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The workshop on the Mathematical Theory of Nonlinear and Inelastic Material Be-
haviour was held at the Technische Hochschule Darmstadt, Germany, May 25-27, 1992,
with financial support of the Deutsche Forschungsgemeinschaft (German Research Coun-
cil). The purpose of the meeting was on the one hand to describe recent developments
in theory and applications including also numerical computations and on the other hand
to bring together mathematicians, physicists and engineers working in the field of elastic
and inelastic material behaviour.

In many fields of engineering and medicine the knowledge of the behaviour of mate-
rials under mechanical loading is of increasing importance. The classical theory of linear
elasticity is not adequate to describe the wide variety of possibilities for the behaviours ex-
hibited by different materials. It is therefore natural that the theory of inelastic material
behaviour plays a growing role not only in scientific computing, but also in mathemati-
cal analysis. From the point of view of a mathematical analyst, it serves as a source of
interesting and inspiring problems in fields like calculus of variations, dynamical systems,
befurcation theory, conservation laws and general nonlinear differential and partial differ-
ential equations. Accordingly, our workshop consisted of 16 inspiring lectures covering a
wide selection of topics in mathematics and mechanics.

The workshop was organized by the DFG-Forschergruppe on Ingenieurwissenschaft-
liche und mathematische Analyse bruchmechanischer und inelastischer Probleme at the
Technische Hochschule Darmstadt to promote this field of mathematics and mechanics.
In these proceedings several of the contributions to the workshop are collected. These
articles are good examples for the topics covered and they are intended to make the papers
presented at the workshop accessible to a wider audience.

In their articles, CHIPOT estimates minimizing sequences for nonconvex functionals,
and LEIS studies the decay of the solution as ¢ — co for boundary value problems in
exterior domains to linearly elastic media with cubic symmetry. These results are needed
to prove existence of solutions to corresponding nonlinear problems. MULLER (joint work
with S. Spector) considers a problem in threedimensional nonlinear elasticity proving
the existence of singular minimizers under reasonable physical assumptions allowing the
formation of cavities. NOURI studies a model of R.J. Clifton for elasto-plastic solids with
hardening, and determines viscous profiles. PRUSS gives existence and stability results
for initial boundary value problems to linear, viscoelastic media, and ROZICKA discusses
the equations for non-simple media in the sense of W. Noll. The underlying constitutive
relations depend on higher order gradients of the velocity field and the deformation field.
Equations obtained from these models and existence results are stated. SEREGIN studies a
stationary problem arising in nonlinear elasticity and proves regularity of weak extremals
in the two-dimensional case.

Many people helped to make the workshop successful. We thank all of them and in
particular we thank Frau E. Schlaf and Frau M. Tabbert to help with the organization.
As usual, Frau Tabbert did an excellent job in text processing. Special thanks are also
due to our assistants C. Chelminski, A. Heidrich and F. Klaus.
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ENERGY APPROXIMATION

M. Chipot
Université de Metz
Département de Mathématiques
Ile du Saulcy, 57045 METZ Cedex 01
(FRANCE)

1. Introduction

Many physical situations lead to minimize some energy. For instance, if ¢ is some
energy density, nonlinear elasticity will require to minimize the integral

/ o(Vii(2)) d (L1)
Q

over some class of functions. Here, as well as in the following, 2 is a bounded open subset
of R", Vu denotes the Jacobian matrix g—g—), t=1,..,N, j=1,...,n Of course, in
the physical situation we have in mind N = n = 3, u is the deformation of the material,
{ its reference configuration (see for instance [Cia)).

One expects that nature will provide one unique minimizer to (1.1). In worse cases
one could explain several of them using symmetry or other means, however, a more saddle
case arises when (1.1) has no minimizer at all. This case has been the sub Ject of intense
study during the past five years (see for instance [B.J.,], [B.J.2], [B.], [Co.], [Er], [F.q],
[F.2), [J.K.], [K.], [K.M.]) and some new concepts like Young measures have emerge (see
(C.K), [K.P), [T]..).

Let us admit for a moment that we set aside our usual mathematical archetypes of
existence and uniqueness. So, we are dealing with a problem for which the infimum of (1.1)
is not achieved. Let us insist on the fact that this is not only an academic issue but the
problem arises for instance when studying deformation of crystals or ordered materials,
Now, the energy that we will use below is also not so terribly unusual. It requires only to
have several minima or wells. Such energies are spread all over the physics literature.

If we admit that nature keeps its tendency to lower energy, we are led to understand
better the minimizing sequences of the problem, their patterns, their relevance to describe
the reality we are trying to apprehend. In this respect computations are very important.
In particular, given a mesh size A it is very useful to know in terms of A what is the sharpest
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rate of convergence of
inff o(Vu(z)) dz (1.2)

towards the infimum of (1.1) (V}, is here some finite dimensional space, this will be clarified
in the next section). Also, the fastest converging minimizing sequences and their pattern
should play a role both in describing the physical situation and speeding up the compu-
tations. Indeed, discretization of the problems we are about to study leads to minimize
nonconvex functionals with several minima that could be very close to each other. A de-
scent method, if not carefully driven, could be very slow. This is what we would like to
investigate in this note. We will restrict ourselves to the so called scalar case i.e. when
N = 1. The reader is refered to [C.C.K.] for some insight in the vector case.

2. A model problem

For the simplicity of the numerical analysis we will assume that Q is a polygonal
domain of R". We will denote its boundary by I'. Let w; € R", i = 1,...,k k>2 and
consider a function ¢ : R™ — R such that

(p(w,-)=0 Vi:].,...,k, (2.1)

e(w)>0 VYw#w;, i=1,...,k (2.2)
Moreover let us assume that
¢ is bounded on bounded subsets of R". (2.3)
Let @ be in the convex hull of the w;’s, such that
atw;, Vi=1,...,k (2.4)

Then, let {7, : h > 0} be a family of quasi-uniform triangulation of § (see for instance
[R.T.]), that is to say satisfying

(VK € Ty, K is a n-simplex,
vh>0  { Bex (k) =h (2.5)
Jv > 0 such that VK € 7, hx <vw.
| PK

hk denotes the diameter of the n-simplex K and py its roundness (i.e. the largest diameter
of the balls that could fit in K). If P;(K) is the space of polynomials of degree 1 on K ;

we set

Vi = V() ={v:Q — R continuous , v|i € P;(K)VK € T, v(z) =a -z on T} (2.6)
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(@ - z denotes the scalar product of a and z). We would like to obtain estimates of the
infimum

vien‘f,‘: A ©(Vou(z)) dz. (2.7)

in terms of the mesh size. At the same time this will give us some information on the
minimizing sequences. It should be noticed, as an immediate consequence of the relaxation
theory, (see [D.]), that the infimum in (2.7) goes to 0 when & — 0. Now (2.7) is clearly an
approximation of any minimization problem on a continuous space containing the V! as a
dense subset (see [C.]).

Problems of the above type have been first considered by C. Collins, D. Kinderlehrer
and M. Luskin in one dimension (see [C.K.L.], [C.L4] - [C.L.4]). In higher dimension
estimates were obtained in [C.C.], [C.]. Sharp estimates are derived in [C.M)]

3. Energy estimate

In what follows we will always assume
a=0. (3.1)

Indeed, there is no loss of generality in doing so. To see it, remark that if we set v = u—a.2
then

/ o(Vu(z))dz = f o(Vu(z) + a) dz (3.2)
Q Q

thus minimize the left hand side of (3.2) on V}? reduces to minimize the right hand side
on V). But then we are led to a problem identical to the one we had with now

¢(w) = p(w + a)

re. with a function ¢ having w; — a as wells, with 0 in the convex hull of these wells (since
clearly a in the convex hull of the w;’s is equivalent to 0 in the convex hull of the w; —a’s).

Now, since a = 0 belongs to the convex hull of the w;’s one can find w;'s, that we will
denote by wy,...,wp, p > 2, such that

w; —wy, t=2,...,p are linearly independent (3.3)

and such that for some unique a; € (0, 1)

P P
Z a;w; = 0 3 Z a;=1. (34)
i=1

i=1

Then one has:



Theorem 1:  Assume that p = n + 1 and ¢ satisfies (2.1)-(2.3) then there ezists a
constant C, independent of h € (0,1), such that

En= inf | ¢(Vo(2))dz < C - HlLn(h)|. (35)
v h n

Remark 3.1: Note that Vu(z) and thus ¢(Vv(z)) are constant on every simplex of 7
so that no further assumption on ¢ is needed for the integral of (3.5) to make sense.

Proof of Theorem 1: Set
w(z) =A_jw; -z +1 (3.6)

where A denotes the minimum of functions.

First, remark that
w(z) <1 Va. (3.7)

Indeed, if not, we would have for some z
wire>0 Vi=1,...,n+41

and by (3.4)
n+1

Za;w; cx =10
i=1

hence a contradiction,
Moreover, this “roof” function w has exactly n + 1 different slopes, i.e. for every i the set

of z such that w(z) = w; -z + 1 has a non empty interior. Indeed, otherwise for some i
we would have

Wi,z 2>2wi-z Vi, Va,

thus
P P
Za;wio ‘T > Za;wg-a} =0 Va.
i=1 i=1

It follows that
Wi,z >0 Va

which is impossible unless w;, = 0 = a which has been excluded (see (2.4)).

Consider next the set

S = {z € R"|w(z) > 0}

={zeR"w;-z+1>0 Vi=1,...,n+1}.
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S is the intersection of n + 1 half spaces and thus a n-simplex with vertices vg,vy,...,v
For any z = (z1,...,2,) € Z™ set

T

n

wi(2) = w(z - Y zi(vi - vo)). (3.8)

i=1

Clearly, w, is a piecewise affine function, non negative only on each of the sets

S: =S5+ z(vi — ). (3.9)
i=1
Set
u(z) = Vyeznw,(z) (3.10)

where V denotes the supremum of functions. Then u is a piecewise affine function equal
to w, on S, which is periodic on the lattice spanned by the v; — vy. Modifying u by a
translation, i.e. replacing u(z) by u(z + vo), there is no loss of generality in assuming
vo = 0. We will call unit cell of the lattice spanned by the v;’s a set of the type

n mn

Zzw;+{zaivi,as€[0,1]} i zed”

=1 i=1

(recall that we assume vg = 0). The function u is then such that on each unit cell of the
lattice
Vu = w;

except on some set of n — 1-dimensional measure equal to a constant that we will denote
by S; (in S; we are counting also the boundary of the cell since this will be needed later
on).

Moreover, on the boundary of every unit cell, u = 0. Then define u, the following
way. First cover §) by the unit cells of the lattice of basis v; and set

Up=1u

on the cells included in Q. Then, considering the lattice spanned by the vectors %v,‘ cover
(2 by its unit cells (2" of them are needed to cover a unit cell of the preceding lattice). On
the cells of this lattice that are included in © but where we have not yet defined u, set

1
Up= §u(2m).

Then, assuming that we have defined uj on the unit cells of the lattice spanned by sivv;
consider the lattice of basis 2%1); and on the cells of this lattice included in © but where
we have not yet define u, set

1
= — 7
up = 2qu(2 ).

5



Stop this process when ¢ = [ with

(3.11)

(d1 denotes the diameter of the unit cell of the spann of the v;’s). Finally, extend uj by 0
on the part of 2 where we did not yet define u;, and denote by v}, the interpolate of uj, on
Th. Let Ny be the number of unit cells of the spann of s-v; that we have used. On each of
these cells we have

Vo, = w;

except on a set of n-dimensional measure equal to

51
@y

where we may have interpolated. We have to interpolate close to the ridge of n -1.e. the
points experiencing a jump in the gradient. Indeed at a distance larger than A of this ridge
u}, is affine on each simplex and u;, = vy, So, interpolation occurs only at a distance less
than A of the ridge. This explains the term 2k above. Note that since Vuy, is bounded, Vo,
remains bounded (see for instance [B.C.]). By (3.11), we could have also Vo, # w;onah
neighbourhood of T. So, collecting all this information, if |I*| denotes the n — 1-dimensional
measure of I' one has for some constant ¢

L N,S
/Q (Vou(z)) dz < CY 0: @y b+ I b (3.12)
q=

To estimate N,, remark that the unit cells covering {) are the unit cells that are inside
Q0 augmented of the unit cells intersecting I'. Now, the unit cells of the spann of zl;v;
intersecting I" have a volume bounded by

d;
200 - 5t

Clearly these cells contain the Ny cells of the spann of 2%11,- that we considered before. So,

if V1 denotes the volume of the unit cell of the lattice of basis v; one has

Vi d;
Nozgaye S 201572

Hence AT d
Ny &= (3.13)
1

Combining this with (3.12) we get

/ @(Von(z)) de < C(1+1)-h+C|D|- b
Q
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and the result follows by (3.11).

Remark 3.2: The estimate (3.5) is in fact sharp, i.e. one can get a bound from below
of the same type, we refer the reader to [C.M.]. As soon as the w;’s satisfying (3.4) are
choosen the above construction gives a pattern for the minimizing sequences. Note that
refinement occurs to match the boundary condition.

We now turn to the case where p < n. By (3.4) we know that the w;’s are linearly
dependent. So, since they are in number less than n they are spanning a proper subspace
of R™ that we will denote by W. Remark that the function w is constant in any direction
parallel to W+ the orthogonal of W. In particular, w does not vanish on a bounded cell as
in the case of Theorem 1. So, in order to bring it down on such a cell and thus to match
the boundary conditions we have to use a slight slope in the W+ directions. Of course this
will imply some contribution in the integral (1.1) that we will have to control in terms of
¢. This is the reason why some extra assumptions on ¢ are needed here. More precisely,
any { € R" can be written as

€=E&w +lwe = (bw,&wr) (3.14)

where € € W, €. € W, Then, we will assume that for some constant €' and some
g > 0 one has

OS‘P(wis’El)S lellq V{’ EB(OaI): Vi = 11"'1? (315)

where B(0,1) denotes the unit ball of W-. So, we are assuming that we have some
information on the growth of ¢ near the wells in the directions orthogonal to the wells.
Then we can prove :

Theorem 2 :  Assume that p < n and ¢ satisfies (£.1)-(2.8), (3.15), then there ezists q
constant C, independent of h € (0,1), such that

Ey= inf [ ¢(Vou(z))dz <C . b7 (3.16)
veVy? Ja

where r =qV 1.

Proof : The proof borrows ideas from [K.M.]. This is not surprising since in order to
minimize the energy we need to use a function whose gradients lies on the different wells
or phases. But then, switching from one well to an other is a jump at the level of the
derivative of the function. This is precisely what the energy of [K.M.] is counting for.

