3 277172 1
s [z ] (5’; .) } <y (el leh + 2l + EL).

Integration of this differential inequality yields

ol £yloli
glvl ST <IU‘2(T) |E’1(T)>
l2li(s) e |z|1(0)+(f) v PO o) 4
£, lols
<ol [l 4+ § 20
(l o1+ |} ‘E("” ) et | ”lf)‘(*r()‘l’ df],

where we applied Lemma 4.1 to estlmate |z(t)|. From this estimate we immediately
obtain (4.4).

Lemma 4.3. The solution z of (2.3}~(2.6) satisfies
|z5(s)= 2] 2(s, ¥)

35.‘|"hdt

<ofu {| |2(0)+5‘ 2 (l o+ 10 ) i

NS o R o R

Jor almost all (s, y).
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2
Proof. Withthe notation g;;;= 5?67 g we obtain by formal differentiation of (4.5)
[haad

(U'V)Z|ij+(U|j‘V)Z|i+(U|i'V)Z|j+(U|ij‘V)Z
=(Z|i : V)U|J+(Z|ll . V)U+(Z . V)U|U+(z|, V)v|i+E|ij’

hence
d v
ds 2= (m 'V> Ze\ij
(g v o () e (v 2
e (3
1
( V) g3+ ol E, ;-
Thus
(—d— zev| < 5 ooy + ol ey ds + oyl bz
ds {ij| = 'vl if i Ji i i

+ |Z|i( |vl|jl1 + |Z|j‘ lvtuh + |v|ijl 12/l + 12l !U(Iij I H1Eq;1]
The triangle inequality yields

3 d 2\ 1/2 1 5 1/2 3 ) 1/2
((,i§;=1 E; Z¢\ij ) = “U“I{L l%:_ (|Z|U| vl 1) :| + [N%:l (|U|j| |Zz|i|1) ]
3 172 3 /2
+ . (lvyl ‘Zz|jl1)2] + [( Z . Izl |U:|jl1)2]

C, L=
172

e
3 12 3

+ Z (lzl,llvz.zl )2] +L (;zl(lv,,-,-llzgll)z]
3

+ Z

12 3 12
(|Z| Ivtlij|1)2:| + l:/ 2 ) |E5|ijl2:| }
Jij=

[lzlz [l +1vlilzly + ol 2] + )zl vl

Tl
+lzly ol + vl2 |2l + 2] ol +1E)],

d 3 2\1/2
s 2l = <J‘ .Z‘ )

r[3|v| 11212+ 3ily 1zl +[ols12l + ELL] -

s0, as in (4.3),
d

— Z 0.
ds ¢lij

Integration yields
PILIH
B

|zl (s) < e 1z1,(0)

K |U|1
31' Id"( 'UIZ !vIS IEIZ) d
+ e o AT oy ) 4
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We use Lemma 4.1 and Lemma 4.2 and obtain

|'i|1

PROESRAL {l 2O+ ] 3 'I"'f

x[|z|1(0)+(|z(0) }r' )IM’ }%I—da]dr

# 18 (o [ o) v {122 .

0
(4.6) follows from this inequality.
We now use the following notation: Let u = 1 and let k be a nonnegative integer.
If I' is an open subset of Q or of 00, and if g: I'—=IR™, then we write

|9l s, r = H (IQI".(X))“dl]”“, .7

where A is the Lebesgue measure of Q or where d4 is the surface element of 0€2. For
brevity, we set o, r =19, 2,1 -

Lemma 4.4. Let i, v, f be defined as in Corollary A.2 in the appendix. Then there
exist constants C, K >0, only depending on , such that the solution z of (2.3)+2.6)
satisfies

|2l2, 0= ({I} (lle(X))ZdX)”2

. L7\1/2 E
<exp{3KLv 1||U”3(l}|:<‘;f’> |Z!2,ag_+v_372“L1E[2.9

+3u™YCL D) 4 (vl 5, 0(fV*12l1, 4,00 + 07 HETC)* [ El 2,0)
+v7 KL (jvly, o+ 307 'LCY? [0]13,0) (2]l 3,00 + 07 'LIEll2,0)] -
The norm || - | ;,00. is defined in (1.15).

