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Preface

It all began with a remark by T.Kato in his 1961 paper Fractional powers
of dissipative operators [92]:

“We do not know whether or not D(A1/2) = D(A∗1/2) [. . . ].
This is perhaps not true in general. But the question is open
even when A is regularly accretive. In this case it appears
reasonable to suppose that both D(A1/2) and D(A∗1/2) coincide
with D(H1/2) = D(a), where H is the real part of A and a is
the regular sesquilinear form which defines A [. . . ].” 1

Kato himself had proved the result for self-adjoint operators and – mo-
tivated by his former studies of hyperbolic equations – he was asking for
generalizations to broader classes of operators. As merely one year af-
ter J.-L. Lions came up with a first counterexample [105], which was
strengthened later on by A. McIntosh [116], one might have thought
that this was already the end of a rather short episode. It was not.
Abandoning the bold generalization to all regularly accretive operators,

analysts returned to the applications Kato was most concerned with,
which were formulated for elliptic differential operators in divergence-form,
say of second order A = −∇·µ∇. For this class of operators, the conjecture
turned out to be one of the hardest problems of 20th-century analysis and
made history as the Kato square root problem. It resisted all attempts
to resolve it for more than 40 years, but revealed its profound influence
and impact to other mathematical topics, among which are hyperbolic
and elliptic partial differential equations, maximal parabolic regularity,

1Cited with some changes in notation.
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functional calculus, in particular what is nowadays called H∞-functional
calculus, the Cauchy integral on Lipschitz curves, and the T (b)-theorems
in harmonic analysis. The interested reader can refer to the excellent
surveys of A. McIntosh [119,120] for further historical background.

The main object of studies in this thesis are precisely those second-
order elliptic operators in divergence-form A = −∇ · µ∇, acting on a
domain Ω ⊆ Rd, or a coupled system of such. The coefficients µ are
merely bounded and boundary conditions on ∂ Ω are formally encoded in
a vector space V .2 Usually, we interpret equalities of type −∇ · µ∇u = f

along with boundary conditions for u in the variational sense
∫

Ω
µ(x)∇u(x) · ∇v(x) dx =

∫
Ω
f(x)v(x) dx (v ∈ V).

For illustration, think of Ω as a bounded domain (a closed container, if you
will) and A arising from a thermodynamical model. Then there may be
pure Dirichlet conditions V = H1

0 (cooling everywhere on the boundary),
pure Neumann conditions V = H1 (perfect isolation everywhere on the
boundary), or a mixture with cooling on one part and isolation on the
other, which is certainly most common to models arising from applications.
For the mixed problem, the standard choice for V is the H1-closure of
smooth functions vanishing in a neighborhood of the Dirichlet part [129].
For this setup, the Kato conjecture is D(A1/2) = V and, in particular,

that A−1/2 gains a full derivative. This is all the more surprising since by
general elliptic regularity theory the inverse of the second-order operator
A in general does not gain two full derivatives [136].

First positive answers to Kato’s conjecture were obtained under certain
additional smoothness assumptions on the coefficients µ. J.-L. Lions [105]
exploited the embedding of D(A) into H2(Ω), available for pure Dirichlet
or Neumann conditions on smooth domains and C1-coefficients. This em-
bedding, however, is not available for mixed boundary conditions, not even
for µ = Id on a C∞-domain, due to E. Shamir’s counterexample [136].
Later, A. McIntosh [118] solved the problem for operators with Hölder
continuous coefficients subject to general homogeneous boundary condi-
tions on Lipschitz domains.

2As A. Turing puts it, “boundary conditions are made by the devil”. You may think
of Ω = Rd if you, too, dislike them.
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Rough L∞-coefficients, however, stayed out of reach much longer and
only became available by harmonic analysis’ most delicate methods. In
their famous paper [41] on the L2-boundedness of the Cauchy integral
along a Lipschitz curve, R. Coifman, A.McIntosh, and Y.Meyer gave
a solution for Ω = R, and later P. Auscher and P. Tchamitchian [24]
succeeded for Ω ⊆ R. On Ω = Rd, d ≥ 2, a succession of serious de-
velopments [59], [42], [88], [21], [27], [80] at the end of the 20th century
eventually led to the celebrated solution of the Kato square root prob-
lem in all dimensions due to P. Auscher, S. Hofmann, M. Lacey,
A. McIntosh, and P. Tchamitchian in 2001 [18] and an extension to
higher-order operators and systems due to some of these authors [19]. A
little later, Auscher and Tchamitchian used localization techniques to
cope with the case of a Lipschitz domain Ω ⊆ Rd supplemented with pure
Dirichlet or pure Neumann conditions [25] and related Lp-theory [26]. As
A1/2 is a non-local operator, it was somewhat surprising that the Kato
conjecture could be solved in this manner in the first place. On the other
hand, mixed boundary conditions stayed out of reach because of certain
incompatibilities with the localization maps.
Thus, what remained open after the first quantum leap were the case of

mixed boundary conditions as well as pure Dirichlet conditions on irregular
domains, that is, beyond Lipschitz domains. In fact, already in 1962 J.-
L. Lions [105] had proclaimed this problem, henceforth known as the
Lions problem, to be among the most interesting questions in the orbit of
Kato’s conjecture:

Donc, par exemple, pour un opérateur elliptique A du 2ème
ordre, non auto-adjoint, avec condition aux limites de Dirich-
let sur une partie de la frontière et condition aux limites de
Neumann sur le reste de la frontière, on ignore si D(A1/2) =
D(A∗1/2). Même chose d’ailleurs avec le problème de Dirichlet
et une frontière irrégulière.3

A first serious attempt to the Lions problem for non-smooth coefficients
was made by A. Axelsson, S. Keith, and A. McIntosh in 2006. In a

3So, for example, for A an elliptic second-order operator subject to Dirichlet conditions
on one part of the boundary and Neumann conditions on the rest of the boundary,
one does not know whether or not D(A1/2) = D(A∗1/2). The same, by the way,
applies to the Dirichlet problem if the boundary is not regular.
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remarkable paper [30] they cast the Kato square root problem in a new
abstract framework of perturbed Dirac type operators on Hilbert spaces.
In a follow-up [29] they obtained for the first time a resolution of the
Lions problem on mixed boundary conditions for non-smooth coefficients.
However, they had to additionally assume that the underlying domain Ω
is smooth and that the Dirichlet part D and the Neumann part ∂ Ω \ D
of the boundary are separated by a smooth interface. As a consequence
of the first-order structure of the implied comparability

‖u‖L2(Ω) + ‖A1/2u‖L2(Ω) ' ‖u‖L2(Ω) + ‖∇u‖L2(Ω)d (u ∈ D(A1/2) = V),

they obtained the same result for all geometric configurations (Ω, ∂ Ω, D)
that are of smooth type as above modulo a global bi-Lipschitz change of
coordinates on Rd. The latter certainly is a subclass of the Lipschitz do-
mains – though a rather odd one – and in particular, it seems to lack an
intrinsic characterization allowing to tell whether or not a given domain
belongs to this class. Also the existence of a smooth Dirichlet-Neumann
interface is certainly more a technical workaround than a satisfactory ge-
ometric assumption, similar to Gröger’s regular sets [72].
Of course, this is not meant to diminish the relevance of Axelsson,

Keith, and McIntosh’s pioneering work, but rather to shed light on its
limitations and point out that it does not resolve the Lions problem in the
intended generality. In particular, it leaves the second part on irregular
domains untouched.
More recently, relative results on irregular domains have been obtained

that included the solution of the Lions problem as an assumption. This
concerns, for instance, extrapolation of the square root property to Lp
spaces [16] with applications to maximal parabolic regularity on distribu-
tion spaces [16, 76]. Here, the rather unexpected use of the square root
property is that A−1/2 provides a topological isomorphism W−1,p → Lp
that commutes with the parabolic solution operator ( d

dt + A)−1. Pertur-
bation theory for square root domains under additive potentials has ex-
haustively been discussed by Gesztesy, Hofmann, and Nichols [63].
Even closer to the original motivations of Kato [92] and Lions [105] are
recent applications to maximal regularity for evolution equations governed
by non-autonomous forms, see Arendt-Dier-Laasri-Ouhabaz [8], and
elliptic boundary value problems on the upper halfspace [12, 14, 15]. We
will come back to the last issue later on.
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A major motivation for choosing the subject of this thesis was to close
the gap between geometric constellations in which the Kato problem is
already solved and those in which its solution effects significant progress
in other areas of mathematics. A one-sentence summary of this thesis is
as follows:

We solve Lions’ problem on bounded irregular domains, even
beyond the class of Lipschitz domains, and without smoothness
assumptions on the Dirichlet-Neumann interface.

More precisely, we consider a bounded domain Ω ⊆ Rd and A = −∇·µ∇ as
before. As for geometry, we assume d-Ahlfors regularity of Ω and (d− 1)-
Ahlfors regularity of ∂ Ω and D (provided this set is non-empty), and only
around the Neumann part ∂ Ω \D a local weakly Lipschitz condition has
to be satisfied. Nowadays, Ahlfors regularity is a standard assumption
in the study of partial differential equations and among the weakest geo-
metric concepts that allow for a reasonable theory of, e.g., the Dirichlet
problem on a bounded domain. We give an extensive account on these ge-
ometric concepts in Chapter 1. For now, it suffices to think of an l-Ahlfors
regular set as one that behaves l-dimensional on small scales.
The Lions problem for this general setup lies somewhere on the interface

of harmonic analysis, geometric measure theory, and potential analysis. In
the same spirit, the architecture of this thesis is threefold.

Overview

Following the historical order rather than the chronology of results in this
thesis, the first observation is that the harmonic analysis part inherent to
the problem can be decoupled from the rest by what we call the reduction
theorem.

Theorem (Reduction Theorem). In order to solve the Lions
problem in the described setup, it suffices to prove the existence
of an α > 1

2 for which the domain of (−∆V)α embeds into an
L2-Bessel potential space of optimal differentiability order 2α.

Here, −∆V is the negative of the weak Laplacian with form domain V ,
that is, the simplest operator of type −∇ · µ∇ obtained for µ = Id. The
reduction theorem is formulated more precisely in Chapter 4, see Theo-
rem 4.3.1.
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In order to grasp its essence, it is convenient to view the Kato square
root problem as the problem of proving optimal L2-regularity for the do-
main of the square root of A. Indeed, as A is associated with a second-
order differential operator, the domain of A allows for at most two distri-
butional derivatives in L2. Hence, by interpolation, the optimal regularity
for the domain of Aα, 0 < α < 1, is 2α fractional derivatives in L2. This
being said, the reduction theorem tells us that within a setup traced out
by Ω, D, and V , the following is true:

The square root property D(A1/2) = V for all elliptic opera-
tors A = −∇ · µ∇ follows provided the square root property
D((−∆V)1/2) = V, which is always true due to self-adjointness
of the Laplacian, extrapolates to fractional powers (−∆V)α with
slightly larger exponent.

The obvious value of the reduction theorem is that all issues arising from
the non-smooth coefficients µ have disappeared at once. On smooth do-
mains, a similar phenomenon occurred in the work of McIntosh [118]
and Axelsson-Keith-McIntosh [29].
The reduction theorem is simple in sound but its proof requires to ex-

tend the complete technology used in the proof of Kato’s conjecture on
Ω = Rd as presented in [29, 30] to a merely Ahlfors-regular setup.4 In
fact, with Theorem 4.1.11 we provide a much more general theorem on
quadratic estimates for perturbed Dirac type operators on Ahlfors reg-
ular domains of which the reduction theorem is a particularly interest-
ing instance. On manifolds without a boundary, similar extensions have
previously been obtained by L. Bandara [32]. The results of Chap-
ter 4 will appear in a joint article with P. Tolksdorf and R. Haller-
Dintelmann [53].

Checking the premise of the reduction theorem is a mathematical prob-
lem of completely different flavor, more in the manner of potential analysis.
Following a line of attack first proposed in 1981 by A. J. Pryde [131], ev-
erything is about constructing an ambient scale of Bessel potential spaces
{Hα

D(Ω)}α around V = H1
D(Ω) that is adapted to mixed boundary condi-

tions and well-behaved under complex interpolation. Evidently, the usual
4This is just fair, if one trusts the postulate of conservation of the amount of work as
I learned it from R. Haller-Dintelmann.
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approach to interpolation theory on domains by localization and reduc-
tion to the classical results on the upper halfspace is not applicable in our
setup.
In Section 5.4 we overcome this problem by developing a new and global

approach to interpolation theory for spaces adapted to mixed boundary
conditions. This bases on P. Grisvard’s trace method [70] and the ob-
servation that fractional Hardy inequalities of type

∫
Ω

|u(x)|2

d(x,D)2α dx . ‖u‖2
Hα(Ω)

can be used to encode that a function u ∈ Hα(Ω) vanishes on the Dirich-
let part D in some sense. In this spirit, for instance, the form domain
V = H1

D(Ω), intransparently defined as the H1-closure of suitable test-
functions, simply becomes the intersection of the classical Sobolev space
H1(Ω) with the weighted Lebesgue space L2(Ω; d(x,D)−2dx). Hardy in-
equalities and their relation to function space theory for Sobolev spaces
are actually the central object in two chapters of this thesis. In Chapter 5,
Theorem 5.5.5, we utilize them as described above, to prove the extrap-
olation property for the fractional powers of the Laplacian. Thereby we
solve the Lions problem in Theorem 5.6.2 by putting it down to the re-
duction theorem. These results have been published in a joint article with
P. Tolksdorf and R. Haller-Dintelmann [54].
In Chapter 2 we are concerned with the Hardy inequality for α = 1

in an Lp-setting. We develop a geometric framework in which Hardy’s
inequality

∫
Ω

|u(x)|p

d(x,D)p dx .
∫

Ω
|∇u(x)|p dx

holds for all functions u in the space W1,p
D (Ω), defined as the W1,p-closure

of smooth functions vanishing in a neighborhood of D. Assuming that
the Dirichlet part D is thick enough in the sense of geometric measure
theory and that Ω satisfies an extension property around the Neumann
part ∂ Ω \D, we establish Hardy’s inequality in Theorem 2.3.9. In Theo-
rem 2.4.6 we provide a certain converse to the effect that W1,p

D (Ω) is the
largest subset of the usual Sobolev space W1,p(Ω) on which the left-hand
side of Hardy’s inequality is finite.
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As a byproduct, we obtain new and rather universal results on the
structure of Sobolev extension operators for the Sobolev spaces Wk,p

D (Ω),
defined as the Wk,p-closure of smooth functions vanishing in a neighbor-
hood of D. For instance, we prove the following in Section 2.2.3:

If a function on Ω can be approximated in the Wk,p-topology
by smooth functions vanishing near D within Ω, then every
Wk,p-extension operator will automatically produce a function
that can be approximated by smooth functions vanishing near
D also from the outside of Ω.

In particular, preservation of Dirichlet conditions under Sobolev exten-
sions is irrespective of the construction of the extension operator. This
also sheds new light on rather recent developments establishing the preser-
vation property for special extension operators on foot [37]. The results
of Chapter 2 have been published in a joint article with R. Haller-
Dintelmann and J. Rehberg [52].
In the final Chapter 6 we present an application of the resolution of

Kato’s conjecture to classical elliptic boundary value problems. More pre-
cisely, we are concerned with elliptic second-order systems on cylindrical
domains (0,∞)× Ω, subject to homogeneous mixed boundary conditions
on the lateral boundary, and inhomogeneous Dirichlet or Neumann con-
ditions on the cylinder base. In order to grasp the connection to Kato’s
square root problem, it is instructive to consider a simple problem in this
class on the upper halfspace, say∂ttu(t, x) +∇x ·µ∇x u(t, x) = 0 (t > 0, x ∈ Rd),

u(0, x) = u0(x) (x ∈ Rd),

where u0 ∈ H1(Rd) is the given data. To make sense of the semigroup
ansatz u(t, x) = e−tA1/2

u0(x), where A = −∇x ·µ∇x, is precisely what
Kato had in mind. The Kato square root property is equivalent to the
space H1(Rd) of data coinciding with the space D(A1/2) of traces of semi-
group solutions along with the Rellich estimate

‖∂tu|t=0‖L2(Rd) ' ‖∇x u0‖L2(Rd)d .

Modern theory of such boundary value problems dates back to the ground-
breaking 1979 article of B. Dahlberg [45]. The Kato approach has only
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rather recently been rediscovered and developed to full strength for ellip-
tic systems on the upper halfspace in a series of papers by P. Auscher,
A. Axelsson, and A. McIntosh [12, 14,15].
We extend their approach to systems acting on the much more challeng-

ing geometric configuration of a cylinder (0,∞)×Ω. The crucial observa-
tion is that general second-order elliptic systems5 are related to first-order
systems upon identifying the unknown u(t, x) with its conormal gradient
f(t)(x), a vector formed from the conormal derivative and the tangential
gradient at each interior point. If the coefficients are independent of t, the
first-order system for f has the form of an evolution equation

f ′(t) + DBf(t) = 0 (t > 0),

for D a first-order self-adjoint operator acting on the tangential variables
and B a bounded accretive multiplication operator. Since D has posi-
tive and negative spectrum, the evolution for f is forward on one part
and backward on another part of the underlying L2-space. Hence, the
latter has to be split into spectral subspaces. For Laplace’s equation on
the upper halfspace, for instance, this can be done fairly explicit as the
first-order system is the Cauchy-Riemann system and L2 is split into the
two holomorphic Hardy spaces in virtue of the Hilbert transform. The
substitute for the Hilbert transform in the more general case is the op-
erator 1C+(DB) − 1C−(DB) defined by means of the functional calculus
for bisectorial operators. Its boundedness can be inferred from quadratic
estimates for perturbed Dirac type operators as obtained in Chapter 4,
Theorem 4.1.11. The main results of Chapter 6 will appear in a joint
publication with P. Auscher [17].

Chapters 1 and 3 do not contain new results but provide background
material, mainly on potential analysis, interpolation of function spaces,
and functional calculus. There are also some variants of well-known results
needed here and there throughout the thesis and certain proofs which took
me ages to find in the literature (in case I succeeded at all). At these
opportunities also some notational conventions are introduced. An expert
reader may simply skip to the list of notations at the end of this thesis to
recall their definitions.

5Unlike in the toy problem above, the t- and x-derivatives may of course be coupled.
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Zusammenfassung in deutscher Sprache

In der vorliegenden Dissertation wird die Kato’sche Vermutung für ellipti-
sche Differentialoperatoren in Divergenzform A = −∇·µ∇ mit beschränk-
ten Koeffizienten µ und gemischten Dirichlet- und Neumann-Randbedin-
gungen auf einem beschränkten Gebiet Ω unter sehr allgemeinen geo-
metrischen Voraussetzungen bestätigt. Eine Lösung dieses 1962 von J.-
L. Lions [105] formulierten Problems war bisher selbst auf beschränk-
ten Lipschitz-Gebieten nicht bekannt. Für den Beweis werden bekannte
Techniken aus Operatortheorie und harmonischer Analysis auf nicht-glatte
Gebiete verallgemeinert und mit Methoden der geometrischen Maßtheo-
rie kombiniert. Als zentrales Hilfsmittel werden verallgemeinerte Hardy-
Ungleichungen entwickelt, welche von eigenständigem Interesse sind und
Anwendung in verwandten Teilgebieten finden. Schließlich wird die Lösung
des Kato’schen Problems genutzt, um neue Wohlgestelltheits-Resultate für
elliptische Randwertprobleme auf zylindrischen Gebieten zu erhalten.
Im Folgenden sei der Operator A = −∇·µ∇ stets im schwachen Sinne über
eine Sesquilinearform a definiert und die Randbedingungen seien über den
Definitionsbereich D(a) := V realisiert. Im Falle von gemischten Randbe-
dingungen – Dirichlet-Beding-ungen auf einem abgeschlossenen Teil D des
Randes ∂ Ω und Neumann-Bedingungen auf dem restlichen Rand – ist V
definiert als H1(Ω)-Abschluss der glatten Funktionen, deren Träger D mei-
det. Die Kato-Vermutung besagt, dass der Definitionsbereich der maximal
akkretiven Wurzel A1/2 mit V übereinstimmt.
Die Zusammenfassung der Ergebnisse folgt im weiteren Verlauf der ma-
thematischen Struktur der Kato-Vermutung.
Zunächst werden in Kapitel 4 gestörte Dirac-Operatoren auf Ahlfors-regu-
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Zusammenfassung in deutscher Sprache

lären Gebieten studiert und die Beschränktheit ihres H∞-Funktionalkal-
küls als zentrales Resultat bewiesen. Mittels dieser Techniken der harmo-
nischen Analysis, die bereits das Herzstück des Beweises der Kato’schen
Vermutung auf Ω = Rd darstellen, lassen sich alle von den unglatten Ko-
effizienten µ ausgehenden Probleme auf einen Schlag beseitigen. Genauer
implizieren sie unter sehr allgemeinen geometrischen Annahmen an Ω und
D das folgende erste Hauptresultat der vorliegenden Arbeit, vergleiche
Theorem 4.3.1.

Theorem (Reduktionstheorem). Falls ein α > 1
2 existiert, für

welches der Definitionsbereich der gebrochenen Potenz (−∆V)α
des Laplace-Operators mit gleichen Randbedingungen wie A in
einen L2-Besselpotentialraum von optimaler Differenzierbar-
keitsordnung 2α einbettet, ist die Kato’sche Vermutung bewie-
sen.

Da ein positiver selbstadjungierter Operator wie −∆V die Kato-Eigen-
schaft D((−∆V)1/2) = V hat, kann die geforderte Einbettung als eine
Extrapolationseigenschaft des Laplace-Operators aufgefasst werden.

Der Beweis der Extrapolationseigenschaft wird in Kapitel 5 mit Hilfe eines
funktionentheoretischen Arguments geführt, das auf der komplexen In-
terpolationsmethode beruht. Dessen Quintessenz ist, dass es genügt, eine
komplexe Interpolationsskala {Hα

D(Ω)}α von an gemischte Randbedingun-
gen angepassten Besselpotentialräumen zu konstruieren, die V = H1

D(Ω)
umfasst. Auf Gebieten, die keine lokale Darstellung des Randes mittels
Koordinatenkarten zulassen, erfordert die Entwicklung der komplexen In-
terpolationstheorie eine neue Idee. Anstelle von Lokalisierungsmethoden
wird ein globales Argument entwickelt. Dieses beruht darauf, dass Hardy-
Ungleichungen der Form

∫
Ω

|u(x)|2

d(x,D)2α dx . ‖u‖2
Hα(Ω)

genutzt werden können, um die Information „u = 0 auf D“ in einem ge-
eigneten Sinne zu kodieren. Auf diese Weise gelingt der Nachweis der Ex-
trapolationseigenschaft für den Laplace-Operator in Theorem 5.5.5. Dank
des Reduktionstheorems zieht dies den Beweis der Kato-Vermutung mit
sich, vergleiche Theorem 5.6.2.
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Die Hardy-Ungleichung im Falle α = 1 wird in Kapitel 2 noch systemati-
scher untersucht. Unter sehr allgemeinen maßtheoretischen Annahmen an
Ω und D wird in Theorem 2.3.9 gezeigt, dass auf W1,p

D (Ω) – definiert als
W1,p(Ω)-Abschluss der glatten Funktionen, deren Träger D meidet – die
Hardy-Ungleichung

∫
Ω

|u(x)|p

d(x,D)p dx .
∫

Ω
|∇u(x)|p dx

gilt. Darüber hinaus wird bewiesen, dass W1,p
D (Ω) die größte Teilmenge des

üblichen Sobolevraums W1,p(Ω) ist, auf der die linke Seite obiger Hardy-
Ungleichung endlich ist, siehe Theorem 2.4.6. Als Nebenprodukt fallen
neue Resultate bezüglich der Struktur von Sobolev-Fortsetzungsoperato-
ren Wk,p(Ω)→Wk,p(Rd) ab, die von eigenständigem Interesse sind. Insbe-
sondere zeigt sich in Abschnitt 2.2.3, dass ein solcher Operator homogene
Dirichlet-Randbedingungen auf einer abgeschlossenen Teilmenge D ⊆ ∂ Ω
automatisch und unabhängig von seiner konkreten Struktur erhält.

Das abschließende Kapitel 6 liefert eine Anwendung der Lösung der Kato-
Vermutung auf elliptische Randwertprobleme auf zylindrischen Gebieten
(0,∞)× Ω. Dabei werden gemischte homogene Dirichlet- und Neumann-
Randbedingungen auf dem Zylindermantel vorgeschrieben und inhomoge-
ne Randbedingungen auf dem Zylinderboden erlaubt. Unter der Annah-
me, dass die Koeffizienten unabhängig von der unbeschränkten Koordinate
sind, lässt sich ein solches System in die Form einer Evolutionsgleichung

f ′(t) + DBf(t) = 0 (t > 0)

überführen, wobei D ein selbstadjungierter Differentialoperator von erster
Ordnung und B ein beschränkter akkretiver Multiplikationsoperator ist.
Da das Spektrum von D im Allgemeinen zu beiden Seiten der imaginären
Achse liegt, erfordert der Nachweis der Wohlgestelltheit der inhomoge-
nen Randwertprobleme eine Zerlegung des zugrundeliegenden L2-Raums
in spektrale Teilräume. Die entsprechenden Spektralprojektionen können
mit Hilfe des Funktionalkalküls für bisektorielle Operatoren als 1C±(DB)
konstruiert werden. Es zeigt sich, dass ihre Beschränktheit in gewissen
Spezialfällen äquivalent zur Kato’schen Vermutung ist und in jedem Fall
mit Hilfe des Hauptresultats zum Funktionalkalkül von Dirac-Operatoren,
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Theorem 4.1.11 aus Kapitel 4, bewiesen werden kann. Mit Hilfe dieses so-
genannten DB-Formalismus werden dann a priori Lösungsformeln gewon-
nen und Wohlgestelltheit der inhomogenen Randwertprobleme für gewisse
Unterklassen von Koeffizienten µ gezeigt.

Wichtige Methoden der Potential- und Interpolationstheorie sowie der ho-
lomorphe Funktionalkalkül für (bi)sektorielle Operatoren werden in den
Kapiteln 1 und 3 bereitgestellt.

xviii



CHAPTER 1

Fundamentals in function spaces and interpolation
theory

In this chapter we recall some fundamentals in the theory of function
spaces, potential analysis, and interpolation of Banach spaces. We as-
sume the reader has a firm background in these fields and limit ourselves
to the essentials, mostly without proof. For further mathematical back-
ground and historical notes on the theory of function spaces we refer to
the textbooks of Bergh-Löfström [36] and Triebel [142]. Potential
analysis is learned best from Adams and Hedberg [2].
We also take this opportunity to introduce some important notational

conventions we shall frequently use throughout this thesis. Basic, self-
explanatory symbols such as those concerning sets in Euclidean space,
spaces of smooth functions, Lebesgue spaces, and distributions can be
found in the list of notations at the end of this thesis.

1.1 Spaces of integrable and differentiable
functions

In the following all vector spaces will be of functions with values in the
complex numbers. We briefly discuss vector-valued spaces in Section 1.1.3.

1



1 Fundamentals in function spaces and interpolation theory

1.1.1 Function spaces on the whole space
We begin with the definitions of the classical Sobolev, Bessel, Besov, and
Triebel-Lizorkin spaces [36, 142]. For convenience we agree on writing
‖f‖Lp < ∞ to mean that a distribution f is induced by a measurable
function in the first place and that this function, also called f in the
following, belongs to Lp.

Definition 1.1.1. Let s ≥ 0 and let 1 ≤ p ≤ ∞. If s is an integer, then
the Sobolev space Ws,p(Rd) of order s and integrability p is

Ws,p(Rd) :=
{
f ∈ S ′(Rd); ‖f‖Ws,p(Rd) :=

( ∑
|α|≤s
‖Dαf‖pLp(Rd)

)1/p
<∞

}
,

the right-hand side being interpreted as a supremum in the case p = ∞.
If s is not an integer and p <∞, then let k := bsc be the integer part of
s and let θ := s− k. The spaces

Ws,p(Rd) :=
{
f ∈ S ′(Rd);

‖f‖Ws,p(Rd) :=
(
‖f‖pWk,p(Rd) +

∑
|α|=k

[Dαf ]pθ,p
)1/p

<∞
}
,

where

[g]θ,p :=
(∫

Rd

∫
Rd

|g(x)− g(y)|p

|x− y|d+θp dx dy
)1/p

are called Sobolev-Slobodeckĭı or fractional Sobolev spaces.

Remark 1.1.2.

(i) There are various different equivalent choices for the norms on frac-
tional Sobolev spaces. For instance, the condition |α| = k can be
replaced by |α| ≤ k, see [142, Sec. 2.5.1] for a further discussion.

(ii) Another important equivalent definition is obtained by restricting
integration in the definition of the seminorms [ · ]θ,p to the strip

2



1.1 Spaces of integrable and differentiable functions

{(x, y) ∈ Rd × Rd; |x− y| < 1}. This follows since for any mea-
surable function g on Rd it holds

[g]pθ,p ≤
∫∫
|x−y|<1

|g(x)− g(y)|p

|x− y|d+θp dx dy

+ 2p−1
∫∫
|x−y|≥1

|g(x)|p + |g(y)|p

|x− y|d+θp dx dy

=
∫∫
|x−y|<1

|g(x)− g(y)|p

|x− y|d+θp dx dy + 2p‖g‖pp
∫
|x|≥1

1
|x|d+θp dx.