As we did in Theorem 1, we use a cover of by cells getting smaller and smaller
when approaching the boundary. Next, on each of these cells we need to construct up that
vanishes on their boundary. This is done through special functions whose gradient have
their component in W on the wells and that slowly approach 0 when getting close to the
boundary. We refer the reader to [C.M.] for details.
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Remark 3.3: The estimate (3.16) is sharp (see [C.M.]). Note also that one can have
an estimate of By in h? that holds without any growth condition (see [C.])

Remark 3.4: In all the above we have assumed that a was in the convex hull of the

wells. This is the starting point for further study. For results in this direction we refer the
reader to [B.C.].

Acknowledgements: This note was presented during a lecture delivered at the Tech-
nische Hochschule of Darmstadt during a workshop in May 1992. I would like to thank
Professors H. Alber and M. Fuchs for their nice job in organizing this meeting.
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Einfithrung

Anfangsrandwertaufgaben treten in der mathematischen Physik vielfiltig auf. Zum Beispiel
lassen sich die lineare Wellengleichung, die Plattengleichung oder das System der linearen Ela-

stizitdtsgleichungen in der Form
ug+Au=0  mit u(0) = u° und %,(0) = !
schreiben. Dabei ist A ein linearer Differentialoperator in einem Gebiet G C TR3.
w+idu=0  mit u(0) = u°

stellt die Schrodingergleichung, das System der Maxwellschen Gleichungen oder das System der

linearen Akustik dar, und durch
w+ Au =10 mit u(0) = u®

werden Wirmeleitungsvorgange wie Anfangsrandwertaufgaben in der linearen Thermoelasti-
zitdtstheorie beschrieben. Aufler im letzten Beispiel ist A selbstadjungiert.

Zur Behandlung solcher Probleme sind zunichst einmal die Gleichungen zu l6sen. Dazu
mufl insbesondere der Losungsbegriff préizisiert werden. Anschlieflend interessiert man sich fiir
spezielle Eigenschaften der erhaltenen Losungen, z.B. fragt man nach ihrer Regularitit oder
nach ihrem asymptotischen Verhalten fiir grofie Zeiten, und beweist die Existenz von Wellen- und
Streuoperatoren. Probleme der inversen Streutheorie (aus den reflektierten Signalen sollen Daten
wie Anfangswerte, Rand oder Medium zuriickgewonnen werden) haben groBe mathematische und
praktische Bedeutung.

In den letzten Jahren hat sich das Interesse mehr auf nichtlineare Anfangsrandwertaufgaben
konzentriert, und man fragt insbesondere nach der Existenz globaler glatter Losungen bei kleinen

Anfangsdaten.



DER GANZRAUMFALL

Zum Nachweis solcher Lésungen benutzt man einmal einen lokalen Existenzsatz und zum
anderen gute Abschitzungen des Abklingverhaltens der linearen Losungen fiir grofie Zeiten.
Lokale Losungen werden im allgemeinen nach einiger Zeit explodieren, und die Lebensdauer
hingt von der Grofle der Anfangsdaten ab. Die Idee ist nun, die Anfangsdaten so klein zu
wihlen, daBl die Lebensdauer lang genug ist, bis der lineare Einflufl des Abklingens iiberwiegt
und die Lésung dann am Explodieren hindert.

Uber solche Abschitzungen des Abklingens linearer Losungen — sogenannte ,,LP-£9-Ab-
schitzungen“ — mdochte ich heute sprechen. Fiir isotrope Medien sind sie inzwischen gut ver-
standen. Ich greife daher einen moglichst einfachen Fall eines anisotropen Mediums mit kubischer

Symmetrie heraus und wihle die Elastizitdtsgleichungen im IR?.

1 Der Ganzraumfall

Wihlen wir zur Vereinfachung den IR%. Dann lauten die linearen kubischen Elastizitétsgleichun-

gen im Ganzraumfall

Utt+AU=0

ad} + 582 (b+ c)dho2
A:=— ;
(b -+ 6)8182 5312 + a&%

Nach Fouriertransformation wird daraus

I}tt +AU=0
mit
P a€} + 065 (b+ c)erée
S\ G+o)tk  bE+ag
Es sei
P() €)= A(£) - Aid.
Dann ist

{(\,)eR® | det P(A,£)=0}

die charakteristische Mannigfaltigkeit von P, und

§:={€eR? | detP(1,£)=0}

nennt man Fresnelsche Wellenfliche.

Die Konstanten a, b, ¢ sind nicht vollig frei. Aus physikalischen Griinden miissen a, b positiv
und |c| < a sein. Im Falle
a=2b+¢

12



ist das Medium isotrop. Mathematisch einfach und interessant sind auch die Fille
c=—b,

ein schwach gekoppeltes System, und

Nun ist

det P(A,€) = A% —A(a+b)|E]* + ab(€} + &2) + (® — 2bc — c?)£2¢2

(A = A1(€))(A = A2(£)).

Il

Wir erhalten also zwei Eigenwerte A1(£) und Ay(€) mit

Ai(€) = [€[*wi(&o)

und
wi(&o) = e £ /€% — a(p).

Dabei verwenden wir

. cos
o = (singo)

_a+b
€T T
1 1
f = g((b-f-c)z—(a—-b)z):§(c+a)(2b+c—a)
g = %(6a6+a2—2bc—c2)
a(p) = feosdp+g

ad—cC

2 2
Blp) = et —a(p)= (E%) sin? 2¢ + ( 5 ) cos® ¢ > 0.

Es gilt
o:({]):o:(-g-) =f4+g=ab>0

a(%) =—f+g=%(a—c)(a+c+2b)>0,

und w;(§o) hat Extremalstellen fiir ¢ = 0, %, 7,.... Daraus folgt w;(&) > pi > 0.

Es seien nun F; die Eigenvektoren zu A; und
P;:= (-, E)E;
die Projektoren auf die entsprechenden Eigenriume. Dann ist P, AU = X; P; U und
P.Uyu+ X\ PU =0.

Mit U(0) =: U° = 0, U3(0) =: U folgt daher

o siny/Aqt

i) o sin /Agt

VA2

P+ PU.

13



DER GANZRAUMFALL

Zum Beispiel ist also

Vigs) = / jug 510 v/t ‘/_t (PLOY)(€) dé.
abzuschéitzen.
Im isotropen Fall (a = 2b + ¢) erhilt man

A1 = alé)? und Ag = b|E|2

1 & thé&
Pio= ¥IT] :
€17 \ +e6 &

V hat dann dieselbe Struktur wie das entsprechende Integral bei der Wellengleichung, und man
erhdlt deshalb dieselbe Asymptotik.

sowie

Im Falle a = b= 1,c =0 folgt

Mal€) = € £ 66r > 36

Auch dieser Fall 148t sich durch Koordinatentransformation auf den isotropen zuriickfiihren.

Interessanter ist der allgemeine Fall. Lassen wir den Index i fort, dann sind Integrale der

Form

o ize SN/ A(E)E )t

NG h(€) d¢

mit h := PU! abzuschiitzen. Weil uns nur die Energie interessiert, geht es genauer um
g g g

v(t,x)::/eixfe”fil‘{{o}th(f)d{

itd
mit (o) = v/w(Eo).
Ziel ist eine Abschitzung der Form
7
(e < gy Mhles (11)

[+
Dabei soll k aus C(IR?) sein, und 7y darf von supp h abhéingen. Mit einem Resultat von PECHER
[1976] folgt aus (1.1) die gesuchte a priori Abschitzung

¢ 0
llullce < m”“ ez, (1.2)
mit'}'=7(9)11<Ps2:
TR ( VU(} ), u® := u(0)
und
22-p) < Np< A2=p) +1
p p



Wir beweisen nun Abschitzung (1.1). Fiir ¢ <1 folgt (1.1) unmittelbar aus
|v(t, @)l < v(supp ) [|A]|co-
Es interessiert im folgenden also nur der Fall ¢ > 1. Mit

==l 220 o E=10( e ) E=0] ok ),

1 ¢ ~ 1 _
9(Q) = Juz(co)h(ju(@)), Cm e, dE= e, (o) = (e

sowie

oy v= =

erhalten wir

o(tyz) = [ Moy
R
Ferner gibt es positive Konstanten p, ¢ mit

1
<r = ——<uy. 1.3
psr(p)i=rs < (1.3)
Die Abbildung
Ccos (o
p—rte) (¥ ) (14)

spielt im folgenden eine wichtige Rolle. Sie beschreibt die zu v gehdrende Fresnelsche Wellenfliche

A(€) =1, also
1€1() = ().

Ich zeige einige solcher Abbildungen fiir verschiedene Werte der Koeffizienten a, b, c.

Es sei nun zunichst ¢ > 2¢|z|. Dann folgt

b | =+

2 -lzlg+t>

und wir erhalten
c
lo(t, )| < < llglles

also wieder Abschitzung (1.1) mit s = 1.
Es bleibt der eigentlich interessante Fall

1<t < 2|zl

In diesem Fall geht die genaue Kenntnis der Fresnelschen Wellenfliche ein, und wir benutzen

die Methode der stationiren Phase.
Mit f/(¢,) := £ f(t,p, ) folgt

|z

fllp,z) =

“2(!0) {u(p) sin(y — ) — W'(¢p) cos( — ¢)}.
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DER GANZRAUMFALL

Wir nennen ¢, Punkt stationfrer Phase, wenn f’(¢., ) verschwindet, d.h. wenn

tg(¥ — pz) = %

gilt. Man kann nachrechnen, dafi n(¢,) — der Normalenvektor der Fresnelschen Wellenfliche
im Punkte ¢, — die Richung z¢ besitzt, und folgert
(¢z)
Ve Jop tg(d—@p) = L2222,
s M- )= e
Wir schreiben jetzt

o(tp) = [ Pt 1dl,2) ¢l
0

27

P 10lo) = [ eV elg(c)

0

Es sei (¢z — 8, ¢+ 8) eine Umgebung des Punktes ¢, mit f'(p,z) # 0 fiir ¢ € (¢, -6, v, +
6)\ {¢z}, und es sei ¢ & (pz — 6, @z + §). Dann folgt durch partielles Integrieren wegen f/ # 0
und f' ~ |z|

[P 161, 2)| < T sup lg(O),
z| o
also wiederum
i)
fo(t,2)] < L fgllce-

Es sei also schlieBlich ¢ € (¢, — 8, ¢z + ). Nun kénnen drei Fille auftreten:

L f"(¢w2) #0

2. f"(¢z,2) =0 und f(pz,2) #0

3. f'¢z2) = f"(pr,z) =0 und f*(ep,,z) # 0.
Man rechnet nach

f(@ne)=0 — (n+p")e:)=0,
und
st — ajaf = =+ i),
d.h. die Kriimmung k() der Fresnelschen Wellenfliche — der Kurve (1.4) — verschwindet.
Den gezeigten Abbildungen kann man entnehmen, dafl alle drei angegebenen Fille wirklich

auftreten. Der erste Fall entspricht normalem Verhalten im IR?, wie bei der Wellengleichung oder

bei isotropen elastischen Medien. Fiir a = 5 und b = 2 gilt aber
k=0,% #£0 firc=4.9und ¢ =0471
k=0,k =0 firc=0und p=7/4
k=0,k =0 firc=+15-2=1.873und ¢ = 0.



Mit der Methode der stationiren Phase erhilt man nun in den einzelnen Fillen
L ot 2) < 777 llglle
2. |u(t,2)l < 75 llgllee

3. |o(t,2)l < g llgllce-

Insgesamt haben wir damit Abschdtzung (1.1) bewiesen, und zwar in Abhéingigkeit von den

Koeffizienten mit

8 = 1/2, 83 = 1/3, 83 = 1/4.

Fiir die Wellengleichung im IR? ist s = s; = 1/2.

Dadurch verschlechtert sich bei Medien mit kubischer Symmetrie im allgemeinen auch die
LP-L£9-Abschitzung im Vergleich zu den isotropen elastischen Medien, und wir erhalten nur
(1.2).

Die erhaltenen Resultate kénnen wir nun zum Nachweis der Existenz globaler glatter Losun-
gen zu kleinen Daten fiir quasilineare Elastizititsgleichungen mit anfinglich kubischer Symme-

trie verwenden, namlich fiir
OW; + Cijmn(VU)0m0,U7 =0 (1.5)
mit Cijmn(0)0,0,U7 = AU. Wir schreiben Gl. (1.5) auch in der Form
U+ AU = F(VU,V?U) (1.6)
und erhalten die Existenz globaler glatter Lésungen unter der Voraussetzung
|Cijmn(VU) = Cijmn(0)] < ¢|VU|* fiir Kleine |VU|

fiir die in der folgenden Tabelle angegebenen Werte

5 (4 P q
1/2 3 8/7 8
1/3 4 10/9 | 10
1/4 5 | 12/11 | 12

Aluminium, Kupfer und Nickel sind anisotrope kubische Medien. Fiir Aluminium ist der
Abklingkoeffizient 1/2, fiir Kupfer und Nickel 1/3. Weitere Einzelheiten findet man in der Di-
plomarbeit von Herrn SToTH [1991].

Im IR® treten #hnliche Effekte auf. Auch hier zeige ich einige Bilder Fresnelscher Wel-

lenflichen.



RANDWERTAUFGABEN

2 Randwertaufgaben

Randwertaufgaben fiir quasilineare Wellengleichungen wurden von SHIBATA & TSUTSUMI (1986
und 1987] behandelt. Die einzelnen Beweise sind durchaus kompliziert. Auch hier ist der Nach-
weis der LP-L7-Abschitzung fiir die lineare Gleichung ein wichtiger Teilaspekt. Resultate von
MORAWETZ, RALSTON & STRAUSS [1977] iiber den lokalen Energieabfall werden dabei benutzt.
Ich méchte hier noch kurz eine andere Methode erldutern, die von RACKE [1990] angegeben
wurde und die sehr durchsichtig ist, ndmlich die Methode der verallgemeinerten Fouriertransfor-
mation. Diese Methode scheint auch auf kubische elastische Medien iibertragbar zu sein, leider
ist sie aber noch nicht genug ausgereift, um auch ungedimpfte Probleme angehen zu kénnen.

Zur Vereinfachung betrachten wir die Gleichung
wet+u—Au=0 (2.1)

in einem Auflengebiet G C IR? mit Dirichletschen Randwerten. G sei glatt berandet und sternfér-

mig. Nach IKEBE [1960] und WiLcox [1975] existiert die verallgemeinerte Fouriertransformation
F:LYG) — L*RM)
f — Ff=f=(f9(p)

mit F(—Au) = p?i.