Proof. We estimate the norms of the terms on the right hand side of (4.6). First,
note that (A.3) in the appendix implies

s(-) |U| (z, y( )] F\1/2 ol 5112
=\ Wl =57 : 4.
o |o(z, y(- To( y( ) dr v 0l ||o.0 = 2772 Livlz, 0 4.8)
Next, Cauchy-Schwarz mequahty yields
(fl el Wf) < § oy de [ Iodes 5 ] f3ds
[v] ol o 23

With (A.3) we thus obtain

l lz ’
(T - )z

< (%) L[ 162 .0
0,0 14
= <£5) |v(4(x)dx>”2

< (”—f—) 0l3.0. 49)

since H,(Q)CL,(Q) and
(I lq(X)I“dX>‘/“§ClILIIIx,Q
Q
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forall with% ! - =<

and (A4), (4.9) lmply

% and C=C(y, Q), cf. [8, p. 69]. Cauchy-Schwarz’ inequality

1/2

mmﬂns““mﬂ»m
0 0,2
<wmmw»mW2(g””uﬂ»m)
LS/4 =1/4

= 32 CATY 2l 4,00 _l10]13,0, (4.10)

0,0

because | |zI31l5/50_ =2l1,4,00_- Similarly,

E
f‘“m(»ds'“ (N
0 0 0,02
<j | )2 1/2 (s( )%d’c)z 1/2
0 | 0,0 o vl 0,2
C /2
é(%) I El,. olvl5.0, (4.11)

where we applied (4.9) in the last step and estimated the term containing | E|, just as
in (4.9). Further, (A.4) yields

f 1/2
12120, y(- Mo, 0= (; L) |Z|2,ao_ (4.12)
and (A.3) implies
sC) |Ef, o\"2 _||IEl, 7'/
&2 . <[Z Bl <’ __
éw‘““”“mg=Q> LIRel, S pom LEha @19
We also need the estimates
120, Y= Klizll3, 00 5 (4.14)
s |E
10 (M<K T IEl.a, @15)
o o]
P s 1L Kol gdeg S Kol g (4.16)
o ol o U ’ v '

which are direct consequences of Sobolev’s inequality. We use (4.8)+4.16) to
estimate the L,-norm of the terms on the right hand side of (4.6) and obtain the
statement of Lemma 4.4.

Lemma 4.5. There exist constants C, C,, K >0, only depending on Q, such that the
solution z of (2.3}-2.6) satisfies

B LI\1/2 5\1/2
|Z|1,Q§CXP{2KLQ 1”””3_9} [(%) |Z|1,ao_+<E§> LIE|; o

Cco\"?
+||U||39( TIHEHCT)Cylzlly, 00- +( ) I‘ZHEHI,Q)]'
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Proof. To prove this lemma we estimate the L,-norms of the terms on the right
hand side of (4.4). Just as in (4.10) we obtain

20, ))I”Zf Y-

<o YHLP5CE) Hzlo, 4.00_I10]l3,0
0,0

SvTHLPOCHYACy NIzl 1 00 lI0l5,0, (417)
where in the second step we used that

H,(0Q_)CL,(092)

and

(Mg iCI(y)I“dSy>‘/“§Clllqlll,agk

for all u>2. This result is an easy consequence of the definition of the norms
I 1005 | *lo.uon. in (1.17), (4.7), of our assumption that 9Q_(f) has Lipschitz
boundary, and of the correspondmg result for plane domains with Lipschitz
boundary proved in [8, p. 72]. As in (4.11) we get

SO |E| Vvl

(J) Tﬂ(”( )t j ll( 17, y(- )t

Finally, as in (4.12) and (4.8) we obtain

C\'/?
é(,?) L2||E”1,Q||D”3,.Q~ (4.18)

0,2

1/2
a5 Moo= (L) el o @19

El
Ill

0

( ,)’())df

m 1/2
= (ﬁ) LIE|, . (4.20)
0,92

We use (4.17)—(4.20) and (4.16) to estimate the L,-norms of the terms on the right
hand side of (4.4) and obtain the statement of the lemma.