Definition 1.1.3. Let −∞ < s < ∞ and let 1 ≤ p ≤ ∞. The Bessel
potential spaces are defined as

Hs,p(Rd) :=
{
f ∈ S ′(Rd);

‖f‖Hs,p(Rd) := ‖F−1((1 + |ξ|2)s/2Ff)‖Lp(Rd) <∞
}
,

where ξ denotes the identity map on Rd. The tempered distribution Gs :=
F−1((1 + |ξ|2)−s/2) is called Bessel kernel of order s.

The definitions of Besov and Triebel-Lizorkin spaces require a system
{χk}∞k=0 of smooth functions on Rd that is constructed as follows. Start
with any χ ∈ S(Rd) such that Fχ has range in [0, 1], is identically 1 on
B(0, 1), and vanishes outside of B(0, 3

2). Then put χ0 := 1
(2π)d/2χ and

Fχk(ξ) := 1
(2π)d/2

(
Fχ(2−kξ)−Fχ(2−k+1ξ)

)
(k ≥ 1, ξ ∈ Rd).

As by construction ∑∞
k=0Fχk(ξ) = 1

(2π)d/2 , ξ ∈ Rd, every distribution
f ∈ S ′(Rd) can be decomposed as an infinite sum f = ∑∞

k=0 χk ∗ f of
smooth functions converging in S ′(Rd).

Definition 1.1.4. Let {χk}∞k=0 be as above. For −∞ < s < ∞ and
1 ≤ p, q ≤ ∞ the Besov spaces Bs,p

q (Rd) are defined as

Bs,p
q (Rd) :=

{
f ∈ S ′(Rd); ‖f‖Bs,pq (Rd) :=

∥∥∥{2skχk ∗ f}∞k=0

∥∥∥
`q(Lp(Rd))

<∞
}

and the Triebel-Lizorkin spaces Fs,pq (Rd) are defined as

Fs,pq (Rd) :=
{
f ∈ S ′(Rd); ‖f‖Fs,pq (Rd) :=

∥∥∥{2skχk ∗ f}∞k=0

∥∥∥
Lp(Rd;`q)

<∞
}
.
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1 Fundamentals in function spaces and interpolation theory

Remark 1.1.5. Different admissible choices for the base function χ un-
derlying the system {χk}∞k=0 yield the same Besov and Triebel-Lizorkin
spaces up to equivalent norms [142, Sec. 2.3.1/2].

Since the natural norms on Ws,p(Rd), Hs,p(Rd), Bs,p
q (Rd), and Fs,pq (Rd)

introduced above are sort of superpositions of Lp- and `q-norms, it is not
hard to see that these spaces are Banach spaces [142, Sec. 2.3] and Hilbert
spaces if p = q = 2. For a proof of the following classical identities and
inclusions we refer, e.g., to [142, Sec. 2.3.2/2.3.3/2.5.1].

Theorem 1.1.6. Let −∞ < s <∞, 1 < p <∞, and ε > 0 be subject to
further restrictions in the formulas below. Then the following continuous
inclusions and equalities up to equivalent norms hold for function spaces
on Rd.

Bs,p
p = Fs,pp (−∞ < s <∞)(i)

Hs,p = Fs,p2 (−∞ < s <∞)(ii)

Hs+ε,p ⊆ Bs,p
p ⊆ Hs−ε,p (−∞ < s <∞)(iii)

Bs,p
p = Ws,p (s ≥ 0, s /∈ Z)(iv)

Hs,p = Ws,p (s ≥ 0, s ∈ Z)(iv)

In particular, Bs,2
2 = Fs,22 = Hs,2 = Ws,2 for all s ≥ 0. Moreover, C∞c and

S are dense in any of these spaces.

1.1.2 Function spaces on domains
We introduce analogs of the function spaces defined in the previous section
on domains. For the sake of clarity let us state precisely what we mean
by a domain.

Definition 1.1.7. A subset of Euclidean space is called a domain if it is
non-empty, open, and connected.

Suppose Ξ ⊆ Rd is a domain and X(Rd) ⊆ D′(Rd) is any of the previ-
ously defined spaces. Let

RΞ : D′(Rd)→ D′(Ξ), 〈RΞf | ϕ〉 := 〈f | ϕ〉

4



1.1 Spaces of integrable and differentiable functions

be the canonical continuous restriction operator, where C∞c (Ξ) is identified
with a subset of C∞c (Rd) via extension by zero. For spaces X(Rd) that carry
a non-local norm defined via Fourier transform or convolution – that is,
Bessel potential, Besov, and Triebel-Lizorkin spaces – it is most natural
to define X(Ξ) as the range RΞX(Rd) with the topology inherited from the
quotient space X(Rd)/N (RΞ). We agree on adopting this definition also
for fractional Sobolev spaces, though here a local definition is possible as
well. We will come back to this delicate issue later on in Proposition 2.2.15.

Definition 1.1.8. Let Ξ ⊆ Rd be a domain, X ∈ {Wt,r,Hs,p,Bs,p
q ,Fs,pq },

where −∞ < s <∞, t ≥ 0 not an integer, 1 ≤ r <∞, and 1 ≤ p, q ≤ ∞.
Define

X(Ξ) := RΞX(Rd)

with quotient norm

‖g‖X(Ξ) := inf{‖f‖X(Rd); RΞf = g} (g ∈ X(Ξ)).

The Sobolev spaces of integer order carry a local norm that can directly
be restricted to domains.

Definition 1.1.9. Let Ξ ⊆ Rd be a domain, k ∈ N0, and 1 ≤ p ≤ ∞.
The Sobolev spaces of order k and integrability p on Ξ are

Wk,p(Ξ) :=
{
f ∈ D′(Ξ); ‖f‖Wk,p(Ξ) :=

( ∑
|α|≤k
‖Dαf‖pLp(Ξ)

)1/p
<∞

}
,

the right-hand side being interpreted as a supremum in the case p =∞.

The next example shows that the Sobolev spaces Wk,p(Ξ) do not coin-
cide with the ranges RΞWk,p(Rd) in general.

Example 1.1.10. Consider the sliced disc Ξ = B(0, 1)\([0, 1)×{0}) ⊆ R2

and let χ be a bounded smooth function on Ξ such that χ(x, y) = 1 if
x > 1/2 and y > 0 and χ(x, y) = −1 if x > 1/2 and y < 0. Such a
function exists since the frontier [1

2 , 1)×{0} of these two regions does not
belong to Ξ. Then χ ∈ W1,2(Ξ) is not a restriction of a function from
W1,2(Rd).

5



1 Fundamentals in function spaces and interpolation theory

Proof. We prove that there does not exist a sequence {χn}n ⊆ C∞c (Rd)
that approximates χ in W1,2(Ξ). Since C∞c (Rd) is dense in W1,2(Rd) this
will yield the claim.
To the contrary assume {χn}n was such a sequence. Since B(0, 1) \ Ξ

is a nullset, this sequence converges in W1,2(B(0, 1)) to a function χ̂ that
coincides with χ almost everywhere on Ξ. So, ∇χ̂ = 0 almost everywhere
on the region {(x, y) ∈ B(0, 1); x > 1/2}, which in turn implies that χ̂ is
constant on this region – a contradiction.

Overcoming the ambiguity pointed out by the example above requires
further conditions on Ξ. At this stage we stay fairly abstract and re-
fer to Section 2.2.4 where the notion of (Sobolev) extension domains is
substantiated by more geometrical conditions.

Definition 1.1.11. Let Ξ1,Ξ2 ⊆ Rd be two domains such that Ξ1 ⊆ Ξ2.
A partially defined linear operator D′(Ξ1)→ D′(Ξ2) is called extension op-
erator if it is a right-inverse for the restriction operator D′(Ξ2)→ D′(Ξ1).

Definition 1.1.12. Let X ∈ {Ws,p,Hs,p,Bs,p
q ,Fs,pq }, for −∞ < s <∞ and

1 ≤ p, q ≤ ∞ such that these spaces are defined. A domain Ξ ⊆ Rd is
called X-extension domain if there exists a bounded extension operator
E : X(Ξ)→ X(Rd). Any such operator is called X-extension operator for
Ξ.

On Sobolev extension domains the Sobolev spaces for integer order of
differentiability may also be defined via restrictions.

Lemma 1.1.13. Let k ∈ N and let 1 ≤ p ≤ ∞. If Ξ ⊆ Rd is a Wk,p-
extension domain, then W k,p(Ξ) and RΞWk,p(Rd) (equipped with its nat-
ural quotient norm) coincide up to equivalent norms.

Proof. The claim is a standard result on continuous factorizations of
operators between Banach spaces. In fact, if f ∈ RΞWk,p(Rd), then for
every g ∈ Wk,p(Rd) such that RΞg = f the definition of the respective
norms immediately gives

‖f‖Wk,p(Ξ) ≤ ‖g‖Wk,p(Rd).

This proves RΞWk,p(Rd) ⊆ Wk,p(Ξ) with continuous embedding. Con-
versely, let E be the supposed Wk,p-extension operator. Then every
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1.1 Spaces of integrable and differentiable functions

f ∈ Wk,p(Ξ) belongs to RΞWk,p(Rd) in virtue of f = RΞEf with an
estimate

‖f‖RΞWk,p(Rd) ≤ ‖E‖Wk,p(Ξ)→Wk,p(Rd)‖f‖Wk,p(Ξ).

Remark 1.1.14. All properties of embeddings of type X(Rd) ⊆ Y(Rd),
where X,Y ∈ {Ws,p,Hs,p,Bs,p

q ,Fs,pq } for −∞ < s <∞, 1 ≤ p, q ≤ ∞ such
that these spaces are defined, are inherited to X-extension domains Ξ in
virtue of the commutative diagram

X(Rd) Y(Rd)

X(Ξ) Y(Ξ).

RΞE

This concerns continuity as well as compactness. Moreover, if X is a
closed subspace of X(Ξ) with the inherited norm and E : X → X(Rd) is a
bounded extension operator, then an akin diagram establishes continuity
or compactness of the embedding X ⊆ Y(Ξ).

1.1.3 Vector-valued spaces
Finally we review spaces of functions with values in some finite dimensional
Banach space. In contrast to the general vector-valued setup, which bears
all the imponderables leading to the theory of geometry of Banach spaces,
the finite dimensional case can be treated by purely algebraic methods.
To this end let S(Rd;Cn) be the Fréchet space of Cn-valued smooth

and rapidly decaying functions and let S ′(Rd;Cn) be its topological dual.
Replacing S ′(Rd) by S ′(Rd;Cn), all definitions from the previous two sec-
tions can literally be adopted to a Cn-valued setting. Here, convolution
and Fourier transform are understood coordinatewise. Now, let X(Rd;Cn)
be any of the so-obtained (fractional) Sobolev, Bessel potential, Besov, and
Triebel-Lizorkin spaces. Identifying Cn-valued functions with the n-tupel
of their coordinate functions yields topological isomorphisms

S(Rd;Cn) ∼= S(Rd)n and S ′(Rd;Cn) ∼= S ′(Rd)n.

7



1 Fundamentals in function spaces and interpolation theory

It is a consequence of the very definitions of X(Rd;Cn) and X(Rd) that
this isomorphism restricts to an isomorphism

X(Rd;Cn) ∼= X(Rd)n

allowing to carry over all results from the scalar to the Cn-valued set-
ting. The same applies to spaces on domains by restricting and extending
coordinatewise. Hence, there is no loss in considering only scalar-valued
function spaces when aiming at results also for spaces of Cn-valued func-
tions. In fact, in order to clarify notation we shall do so frequently.

1.2 A crash course in potential theory
In this section we review some essentials of potential theory with a partic-
ular focus on Bessel potentials, the associated outer measures on Rd called
capacities, and their relation to more geometric notions such as Hausdorff
measure and content. For the understanding of the rest of this thesis,
the most important part certainly is Section 1.2.5 on Sobolev spaces with
partially vanishing trace.

1.2.1 Bessel capacities
The starting point for the definition of Bessel capacities is the observation
that for α > 0 the Bessel kernel Gα = F−1((1 + |ξ|2)−α/2) occurring in the
definition of the Bessel potential spaces can be represented as a parameter
integral

Gα(x) = 1
(4π)α2 Γ(α2 )

∫ ∞
0

t
α−d

2 e−
π|x|2
t
− t

4π
dt
t

(x ∈ Rd),(1.1)

see, e.g., [138, Sec. 5.3.1]. Hence, Gα(x) > 0 for all x ∈ Rd and Gα(x) <∞
except for the case x = 0 and α < d. By Tonelli’s theorem ‖Gα‖L1(Rd) = 1
and the dominated convergence reveals that Gα is a continuous [0,∞]-
valued function. So, for every f ∈ Lp(Rd), 1 ≤ p ≤ ∞, the convolution
Gα ∗ f is a p-integrable function called Bessel potential of f of order α.
Note carefully that Gα ∗ f is defined at each x ∈ Rd for which

(Gα ∗ f)(x) :=
∫
Rd
Gα(x− y)f(y) dy

8



1.2 A crash course in potential theory

exists as an element of [−∞,∞] and that we do not identify it with an
equivalence class in Lp(Rd). Since (2π)d/2F(Gα ∗ f) = FGα · Ff in the
sense of distributions, we arrive at the tautology that the Bessel potential
space Hα,p(Rd) defined in Definition 1.1.3 is the space of all such Bessel
potentials, that is,

Hα,p(Rd) = {Gα ∗ f ; f ∈ Lp(Rd)}

with norm

‖Gα ∗ f‖Hα,p(Rd) = (2π)−d/2‖f‖Lp(Rd)

modulo functions that agree almost everywhere.

Remark 1.2.1. Let α > 0. As FGα = (1 + |ξ|2)−α/2 is smooth and
strictly positive, a potential Gα ∗ f determines f ∈ S ′(Rd) uniquely. Also
note that the Bessel potential of a positive function is defined everywhere
on Rd.

The following notion of capacity is one of the cornerstones of potential
theory.

Definition 1.2.2. Let α > 0, let 1 ≤ p <∞, and let E ⊆ Rd. Denote

Cα,p(E) := inf
f

∫
Rd
f(x)p dx,

where f ranges over the set
{
f ∈ Lp(Rd); f ≥ 0 a.e. and Gα ∗ f ≥ 1 everywhere on E

}
.

Then Cα,p(E) is called (α, p)-capacity of E.

A set E can only have infinite (α, p)-capacity if there does not exist a
positive f ∈ Lp(Rd) such that Gα ∗ f ≥ 1 everywhere on E in the first
place. This in turn cannot happen if E is bounded, as can be seen from
the rough estimate

Gα ∗ (n1B(0,n))(x) = n
∫
B(x,n)

Gα(y) dy ≥ n
∫
B(0,n/2)

Gα(y) (x ∈ E),

9



1 Fundamentals in function spaces and interpolation theory

which holds for n > 2 diam(E) sufficiently large. The set functions Cα,p
are outer measures on Rd and they are outer regular in the sense that

Cα,p(E) = inf
{
Cα,p(U); E ⊆ U , U open

}
(E ⊆ Rd),

see [2, Prop. 2.3.4-6]. Therefore, it makes sense to say that a property
holds true (α, p)-quasieverywhere on a set E, abbreviated (α, p)-q.e., pro-
vided it holds everywhere on E except on a set F ⊆ E with capacity
Cα,p(F ) = 0.
There is an order in α for these notions.

Lemma 1.2.3.

(i) Let α > β > 0 and 1 ≤ p < ∞. Then Cβ,p(E) ≤ Cα,p(E) holds
for every set E ⊆ Rd. In particular, a property that holds (α, p)-
quasieverywhere also holds (β, p)-quasieverywhere.

(ii) Let α, β > 0 and 1 < p, q <∞ be such that βq < αp < d. Then each
Cα,p-nullset also is a Cβ,q-nullset

Proof. The second and much more involved statement follows from [2,
Thm. 5.5.1]. The first statement is a straightforward consequence of the
very definition of capacities but for the sake of completeness we add the
short proof. So, let E ⊆ Rd. Suppose f is competing in the definition
for Cα,p, that is f is a positive Lp(Rd)-function such that Gα ∗ f ≥ 1
everywhere on E. Since Gα−β is positive and has L1-norm equal to 1,
Gα−β ∗ f is positive, satisfies Gβ ∗ (Gα−β ∗ f) = Gα ∗ f ≥ 1 everywhere on
E and

‖Gα−β ∗ f‖p ≤ ‖Gα−β‖1‖f‖p = ‖f‖p.

Therefore Gα−β ∗ f is competing in the definition for Cβ,p and the conclu-
sion follows.

1.2.2 Quasicontinuous functions
The Bessel capacities Cα,p naturally induce a new notion of continuity.

10



1.2 A crash course in potential theory

Definition 1.2.4. Let α > 0, 1 ≤ p < ∞, and let the scalar-valued
function f be defined (α, p)-quasieverywhere on Rd. Then f is said to be
(α, p)-quasicontinuous, provided that for every ε > 0 there exists an open
set U ⊆ Rd with capacity Cα,p(U) < ε such that f is everywhere defined
and continuous on Rd \ U .

A continuous function is (α, p)-quasicontinuous for every possible choice
of α and p. The next lemma implicit in [2, Sec. 7.1] elaborates closer on
the gap between continuity and quasicontinuity.

Lemma 1.2.5. Let α > 0 and 1 ≤ p < ∞. Every (α, p)-quasicontinuous
function on Rd coincides with the pointwise limit of a sequence of contin-
uous functions on Rd outside a Borel set with vanishing (α, p)-capacity.

Proof. Let f be (α, p)-quasicontinuous on Rd. By definition, for each
n ∈ N there is an open set Un with Cα,p(Un) < 2−n such that f is every-
where defined and continuous on Rd \ Un. Tietze’s extension theorem,
see, e.g., [95, Ch. 7, Prop. 10], produces continuous functions Fn on Rd

that coincide with f on Rd \ Un. Then U = ⋂
n∈N Un is a Borel set with

Cα,p(U) = 0 and f is the pointwise limit of {Fn}n on Rd \ U .

More sophisticated examples of quasicontinuous functions are Bessel
potentials of Lp-functions.

Proposition 1.2.6 ([2, Prop. 6.1.2]). If f ∈ Lp(Rd), 1 < p < ∞, then
the Bessel potential Gα ∗ f , α > 0, is defined (α, p)-quasieverywhere and
is (α, p)-quasicontinuous.

The following considerably stronger result extends Lebesgue’s differen-
tiation theorem to the Bessel scale.

Theorem 1.2.7 ([2, Thm. 6.2.1]). Let α > 0 and let 1 < p ≤ d
α
. For

u ∈ Hα,p(Rd) let f ∈ Lp(Rd) be such that u = Gα ∗ f almost everywhere.
Then (α, p)-quasievery x ∈ Rd is a Lebesgue point for u in the Lp-sense,
that is,

lim
r→0
−
∫
B(x,r)

u(y) dy =: u(x)

exists and is finite and

lim
r→0
−
∫
B(x,r)

|u(y)− u(x)|p dy = 0.

11



1 Fundamentals in function spaces and interpolation theory

The function u is an (α, p)-quasicontinuous representative for u and coin-
cides (α, p)-quasieverywhere with Gα ∗ f .

Remark 1.2.8. Theorem 1.2.7 remains true in the case d
α
< p < ∞. To

see this, first observe that by (1.1) and Minkowski’s inequality for integrals

‖Gα‖p′ .
∫ ∞

0

( ∫
Rd

(
t
α−d

2 e−
π|x|2
t
− t

4π

)p′
dx
)1/p′ dt

t

= (p′)
d

2p′
∫ ∞

0
t
α−d

2 + d
2p′ e− t

4π
dt
t
<∞,

since α−d+ d
p′

= α− d
p
> 0. Thus, the potential Gα∗f is finite everywhere

by Hölder’s inequality and continuous by continuity of translation in the
Lp-norm. So, u := Gα ∗f is a continuous representative for u that satisfies
the assertions of Theorem 1.2.7 for every x ∈ Rd.

The previous two results allow to extract from each equivalence class
u ∈ Hα,p(Rd) a particularly regular representative.

Definition 1.2.9. Let α > 0 and let 1 < p < ∞. For u ∈ Hα,p(Rd)
the function u defined in Theorem 1.2.7 and Remark 1.2.8, respectively,
is called regular representative for u.

1.2.3 Potentials of Borel measures
Since the Bessel kernels Gα, α > 0, are continuous, the notion of Bessel
potentials can be generalized to Borel measures µ on Rd straightforwardly
by setting

Gα ∗ µ(x) :=
∫
Rd
Gα(x− y) dµ(y) (x ∈ Rd).

We agree upon the following terminology, see also [135, p. 47]. By a
measure we always mean a positive measure. A Borel measure µ on Rd is
regular if µ(K) <∞ for every compact subset K ⊆ Rd. The support of a
regular Borel measure µ is the complement of the largest open µ-nullset.
The cone of regular Borel measures on Rd supported in a set E ⊆ Rd

is denoted by M+(E). Hence, M+(Rd) is the cone of all regular Borel
measures on Rd.

12



1.2 A crash course in potential theory

The reader should be aware that in Adams and Hedberg’s book a
measure on Rd is usually implicitly assumed to be a regular Borel measure,
see [2, Sec. 1.1.2].
The subsequent inequality gives a simple sufficient criterion for a Borel

measure to be absolutely continuous with respect to a Bessel capacity. For
completeness we repeat the argument given in a more general context in
[2, Sec. 2.2/6].

Lemma 1.2.10. Let α > 0 and let 1 < p < ∞. Suppose µ ∈ M+(Rd) is
such that Gα ∗ µ ∈ Lp′(Rd). Then

µ(E) ≤ ‖Gα ∗ µ‖Lp′ (Rd)Cα,p(E)1/p

for every Borel set E ⊆ Rd.

Proof. Fix a Borel set E ⊆ Rd. Let f ∈ Lp(Rd) be positive and such that
Gα ∗ f ≥ 1 on E. Since Gα is continuous, Gα ∗ f is lower semicontinuous
by Fatou’s lemma and thus Borel measurable. Also the map

Rd × Rd → R, (x, y) 7→ Gα(x− y)f(y)

is measurable with respect to the product Borel-Lebesgue σ-algebra on
Rd × Rd. All this justifies the calculation

µ(E) ≤
∫
Rd
Gα ∗ f(x) dµ(x) =

∫
Rd
Gα ∗ µ(y)f(y) dy ≤ ‖Gα ∗ µ‖p′‖f‖p

invoking Tonelli’s theorem, Hölder’s inequality, and rotational symmetry
of Gα. The claim follows by minimizing over f .

Corollary 1.2.11. Let α > 0 and let 1 < p < ∞. If αp > d, then the
empty set is the only subset of Rd with vanishing (α, p)-capacity.

Proof. If αp > d, then Gα ∈ Lp′(Rd) by Remark 1.2.8. This implies that
the potential Gα ∗ δx = Gα(· − x) of any Dirac measure δx supported at
a point x ∈ Rd is an element of Lp′(Rd). The preceding lemma yields
Cα,p({x}) > 0 and thus the claim.

For compact sets Lemma 1.2.10 has a far-reaching extension known as
the dual definition of capacity.

13



1 Fundamentals in function spaces and interpolation theory

Proposition 1.2.12 ([2, Thm. 2.5.1]). Let α > 0 and let 1 < p < ∞. If
K ⊆ Rd is a compact set, then

Cα,p(K)1/p = sup
{
µ(K);µ ∈ M+(K) such that ‖Gα ∗ µ‖Lp′ (Rd) = 1

}
.

There exist extremal measures that realize the supremum on the right-
hand side in Proposition 1.2.12. Suitably normalized versions of these are
called capacitary measures.

Proposition 1.2.13 ([2, Thm. 2.5.3]). Let α > 0 and let 1 < p < ∞.
For each compact set K there exists a so-called (α, p)-capacitary measure,
that is, a measure µ ∈ M+(K) satisfying

Cα,p(K) =
∫
Rd

(Gα ∗ µ(x))p′ dx = µ(K).

If µ is a regular Borel measure on Rd, then for α > 0 and 1 < p <∞ a
special non-linear potential

W µ
α,p(x) =

∫ 1

0

(
µ(B(x, t))
td−αp

)p′−1 dt
t

(x ∈ Rd),

the so-called Wolff potential can be associated with µ. By an iterated
application of Fatou’s lemma, basing on the lower semicontinuity of the
map x 7→ µ(B(x, t)) for fixed t > 0, it follows that W µ

α,p is lower semi-
continuous. Below, we reprove an important inequality originally due to
Wolff [78]. In [2] this was left to the reader as an exercise, taking for
granted the proof of the similar inequality from [2, Thm. 4.5.2] and the
following deep result on fractional maximal functions due to Mucken-
houpt and Wheeden [125], see also [2, Cor. 3.6.3].

Theorem 1.2.14. Let 0 < α < d and 1 < p <∞. There exists a constant
A > 0 such that for all µ ∈ M+(Rd) it holds

A−1‖Gα ∗ µ‖pLp(Rd) ≤
∫
Rd

(
sup

0<r≤1/4
rα−dµ(B(x, r))

)p
dx ≤ A‖Gα ∗ µ‖pLp(Rd).

Theorem 1.2.15 (Wolff’s inequality). Let α > 0 and 1 < p ≤ d
α
. Then

there is a constant A > 0 such that∫
Rd

(Gα ∗ µ(x))p′ dx ≤ A
∫
Rd
W µ
α,p(x) dµ(x) (µ ∈ M+(Rd)).
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1.2 A crash course in potential theory

Proof. Let µ ∈ M+(Rd). As α ≤ d
p
< d we can infer from Theorem 1.2.14

the estimate

∫
Rd

(Gα ∗ µ(x))p′ dx .
∫
Rd

(
sup

0<r≤1/4
rα−dµ(B(x, r))

)p′
dx

with an implicit constant independent of µ. Now, if x ∈ Rd and 0 < r ≤ 1
4 ,

then

log 2 ·
(
µ(B(x, r))

(2r)d−α

)p′
≤
∫ 2r

r

(
µ(B(x, t))
td−α

)p′ dt
t

≤
∫ 1/2

0

µ(B(x, t))p′−1

t(d−α)p′

∫
B(x,t)

dµ(y) dt
t
.

Combining the previous two estimates it follows from Tonelli’s theorem
that

∫
Rd

(Gα ∗ µ(x))p′ dx .
∫
Rd

∫ 1/2

0

∫
B(y,t)

µ(B(x, t))p′−1

t(d−α)p′ dx dt
t

dµ(y)

≤
∫
Rd

∫ 1/2

0

∫
B(y,t)

µ(B(y, 2t))p′−1

t(d−α)p′ dx dt
t

dµ(y).

Taking into account |B(y, t)| ' td and substituting 2t↔ t afterwards,

.
∫
Rd

∫ 1

0

µ(B(y, t))p′−1

t(d−α)p′−d
dt
t

dµ(y),

the implicit constant being independent of the measure µ. Exponent magic
reveals (d−αp)(p′−1) = (d−α)p′−d, so that the above is just the required
estimate.

1.2.4 Thick and Ahlfors regular sets
Below, we introduce the two most important geometric concepts used later
on to specify regularity of the Dirichlet part D in the elliptic equations un-
der investigation in this thesis. We begin with the definitions of Hausdorff
measure and Hausdorff content.
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1 Fundamentals in function spaces and interpolation theory

Definition 1.2.16. Let l > 0 and let E ⊆ Rd. For 0 < ρ ≤ ∞ define

Hρ
l (E) = inf

{ ∞∑
n=1

rln; E ⊆
∞⋃
n=1

B(xn, rn), xn ∈ Rd, 0 ≤ rn ≤ ρ
}
.

Then H∞l (E) is called l-dimensional Hausdorff content of E and the in-
creasing limit

Hl(E) := lim
ρ↘0
Hρ
l (E)

is called l-dimensional Hausdorff measure of E.

Remark 1.2.17. Let l > 0 and E ⊆ Rd. Since any ball that intersects E
is contained in a ball with doubled radius centered in E,

H∞l (E) ≤ inf
{ ∞∑
n=1

rln; E ⊆
∞⋃
n=1

B(xn, rn), xn ∈ E, 0 ≤ rn ≤ ∞
}

≤ 2lH∞l (E).

This often allows to restrict to balls centered in E for estimating the l-
dimensional Hausdorff content. The resulting quantity is called centered
l-dimensional Hausdorff content.

By classical measure theory, the l-dimensional Hausdorff content is a
metric outer measure on Rd and the l-dimensional Hausdorff measure re-
stricts to a regular Borel measure. Note that by definition

H∞l (E) ≤ Hl(E) (0 < l,E ⊆ Rd)(1.2)

but that these quantities are not comparable for l fixed. Consider for
example a ball B = B(x, r) in Rd and let l > 0. Since B covers itself,
H∞l (B) ≤ rl, but it holds Hl(B) = ∞ if l < d. Moreover, Hl = H∞l = 0
if l is larger than the dimension d of Euclidean space. Proofs of all these
statements and further details can be found in Yeh’s textbook [147, §7].
By the characterizing properties of Lebesgue measure, there is a con-

stant κd > 0 such that κdHd coincides with the d-dimensional outer
Lebesgue measure [147, Thm. 29.2]. We also record the following trans-
formation properties of Hausdorff measures.
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1.2 A crash course in potential theory

Lemma 1.2.18 ([147, Thm. 29.11]). Let l ≤ d and let T : Rl → Rd be an
injective linear map. Then

Hl(T (E)) = det(T ∗T )1/2Hl(E) (E ⊆ Rl),

where on the left-hand side Hl is the l-dimensional Hausdorff measure in
Rd and on the right-hand side Hl is the l-dimensional Hausdorff measure
in Rl.