Dabei ist
1 .
R £
vo(zijj) 2= 2ﬂ'
v(z,p) = wo(z,p)+v'(z,p),

J eine Ausschneidefunktion und v’ ausstrahlende Losung der Dirichletschen AuBenraumaufgabe
(A +p*)'(,p) = —(A + p*){i(2)volz, p)}.
Frau Rustenbach zeigt in ihrer Diplomarbeit die Abschitzung
Je>0 YaeG Vpe R\{0} |v(z,p)| < c(1+p?) (2.2)

Zum Beweis benutzt sie Resultate und Methoden von MorAWETZ & Lubpwic [1968], BLoom
(1979], BLoom & KAZARINOFF [1988] sowie RACKE & ZHENG [1991].
Damit wird aus (2.1)
fge + G + p* 4 = 0, (2.3)
also mit u(0) = 0, u,(0) = u!
i(t, p) = k(t, p)i'(p)

2e~t/2 VAap? — 1t
k(t,p) = = sin p2 L ;

4p? — 1
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Daraus folgt wieder

u(t,:c):/v(a:,p)ﬁ(t,p)dp, (2.4)

R?

und wir miissen ein Energieintegral der Form

w(t,a)= [ oe,p) (6,0) (p) dp

R?
mit
I(t,p) = O:k(t,p) oder I(t,p)=pk(t,p)
abschitzen.
Es ist
_ v(z,p) 23 1
w(t,z) = a+p2) I(t,p)(1 4 p°) @°(p) dp,
R?
also
(e, )| < 1+ 2% &) j |28 10, dp
mit
@+ 22 & (Do = 1FF* -+ +Jloo < IF* -+l = (1 = AY w1
oder

Iw(f :E)l < "ul”cz}/ |(f(+ ;,1;;3 ,P) dP.

Das zuletzt aufgetretene Integral 148t sich abschitzen. Es ist fiir ¢ < 1 beschrinkt, wenn man

4 = 3 wiahlt. Fiir £ > 1 und kleine p verhilt es sich wie
1
2

und fiir grofie p sogar wie

e—tfz’
wenn man j = 1 bzw. j = 3 wihlt. Insgesamt folgt also
[o(t, ) < 1 ey,

Ahnlich kann man bei den Elastizititsgleichungen vorgehen. Die Besonderheiten, die durch
das Auftreten nicht kreisformiger Wellenflichen auftreten, werden dann allerdings durch die

Dampfung verdeckt.
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Abstract

We establish the existence of singular minimizers in three-dimensional nonlinear
elasticity under assumptions on the stored energy that permit the formation of new
holes in the body. Such cavities have been observed in experiments on elastomers
and a mathematical theory for radially symmetric cavities has been developed by
Ball. Here we consider the full three-dimensional problem and we include an ad-
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1 Introduction

The fundamental problem in elastostatics is to minimize the elastic energy

E(u) = /ﬂ W (Du(x)) dx

subject to suitable boundary conditions. Here @ C R® is a bounded domain which
represents the reference configuration of a (homogeneous) body and u : Q — IR3 is
a deformation with deformation gradient Du. The stored energy-density W is a map
M?*? — IR which describes specific properties of the elastic material. To be physically
realistic it has to satisfy

W(F) — 00 as detF—0t, W(F)=0c ifdetF<0. (1.1)

In particular W cannot be convex which makes the minimization of £ non-trivial.

In view of the bad growth behavior (1.1) the weaker notion of quasiconvexity intro-
duced by Morrey ([Mo 66]) is not sufficient to ensure weak lower semicontinuity of E. Ball
([Ba 77]) has identified polyconvexity as a condition which is both physically realistic and
mathematically feasible. The function W is called polyconvex, if there exists a convez
function g : M®*® x M3*3 x IR — R U {co} such that

W(F) = g(F,adj F,det F). (1.2)

Here adj F denotes the transpose of the matrix of cofactors of the matrix F and M3*3 the
set of 3 X 3 matrices. which satisfies F adj F' = Id det F. If one assumes in addition the
coercivity condition

W(F)>c|FP, ¢>0, p>3 (1.3)

then Ball has shown the existence of minimizers of £ in the Sobolev space W'#((); R?)
(see [BM 84, Sv 88, GMS 89, Zh 90, Mu 90, MTY 92)).

A key tool in the existence theory is the weak continuity of Jacobians. In the following
we denote weak convergence by the half arrow —.
Weak Continuity Lemma. ([Re 67, Ba 77]) Assume that p > 3 and

u —u i Whe(Q; R?) |
Then

adj Du¥) — adj Du  LP?(Q;M>*?) (1.4)
det Du) — det Du  LPP(Q) . (1.5)

While conditions (1.2) and (1.3) are realistic for many elastic materials it has become
apparent that they do not always hold. In particular materials that undergo phase trans-
formations are not polyconvex. We refer to [BJ 87] for further information about such
materials. Here we focus on the failure of (1.3). For certain rubberlike materials the
inequality in (1.3) holds only for some exponent p < 3. In such materials it is possible
to have discontinuous deformations with finite energy (this is excluded for p > 3 by the
Sobolev embedding theorem). In particular the spontaneous formation of voids has been
observed in experiments upon materials which violate (1.3) (see [GL 58, OB 65, Ge 91]).
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For those materials Ball [Ba 82] has studied the minimization of E in the restricted
class of radially symmetric deformations

u(x) = ?‘(|X|)m :

For realistic choices of IV he has shown that the minimum is attained in this restricted
class. If one takes ) = B = B(0, 1), the unit ball, and considers the Dirichlet boundary
condition u(x) = px for x € B Ball has shown that for ft > e the radial minimizer
satisfies 7(0) > 0. This corresponds to the formation of a new spherical cavity. One
therefore has a non-smooth map u such that

fB W (Du) dx < / W (uId) dx, uppp = pld . (1.6)
B

In contrast, for smooth maps v (or even maps in W'” with p > 3) with Via = pld

y V4 Ix > Vi )
fB W(Dv) dx > /B W (i1d) dx, (1.7)

since W is polyconvex and hence quasiconvex (see [BM 84]).

We note that the minimizer among radially symmetric maps satisfies the equilibrum
(Euler-Lagrange) equations but it is not known in general whether it is also a minimizer
with respect to non-radial variations (see [JS 91] for a counterexample). It is not even
known whether the infimum of E is attained or whether a sequence of increasingly compli-
cated deformations is required to approach it. This is a subtle matter since, for the energy
functions of interest, a simple covering and rescaling argument shows that E cannot be
weakly lower semicontinuous (see [BM 84]). The difficulty is that instead of one large
cavity many small cavities can be opened with the same energy.

Experimental evidence ([GT 69, Ge 91]) suggests that it is harder to open many very
tiny cavities and hence that there is an additional contribution to the energy related to
the creation of new surfaces. We thus propose to study the minimization of the functional

I(u) = /Q W(Du) dx +  area(9(u(2))) , (1.8)

where A > 0 is the surface energy per unit area.

In the remainder of the paper we indicate how the existence of minimizers of I can
be established. The details will be presented in a forthcoming publication. Specificially,
we show in Section 2 how one can recover the weak continuity of det Du (cf. (1.5)), even
for p < 3, if certain invertibility conditions are imposed. In Section 3 we give a precise
statement of the existence result and sketch its proof.

2 Invertibility and weak continuity

In this section we discuss global invertibility which is a necessary requirement in nonlinear
elasticity since matter does not usually interpenetrate itself. We recall a result of Ciarlet
and Necas that, for p > 3, the weak limit in W'? of (almost everywhere) 1-1 maps is
1-1 (almost everywhere). This result makes use of the weak continuity of the Jacobian
det Du. We then show how to derive a partial converse to this result: if the weak limit
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of 1-1 a.e. maps is 1-1 a.e then one (almost) has the weak continuity of the Jacobian (see
Lemma 2.3). Unfortunately if p < 3 the weak limit of 1-1 a.e. maps is not always 1-1 a.e.
Finally, we introduce the condition (INV) (Definition 2.4) and show that, for p > 2, it is
stable under weak convergence and that it essentially implies invertibility a.e.

Definition 2.1 We say that u: Q — R® is 1-1 almost everywhere (or invertible a.e.) if
there exists a Lebesque nullset N such that um\n s I-1.

Ciarlet and Necas ([CN 87]) observed a very useful characterization of invertibility a.e.

Assume that u € W?(Q; IR®) with p > 3. By the area formula (see [MM 73]) one has for
a measurable set A C 0

fA | det Du| dx = /:1{,1] N(u, A,y) dy , (2.1)

where N(u, A,y) denotes the number of preimages of y under u in A. If, in addition,
det Du > 0 a.e. one deduces that the following two statements are equivalent:

(z) u isl-1ae. (2.2)
(i) / det Du dx < £(u(®)). (2.3)
0
This characterization has important consequences.

Lemma 2.2 (/CN 87]) (*Weak Continuity implies Invertibility’). Let p > 3. Assume
uld — u in Whe(Q; R?), det Du) > 0 a.e., and det Du > 0 a.e. If the ') are 1-1 a.e.
then so is u.

Some generalizations of this result can be found in [Ta 88].

Proof. On the left-hand side of (2.3) one passes to the limit by the Weak Continuity
Lemma (see section 1). As regards the right-hand side one first observes that since p > 3,
u maps null sets to null sets (cf. (2.1)) whence £3(u(Q)) = £3(u(®)). Now u(Q) is
compact and by the compact Sobolev embedding u” — u uniformly on Q. Thus, if
U D u(Q) is open one easily shows that u®(€) c U for j > Jo(U). Finally, if one chooses
LU \ u(f)) sufficiently small one deduces

L3(u()) > limsup L3 (uP)(Q))
j—co
(see [CN 87] for the details). O

One of the key tools in our approach is to reverse the argument leading to the lemma:
if the weak limit of 1-1 a.e. maps is 1-1 a.e. then one must have weak convergence of the
Jacobians, even if p < 3. To make this idea work we first have to deal with some technical
obstacles. If p <3 then u € WP(Q;R*) may map null sets into sets of positive measures

and hence the area formula fails (see [Be 50, Po 87, Ma 92]). The remedy is to restrict u
to the subset

Qo 1= {x € Q:u is approximately differentiable at X}

Here we say that u is approzimately differentiable at x if there exists F € M3*3 such that
for all € > 0

. £z € B(x,r): [u(z) - u(x) — F(z — x)| < e|z - x|} 1
ra0t L3(B(x,7)) -
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If such F exists it is clearly unique and denoted by apDu. Now if u is in W1(Q, IR?) one
can show that (see [Fe 69], 3.1.4; [Mo 66], Theorem 3.1.2.)

L\ Q)=0, apDu=Du ae., (2.4)

where Du denotes the distributional derivative. Thus we define the measure-theoretic
image of A under u by

im(u, A) =u(ANQ,) . (2.5)

Now we can apply the area formula for approximately differentiable functions ([Fe 69],
3.1.4, 3.2.5) to obtain, for every measurable A € §,

/ | det Du| dx = / N(u, AN, y) dy (2.6)
A im(u,A)
and more generally, for all measurable ¢ :R® - R and % : R® — R,
./1( @ ou)p|det Du| dx =/ i ot dy | (2.7)
4 im(u,A
whenever either integral exists. Here we let

Py = Y b(x). (2.8)

X€ANN,
u(x)=y

In particular the equivalence of (2.2) and (2.3) still holds provided det Du > 0 a.e. and
provided u(A) is replaced by im(u, A).

With these preliminaries out of the way we are ready for our first weak continuity
result. We denote by xp the characteristic functions of a set B.

Lemma 2.3 (‘Invertibility implies Weak Continuity’)
Assume that

u® —u W R?)
and that there exists a function © € L'(Q) and a measurable set V such that
det Du) — 0 LY(Q),
Xim(u(),0) = XV L}oc(ms) '
Suppose, in addtion, that det Du') > 0 a.e., © > 0 a.e. and that the u® are I-1 a.c.

Then
det Du #£0 a.e.

If, moreover, u is I-1 a.c. then

XV = Xim(u,Q) a.e. ,
O = |det Du| a.e.

Remark. We will see later how additional conditions ensure det Du > 0 a.e. so
that the lemma really implies det Dul?) — det Du. Somewhat related results appear in
(DM 90, Ma 92b] although these authors focus mainly on smooth maps whereas we are
interested in the effect of possible singularities.
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Proof.  We sketch the main ideas. We may assume ul¥) — u a.e. By the area formula
one has for all continuous ¢ with compact support

/ﬂ( ¢ oul®) det Du dx = /

o dy .
ml(l.l(-’),ﬂ] 2

Thus, by Egorov’s theorem and the equiintegrability of weakly ! compact sequences (see
[MS 47, Me 66]) one may pass to the limit

/n( po u)@ dx = /113 pxv dy. (2.9)

Next we show det Du # 0 a.e. Let A = {x € Y : detapDu(x) = D}. By the area
formula u(A) is a null set. Let € > 0 and let U D u(A) be open with L*"(U) < e. By
approximation and monotone convergence (2.9) holds for ¢ = yy. Since ® > 0 and ¢ > 0
were arbitrary one deduces £"(A) = 0.

Finally, let o

bim

| det Du|

and apply (2.9) and the area formula (2.7). Thus

/ pxv dy = / ( (pou)-r;') | det Du| dx :/ @ dy
Rll n Rn
and hence ¥ = Xv a.e. Since u is 1-1 a.e. we conclude that

p=1 ae. and  V =im(u,) ae.

O

Lemma 2.3 raises the question: under what conditions is the weak W limit of 1-1 a.e.
maps 1-1 a.e? We have seen in Lemma 2.2 that this is the case if p > 3. Unfortunately
such a result cannot be expected for p < 3. In [MS 92] we give an explicit example for the
corresponding situation in two dimensions. The essence is the following. If p < 3 the maps
ul) may contain an increasingly finer distribution of cavities which in the limit ‘smear out’
and produce a map u with no cavities (see [BM 84], Counterexample 7.4). If the shape
of the cavities is carefully chosen and u¥) is modified in such a way that cavities overlap
with material and vice versa then one can achieve double coverage in the limit. One thus
has to prevent cavities created in one place from being filled by material from elsewhere.
This idea is formalized in the invertibility condition (INV) given in Definition 2.4 below.