Lemma 4.6. There exists a constant K >0, only depending on Q, such that the
solution of (2.3)—(2.6) satisfies

L 1/2 S\ 1/2
nzno,ggexp{KLy'l||v||3,g}[(%) uzuo,m_+(§) LnEno,g].

Proof. As in (4.12) and (4.8) we obtain

1/2
200, y(- Dllo, 0 < <L§> Izllo,00-

7 \1/2
s <—3) L|El¢,q-
0,0 v

We use these inequalities and (4.16) to estimate the L,-norms of the terms on the
right hand side of (4.2) and obtain the statement.

Lemma 4.4, 4.5, and 4.6 show that ||z]|, o, |z];, o, and |z, , can be controlled by
norms of E and by norms of the values of z and its derivatives on dQ_(f). To
complete the proof of (2.12) and (2.13) we therefore need estimates for the boundary
values of the derivatives of z. These estimates are derived in the next section.

“s} : || (&, (- )dr
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The estimates stated in the following two lemmas are necessary to prove (2.14).
For i=1,2 let u”eV, v¥=v,+u?, and with the notation introduced before
Theorem 2.3 let 22 =z[g, h, vy, "] be the solutions of (2.3)-(2.6). In the following
we use the “integral curve coordinates” belonging to the vector field v'!) and write

q(s, y)=q(e(s, y,u™)).
Moreover, we use the notation [z] =z -z, [u]=[v] =u'® —u'V.

Lemma 4.7. The solutions z'V,z'? satisfy

o]

L2 @) =I[] s Pl < &b P "‘{wz] (0)|+§)w—fg|«|z‘2’\l +leurlogl ) [l

+(122] + |curlwel) |[u]] 1)dt} . 4.21)

Proof. From (2.3) we obtain

(U(l) i V) [z] = (U(2) . V)Z(Z) _ ([U] . V)Z(Z) _(U(l) . V)Z(l)
=(z®. V) — (V- Vo'V + (curlvg - V) [u]
~([u] - V)curlvy—([u] - V)2
=([z]- Vo + (2@ V) [u] - ([u] - V)z?
+(curlvg - V) [u] —([u] - V) curlv,.

Thus,

d d 1
agl[ﬂlé lg[ﬂ‘ = Wl(v( "-V) [

1
= lv—(r)l{lv‘”lll[Z]l 10|22+ 1[udl 1221,

+leurlwo| |[u]l; + ICUflvolll[u]l} :

Integration of this differential inequality yields (4.21).
Lemma 4.8. There exist constants C,, C5, K >0, only depending on Q, such that

”Z[g’ h’ Vg, u(Z)] - Z[g5 h’ Vo, u(l)] “0,!2

172
Sexp{v™'LK|lvl3 o} {Cz (L%> (1A, 00_ +In-curlvg|; o)

+2()TEV) PLC (12 4,0+ ”Cuflvonz,n)} (4 —uV), 4.
Proof. Note that (2.4)—(2.6) imply

[zlon. = }‘(h'i' n-curlvo) [u50_1r-
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We use this equation to estimate the L,-norms of the terms on the right hand
side of (4.21). (A.4) in Corollary A.2 in the appendix yields

12
L2300, (- Moo = (Lv—(f,—)> 1Lz1No,00-

7 )1/2 h
<\L-% s
_< oV ag?

Z o4 1n~curlvo N0, 00
f

ff
1/2
écz(L;)m) (Ihlz,e0_ +In-curtlvgly o0 ) I[ullly 0. (4.22)

with the norms defined in (1.18). Here we used two times Sobolev’s inequality,

which yields ,
y 1Cudlo,00. < CoIludl g
1
— + li—=n-curlyp,

of |
2 f 2,80 f 2,08~

ScCilhly, o0 +in-curlvgl; 50_).