From [101] and [87] we adopt the notions of thick and Ahlfors regular
sets.

Definition 1.2.19. Let 0 < l ≤ d. A set E ⊆ Rd is called

(i) l-thick if E is not reduced to a single point and there exists a constant
A > 0 such that

H∞l (E ∩B(x, r)) ≥ Arl (x ∈ E, 0 < r < diam(E))

(ii) l-Ahlfors regular, abbreviated l-set, if there exists a constant A > 0
such that

A−1rl ≥ Hl(E ∩B(x, r)) ≥ Arl (x ∈ E, 0 < r ≤ 1).

Remark 1.2.20. The (d−1)-Ahlfors regular subsets of Rd also run under
the name of sets satisfying the Ahlfors-David condition.

The next lemma shows that for l-sets and bounded l-thick sets the
restrictions of the radii in Definition 1.2.19 are in some sense arbitrary.
For the proof we remind the Vitali covering theorem as it is stated and
proved in [58, Sec. 1.5].

Theorem 1.2.21 (Vitali covering theorem). Let E be any collection of
closed balls in Rd with a common finite bound on their radii. Then there
exists a countable subcollection F ⊆ E of mutually disjoint balls such that

⋃
B∈E

B ⊆
⋃
B∈F

5B.
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Remark 1.2.22. Since B ⊆ B ⊆ 5B ⊆ 6B for any open ball B, Theo-
rem 1.2.21 remains valid for collections of open balls upon changing the
blow up constant from 5 to 6.

Lemma 1.2.23. Let 0 < l ≤ d and suppose E ⊆ Rd is such that there
exists r0 > 0 and A > 0 such that

H∞l (E ∩B(x, r)) ≥ Arl (x ∈ E, 0 < r ≤ r0).

Let r1 > 0. Then upon changing the value of A the same holds true for
every x ∈ E and every 0 < r ≤ r1. An analogous statement holds if there
exists r0 > 0 and A > 0 such that

A−1rl ≥ Hl(E ∩B(x, r)) ≥ Arl (x ∈ E, 0 < r ≤ r0).

Proof. Of course only the case r1 ≥ r0 is of concern. For the first state-
ment note that if x ∈ E and r0 ≤ r ≤ r1, then

H∞l (E ∩B(x, r)) ≥ H∞l (E ∩B(x, r0)) ≥ Arl0 ≥ (Arl0r−l1 )rl.

The same holds true if the Hausdorff content H∞l is replaced by the Haus-
dorff measure Hl, which gives the lower estimate for the second statement.
For the upper estimate let again x ∈ E, r0 ≤ r ≤ r1, and observe

Hl(E ∩B(x, r)) ≤ Hl(E ∩B(x, r1)) ≤
(
r−l0 Hl(E ∩B(x, r1))

)
rl.

It remains to bound Hl(E ∩ B(x, r1)) independently of x ∈ E. To this
end, cover E ∩ B(x, r1) by open balls of radius r0

6 centered in E. By the
Vitali covering theorem there is a countable collection {Bj}j∈J of mutually
disjoint such balls that satisfy E∩B(x, r1) ⊆ ⋃j∈J 6Bj. As the cardinality
of J is at most

#J ≤ |B(x1, r1 + r0/6)|
|B(0, r0/6)| = (1 + 6r1/r0)d

it follows

Hl(E ∩B(x, r1)) ≤
∑
j∈J
Hl(E ∩ 6Bj) ≤ A−1#Jrl0 ≤ A−1(1 + 6r1/r0)drl0.

This completes the proof.
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We continue with some elementary permanence properties.

Lemma 1.2.24. Let 0 < l ≤ d. If E1, E2 ⊆ Rd are l-thick or l-Ahlfors
regular, respectively, then so is E1 ∪ E2.

Proof. First suppose both E1 and E2 are l-thick with respective con-
stants A1 and A2 as in Definition 1.2.19. By symmetry we can assume
diam(E1) ≤ diam(E2). If x ∈ E1 ∪ E2, then by employing l-thickness of
one of the sets that contains x,

H∞l
(
(E1 ∪ E2) ∩B(x, r)

)
≥ min{A1, A2}rl (0 < r < diam(E1)).

If diam(E2) is finite, then Lemma 1.2.23 directly yields the claim. Other-
wise, we have to take into account that for radii with

2 d(E1, E2) + 2 diam(E1) < r < diam(E2)

the estimate

H∞l
(
(E1 ∪ E2) ∩B(x, r)

)
≥ A22−lrl.

holds as well since in this caseB(x, r) contains a ball with radius r
2 centered

in E2.
Now, suppose that E1 and E2 are l-sets with respective constants A1 and

A2 as in Definition 1.2.19. The required lower estimate follows as above
upon replacing H∞l by Hl. For the upper estimate let x ∈ E1 ∪ E2. Due
to Lemma 1.2.23 it suffices to consider radii r ≤ 1

2 . If B(x, r) intersects
only one of the sets E1 and E2, then clearly

Hl

(
(E1 ∪ E2) ∩B(x, r)

)
≤ max{A−1

1 , A−1
2 }rl.

If B(x, r) intersects both E1 and E2, then there exist xj ∈ Ej, j = 1, 2,
such that B(x, r) ⊆ B(xj, 2r). Consequently,

(E1 ∪ E2) ∩B(x, r) ⊆
(
E1 ∩B(x1, 2r)

)
∪
(
E2 ∩B(x2, 2r)

)
and due to 2r ≤ 1 this yields the claim

Hl

(
(E1 ∪ E2) ∩B(x, r)

)
≤ 2l(A−1

1 + A−1
2 )rl.
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Lemma 1.2.25. If E ⊆ Rd is l-thick for some 0 < l ≤ d, then it is
m-thick for every 0 ≤ m < l.

Proof. Inspecting the definition of thick sets, the claim turns out to be
a direct consequence of the inequality

N∑
j=1

rmj =
N∑
j=1

(rlj)m/l ≥
( N∑
j=1

rlj

)m/l

for positive real numbers r1, . . . , rN .

It turns out that every bounded l-set is also l-thick, although Hausdorff
measure and Hausdorff content are not comparable in general as we have
already seen.

Lemma 1.2.26. Let 0 < l ≤ d. If E ⊆ Rd is a bounded l-set, then there
is a constant A > 0 such that

A−1rl ≥ H∞l (E ∩B(x, r)) ≥ Arl (x ∈ E, 0 < r ≤ 1).

In particular, E is l-thick.

Proof. We claim

H∞l (F ) ≤ Hl(F ) . H∞l (F )

for all subsets F of E. By the l-set property of E this suffices to con-
clude. Due to (1.2) only the second estimate is of concern and owing to
Remark 1.2.17 we can replace the l-dimensional Hausdorff content by its
centered counterpart for this purpose.
So, fix F ⊆ E and let {Bn}n∈N be a covering of F by open balls Bn

with radius rn centered in F . If rn ≤ 1, then Hl(E ∩ Bn) . rln since E
is an l-set and if rn > 1, then certainly Hl(E ∩ Bn) ≤ Hl(E)rln. Note
that 0 < Hl(E) < ∞ holds since the bounded set E can be covered by
finitely many balls B with radius 1 centered in E, each of which satisfies
0 < Hl(E ∩B) <∞ by the l-set property. Altogether,

∞∑
n=1

rln &
∞∑
n=1
Hl(E ∩Bn) ≥ Hl

(
E ∩

∞⋃
n=1

Bn

)
≥ Hl(F ).

The claim follows by minimizing over all such coverings of F .
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1.2 A crash course in potential theory

For compact sets Lemma 1.2.26 has a far-reaching generalization due to
Frostmann [61], see also [2, Thm. 5.1.12].

Theorem 1.2.27. Let l > 0 and let K ⊆ Rd be a compact set. Then

µ(K) ≤ H∞l (K)

for all µ ∈ M+(K) with the property that µ(B(x, r)) ≤ rl holds for all open
balls B(x, r) ⊆ Rd. Furthermore, there exist a constant A > 0 depending
only on d and a measure µ ∈ M+(K) satisfying µ(B(x, r)) ≤ rl for all
open balls B(x, r) ⊆ Rd, such that

H∞l (K) ≤ Aµ(K).

A common setup in the theory of partial differential equations is that
of a bounded open d-set whose boundary is a (d− 1)-set [84]. In fact, this
will become one of our standard assumptions in Chapters 4 - 6. Surpris-
ingly, these two purely measure-theoretic assumptions imply a much more
geometrical thickness-property of the set under consideration.

Definition 1.2.28. A bounded set Ξ ⊆ Rd is κ-plump if there exists κ > 0
such that for each x ∈ Ξ and each r ∈ (0, diam(Ξ)] the set Ξ ∩ B(x, r)
contains a ball of radius κr centered in Ξ.

Remark 1.2.29. The notion of κ-plump sets is taken fromVäisälä [144].
The concept also runs under interior corkscrew condition [84].

Proposition 1.2.30. If Ξ ⊆ Rd is a bounded open d-set and ∂ Ξ is a
(d− 1)-set, then Ξ is κ-plump.

Some variant of the following lemma required in the proof of Proposi-
tion 1.2.30 may be well known but for the reader’s convenience we include
the short argument.

Lemma 1.2.31. If Ξ ⊆ Rd is open and ∂ Ξ is a (d− 1)-set, then for each
r0, t0 > 0 there exists C > 0 such that∣∣∣{x ∈ Ξ : |x− x0| < r, d(x,Rd \ Ξ) ≤ tr}

∣∣∣ ≤ Ctrd

for all x0 ∈ Ξ, r ∈ (0, r0], and t ∈ (0, t0].
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Proof. Put

E := {x ∈ Ξ : |x− x0| < r, d(x,Rd \ Ξ) ≤ tr}.

Then for each x ∈ E there exists bx ∈ ∂ Ξ such that x ∈ B(bx, tr).
The Vitali covering theorem, Theorem 1.2.21, yields a countable subset
J ⊆ E such that the balls {B(bx, tr)}x∈J are mutually disjoint and such
that {B(bx, 6tr)}x∈J is a covering of E. Hence, |E| . #J(tr)d, where #J
denotes the cardinality of J .
It remains to establish the bound #J . t1−d. To this end, fix z ∈ J . If

y ∈ B(bx, tr) for some x ∈ J , then by the triangle inequality

|y − bz| ≤ 3tr + 2r < (3t0 + 2)r.

Since Hd−1(∂ Ξ ∩ B(bx, r)) ' rd−1 remains valid for all bx ∈ ∂ Ξ and all
r ∈ (0, (3t0 + 2)r0] with implicit constants depending only on Ξ, r0, and
t0, see Lemma 1.2.23, we obtain

((3t0 + 2)r)d−1 & Hd−1
(
∂ Ξ ∩B(bz, (3t0 + 2)r)

)
≥
∑
x∈J
Hd−1

(
∂ Ξ ∩B(bx, tr)

)
.

The right-hand side is comparable to #J(tr)d−1 since ∂ Ξ is a (d− 1)-set.
Thus, #J . t1−d and the conclusion follows.

Proof of Proposition 1.2.30. By Lemma 1.2.23 there exists c > 0 such
that

|Ξ ∩B(x0, r)| ≥ crd (x0 ∈ Ξ, r ∈ (0, diam(Ξ)]).

Choose r0 := 1
2 diam(Ξ) and t0 = 1 in Lemma 1.2.31 and apply the esti-

mate with t = min{ c
2C , 1} to conclude

∣∣∣∣{x ∈ Ξ : |x− x0| <
r

2 , d(x,Rd \ Ξ) < tr

2

}∣∣∣∣ ≥ crd

2d −
crd

2d+1

for all x0 ∈ Ξ and all r ∈ (0, diam(Ξ)]. In particular, these sets are
non-empty and so we can choose κ = t.
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1.2 A crash course in potential theory

The following comparison theorem eventually relates Bessel capacities
to the more handy notion of Hausdorff content. It is in fact a simplified
version of [2, Thm. 5.1.13] that suits best to our purposes. For convenience
we include a short proof.

Theorem 1.2.32 (Comparison theorem). Let 1 < p < ∞ and suppose
α, l > 0 are such that d− l < αp ≤ d. Then there exists a constant A such
that for all compact sets K ⊆ Rd it holds

H∞l (K) ≤ ACα,p(K).

Proof. The proof is by combining Frostmann’s theorem, Theorem 1.2.27,
with Wolff’s inequality, Theorem 1.2.15.
Only the case H∞l (K) > 0 is of interest. Let µK ∈ M+(K) be the

measure provided by Frostmann’s theorem, that is µK(B(x, r)) ≤ rl holds
for all open balls B(x, r) ⊆ Rd and in addition H∞l (K) ≤ AdµK(K) for
a constant Ad depending only on d. The corresponding Wolff potential
satisfies

W µK
α,p (x) =

∫ 1

0

(
µK(B(x, t))

td−αp

)p′−1 dt
t

≤
∫ 1

0

(
tl

td−αp

)p′−1 dt
t

= p− 1
l − d+ αp

<∞

and thus by Wolff’s inequality

‖Gα ∗ µK‖p
′

p′ . µK(K) <∞.

This in turn justifies the application of Lemma 1.2.10 yielding

Cα,p(K) ≥ µK(K)p
‖Gα ∗ µK‖pp′

& µK(K)p−p/p′ = µK(K).

Note carefully that due to 0 < H∞l (K) ≤ AdµK(K) the measure µK is
non-zero and as Gα is a continuous strictly positive function, also Gα ∗µK
is non-zero. The conclusion follows from µK(K) ≥ A−1

d H∞l (K).

Concerning nullsets we have the following addendum.
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1 Fundamentals in function spaces and interpolation theory

Corollary 1.2.33. Let 1 < p < ∞ and suppose α, l > 0 are such that
d − l < αp < ∞. Then every Cα,p-nullset is also an Hl-nullset and thus
an H∞l -nullset.

Proof. Suppose E ⊆ Rd is a Cα,p-nullset. Since Cα,p is outer regular,
there is a Gδ-set G, that is, a countable intersection of open sets, such
that E ⊆ G and Cα,p(G) = 0. This set can be constructed as in the proof
of Lemma 1.2.5. So, upon replacing E with G we can right away assume
that E is a Borel set.
Let K be any compact subset of E. Then Cα,p(K) = 0 and thus
H∞l (K) = 0 by either Theorem 1.2.32 or Corollary 1.2.11. We claim
Hl(K) = 0. Indeed, assume to the contrary that Hl(E) > ε > 0. Then,
by definition of Hausdorff measure, there exists some ρ > 0 such that
Hρ
l (K) > ε. This means that every countable covering of K by open balls

B(xn, rn) satisfies
∞∑
n=1

rln > ε or
∞∑
n=1

rln > ρl

depending on whether or not rn ≤ ρ holds for every n ∈ N. In any case,
this contradicts H∞l (K) = 0. Since Hl is a regular Borel measure, the
considerations above imply Hl(E) = 0 and thus H∞l (E) = 0.

1.2.5 Sobolev spaces with partially vanishing trace
The Sobolev spaces Wk,p

E (Ξ) introduced in this section should be thought
of as the subspace of Wk,p(Ξ) whose members u satisfy

Dαu = 0 (on E ⊆ Ξ)(1.3)

for all multiindices of order |α| ≤ k−1. In absence of any further regularity
assumption on Ξ or E, these spaces are usually defined as the completion
of a suitable set of test functions vanishing in a neighborhood of E, see,
e.g., [129, Sec. 4.1].

Definition 1.2.34. Let Ξ ⊆ Rd be a domain and E be a subset of Ξ.
Define the set of test functions

C∞E (Rd) :=
{
u; u ∈ C∞c (Rd) and d(supp(u), E) > 0

}
and let C∞E (Ξ) := {u|Ξ;u ∈ C∞E (Rd)} be its restriction to Ξ.
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1.2 A crash course in potential theory

Definition 1.2.35. Let Ξ ⊆ Rd be a domain and let E be a subset of Ξ.
For k ∈ N and 1 ≤ p < ∞ denote the closure of C∞E (Ξ) in Wk,p(Ξ) by
Wk,p

E (Ξ).

Remark 1.2.36. The space Wk,p
∂Ξ(Ξ) coincides with Wk,p

0 (Ξ), the closure
of C∞c (Ξ) in Wk,p(Ξ). On the contrary note carefully that in general
Wk,p
∅ (Ξ) is a proper subspace of Wk,p(Ξ), see Example 1.1.10 and its proof.

Having in mind the Sobolev-Bessel equivalence Wk,p(Rd) = Hk,p(Rd),
Theorem 1.1.6, for k ∈ N, 1 < p <∞ each equivalence class u ∈Wk,p(Rd)
can be assigned a regular representative as in Definition 1.2.9. We keep
on denoting this representative by gothic letters u. For |α| ≤ k − 1 the
regular representative of Dαu is denoted Dαu, not to be confused with the
derivative in whatever sense of u.
Regular representatives allow to give an intrinsic characterization of the

Sobolev spaces Wk,p
E (Rd) that is much more in the spirit of the pointwise

trace condition (1.3). This remarkable result known as the (k, p)-synthesis
is due to Hedberg and Wolff [78], see also [2, Thm. 9.1.3].

Theorem 1.2.37. Let k ∈ N, let 1 < p < ∞, and let u ∈ Wk,p(Rd).
Suppose E ⊆ Rd is closed. Then u ∈Wk,p

E (Rd) if and only if

Dαu = 0 ((k − |α| , p)-quasieverywhere on E)

for every multiindex α ∈ Nd
0 of order |α| ≤ k − 1, that is, if and only if

for every such multiindex α and for (k− |α| , p)-quasievery y ∈ E it holds

lim
r→0
−
∫
B(y,r)

Dαu(x) dx = 0.

Hedberg and Wolff’s theorem manifests the use of capacities for
studying traces of Sobolev functions. If D is sufficiently tame, e.g. Ahlfors
regular, then capacities can be avoided by replacing them by Hausdorff
measures. Keep in mind that if a property holds (1, p)-quasieverywhere,
then it a fortiori holds Hl-almost everywhere if d− p < l ≤ d but that the
converse is false in general. Still, by means of a deep extension theorem
due to Jonsson and Wallin [87], the following can be proved.

25



1 Fundamentals in function spaces and interpolation theory

Proposition 1.2.38 ([37, Cor. 4.5]). Let k ∈ N, let 1 < p < ∞, and let
u ∈ Wk,p(Rd). Suppose E ⊆ Rd is closed and l-Ahlfors regular for some
d− p < l ≤ d. Then u ∈Wk,p

E (Rd) if and only if

Dαu = 0 (Hl-almost everywhere on E)

for every multiindex α ∈ Nd
0 of order |α| ≤ k − 1, that is, if and only if

for every such multiindex α and for Hl-almost every y ∈ E it holds

lim
r→0
−
∫
B(y,r)

Dαu(x) dx = 0.

For more information on the spaces Wk,p
E the reader can refer to [2,

Ch. 9/10] and [37]. A third characterization in terms of weighted Lp-
spaces will be given in Chapter 2 on Hardy’s inequality.

1.2.6 Three concepts of dimension from geometric
measure theory

Perhaps the most common notion of dimension in geometric measure the-
ory is the one attributed to Hausdorff.

Definition 1.2.39 ([2, p.133]). For every E ⊆ Rd the number

dimH(E) := sup{s > 0; Hs(E) = 0} = inf{s > 0; Hs(E) =∞}

is called Hausdorff dimension of E.

Example 1.2.40. The Hausdorff dimension of an l-set E ⊆ Rd is equal
to l. To see this, first note that for any ball B with radius 1 centered in
E we have

0 < Hl(E ∩B) <∞.

In particular Hl(E) > 0, so that dimH(E) ≤ l. On the other hand, for
any ball B as above we must have dimH(E∩B) = l and so Hs(E∩B) = 0
for every 0 < s < l. Since E can be covered by countably many such
balls, Hs(E) = 0 showing that dimH(E) ≥ s. Since s < l was arbitrary,
dimH(E) ≥ l follows.
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1.2 A crash course in potential theory

In the rest of this section we compare the notion of Hausdorff dimension
with two other concepts of dimension that turned out particularly useful
in the orbit of Hardy-type inequalities, see, for instance, [51, 82, 83, 143]
and references therein, as well as Section 2.4. Most important for us will
be that the dimension of a bounded l-set is equal to l, no matter which of
these concepts of dimension is used. This can be deduced from existing
results in the literature. However, the presentation of the matter in this
section allows for a short and self-contained proof.

Definition 1.2.41 ([83, Def. 2.2]). If E ⊆ Rd is a set with empty interior,
then define A(E) to be the set of all 0 < s ≤ d for which there exists a
constant A such that∫

B(x,r)
d(y, E)s−d dy ≤ Ars (x ∈ E, 0 < r <∞).

The infimum dimA(E) := infA(E) is called Aikawa dimension of E. If
E ⊆ Rd has non-empty interior, then set dimA(E) := d.

Remark 1.2.42. We agree upon setting 00 := 1 in Definition 1.2.41. This
is of concern only when |E| > 0 and s = d.

Remark 1.2.43. Subsets of Rd with Aikawa dimension strictly less than
d are more commonly known under the name of porous sets, a notion from
geometric measure theory closely related to κ-plumpness of the comple-
ment of a set. In fact, E ⊆ Rd is porous if there exists κ ≤ 1 such that
the following statement is true: For every ball B(x, r) with x ∈ Rd and
0 < r ≤ 1 there is y ∈ B(x, r) such that B(y, κr)∩E = ∅. A proof of this
rather recent result is found in [103], taking into account [108, Thm. 5.2].
The geometric characterization of porosity also explains the nomenclature.

Definition 1.2.44 ([143, Def. 2.2]). If E ⊆ Rd, then define AS(E) to
be the set of all s > 0 for which there exists a constant A > 0 with the
following property: Whenever 0 < r < R < 2 diam(E) and x ∈ E, then
at least A(R/r)s balls centered in E with radius r are needed to cover
E ∩ B(x,R). The supremum dimAS(E) := supAS(E) is called lower
Assouad dimension of E.

Remark 1.2.45. There is a related notion of upper Assouad dimension,
which will not be of concern in the following. Definitions and further
information can be found in [143] and references therein.
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1 Fundamentals in function spaces and interpolation theory

Below we prove three lemmas elaborating on the interconnections be-
tween the different concepts of dimension. The first one is known in a
much more general context [103] but for convenience we give an elemen-
tary proof.

Lemma 1.2.46. For every E ⊆ Rd the inequality dimAS(E) ≤ dimA(E)
holds true.

Proof. Let s ∈ AS(E), see Definition 1.2.44. We have to prove s ≤ d

in case that E has non-empty interior and s ≤ t for every t ∈ A(E), see
Definition 1.2.41, in case that E has empty interior.
Let x ∈ E and let 0 < r < R

2 < diam(E). Inductively construct a
maximal collection B1, . . . , BN of mutually disjoint balls with radius r
centered in E ∩B(x,R). Here, maximal is in the sense that the collection
cannot be extended to a larger one sharing the same properties. Then
E ∩ B(x,R) ⊆ ⋃N

j=1 2Bj, for if there were y ∈ E ∩ B(x,R) that is not
contained in any of the balls 2Bj, then B(y, r) would be a ball disjoint
to every Bj, thereby contradicting maximality. Hence, by definition of
AS(E) there is a constant A > 0 that depends only on s and E such that
N ≥ A(R/(2r))s. As every ball Bj is contained in B(x, 2R), this latter
ball contains at least N ≥ A(R/(2r))s mutually disjoint balls of radius r
with center in E.
First assume that E has non-empty interior. Then the estimate

|B(x, 2R)| ≥
N∑
j=1
|Bj| ' Nrd ≥ ARs

2s rd−s

shows that rd−s remains bounded in the limit r → 0, i.e., that s ≤ d. If
now t ∈ A(E), then

C(2R)t ≥
∫
B(x,2R)

d(y, E)t−d dy ≥
N∑
j=1

∫
Bj

d(y, E)t−d dy

for some constant C > 0 depending only on t and E. Since the balls Bj

are centered in E, it follows

≥
N∑
j=1

∫
Bj
rt−d dy = |B(0, 1)|Nrt ≥ |B(0, 1)|ARs

2s rt−s.

As above, this implies s ≤ t and the proof is complete.
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1.2 A crash course in potential theory

The second lemma was essentially proved in [143, Sec. 4.4].

Lemma 1.2.47. The lower Assouad dimension of an l-thick set E ⊆ Rd,
0 < l ≤ d, is at least l.

Proof. It suffices to prove l ∈ AS(E), see Definition 1.2.44. To this end
let x ∈ E, 0 < r < R < 2 diam(E), and suppose B1, . . . , BN are balls
centered in E with radius r that cover E ∩ B(x,R). Since E is l-thick,
there is a constant A > 0 such that

H∞l (E ∩B(y, s)) ≥ Asl (y ∈ E, 0 < s < 2 diam(E)),

see Lemma 1.2.23. Thus,

Nrl ≥
N∑
n=1
H∞l (Bn) ≥

N∑
n=1
H∞l (E ∩Bn) ≥ H∞l (E ∩B(x,R)) ≥ ARl,

showing N ≥ A(R/r)l as desired.

To come full circle it remains to give an upper bound for the Aikawa
dimension of Ahlfors regular sets. The subsequent lemma closely follows
an argument in [102, Lem. 2.1], where a slightly different notion of l-sets
has been used.

Lemma 1.2.48. The Aikawa dimension of a bounded l-Ahlfors regular
set E ⊆ Rd, 0 < l ≤ d, is at most l.

Proof. We may assume l < d as by definition there are no subsets of Rd

with Aikawa dimension larger than d. In this case E has empty interior:
Indeed, by the l-set property the intersection of E with any ball with
radius less than 1 has finite l-dimensional Hausdorff measure but the l-
dimensional Hausdorff measure of a whole such ball is infinite since a ball
in Rd has Hausdorff dimension d.
Let l < s < d be arbitrary. We shall prove s ∈ A(E), which implies

dimA(E) = infA(E) ≤ l as required.
For the rest of the proof fix x ∈ E. First assume 0 < R < 2 diam(E).

Integration over the level sets of dE gives∫
B(x,R)

d(y, E)s−d dy =
∫ ∞
Rs−d

∣∣∣{y ∈ B(x,R); d(y, E)s−d ≥ λ
}∣∣∣ dλ.(1.4)
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To estimate the measure of these level sets, temporarily fix y ∈ B(x,R)
and λ ≥ Rs−d. Since

Eλ :=
{
z ∈ B(x,R); d(y, E)s−d ≥ λ

}
=
{
z ∈ B(x,R); d(y, E) ≤ λ1/(s−d)

}
,

we can cover Eλ by open balls with radius 2λ1/(s−d) ≤ 2R centered in E
that are contained in B(x, 3R). The Vitali covering theorem allows to
extract a countable subcollection {Bj}j∈J of mutually disjoint balls such
that Eλ ⊆

⋃
j∈J 6Bj. According to Lemma 1.2.23 there is a constant A > 0

depending only on E and l such that

A−1rl ≥ Hl(E ∩B(z, r)) ≥ Arl (z ∈ E, 0 < r < 6 diam(E)).

Since every ball Bj is entirely contained in B(x, 3R),

A2lλl/(s−d)#J ≤
∑
j∈J
Hl(E ∩Bj) ≤ Hl(E ∩B(x, 3R)) ≤ A−1(3R)l

and thus

|Eλ| ≤
∑
j∈J
|6Bj| ' 6dλd/(s−d)#J . λ(d−l)/(s−d)Rl

for an implicit constant depending only on A, l, and d. We reinsert this
estimate in (1.4) to find∫
B(x,R)

d(y, E)s−d dy . Rl
∫ ∞
Rs−d

λ(d−l)/(s−d) dλ . RlR(s−d)(s−l)/(s−d) = Rs

as desired.
In the case R ≥ 2 diam(E) we use the estimate d(y, E) ≥ 1

2 |y − x| for
every y ∈ Rd \B(x, 2 diam(E)) to find∫

B(x,R)
d(y, E)s−d dy ≤

∫
B(x,2 diam(E))

d(y, E)s−d dy

+
∫
B(x,R)

2d−s |y − x|s−d dy

. Rs

by the claim for R = 2 diam(E) and a simple computation of the rightmost
integral. Altogether, this verifies s ∈ A(E).
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1.3 A glimpse on interpolation theory

Since Lemma 1.2.26 asserts that every bounded l-set is l-thick, we obtain
coincidence of all three notions of dimensions for bounded l-sets as the
synthesis of the three lemmas above and Example 1.2.40.

Theorem 1.2.49. If E ⊆ Rd is a bounded l-set, 0 < l ≤ d, then

dimAS(E) = dimA(E) = dimH(E) = l,

that is, the lower Assouad dimension, the Aikawa dimension, and the
Hausdorff dimension coincide for E.