The formulation of this condition is inspired by the work of Sverak [Sv 88] who, given
a Sobolev function, defines a set-valued image F'(a) of every point a € Q) in such a way
that the image only depends on the equivalence class. If a cavity forms the image will
contain the cavity: for the map x I"fTI the image of the origin is the closed unit ball.
The set-up is as follows. Let p > 2, u € W'?(Q; R®) and a € Q. If we restrict u to the
spheres S(a,r) then for a.e. r

ulS{a,r) € H/]’p(S(a, 7');33) )
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and hence, since p > 2, U|s(a,r) 1s continuous. Thus the integer-valued Brouwer degree
(see e.g. [Sc 69]) deg(u, S(a,r),y) is defined for y € R" \ u(S(a,r)). We define the

topological image

imr(u, B(a,r)) := {y € R"\ u(S(a,r)) : deg(u, S(a,r),y) # U} :
To illustrate this definition consider the map
X

u(x) = @2~ )

(2.10)

which corresponds to the creation of a cavity followed an eversion of the resulting annulus.
For r € (0,2) one has
imr(u, B(0,7)) = B(0,2—7r) .

We can now formulate the invertibility condition.
Definition 2.4 We say that u : Q — R® satisfies condition (INV) if for every a € Q
there exists an (L') null set N, such that, for all r € (U,dist(a, OQ)) \ Na)

conlinuous and

(i) u(x) € imr (u, B(a,r)) Uu(S(a,r)) for L2a.c. x € B(a,r)

y ulS(a,r) s

(ii) u(x) € R*\ imT(u,B(a,r)), for L3a.e. x € O\ B(a,r).

Equation (2.10) gives an example of a map which is 1-1 a.e. but violates (INV). The
usefulness of condition (INV) rests on the following two results.

Lemma 2.5 Assume that p > 2, u € W'?(Q;1R®), det Du # 0 a.e. and that u salisfies
(INV). Then u is I-1 a.e.

Lemma 2.6 Assume that p > 2, that
ul —u i WH(Q; RY)
and that all the ul) satisfy (INV). Then u satisfies (INV).

The proof of Lemma 2.5 proceeds by contradiction. Assume that the ‘generic’ points
x and z are both mapped to y. Then one can show that the images of the small balls
B(x,r) and B(z,r) both have density 1 at y. On the other hand by (INV), applied at
a = X, the images of B(x,r) and B(z,7) must be disjoint up to the null set u(S(x,r))
(see [MM 73], [Sv 88]) which leads to the desired contradiction. The details are in [MS
92].

The proof of Lemma 2.6 relies on Egorov’s theorem, continuity properties of the degree
and the following observation. Fix a € Q. Then for £! a.e. r there exists a subsequence
ul#) (typically depending on r) such that

ul) —u in W'P(S(a,r); IR (2.11)

and hence uniformly. Indeed, strong convergence in L? follows by Fubini’s theorem and
boundedness in W1 by Fatou’s lemma and Fubini’s theorem.

To conclude this section we return to the problem that Lemma 2.3 gives no information
on the sign of det Du. The following refinement of Lemma 2.5 resolves this difficulty.
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Lemma 2.7 Let the hypothesis of Lemma 2.5 hold. If in addition det Du > 0 a.c. then
for any a € Q and L'a.e. r

deg(u, S(a,r),y) € {0,1} ify € R*\ u(S(a,r)). (2.12)

Conversely, suppose that for some a € Q and for Lla.e. v < ry condition (2.12) holds
then det Du > 0 a.e. in B(a,ry).

In view of (2.11) condition (2.12) is stable under weak convergence and this determines
the sign of the Jacobian of the limit.

3 Existence of minimizers

Lemmas 2.3, 2.5 and 2.6 contain the key tools needed to establish the existence of mini-
mizers of the functional I (see (1.8)). To state and prove the result we need only specify
what we mean by the boundary area of the image. To this end we recall that a measurable
set A C IR? has finite perimeter if its characteristic function is of bounded variation, I.e,
if
PerA := [|xallm := sup{/ xadivh dx : h € C3(R* R?), |h| < 1} < oo.
R“

For smooth sets A the perimeter agrees with the 2-dimensional measure of 9A (see [Gi
84, Zi 89, EG 91]). Recalling the definition (2.5) of im(u, ), our goal is then to minimize

I(u) = /ﬂ W (Du) dx + APer(im(u, 2)) .

We assume that A > 0 and that W is polyconvex, i.e., that there exists a convex function
g M3 5 M**3 x R — IR U {co} such that

W(F) = g(F,ad] F,det F).

We assume in addition that g is continuous. Moreover we impose the coercitivity condition

W(F) > c|F|’ + h(det F), (3.1)
where
c>0, p>2
and
tlim h(t)/t = oo, tlirr}r h(t) =00, h(t)=c0 fort<0. (3:2)

Passing to the convex envelope of h if necessary we may assume that k is convex and
continuous.
The class of admissible functions is

A={ueW'(QR%) : I(u) < oo, u satisfies (INV)} .

As regards boundary conditions for simplicity we consider Dirichlet (or pure displacement)
boundary conditions, i.e., we fix ug € A and let

Ap = {u €A:u=uy on dQ in the sense of trace } .

Theorem. Under the above assumptions I attains its infimum in A,.
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Remarks.
1. Other boundary conditions or the incompressibility constraint det Du = 1 can be

handled similarily.

2. The theorem implies the existence of singular minimizers, at least for sufficiently
small values of A. Indeed, if one chooses W as in Ball’s paper[Ba 82] (this is
compatible with (3.1) and (3.2)) then one has (1.6) for some function u of the
form u(x) = r(lﬂ)ﬁ’ where 7 is C' with ' > 0. In particular (INV) holds and

Per(im(u, B)) = 4(r*(1) + r*(0)). Thus for up = xId and sufficiently small A
min / </ W(pId) dx .
Ao B

It follows from (1.7) that the minimizers of I cannot be in W19(); R?) for any
q > 3.

Proof. Let ul) € Ay be a minimizing sequence. We may assume that ul) — u in
Wr(Q; R®) and det Dul > 0 a.e. By Lemma 2.5 u is 1-1 a.e. Due to the superlinear
growth of & at oo, the sequence det ul’) is weakly compact in L' (see [MS 47, Me 66]) and
hence (for a subsequence) there exists © € L'(Q) such that

det Dut) -~ © in L'(Q).

The convexity of h then yields

] h(©) < liminf | h(det Du") < oo |
Q

j—oo Ja

whence © > 0 a.e.

Since the embedding BV(IR*)— L} (IR*) is compact we may assume that

1 3
Xim(u(),Q) —* XV LIOC(IR' ) )

for some set V € R®. By Lemma 2.3 det Du # 0 a.e. Therefore Lemma 2.5 and 2.6 imply
that u satisfies (INV) and hence that u is 1-1 a.e. Moreover Lemma 2.7, gives det Du > 0
a.e. If we apply Lemma 2.3 once again we find that
det Dul)  — det Du in L'(Q) , (3.3)
Xim(u,9) —  Xim(u,2) L}ac(m-s) .
The area formula and (3.3) imply that £3(im(u?,Q)) — £3(im(u,Q)) and thus the

convergence in (3.4) is actually in L'(IR®). Finally (1.4), polyconvexity and the lower
semicontinuity of perimeter (with respect to L' convergence) give I(u) < liminf /(ul?) =
j—oo

i}ilf I. Since u € Ay the proof is finished. 0
o
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ON SHOCKS IN ELASTO-PLASTIC SOLIDS
WITH ISOTROPIC HARDENING.

A. Nouri

1-Model problem in 1-D.
During a loading in the plastic regime, a material undergoing small deformations is
described by the speed v(x,t) and the strain g(x,t), determined by the system:

{pwt - o(e)x = 0

E['Vx=0

where the stress p is the material density and o(g) is a given increasing, convex function
of the strain €.

This is a mathematical hyperbolic system in the variables (v, €), whose elementary

centered waves may be, as the classical theory tells, either regular rarefaction waves or
shock waves. But a specificity of plasticity is a given sense on the curve ¢ = o(g) with
respect to time, which allows the rarefaction waves and forbids the shock waves.

2.Weak shocks arising in some elasto-plastic solids.

Elasto-plastic materials, such as metals, exhibit a nonlinear behavior in the plastic
regime.Their time evolution, e.g in an impact problem, is described, here in one space-
dimension, by systems of equations of the general type:

%%+A(U)3—E=O. (S)

These systems turn out to be of hyperbolic type, i.e the matrix A(U) has real eigenvalues
and is diagonalizable. Therefore, it is natural to look for propagating discontinuous
solutions. Precisely we are going to construct shock wave solutions (of small amplitude)
for a particular model studied by R.J.Clifton. Consider a long slender thin walled tube

with mean radius I, initially subjected to an impact at one of his extremities. We restrict
to a small deformation theory. We use cylindrical coordinates, denoted r, 8, x.

Let U(x,t) denote the average displacement in the longitudinal direction at time t of the
cross-section at a distance x from the impact end of the tube.
Let Q(x,t) be the average rotation about the x-axis at time t of the cross section at x.

Let e(x,t) = ?)_S (x,t) be the longitudinal strain, u(x,t) = %tg (x,t) the longitudinal speed,

Q
nx=r %; (x,t) the shearing strain, and v(x,t) = %?— (x,t) the torsional speed.

Eventual variations of I are neglected. Then the Cauchy stress tensor writes:
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00 0
z:[OO cer (2.1)
0 oxe Oxx
Denote 0=0xx and T=0yg.
The deformations tensor writes :
&r 0 O
E=| 0 egpexo (2.2)
0 expexx
with exx=%%=s and €xp = %—(r %—?+g—g)= %r %%= %n because —g% =,

Conservation of momentum gives :

{ pur-ox = 0 (2.3)
pve -1 = 0
where p is the density.
The equality between second order derivatives writes :
o= 30D = 2D = ux
200 300 24

M= 3l = 5bg) = V&

As we refer to an elastoplastic material, a plastic deformations tensor is introduced :

p
&r O 0
EP=| 0 epp £ 2.5)
p P
0 exp &xx

The stresses tensor and the elastic deformations tensor are tied by Hooke's law:

1+v \
E-EP= TE = ETI(Z)I (26)

where E is the Young modulus and v the Poisson coefficient. As Tr(Z) = o, (2.6)

becomes :
€ ; :
'Err= EG
1 p 1+v 2.1
2N &8 = g °

P P
(M-ex@) = (N -2exg), where Y is Lame's rigidity coefficient.

therefore T =
1+v)

Elastoplastic equations of state with isotropic strain-hardening in plasticity derive from
the Clausius-Duhem inequality :
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oXP 9 (2.8)
(at ,aﬁt)ealK(E -B)

where: K is the closed convex defined by : Geq- 05- B <0

{(z -B)eK

Oeq = (% ZD:3D) s the second invariant of the deviatoric part of the stresses

tensor, named the equivalent stress,
O; is a yield constant ,

0l k denotes the subdifferential of K.

In the plastic regime , -B is a function f() of B, f being determined by experimental
measures . Its domain is IR 4, it is strictly decreasing and convex.

The ﬁlastic flow (2.8) writes :

@Bk , 92 3% B _, 2.9)

ot Jy ot

. Oeg . .
so, if a—zeq 1S a unit vector,

pX
A= Iaat I, B(t) = Po + J- I |(s)ds (2.10)

B estimates the trajectory of ZP : we name it the cumulated plastic deformation .
At any time, K defines a convex of elasticity for 2 :

Oeq < Os+B (2.11)
That instantaneous elasticity convex depends on the history of the plastic strains, and can
only grow with time, since -f is a nondecreasing function.

The elastic and plastic regimes differ in the following way :

- in the elastic regime, stresses are either strictly inside the instantaneous elasticity convex
or on its boundary together with a direction inside the convex;

-otherwise it is the plastic regime plastique, which means that the stresses are on the

boundary of the instantaneous convex of elasticity with a direction outside the convex.

P P
In the elastic regime, A= 0, 50 €xx = €xg = 0 and (2.6) becomes :

1

E = EO’
1 (2.12)

T~ T
i)

In the plastic regime , the relation Geq - G5 - B =0 writes :
P ¥ 3
\IE(e“Exx) +3U(n -2ex9)” - o5+ f(B) = 0. (2.13)
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P
Now %x and %ETXQ are given by (2.9) :

o (2.14)
Jexg 3 Oxg 31
-g = k ——imm l ———
~ 20'5(1 206(]
Putting (2.14) in (2.7) and substituting uy in & and vy in 1, we get :
EO+—A-ug= 0
y O
3t
1_ T[ + — l - Vx = 0
\ }.l Ga:l
As Oeg- 05 + f(B) =0 and f strictly increases, there is some function k such that
B =k(Ceq) . A is determined by deriving this last relation with respect to time, so :

(2.15)

, k'(o,
A= Bt = k'(Ceq)(Teq)t = —%ﬂ (oop+311)
aq
Taking back this expression of A in (2.15), we obtain :
' 2 '
(i_«: +k (ceg;cr _ 3k (Geg;m
k'(Ceq)OT k' 72
3K (Geq)aT c; 0t+(1—+9—q—(0°; Yo -vx= 0
Oeq ) Ocq
k'(Ceq) is determined by the curve G = h(g) expressing the stress with respect to the
deformation in plasticity in one dimension, during the first loading :

Tt - ux = 0
(2.16)

B then being the plastic deformation , 3 =€ - % o =h1(o) - ]—13-0 ;

1 1 .
so k'(0)=—— - &, if g(c) =h'(e).
go) E

So, we get the system :

Ui+ A(U)Ux =0 @17
. 0 0 -1 0
v 0 0 0 -1

where U=|qs| and  AU)=|_3(5,1) c(o,1) 0 0
T c(0,7) -d(c,1) 0 O

Notation:

A nom 5
Let o denote the only value of ¢ such that the slope of the curve giving the stress with
respect to the deformation in a simple one-dimensional traction is L.
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. Property 2.1:
u
v A
Forevery U| 4 the system is hyperbolic, and strictly hyperbolic if (6,7) # (6 ,0) .
T

We now consider elementary waves passing through a given state. The studied system
being hyperbolic, it's classical to search for centered solutions of the form U(—?).

In the elastic regime, the eigenvalues of A(U) are constant and equal to £~ I k= and A |2
P Y

so the only centered solutions passing through U are contact discontinuities whith one of
those four eigenvalues as speed.

During a contact discontinuity of speed - / , (e=%1),

01-0p = -8'\’ (ur-ug)
joigning Uy to Uy, . (2.18)

’51="~'0

Hence we remark that the torsional speed and velocity keep constant during such a

discontinuity. Similarly, during a contact discontinuity of speed £\ / £ , (=%1),
Y

1.11=l]0
01 = 00

joigning Ug to Uy, (2.19)
T1-T0 = -€°\ ’% (vi-vo)

so the longitudinal speed and velocity keep constant.