and
h

B 1
— + —n-curly,

ff

sup
a2

From (A.3) we conclude that

) 1
” { oy (225 +leurlvol ) [[ulde
? Iv l 0,2

5(1) 1/2 1
é(;a—)) L \W(IZ‘Z’h+I0urlvol1)l[u]l o
SEM)TIEPLC (2P + leurtool iy, ol Tl 1, 0
SV TIHEO)LC (12D, 0+ lcurlvgllz, ) I[u]li 00 (4.23)
where we used that H (Q)H,(Q)< H (Q) and

“‘11‘12“v,9§ Ca“‘h“k.g“‘h“m,g’ 4.24)

for v=min{k,m,k+m—2}, which we used with k=m=1, v=0. As mentioned
earlier, (4.24) follows from Sobolev’s inequality [8, p. 72] and from Holder’s
inequality.

In the next estimate we use (4.24) with k=2, m=0, and v=0 and obtain

s¢) 1
[ = (2] + Icurlvg|) [[ul}ydv
o o 0.0

<) ¥AE)2LY (127 + lourlvo) [[u]l Mo,
ST W) PLCS(127]) 5,0+ lourlvgliz, ) [ulls,e-  (4.25)

We use (4.22), (4.23), (4.25), and (4.16) to estimate the L,-norms of the terms on the
right hand side of (4.21) and obtain the statement.

S Boundary estimates

In this section we derive estimates for {z{ly sq_, 2}y, a0_, and |z{; »_ and combine
them with the results of Sect. 4 to prove Theorem 2.3. The estimates follow easily
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from the preparatory results proved in the next two lemmas, which concern
products and tangential derivatives of functions defined on 0Q_. The norms are
defined in (1.17)-(1.19).

Lemma 5.1. There exist constants C,,...,Cq >0, only depending on 0Q _(f), with

19192ll0,00- S C1llq1ll1,00_142111,00_ 5 (5.1)
”‘hqznm,an_ §C2Hq1“m,an_“‘12”2,69_ > (5.2)
C3lg1lm, 20_11921 2,00

mo0. = ’ ) s 53
14142l e0 {C4l‘11|2,an_“42“m.a9- (3)

Cslllglllm, o0_ 192112, 00
< ’ P 54
for m=0,1.2. ”""qz'”'"'“’—{Csmqlmz,m_uqzum,ag_ G4

Proof. We use the notation of (1.17) and (1.18). For i=1, ..., u choose functions
o€ CF(D,) with ;=0 and with «{y)=1 for yesupp(x;cy;). Then there exist
constants C,C’, C" with

loiDPgow)llmps=2 % | ID"a:D"(q o p)llo.psS2C1al gy 4 maq_ > (5.5

fr+¥'ism+(p
i§C}'(I||m+1y|+m,m_ s (5.6)

1
«;D? ( ) D¥(q-vy))
fo Vi m, D>

(1
i <f°1w-> » (fow-)m(qow")

for all g, for which the right hand side of these inequalities is finite, and for all multi-
indices B, f',y and non-negative integers m with || +m =<2 in (5.5), |f|+|y| + m<2
in (5.6) and |B|+|f'|+|y| +m=2 in (5.7), respectively. We leave the proof to the
reader.
_The estimate (4.24) also holds if Q is replaced by the two-dimensional domain
Y, with Lipschitz boundary. (4.24) and (5.5) thus yield

ll(or; 0 %)Dﬁ(‘h op)D(q, 0 V’i)”o,ui £ H(ali)zDﬂ(ql op;)D¥(q; o)) 0,D}
< 6”0‘21)”(‘11 ° IPi)”j,Di'Ha;Dy(‘h ° ‘Pi)”k,pé §4CC2 lq, |||ﬂ| +j,00 - H%Hm +k,00-

forall B,y,j, k with ||+ <2,[y| + k=2,and j+ k=2.(5.1) follows from this estimate
and from (1.17) with the choice f=y=0,j=k=1, and (5.2) follows with the choice
=yl k=2~Pl

Similarly, (5.5), (5.6), and (4.24) yield for ||+ 8’| +|y| <2

léC”H|¢1|”|ﬂ|+|ﬂ'|+|y|+m,afz, (5.7

m, D2

(o;0p,)D* (ﬁ) D¥(q, o yp)D"(q; > y)