1.3 A glimpse on interpolation theory

Interpolation theory of Banach spaces will play a fundamental role for re-
solving Kato’s conjecture for mixed boundary conditions. In this section
we collect the essentials we are going to fall back upon at several occasions.
A particular focus lies on obtaining quantitative versions of common the-
orems that are usually quoted only qualitatively. For the presentation of
the matter we essentially follow Bergh and Löfström [36].
An interpolation couple X = (X0,X1) is a pair of complex Banach spaces
X0 and X1 that are both included into the same linear Hausdorff space X.
In this case the spaces ∆(X ) := X0 ∩ X1 with norm

‖x‖X0∩X1 := max{‖x‖X0 , ‖x‖X1}

and Σ(X ) := X0 + X1 with norm

‖x‖X0+X1 = inf{‖x0‖X0 + ‖x1‖X1 ; xi ∈ Xi, x = x0 + x1}

are Banach spaces [142, Sec. 1.2.1] and ∆(X ) ⊆ X0,X1 ⊆ Σ(X ) holds
with continuous inclusions. If X and Y are interpolation couples, we write
L(X ,Y) for the space of linear operators Σ(X ) → Σ(Y) that restrict to
bounded linear operators Xi → Yi for i = 0, 1. Any such operator is
bounded from Σ(X ) into Σ(Y).
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1 Fundamentals in function spaces and interpolation theory

1.3.1 Abstract interpolation theory
In order to make precise the definition of interpolation spaces we need to
recall some notions from category theory, see [36, Sec. 2.1] and references
therein.

Definition 1.3.1. A category C consists of a class of objects and a class of
morphisms. Between objects A,B and morphisms T a three place relation
T : A y B is defined such that the following hold for all objects A,B,C
and all morphisms R, S, T in C:

(i) If T : Ay B and S : B y C, then there is a morphism ST : Ay C,
the product of S and T .

(ii) The product of morphisms meets the law R(ST ) = (RS)T of asso-
ciativity.

(iii) For all objects A ∈ C there is a morphism 1A : A y A such that
T1A = 1AT = T for all morphisms T : Ay A.

Definition 1.3.2. Let C1 and C be two categories. A covariant functor F

from C1 to C is a rule that assigns to each object A in C1 an object F(A)
in C and to each morphism T in C1 a morphism F(T ) in C in a way such
that the following hold for all objects A, B and all morphisms S, T in C1:

(i) If T : Ay B, then F(T ) : F(A) y F(B).

(ii) The law of multiplicativity F(ST ) = F(S)F(T ).

(iii) Preservation of the identity maps F(1A) = 1F(A).

Let now C be the category of Banach spaces with L(X ,Y) as the mor-
phisms X y Y . The product of two morphisms is defined by concatena-
tion and for each Banach space X the morphism 1X is the identity map on
X . Moreover, let C1 be the category of interpolation couples with L(X ,Y)
as the morphisms X y Y . Again the product of morphisms is defined
by concatenation and for each interpolation couple X the morphism 1X is
the identity map on Σ(X ).

Definition 1.3.3. Let C be the category of complex Banach spaces and C1
the category of interpolation couples. A covariant functor F from C1 to C
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is called interpolation functor if for all interpolation couples X = (X0,X1),
it holds

∆(X ) ⊆ F(X ) ⊆ Σ(X )

with continuous inclusion and if for all morphisms T ∈ L(X ,Y) from X to
another interpolation couple Y the operator F(T ) : F(X ) → F(Y) is the
restriction of T to F(X ). Each space F(X ) is called interpolation space
between X0 and X1.

So, if X = (X0,X1) and Y = (Y0,Y1) are interpolation couples and F

is an interpolation functor, then each operator T : Σ(X ) → Σ(Y) that
restricts to a bounded operator X0 → Y0 and X1 → Y1, also restricts to
a bounded operator F(X ) → F(Y). All interpolation functors we shall
discuss in the next sections will share the following additional property.

Definition 1.3.4. An interpolation functor F is called exact of type θ,
0 ≤ θ ≤ 1, if for all interpolation couples X = (X0,X1) and Y = (Y0,Y1)
and every operator T ∈ L(X ,Y) the estimate

‖T‖F(X )→F(Y) ≤ ‖T‖
1−θ
X0→Y0‖T‖

θ
X1→Y1

holds true.

The following retraction-coretraction theorem has many powerful and
rather unexpected applications.

Theorem 1.3.5 ([142, Sec. 1.2.4]). Let X = (X0,X1) and Y = (Y0,Y1)
be interpolation couples and let

R ∈ L(X ,Y) and E ∈ L(Y ,X )

be such that E is a right-inverse for R, that is, RE is the identity operator
on Σ(Y). Let F be any interpolation functor. Then ER restricts to a
bounded projection in F(X ) and

E : F(Y)→ ER(F(X ))

is an isomorphism of Banach spaces. Here, the closed subspace ER(F(X ))
of F(X ) carries the inherited norm.
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A first consequence is that projections commute with interpolation func-
tors.

Corollary 1.3.6 ([142, Sec. 1.17.1]). Let X = (X0,X1) be an interpolation
couple and let Z be a complemented subspace of Σ(X ) with corresponding
projection P ∈ L(X ). Then (Z ∩ X0,Z ∩ X1) is again an interpolation
couple and

F(Z ∩ X0,Z ∩ X1) = Z ∩ F(X0,X1)

holds with equivalent norms for every interpolation functor F.

Proof. Of course Y := (Z ∩ X0,Z ∩ X1) is an interpolation couple. The
claim follows from Theorem 1.3.5 applied with R = P and E ∈ L(Y ,X )
the identity.

In view of Sections 1.1.2 and 1.1.3 the following corollaries are the ulti-
mate instruments for reducing interpolation results for Cn-valued spaces
on domains to their scalar-valued analogs on the whole space.

Corollary 1.3.7. Assume the setting of Theorem 1.3.5. If R(F(X )) is
equipped with the quotient norm

‖u‖R(F(X )) := inf{‖x‖F(X ); Rx = u},

then F(Y) = R(F(X )) with equivalent norms.

Proof. Applying R to the equality E(F(Y)) = ER(F(X )) of sets, gives

F(Y) = R(F(X ))

as sets. Moreover, every u ∈ R(F(X )) can be obtained as u = R(Eu).
Since F is an interpolation functor, E : F(Y)→ F(X ) is bounded. Hence,

‖u‖R(F(X )) ≤ ‖E‖F(Y)→F(X )‖u‖F(Y)

and the converse estimate is for free thanks to the open mapping theorem.
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Corollary 1.3.8. Let X j = (X j
0 ,X

j
1 ), 1 ≤ j ≤ n, be interpolation couples.

Then

n∏
j=1
X j :=

( n∏
j=1
X j

0 ,
n∏
j=1
X j

1

)

is again an interpolation couple. Moreover, for every interpolation functor
F and every fixed choice for the `p-norm on product spaces,

F
( n∏
j=1
X j

)
=

n∏
j=1

F(Xj)(1.5)

with equivalent norms.

Proof. Take the product of the ambient Hausdorff spaces to see that the
finite product of interpolation couples is again an interpolation couple.
For 1 ≤ k ≤ n let Rk ∈ L(∏n

j=1X j,X k) be the map extracting the kth
component and let Ek ∈ L(X k,

∏n
j=1X j) be the map filling at the kth

position of a vector of zeros. Then P k := EkRk is the projection onto the
kth component and Theorem 1.3.5 yields

{0} × · · · × F(X k)× · · · × {0} = P k
(
F
( n∏
j=1
X j

))
(1 ≤ k ≤ n)

as sets for every interpolation functor F. This implies (1.5) as an equality
of sets. Furthermore, writing x ∈ F(∏n

j=1X j) as x = ∑n
k=1E

kRkx, we
obtain the equivalence of norms

‖x‖
F(
∏n

j=1 X
j) ≤

n∑
k=1
‖EkRkx‖

F(
∏n

j=1 X
j) ≤ CF

n∑
k=1
‖Rkx‖

F(Xk)

≤ CF

n∑
k=1
‖x‖

F(
∏n

j=1 X
j) = nCF‖x‖F(

∏n

j=1 X
j),

where CF is a finite constant coming from the interpolation property of the
functor F. Here, the `1-type norm of {Rkx}k can be replaced by an `p-type
norm at the expense of another constant depending on n and p.
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1.3.2 The K-method of real interpolation
In this and the next section we survey the two most common interpolation
functors following [36,142].
The K-method of real interpolation goes back to the work of Peetre.

For a discussion of several equivalent functors such as the J-method and
the trace method, the reader can refer to [36,107,142]. If X = (X0,X1) is
an interpolation couple, then for every fixed t > 0 an equivalent norm on
Σ(X ) is given by

K(t, x,X ) = inf{‖x0‖X0 + t‖x1‖X1 ; xi ∈ Xi, x = x0 + x1} (x ∈ Σ(X )).

The map K( · , · ,X ) is the K-functional associated with the couple X .
For 0 < θ < 1 and 1 ≤ p ≤ ∞ the (θ, p)-real interpolation spaces between
X0 and X1 are defined as

(X0,X1)θ,p :=
{
x ∈ Σ(X );

‖x‖θ,p,X0,X1 :=
( ∫ ∞

0
(t−θK(t, x,X ))p dt

t

)1/p
<∞

}
,

where the Lp-norm in the definition of the norm ‖ · ‖θ,p is understood as
an essential supremum if p =∞. In addition we define

(X0,X1)0,p := X0 and (X0,X1)1,p := X1 (1 ≤ p ≤ ∞)

in accordance with [36, 142]. It is not hard to see that the (θ, p)-real
interpolation spaces between X0 and X1 are complete for their norms [36,
Thm. 3.4.2].
A corresponding functor Kθ,p is defined by assigning to each interpola-

tion couple X = (X0,X1) the Banach space (X0,X1)θ,p and to each mor-
phism T ∈ L(X ,Y) between X and another interpolation couple Y its
restriction to (X0,X1)θ,p.

Theorem 1.3.9 ([36, Thm. 3.1.2/3.4.2]). Let 0 ≤ θ ≤ 1 and 1 ≤ p ≤ ∞.
Then Kθ,p is an exact interpolation functor of type θ. Moreover, if θ 6= 0, 1
and p 6=∞, then for any interpolation couple X the space ∆(X ) is dense
in Kθ,p(X ).
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The following reiteration theorem shows that real interpolation is stable
under repeated application to the same couple.

Theorem 1.3.10 ([36, Thm. 3.5.3]). Let (X0,X1) be an interpolation cou-
ple, let 0 ≤ θ0 < θ1 ≤ 1, and let 1 ≤ p0, p1 ≤ ∞. Put

θ = (1− η)θ0 + ηθ1 (0 < η < 1).

Then, for every 1 ≤ p ≤ ∞ it holds(
(X0,X1)θ0,p0 , (X0,X1)θ1,p1

)
η,p

=
(
X0,X1

)
θ,p

with equivalent norms.

Remark 1.3.11. The constants implicit in the norm equivalences from
Theorem 1.3.10 depend only on θ0, θ1, and η. This crucial result is also
proved in [36], though – for whatever reason – not stated explicitly. Indeed,
every single constant in the fairly direct proof [36, Thm. 3.5.3] can be
made explicit as a finite integral of elementary functions involving only
these three parameters.

In order to make sense of the following duality theorem for real interpo-
lation, we observe the following. If X = (X0,X1) is an interpolation couple
for which ∆(X ) is dense in both X0 and X1, then the duals X ∗j , j = 0, 1,
can be continuously embedded into ∆(X )∗ via restriction of functionals,
showing that X ∗ := (X ∗0 ,X ∗1 ) is again an interpolation couple.

Proposition 1.3.12 ([36, Thm. 3.7.1]). Let X = (X0,X1) be an interpo-
lation couple such that ∆(X ) is dense in both X0 and X1. Let 1 ≤ p <∞
and 0 < θ < 1. Then

(X0,X1)∗θ,p = (X ∗0 ,X ∗1 )θ,p′

with equivalent norms.

1.3.3 The complex interpolation method
The complex interpolation method is an abstraction of Thorin’s [140]
proof of the Riesz-Thorin convexity theorem. Throughout, denote by

S := {z ∈ C; 0 < Re z < 1}
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the open strip with width 1 parallel to the imaginary axis.
For an interpolation couple X = (X0,X1) let F(X0,X1) be the space of

all bounded continuous functions f : S→ Σ(X ) that are holomorphic with
values in Σ(X ) on the interior S and for which the restrictions t 7→ f(j+it),
j = 0, 1, are continuous from the real line into Xj and tend to zero in Xj
as |t| → ∞. This space is complete for the norm

‖f‖F(X0,X1) := max
{

sup
t∈R
‖f(it)‖X0 , sup

t∈R
‖f(1 + it)‖X1

}
,

see [36, Lem. 4.1.1]. For 0 < θ < 1 the θ-complex interpolation spaces
between X0 and X1 are defined as

[X0,X1]θ :=
{
x ∈ Σ(X ); ∃f ∈ F(X0,X1) : f(θ) = x

}

equipped with the quotient norm

‖x‖θ,X0,X1 := inf
{
‖f‖F(X0,X1); f ∈ F(X0,X1), f(θ) = x

}
,

that is, [X0,X1]θ is isomorphic to the quotient F(X0,X1)/N (evθ), where
evθ is the continuous point evaluation at θ. Hence, [X0,X1]θ is a Banach
space. As for the real method we complete this definition by setting

[X0,X1]0 := X0 and [X0,X1]1 := X1.

Note carefully that this last agreement is in accordance withTriebel [142]
but not with Bergh and Löfström [36].
A corresponding interpolation functor Cθ is defined by assigning to each

couple X = (X0,X1) the Banach space [X0,X1]θ and to each morphism
T ∈ L(X ,Y) between X and another interpolation couple Y its restriction
to [X0,X1]θ.

Theorem 1.3.13 ([36, Thm. 4.1.2/4.2.2]). For each 0 ≤ θ ≤ 1 the functor
Cθ is an exact interpolation functor of type θ. Moreover, if θ 6= 0, 1, then
for any interpolation couple X the space ∆(X ) is dense in Cθ(X ).

Complex interpolation also shares stability and duality properties ex-
pressed in the following results.
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Theorem 1.3.14 ([36, Thm. 4.6.1]). Let X = (X0,X1) be an interpolation
couple and let 0 < θ0, θ1 < 1. Assume that ∆(X ) is dense in each of the
spaces X0, X1, and [X0,X1]θ0 ∩ [X0,X1]θ1. Then for

θ = (1− η)θ0 + ηθ1 (0 ≤ η ≤ 1)

it holds [
[X0,X1]θ0 , [X0,X1]θ1

]
η

=
[
X0,X1

]
θ

with equal norms.

Proposition 1.3.15 ([36, Cor. 4.5.2]). Let X = (X0,X1) be an interpola-
tion couple. If ∆(X ) is dense in both X0 and X1 and if at least one of the
spaces Xj, j = 0, 1, is reflexive, then

[X0,X1]∗θ = [X ∗0 ,X ∗1 ]θ (0 ≤ θ ≤ 1)

with equal norms.

In general, real and complex interpolation are not comparable. There
even exist interpolation couples such that for 0 < θ < 1 each θ-complex in-
terpolation space is distinct to every (θ, p)-real interpolation space. In fact,
borrowing a result from the next section, the couple (Lq(Rd),W1,q(Rd))
has this property provided q ∈ (1,∞) \ {2}. On the contrary, for Hilbert
spaces the following holds.

Proposition 1.3.16 ([107, Cor. 4.37]). If H0 and H1 are Hilbert spaces
such that H1 ⊆ H0 with dense and continuous inclusion, then

[H0,H1]θ = (H0,H1)θ,2 (0 ≤ θ ≤ 1).

In view of the preceding discussion it is surprising that there is a mixed
reiteration theorem, allowing to compute complex interpolation spaces by
the K-method of real interpolation.

Theorem 1.3.17 ([36, Thm. 4.7.2]). Let (X0,X1) be an interpolation cou-
ple, let 0 < θ0 < θ1 < 1, and let 1 ≤ p0, p1 ≤ ∞ but not p0 = p1 = ∞.
Put

θ = (1− η)θ0 + ηθ1 and 1
p

= 1− η
p0

+ η

p1
(0 ≤ η ≤ 1).
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Then
[
(X0,X1)θ0,p0 , (X0,X1)θ1,p1

]
η

= (X0,X1)θ,p

with equivalent norms.

Remark 1.3.18. Similar to Theorem 1.3.10 it is proved though not stated
in [36] that the constants implicit in the norm equivalences from Theo-
rem 1.3.17 depend only on θ0 and θ1 and not even on η. Again, every
single constant in the proof [36, Thm. 4.7.2] can be made explicit.

Remark 1.3.19. By mistake the case p0 = p1 = ∞ was not excluded
in Bergh-Löfström [36, Thm. 4.7.2] but their argument substantially
makes use of p < ∞. In fact, in this case the result is false as has been
pointed out by Cwikel and Sagher [44, Rem. 2.13].

1.3.4 Interpolation of function spaces
Concerning the function spaces introduced in Section 1.1.1, the following
theorem collects all interpolation identities that are required in this thesis.

Theorem 1.3.20 ([36, Thm. 6.4.5]). Let θ be given so that 0 < θ < 1.
Moreover, let s, s0, s1, p, p0, p1, q, q0, q1, and r be given numbers subject to
the restrictions in the formulas below. In addition put

s∗ = (1− θ)s0 + θs1

1
p∗

= 1− θ
p0

+ θ

p1
1
q∗

= 1− θ
q0

+ θ

q1
.

Then the following identities hold up to equivalent norms.
(
Bs0,p
q0 ,Bs1,p

q1

)
θ,r

= Bs∗,p
r (s0 6= s1, 1 ≤ p ≤ ∞, 1 ≤ r, q0, q1 ≤ ∞)(i)

(
Bs,p
q0 ,B

s,p
q1

)
θ,q∗

= Bs,p
q∗ (1 ≤ p, q0, q1 ≤ ∞)(ii)

(
Bs0,p0
q0 ,Bs1,p1

q1

)
θ,q∗

= Bs∗,p∗

q∗ (s0 6= s1, p
∗ = q∗, 1 ≤ p0, p1, q0, q1 ≤ ∞)(iii)

40



1.3 A glimpse on interpolation theory

(
Hs0,p,Hs1,p

)
θ,q

= Bs∗,p
q (s0 6= s1, 1 ≤ p, q ≤ ∞)(iv)

(
Hs,p0 ,Hs,p1

)
θ,p∗

= Hs,p∗ (1 ≤ p0, p1 ≤ ∞)(v)
[
Bs0,p0
q0 ,Bs1,p1

q1

]
θ

= Bs∗,p∗

q∗ (s0 6= s1, 1 ≤ p0, p1, q0, q1 ≤ ∞)(vi)
[
Hs0,p0 ,Hs1,p1

]
θ

= Hs∗,p∗ (s0 6= s1, 1 < p0, p1 <∞)(vii)

Here, all function spaces are of scalar-valued functions on Rd.

Remark 1.3.21.

(i) Write any identity in Theorem 1.3.20 in the form

F(X0(Rd),X1(Rd)) = X(Rd)

for a suitable interpolation functor F. If Ξ ⊆ Rd is both an X0- and
an X1-extension domain in virtue of the same extension operator E,
then Corollary 1.3.7 applied with the couples X := (X0(Rd),X1(Rd))
and Y := (X0(Ξ),X1(Ξ)) gives

F(X0(Ξ),X1(Ξ)) = RΞ
(
F(X0(Rd),X1(Rd))

)
= RΞ(X(Rd)).

The rightmost space coincides with X(Ξ) up to equivalent norms,
provided the latter is not a Sobolev space of integer order. Then
E ∈ L(X(Ξ),X(Rd)) follows by interpolation and shows that Ξ also
is an X-extension domain.

(ii) In view of Section 1.1.3 and Corollary 1.3.8 all identities in Theo-
rem 1.3.20 above remain valid for spaces of Cn-valued functions on
Rd and on domains subject to the restrictions from (i).

For Lp-spaces we also remind the following rules on interpolation with
a change of codomains or a change of measures.

Theorem 1.3.22 ([36, Thm. 5.1.2], [142, Sec. 1.18.4]). Let (X,µ) be a
σ-finite measure space. Let 1 ≤ p0, p1 <∞, 0 < θ < 1, and put

1
p

= 1− θ
p0

+ θ

p1
.
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Then for any interpolation couple (X0,X1) it holds
[
Lp0(X,µ;X0),Lp1(X,µ;X1)

]
θ

= Lp
(
X,µ; [X0,X1]θ

)
up to equivalent norms.

Theorem 1.3.23 ([36, Thm. 5.4.1], [142, Sec. 1.18.5]). Let (X,µ) be a
σ-finite measure space and let X be a Banach space. Let 1 ≤ p0, p1 < ∞
and let ω0, ω1 : X → (0,∞) be given measurable functions. For 0 < θ < 1
put

1
p

= 1− θ
p0

+ θ

p1
and ω = ω1−θ

0 ωθ1.

Then
(
Lp0(X,ωp0

0 dµ;X ),Lp1(X,ωp1
1 dµ;X )

)
θ,p

= Lp(X,ωpdµ;X )

up to equivalent norms and
[
Lp0(X,ωp0

0 dµ;X ),Lp1(X,ωp1
1 dµ;X )

]
θ

= Lp(X,ωpdµ;X )

with equal norms.

1.3.5 Sneiberg’s stability theorem
The objective of this closing section on interpolation of Banach spaces is
to provide a self-contained proof of the following result of S̆nĕıberg [137].

Theorem 1.3.24 (S̆nĕıberg). Let X = (X0,X1) and Y = (Y0,Y1) be
interpolation couples and let T ∈ L(X ,Y). Then

{
θ ∈ (0, 1); T : [X0,X1]θ → [Y0,Y1]θ is an isomorphism

}
is an open set.

Theorem 1.3.24 is a strong tool, for instance, in the treatment of second-
order elliptic partial differential equations. It can widely be used to ex-
trapolate the miraculous results obtained from the Lax-Milgram lemma
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in L2 to a small neighborhood in the Lp-scale, see, e.g., [11–13, 16, 23, 27,
75,123,131] just to mention a few.
Some historical notes are in order: The original manuscript [137] from

1974 is available only in Russian. S̆nĕıberg’s ideas have been refined by
Vignati and Vignati [139] in 1988 for a different interpolation method.
It is folklore that there are quantitative estimates for the size of the interval
occurring in Theorem 1.3.24 in terms of θ and bounds for T but most
crucially without referring to any further properties of the Banach spaces
involved. This is implicit in [137, 139] and follows by inspection of the
proofs. Vast generalizations to general complex interpolation methods for
quasi-Banach spaces have been obtained by Kalton and Mitrea [89] in
1998, again with implicit quantitative bounds.
So, we feel that this section is the right place to reprove a quantitative

version of Theorem 1.3.24. We follow the treatment in [89] with some
simplifications due to the restriction to the standard complex interpolation
method on Banach spaces. The main result reads as follows.

Theorem 1.3.25 (S̆nĕıberg). Let X = (X0,X1) and Y = (Y0,Y1) be
interpolation couples and let T ∈ L(X ,Y). For 0 ≤ θ ≤ 1 abbreviate
Xθ := [X0,X1]θ and Yθ := [Y0,Y1]θ. Suppose that for some θ∗ ∈ (0, 1)
there exists κ > 0 with the property

‖Tx‖Yθ∗ ≥ κ‖x‖Xθ∗ (x ∈ Xθ∗).

Then, given 0 < ε < 1
4 , the lower estimate

‖Tx‖Yθ ≥ εκ‖x‖Xθ (x ∈ Xθ)

holds provided

|θ − θ∗| ≤ κ(1− 4ε) min{θ∗, 1− θ∗}
3κ+ 6 maxj=0,1 ‖T‖Xj→Yj

.

Moreover, if T : Xθ∗ → Yθ∗ is an isomorphism, then in this range of θ the
same is true for T : Xθ → Yθ.

Reversing the order of statements we begin with proving stability of
ontoness with respect to the interpolation parameter θ. The following
lemma required in the proof is part of the standard proof for the open
mapping theorem.
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Lemma 1.3.26. Let T : X → Y be a bounded linear operator between
Banach spaces X and Y. If there are constants 0 < c < 1 and C > 0 such
that for every y in the unit sphere of Y there exists x ∈ X with ‖x‖X ≤ C

and ‖y − Tx‖Y ≤ c, then T is onto.

Proof. Given y ∈ Y , apply the hypotheses inductively to construct a
sequence {xn}n obeying the estimates

‖xn‖X ≤ Ccn−1‖y‖Y and
∥∥∥∥y − n∑

j=1
Txj

∥∥∥∥
Y
≤ cn‖y‖Y (n ∈ N).

By the first property x = ∑∞
n=1 xn exists and by the second one Tx = y

as required.

Proposition 1.3.27 (Stability of ontoness). Let X = (X0,X1) and Y =
(Y0,Y1) be interpolation couples and let T ∈ L(X ,Y). For 0 ≤ θ ≤ 1 put
Xθ := [X0,X1]θ and Yθ := [Y0,Y1]θ. Suppose that for some θ∗ ∈ (0, 1) the
operator T : Xθ∗ → Yθ∗ is an isomorphism with norm ‖T−1‖Yθ∗→Xθ∗ ≤

1
κ
.

Then T : Xθ → Yθ is onto provided

|θ − θ∗| < κmin{θ∗, 1− θ∗}
κ+ maxj=0,1 ‖T‖Xj→Yj

.(1.6)

Proof. Let θ ∈ (0, 1) satisfy the bound (1.6) and choose ε > 0 sufficiently
small such that (1 + ε)2 |θ − θ∗| is still smaller than the right-hand side of
(1.6). The argument is in two steps.

Step 1: Preparing for Lemma 1.3.26

Fix y in the unit sphere of Yθ and let g ∈ F(Y0,Y1) be such that

g(θ) = y and ‖g‖F(Y0,Y1) ≤ (1 + ε).(1.7)

By definition of complex interpolation g(θ∗) ∈ Yθ∗ and T−1g(θ∗) ∈ Xθ∗ .
So, there exists f ∈ F(X0,X1) such that

Tf(θ∗) = g(θ∗) and ‖f‖F(X0,X1) ≤ (1 + ε)‖T−1g(θ∗)‖Xθ∗ .(1.8)

In a second step we will complete the proof by showing that x = f(θ) ∈ Xθ
fits the assumptions of Lemma 1.3.26.
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Step 2: Checking the premise of Lemma 1.3.26

A direct calculation employing (1.7) and (1.8) reveals

‖x‖Xθ ≤ ‖f‖F(X0,X1) ≤ (1 + ε)‖T−1g(θ∗)‖Xθ∗ ≤
1 + ε

κ
‖g(θ∗)‖Yθ∗

≤ 1 + ε

κ
‖g‖F(Y0,Y1) ≤

(1 + ε)2

κ
.

(1.9)

In order to estimate the norm of y − Tx, consider the auxiliary function

h(z) :=


1

z−θ∗ (g(z)− Tf(z)) z 6= θ∗,

g′(z)− Tf ′(z) z = θ∗,

defined on the closure of the strip S = {z ∈ C; 0 < Re z < 1}. As
Tf(θ∗) = g(θ∗), it follows from Riemann’s theorem on removable singu-
larities that h is holomorphic on S with values in Y0 + Y1. Moreover,
h ∈ F(Y0,Y1) by the choices of f and g and since T ∈ L(X ,Y). Since

y − Tx = g(θ)− Tf(θ) = (θ − θ∗)h(θ),

it follows

‖y − Tx‖Yθ ≤ |θ − θ∗| ‖h‖F(Y0,Y1)

≤ |θ − θ∗|
min{θ∗, 1− θ∗}‖g − Tf‖F(Y0,Y1).

Abbreviating M := maxj=0,1 ‖T‖Xj→Yj , the right-hand side is bounded by

≤ |θ − θ∗|
min{θ∗, 1− θ∗}

(
‖g‖F(Y0,Y1) +M‖f‖F(X0,X1)

)

and so due to (1.7) and the comparison between the second and the last
term in (1.9),

≤ (1 + ε)2 |θ − θ∗| κ+M

κmin{θ∗, 1− θ∗} < 1

thanks to the choice of ε.
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Stability of the lower bounds in Theorem 1.3.25 will follow from a vari-
ant of the Schwarz lemma from complex analysis essentially taken from
[89, Lem. 2.6].

Lemma 1.3.28. Let (X0,X1) be an interpolation couple and 0 < θ∗ < 1.
Suppose that 0 < r ≤ 1

2 min{θ∗, 1− θ∗}. Then for each f ∈ F(X0,X1) and
every θ∗ − r ≤ θ ≤ θ∗ + r it holds

‖f(θ)‖[X0,X1]θ ≥
1
2‖f(θ∗)‖[X0,X1]θ∗ −

|θ − θ∗|
2r ‖f‖F(X0,X1).

Proof. For brevity put Xθ := [X0,X1]θ, 0 ≤ θ ≤ 1, and denote its norm by
‖ ·‖θ. The claim is only of interest if θ is distinct to θ∗, which we therefore
assume throughout. For the rest of the proof also fix f ∈ F(X0,X1).
By definition of complex interpolation it holds f(θ) ∈ Xθ. Consider

any other g ∈ F(X0,X1) satisfying g(θ) = f(θ). Similar to the proof of
Proposition 1.3.27 define h ∈ F(X0,X1) by

h(z) :=


1
z−θ (f(z)− g(z)) z 6= θ,

f ′(z)− g′(z) z = θ.

Its norm is ‖h‖F(X0,X1) equals

max
{

sup
t∈R

1
|it− θ|‖(f − g)(it)‖0, sup

t∈R

1
|1 + it− θ|‖(f − g)(1 + it)‖1

}
,

so that, on employing θ ≥ θ∗− r ≥ r and 1− θ ≥ 1− θ∗− r ≥ r, it follows

‖h‖F(X0,X1) ≤
1
r
‖f − g‖F(X0,X1) ≤

1
r
‖f‖F(X0,X1) + 1

r
‖g‖F(X0,X1).