Now have a look at regular solutions in the plastic regime:

There is a centered solution, of the form U(%), passing through U if there exists some

functions u, v, G, T of the variable § =% verifying :

Eu + ‘o=0

Ev + '1=0 (2.20)
£EG + a(o,9)u - c(o,n)v = 0

E1- c(o,m)u+d(o,)v=0

where " is the derivation with respect to € .
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&l + o= 0
Ev + 1= 0
(£2-a(0,1)6 + c(0,7)t = 0
c(0,1)6 + (§2-d(0,7))1= 0

This writes as well : (2.21)

The two last equations imply:

£4 -(a(o,1) + d(o,1)) £2 + a(0,1)d(0,7) - ¢2(0,T) = 0, which means that & is an
eigenvalue of A(U). We therefore distinguish two types of solutions, named rarefaction
waves: -those such that &2 = A¢2, named fast rarefaction waves, with speed & positive or
negative.

-those such that €2 = A¢2, named fast rarefaction waves, with speed & positive or
negative. We remark that the resolution of the last two equations define the functions o(§)
and 7(§); the functions u(&) and v() are then determined by the first two equations.

Property 2.2:

Il

Resolution of the system : {(ﬁz—a(c,'r))c * Elont =0 (2.22)
c(0,7)6 + (£2-d(0,7))1 = 0

If (6.,1.)# (3, 0), there is a unique solution corresponding to Ar and a unique solution
corresponding to As , such that :

oAf(0.,1)=0. and 1(Af(0.,7))=1..
If (6.,1.) = (3 ,0), there is an infinity of solutions corresponding to Af and an infinity of
solutions corresponding to Ag such that :

oAf(o.,))=0. and 1(Af(0.,1.)) =1..
Those solutions have been studied by [T.C.Ting]. We must only keep the parts of the
solutions above that indeed stay in the plastic regime, which means, for positive speed
waves, those along which together Geq increases from U. to Uy and € decreases from

U. to U, and for negative speed waves, those along which together ceq decreases from

U. to U and & increases from U. to U, . The formulation of functions a, ¢, d doesn't
permit the explicit determination of the curves giving the centered rarefaction waves.
[R.J.Clifton] obtained them by numerical integration. He also analytically showed that,
as time increases, T decreases on a fast positive speed rarefaction wave, whereas_ T

increases on a slow positive speed rarefaction wave.

Plastic shock waves.

The search for elementary waves passing through a given state located outside of the first
loading surface revealed some difference between states with null torsional stress and the
others :
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Indeed if T # 0, four half waves pass through U : two of them are plastic, the other two
are elastic. Besides we get the intuition that there couldn't be other plastic waves, of
discontinuous type for example, for if there were such waves, they would be directed
along the eigenvector associated to the eigenvalue giving rise to the actual half rarefaction
wave, (by analogy with the conservative hyperbolic case ), and in the opposite sense; but
we noticed that this eigenvector isn't tangent to the elasticity convex passing through the
considered state; so such a wave would be incompatible with keeping in the plastic
regime.
On the other hand, for t =0 and 6> & , only a fast half elastic wave and a slow half
plastic wave pass through U, and the eigenvector associated with the fast eigenvalue is
tangent to the elasticity convex passing through the considered state.
So a discontinuity wave starting at U with that eigenvector as direction should be
acceptable. Therefore we are searching for discontinuous waves starting at a given state
Uo(ug,v0,00,0) with op > G In the plastic regime, the eigenvalues of A(Ug) being
nonconstant, there are no contact discontinuities starting at U.
For determining possible shocks, no use of Rankine Hugoniot relations is possible
because the system we study is not written under a conservative form.
This is a consequence of the plasticity phenomenon: during a plastic phase, plastic
deformations are residual, hence lead to an energy dissipation.
Lax theory of shock waves tells that for an hyperbolic system of conservation laws,

U+ F(U)x =0,
discontinuous weak solutions, when there are such, aren't unique.
We may identify the right solution, either with Lax conditions, or as a limit, when v tends
to 0, of regular solutions of a superior order system :

U + F(U)x = v G(U)xx. (2.23)
Analogously, for an hyperbolic system of non conservative form,

Ui+ A(U)Ux =0,
we may directly look at discontinuous solutions, as limits, when v tends to 0, of regular
solutions of a higher order system :

U + A(U)Uyx = v G(U)xx.

: : X-st ;
Those smooth solutions of the variable — are called viscous profiles.
v

To get some higher order system, from which we will be able to look at viscous profiles ,
we take the physics of the studied problem into account .

The model studied until now, Uy + A(U)Uyx = 0, neglects every physical viscosity.

We hence add some linear viscoelasticity and use the Kelvin-Voigt modelisation :

The Cauchy stress tensor doesn't any more write £ = ME®, where E®is the elastic
deformations tensor, but X = ME® + Xan_where 220 denotes an inelastic stress tensor .

Therefore, the higher order system to solve writes:
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puy - Ox = Vuxx

PYL-Tx = VVxx (2.24)
ot - a(0,Duy + c(0,7)vx = 0

T + ¢(0,Duy - d(0,7)vx = 0

s being the eventual shock speed, we search for a regular solution of the last system, of

the variable § = LSt, such that :
v

lim V(& =U;

Crinen (2.25)
im V() = Ug '
E—+00

ug up

Vo V1

By now we suppose g known and we look for o1 and s.

70
If ' denotes the derivation with respect to the variable &, the system (2.24) writes :
—Spul =: GI - ull
-Sf?V -1 =T | (2.26)
s¢' +a(o,m)u’ -c(o)v =0
st - c(o,Du' +d(o,n)v' =0

The two first equations integrate, so:

u' = -sp(u-ug) - (6-0p)
v' = -sp(v-vp) - (1-10)

. _a(tz,‘t) 0 4 C(US,‘E) " (2.27)
¢ = C((;,T) 0 d((:.‘t) "

We change our variables, add s as variable :

u o
i - p with {a ==3p(u-up) - (0-00) and we get:
1 |o| B = -sp(v-vo) - (1-70) '
v T
5 =(a(r:;;t) - c(cs;'t)B
; d(c;
< B' =- C(O;T) o+ ( (GST) -s)p
: ; 2.28
o a(tz,'t) o+ c(cs,'t)B (2.28)
s c(ci;'t) o - d(cs;'r) B
st = Q
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with the limit conditions :
lim (o.B,0,1,8) = (0,0,061,71,8) and lim (o,B,0,%,5) = (0,0,00,70,5)
E‘.—)—-m &—H-oo

Remarks:
We have to determine an heteroclinic orbit passing through Uy for the dynamical system
written above. It will be enough to determine 6y, T; and s, because u; and v; will then
be defined by the relations:
{-S(ul-uo) - (01-00) =0
-s(v1-vo) - (11-70) = 0
that express the Rankine-Hugoniot relations for the two first equations of the initial

(2.29)

system. Those two first equations indeed write under a conservative form :
pu-ox =0, pvi-1x =0

Property 2.3:

The stationnary points are the plane (o = =0}.

Theorem 2.4:

For s close to Ag(Ug) = “\ I E, there are states Uq and heteroclinic orbits, solutions of
p

system (2.28), joigning Ug and Uq. More, they stay in the plastic regime.

The proof splits in five steps:
Step 1 : determination of a center manifold at Up.
Step 2 : recourse to a normal form.
Step 3 : determination of an heteroclinic orbit for a truncated system.
Step 4 : determination of an heteroclinic orbit for the complete system.
Step 5 : verification that the heteroclinic orbit stays in the plastic regime.
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Stability of Linear Hyperbolic Viscoelasticity

Jan Priiss
Fachbereich 17 Mathemalik, Universital-GH Paderborn, Warburger Str. 100
4790 Paderborn, Germany

0. Introduction

During the last two decades the mathematical theory of viscoelasticity has undergone a rapid develop-
ment. In particular, in the linear theory, where the formulation of the general stress-strain relations
is quite simple, many problems concerning wellposedness, wave propagation properties, regularity, and
asymptotic behaviour have been settled under various conditions. This is in particular true for the case
ol homogeneous, isotropic, and synchronous or incompressible materials, where the theory is by now
fairly complete. However, this is not quite the case for nonsynchronous or even noinisotropic media, in
particular regarding the asymptotic behaviour.

[t is not possible here to give full account to the literature, we only mention a few papers representing
the state of the art. Adali [1], Carr and Hannsgen (4,5], Clément and Priiss 8], Clément and DaPrato [7],
Da Prato and Lunardi [9], Desch and Grimmer [10,11] Hannsgen and Wheeler [13], Miller and Wheeler
[17,18], Navarro [19], Priiss [26], Tanabe [28,29]. For a much more complete list of references see the
forthcoming monograph Priiss [26].

In this paper, the case of hyperbolic equations of variational type is considered, i.e. equations of the
form :

(w, v(l)) +f a(t — ryw,u(r))dr =< w, f(t)>, t>0, welV. (0.1)

0

Here V' — H are Hilbert spaces, a is a sesquilinear form on V', and f : IR+ — V'~ is continuous. For
problems in viscoelasticity this framework is quite natural, as we shall see in Section 1, and physics
even gives an indication of the properties the form a should have to obtain energy type estimates. By
means of these inequalities, we show by Laplace translorm methods that (0.1) is wellposed. Theorem 1,
concerned with wellposedness, extends existing results considerably since it does not rely on perturbation
results. One exception is the paper Desch and Grimmer [10], where wellposedness and regularity of linear
viscoelasticity is proved in a quite special history space setting, under the main assumption that the
stress relaxation kernel is completely monotonic. Our approach is strong enough to obtain analogues for
the wellknown behaviour of homogeneous, isotropic, and synchronous or incompressible materials. Based
on the properties of the Fourier transform in Hilbert spaces, we obtain suflicient conditions for stability,
which are direct generalizations of the conditions for the scalar case; see Theorem 4.

This paper is a short version of Priiss [25] where detailed proofs as well as further discussions can be
found.

1. Linear Nonisotropic Viscoelasticity

Consider a 3-dimensional body which is represented by an open set Q@ CIR® with boundary 89 of class
C'. Points in Q (i.e. material points) will be denoted by z,y,.... Associated with this body there is a
strictly positive function py € C(Q) called the density of mass. Acting forces will deform the body, and
the material point @ will be displaced to its new position a + u(t,2) at time ¢; the vector field u({, z) is
called the displacement field, or briefly displacement. The velocily of the material point 2 € Q at time ¢ is
then given by v(i, ) = u(t, x), where the dot indicates partial derivative with respect to {. The linearized

43



strain in the body due to a deformation is defined by
, 1
E(t,0) = S(Vu(t,x) + (Vut,z))T) , teR,z€Q, (1.1)

i.e. £(1, x) is the symmetrie part of the displacement gradient Vu.

A given strain-history of the body causes stress in a way to be specified, expressing the properties of
the material the body is made of. The stress tensor will be denoted by S(t,z); both, £(¢,z) and S(t, z)
are symmetric. Let g(f, 2) be an external body force field like gravity. Then balance of momentum in the
body becomes

po(a)u(t,x) = divS(t, 2) + po(2)g(t,z) , Lt€ER,z€Q. (1.2)

(1.2) has to be supplemented by boundary conditions; these are basically either ‘prescribed displacement’

or ‘prescribed normal stress (traction)” at the suface of 99 of the body. Let 4Q = 'y UT,, where I'y, T,
o o [+] 0
are closed, I'c = Iy, I's = 'y and such that 'y N T = 0; let n(z) denote the outer normal at z € 9.

The boundary conditions then can be stated as follows.

u(t,x) = wq(t,z) tEIR,;L"Ef'd, (1.3)
S, e)n(z) = gt z) iE]R,wEf‘,.

(1]
In the sequel we always assume g # 0, and ug = 0, i.e. the body is clamped at a part of its surface.
Taking the inner product of (1.2) with & and integrating over Q and after an integration by parts
then over [0,1], we formally obtain the energy equality

|t'.'[z‘..1’)12,09(.1-](.".-1‘+/ [S[r,;r} :é?[r,.:;}d:cdr:/ |it(0,.r}|2pn[.?:]d;r
0 Jo Ja 9]

t t
+/ /y[r. x) (T, .-zr]pn(a;)d.-udr+/ / as(7,z) - u(7, z)dzdr. (1.4)
0 Jn 0 s

Since the total kinetic energy of the body (which has been at rest up to time ¢ = 0) at time £ > 0 cannot
exceed its initial value plus the work done by the acting body and surface forces, the inequality

t
/ / S(r,x) : E(r,x)dadr >0 (L.5)
Jo Ja

must hold for all values of £ > 0, and for any choice of initial values and forces.

To complete the system, an equation has to be added which relates the stress S(¢,z) to u and its
derivatives; such relations are known as consfitutive laws. Here we concentrate on linear materials only.
Since the stress should only depend on the history of the strain, the general constitutive law is given by

oo
S(t‘,.t:):/ dA(r,2)E(l—7,2) , 1€ER,2€Q (1.6)
0
where the stress relazation lensor A 1Ry xQ — B(Sym{3}) is locally of bounded variation w.r.t. { €IR 4;
Sym{N} denotes the space of N-dimensional real symmetric matrices. In components the latter means
Aijr(t, ) = Ajin(t, 2) = Aijue(t,2) , 1ER4, 2€Q, (1.7)

for all i, j k. 1€ {1,2,3)}).

A material is called homogeneous if py and A do not depend on the material points 2 € €. Tt is called
isotropic if the consitutive laws are invariant under the group of rotations. It can be shown that the
general isotropic stress relaxation tensor is given by

1 .
Aijult, x) = 5(3.’)[1..1-) = 2a(t,x))éij0p1 + a(t, z)(6ixbj1 + 6i1dj1).

The kernel b describes the behaviour of the material under compression, while a determines its response
in shear; therefore, db is called compression modulus and da shear modulus. In general, a and b are
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independent functions, however, if b(t, ) = fa(l, 2) for some constant B > 0 then the material is called
synchronous. The functions a and b are generally believed to be creep functions, i.e. positive, nondecre-
asing, and concave. Therefore a(t) admits the decomposition

i
a(t) = ag + aqt +/ ay(t)dr, t>0, (1.8)
0

where ag, @o > 0, and a;(t) is nonnegative and nonincreasing; similarly for b(t).
Inequality (1.5) leads to the following restriction on the stress relaxation tensor which will be called
dissipation inequality in the sequel.

T ot
/ f dA(r,x): F(t—71): F(t)dt >0, forall T > 0and F € C(R+;Sym{3}). (1.9)
o Jo

In other words, the matrix-valued measure dA is of pesilive type; this property will be crucial in later
developments. Tor the homogeneous and isotropic case the latter means that the kernels da and db are
of positive type.