0,D}
1
< o 2D"(——“>D"'(q o))D¥(q, o)
(o) Tow; 1°p 2°Y 0.0
1 ! !
C “'iDﬁ<_’*>Dﬂ (qiow) ”“iDy(‘hOWi)“z—lvl.D;
< fow; 171, B4
= 1 , ,
¢ ai'Dﬂ(’—")Dﬁ(‘h“Pi) _nfxiDy(‘h°1Pi)u|y+g'|,9§
fow; 2-|p+p1, Db

{2CC'C|q1I|g+p'+y|,ag_ Igll2,00-
= 12¢C'Cgylz,00_l92 lig+p +3),00-
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(5.3) follows from these estimates and from (1.18). Exactly in the same way we
obtain (5.4) if we use (5.7) instead of (5.6).

Lemma 5.2. There exist constants C,, ...,Co, only depending on 8Q_(f), with

[(vr - Vlo,00- SColql,00_llvrhi,00. » (5.8)
{01 V)l 00 S Calglm+ 1,00 107l 2,00_ » (5.9
vy - V)qlllm, 00— < Colllqlllm+1.00_lvrll2,60- (5.10)

Jor m=0,1 and for every vector field v, tangential to 0Q_(f).

Proof. Let &,:D;—U,CR? and y;: D,—0Q with p{(&,,&,)=®(&,,&,,0) be the
diffeomorphisms introduced in Sect. 1. For ye dQnU,; we then have

(07 -V)g(») =7 -VI[gew)ow: T =(0,- VI [(gow) &7 '1(y)
= Z [ (q° w)] DAY vly)

. 7
with A4,(x)=V&; }(x)= (36_‘”7""@— 115,’,,,,5(2—(17, ,,‘,), where @;],...,®; 5 are
X3
the components of @, !. Thus, if f=(8,,8,), y=(y1,7,) are multi-indices with

IBl+ 1711, and if j+ k=2, then

@ ow)Dﬂ( ffw>m{[<vr V)l v

0,D3

) 5 e
(5o w)D (wai ,El |ﬁ‘+§"|§mD afm(q ¥

x D" [(Ap- v1) o]

2

: 1 Y o] -
mgl |B'+VZ‘§I~/I (ai)2D6<f U’)Dﬂ [afm(q lp)]D LA 07) o wi]
<Cy

, 1
m=1 1g 4yl s b? (f %) (q w) j.p}

X DY [(Ap - v7) o 9] e, pg - (5-11)

In the last step we used (4.24). If k+y'| <2, and if
M =sup{|D""(4,,° w)(&)|: L esuppoay; m=1,2; [y"| 2}
then we obtain from (5.5) that
oD [(Ap- vr) e willlk, b
<4 ) 1D%D" (Ao D" (g o Wi)llo, b

viZk
Jv+v +v7| gk +|¥]

=4(6M) IZk 1D D (vr o wllo, piS 24MCllozllis yi00- - (512)

ME
[v+vy"sk+|y]

0,D}

IIA

0,D}

From (5.6) we obtain

1
‘DB B
i (fotm)D 3,

<C|‘1||ﬂ|+w |+1+,80- (5.13)
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To prove (5.8) we set f=y=0 and j=k=1. Combination of (5.11)—(5.13) yields

1
(o;0 Wi)?"—ll)_ [or- Vgl o

i

, §48MCC,C|‘1|2,39_ vrll 1,00 -

0,D;

(5.8) follows from this estimate and from (1.18). To prove (5.9) we set j=|y'| and
k=2-]y'| in (5.11)-(5.13) and obtain

(o

1
(o0 i)Dﬂ(*“>DY vp-V)gloy;
wID*| 7o | PHLer Vgl o wi)
§240MCC'C|q||p|+|y|+1,39_ lorl2, 00 -

0,D3

(5.9) follows from this inequality and from (1.18). The proof of (5.10) is analogous to
the proof of (5.9), using (5.7) instead of (5.6).