The upshot is that due to h(θ∗) = (θ∗ − θ)−1(f(θ∗) − g(θ∗)) the norm
of f(θ∗) in Xθ∗ can be estimated using h. By the previous estimate and
|θ − θ∗| ≤ r this gives

‖f(θ∗)‖θ∗ ≤ ‖g + (θ∗ − θ)h‖F(X0,X1) ≤ 2‖g‖F(X0,X1) + |θ − θ
∗|

r
‖f‖F(X0,X1).

Now, this inequality has been established for every g ∈ F(X0,X1) satisfying
g(θ) = f(θ) and so passing to the infimum,

‖f(θ∗)‖θ∗ ≤ 2‖f(θ)‖θ + |θ − θ
∗|

r
‖f‖F(X0,X1).

Rearranging terms yields the claim.
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Eventually, we give the proof of Theorem 1.3.25.

Proof of Theorem 1.3.25. Let θ ∈ (0, 1) and assume |θ − θ∗| ≤ r,
where r > 0 will be subject to several restrictions culminating in the
one alluded in the theorem. Throughout the proof keep x ∈ Xθ fixed.
For brevity put again M := maxj=0,1 ‖T‖Xj→Yj . The argument is in two
consecutive steps.

Step 1: A straightforward estimate

By definition of complex interpolation there exists f ∈ F(X0,X1) such
that f(θ) = x. Then Tf ∈ F(Y0,Y1) satisfies Tf(θ) = Tx ∈ Yθ and

‖Tf‖F(Y0,Y1) ≤M‖f‖F(X0,X1)

since T ∈ L(X ,Y). We require r ≤ 1
2 min{θ∗, 1 − θ∗} in order to bring

into play Lemma 1.3.28. It follows

‖Tx‖Yθ = ‖Tf(θ)‖Yθ ≥
1
2‖Tf(θ∗)‖Yθ∗ −

|θ − θ∗|
2r ‖Tf‖F(Y0,Y1)

≥ 1
2‖Tf(θ∗)‖Yθ∗ −

M |θ − θ∗|
2r ‖f‖F(X0,X1).

As f(θ∗) ∈ Xθ∗ , the assumption on T allows to continue the chain of
estimates by

≥ κ

2‖f(θ∗)‖Xθ∗ −
M |θ − θ∗|

2r ‖f‖F(X0,X1).

In order to get rid of f(θ∗), let us require r ≤ 1
3 min{θ∗, 1 − θ∗}. Then

r ≤ 1
2 min{θ, 1 − θ}, which in turn allows to reapply Lemma 1.3.28 with

the roles of θ and θ∗ interchanged. By these means,

≥ κ

2

(
1
2‖f(θ)‖Xθ −

|θ − θ∗|
2r ‖f‖F(X0,X1)

)

− M |θ − θ∗|
2r ‖f‖F(X0,X1).

As f(θ) = x, we are left with

= κ

4‖x‖Xθ − |θ − θ
∗| κ+ 2M

4r ‖f‖F(X0,X1).
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Since this estimate has been obtained for every f ∈ F(X0,X1) such that
f(θ) = x, passing to the infimum gives

‖Tx‖Yθ ≥
(
κ

4 − |θ − θ
∗| κ+ 2M

4r

)
‖x‖Xθ ,

provided r ≤ 1
3 min{θ∗, 1− θ∗}.

Step 2: Adapting parameters

If now 0 < ε < 1
4 , then summa summarum the result of Step 1 is the

required estimate provided

|θ − θ∗| ≤ r ≤ 1
3 min{θ∗, 1− θ∗} and κ

4 − |θ − θ
∗| κ+ 2M

4r ≥ εκ.

These conditions collapse to

|θ − θ∗| ≤ r
κ(1− 4ε)
κ+ 2M ≤ min{θ∗, 1− θ∗}κ(1− 4ε)

3κ+ 6M(1.10)

as claimed.
Finally, if T : Xθ∗ → Yθ∗ is an isomorphism, then ‖T−1‖Yθ∗→Xθ∗ ≤

1
κ
.

Due to Proposition 1.3.27 the operator T : Xθ → Yθ remains onto for

|θ − θ∗| < min{θ∗, 1− θ∗} κ

κ+M
,

which in any case is a larger interval then the one in (1.10) for the lower
bound.

Remark 1.3.29. It is tempting to prove stability of isomorphisms in The-
orem 1.3.24 by a duality argument, thereby avoiding the use of Propo-
sition 1.3.27. However, the duality principle for complex interpolation
(Proposition 1.3.15) comes along with additional requirements on the in-
terpolation couples X and Y .
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CHAPTER 2

Hardy’s inequality for functions vanishing on a part of
the boundary

Hardy’s inequality

∫
Ω

∣∣∣∣∣ ud∂Ω

∣∣∣∣∣
p

.
∫

Ω
|∇u|p (u ∈W1,p

0 (Ω))

is one of the classical items in analysis [127]. Two milestones in the
development of the theory seem to be the result of Nečas [126] that
Hardy’s inequality holds on strongly Lipschitz domains and the insight of
Maz’ya [113], [115, Ch. 2.3] that its validity depends on measure the-
oretic conditions on the domain. Rather recently, the geometric frame-
work in which Hardy’s inequality remains valid was enlarged up to the
frontiers of what is possible – as long as the boundary conditions are
purely Dirichlet, see [97, 101] and compare also with [6, 104, 145]. Over
the last decades it became manifest that Hardy’s inequality plays an em-
inent role in modern theory of partial differential equations, see, e.g.,
[4, 35, 38,46,55,62,90,106,109,132].
On the contrary, the case that only a part D of the boundary of the

underlying domain Ω carries a Dirichlet condition, while on ∂ Ω \D other
boundary conditions may be imposed, has not been approached systemat-
ically so far, see [4,39,96,98] including references therein. In this chapter
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2 Hardy’s inequality

we set up a geometric framework for the bounded domain Ω and the
Dirichlet boundary part D that allow to deduce the corresponding Hardy
inequality

∫
Ω

∣∣∣∣∣ udD
∣∣∣∣∣
p

.
∫

Ω
|∇u|p (u ∈W1,p

D (Ω)).

Similar to the well-established caseD = ∂ Ω we in essence only require that
D is l-thick in the sense of Definition 1.2.19. In our context this condition
can be interpreted as an extremely weak compatibility condition between
D and ∂ Ω \D.
Our strategy of proof is first to reduce to the case D = ∂ Ω by purely

topological means, provided two major tools are applicable. The first one
is an extension operator

E : W1,p
D (Ω)→W1,p

D (Rd),

the subscript D indicating the subspace of those W1,p-functions that van-
ish on D in an appropriate sense. The reader may recall the precise
definition of these spaces from Section 1.2.5. The second ingredient is the
global Poincaré inequality

∫
Ω
|u|p .

∫
Ω
|∇u|p (u ∈W1,p

D (Ω)),

which is of course necessary for Hardy’s inequality since dD is a bounded
function on Ω. These two conditions trace out an abstract framework for
Hardy’s inequality presented in Section 2.1. We discuss more geometric
assumptions that can be checked – more or less – by appearance in Sec-
tions 2.2 and 2.3. Still, we believe that the abstract framework has the
advantage that other sufficient geometric conditions for Hardy’s inequality
– tailor-suited for future applications – can be found much more easily.
The first assumption for the abstract framework can be weakened con-

siderably. In fact, we will see that under the mere assumption that D is
closed, every linear continuous extension operator W1,p

D (Ω) → W1,p(Rd)
that is constructed by the usual procedure of gluing together local exten-
sion operators, preserves the Dirichlet condition on D. This result even
carries over to higher-order Sobolev spaces and sheds new light on some of
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2.1 An abstract approach to Hardy’s inequality

the deep results on Sobolev extension operators obtained by Brewster,
D. Mitrea, I. Mitrea, and M. Mitrea [37].
Conversely, we ask whether Hardy’s inequality also characterizes the

Sobolev space W1,p
D (Ω): Is the latter precisely the space of those functions

u ∈ W1,p(Ω) for which u
dD belongs to Lp(Ω)? Under very mild geometric

assumptions we answer this question to the affirmative in Section 2.4.
As an application of the whole theory we prove scale invariant real

and complex interpolation results for the spaces {W1,p
D (Ω)}1<p<∞ in Sec-

tion 2.5.

2.1 An abstract approach to Hardy’s inequality
First and foremost let us make precise that by Hardy’s inequality for
Sobolev functions on a domain Ω ⊆ Rd that vanish on a closed portion
D ⊆ ∂ Ω, the Dirichlet part of ∂ Ω, we mean the inequality

∫
Ω

∣∣∣∣∣ udD
∣∣∣∣∣
p

.
∫

Ω
|∇u|p (u ∈W1,p

D (Ω)),(2.1)

that is, vanishing on D is in the sense of Definition 1.2.35. In the pure
Dirichlet case, that is when D = ∂ Ω, the subsequent result of Lehrbäck,
extending earlier work of Lewis [104], is close to being optimal, see for
instance the discussion in the introduction of [101].

Proposition 2.1.1 ([101, Thm. 1]). Let 1 < p <∞ and let Ω• ⊆ Rd be a
bounded domain. If ∂ Ω• is l-thick for some d − p < l ≤ d, then Hardy’s
inequality

∫
Ω•

∣∣∣∣∣ u

d∂Ω•

∣∣∣∣∣
p

.
∫

Ω•
|∇u|p (u ∈ C∞c (Ω•))

holds. It extends to all u ∈W1,p
0 (Ω•) by Fatou’s lemma and density.

It might sound surprising that our approach to the more general in-
equality (2.1) is not by generalizing the arguments in [101] but is of purely
topological nature. The rough idea is to find a superdomain Ω• of Ω whose
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2 Hardy’s inequality

boundary contains D. Then dD(x) ≥ d∂Ω•(x) for every x ∈ Ω, so that it
suffices to prove

∫
Ω

∣∣∣∣∣ u

d∂Ω•

∣∣∣∣∣
p

.
∫

Ω
|∇u|p .

By extension techniques this inequality will collapse to the one in Propo-
sition 2.1.1.
The construction of Ω•, as it first appeared in [16], is as simple as it is

ingenious.

Lemma 2.1.2 ([16, Lem. 6.4]). Let Ω ⊆ Rd be a bounded domain and
D ⊆ ∂ Ω be closed. If Q ⊆ Rd is an open cube that contains Ω, then

Ω• :=
⋃{

U ; U ⊆ Q \D is a domain that contains Ω
}

is a domain that contains Ω and has boundary ∂ Ω• ∈ {D,D ∪ ∂ Q}.

Proof. First note that U := Ω is a domain that contains Ω and is con-
tained in Q \ D. Hence, Ω ⊆ Ω•. In any topological space the union of
open and connected subsets that share a common point is again open and
connected. Thus, Ω• is a domain and it remains to prove the assertion
about ∂ Ω•.
By construction D ⊆ Rd \ Ω• but since every open set that intersects

D ⊆ ∂ Ω also intersects Ω ⊆ Ω• it follows

D ⊆ ∂ Ω•.(2.2)

Conversely, let x ∈ ∂ Ω•. Suppose x /∈ D ∪ ∂ Q. Then x ∈ Q \ D and
since the latter is an open set, there exists an open ball B around x

that is entirely contained in Q \ D. Put U := B ∪ Ω•. Since x is an
accumulation point of Ω•, the intersection Ω• ∩ B is non-empty. Hence
U is a domain, which by construction contains Ω and is contained in
Q \ D. Thus x ∈ U ⊆ Ω•, which contradicts x ∈ ∂ Ω• since Ω• is open.
Altogether,

∂ Ω• ⊆ D ∪ ∂ Q.(2.3)

Now, let W ⊆ Rd be an open cube with the same center as Q and the
property Ω ⊆ W ⊆ W ⊆ Q. Consider the annulus A := Q \W . If A
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2.1 An abstract approach to Hardy’s inequality

does not intersect Ω•, then d(∂ Ω•, ∂ Q) > 0 so that (2.2) and (2.3) yield
D = ∂ Ω•.
If on the other hand A and Ω• share a common point, then U := A∪Ω•

is again a domain which satisfies Ω ⊆ U ⊆ Q \ D and thus must be
contained in Ω•. Every open set that intersects ∂ Q of course intersects
Rd \Q ⊆ Rd \Ω• but the new piece of information is that it also intersects
A ⊆ Ω•. This proves ∂ Q ⊆ ∂ Ω•, which due to (2.2) and (2.3) already
implies ∂ Q ∪D = ∂ Ω•.

Remark 2.1.3. By construction Ω• is the largest domain that contains
Ω, avoids D, and is contained in Q. A more explicit characterization has
been obtained in [52]: The domain Ω• can be constructed as the union of
those connected components of Q\Ω whose boundary do not only consist
of points from D.

It is crucial that in terms of thickness and Ahlfors regularity ∂ Ω• is as
regular as D.

Lemma 2.1.4. If D in Lemma 2.1.2 is l-thick for some 0 < l ≤ d − 1,
then so is ∂ Ω•. If D is even an l-set, then so is ∂ Ω•.

Proof. In preparation for the proof recall that the classes of l-thick sets
and l-sets, respectively, are stable under finite unions, that bounded l-
sets are l-thick, and that l-thickness implies m-thickness for all smaller
parametersm, see Lemmas 1.2.24 - 1.2.26. So, splitting ∂ Q into the union
of its 2d sides and recalling invariance of the Hausdorff-measure under
rigid motions (Lemma 1.2.18), it suffices to prove that {0} × [−1, 1]d−1 is
a (d− 1)-set in Rd.
However, in Rd−1 the (d−1)-dimensional Hausdorff measure is a multiple

of the (d− 1)-dimensional Lebesgue measure, showing that [−1, 1]d−1 is a
(d − 1)-set in Rd−1. Lemma 1.2.18 yields Hd−1({0} × E) = Hd−1(E) for
every E ⊆ Rd−1 and the proof is complete.

Elaborating on the ideas above we can now prove a result that we shall
call abstract Hardy inequality for functions with partially vanishing trace.
Recall that by an extension operator we mean a right-inverse for the

canonical restriction operator D′(Rd)→ D′(Ω), see Section 1.1.2.
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2 Hardy’s inequality

Theorem 2.1.5 (Abstract Hardy inequality). Let Ω ⊆ Rd be a bounded
domain, let D ⊆ ∂ Ω be a closed part of the boundary, and let 1 < p <∞.
For Hardy’s inequality

∫
Ω

∣∣∣∣∣ udD
∣∣∣∣∣
p

.
∫

Ω
|∇u|p (u ∈W1,p

D (Ω))

the following three conditions are sufficient.

(i) The Dirichlet part D is l-thick for some d− p < l ≤ d.

(ii) There is a bounded extension operator E : W1,p
D (Ω)→W1,p

D (Rd).

(iii) The space W1,p
D (Ω) admits the global Poincaré inequality∫

Ω
|u|p .

∫
Ω
|∇u|p (u ∈W1,p

D (Ω)).

Proof. Owing to Lemma 1.2.25 we may assume l ≤ d−1. Choose an open
cube Q that contains the closure of the bounded domain Ω and construct
Ω• as in Lemma 2.1.2. Fix a smooth function η that is identically one
on Ω and has support in Q. Then ηu ∈ C∞∂Ω•(Rd) for every u ∈ C∞D (Rd).
Hence, if E : W1,p

D (Ω) → W1,p
D (Rd) is the extension operator provided by

Assumption (ii), then

E• : W1,p
D (Ω)→W1,p

0 (Ω•), u 7→ (ηEu)|Ω•

is a bounded extension operator from Ω to Ω•. Since by Lemma 2.1.4 the
boundary of Ω• is (d− 1)-thick, Proposition 2.1.1 applies to the functions
E•u ∈W1,p

0 (Ω•), where u is taken from W1,p
D (Ω):

∫
Ω

∣∣∣∣∣ udD
∣∣∣∣∣
p

≤
∫

Ω

∣∣∣∣∣ u

d∂Ω•

∣∣∣∣∣
p

≤
∫

Ω•

∣∣∣∣∣E•ud∂Ω•

∣∣∣∣∣
p

.
∫

Ω•
|∇(E•u)|p.

The boundedness of E• and Assumption (iii) allow to continue this esti-
mate by

≤
∫

Ω•
|E•u|p + |∇(E•f)|p .

∫
Ω
|u|p + |∇u|p .

∫
Ω
|∇u|p

and the proof is complete.
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2.2 The structure of Sobolev extension operators

Remark 2.1.6. One might suggest that the preceding strategy of proof is
not limited to Hardy’s inequality in the non-pure Dirichlet case. Possibly,
the combination of an application of the extension operator E• and the
construction of Ω• may serve for the reduction of other problems on func-
tion spaces related to mixed boundary conditions to the pure Dirichlet
case.

Finding handy substitutes for the partly implicit Assumptions (ii) and
(iii) below traces out the program for the following sections.

2.2 The structure of Sobolev extension
operators

In this section we discuss the second condition in Theorem 2.1.5, that is,
the extendability for W1,p

D (Ω) within the same class of Sobolev functions.
We develop three abstract principles concerning Sobolev extension, which,
as we believe, are of independent interest and therefore are presented also
for higher-order Sobolev spaces Wk,p

D . In the last part we review some
feasible, commonly used geometric conditions, which together with our
abstract principles imply the corresponding extendability.

2.2.1 Dirichlet cracks can be removed
As in Figure 1 there may be boundary parts which carry a Dirichlet con-
dition and belong to the interior of the closure of the domain under con-
sideration. Such a part will be called Dirichlet crack.
Extending functions from Ω to such a Dirichlet crack by zero enlarges the
domain and simplifies the boundary geometry. In the following we make
this precise.

Proposition 2.2.1. Let Ω ⊆ Rd be a domain and let D ⊆ ∂ Ω be closed.
Define ΩF as the interior of the set Ω ∪D. Then the following hold true.

(i) The set ΩF is again a domain, Γ := ∂ Ω \ D is a (relatively) open
subset of ∂ ΩF and ∂ ΩF = Γ ∪ (D ∩ ∂ ΩF).

(ii) For k ∈ N and 1 ≤ p < ∞ the operator Ext(Ω,ΩF) : Wk,p
D (Ω) →

Wk,p
D (ΩF) extending functions by zero is an isometric extension op-

erator.
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2 Hardy’s inequality

Σ

Figure 1: The set Σ does not belong to Ω, and carries – together with the
striped parts – the Dirichlet condition.

Proof. (i) By construction ΩF is open. Hence, for each x ∈ ΩF there
is an open ball Bx that is entirely contained in ΩF. Since ΩF is
a subset of Ω, the set of all accumulation points of Ω, each ball
Bx intersects the connected set Ω. Thus, ΩF = ⋃

x∈ΩF
Bx is again

connected.
Next, the inclusions Ω ⊆ ΩF ⊆ Ω entail ΩF = Ω and ∂ ΩF ⊆ ∂ Ω.
In particular, Γ ⊆ ΩF does not intersect ΩF and thus is a subset of
∂ ΩF. Consequently,

∂ ΩF = ∂ Ω ∩ ∂ ΩF = (Γ ∩ ∂ ΩF)
.
∪ (D ∩ ∂ ΩF) = Γ

.
∪ (D ∩ ∂ ΩF).

Since D is closed, this decomposition implies that Γ is a relatively
open subset of ∂ ΩF.

(ii) Consider any u ∈ C∞D (Rd) and its restriction u|Ω to Ω. Since the
support of u has a positive distance to D, we may extend u|Ω by
zero to the whole of ΩF without destroying the C∞-property. In
virtue of the commutative diagram

C∞D (Rd) C∞D (Ω)

C∞D (ΩF)

restrictRd→ΩF

restrictRd→Ω

extendΩ→ΩF
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2.2 The structure of Sobolev extension operators

this extension operator provides a linear isometry from C∞D (Ω) onto
C∞D (ΩF), if both are equipped with the Wk,p-norm. By density it
extends to a linear isometry Ext(Ω,ΩF) such that the following di-
agram commutes:

Wk,p
D (Rd) Wk,p

D (Ω)

Wk,p
D (ΩF).

restrictRd→Ω

restrictRd→ΩF Ext(Ω,ΩF)

This concludes the proof.

Remark 2.2.2. Having extended from Ω to ΩF, the Dirichlet crack Σ
in Figure 1 has vanished, and we end up with the whole cube. Here the
problem of extending Sobolev functions is almost trivial. We suppose that
this is sort of a generic case – at least for problems arising in applications.

Every extension operator on Ω factorizes through Ext(Ω,ΩF) defined
in Proposition 2.2.1:

Proposition 2.2.3. Let k ∈ N and 1 ≤ p <∞. Let Ω ⊆ Rd be a domain,
let D ⊆ ∂ Ω be a closed set, and let ΩF be defined as the interior of
Ω ∪D. Then every bounded extension operator E : Wk,p

D (Ω) → Wk,p
D (Rd)

factorizes as E = EFExt(Ω,ΩF) through a bounded extension operator
EF : Wk,p

D (ΩF)→Wk,p
D (Rd).

Proof. Let R be the restriction operator from Wk,p
D (ΩF) to Wk,p

D (Ω) and
put EF := ER. Note that for u ∈ C∞D (ΩF) the functions EFu and u agree
almost everywhere on Ω since E is an extension operator. Moreover,

ΩF \ Ω ⊆ ΩF ∩ (Ω \ Ω) = ΩF ∩ ∂ Ω ⊆ ΩF ∩D

due to Proposition 2.2.1, so that u vanishes everywhere on ΩF \Ω. Since
EFu ∈ Wk,p

D (Rd) is the Wk,p-limit of a sequence in C∞D (Rd), it vanishes
almost everywhere on ΩF\Ω. Note that the awkward this argument looks,
it still is necessary as we have not assumed that D is a Lebesgue nullset.
Altogether, EFu = u almost everywhere on ΩF and

EFExt(Ω,ΩF)u = ERExt(Ω,ΩF)u = Eu.
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By density these results extend to all u ∈ Wk,p
D (Ω) showing that EF is

indeed an extension operator that provides the required factorization.

Here is a guideline how to apply the previous results for problems aris-
ing from applications: Assume we have decided to extend from Ω to ΩF
because this prettifies geometry. Then we can either try to construct an
extension operator for Wk,p

D (ΩF) and pull it back to Wk,p
D (Ω) or we can

even replace D by the reduced Dirichlet part DF := D ∩ ∂ ΩF. In this
case we are left with the task of establishing an extension operator for
Wk,p

DF
(ΩF) – while afterwards we take into account that the original func-

tions defined on ΩF were zero almost everywhere also on the set D ∩ ΩF
and have not been altered by the extension operator thereon. Note how-
ever that the geometry DF may strikingly differ from that of D. For
example, take the two-dimensional configuration

Ω := B(0, 1) \ ({0} × [0, 1]) D := {0} × [0, 1].

Then D is a 1-set whereas DF is a single point. To sum up, when aiming
for an extension operator E : Wk,p

D (Ω) →Wk,p
D (Rd) we are free to modify

(Ω, D) to (ΩF, D) or even to (ΩF, DF) depending on which geometric
configuration suits best.

2.2.2 Sobolev extendability is a local property
In accordance with Definition 1.1.12 we call a domain Ω ⊆ Rd a Wk,p-
extension domain, provided there exists a continuous extension operator
E : Wk,p(Ω) → Wk,p(Rd). There is a whole zoo of subclasses of exten-
sion operators ordered by the amount of Sobolev spaces on which they
act simultaneously [3, Ch. 5]. The most universal such concept is the
following.

Definition 2.2.4. A domain Ω ⊆ Rd that is a Wk,p-extension domain for
all k ∈ N0 and all 1 ≤ p ≤ ∞ in virtue of the same extension operator
E, is called universal extension domain. In this case E is called universal
extension operator for Ω.

Remark 2.2.5. The reader may wonder why the terminology ‘universal
extension domain’ is used instead of ‘universal Sobolev extension’ domain.
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2.2 The structure of Sobolev extension operators

The reason is that as a consequence of the omnibus interpolation Theo-
rem 1.3.20, see also Remark 1.3.21, such a domain automatically is an
X(Ω)-extension domain, where X can stand for any of the function spaces
relevant in this thesis.

The next result manifests that if Ω is a bounded domain and D ⊆ ∂ Ω is
closed, then local Wk,p-extendability around every point of ∂ Ω \D implies
global Wk,p

D -extendability on Ω or in short: Sobolev extendability is a local
property of ∂ Ω \D.

Proposition 2.2.6. Let k ∈ N and 1 ≤ p < ∞. Suppose Ω is a bounded
domain and D is a closed part of its boundary. If for every x ∈ ∂ Ω \D
there is an open neighborhood Ux of x such that Ω∩Ux is a Wk,p-extension
domain in virtue of a bounded extension operator Ex : Wk,p(Ω ∩ Ux) →
Wk,p(Rd), then there is a bounded extension operator

E : Wk,p
D (Ω)→Wk,p(Rd).

Moreover, if each local extension operator Ex maps the space Wk,p
Dx(Ω∩Ux)

into Wk,p
Dx(Rd), where Dx := D ∩ Ux, then also

E : Wk,p
D (Ω)→Wk,p

D (Rd).

Proof. For every x ∈ ∂ Ω \D let Ux be the open neighborhood of x from
the assumption. Let Ux1 , . . . , Uxn be a finite subcovering of ∂ Ω \D. Since
the compact set ∂ Ω \D is contained in the open set ⋃nj=1 Uxj , there exists
ε > 0, such that Ux1 , . . . , Uxn together with

U := {y ∈ Rd : d(y, ∂ Ω \D) > ε}

form an open covering of Ω. Hence, on Ω there is a C∞-partition of unity
η, η1, . . . , ηn, with the properties supp(η) ⊆ U , supp(ηj) ⊆ Uxj . In the
following we abbreviate Uxj , Exj , etc. by Uj, Ej, etc.

Step 1: Construction of E

Assume u ∈ C∞D (Ω). Then ηu ∈ C∞c (Ω) and its zero extension E0(ηu) to
all of Rd satisfies E0(ηu) ∈ C∞∂Ω(Rd) ⊆Wk,p

D (Rd) and

‖E0(ηu)‖Wk,p
D (Rd) = ‖ηu‖Wk,p(Ω) . ‖u‖Wk,p(Ω)(2.4)
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with an implicit constant independent of u. Now, for fixed j ∈ {1, . . . , n}
consider the function uj := ηju ∈Wk,p(Ω ∩ Uj) and note

‖Ejuj‖Wk,p(Rd) . ‖uj‖Wk,p(Ω∩Uj) . ‖u‖Wk,p(Ω∩Uj),(2.5)

the implicit constant being independent of u. A priori, we clearly do not
have control on the behavior of Eju on the set Ω \ Uj. In particular, Eju
may be nonzero thereon and thus cannot be expected to coincide with uj
on the whole of Ω. In order to correct this, let ζj be a smooth function
which is identically one on supp(ηj) and has its support in Uj. Then uj
coincides with ζjEjuj almost everywhere on Ω. Consequently, ζjEjuj is
an extension of uj = ηju to the whole of Rd which due to (2.5) satisfies

‖ζjEjuj‖Wk,p(Rd) . ‖Ejuj‖Wk,p(Rd) . ‖u‖Wk,p(Ω∩Uj) ≤ ‖u‖Wk,p(Ω)

with implicit constants independent of u. In combination with (2.4) it
follows that

u 7→ Eu := E0(ηu) +
n∑
j=1

ζjEj(ηju)(2.6)

is a bounded linear operator from C∞D (Ω) equipped with the Wk,p
D (Ω)-

topology into Wk,p(Rd). Moreover, Eu|Ω = ηu + ∑n
j=1 ηju = u for every

u ∈ C∞D (Ω). Thus, the required extension operator can be taken as the
unique extension of E to a bounded operator Wk,p

D (Ω)→Wk,p(Rd).

Step 2: Behavior of the extended functions on D

Suppose that in addition each local extension operator Ej, 1 ≤ j ≤ n,
maps Wk,p

Dj
(Ω ∩ Uj) into Wk,p

Dj
(Rd), where Dj := D ∩ Uj. By density it

suffices to prove Eu ∈Wk,p
D (Rd) for u ∈ C∞D (Ω).

As the zero extension E0(ηu) belongs to Wk,p
D (Rd), it remains to con-

sider the summands ζjEj(ηju) in (2.6). Clearly ηju ∈ C∞Dj(Ω ∩ Uj) and
therefore Ej(ηju) ∈ Wk,p

Dj
(Rd). Since the smooth function ζj has com-

pact support in Uj, multiplication by ζj induces a bounded operator
Wk,p

Dj
(Rd)→Wk,p

D (Rd). Thus, ζjEj(ηju) ∈Wk,p
D (Rd) as desired.

Later, we will need that the local Dirichlet parts Dx in Proposition 2.2.6
are subsets of the boundaries of the local domains Ω ∩ Ux. This is a
consequence of the following purely topological lemma.
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Lemma 2.2.7. If Ω, U ⊆ Rd are open and D ⊆ ∂ Ω is any set, then
D ∩ U ⊆ ∂(Ω ∩ U).

Proof. Clearly,

D ∩ U ⊆ D ⊆ ∂ Ω ⊆ Rd \ Ω ⊆ Rd \ (Ω ∩ U).

On the other hand, each y ∈ D∩U is an accumulation point of Ω and since
U is open, every sequence approximating y eventually runs into U . Thus,
y is also an accumulation point of Ω∩U . This proves D∩U ⊆ Ω ∩ U and
thus D ∩ U ⊆ ∂(Ω ∩ U).