For more background information about linear viscoelasticity consult Bland [3], Christensen [6], Leit-
man and Fisher [15], Pipkin [22], or Priiss [26].

2. A Variational Formulation

We now want to rewrite (1.2), (1.3), (1.6) in variational form, assuming as before po continuous and

— 0 & .
strictly positive on Q, ug =0, T'a # 0, 99 of class C!, and in addition that Q is bounded. According to the
discussion in Section I, we restrict our attention to relaxation kernels A € BVi,o (IR 4; L%®(Q; B(Sym{3}))),
which are of positive type and ol subexponential growth, i.e.

/ e HdAQ, )|~ < 00, foreach £ > 0.
0

Observe that this is equivalent to the symmetry property (1.7) and existence of a nondecreasing function
ap of subexponential growth such that

|A(t, 2) = A(s, 2)| < ag(t) —ag(s), forallt>s>0 and for a.a. 2 € Q.
As a convention we let A(0,x) = 0 for all 2 € Q as well as ap(0) = 0. These assumptions will be taken

for granted in the remainder of this paper.
Consider the Hilbert space H = L*(Q;IR?) equipped with the inner product

(vi,v2) = f po(x)oy(x) - va(x)de |
)

and norm |w| = (w, w)"/?. Let V = l-l-’llf(Q;][{S) denote the subspace of W1H2(Q;IR?) of the functions
vanishing on Iy in the sense of traces. As inner product in ¥ we take the usual one

((v1,v2)) = [ Vui(a) : Vus(a)de +/ vi(z) - va(2)dz , for vy,vs € V.
Ja 0

The norm in V' will be denoted by || - ||.
Let V'° denote the anti-dual ol V', < v, v# > the natural pairing between v € V and v € V*, and
[| - [l the norm in V", Via the identification < v, w >= (v, w) for v € V, w € H, we then have the usual
; o di s
dense embeddings V «— H — V"~

We define bounded sesquilinear forms on V' by means of

a(t; vy, ) = / Vit Al 2)Vua(2)de , 1> 0,v,v2 € V. (2.1)
N
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Then there follows the variational formulation of (1.2), (1.3), (1.6) by an integration by parts.
1
(w, u(t)) + / a(t — s, w,u(s))ds =< w, f(t) >, t>0, weV, (2.2)
0

where f(1) € V" contains g(f, x) and g.(, x), as well as the history of v(t, ). Since A(t,-) € L=(Q; Sym{3})
for each t > 0, the sesquilinear forms a({;-,-) are bounded, hence by the Riesz representation theorem,
there is a family of bounded linear operators {A(t)};50 C B(V, V") such that

a(tiw,v) =< w, A({)v > forall vweV,t>0.
Since A € BVig(R4: L=(Q; B(Sym{3}))), there follows A € BVie(R4;B(V,V*)). The variational

formulation of (1.2), (1.3), (1.6) in V= becomes now

i
v(t) +/ A(l = m)o(r)dr = f(1), 1>0. (2.3)
0
The natural definition of strong and mild solutions of (2.2) or equivalently (2.3) is as follows.
Definition 1 Let f € C(IR V™). A function v € C(IR 4; V) is called a sirong solution of (2.2) or (2.3)
if (2.2) holds for cvery t > 0 and w € V. v € C(R4; V") is called a mild solution of (2.2) or (2.3) if
there arve fi, € CUR £ V™) and strong solutions v, € C(IR 4; V) of (2.2) with f, instead of f such that
Salt) — f(1) and v, (£) — v({) i V7", uniformly on compact intervals of IR 4.

The most important concept for (2.3) is the notion of the resolvent.

Definition 2 A family of linear operators {S(t)}i>0 C B(V)NB(V*) is called a resolvent for (2.3) if
S(t) ts strongly continuous tn V and in V=, S(0) = I, and the resolvent equations hold.

t
S(t)v +f At =7)S(ryw=v, forallt>0, veV; (2.4)
0
t
S(tyv + / S(NAt —7)v=wv, foralll>0, velV. (2.5)
0

Without going into details, note that in case a resolvent S(t) for (2.3) exists then it is necessarily unique,
is also strongly continuous in H, and the mild solution of (2.3) is given by the variation of parameters
formula

d

u(l) = E/[} St—=7)f(r)dr, t>0. (2.6)

These facts are known even in a much more general context; see e.g. Priiss [26].
By the symmetry properties (1.7), the dissipation inequality (1.9) for the relaxation kernel is easily
seen Lo translate to the following property of the form a.

T
2Re / / da(r;v(l), vt —7))dt >0, forallT > 0and v e C(R4; V). (2.7)
Jo Jo

[However, (2.7) alone does not seem to be strong enough to establish even wellposedness, i.e. existence of
a resolvent; for this a stronger notion is needed.
It will turn out that the following concept is appropriate for hyperbolic solids.

Definition 3 A ferma (IR 4 x V x V — @' as above 15 called coercive if there is a constant v > 0, such
that

T t T
2 Re [ (f da(s, v(t), v(t — s)))dt > 7||/ o(t)dt||? (2.8)
o Jo 0
Jorallv e CIR 4;V) and T > 0.
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Suppose v € C(IR ;1) is a strong solution of (2.2) and let f € I'V,:':[IRJr; V), f(0) € H. Differentia-
ting (2.2), letting w = v({) and integrating again we obtain

(lo()])? - |u(0]|ﬂ/?+/u /ﬂ* da(7;v(s),v(s — 7))ds = /D < u(s), f(s) >ds ,t > 0.

Taking real parts in this equation and using coerciveness of a, i.e. (2.8), there results the inequality

lw(t)]? H”/n o(r)dr|)® < |F(0))° + 2Re£ <u(r), f(r)>dr, t>0. (2.9)

This 1s the basic energy inequality for (2.2) in the case of coercive forms. If a is only positive, i.e. v =0,
(2.9) is still valid; however, we then do not obtain bounds on any quantity related to the solution v(t) in
V. It turns out that (2.9) implies estimates for mild solutions as well.
Proposition 1 Suppose v € C(l 1; V™) 1s a mild solution of (2.2). Then
(i) [ € I-V,L‘L_I(HE+; H) impliesve C(IR 4 H), 1xve C(R4; V), and
t .
() + 4l / o(r)dr|]* < (Vary flg)*, t>0; (2.10)
Jo

(i) J € WEHIR 4 V™), J(0) =0, imply v € C(R 4; H), 15v € C(R4; V), and for each 6§ € (0,7)

t
iv(r1|2+(~;-—é}||[ o(r)dr|]* < (612 + (v = 6)~?)? - (Vary. f)*, t>0. (2.11)
J0

In practice (2.8) is difficult to check. However, since ag is assumed to be of subexponential growth,
coerciveness can be characterized in terms of Laplace transforms; cp. Nohel and Shea [20] for the scalar
case, l.e. for kernels of positive Lype.
Proposition 2 Let a(l;-,-) be a sesquilinear form on V such thal

[a(t; w, v) — a(s; w,v)] < (ao(t) —ao(s)wl| - |lv]], forallt >s>0,v,weV, (2.12)

where ag is nendecreasing and of subexponential growth. Then o satisfies (2.8} iff

Re -’E(,\: v.v) > yRe(1/M||v||®,  for each veV, and Re X > 0. (2.13)

3. Existence of Resolvents
We are now in position to state and prove our first main result.

Theorem 1 Suppose a IR 4 x V x V — @' salisfies
(Vi) a(t;-,-) is a bounded sesquilinear form on V', for each t >0, and a(0;-,) = 0;
(V2) al-;u,v) € I'V,L‘rm[ﬂf +) for cach u,v € V, and

[t u,v) —as;u,v)| < (1) —ar(s)ul[ ]l . wveV , t>s5>0,
where o\ (1) 1s nondecreasing and of subezponential growth, w.lo.g. a(0) = 0;
(V3) a is cocrcive with coercivily constant v > 0.
Then (2.2) admils a resolvent S(t). Morvcover, with R = 1% S and T = t * S we have the following
regularity properiies

(a) {S()}is0 C BV)NB(V*)NB(H) is strongly continuous in V=, H, and V, and

IS(Osevy s ISy < 1+27 an(t) . 1SWlsary < 1, forall t > 0;
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(b)) {R()}is0 C BV, HYNB(H, V) and {T(1)}430 C B(V*,V) are strongly continuous, and
|R(O|s(ve iy  |[RO sy <772 1TW)|sv- vy <2971, for allt > 0;

(c) {S()}es0 C BV, H) N B(H, V") is strongly continuously differentiable, {S(t)}i>0 C B(V, V") even
{twice a.c., and for a.a. 1 > 0 we have

1SOlsvary  1SOlscrvey < 77 2an(t),  1S@lsvive) < aa(t)(1+ 2y aa(?)).

Assumption (V2) means A € BVi,.(IR 4; B(V, V™)), even in BV (IR 4; B(V, V*)) if oy is bounded. Therefore

(2.3) is equivalent to the equation of second order

t
(1) +/ dA(T)o(t —7) =g(t), t>0, (3.1)

v(0) = wg, ¥(0)=v.

For the solution of (3.1) we have the following variation of parameters formula.
t
v(t) = S(t)ve + R(H)wn —}—f R(t—7)g(r)dr, t>0. (32)
0

Thus the resolvent S(f) corresponds to the cosine family, R(!) to the sine family of second order diffe-
rential equations. The following corollary describes the solvability behavior of (3.1) implied by Theorem 1.

Covollary 1 Let the assumptions of Theorem I be satisfied, let vg ;v EV™, g € L}, 4; V™), and let
v(t) be given by (3.2). Then

(iJvoeV,vu€H, geClR; H) implyv e C(R4;V), 0 € CRy; H), v+ A(-)vg € C(IR 45 V"), and
v(l) s a strong solutien of (3.1); )

(iJvo €V, vy € H, g€ WHIR V™) imply v € C(IR4; V), v € C(R 4 H), v+ A()vo € C(R4+;V*),
and v(l) ts a strong solulion of (3.1);

(iii) vo € H, vy € V™, g € CUR4; V") imply v € C(R 4; H) and v € C(R4; V™) and v(t) is a mild
solution of (3.1).

In the scalar case a(l:w,v) = a(f)aq(w, v) where a(f) is of the form (1.8) the assumptions of Theorem

1 are equivalent to ag = 0, a;(04) < o0, o > 0, and aq, a bounded sesquilinear form on V' which is

coercive. This is known as the case of hyperbolic solids. For hyperbolic fluids see Corollary 2 below.
Another coercivity concept different from Definition 3 is based on an inequality of the form

1
A+

Re da(A, v, v) > 7Re lloll* , vEV, ReX>0, (3.3)
where 7 and 5 are positive constants; compare with (2.13). Forms satisfying (3.3) will be called n-coercive
in the sequel. This concept is also appropriate for hyperbolic fluids. In the scalar case a(t;w,v) =
a(t)aes(w, v), where a(t) is of the form (1.8), the assumptions of Corollary 2 below are equivalent to
ap = 0, a1 (04) < 00, as > 0, a; strongly positive in the sense of Nohel and Shea [20], and aq, a bounded
sesquilinear form on V which is coercive.

By the same methods as in the proof of Theorem 1 the following result for 7-coercive forms is obtained.

Corvollary 2 Supposc o : IRy x V x V. — @' is y-coercive for some np > 0, and satisfies (V1), (V2)
of Theorem 1. Then (2.2) admils a resolvent S(t). Morcover, with R,(1) = (e7™ + S)(1), T,(t) =
(e™" % R,)(t) we have the estimales

SOy < Ui IRy (Dlseve iy 1Ry (O)seyvy < s Ty (D) sve vy < =,

and

1Ry()alle < 209)7 2l 11Tzl < 2207%) 72l
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In the situation of Corollary 2 one can also obtain bounds for the remaining quantities, i.e. S(¢) in B(V)
and B(V7), S(¢) in B(V, H) and B(H, V"), as well as S(t) in B(V, V), to the result that similar estimates
as in Theorem 1 are valid; in particular, all of these operator families are bounded onlIR 4 if oy is bounded.

4. Stability on the Halfline

We now turn attention to the asymptotic behaviour of the solutions of (2.2) or (2.3) as ¢ — oo in the
case of solids as well as of fluids. For this purpose we first summarize several versions of the variation of
parameters formula (2.7).

1:(1]:f(i)+/ S(i—r)f{r)dr, t>0; (4.1)
0
v(t) = S(t)f(0) +/ S(t — r)f{r)a"r , 1>0; (4.2)
0
i
u(l) = .f;'(nf(U}JrR(:)j(U)Jrf R(t—7)f(r)dr, 1>0; (4.3)
0

The strong continuity properties ol S, i, and 7" obtained in Theorem 1 and Corollary 2 then yield regula-
rity properties of v(1), according to those of f({); Corollary 1 is an example for this. Similarly, asymptotic
properties of S, R, and 7" in combination with those of f imply certain asymptotic behaviour of the solu-
tion v. For example, suppose S € LY(IR 4 ; B(H)), then it is easily seen that (4.2) implies v € LP(R 4; H),
whenever f has this property and f(0) € H; note that |S(¢)| < 1 holds. On the other hand, suppose the
solution v of (2.3) belongs to L'(IR 4; H) whenever f(t) = h € H; this then implies S(:)h € L'(R 4; H),
for each h € H. This shows that integrability properties of 5, R, and T are important. There are several
different notions in this direction; cp. Priiss [23].

Definition 4 Let N and Z be Banach spaces, and {IW(1)}i>0 C B(X, Z) be a strongly measurable family
of operators, i.e. W(-)a is Bachner- measurable in Z, for each x € X. Then VW(1) 15 called

(i) strongly integrable (from N to Z), if W(-)a € LR 4; Z) for each x € X;

(it) integrable (from X to Z) if there 1s p € L'(IR 1) such that |W(1)] < ¢(1) a.e. onlRy;

(iit Juniformly integrable (from X to Z), if W(-) € L'(IR 4; B(X, Z)).

Obviously, every uniformly integrable operator family IW(t) is integrable, however not conversely, unless
I (-) is Bochner-measurable in (X, Z). Similarly, every integrable family W (¢) is also strongly integrable,
but the converse is not true, in general.

Some mapping properties of the convolutions W # g are collected in

Proposition 3 Lel X' and Z be Banach spaces, and let F denole any of the symbols L7, p € [1,0], Cy,
Cuy, and Cy. Assume cither of the following conditions.

(1) W ois integrable from X lo Z:

(1) W oand W= are strongly miegrable from X lo Z rvesp. from Z7 1o X~.