Lemma 5.3. There exist constants K ,, ..., K, only depending on 0Q _(f), such that
the solution z=1z[g, h, W,vq,u] of (2.3)—(2.6) satisfies

(2llm 00 S Ki[IAlm a0+ 1vrl2,00 hlm o0
+ ||“T||2,an_|n : W|m,6.Q_ + IVTg|m,6.Q_] , m=0,1,2 (514

212,50 - S K;[lhlz, 00 + 107ll2, 00_[IAlll2, 00

+llurll2,e0_llin- Wiz, 00 +1Vrglllz,00-1> (5.15)
1
Mzlllz, 00 S K5 ] lIAlll2, 00 + lo7ll2, 00- 7’1
2,00-
1 1
+lurlz,o0_ ||[Fn-W + ||I=Vrg > (5.16)
f 2,00- f 2,00-

where v=v,+u, and n=n(x) is the exterior unit normal to 0.

Proof. From (2.4)—(2.6) we obtain

h 1 1
Zjop. =hn+ 70T+ 7(n~ Wiuy— ?nxVTg.

(5.14)—(5.16) are immediate consequences of this equation and of (5.2)—(5.4), since

|
f
In the following we denote by 6,z=(n- V)z the normal derivative of z at dQ. For

g(x)=(q1(x), 42(x), 4s(x)) e R*

1
=dqlm, o0 I—q Zclliglllm, o0 -
m, 00 _ f m, 082 _

let D*q denote the vector

D*q=(D’q)i=1.2,3.
1Bl sk
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Lemma 5.4, There exist constants K, K s, only depending on 0Q2 _([), such that the
solution z=1z[g, h,vy,u] of (2.3)—(2.6) satisfies

10,2ll1,00. = K4 |:||D20|lo,ar)v|2|z,m_ + “Dzuno,ag,

1
X ZolD"' curluolz_m,m‘], (5.17)

m=

10,21 00 = K5 [“Dzv”o,an Nzl 0. + ”Dzuuo,aﬂ-

1
X ZO|||D"'0ur1%l||z—m,ag‘]- (5.18)

Proof. From (1.3) we obtain

W-Vz=[or+(n-vn)-V]z=@s - V)z+f0,2.
(2.3) thus implies

1
—(u-V)curly, + i(curlv0 -Vu.

1 1
W=y 7 7 ]

" f !
Therefore (5.9) and (5.3) yield
10,211,800 SWvr- V2l s0_ +I(VV)2ly, 50
+|(V curlvpuly o0 +I(Vu) curivg]y oo

ECslvrlls, 00 lzks a0+ Call Vol 20 )2l2, 00

+ Csllull 5,0 Vcurlvgl; o0+ CylVull, 50 |curlvgl; s -

wr-V)z+ —(z-Vv—

(5.17) follows from this inequality. (5.18) is obtained in the same way using (5.10)
and (5.4) instead of (5.9) and (5.3).

Lemma 5.5. There exists a constant K¢, only depending on 0Q_(f), such that
102210, 00- §K6lt”DZUHO,é)Q_(lanZII,B.Q; +1zl2.00 )
2
+{1D%ullo, 00 Z‘o |Dmcurlvo|2—m,an_]- (5.19)
Proof. Observe first that (1.3) and (4.5) imply with n{x)=(n,, n,,ns)

fez=10-9) 3 nay= 3. nfln V),

I
NG "

) n[(v-nn- V]Z;;' = 2_3:1 nfv- V)Zu - '—i n{vy- V)Zu

N
™M w

nlL— (- V)z+(z;- Vo +(z - Vo + Ey— (07 - V)z],

1
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hence 02 ! o,v-V ! J,z2-V > \Y 1(3E
nZ=— F0,0" + — nl* + i \Z i+ — 0,
z f( )z f( z-V)v i;nf(z Yy, 7
1
T(UT V)o,z+ Z lel(vT Vin,;.
Thus, with (5.1), (5.3), (5.9),
1
0%z < H 0,0-V)z + H~ V0)0,z
1932 l0.00- f( ) 0,00- f( ) 0,00 -

3
+ '21 [(Vo)zlo, 0. + (v V)0nzlo, 00
i= Q.