2.2.3 Preservation of traces
In the previous section we have now set up a general scheme to construct
bounded extension operators Wk,p

D (Ω) → Wk,p(Rd). Our next goal is to
examine under which geometric conditions on Ω and D such an extension
operator preserves the Dirichlet boundary condition onD by mapping into
Wk,p

D (Rd). Recall that this is the crux of the matter in Assumption (ii)
of the abstract Hardy’s inequality, Theorem 2.1.5. A first answer to this
trace preservation problem is given by the subsequent proposition.

Proposition 2.2.8. Let k ∈ N and 1 < p <∞. Let Ω ⊆ Rd be a domain,
let D ⊆ ∂ Ω be closed and suppose E : Wk,p

D (Ω) → Wk,p(Rd) is a bounded
extension operator. Any of the following conditions guarantees that E in
fact maps into Wk,p

D (Rd).

(i) For (k, p)-quasievery y ∈ D, balls around y in Ω have asymptotically
non-vanishing relative volume, that is

lim inf
r→0

|B(y, r) ∩ Ω)|
rd

> 0.(2.7)

(ii) The Dirichlet part D is an l-set for some d − p < l ≤ d and (2.7)
holds for Hl-almost every y ∈ D.

(iii) There exists q > d such that E maps C∞D (Ω) into Wk,q(Rd).
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2 Hardy’s inequality

Proof. As C∞D (Ω) is dense in Wk,p
D (Ω) and since E is bounded, it suffices

to prove that given v ∈ C∞D (Ω), the function u := Ev belongs to Wk,p
D (Rd).

The proof of item (i) is inspired by [148, pp. 190-192]. Easy modifications
of the argument will yield items (ii) and (iii).

(i) We appeal to the (k, p)-synthesis, Theorem 1.2.37. Fix an arbitrary
multiindex α ∈ Nd

0 with |α| ≤ k − 1. The regular representative for
Dαu as in Definition 1.2.9 satisfies

lim
r→0
−
∫
B(y,r)

|Dαu(x)−Dαu(y)| dx

≤ lim
r→0

(
−
∫
B(y,r)

|Dαu(x)−Dαu(y)|p dx
)1/p

= 0
(2.8)

for (k−|α| , p)-quasievery y ∈ Rd. As (2.7) holds for (k, p)-quasievery
y ∈ D, the more it holds for (k − |α| , p)-quasievery such y, see
Lemma 1.2.3.
Let N ⊆ Rd be the exceptional set with the properties that (2.7)
holds for every y ∈ D\N and that (2.8) holds for all y ∈ Rd\N . Then
Ck−|α|,p(N) = 0 and in view of Theorem 1.2.37 the claim follows once
we have shown Dαu(y) = 0 for all y ∈ D \N .
For the rest of the proof fix y ∈ D\N and abbreviate B(r) := B(y, r)
for r > 0. For each n ∈ N define

Fn :=
{
x ∈ Rd \N ; |Dαu(x)−Dαu(y)| > 1

n

}
.(2.9)

To be on the save side, let us remark that Ck−|α|,p(N) = 0 implies
Hd−1(N) = 0 and thus |N | = 0, see Corollary 1.2.33. In particular,
N is Lebesgue measurable. Thanks to (2.8) for each n ∈ N there is
rn > 0 such that |B(r) ∩ Fn| < 2−n |B(r)| holds for all 0 < r ≤ rn.
For simplicity we may arrange that the sequence {rn}n is decreasing.
Then the set

F :=
⋃
n∈N

{(
B(rn) \B(rn+1)

)
∩ Fn

}
(2.10)

has vanishing Lebesgue density at y, that is, r−d |B(r) ∩ F | vanishes
as r tends to 0: Indeed, if rj+1 ≤ r < rj, then

B(r) ∩ F ⊆
(
B(r) ∩ Fj

)
∪

⋃
n≥j+1

(
B(rn) ∩ Fn

)

62



2.2 The structure of Sobolev extension operators

and thus

|B(r) ∩ F | ≤ 2−j|B(r)|+
∑

n≥j+1
2−n|B(rn)|

≤ 2−j|B(r)|+
∑

n≥j+1
2−n|B(r)|

= 2−j+1|B(r)|.

Now, the asymptotically non-vanishing relative volume condition
(2.7) allows for the conclusion

lim inf
r→0

∣∣∣B(r) ∩ Ω ∩ (Rd \ F ))
∣∣∣

rd
≥ lim inf

r→0

(
|B(r) ∩ Ω|

rd
− |B(r) ∩ F |

rd

)
> 0.

Since u is an extension of v ∈ C∞D (Ω) and as y is an element of
D, the function Dαu vanishes almost everywhere on B(r) ∩ Ω if
r > 0 is small enough. The previous inequality guarantees that
B(r) ∩ Ω ∩ (Rd \ F ) is not a Lebesgue nullset provided r > 0 is
small enough. Consequently, there exists a sequence {xn}n ⊆ Rd \F
converging to y such that Dαu(xn) = 0 for all n.
The upshot is that the restriction of Dαu to Rd \ F is continuous
at y: In fact, if x ∈ Rd \ F satisfies |x− y| ≤ rn, then by construc-
tion |Dαu(x) − Dαu(y)| ≤ 1

n
. Hence, Dαu(y) = 0 and the proof is

complete.

(ii) For every α ∈ Nd
0 with |α| ≤ k − 1 we still have at hand (2.8) for

(k − |α| , p)-quasievery y ∈ Rd, but now (2.7) only holds for Hl-
almost every y ∈ D. Due to Corollary 1.2.33, the set N constructed
in the proof of (i) is an Hl-nullset. By the same reasoning as before,
Dαu = 0 follows Hl-almost everywhere on D. However, since D is
an l-set, this suffices to ensure u ∈Wk,p

D (Rd), see Proposition 1.2.38.

(iii) By assumption u = Ev ∈ Wk,q
D (Rd), where q > d. Sobolev embed-

dings guarantee that each distributional derivative Dαu, |α| ≤ k−1,
has a continuous representative Dαu. So, we do not need the asymp-
totically non-vanishing relative volume condition to construct a set
N on which we can argue by continuity but simply argue globally:
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2 Hardy’s inequality

Each y ∈ D ⊆ ∂ Ω is an accumulation point of Ω \ D and since
Dαu = Dαv holds almost everywhere on Ω, the representative Dαu

must vanish everywhere on D. Theorem 1.2.37 yields u ∈Wk,p
D (Rd)

as required.

Remark 2.2.9. Under the assumptions that Ω is a bounded d-set and
that D = ∂ Ω is a (d−1)-set, Proposition 2.2.8 has previously been proved
by Jonsson and Wallin [87, Sec. VIII.1].

Typical examples for domains that satisfy the asymptotically non-va-
nishing relative volume condition (2.7) around every boundary point are
of course d-sets.

Lemma 2.2.10. If Ω ⊆ Rd is a d-set, then the asymptotically non-
vanishing relative volume condition (2.7) holds around every boundary
point y ∈ ∂ Ω.

Proof. Let y ∈ ∂ Ω and 0 < r ≤ 1. Since B(y, r2) ∩ Ω is non-empty, the
ball B(y, r) contains a ball B(x, r2) with center x ∈ Ω. By assumption
|B(x, r2) ∩ Ω| is comparable to rd and the conclusion follows.

Less obvious is that also every Sobolev extension domain satisfies (2.7).
In fact, Sobolev extension domains are necessarily d-sets due to a result
of Hajłasz, Koskela, and Tuominen.

Proposition 2.2.11 ([74, Thm. 2]). If Ω ⊆ Rd is a Wk,p-extension do-
main for some values k ∈ N and 1 ≤ p <∞, then Ω satisfies the measure
density condition

|Ω ∩B(x, r)| & rd (x ∈ Ω, 0 < r ≤ 1)

and thus, by equivalence of Lebesgue and d-dimensional Hausdorff mea-
sure, is a d-set.

The previous results allow to strengthen Proposition 2.2.6 significantly
provided we restrict to the reflexive range 1 < p < ∞. As the setup of
a domain admitting local Sobolev extension operators around the closure
of the non-Dirichlet boundary part is very common in applications, Theo-
rem 2.2.12 in some sense states that under the mere assumption that D is
closed, every common Sobolev extension operator automatically preserves
the Dirichlet condition on D.
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2.2 The structure of Sobolev extension operators

Theorem 2.2.12. Let k ∈ N and 1 < p < ∞. Suppose Ω is a bounded
domain and D is a closed part of Ω. If for every x ∈ ∂ Ω \D there is an
open neighborhood Ux of x such that Ω ∩ Ux is a Wk,p-extension domain
in virtue of a bounded extension operator Ex : Wk,p(Ω ∩ Ux)→Wk,p(Rd),
then there is a bounded extension operator

E : Wk,p
D (Ω)→Wk,p

D (Rd).

Proof. Since, in contrast to Proposition 2.2.6, the set D is not necessarily
a subset of the boundary of Ω, we split

D = (D ∩ ∂ Ω) ∪ (D ∩ Ω) =: D∂ ∪DInt,

so that D∂ ⊆ ∂ Ω is closed and satisfies ∂ Ω \ D = ∂ Ω \ D∂. Let E :
Wk,p

D∂
(Ω) → Wk,p(Rd) be the bounded extension operator provided by

Proposition 2.2.6. We will show that this operator maps C∞D (Ω) into
Wk,p

D (Rd), from which the claim follows by a density argument.

Step 1: The Dirichlet condition on D∂

According to Proposition 2.2.6 the statement E : Wk,p
D∂

(Ω) → Wk,p
D∂

(Rd)
follows, provided each local extension operator Ex, x ∈ ∂ Ω \D∂, maps
the space Wk,p

Dx(Ω ∩ Ux) into Wk,p
Dx(Rd), where Dx = D∂ ∩ Ux. In or-

der to confirm the latter, first find Dx ⊆ ∂(Ω ∩ Ux) by Lemma 2.2.7.
The Wk,p-extension domain Ω ∩ Ux is a d-set, see Proposition 2.2.11. By
Lemma 2.2.10 it satisfies the asymptotically non-vanishing relative volume
condition around every of its boundary points and in particular around
every y ∈ Dx. This in turn makes Proposition 2.2.8(i) applicable and the
claim of Step 1 follows.

Step 2: The Dirichlet condition on D

Let u ∈ C∞D (Ω). Then from DInt ⊆ Ω and u ∈ C∞DInt
(Ω) it follows

lim
r→0
−
∫
B(y,r)

Dα(Eu) = lim
r→0
−
∫
B(y,r)

Dαu = 0.

for all y ∈ DInt and all multiindices α. Provided |α| ≤ k − 1, Step 1 in
combination with Theorem 1.2.37 yields

lim
r→0
−
∫
B(y,r)

Dα(Eu) = 0
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2 Hardy’s inequality

for (k − |α| , p)-quasievery y ∈ D∂. Thus, we have shown this property
for (k − |α| , p)-quasievery y ∈ D, which gives Eu ∈Wk,p

D (Rd) by another
application of Theorem 1.2.37.

Corollary 2.2.13. Let k ∈ N and 1 < p < ∞. Suppose Ω ⊆ Rd is a
(possibly unbounded) domain and E : Wk,p(Ω) → Wk,p(Rd) is a bounded
extension operator. Then E : Wk,p

D (Ω)→Wk,p
D (Rd) for every closed subset

D ⊆ Ω.

Proof. For every x ∈ ∂ Ω the neighborhood Ux = Rd of x has the property
that Ω∩Ux = Ω is a Wk,p-extension domain. Hence, the conclusion follows
as in the proof of Theorem 2.2.12 with E provided by assumption instead
of E provided by Proposition 2.2.6.

Remark 2.2.14. The explicit representation (2.6) makes clear that the
operator E used in Proposition 2.2.6 and Theorem 2.2.12 inherits every
additional boundedness property common to all local extension operators
Ex. For instance, if l ∈ N and 1 < q <∞ are such that all local extension
operators are Wl,q →Wl,q-bounded, then E is Wl,q

D →Wl,q
D -bounded and if

1 ≤ q ≤ ∞ is such that all local extension operators are Lq → Lq-bounded,
then so is E.

2.2.4 Geometric conditions

We finally collect some common geometric conditions on the complement
of the closure of the Dirichlet part allowing for local Sobolev extension do-
mains around. Most preferable would be a converse of Proposition 2.2.11
to the effect that every d-set is a Sobolev extension domain, but again
a sliced disc as in Figure 2 serves as a counterexample, compare with
Example 1.1.10.
On the contrary, a special instance of Jonsson and Wallin’s exten-

sion/restriction theory on Ahlfors-regular sets [87] ensures that d-sets have
the extension property at least for the fractional Sobolev spaces of differ-
entiability strictly less than 1.

Proposition 2.2.15 ([87, Thm. V.1.1]). Let Ω ⊆ Rd be d-Ahlfors regular,
let 0 < s < 1, and let 1 ≤ p <∞. Then there exists an extension operator
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b

b

b

x

y
0

γ

Ω

Figure 2: The sliced disc Ω ⊆ R2 is not a Sobolev extension domain. Let-
ting x and y tend to the slit from different sides, any connecting
rectifiable curve γ will eventually violate the (ε, δ)-condition for
any prescribed values ε, δ > 0.

E that extends every measurable function f on Ω that satisfies

‖f‖s,p,Ω := ‖f‖Lp(Ω) +
(∫∫

x,y∈Ω
|x−y|<1

|f(x)− f(y)|p

|x− y|d+sp dx dy
)1/p

<∞

to a function Ef ∈Ws,p(Rd) with norm

‖Ef‖Ws,p(Rd) . ‖f‖s,p,Ω.

In particular, the vector space of these functions f is complete for the
norm ‖ · ‖s,p,Ω and coincides with Ws,p(Ω) up to equivalent norms.

The positive result of Jonsson and Wallin lets us suspect that the
local norm on the Sobolev spaces of integer order complicates the extension
procedure for these spaces. In fact, in Example 1.1.10 we have used that
points on different sides of the slit can be arbitrarily close but connecting
them within Ω always requires to go the long way around the origin, in
order to construct a smooth function which is identically zero on one
side and identically one on the other. This neat trick does not work on
all fractional Sobolev spaces as the globally defined double integral in
Proposition 2.2.15 will produce a non-integrable singularity if sp ≥ d.
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Both of the geometric conditions we shall introduce below exclude such
geometric singularities.

Definition 2.2.16. A map Φ between to open subsets of Rd is called
bi-Lipschitz if it is bijective and both Φ and Φ−1 are Lipschitz continuous.

Definition 2.2.17. Let Ω ⊆ Rd be a domain and let x ∈ ∂ Ω. Then Ω is
said to satisfy the Lipschitz condition around x provided there is an open
neighborhood Ux of x and a bi-Lipschitz map Φx from Ux onto the unit
cube (−1, 1)d such that

Φx(x) = 0,
Φx(Ω ∩ Ux) = (−1, 1)d−1 × (−1, 0),

Φx(∂ Ω ∩ Ux) = (−1, 1)d−1 × {0}.

The Lipschitz condition is illustrated in Figure 3. It asserts that ∂ Ω is
a Lipschitz manifold around x and that locally around x the domain Ω
only lies at one side of the boundary. Note carefully that we do not require
a local representation of ∂ Ω as the graph of some Lipschitz function. In
fact, this latter strong or graph Lipschitz condition is more restrictive, see
[71, Sec. 1.2.1] for further reading.
A less tangible, quantitative connectivity condition has been introduced

by Jones [86].

Definition 2.2.18.

(i) Let Ω ⊆ Rd be a domain and let ε, δ > 0. Assume that any two
points x, y ∈ Ω with distance not larger than δ can be connected
within Ω by a rectifiable arc γ of length l(γ) ≤ 1

ε
|x− y| such that

|x− z| |y − z|
|x− y|

≤ 1
ε

d(z, ∂ Ω) (z ∈ γ).

Then Ω is called (ε, δ)-domain.

(ii) Let Ω ⊆ Rd be a domain and x ∈ ∂ Ω. Then Ω is said to satisfy an
(ε, δ)-condition around x provided there is an open neighborhood Ux
of x such that Ω ∩ Ux is an (ε, δ)-domain for some values ε, δ > 0.
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b

Ω

x

Ux \ Ω

b
0

Φx(Ω ∩ Ux)

Φx(Ux \ Ω)

Φx

Ω ∩ Ux

Figure 3: In virtue of Φx the open neighborhood Ux of x is in bi-Lipschitz
correspondence with the open unit cube as required in Defini-
tion 2.2.17.

Remark 2.2.19. Bounded (ε, δ)-domains are also known as Jones or uni-
form domains, see [144, Ch. 4.2] and also [86, 110–112] for further infor-
mation and related concepts.

To get a feeling for (ε, δ)-domains, let us prove that the Lipschitz con-
dition around a boundary point implies the (ε, δ)-condition.

Lemma 2.2.20. If a domain Ω ⊆ Rd satisfies the Lipschitz condition
around a boundary point x ∈ ∂ Ω, then it also satisfies the (ε, δ)-condition
around x. More precisely, if Ux is the neighborhood provided by the Lip-
schitz condition around x, then Ω∩Ux is an (ε, δ)-domain for some values
ε, δ > 0.
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Proof. By assumption there is a neighborhood U of x such that Ω ∩ U
can be mapped onto the cuboid Q := (−1, 1)d−1 × (−1, 0) by means of a
bi-Lipschitz transformation Φ. Let L ≥ 1 be such that

L−1 |x− y| ≤ |Φ(x)− Φ(y)| ≤ L |x− y| (x, y ∈ U).

By uniform continuity Φ extends to a homeomorphism Ω ∩ U → Q, also
denoted by Φ in the following, which shares the same estimate as above.
Since Φ(∂(Ω ∩ U)) = ∂ Q, we conclude that if Φ(x) and Φ(y) can be
connected within Q by a rectifiable arc γ satisfying the (ε, δ)-condition for
fixed values ε, δ > 0 on Q, then Φ−1(γ) is a rectifiable arc that connects
x and y within Ω∩U satisfying the (L−3ε, L−1δ)-condition on Ω∩U . So,
it suffices to prove that Q is an (ε, δ)-domain.
To this end fix x, y ∈ Q with distance |x− y| ≤ 1

3 . For each j, the j-th
coordinates xj and yj are elements in (−1, 1) with distance at most |x− y|
and thus are contained in an open subinterval Ij with length 2 |x− y|.
Then W := ∏d

j=1 Ij ⊆ Q is a cube with sidelength |x− y| that contains
both x and y. Let O be the center of W and connect x and y within W
by the piecewise linear arc γ := −→xO⊕−→O y. The claim is that this arc suits
Definition 2.2.18.

b

b

b
O

x

yW
Q

γ
b

x̃

Figure 4: The configuration in the proof of Lemma 2.2.20. The (ε, δ)-
condition requires that a region akin to the striped polygon is
entirely contained in Q.

For the length of γ simply bound the distance of points in W to its
center O by half the length of the space diagonal, that is,

l(γ) = |x−O|+ |O − y| ≤ 2
√
d |x− y| .
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Now, let z ∈ −→xO. Denote the intersection point of the straight line through
x and O with the boundary ofW by x̃. The respective angle of intersection
α satisfies 1√

d
≤ sinα ≤ 1. As by convexity x̃ and the point on ∂ W closest

to z must lie on the same face of W ,

d(z, ∂ Q) ≥ d(z, ∂ W ) = |x̃− z| sinα ≥ 1√
d
|x− z|,

see also Figure 4. Also

|y − z| ≤ l(γ) ≤ 2
√
d |x− y| ,

so that altogether

|x− z| |y − z|
|x− y|

≤ 2d d(z, ∂ Q).

Interchanging the roles of x and y yields the same estimate for z ∈ −→y O.
This means that Q satisfies the (ε, δ)-condition for the choices ε = 1

2d and
δ = 1

3 .

Jones [86] proved in 1981 that an (ε, δ)-domain is a Wk,p-extension
domain for every possible choice of k and p but with extension operators
depending on the choice of k. Much later, in 2006 a degree-independent
extension operator for (ε, δ)-domains was constructed by Rogers [133].

Theorem 2.2.21 ([133, Thm. 8]). Each (ε, δ)-domain is a universal Sobo-
lev extension domain.

Remark 2.2.22.

(i) To avoid confusion, let us remark that all results in [133] are formu-
lated for Sobolev spaces only, but throughout the Lp case k = 0 is
allowed.

(ii) Although the uniformity property is not necessary for a domain to
be a Sobolev extension domain [146], it seems presently to be the
broadest class of domains for which this extension property is known
to hold – at least if one aims at all p ∈ (1,∞). For example, Koch’s
snowflake is an (ε, δ)-domain [86].
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Plugging in Rogers’ extension operator in Theorem 2.2.12 lets us
re-discover a deep result of Brewster, D. Mitrea, I. Mitrea, and
M. Mitrea [37, Thm. 1.3] in case of bounded domains and p strictly
between 1 and ∞. We even obtain a universal extension operator that si-
multaneously acts on all Wk,p

D -spaces and at the same time our argument
reveals that the preservation of the trace is irrespective of the specific
structure of Jones’ or Rogers’ extension operators. We believe that
this sheds some more light also on their result, though – of course – our
argument cannot disclose the fundamental assertions on the support of the
extended functions they obtained by a careful analysis of Jones’ extension
operator.We summarize these observations in the following theorem.

Theorem 2.2.23. Let Ω be a bounded domain and let D be a closed
part of Ω. Assume that Ω satisfies the Lipschitz condition or, more gen-
erally, an (ε, δ)-condition around every x ∈ ∂ Ω \D. Then there ex-
ists a universal operator E that restricts to a bounded extension operator
Wk,p

D (Ω)→Wk,p
D (Rd) for each k ∈ N0 and each 1 < p <∞.

2.3 Poincaré’s inequality
In this section we discuss the validity of the global Poincaré inequality∫

Ω
|u|p .

∫
Ω
|∇u|p (u ∈W1,p

D (Ω)),(2.11)

thereby unwinding Assumption (iii) of the abstract Hardy inequality, The-
orem 2.1.5. Our aim is not greatest generality as, e.g., in [115] for functions
defined on the whole of Rd, but to include the aspect that our functions
are only defined on a domain. Secondly, our interest is to give very gen-
eral, but in some sense geometric conditions,which may be checked more
or less ‘by appearance’ – at least for problems arising from applications.
We present two quite different approaches to this inequality. The first

one is by potential theory and follows a classical pattern going back to
Meyers [121], see also [2, Thm. 8.3.3], [148, Thm. 4.5.1], and allows to
carry out the dependence of the implicit constant on the Dirichlet part D.
The second approach is new and allows to establish Poincaré’s inequality
even in the geometric setup already used in Sections 2.2.2 and 2.2.3. At
the end we will be in a position to give two handy instances of Hardy’s
and Poincaré’s inequality.
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2.3.1 An approach via potential theory
We begin with an abstract lemma that is most classical for establishing
Poincaré-type inequalities.

Lemma 2.3.1 ([2, Lem. 8.3.1]). Let X0 be a Banach space with norm
‖ · ‖0, and let X ⊆ X0 be a Banach space with norm ‖ · ‖X = ‖ · ‖0 + | · |1,
where | · |1 is a seminorm on X with nullspace Y 6= {0}. If the embedding
X ⊆ X0 is compact, then there exists a constant A > 0 such that

‖x− Px‖0 ≤ A‖P‖X→X |x|1

for all x ∈ X and all bounded projections P from X onto Y.

In Adams and Hedberg’s textbook [2, Thm. 8.3.3] the subsequent
Poincaré inequality with explicit dependence of constants on the Dirichlet
part D has been obtained if D is a subset of Ω. We closely follow their
argument but incorporate the results from Section 2.2.3 on preservation of
traces to generalize to the situation D ⊆ Ω. We are aware that a similar
result is indicated in Ziemer’s book [148, Thm. 4.5.1] but it seems that
a precise statement on trace preservation is missing therein.

Theorem 2.3.2. Let 1 < p < ∞ and let Ω ⊆ Rd be a bounded W1,p-
extension domain. Then there exists a constant A > 0 such that for all
compact sets D ⊆ Ω with C1,p(D) > 0 the Poincaré inequality∫

Ω
|u(x)|p dx ≤ A

C1,p(D)

∫
Ω
|∇u(x)|p dx (u ∈W1,p

D (Ω))

holds true.

Proof. The strategy of proof is to apply Lemma 2.3.1 with the choices
X0 = Lp(Ω), X = W1,p(Ω), | · |1 = ‖∇ · ‖Lp(Ω), and a suitable projection
P onto the nullspace Y = C such that W1,p

D (Ω) ⊆ N (P ). Here and
throughout we identify scalars with the respective constant functions on
Ω. Note that the compactness of the embedding X ⊆ X0 is provided by
Remark 1.1.14.
Fix a compact set D ⊆ Ω with non-vanishing (1, p)-capacity and let

µ ∈ M+(D) be a (1, p)-capacitary measure for D as in Proposition 1.2.13.
Then

0 < C1,p(D) = ‖G1 ∗ µ‖p
′

p′ = µ(D) <∞(2.12)
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and so by Lemma 1.2.10 the measure µ is absolutely continuous with
respect to C1,p in the sense that

µ(E) ≤ ‖G1 ∗ µ‖p′C1,p(E)1/p

holds for every Borel set E ⊆ Rd. Let E : W1,p(Ω) → W1,p(Rd) be
the assumed extension operator. Due to the Sobolev-Bessel equivalence
W1,p(Rd) = H1,p(Rd), Theorem 1.1.6, each u ∈W1,p(Ω) can be assigned a
unique fu ∈ Lp(Rd) such that

Eu = G1 ∗ fu (a.e. on Rd).

Lemma 1.2.5 guarantees that G1 ∗ fu coincides with a Borel measurable
function outside a Borel set of vanishing (1, p)-capacity and thus – by
absolute continuity – is measurable with respect to the completion of µ.
Denoting this latter measure by µ, define

P : W1,p(Ω)→ C, u 7→ 1
C1,p(D)

∫
D
G1 ∗ fu dµ

Well-definedness and boundedness of P are checked as follows. On the
right-hand side of∫

D
|G1 ∗ fu| dµ ≤

∫
Rd

∫
Rd
G1(x− y) ∗ |fu(y)| dy dµ(x)

the integrand is positive and measurable with respect to the Borel-Le-
besgue σ-algebra on Rd × Rd, since G1 is positive and continuous. So,
invoking Tonelli’s thoerem and Hölder’s inequality,∫

D
|G1 ∗ fu| dµ =

∫
Rd
|fu(y)|

∫
Rd
G1(x− y) dµ(x) dy

≤ ‖fu‖p‖G1 ∗ µ‖p′ .

Here, we also used G1(x− y) = G1(y − x) by rotational symmetry. Now,
(2.12) and the definition of the H1,p-norm allow for the estimate

≤ ‖Eu‖H1,p(Rd)C
1/p′
1,p (D)

. C
1/p′
1,p (D)‖E‖W1,p(Ω)→W1,p(Rd)‖u‖W1,p(Ω),
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where the implicit constant depending only on p and d stems from the
norm equivalence in W1,p(Rd) = H1,p(Rd). Altogether, this proves

‖P‖W1,p(Ω)→W1,p(Ω) . C
1/p′−1
1,p (D) = C

−1/p
1,p (D)(2.13)

with an implicit constant independent of D. Finally, P 2 = P is a direct
consequence of C1,p(D) = µ(D) = µ(D), see (2.12). All these considera-
tion make applicable Lemma 2.3.1 to the effect that∫

Ω
|u− Pu|p ≤ A

C1,p(D)

∫
Ω
|∇u|p (u ∈W1,p(Ω))(2.14)

holds with a constant A that is independent of D. If now u ∈ W1,p
D (Ω),

then Eu ∈ W1,p
D (Rd) thanks to Corollary 2.2.13. Hence, the potential

G1 ∗ fu vanishes (1, p)-quasieverywhere on D, see Theorems 1.2.37 and
1.2.7. However, (1, p)-quasieverywhere implies µ-almost everywhere by
outer regularity of C1,p and absolute continuity of the Borel measure µ
with respect to C1,p. This in turn yields Pu = 0 and thus (2.14) yields
the claim.

For a later use we record the following asymmetric version of Poincaré’s
inequality.
Corollary 2.3.3. Let 1 < p < d, p ≤ q ≤ p∗, and let Ω ⊆ Rd be a bounded
W1,p-extension domain. Then there exists a constant A > 0 such for all
compact sets D ⊆ Ω with Hausdorff content H∞d−1(D) > 0, the Poincaré
inequality( ∫

Ω
|u(x)|q dx

)1/q
≤ A

H∞d−1(D)1/p

( ∫
Ω
|∇u(x)|p

)1/p
dx (u ∈W1,p

D (Ω))

holds true.

Proof. Let E : W1,p(Ω) → W1,p(Rd) be the assumed bounded extension
operator. Given u ∈ W1,p(Ω), Hölder’s inequality and classical Sobolev
embeddings entail

‖u‖Lq(Ω) ≤ |Ω|1/q−1/p∗ ‖u‖Lp∗ (Ω)

. ‖Eu‖W1,p(Rd)

≤ ‖u‖Lp(Ω) + H
∞
d−1(Ω)1/p

H∞d−1(D)1/p‖∇u‖Lp(Ω)d .