Then g € F(IR 4 .X) implies W s g € F(R 4 Z), and [W * g|z 7 < Clg|x, 7, for some C' > 0.

Clearly, Proposition 3 yields results on the solvability behavior of (2.3) on the halfline from integrability
of S, R, and T', resp. strong integrability of these quantities and their duals; the statement of such results
are left to the reader.

After these preparations let us now consider the integrability properties of the resolvent S for (2.3)
in the hyperbolic case. To obtain an indication of what is to be expected for nonisotropic viscoelasticity,
let. us recall first some wellknown results for the homogeneous, isotropic, and synchronous case. Thus
consider the equation of scalar type

v(l) + / a(l — r)Av(r)dr = f(t), t>0, (4.4)

S0
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in the Hilbert space H, where A is a positive semidefinite operator in H, and the kernel a(t) is of the
form (1.8). The first part of the following result is due to Carr and Hannsgen [4], while the second part
is taken from Priiss [23].

Theorem 2 [n addition to the assumptions staled above, assume either of the following.
(i) ay and —ay are convez:

(it) log a; is convex.

Then the resolvent S(t) s intcgrable in H iff 0 € p(A) and a(t) # acot. In this case

P _ 0 if deo >0 ora; & L'(IR 4)
_/.0 athdi= { (a0 + [y~ ar()dt) ' A™! ifae =0 and a; € L'(IR 3). (4:5)

For viscoelasticity this means that 9(!) is integrable in H iff the material is not ideally elastic and A is
invertible; the latter is the case, e.g. if the underlying domain € is bounded.

Observe the sharp difference between a fluid, i.e. aoo = 0 and ay € L'(IR ), or equivalently a €
BV(R ), and a solid, i.e. as, > 0. For a fluid one cannot expect integrability of R(t) since lim;_.o R(1) =
_[0 S(t) # 0, while lor a solid integrability of R(t) in H follows from integrability of ¢S(¢), which was
proved in the paper of Hannsgen and Wheeler [13]. Observe that one can never expect T'(1) = t + S(t) to
be strongly integrable, since this would imply boundedness of f(,\) = (T 4+a(M)A)"1/A2 = (A2 4 (apA +
Uos + Ay (N))A)™1 /X as A — 0+, which is impossible.

Concerning uniform integrability, note that in Priiss [23] the equivalence “S(¢) is uniformly integrable
in /i 0 € p(A), and ap > 0 or —a;(0+) = =" is obtained if loga; is convex. This characterization
shows that uniform integrability is not the right concept for hyperbolic problems.

Integrability of S and S are in the hyperbolic case ag = 0 and a;(0+) < oo easy consequences of that
of S and R; differentiate the resolvent equation to see this. For the general case we refer to Carr and
Hannsgen [5], Hannsgen and Wheeler [13], Noren [21], and Priiss [24].

For kernels a; which are convex but do not satisly (i) or (ii) of Theorem 2, there is still a characteri-
zation of strong integrability of the resolvent in terms of frequency domain conditions; see Priiss [26] for
the proofl.

Theorem 3 Lel the general assumplions on A and a(t) stated behind (§.4) hold, and let a, be conver.
Then for cach posttive defintte operator A the resolvent S(1) for (4.4) is strongly integrable in H iff the
following conditions are salisfied.

(i) Reda(ip) > 0 for all p €IR, p # 0;

(ii) impy—oo -Im daf (ip)/pRe drf[fp) < 00,

Conditions (i) and (ii) of Theorem 3 have nice interpretations: (i) means @(\) ¢ (—o0,0) which is
necessary lor S(,\] = (A + a"a[,\} )=! to exist on @ 4, while (ii) implies its boundedness as |[A] = oo.
Consider now the problems of variational type as introduced in Section 2 in the hyperbolic case, i.e. the
form a is subject to assumptions (V1) and (V2) of Theorem 1. It seems that in this situation integrability
of, say, S(1) in Il is quite difficult Lo prove since this requires pointwise estimates of IS(t)h;(”) However
the circumstances are much better concerning strong integrability of S, R, §, and S, since Parseval’s
theorem is available due to the Hilbert space setting.

Since Theorem 3 refers to the special case a(f;u,v) = a(t)(AY?u, AY?v), it becomes apparent that
for strong integrability of S(t) for (2.3) frequency domain conditions reflecting (i) and (ii) of Theorem 3
will be needed, as well as some regularity assumptions on the form a(t; u,v) which replace convexity of
ai(t). We first concentrate on the case of selids which corresponds to A(t) — A #0 as 1 — co.

Theorem 4 Let a (il 4 x V x V' — @ salisfy (V1) and (V2) of Theorem 2 with ay(t) bounded, and let
a be y-coercive for some n > 0. In addilion assume

(V1) a(;uv) € ll"‘,‘f_'.__I (R ), for cach u,v €V, and

la(t;u, v) —a(siu,v)| < (aofs) — as(O)|ul] o], forallt>s>0, u,veV,
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where aa(t) is nonincreasing and such that —fom tdas(l) < co;

(V5) impp—eo | Im a(ip,u,u)/[p Re alip,u, u)]| < ¢eo < o for each u€ V;
(S) For each u € V, an(u, u) = limy—.o a(L, u, u) exists, and, for some yoo > 0,

Re ao(u, ) > oo||ul>, forallu e V.

Then the resolvent S(t) for (2.3) and ils integral R(1) = (1+ S)(1) salisfy
(JveV=S(eel Ry V), S(we L'(Ry; H) , SCwe LR 4;V*);

(i) x € H=S()x e LY 4; H) , S()e € L\IR4; V™), R()x € L'(IR 4+;V);
(ti)ue V= S(hue L'k V7)), R(Jue L'IR 4 H) , e "« R(Hu e LY(IR 4; V).

Note that E{(,\; u,v) = Jg-(,\; u,v)/A is welldefined on @4 \ {0} since a; is bounded by assumption;
therefore (V5) makes sense.

n-coercivity together with (S), (V2), and boundedness of a; imply coercivity of e, hence Theorem 1
applies, and consequently the exponent 1 in (i), (i1), (iii) of Theorem 4 can be replaced by co, hence by
any p € [1, 0], via interpolation. Since the adjoint form a®(¢, u,v) = a(l, v, u) also satisfies the assump-
tions of Theorem 4, the same properties are true for the the adjoints 5™ and R”; therefore we may apply
Proposition 3(ii) to obtain the corresponding solvability properties of (2.3) on the halfline.

Similarly, for the case ol a fluid we have the following result.

Covollary 3 Let the assumptions of Theorem | be satisfied, with (S) replaced by
(F) la(t;u,v)] < ag(O|ull |[o]], £ > 0, u,v € V, where az € L'(IR ;).
Then the assertions of Theorem J for S(1), S(t), S(t) remain valid.
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1. MOTIVATION

If one looks at the equations arising from Continuum Mechanics, one sees that
there are many open questions. Remember only the question of uniqueness of the
Navier—Stokes equations in three space dimensions, the existence of solutions for the
dynamics of a reasonable model of nonlinear elasticity or global existence results for
compressible fluids in several space dimension. On the one hand, in spite of great
efforts of a lot of outstanding mathematicians one could explain this situation only
with difficulties in mathematics, on the other hand one could ask if the underlying
models reflect the physical background in all considered situations as well as it is
required. In the last time there appear experimental results indicating the existence
of a stronger mechanism of dissipation in the nature than that one proposed by Stokes
a hundred years ago (i.e. the stress tensor depends linearly on the first spatial gradiant
of velocity). These two facts, namely the difficulties in the mathematical theory of
Continuum Mechanics and the new experimental results concerning the dissipation
mechanism have led J. Neéas, M. Silhavy and A. Novotny, M. Ruzicka, to the study
of the physical background and mathematical consequences of so-called multipolar
materials. What I understand under this concept I will make precise later on. Let
me here on state that these materials are ”Non-Simple” in the sense of Noll and that
the underlying constitutive relations depend on higher order gradients of the velocity
field and the deformation gradient. First there was studied the consequences arising
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from the first and second fundamental law of thermodynamics to make sure that the
studied models are physically ”correct”, it means in the sense of Rational Mechanics.
It turns out that the equations arising in this theory are in some special situations
exactly these ones that are proposed as a regularization of the usual equations of
Continuum Mechanics (e.g. Teman see [20]). To make this a little bit more precise

let us consider the case of an incompressible fluid. One prescribes the motion of such
a fluid usually by

0
(NS) Fltt —vAu+ (v -V)u=Vp+f

divu = 0.

If one is interested in the study of the asymptotic behaviour, there are some mathe-
matical obstacles, which are not yet solved. But if we consider the perturbated
equations

(PNS) % —vAu+ v A%u+(u-V)u=Vp+f

divu = 0.

the mathematical problems disappear and one gets a satisfactory theory. It turns out
from the investigation of multipolar fluids that the equations (PNS) can be rigorously
derived, and therefore they are not longer only a mathematical object but also a model
for certain fluids. And this model seems to describe the real behaviour of many fluids
in extreme situations (i.e. where the dissipation mechanism plays an important role)
very well.

2. PHYSICAL BACKGROUND

Let us now make precise what was broached in the introduction. Nevertheless this
is only a brief overview, and a detailed study can be found in [16], [17], [19]. We
consider constitutive relations for e, n,, T m=1,...,M —1 of the form

(2.1) f=f(F,Vv,..., VM1, 9 v0),

Here the used quantities have the following meaning;: e - internal energy, 7 - specific
entropy, ¥ - specific free energy, ¢ - head flux, T(m) _ stress tensors, F' - deformation
gradient, € - absolute temperature. Further we use b - external forces, r - external
heat supply. The appearance of higher order stress tensors is related to the form of the
constitutive equations (2.1) and the second law of thermodynamics (Clausius-Duhem
inequality). According to the knowledge of the author higher order stress tensors
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were studied for the first time in [4], [5]. The balance laws for such materials can be
written as

(2.2) p+pvii=0
M- 0
(2.3) ploivi + €)= Y — - (T 5 Vigiim) + PO — Gii + 7
m=0 j
_ m(0)
(2.4) =T+ pbi
(2.5) 0 =¢€ij51 (T}E) -+ TJ(:;), P)
and the Clausius—Duhem inequality reads as
0 qi r
2.6 1> - (L) + .
(2.6) P2 —5-\g) T rg
or equivalently
M-1 ( ) ( ) q9 ]
m m+1 5 Y
(2.7) p\If £ Z i1+ Jm+1 + Tiji.. Jm-}-lP:P)UI jteedmas = PO = 9
m=0

Notice that equations (2.4), (2.5) can be derived from (2.3) and the principle of
material frame indifference, which validity we also suppose. Following [3] we regard
(2.6) as a restriction on the form of the constitutive relation (2.1). Now we can define
what we understand under multipolar materials.

2.8 Definition. A material governed by constitutive equations of the form (2.1),

where f stands for e,n, ¥, q, 7™, m =0,..., M — 1 is called a multipolar material of
type M.

In our situation one can prove the following important Theorems concerning the
constitutive structure of the considered material. In order to facilitate the statements
we introduce the following notation :

(1) equilibrium parts of the multipolar stress tensors T(™) m =0,..., M —1 and
of the heat flux vector are defined by

m, B m
(2.9) PR (BG) =TE™ . ((F0;e:50,6,0)
(2.10) P (F,0) = qi(F,0,...,0,6,0)

(i) viscous parts of the multipolar stress tensors T(™) m =0,... ,M —1 and of
the heat flux vector q are defined by

m,} -
(2.11) TV (B, Vv,..., V*M1y,6,V0) =
m e m,E
=T . AF Vv, VM 1y,0,90) — T (70.9)
(2.12) ¢! (F,Vu,...,v““'—lv,a,va) =

= QI'(Fa LY T JVQM_IU:‘QE Vﬂ) = QEE)(F: 9)
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2.13 Proposition. Consider a multipolar material of type M. The material satisfies
the principle of material frame indifference if and only if the following conditions are
satisfied : .

(1) the constitutive functions e,n, ¥,q, T m = 0,...,M — 1 depend on the
first spatial gradient of velocity only through its symmetric part E = (eij),
€ij = 1/2(?),',3' + 'UJ“,'), ie.

f(F,Vo,... VM= 9 V0) = f(F,E,V?v,...,VM~1y ¢ V0),

where f stands for any of the functions e,n, ¥, g, T m=0,...,M —1,
(2) the constitutive functions e,n,¥,¢,T™ m =0,...,M — 1 are isotropic
scalar—, vector— and tensor—valued functions of their scalar, vector or tensor arguments

F Vv,...,V*M-1y 6, V6.

2.14 Theorem. Consider a multipolar material of type M. The material satisfies the
Clausius—Duhem inequality if and only if the following three conditions are satisfied
in every process :

(1) the generalized Gibbs equation

M-1
o A (m, E) (m-{-l E) o
(215) p\:[, - —P9?I+ Z T‘Jl Jmt1 T'Jl cJm41P P) L1 Jm 41
m=0
M-1 B
m+1,
- Z _T:(_n Jm.|.)1p87P L TR
m=0
and
(2) the heat flux relation
(2.16) ¢ =0

and
(3) the residual dissipation inequality

M-1

(m,V) (m+l V) N )
Z (Tl}l Jm-l—l + T'Jl Jm+1p p) Ll dm4
(217) m=0
~ (m+1,E) qi0,i
g Z T'Jl Jm+1p9’P Ll dmgr T 2> 0.
m=0
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2.18 Theorem. If a multipolar material of type M satisfies the Clausius—Duhem
inequality then the following three assertions are satisfied :

(1) the constitutive functions ¥, 7, e are independent of the gradients of velocity
and of the gradient of temperature, i.e.

(2.19) f(F,Vv,...,V2M=1y 0 V0 = f(F,6),

holds throughout the domain of the constitutive functions, where f stands for ¥, 7, e
(2) the entropy relation

bl

oY
2.2 i
(2:20) g a6

holds throughout the domain of ¥ _
(3) the generalized stress relations hold throughout the domain of ¥

(2.21)
(m,F) (m+1 E) 0 (m+1,E)
Sym(Tm PR - Tm B aﬂT'Jl Jm+]p9 ) m > 1.
©B) B 0 am, o~ 0¥
(Tij .—Tupp BBTIJP B:P) —P. : 8F.-AF
i,j=
Remark.