1
LPY;
f
3
+ .;1 lz)vr - VInilo, a0

< H% 0,0-V)z % 0,z

; 1
+ _Zl CalVoyllo,en_l2l2,00. + “7 0,E

+C1||VU||1,aQA

0,002-

1,00Q-

0,00

+ C8|anzl1,an_||UT”2,aQ_
3

- +Cs ,;1 (Izilo, a0 (V7 VInli2 50_). (5.20)
From (5.1) and (5.8) we conclude that

! (0,0-V)z

”? {(n 0,0)0,z + [(00)r - V]z}

il

§C1||n'6nl7”1,am

0,002- 0,002_

1
— OnZ +I[@w)r - Vlzlo, 20
S 1,00-

S CCl0u011,00.102l1 20 + C1 (001l 1,00 12l2, 00
<K, ID*0)lo,00_(10n2h1, 00 Hzl2,00_) - (5.21)

Moreover, (4.1) and (5.1), (5.2) imply

< ”1 d,[(curlyg - V)u]
0,00 - f

=C

L oK

i 0,[(u-V)curlyy]

|
0,60- f
| Vul 1,00-

1,00

0,00 -

1
— 0, curly,

1
— curly,

f

1
— 0,V curly,
0

f

+C1||6n““1,an-

+C, ||anV“||o,aQﬁ

2,00-

+C, ““”2,@9-

—1~chrlvo

f
2
SKgl|D?ullg, o0 ¥ ID™curlvol; - 00 - (5.22)

m=

1,00

Combination of (5.20)(5.22) yields (5.19).
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Proof of Theorem 2.3. Asnoted after Theorem 2.3, it suffices to prove (2.12)—(2.14).
Note first that (4.1) and (4.24) yield for j=0,...,2 that

|E|j,n§ 1Ell;,eS ”(Vu)W”j,!)+ ”(VW)u”j,.Q
§C(||Vu||2,Q|IW“j.n+ H““z,n“VW“j,n)
SCulz,elWi5,0=CY Wi o, (5:23)

since ue V.
(2.12) is an immediate consequence of this estimate, of (5.14), and of Lemma 4.6,
if we use in addition that the trace theorem implies

lurllz, o0 SCillully 0. SCillullz, 0= Caliulls, 0= Cyy»

lorll2,00. EC1lvll2,00S Callvlls 0>
that

o3, 0=llvo+ul30=voll3,0+7
since u € V,, that Sobolev’s inequality yields # < C|lv] 5 o, and that v 2 v, — Cy>0,
by Lemma 2.1. We also need (1.20).
To prove (2.13), observe that Lemma 4.4, 4.5, 4.6 and the inequality (5.23) yield
}|z]|2~g=(]|z||(2,,9+|21f,9+|z|§,ﬂ)1/2§ Izllo, e+ 2k, o+ 12l2,0
éLly/zK(Ly, os 1003, 0 j:?)

X [1zl3,00- +12l1, 4,00 +12l1, 00 + 12l 2,00_ + lcurlvgll; o . (5.24)
We use that

|Z|1,an_ +|Z|2,an_ §2||Dzzno.ag_ §C(||ZH2,59_ + HanZ“Lm, + “552“0,09_)- (5.25)

4 /4
as|

Moreover, as in the proof of Lemma 4.5 we have

3
|Z|1,4,aﬂ_=[wﬁ; ]z|‘1*dS]”4§C1[ > §

iji=100-

Z 4
ox;

3 4 14
=C -2 <GC,|lV
= ZI;.’JZ;I 6xizj 1‘69_] <Gl Z”l,an,
SCyl10,zl11,00. +112ll2,00.)- (5.26)

Combination of (5.24)~(5.26) and of (5.14)—(5.19) yields (2.13), if we again use the
trace theorem, which implies

”Dzuuo,m_ = HDZ“Ho,aQéCHu”s,né Cy,
HDZUHo,an_ = HDZU||0,69§C||U”3,Q§C(””o”s,n‘*‘?)-

We also use (1.20) to estimate [|gll, oo and gl 50 by lllglll2, s0_, and we use that

(5.4) yields
1 1
I”‘I”Iz,ag_:’”f(?q) ‘7‘1

Finally, (2.14) is obtained if we use (2.13) to estimate the term |z'?|, , in the
inequality stated in Lemma 4.8. The proof of Theorem 2.3 and therefore the proof
of Theorem 1.1 is complete.