Theorem 2.3.2 in combination with Theorem 1.2.32 yields the claim.
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2.3.2 An alternative approach
The proof of Theorem 2.3.2 perfectly illustrates that the explicit depen-
dence on the Dirichlet part of the constant in Poincaré’s inequality has
been established for the price of a global W1,p-extension operator for Ω:
The only non-constructive step of proof is hidden in Lemma 2.3.1. So,

when aiming at a control inD for the implicit constants, then Lemma 2.3.1
cannot be applied with X = W1,p

D (Ω) but with X = W1,p(Ω), the complete
Sobolev space. For that reason, defining P in the proof of Theorem 2.3.2
requires an extension for every element in W1,p(Ω). On the other hand,
the preceding argument has eventually produced an inequality valid for
every W1,p(Ω) that becomes the required Poincaré inequality only when
restricted to W1,p

D (Ω), see (2.14).
These considerations raise the question whether we can directly argue on

W1,p
D (Ω) if we dispense with the explicit dependence of the multiplicative

constants on D. The next proposition is a first step in this direction.

Proposition 2.3.4. Let 1 < p < ∞ and let Ω ⊆ Rd be a bounded do-
main. Let X be a closed subspace of W1,p(Ω) equipped with the inherited
norm and suppose that X does not contain the constant function 1. If
the canonical embedding X ⊆ Lp(Ω) is compact, then X allows for the
Poincaré inequality ∫

Ω
|u|p .

∫
Ω
|∇u|p (u ∈ X).

Proof. First observe that both X and Lp(Ω) are reflexive. In order to
prove the proposition, assume to the contrary that there exists a sequence
{vk}k from X such that

1
k
‖vk‖Lp(Ω) ≥ ‖∇vk‖Lp(Ω)d .

After normalization we may assume ‖vk‖Lp(Ω) = 1 for every k ∈ N. Hence,
{∇vk}k converges to 0 strongly in Lp(Ω)d. On the other hand, {vk}k is
a bounded sequence in X and hence contains a subsequence {vkl}l that
converges weakly in X to an element v ∈ X. Since the gradient operator
∇ : X → Lp(Ω)d is continuous, {∇vkl}l converges to ∇v weakly in Lp(Ω)d.
As the same sequence converges to 0 strongly in Lp(Ω), the function ∇v
must be zero and hence v is constant. However, by assumption X does
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not contain constant functions except for v = 0. So, {vkl}l tends to 0
weakly in X. Owing to the compactness of the embedding X ⊆ Lp(Ω),
a subsequence of {vkl}l tends to 0 strongly in Lp(Ω), in contradiction the
normalization condition ‖vkl‖Lp(Ω) = 1.

Remark 2.3.5. If there exists a continuous Sobolev extension operator
E : X → W1,p(Rd), then the embedding X ⊆ Lp(Ω) is compact, see
Section 1.1.2. Hence, compactness of this embedding is not an additional
requirement in view of Theorem 2.1.5.

The following lemma presents conditions that are particularly easy to
check and entail the premise of Proposition 2.3.4 forX = W1,p

D (Ω). Loosely
speaking, some knowledge on the common frontier of D and ∂ Ω \ D is
required: Either not every point ofD should lie thereon or ∂ Ω must not be
too wild around. In the proof we will employ the classical local Poincaré
inequality as it can be deduced from Lemmas 7.12 and 7.16 in [65].

Lemma 2.3.6 (Local Poincaré inequality). Let 1 ≤ p ≤ q < p∗ <∞ and
put δ := 1

p
− 1

q
. Let Ω ⊆ Rd be bounded, open, and convex, and let S be a

Borel subset of Ω with |S| > 0. Then

‖u− uS‖Lq(Ω) ≤
(1− δ)1−δ

d(1/d− δ)1−δ ·
(diam Ω)d |B(0, 1)|1−1/d |Ω|1/d−δ

|S|
‖∇u‖Lp(Ω)d

for all u ∈W1,p(Ω), where uS := −
∫
S u denotes the mean value of u on S.

Lemma 2.3.7. Let 1 < p < ∞, let Ω be a bounded domain, and let
D ⊆ ∂ Ω be closed and l-thick for some d − p < l ≤ d. Both of the
following conditions assure 1 /∈W1,p

D (Ω).

(i) The set D admits at least one relatively inner point x with respect
to ∂ Ω as ambient topological space.

(ii) For every x ∈ ∂ Ω \D there is an open neighborhood Ux of x such
that Ω ∩ Ux is a W1,p-extension domain,

Proof. We treat both cases separately.

(i) Assume the assertion was false and 1 ∈W1,p
D (Ω). Let x be the inner

point of D from the hypotheses and let B := B(x, r) be a ball that
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does not intersect ∂ Ω \ D. Put 1
2B := B(x, r2) and let η ∈ C∞c (B)

be such that η ≡ 1 on 1
2B. We distinguish whether or not x is an

interior point of Ω.
First, assume it is not. For every u ∈ C∞D (Ω) the function ηu belongs
to W1,p

0 (Ω∩B) and as such admits a W1,p-extension E0(ηu) by zero
to the whole of Rd. In particular,

E0(ηu)(y) =

ηu(y), if y ∈ B ∩ Ω
0, if y ∈ B \ Ω

and consequently,

‖∇E0(ηu)‖Lp( 1
2B) = ‖∇(ηu)‖Lp( 1

2B∩Ω).

Since by assumption 1 is in the W1,p(Ω)-closure of C∞D (Ω) and as
both sides of the identity above depend continuously on u with re-
spect to the W1,p(Ω)-topology, this identity extends to u = 1, that
is

‖∇E0(η1)‖Lp( 1
2B) = ‖∇(η1)‖Lp( 1

2B∩Ω) = 0.

On the other hand x is not an inner point of Ω, so that in particular
1
2B \ Ω is non-empty. Since this set is open, it must have positive
Lebesgue measure |12B \ Ω| > 0. As E0(η1) ∈ W1,p(B) vanishes
almost everywhere on 1

2B \ Ω, Lemma 2.3.6 yields

‖E0(η1)‖Lp( 1
2B) . ‖∇E0(η1)‖Lp( 1

2B).

However, the right hand side is zero, whereas the left hand side
equals |12B ∩Ω|1/p, which is nonzero since 1

2B ∩Ω is non-empty and
open – a contradiction.
Now, assume x is contained in the interior of Ω. Upon diminishing B
we may assume B ⊆ Ω. For every u ∈ C∞D (Rd) we have ηu ∈ C∞D (Rd)
with an estimate

‖ηu‖W1,p(Rd) . ‖u‖W1,p(B) =
( ∫

B
|u|p + |∇u|p

)1/p
,
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the implicit constant depending only on η. By our choice of B split

B = B ∩ Ω = (B ∩ Ω) ∪ (B ∩ ∂ Ω) = (B ∩ Ω) ∪ (B ∩D).

Since u vanishes in a neighborhood of D,

‖ηu‖W1,p(Rd) .
( ∫

B∩Ω
|u|p + |∇u|p

)1/p
≤ ‖u‖W1,p(Ω).(2.15)

Taking into account η = 1 on 1
2B, the same reasoning gives

∫
1
2B
|∇(ηu)|p =

∫
1
2B
|∇u|p ≤

∫
Ω
|∇u|p.(2.16)

By assumption there is a sequence {uj}j ⊆ C∞D (Rd) tending to 1
in the W1,p(Ω)-topology. Due to (2.15) and the choice of η, the se-
quence {ηuj}j ⊆ C∞D (Rd) then tends to some v ∈W1,p

D (Rd) satisfying
v = 1 almost everywhere on 1

2B ∩ Ω. Due to (2.16), ∇v = 0 almost
everywhere on 1

2B, meaning that v is constant on this set. Since
1
2B ∩Ω as a non-empty open set has positive Lebesgue measure, all
this can only happen if v = 1 almost everywhere on 1

2B. Hence, for
every y ∈ 1

3B ∩D it holds

lim
r→0

1
|B(y, r)|

∫
B(y,r)

v dx = 1,

which by Theorem 1.2.37 is only possible if C1,p(1
3B ∩ D) = 0. By

Corollary 1.2.33 this implies H∞l (1
3B ∩ D) = 0 in contradiction to

the l-thickness of D.

(ii) Again assume the assertion was false. Since an l-thick set cannot
be empty, part (i) guarantees that there exists some x ∈ D that is
not an inner point of D with respect to ∂ Ω. Hence, x is an accumu-
lation point of ∂ Ω \D and by assumption there is a neighborhood
U = Ux of x such that Ω ∩ U is a W1,p-extension domain. Denote
the corresponding extension operator by E. We shall localize the
assumption 1 ∈W1,p

D (Ω) within U to arrive at a contradiction.
To this end, let B be an open ball around x such that B ⊆ U and let
η ∈ C∞c (U) be such that η = 1 on B. Then also η = η1 ∈ W1,p

D (Ω)
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and in particular η|Ω∩U is a member of the space W1,p
DF

(Ω ∩ U),
where DF := 1

2B ∩D. Thus, u := E(η|Ω∩U) ∈ W1,p
DF

(Rd) thanks to
Corollary 2.2.13.
On the other hand, similar to the proof of Proposition 2.2.8 let u be
the regular representative of u and let N be the C1,p-nullset on which
u is not defined. Keep in mind that the W1,p-extension domain Ω∩U
satisfies the asymptotically non-vanishing relative volume condition
around every of its boundary points, see Lemma 2.2.10 and Propo-
sition 2.2.11. For fixed y ∈ DF \ N construct the set F as in (2.8)
and (2.9) in the proof of Proposition 2.2.8. Again the restriction of
u to Rd \ F becomes continuous at y and

B(y, r) ∩ Ω ∩ U ∩ (Rd \ F )

is never a Lebesgue nullset when r > 0 is small enough. If r is
smaller than the radius of 1

2B, then y ∈ DF implies B(y, r) ⊆ B

and in this case u = η = 1 almost everywhere on the set above. This
proves that there is a sequence {xj}j in Rd \ F that approximates
y such that u(xj) = 1 for every j. By continuity, u(y) = 1 follows.
Since y ∈ DF \N was arbitrary, u = 1 holds (1, p)-quasieverywhere
on DF.
So far we known that u ∈ W1,p

DF
(Rd) and that u = 1 holds (1, p)-

quasieverywhere on DF. In view of Theorem 1.2.37 this can only
happen if DF is a C1,p-nullset, which as in part (i) contradicts the
l-thickness of D.

Remark 2.3.8. The proof of part (i) in Lemma 2.3.7 reveals 1 /∈W1,p
D (Ω)

under the assumption that D is merely closed and contains a relatively
inner point that is not an inner point of Ω.

Of course Poincaré’s inequality holds in the case D = ∂ Ω irrespective of
any geometric considerations as long as Ω is bounded [50, Thm. V.3.22]. In
order to demonstrate the power of the methods introduced in this section,
let us rediscover this result here: The set D = ∂ Ω is non-empty and
consists only of relatively inner points with respect to ∂ Ω. Also, due
to ∂ Ω ⊆ ∂ Ω it cannot be contained in the interior of Ω. Hence 1 is
not contained in W1,p

0 (Ω), see Remark 2.3.8. Moreover, the embedding
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W1,p
0 (Ω) ⊆ Lp(Ω) is compact since W1,p

0 (Ω) admits the continuous zero
extension operator, see Remark 2.3.5. So, Proposition 2.3.4 yields the
well-known inequality.
Note carefully that the assumptions in Lemma 2.3.7(ii) and in the exten-

sion theorem, Theorem 2.2.12, are identical. This allows us to eventually
formulate and prove our main result on Hardy’s inequality.

Theorem 2.3.9 (Hardy’s inequality). Let 1 < p < ∞ and let Ω be a
bounded domain. Suppose that D ⊆ ∂ Ω is closed and l-thick for some
d− p < l ≤ d and that for each x ∈ ∂ Ω \D there is an open neighborhood
Ux of x such that Ω∩Ux is a W1,p-extension domain. Then W1,p

D (Ω) admits
the Hardy inequality

∫
Ω

∣∣∣∣∣ udD
∣∣∣∣∣
p

.
∫

Ω
|∇u|p (u ∈W1,p

D (Ω)).

Proof. We only have to check the three assumptions (i) - (iii) of Theo-
rem 2.1.5, the abstract version of Hardy’s inequality. Of course assumption
(i) is for free. The extension operator E : W1,p

D (Ω) → W1,p
D (Rd) required

by (ii) is provided by Theorem 2.2.12. As discussed in Section 1.1.2 this
entails compactness of the embedding W1,p

D (Ω) ⊆ Lp(Ω). So, Proposi-
tion 2.3.4 yields the global Poincaré inequality required in (iii) provided
1 /∈W1,p

D (Ω), which in turn is precisely the statement of Lemma 2.3.7.

Remark 2.3.10.

(i) The assumptions of Theorem 2.3.9 are met for all 1 < p < ∞, if
D is (d − 1)-thick or a (d − 1)-set and Ω satisfies the Lipschitz- or
an (ε, δ)-condition around every x ∈ ∂ Ω \D, see Section 1.2.4 and
2.2.4 for details.

(ii) In the setup of Theorem 2.3.9 the function dD is bounded above
on the bounded domain Ω and therefore Hardy’s inequality implies
the global Poincaré inequality (2.11). Compared to the Poincaré
inequality previously established in Theorem 2.3.2, we have been
able to dispense with W1,p-extendability around the Dirichlet part
D for the price of giving up control on the implied constants in terms
of the size of D.
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2.4 An inverse problem for Hardy’s inequality
In this section we address an inverse problem related to Hardy’s inequality.
Suppose we are given a domain Ω, a closed subset D of its boundary, and
a function u ∈W1,p(Ω) that satisfies

∫
Ω

∣∣∣∣∣ udD
∣∣∣∣∣
p

<∞.

Does this imply that u vanishes on D or, more precisely, does it imply that
u is contained in W1,p

D (Ω)? As a motivating example we take the positive
result in the pure Dirichlet case.

Proposition 2.4.1 ([50, Thm. V.3.4]). Let 1 < p < ∞ and let Ω ⊆ Rd

be an open non-empty set different from Rd. If u ∈ W1,p(Ω) is such that
u

d∂Ω
∈ Lp(Ω), then it follows u ∈W1,p

0 (Ω).

The classical proof of Proposition 2.4.1 cannot be adapted to the more
general case D ⊆ ∂ Ω. In some sense this is natural, for the argument does
not rely on regularity properties of Ω in the first place. On the contrary,
the statement for the degenerate case D = ∅, in which Hardy’s inequality
holds for every u ∈W1,p(Ω) using the convention ‘inf ∅ =∞’, boils down
to proving W1,p(Ω) = W1,p

∅ (Ω), which is known to be false in general,
see Example 1.1.10 and its proof. As the latter two spaces coincide if Ω
is a W1,p-extension domain, these considerations suggest that a converse
to Hardy’s inequality might be true within the geometric framework of
Theorem 2.3.9 and in fact, we will prove so below.
A key observation is that the property u

dD ∈ Lp(Ω) is closely related to
Sobolev regularity of u log(dD) by the formal identity

∇(u log(dD)) = log(dD)∇u+ u

dD
∇ dD .

The subsequent lemma renders this connection more precisely. For techni-
cal reasons that will become clear later on, we shall work within fractional
Sobolev spaces. Recall from Remark 1.2.43 that a set E ⊆ Rd is porous
if it has Aikawa dimension strictly less than d, or more geometrically, if
there exists κ ≤ 1 such that for every ball B(x, r) with center x ∈ Rd and
radius 0 < r ≤ 1 there is y ∈ B(x, r) such that B(y, κr) ∩ E = ∅.
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Lemma 2.4.2. Let 1 < p <∞, let Ω be a bounded d-set, and let D ⊆ ∂ Ω
be closed and porous. Suppose u ∈W1,p(Ω) has an extension v ∈W1,p(Rd)
and satisfies u

dD ∈ Lp(Ω). If 0 < s < 1 and 1 < r < p, then the function
|u log(dD)| defined on Ω has an extension in the Bessel potential space
Hs,r(Rd) that is positive almost everywhere.

Proof. Recall from Theorem 1.1.6(iii) that the scale of Bessel potential
spaces is nested with that of the fractional Sobolev spaces. Therefore, it
suffices to construct an extension in Ws,r(Rd) with the respective proper-
ties. Moreover, it is enough to construct any extension f ∈ Ws,r(Rd) of
u log dD in the first place – then |f | can be used as the required extension
of |u log dD |. These considerations and Jonsson and Wallin’s result,
Proposition 2.2.15, show that the claim follows provided

‖u log(dD)‖Lr(Ω)

+
(∫∫

x,y∈Ω
|x−y|<1

|u(x) log(dD(x))− u(y) log(dD(y))|r

|x− y|d+sr dx dy
)1/r(2.17)

is finite.

Step 1: First term estimate

To bound the Lr-norm on the left-hand side of (2.17) choose 1 < q < ∞
such that 1

r
= 1

p
+ 1

q
and apply Hölder’s inequality

‖u log(dD)‖Lr(Ω) ≤ ‖u‖Lp(Ω)‖ log(dD)‖Lq(Ω).

For the second term on the right-hand side we utilize that the Aikawa
dimension of D is strictly less than d. More precisely, for some 0 < t < d

and some x ∈ D the estimate
∫

Ω
dD(x)t−d dx ≤

∫
B(x,2 diam Ω)

dD(x)t−d dx . (2 diam Ω)t <∞

holds. Hence, some negative power of dD is integrable on Ω and by sub-
ordination of logarithmic growth log(dD) ∈ Lq(Ω) follows. Altogether,
u log(dD) ∈ Lr(Ω) taking care of the first term in (2.17).
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Step 2: Second term estimate

By symmetry the domain of integration for the second term on the left-
hand side of (2.17) can be restricted to dD(x) ≥ dD(y). Adding and
subtracting the term u(y) log(dD(x)), it in fact suffices to prove that

(∫
Ω

∫
Ω

|u(x)− u(y)|r

|x− y|d+sr |log(dD(x))|r dx dy
)1/r

(2.18)

and
(∫

Ω
|u(y)|r

∫
x∈Ω

dD(x)≥dD(y)

|log(dD(x))− log(dD(y))|r

|x− y|d+sr dx dy
)1/r

(2.19)

are finite. Fix s < t < 1, write (2.18) in the form

(∫
Ω

∫
Ω

|u(x)− u(y)|r

|x− y|dr/p+tr
|log(dD(x))|r

|x− y|dr/q+sr−tr
dx dy

)1/r

and apply Hölder’s inequality with 1
r

= 1
p

+ 1
q
to bound it by

≤
(∫

Ω

∫
Ω

|u(x)− u(y)|p

|x− y|d+tp dx dy
)1/p(∫

Ω

∫
Ω

|log(dD(x))|q

|x− y|d+(s−t)q dx dy
)1/q

≤ ‖ log(dD)‖Lq(Ω)

(∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|d+tp dx dy
)1/p

×
(∫
|y|≤diam(Ω)

1
|y|d+(s−t)q

)1/q

.

Now, log(dD) ∈ Lq(Ω) has been proved in Step 1 and the third integral
is absolutely convergent since d + (s − t)q < d. Finally note that by
assumption u has an extension Eu ∈W1,p(Rd). Theorem 1.3.20(iv) iden-
tifies Wt,p(Rd) as a real interpolation space between Lp(Rd) and W1,p(Rd).
Hence, Eu ∈Wt,p(Rd) implying that u is an element of the space Wt,p(Ω)
whose norm dominates the middle term above.
It remains to show that the most interesting term (2.19) is finite. By

the mean value theorem for the logarithm and since dD is a contraction,
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the r-th power of this term is bounded above by∫
Ω
|u(y)|r

∫
x∈Ω

dD(x)≥dD(y)

|dD(x)− dD(y)|r

dD(y)r |x− y|d+sr dx dy

≤
∫

Ω

∣∣∣∣∣ u(y)
dD(y)

∣∣∣∣∣
r ∫

Ω

1
|x− y|d+(s−1)r dx dy

≤
∫

Ω

∣∣∣∣∣ u(y)
dD(y)

∣∣∣∣∣
r

dy
∫
|x|≤diam(Ω)

1
|x|d+(s−1)r dx.

Here, the integral with respect to x is finite since (s − 1)r < 0 and the
integral with respect to y is finite since by assumption u

dD is p-integrable
on the bounded domain Ω and thus r-integrable for every r < p.

The next lemma is a first step toward a converse of Hardy’s inequality
on bounded d-sets.

Lemma 2.4.3. Let 1 < p <∞, let Ω be a bounded d-set, and let D ⊆ ∂ Ω
be closed and porous. Suppose u ∈W1,p(Ω) has an extension v ∈W1,p(Rd)
and satisfies u

dD ∈ Lp(Ω). Then the regular representative of v vanishes
(s, r)-quasieverywhere on D for all choices of 0 < s < 1 and 1 < r < p.

Proof. Once more we utilize the techniques from the proof of Proposi-
tion 2.2.8. So, let v be the regular representative of v defined on Rd \ N
via

v(y) := lim
r→0
−
∫
B(y,r)

v,

the exceptional set N being of vanishing (1, p)-capacity and hence of van-
ishing (s, r)-capacity for all choices of 0 < s < 1 and 1 < r < p, see
Lemma 1.2.3 and Corollary 1.2.11.
Fix y ∈ D \N . Due to Lemma 2.2.10 the asymptotically non-vanishing

relative volume condition

lim inf
r→0

|B(y, r) ∩ Ω)|
rd

> 0

is satisfied. Repeating the argument underlying the proof of Proposi-
tion 2.2.8, there is a Lebesgue measurable set F ⊆ Rd such that the
restriction of v to Rd \ F is continuous at y and such that

lim inf
r→0

|B(y, r) ∩ Ω ∩ (Rd \ F )|
rd

> 0
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holds. By these properties of F it follows

|v(y)| = lim
r→0
−
∫
B(y,r)∩Ω∩(Rd\F )

|v|

. lim sup
r→0

1
rd

∫
B(y,r)∩Ω

|v|

with an implicit constant depending on y. Since v is an extension of u,

= lim sup
r→0

1
rd

∫
B(y,r)∩Ω

|u| .

In order to force this mean-value integral to vanish in the limit r → 0,
introduce the function log(dD), which is bounded below in absolute value
by | log r| on B(y, r) if r < 1, to obtain

≤ lim sup
r→0

| log r|−1
(

1
rd

∫
B(y,r)∩Ω

|u log(dD)|
)
.

Now, let 0 < s < 1 and 1 < r < p. According to Lemma 2.4.2 there is an
extension w ∈ Hs,r(Rd) of |u log(dD)| that is positive almost everywhere.
So, the ongoing estimate can be completed by

. lim sup
r→0

| log r|−1−
∫
B(y,r)

|w| .

The upshot is that the required property v(y) = 0 now follows for every
y ∈ D \N for which

lim sup
r→0

−
∫
B(y,r)

|w| <∞(2.20)

holds. By Theorem 1.2.7 and the subsequent remark, this applies to (s, r)-
quasievery y ∈ D \N and since Cs,r(N) = 0, the proof is complete.

By a localization argument we can now resolve the inverse problem
for Hardy’s inequality under almost the same geometric assumptions as
in Theorem 2.3.9. In fact, only porosity of the Dirichlet part enters as
an additional assumption. In the argument we will crucially exploit the
following stability result of Hedberg and Kilpeläinen.
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Proposition 2.4.4 ([77, Cor. 3.5]). Let 1 < p < ∞ and let Ω ⊆ Rd be a
bounded domain whose boundary is l-thick for some d− p < l ≤ d. Then

W 1,p(Ω) ∩
⋂

1<r<p
W 1,r

0 (Ω) ⊆ W 1,p
0 (Ω).

Remark 2.4.5. In [77] the requirement on Ω is that its complement is
uniformly p-fat – a property that by Lehrbäck’s ingenious characteri-
zation [101, Thm. 1] holds for every bounded set with l-thick boundary
provided d− p < l ≤ d.

Theorem 2.4.6. Let 1 < p <∞ and let Ω be a bounded domain. Suppose
that D ⊆ ∂ Ω is closed, porous, and l-thick for some d − p < l ≤ d.
Moreover, assume that for each x ∈ ∂ Ω \D there is an open neighborhood
Ux of x such that Ω ∩ Ux is a W1,p-extension domain. If u ∈ W1,p(Ω) is
such that u

dD ∈ Lp(Ω), then already u ∈W1,p
D (Ω).

Proof. To set up notation for the localization argument, let Ux1 , . . . , Uxn
be a finite subcovering of ∂ Ω \D and let ε > 0 be such that the sets
Ux1 , . . . , Uxn , together with U := {y ∈ Rd : d(y, ∂ Ω \D) > ε}, form an
open covering of Ω. Put

UF :=
n⋃
j=1

Uxj , ΩF := Ω ∩ UF, and DF = D ∩ UF

noting that DF ⊆ ∂ ΩF by Lemma 2.2.7. Moreover, DF as a subset of
the porous set D is of course porous itself.
Let η, η1, . . . , ηn be a subordinated C∞-partition of unity on Ω, with the

properties supp(η) ⊆ U and supp(ηj) ⊆ Uxj . Finally put u1 := ηu and
u2 := (1− η)u. Since u = u1 + u2 it suffices to prove that both u1 and u2
belong to W1,p

D (Ω). The three-step argument relies on Proposition 2.4.1
for u1, Lemma 2.4.3 for u2, and Proposition 2.4.4.

Step 1: Controlling the easy function

First consider u1. Every y in the support of u1 satisfies

d∂Ω(y) ≥ min{ε, dD(y)} ≥ min{ε/ diam(Ω), 1} dD(y),
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so that ∫
Ω

∣∣∣∣∣ u1

d∂Ω

∣∣∣∣∣
p

.
∫

Ω

∣∣∣∣∣ u1

dD

∣∣∣∣∣
p

.
∫

Ω

∣∣∣∣∣ udD
∣∣∣∣∣
p

<∞.

Proposition 2.4.1 yields u1 ∈W1,p
0 (Ω) ⊆W1,p

D (Ω).

Step 2: A suitable extension of the remainder

Now consider u2. As a bounded W1,p-extension domain, each set Ω ∩ Uxj
is a bounded d-set, see Proposition 2.2.11, and by Lemma 1.2.24 so is their
union ΩF. For each j an extension wj ∈W1,p(Rd) of ηju ∈W1,p(Ω ∩ Uxj)
exists by assumption. Let ζj be a smooth function which is identically one
on supp(ηj) and has its support in Uj. Then w := ∑n

j=1 ζjwj ∈ W1,p(Rd)
has compact support in UF and satisfies

w =
n∑
j=1

ζjηju=

n∑
j=1

ηju = (1− η)u = u2 (a.e. on Ω),

that is, w is an extension of u2 ∈W1,p(Ω). From DF ⊆ D and ΩF ⊆ Ω it
directly follows ∫

ΩF

∣∣∣∣∣ u2

dDF

∣∣∣∣∣
p

.
∫

Ω

∣∣∣∣∣ u2

dD

∣∣∣∣∣
p

.
∫

Ω

∣∣∣∣∣ udD
∣∣∣∣∣
p

<∞,

which in turn allows to apply Lemma 2.4.3 to the effect that the regular
representative w of w vanishes (s, r)-quasieverywhere onDF for all choices
of 0 < s < 1 and 1 < r < p. To proceed further, we distinguish two cases:

(i) It holds p ≤ d. Then we can let the product sr < p ≤ d get
arbitrarily close to p and therefore Lemma 1.2.3 yields for every
1 < r < p that w = 0 holds (1, r)-quasieverywhere on DF.

(ii) It holds p > d. Then w is the continuous representative of the
equivalence class w ∈W1,p(Rd) and we can choose s and r such that
d − l < sr. Thus, w vanishes H∞l -almost everywhere on DF due
to Corollary 1.2.33. Since UF is open, for each y ∈ D ∩ UF the set
B(y, r)∩D ∩UF coincides with B(y, r)∩D provided r > 0 is small
enough. By l-thickness of D, these sets have strictly positive H∞l -
measure. So, the continuous function w has to vanish everywhere
on D ∩ UF as well as on its closure – which by definition is DF.
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2.4 An inverse problem for Hardy’s inequality

Summing up, w = 0 has been shown to hold (1, r)-quasieverywhere on
DF for every 1 < r < p. Moreover, on the set D \ DF ⊆ Rd \ UF the
regular representative of w satisfies

w(y) = lim
r→0
−
∫
B(y,r)

w = 0

since w has compact support in UF. Altogether, w vanishes (1, r)-quasi-
everywhere on D for every 1 < r < p. In view of Theorem 1.2.37 and as
w has compact support, this means

w ∈W1,p(Rd) ∩
⋂

1<r<p
W1,r

D (Rd).(2.21)

Step 3: Conclusion of the proof

Of course statement (2.21) cries for an application of Proposition 2.4.4.
In order to apply this result to the case of mixed boundary conditions, we
proceed similarly to the proof of Theorem 2.1.5: With Q ⊆ Rd an open
cube that contains Ω as well as the compact support of w, define again

Ω• :=
⋃{

U ; U ⊆ Q \D is a domain that contains Ω
}
.

Then ∂ Ω• ∈ {D,D∪∂ Q} by Lemma 2.1.2. By Lemma 1.2.25 the Dirichlet
part D is m-thick for all 0 < m < l and thus Lemma 2.1.4 guarantees that
∂ Ω• is m-thick for some choice d−p < m ≤ d−1. Finally, let η ∈ C∞c (Q)
be identically one on the support of w. As u 7→ (ηu)|Ω• induces a bounded
operator W1,r

D (Rd)→W1,r
0 (Ω•), 1 < r <∞, it follows from (2.21) that

w|Ω• = (ηw)|Ω• ∈W1,p(Ω•) ∩
⋂

1<r<p
W1,r

0 (Ω•)

and thus w|Ω• ∈W1,p
0 (Ω•) thanks to Proposition 2.4.4. Since by construc-

tion Ω ⊂ Ω• and D ⊂ ∂ Ω•, we eventually conclude

u2 = w|Ω ∈W1,p
D (Ω)

and the proof is complete.