1) In the case of multipolar fluids the deformation gradient can be replaced due to
material symmetry by the density p. If we introduce a new internal variable by

o=Inp

then the Theorems reads in the same way if we replace F' by o.
2) Due to (2.21) we will suppose for the following

T(E) = ¢ m>1

Now we will restrict ourselves to linear viscous materials. This means only that
the viscous part of the stress tensor depends linearly on all gradients of velocity and
temperature. The equilibrium part of the stress tensor is still in general nonlinear.
In this special case one can prove the following results:

2.22 Proposition. Consider a linear viscous-multipolar material of type M which
satisfies the principle of material frame indifference. If the viscous stresses T(™V)
m = 0,...M — 1 and the heat flux vector ¢(Y) do not depend on the defozmahon
gradient F then

(1) T™V) with m even depends only on the odd-order gradients of v and on 6, i.e,

T V) = TV (Vy, Voo, ..., Vi, 6)
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(2) ¢V and T™Y) with m odd depend only on 8, V8 and the even-order gradients
of v, i.e.
T[m,V) — T(m,v)(vzv, . ,VL+1U,9, Vg)
¢V = ¢(V2,... Y+ 6, V0),

where L is a suitable odd number depending on M.

2.23 Proposition. Consider a bipolar material which satisfies the principle of ma-
terial frame indifference and the Clausius—Duhem inequality and which has viscous
stresses T™V) m = 0,1,2 independent of F. Then

Tt-(f'v) =A0ij vk, + (Vi j + vj5,i) + abijAvg k + AV
+ ’}’AUJ',; + 5U;.-‘;.-,'j

T:‘(J'IJGV) =b16ijAvk + b2 6ik Avj + b3 b Avi + byvr,ij + bsvj,ix
+ bevikj + brdijvik + bsdvyi; + bodr v

qi = — CG,;‘,

where all coefficients of linear dependence may be functions of 6.

Remark.

The last proposition shows that the theory of multipolar materials is really a gener-
alization of the usually considered equations and gives in the case of 1-polar materials
the same. On the other hand this gives also a physical justification for the perturba-
tions often used in the literature.

3. MATHEMATICAL THEORY

In this part we are interested in the mathematical aspects of multipolar materials.
For each kind of materials we put emphasis on the lowest possible polarity in order
to obtain the results. Again this is only a brief overview of the typical results which
are available. All proofs are omitted, but the interested reader can find them in the
references cited here.

3.1 Compressible fluids.

We consider in a bounded smooth domain  C R",n = 2,3 and a time interval
I =(0,T) the motion of an isothermal ideal gas. Put Q1 = @ X I. The constitutive
relation for the pressure in this situation is given by

p=rkp k = const. > 0
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and we obtain the following system of equations if we consider a bipolar fluid (M=2)

9p K

3.1

Bu, -0 9 (0
3.2 W) =
( ) P at a (pv v}) a&!jTIJ ,Ob
(3.3) T(U) = pE,J peij + pr1Aei;
(3.4) Ts(jk) = —H1Yi 5k
together with initial and boundary conditions
(3.5) A0 =po,  0(0)=uvy
(3.6) v=20 on 02 x I,
(3.6) Tt-(jlk)(v)njm_. =0 ondx I

One can prove the following

3.7 Theorem. Let

po € C1(Q), po >0,
(3.8) v € L2(Q)",
b L3I, L=(Q)").

Then there exists a weak solution

v € L*(I, W23(Q)"),
p € L®(I,Ly(R)), p>0

of the problem (3.1)-(3.6) such that

pi
] pv,-—‘f—o— dx dt—/ pgvg;(p;(U)(Im+] TS})( Jeij (@) dz dt
Qr Ot o Qr

dp;
—f (pvivj + kpﬁ,-j)i dedt = / pbipidz dt
- Ox;

T

for every ¢ € C°(Qr), ¢ € I’VJ‘Z(Q),tp(T) = 0. Here Ly(2) denotes the Orlicz space
with the Young function

U(s)=(s+1)In(s+1)—s
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Remark.

1) For a tripolar fluid it is possible to show uniqueness of the solutions and also
higher regularity.
2) In the case of a barotropic fluid, i.e.

p=p(p)

one can show existence and uniqueness of a weak solution for large data in the case
of a tripolar fluid.

3) In the case of a heat conductive fluid one can give also an existence proof in the
case of a tripolar fluid.

3.2 Incompressible viscoelasticity.

Again we consider a bounded domain  C R",n = 2,3 and a finite time interval
g )

I = (0,7). Then the motion of an incompressible tripolar viscoelastic material is
governed by

Ov; Ov; dp 9 ,.0,V) 0 , 0¥
. kit ; - = s —(=—F; b;
@2 o T Jx; Oz Bz Y * Oz (3Fm i) + b
(3.10) div v =0
M-1 ) ( "
. m,V +1,
3.11 &= 2: Cﬂnn4m+iv)+*ﬂﬁtjm+mgi”n”hﬁ~dmﬂ
( : ) m=0
+TO P, + and
T = Msijors + p(vij +v5,0) + BAvi j + azA%;
(3.12) T‘-(;Rfv) = —Bv; jk + a2 Av; ji
T80 = e

Now we specify the constitutive relation for ¥ by
(3.13) U(F,0) = —cyb(In 0 — 1) + a( F)

where ¢, = const. is the specific heat. The elastic part a(F") had to satisfy the further
assumptions

N 9a(F)
4L~ 0F;x
1,1=1
(3.15) a(F)>0

(3.14) Fja
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which is satisfied e.g. for the Saint—Venant material and the Mooney-Rivlin material.

Notice that the last one is not polyconvex. In order to make the problem well posed
we had to add initial and boundary conditions

(316) 'U(O) = vo, 9(0) = 80, 'L(O) =4
(3.17) v=0 onddxI
(3.18) R(v,p) =0 Vo€ V()
a6
(3.19) £ =0 ondQdxlI.

Here R(v,¢) is the weak formulation of the non-stable boundary condition (similar

(3.6) ) and the space Vi(f) is defined as

Vi = {ve WH(Q)nW,*(Q),divo=0 ae. inQ}.
In this situation it is possible to show
3.20 Theorem. Let

vg € L*(Q),div vp =0

(3.21) o B

Then there exists exactly one weak solution

v E Lz(I,V;;) ﬂLoo(I, Vo)
dv 2 *
e € L*(1,V5")
z € C(Qr))

of (3.9)—(3.19) such that

T Ov T
/ < —=,p> dt+/ ((v,(p))di-{-/ vjv; jpide dt
0 ot 0 Qr

'
=/ —aaTFjAtp,'_jd:c dt—l—/ bipidz dt Yo € Lz(I, Vi),
T 1A T

(3.22)

where < .,. > denotes the duality in V}, is satisfied.

Remark.

Notice, that for more regular initial data vy € V3 /4 one obtains also a weak solution
0 of the energy equation.
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3.3 Incompressible Non—Newtonian fluids.

Let § and I be the same as before. Then the motion of an incompressible Non—
Newtonian fluid is governed by

8&,‘ Bu,- 8}3 37':;

3 ki MU . - i =1,...,n;
) ot " YBa; T aw T awy T T b
(3.24) divu = 0 ;
where
(3.25) Tij = v(e)eij

with v a nonlinear function of the symmetric part of the gradient of velocity e satis-
fying

(3.26) Tij€ij 2 c1|c|‘“

(3.27) [Vl < ea(1+el)"

for some p > 1. Further we have the initial and boundary condition
‘U(O) =

325) v=0 on 1.

In this sitation one can prove

3.29 Theorem. Let

ug € L*(Q)*, div =0
(3.30) . Lyt
feLP(I,w=hr Q).

Then for p > 1= there exists a couple (u,v) called measure—valued solution

w € LP(I; W' (Q)™) N L=(L; X (Q)")
v € L2(Qr; M(R™))
such that

/ [— u.-a;j' — ujt a,g + eij(e )/ , Tij(€(A))dvx,i(A) — fipi] dedt =
(3.31) ¥ "

- [ uoipide Vip € CY(I; C°(R)), 9(T) = 0
Q

If we restrict ourselves to the space periodic case, i.e. = (0,L)" and suppose
the existence of a scalar potential to 7;; satisfying the strong monotonicity condition,
we can show even more. Namely that the measure—valued solution is a weak one.
Precisly we have
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3.32 Theorem. Let = (0,L)" be a cube in R*, n =2 or 3. Let

up € Wi2(Q)"

3.33 ,
. feL’(Qr)

Then it holds:

(i) if p > %, then the measure-valued solution (u,v) is the weak solution of
problem (3.23)—(3.28), it means
() measure v, is a Dirac one which lives on Vu(z,t) for a.e. (z,t) € Qr;
(B) the weak formulation

Ou; Ou;
(3.34) a—t?-tp,-dm+/uja—u‘_tpjd:z:+‘/'r,-jegj(tp)d:e::/f,-go,-da:
Q Q i Q Q

a.e. in I for every ¢ € C®(Q) is fulfiled.

(ii) fp>1+ ,12_:2, then the weak solution is

(a) unique;

(B) regular, i.e. u € L=®(I; WH2(Q)") and LY(I; W22(Q)").

Remark.

Theorems (3.29), (3.32) were originally proved also in the context of bipolar fluids.
Here it was for the first time possible to tend with the higher viscosity to zero.
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Regularity for weak extremals of a variational
problem motivated by nonlinear elasticity

G. Seregin
V.A. Steklov Mathematical Institute
St.-Petersburg Department

Abstract. We consider a vector-valued function u € W,o2(Q;R2) (Q is a domain in R2)
which satisfies the identity

/ (Vo) vu - %W«H.PII) :Vpdz=0 Vpe CO(Q;E2)
0

and the pointwise inequality
detVu>0 a.e. in.

We prove that u is Holder continuous in  for any exponent being less than 1.

Keywords: Regularity theory, variational problems, extremals.

Let Q be a domain in R?. We consider a vector-valued function v € W,,*(Q; R?) which
satisfies the identity

[ (V)" vu- %quPI[) :Vpdz =0 Ype Ce(RY) (1)
1]

and the pointwise inequality
detVu>0 ae in(l (2)

We prove the following statement

Theorem. Suppose that the vector-valued function u € W;-?

o (5 2?) satisfies the con-
ditions (1) and (2). Then

ue C' (R for anyy €)0,1].

It is easy to show (see, for instance, [2], [4], [10]) that if in addition to (1) and (2) we
assume also that §2 is bounded and v € W'2(Q; R?) then the relation is valid

%I(u(x + sp(:l.))) =0 Vp € Ce (4 RY), (3)

s:ﬂ
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where

I(v) = /{%|Vu|2 + h(det VU)}d:n for v € WH2(Q; R?) (4)
0

and the function A is defined as follows

0 , t>20
h(t) = . (5)

+o0 , t<0

Functionals of the form (4) arise in nonlinear elasticity. From the physical point of
view the most interesting case is that the convex function & is continuous, h(t) = +oo for
all £ < 0 and  is of class C? in 0, +co[. Under these conditions the integrand

§(F) = Z|F]* + h(det F) (F € ™, |F]' = F : F = trF"F)

is polyconvex and if certain growth asssumptions hold there exists a global minimizer of

fng(Vu)d:v

among all functions in W'2(Q;R?) taking on prescribed boundary values (see [1] and [3]).
However, it is unknown that a minimizer belongs to a class of smooth functions and is in
fact a solution of the equilibrium equations

9y
div —=(Vu) =0 6
2 (vu) ()
in the sense of distributions.

Under some additional conditions relative to h in [4] several a priori estimates for
classical solutions of (6) were derived. In the same paper weak equilibrium solutions were
introduced which satisfy equations of type (1), i.e.

div ((VH)T%(VU) a g(Vu)]I) =0

in the sense of distributions. It might be useful to remark that if u is a smooth enough
function then we have the equality

div ((Vu)Taa—;(Vu) - g(V-u)][) = (Vu)Tdiv g—;(Vu) .

We should note a number of interesting papers (see [5] — [9] and references there)
concerning regularity for minimizers of quasiconvex functionals. However, as a rule, in
these papers the function A has to be continuous and finite-valued at least.

Although in our consideration the function A(t) has not yet satisfied natural restric-
tions on the behavior in a neighborhood of the point ¢ = 0, nevertheless, we hope that
the present paper might be of interest for further investigating regularity of variational
problems arising in nonlinear elasticity.

Remark. The condition (2) may be replaced by the condition

detVu>0 a.e. inQ. (2)
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The corresponding function A has the form

h(t):{ U, (5)

+oo , t<0

However, for such a case we have failed to prove the existence of a global minimizer for
the Dirichlet variational problem with functional (4).

Proof of Theorem. Let us choose arbitrary bounded domains Qo and Q, such that
Qo € ) € O and show that

u € C¥(Q) with any v €]0,1].

It we set G(F) := FTF — }|F|*I for F € M?*? then due to |G(Vu)| € LL () and

loc

tr G(Vu) = 0 we obtain immediately from (1) that all components of the matrix G(Vu)
are harmonic functions in Q (see also [10]). For this reason one can state that

max |G(Vu(z))| < C < +oo, (7)
zEM

where the positive constant C' depends, it is clear, on £; and u.
Let us set for any y € R? and any F € M?*? (the space of all real (2 x 2) matrices)

Wl*=y-y=yi+v;, |F = atp |Fy|.
yl=1
Then by direct calculation one can establish two identities

%u«*r1 = |G(F)]? +2det?F (8)

1

1
F|I* = —|F*+

|G(F)] (9)

for any matrix F' from M?*?,
In fact, let A2 > A2 be the eigenvalues of the symmetric positive matrix FTF . Then we
have

IFIP =M+, IIFIP =X, [G(F) =253 - 23),
det? F = \2)2
It follows from the last relations that (8) and (9) are valid.
Let the ball B(o, p) of radius p with the center at the point zo be such that
20 €Q, p<T= dist(94, o) .

By (8) we have

f(p) ::/ |Vul?dz < V2 |G(Vu)|dz + 2] |det Vuldz  (10)
B(zo,p)

B(zo,p) B(z0,p)
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Taking into account condition (2) and estimate (7) we obtain from (10) that:
f(p) < Cp2+2/ det Vudz . (11)
B(xo,p)

To estimate the right-hand side of the inequality (11) we use the known isoperimetric
inequality in the form given in [11]

/ det Vudz < £ / [Vu(z)||%d ox (12)
B(zo.p) 2

9B(x0,p)

for a.a. p €]0,7(.
The equality (9), the estimate (7) and the inequalities (11) and (12) give:

fo) < crr+l / Vu(@)Pdo, = Cot+ L f(p) =
2 J9B(0,0) 2

and, therefore,

Finally, we have

for p €10, 7].
From the last inequality and the famous Morrey growth condition we get that u is Holder
continuous with any exponent being less that 1.
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