2,002-

=GCsllfl12.00-

2,00 -
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Appendix

Here we prove some results needed in Sect. 4 to integrate with respect to the
integral curve coordinates, and we prove Lemma 2.7. Let yp,: D, —0Q be one of the
local coordinate systems of 02 introduced in Sect. 1. For brevity we write

(D(t, é) = Q)(t, W.(é)’ u) s O)(S, é) = Q)(S, ’P;(f)a u)

if E=(&,,&,)e Dy =y, (82 _(f)). Clearly, (t, &) and (s, &) are local coordinates of Q.
We use these cooridnates for integration in €2, and therefore need the following
result for the Jacobi determinants

j(t, &)=det <M?_’E’L)> ,

a(ta 51’ 62)

oWy, 0, 1;)

. ot
J(s,§)=det< ) >=J(t(s),é)a.

Lemma A.1. For all (t,£) we have

% Jt, &) =divo(w(t, OHJ(t, ). (A1)
For all (s, &) we have
LS
[J(s, )= — 1065, 9] |0¢,(0, &) x 3¢,(0, &), (A2)

where f is the prescribed function in the boundary condition (1.3), and where we use
the notation

[Q)=f(0(0,8)), uvls,&)=v((s,&)).
Proof. The proof of (A.1) is standard, cf. {10, p. 131].
To prove (A.2), note that (A.1) and divo=0 imply %j(t, £)=0, hence

(2, O = 1J(0, &)l =|det((e(0, &), 0, (0, &), 8,,(0, E)))
=0 (0¢,00 X Og,w)| =1 - 1|10, X O, 0]
= — f(&)10¢,0(0, §) X 8,0(0, &) .
Here we used (1.3). But

S
ol €1, &)

' 1 5
(s, Ol = . W(ts), €1, S2)l = 0,00 % 0, 0]
ot

This proves (A.2).

Corollary A2, If ge L,(2;R™) then

IS )

dsdS
[v(s, )

y.

[adx= [ | 4(s.y)
0 a2_ 0



Existence of steady inviscid flows 527

If qe L,(2,R™), then

F\172
§(—) Liqllo.0- (A3)
0,9 b

where v=inf |v(x)|, 0 =sup {v(x)].
xef xeQ
If geL,(0Q_(f),R™), then

I |k-.,|

1/2
Ilq(O,y('))llo,gé( L> lglo.on- (A4

where f= sup |f(x)l.

xedf2-

Proof. The first assertion follows immediately from the integral transform theorem
and from (A.2), since

dS =10, (0, &) x 8.,0(0, ).

To prove (A.3), note that the first assertion implies

s69) 2 ()| s 2
i1 7§ gl y(x)dt dx= ) '[ J.q(T, y)dt Lf) EANZIN D dS
oo o6 [o(s, )
< 1 Vsl ae L0 s,
-0 0 ‘ ( S,y )l
= [M) Zd}rw d}ﬂﬂﬁ
=arj;_ i‘; ot (I) [v(s, y)| S ynao,
2 £(9)
<2 1 Vg L e -ALZIIqIIOQ.
Vad_ 0 lo(z, y)|
Also the inequality (A.4) follows from the first assertion, since
{19(0, y(x))|*dx = f 140, )P 12 | S dsds,
? |v(s, )l

5
-
83
<T Vs 1 100,945, L1413 00
v o e v

The proof is complete.

Proof of Lemma 2.7. For every qe C'(Q) we obtain from (A.3) and (A.4)

(r y(-Ddt+4(0, y(- ))‘

1/2
(— > ”‘1“0,69_
D 1/2
= <E> L||V‘1||o ot <f L> “q“o,agf .

This estimate is extended to ge H,(£2) as usual.

Igllo,e=
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