Remark 2.4.7. If in Theorem 2.4.6 we require that D is an l-set for some
d− p < l < d, then D is automatically porous, see Theorem 1.2.49.
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Combining the previous result with Theorem 2.3.9, we find that Hardy’s
inequality characterizes the space W1,p

D (Ω) whenever Ω fits into the de-
scribed geometric setting.

Corollary 2.4.8. Let 1 < p <∞ and let Ω be a bounded domain. Suppose
that D ⊆ ∂ Ω is closed, porous, and l-thick for some d − p < l ≤ d.
Moreover, assume that for each x ∈ ∂ Ω \D there is an open neighborhood
Ux of x such that Ω ∩ Ux is a W1,p-extension domain. Then

W1,p
D (Ω) = W1,p(Ω) ∩ Lp(Ω; d−pD (x)dx)

with equivalent norms.

Proof. Theorem 2.3.9 yields a continuous inclusion “⊆”. Theorem 2.4.6
yields the reverse inclusion, which by the open mapping theorem has to
be continuous as well.

Remark 2.4.9. The assumptions of Corollary 2.4.8 are in particular sat-
isfied for all 1 < p <∞ if D is a (d− 1)-set and Ω satisfies the Lipschitz-
or an (ε, δ)-condition around every x ∈ ∂ Ω \D.

2.5 Scale invariant interpolation identities for
the spaces W1,p

D

In this section we are concerned with real- and complex interpolation
theory for the spaces W1,p

D (Ω), that is, we aim for identities of the form
(
W1,p0

D (Ω),W1,p1
D (Ω)

)
θ,p

= W1,p
D (Ω) =

[
W1,p0

D (Ω),W1,p1
D (Ω)

]
θ
,(2.22)

the parameters being chosen appropriately. So far, the range for p in this
chapter was closely linked to the thickness parameter l via d− p < l ≤ d.
Now, we choose a geometric framework that allows to have at hand the
results for the full range 1 < p < ∞. For technical reasons we will have
to stick to Ahlfors regular sets rather than just thick sets.

Assumption 2.5.1. The domain Ω ⊆ Rd is bounded, D ⊆ ∂ Ω is either
empty or (d−1)-Ahlfors regular, and Ω satisfies an (ε, δ)-condition around
every x ∈ ∂ Ω \D.
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D

There is a fairly universal approach to such identities based on the
retraction-coretraction theorem, Theorem 1.3.5, and the corresponding
identities for the common Sobolev spaces without a partial trace condition.
We will come back to this in Section 5.4. Here, our goal is to work out that
in addition the implicit constants hidden in the interpolation identities
above are scale invariant on large scales.

Definition 2.5.2. Let Ω be a domain and D be a closed subset of its
boundary. A constant C occurring in a statement depending on the pair
(Ω, D) is called scale invariant on large scales if for every s ≥ 1 the same
statement holds for the pair (sΩ, sD) and C can be chosen independently
of s.

Our motivation for studying scale invariance for the interpolation iden-
tities (2.22) arises from applications to certain degenerate elliptic oper-
ators on Ω subject to mixed boundary conditions. For illustration, let
A ∈ L(C1+d) be a strictly accretive matrix and let s > 0. Given some
data f ∈ Lp(Ω)1+d, we want to find a solution u ∈ W1,p

D (Ω) to the varia-
tional problem

∫
Ω
µ

 u

is∇u


>

·

 v

is∇v


>

dx =
∫

Ω
f ·

 v

is∇v


>

dx (v ∈W1,p′
D (Ω)).

If p = 2, then there exists a unique such solution u thanks to the Lax-
Milgram lemma. A common technique to extrapolate well-posedness to
the Lp-scale relies on S̆nĕıberg’s theorem, Theorem 1.3.25, see, e.g., [37,
68, 75, 76]. However, letting the equation degenerate as s → 0, the range
for p provided by Theorem 1.3.25 will shrink again to p = 2. In order
to obtain the same p for all parameters 0 < s < 1, say, it is natural
to exploit the scaling inherent to the equation and – after a coordinate
transform – consider uniformly elliptic operators on the scaled domains
1
s
Ω with Dirichlet part 1

s
D. In this way, Theorem 1.3.25 can offer the

same amount of p-extrapolation for all 0 < s < 1 provided the implied
constants in (2.22) are scale invariant on large scales. A more detailed
account on this example will be given in Section 6.2.1.
In order to become acquainted with the concept of scale invariance, let

us consider an important non-trivial example for such an estimate.
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Example 2.5.3. Let Ω and D satisfy Assumption 2.5.1. There exists a
bounded extension operator E extending functions from Ω to Rd such that
for every 1 < p <∞ it holds E : W1,p

D (Ω)→W1,p
D (Rd) with an estimate

∫
Rd
|Eu|p + |∇Eu|p +

∣∣∣∣∣EudD

∣∣∣∣∣
p

.
∫

Ω
|u|p + |∇u|p (u ∈W1,p

D (Ω))

and an implicit constant that is scale invariant on large scales.

Proof. By Theorem 2.2.23 there exists a universal extension operator
that restricts to a bounded extension operator Lp(Ω) → Lp(Rd) and
W1,p

D (Ω) → W1,p
D (Rd) for every 1 < p < ∞. Following the proof of Theo-

rem 2.1.5, choose a cube Q that contains the closure of Ω and construct
the superdomain Ω• ⊇ Ω as in Lemma 2.1.2. Then let η be a smooth
function that is identically one on Ω and has support in Q, so that

E• : W1,p
D (Ω)→W1,p

0 (Ω•), u 7→ (ηEu)|Ω•

is a bounded extension operator. Extending each E•u by zero to all of Rd,
we obtain a bounded extension operator EF : W1,p

D (Ω) → W1,p
D (Rd) that

maps Lp(Ω) boundedly into Lp(Rd) and which we claim has the required
property.
First note that by construction

‖EFu‖W1,p
D (Rd) = ‖E•u‖W1,p

0 (Ω•) . ‖u‖W1,p
D (Ω) (u ∈W1,p

D (Ω)).(2.23)

Moreover, if D is non-empty, then Proposition 2.1.1 yields

∫
Rd

∣∣∣∣∣EFudD

∣∣∣∣∣
p

≤
∫

Ω•

∣∣∣∣∣E•ud∂Ω•

∣∣∣∣∣
p

.
∫

Ω•
|∇E•u|p

.
∫

Ω
|u|p + |∇u|p (u ∈W1,p

D (Ω)),
(2.24)

where Lemma 1.2.26 takes care of the required (d − 1)-thickness of D.
Now, let s ≥ 1. Scaling preserves Assumption 2.5.1. In fact, if D is non-
empty, then it follows from Lemmas 1.2.18 and 1.2.23 that sD ⊆ ∂(sΩ)
is again a bounded (d − 1)-set and sΩ still satisfies an (ε, sδ)-condition
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around every boundary point x ∈ ∂(sΩ) \ ∂(sD). Consider the coordinate
transform

T : Lp(sΩ)→ Lp(Ω), Tu(x) := u(sx)

in virtue of which we obtain a bounded extension operator

Es
F : W1,p

sD(sΩ)→W1,p
sD(Rd), u 7→ T−1EFTu.

A straightforward calculation confirms
∫
Rd

∣∣∣Es
Fu(y)

∣∣∣p +
∣∣∣∇(Es

Fu)(y)
∣∣∣p +

∣∣∣∣∣E
s
Fu(y)

dsD(y)

∣∣∣∣∣
p

dy

=
∫
Rd

∣∣∣EFTu(s−1y)
∣∣∣p + 1

sp

∣∣∣∇(EFTu)(s−1y)
∣∣∣p +

∣∣∣∣∣EFTu(s−1y)
s dD(s−1y)

∣∣∣∣∣
p

dy

=
∫
Rd
|EFTu(x)|p + 1

sp
|∇(EFTu)(x)|p + 1

sp

∣∣∣∣∣EFTu(x)
dD(x)

∣∣∣∣∣
p

sddx.

Employing Lp-boundedness of EF for the first term and the estimates
(2.23) and (2.24) for the second and third terms,

.
∫

Ω
|Tu(x)|p + 1

sp
|Tu(x)|p + 1

sp
|∇Tu(x)|p sddx

=
∫

Ω
|u(sx)|p + 1

sp
|u(sx)|p + |∇u(sx)|p sddx

=
∫
sΩ
|u(y)|p + 1

sp
|u(y)|p + |∇u(y)|p dy.

Since s ≥ 1, this yields the claim.

The sought-after extra information on the implicit constants in (2.22)
cannot be revealed by a universal approach from abstract interpolation
theory. Instead, we pursue an idea first proposed by Auscher, Badr,
Haller-Dintelmann, and Rehberg [16, Sec. 7/8] and establish these
interpolation identities by means of an adapted Calderón-Zygmund de-
composition within the inclusion

W1,p
D (Ω) ⊆W1,1

D (Ω) + W1,∞
D (Ω) (1 < p <∞).

The endpoint space W1,∞
D (Ω) is defined as follows.
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Definition 2.5.4. Let Ω be a domain and let D be a subset of Ω. The
space W1,∞

D (Ω) consists of all functions u ∈ L∞(Ω) that admit a Lipschitz
continuous representative u that vanishes everywhere on D. It carries the
norm

‖u‖W1,∞
D (Ω) := ‖u‖L∞(Ω) + sup

x,y∈Ω
x 6=y

|u(x)− u(y)|
|x− y|

(u ∈W1,∞
D (Ω)).

Remark 2.5.5.

(i) It is well known that every u ∈W1,∞(Rd) has a Lipschitz continuous
representative u with Lipschitz constant at most ‖∇u‖L∞(Rd), see,
e.g., [57, Thm. 5.8.4].

(ii) Conversely, every u ∈W1,∞
D (Ω) belongs to W1,∞(Ω), where the latter

space is defined via distributions, and the estimate

‖u‖W1,∞(Ω) ≤ ‖u‖W1,∞
D (Ω)

holds true. In fact, u is strongly differentiable almost everywhere
due to Rademacher’s theorem [58, Sec. 3.1.2], its strong derivative
coincides with its distributional derivative almost everywhere [58,
Sec. 4.2.3], and every difference quotient can be controlled by the
Lipschitz constant of u.

The endpoint space W1,∞
D is the smallest one in the W1,p

D -scale on a
bounded domain.

Lemma 2.5.6 ([16, Lem. 3.1]). Let Ω be a bounded domain and let D be
a closed subset of Ω. Then W1,∞

D (Ω) ⊆W1,p
D (Ω) for every 1 ≤ p <∞.

We also record the following useful condition for a function to belong
to W1,∞

D (Rd).

Lemma 2.5.7. If D ⊆ Rd is a (d− 1)-set, then W1,∞(Rd) ∩W1,p
D (Rd) is

a subset of W1,∞
D (Rd) for every 1 < p <∞.

Proof. By Remark 2.5.5 every u ∈W1,∞(Rd) has a Lipschitz continuous
representative u. Proposition 1.2.38 gives u(x) = 0 for Hd−1-almost every
x ∈ D since u ∈ W1,p

D (Rd). Now let x0 ∈ D be arbitrary. As D is
a (d − 1)-set, D ∩ B(x0, r) has strictly positive Hd−1-measure for every
r > 0. Hence, x0 is an accumulation point of {x ∈ D; u(x) = 0}. By
continuity u(x0) = 0 follows and the proof is complete.
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Below, we construct the alluded Calderón-Zygmund decomposition for
W1,p

D -functions. The crucial tool allowing to maintain the Dirichlet con-
ditions for both the good and the bad function is Hardy’s inequality.
This idea is taken from Auscher-Badr-Haller-Dintelmann-Reh-
berg [16] and in fact our argument is very similar to theirs with one
important exception: By introducing a third class of cubes, called bor-
ing cubes in the proof, scale invariance on large scales is incorporated in
the construction. In the proof we utilize the Hardy-Littlewood maximal
function along with its classical estimates, which we recall beforehand
for convenience. Throughout, we write Q for the collection of all closed
axe-parallel cubes in Rd.

Definition 2.5.8. The Hardy-Littlewood maximal operator M is defined
for locally integrable functions f : Rd → C by

(Mf)(x) := sup
x∈Q
Q∈Q

−
∫
Q
|f | (x ∈ Rd).

Lemma 2.5.9 ([34, Cor. 3.6]). If f : Rd → C is locally integrable, then
|f | ≤ M(f) pointwise almost everywhere on Rd.

Theorem 2.5.10 ([34, Thm. 3.10]). For every 1 < p ≤ ∞ the maximal
operator is a bounded operator Lp(Rd)→ Lp(Rd) and for p = 1 it satisfies
the weak-type estimate

∣∣∣{x ∈ Rd; (Mf)(x) > α
}∣∣∣ . 1

α
‖f‖L1(Rd) (f ∈ L1(Rd), α > 0).

Lemma 2.5.11 (Adapted Calderón-Zygmund decomposition). Let Ω and
D satisfy Assumption 2.5.1 and let 1 < p < ∞. For every u ∈ W1,p

D (Ω)
and every α > 0 there exists an at most countable index set J , cubes
Qj ∈ Q, j ∈ J , and measurable functions g, bj : Ω → C such that the
following hold true for some constant N ≥ 1 that is scale invariant on
large scales.

(i) u = g +
∑
j∈J

bj.

(ii) Each function bj has its support in Qj and each x ∈ Rd is contained
in at most N of the cubes Qj, j ∈ J .
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(iii) g ∈W1,∞
D (Ω) with ‖g‖W1,∞

D (Ω) + ‖g/ dD ‖L∞(Ω) ≤ Nα.

(iv) bj ∈W1,1
D (Ω) with

∫
Ω
|∇bj|+ |bj|+

|bj|
dD
≤ Nα |Qj| for every j ∈ J .

(v) The estimate

∑
j∈J
|Qj| ≤ N

∣∣∣{x ∈ Rd; M(|∇Eu|+ |Eu|+ |Eu|/ dD)(x) > α
}∣∣∣

≤ N2

αp
‖u‖pW1,p

D (Ω),

where Eu is the extension of u provided by Example 2.5.3.

(vi) g ∈W1,p
D (Ω) with ‖g‖W1,p

D (Ω) ≤ N‖u‖W1,p
D (Ω).

Remark 2.5.12.

(i) The function g is called good function and bj, j ∈ J , are called bad
functions.

(ii) Scale invariance of N on large scales is a non-trivial property for it
cannot be obtained by simply rescaling the good and bad functions
a posteriori.

Proof of Lemma 2.5.11. In order to carry out properly the dependence
of N on the various parameters at stake, we exceptionally reserve the
symbol . for inequalities involving generic constants that depend only on
p and d. Example 2.5.3 yields an extension operator E and a constant CE
that is scale invariant on larges scales such that

∫
Rd
|Eu|p + |∇Eu|p +

∣∣∣∣∣EudD

∣∣∣∣∣
p

≤ CE‖u‖pW1,p
D (Ω) (u ∈W1,p

D (Ω)).(2.25)

Throughout the proof we abbreviate Eu by ũ. More generally, functions
carrying a tilde are always defined on the whole space Rd and their re-
strictions to Ω are denoted without.
The proof follows a standard pattern, i.e., it relies on a Whitney de-

composition on an exceptional set determined by an adapted maximal
function. It is divided into seven consecutive steps.
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Step 1: Adapted maximal function

Due to (2.25) the function |∇ũ|+ |ũ|+ |ũ|/ dD is p-integrable on Rd. We
define an open set

U :=
{
x ∈ Rd; M(|∇ũ|+ |ũ|+ |ũ|/ dD)(x) > α

}
.

First we deal with the easy case U = ∅. Then for the choices J = ∅ and
g = u all assertions are immediate except for (iii). To prove the latter we
use that ũ is an extension of u to infer

|∇g(x)|+ |g(x)|+ |g(x)|
dD(x) = |∇ũ(x)|+ |ũ(x)|+ |ũ(x)|

dD(x)

for almost every x ∈ Ω and since the right-hand side is dominated almost
everywhere by its maximal function it follows

≤M(|∇ũ|+ |ũ|+ |ũ|/ dD)(x) ≤ α

for almost every x ∈ Ω as required.
So, from now on we can assume that U is a non-empty open subset

of Rd. By Jensen’s inequality, the weak (1, 1)-estimate for the maximal
operator, and (2.25) we obtain

|U | ≤
∣∣∣{x ∈ Rd;M

(
(|∇ũ|+ |ũ|+ |ũ|/ dD)p

)
(x) > αp

}∣∣∣
.

1
αp
‖|∇ũ|+ |ũ|+ |ũ|/ dD ‖pLp(Rd) ≤

CE
αp
‖u‖pW1,p

D (Ω) <∞.
(2.26)

In particular, F := Rd \ U is non-empty. This allows for choosing a
Whitney decomposition of U , that is, an at most countable index set J
and a collection of cubes Qj ∈ Q, j ∈ J , with diameter dj that satisfy

(1) U =
⋃
j∈J

8
9Qj, (2) Int 8

9Qj ∩ Int 8
9Qk = ∅ if j 6= k,

(3) Qj ⊆ U for all j, (4)
∑
j∈J

1Qj ≤ 12d,

(5) 5
6dj ≤ d(Qj, F ) ≤ 4dj for all j,
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see [34, Lemma 5.5.1/2] for this classical tool but replace the cubes Q by
their enlarged counterparts 9

8Q therein. Two important consequences can
be recorded immediately: Firstly, (5) implies

12
√
dQj ∩ F 6= ∅ (j ∈ J).(2.27)

Secondly, (4) in combination with (2.26) immediately implies Assertion (v)
of the theorem since

∑
j∈J
|Qj| ≤

∫
U

∑
j∈J

1Qj . |U | .
CE
αp
‖u‖pW1,p

D (Ω).(2.28)

Step 2: Definition of the good and bad functions

Let {ϕj}j∈J be a partition of unity on U with

(a) ϕj ∈ C∞(Rd) (b) suppϕj ⊆ IntQj

(c) ϕj = 1 on 8
9Qj (d) ‖ϕj‖∞ + dj‖∇ϕj‖∞ . 1

for all j ∈ J , see [34, Sec. 5.5] for the construction. Let us distinguish three
types of cubes Qj. We say that Qj is usual if dj < 1 and d(Qj, D) ≥ dj,
it is boring if d(Qj, D) ≥ dj ≥ 1, and it is special if d(Qj, D) ≤ dj. Then
we define

b̃j :=

ϕj(ũ− ũQj) if Qj is usual
ϕjũ if Qj is boring or special

(j ∈ J).

Setting g̃ := ũ − ∑
j∈J b̃j as well as bj := b̃j|Ω and g := g̃|Ω, j ∈ J ,

these functions automatically satisfy Assertion (i). Due to (4) there is no
problem of convergence with this sum and also Assertion (ii) holds true.
Next, we check that bj has the required regularity. By construction

b̃j ∈ W1,p(Rd). To see that in fact b̃j ∈ W1,p
D (Rd) we first assume that

Qj is either a usual or a boring cube. Then d(Qj, D) ≥ dj > 0 and via
mollification b̃j can be approximated by C∞D (Rd)-functions in the norm of
W1,p(Rd). If Qj is special, then we clearly have b̃j = ϕjũ ∈ W1,p

D (Rd).
Restricting to Ω, it follows bj ∈ W1,p

D (Ω) and since Ω is bounded, this
implies bj ∈W1,1(Ω).
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Step 3: Proof of (iv)

After the considerations above it remains to prove the estimate. For a
later purpose we establish a more general estimate involving a parameter
q ∈ {1, p}.
We start with a usual cube, in which case ∇b̃j = ϕj∇ũ+ (ũ− ũQj)∇ϕj

holds. Using (d), we obtain
∫
Qj
|∇b̃j|q .

∫
Qj
|ϕj∇ũ|q + |(ũ− ũQj)∇ϕj|q

.
∫
Qj
|∇ũ|q + 1

dqj

∫
Qj
|ũ− ũQj |q.

(2.29)

For the rightmost integral we apply the local Poincaré inequality from
Lemma 2.3.6 in order to find

1
dqj

∫
Qj
|ũ− ũQj |q ≤ |B(0, 1)|q−q/d ddq/2−q/2

∫
Qj
|∇ũ|q.(2.30)

We repeat these estimates for q = 1 and, invoking (2.27) we pick some
zj ∈ Q∗j ∩F , where Q∗j = 12

√
dQj, in order to bring into play the maximal

operator:
∫
Qj
|∇b̃j| .

∫
Qj
|ϕj∇ũ|q + |(ũ− ũQj)∇ϕj|q .

∫
Q∗j

|∇ũ|

≤ |Q∗j | −
∫
Q∗j

|∇ũ| . |Qj|M(|∇ũ|)(zj).
(2.31)

Now, we capitalize zj ∈ F to obtain
∫

Ω
|∇bj| ≤

∫
Qj
|∇b̃j| . α |Qj| .(2.32)

The corresponding estimate for |bj| can easily be derived similarly. From
Lemma 2.3.6 we can infer∫

Ω
|bj|q ≤

∫
Qj
|b̃j|q =

∫
Qj
|ũ− ũQj |q|ϕj|q

. dqj

∫
Qj
|∇ũ|q ≤

∫
Qj
|∇ũ|q.

(2.33)
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Specializing to q = 1 and proceeding as in (2.31) and (2.32) we obtain

∫
Ω
|bj| . α |Qj| .(2.34)

For the third term |bj |
dD we note that on usual cubes dD ≥ dj holds and so

by (2.30) and the same argument as in (2.31) and (2.32) it follows

∫
Ω

∣∣∣∣∣ bjdD

∣∣∣∣∣ ≤
∫
Qj

∣∣∣∣∣ b̃jdD

∣∣∣∣∣ . 1
dj

∫
Qj
|ũ− ũQj | .

∫
Qj
|∇ũ| . α |Qj| .

Next, we turn to the estimate in (iv) in case of a boring cube, in which
case b̃j = ũϕj and d(D,Qj) ≥ dj ≥ 1. By (d),

|b̃j|+ |∇b̃j|+
∣∣∣∣∣ b̃jdD

∣∣∣∣∣ ≤ |ϕj∇ũ|+ |ũ∇ϕj|+
∣∣∣∣∣ϕjũdD

∣∣∣∣∣
. |ũ|+ |∇ũ|+ 1

dj
|ũ|+

∣∣∣∣∣ ũdD
∣∣∣∣∣ (a.e. on Qj),

(2.35)

and the usual start of play for the maximal operator following (2.31) and
(2.32) leads to

∫
Ω
|bj|+ |∇bj|+

∣∣∣∣∣ bjdD

∣∣∣∣∣ ≤
∫
Qj
|b̃j|+ |∇b̃j|+

∣∣∣∣∣ b̃jdD

∣∣∣∣∣
≤
∫
Qj
|ϕj∇ũ|+ |ũ∇ϕj|+

∣∣∣∣∣ϕjũdD

∣∣∣∣∣
.
∫
Qj
|ũ|+ |∇ũ|+ 1

dj
|ũ|+

∣∣∣∣∣ ũdD
∣∣∣∣∣

≤
∫
Qj

3|ũ|+ |∇ũ|

. α |Qj| .

(2.36)

Finally, we attend to the special cubes. Again b̃j = ũϕj, whence (2.35)
holds true. Since Qj is special,

dD(x) = d(x,D) ≤ diam(Qj) + d(Qj, D) ≤ 2dj (x ∈ Qj),(2.37)
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so that by a final repetition of the arguments in (2.31) and (2.32),

∫
Ω
|bj|+ |∇bj|+

∣∣∣∣∣ bjdD

∣∣∣∣∣ ≤
∫
Qj
|b̃j|+ |∇b̃j|+

∣∣∣∣∣ b̃jdD

∣∣∣∣∣
≤
∫
Qj
|ϕj∇ũ|+ |ũ∇ϕj|+

∣∣∣∣∣ϕjũdD

∣∣∣∣∣
.
∫
Qj
|ũ|+ |∇ũ|+

∣∣∣∣∣ ũdD
∣∣∣∣∣

. α |Qj| .

(2.38)

Note that in the third step of this estimate we have absorbed the non-
Hardy term |ũ∇ϕj| . d−1

j |ũ| into the Hardy term d−1
D |ũ|.

Step 4: Non-gradient terms of the good function

In this step we prove for almost every x ∈ Rd the estimate

|g̃(x)|+ |g̃(x)|
dD(x) . α.

On F all bad functions b̃j vanish. Hence, g̃ = ũ on this set and therefore

|g̃(x)|+ |g̃(x)|
dD(x) = |ũ(x)|+ |ũ(x)|

dD(x) ≤M
(
|ũ|+ |ũ|dD

)
(x) ≤ α

for a.e. x ∈ F . So, we can concentrate on the more difficult case x ∈ U .
Denoting by Ju, Jb, and Js the sets of those j ∈ J such that Qj is usual,
boring, and special, respectively, we obtain on U that

g̃ = ũ−
∑
j∈J

b̃j = ũ−
∑
j∈Ju

ϕj(ũ− ũQj)−
∑

j∈Jb∪Js
ϕjũ

= ũ− ũ
∑
j∈J

ϕj +
∑
j∈Ju

ũQjϕj =
∑
j∈Ju

ũQjϕj,

since {ϕj}j∈J is a partition of unity on U . Now, let x ∈ U and let Ju,x be
the set of those j ∈ Ju for which x is contained in the usual cube Qj. Due
to (b) and (d) we find

|g̃(x)| ≤
∑

j∈Ju,x
|ũQjϕj| .

∑
j∈Ju,x

−
∫
Qj
|ũ|.(2.39)
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Picking again elements zj ∈ 12
√
dQj ∩ F , the same argument we have

used several times before, for instance in (2.31) and (2.32), gives

.
∑

j∈Ju,x
M(|ũ|)(zj) ≤ α#Ju,x ≤ 12dα,

the last step being due to (4). This is the first required estimate on U . For
the second one involving dD, first observe that if y ∈ Qj for some j ∈ Ju,x,
then since x ∈ Qj as well,

dD(y) ≤ diam(Qj) + dD(x) = dj + dD(x) ≤ 2 dD(x)

by the defining property of usual cubes. Combining this estimate with
(2.39),

|g̃(x)|
dD(x) .

∑
j∈Ju,x

−
∫
Qj

|ũ(y)|
dD(x) dy ≤ 1

2
∑

j∈Ju,x
−
∫
Qj

|ũ(y)|
dD(y) dy

and by the same arguments as for g̃ the estimate can be completed as

.
∑

j∈Ju,x
M
(
|ũ|
dD

)
(zj) ≤ 12dα.

Step 5: Gradient estimate of the good function

The objective of this step is the estimate |∇g̃(x)| . α for almost every
x ∈ Rd. For this, it is not sufficient to know that g̃ = ∑

j∈J b̃j converges
pointwise. At least, convergence in the distributional sense is necessary
to justify pushing the gradient through the sum. For a later use we prove
slightly more by investing the estimates (2.31), (2.32), (2.36), and (2.38)
that led to the proof of Assertion (iv) to the effect that

∑
j∈J
‖b̃j‖W1,1(Rd) ≤

∑
j∈Ju

∫
Qj
|ϕjũ|+ |ϕj∇ũ|+ |(ũ− ũQj)∇ϕj|

+
∑

j∈Jb∪Js

∫
Qj
|ϕjũ|+ |ϕj∇ũ|+ |ũ∇ϕj|

.
∑
j∈J

α |Qj| .
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From (2.28) we can infer the upper bound

. α1−pCE‖u‖pW1,p
D (Ω).

In particular, the leftmost sum converges absolutely in W1,1(Rd). Hence,
adopting the notation from Step 4, we may compute

∇g̃ = ∇ũ−
∑
j∈J
∇b̃j

= ∇ũ−
∑
j∈Ju

(
ϕj∇ũ+ (ũ− ũQj)∇ϕj

)
−

∑
j∈Jb∪Js

(
ϕj∇ũ+ ũ∇ϕj

)

and as by the previous estimate all occurring sums are absolutely conver-
gent in L1(Rd),

∇g̃ = ∇ũ−∇ũ
∑
j∈J

ϕj − ũ
∑
j∈J
∇ϕj +

∑
j∈Ju

ũQj∇ϕj.(2.40)

Now, on F all terms on the right-hand side vanish except for the first one
and we easily get

|∇g̃(x)| = |∇ũ(x)| ≤ M(|∇ũ|)(x) ≤ α (a.e. x ∈ F ).

So, we can concentrate on the similar estimate on U . By (4), the sum∑
j∈J ϕj over the partition of unity converges absolutely in L1(Rd) to a

function that is identically 1 on U . Hence, ∑j∈J ∇ϕj = 0 on U in the
sense of distributions. Thus, (2.40) collapses to

∇g̃(x) =
∑
j∈Ju

ũQj∇ϕj(x) (x ∈ U).

We will not estimate this sum directly. Instead, we define

hu(x) :=
∑
j∈Ju

ũQj∇ϕj(x) and hs,b(x) :=
∑

j∈Jb∪Js
ũQj∇ϕj(x) (x ∈ U)

and prove the estimates |hs,b(x)| . α and |hu(x) + hs,b(x)| . α for almost
every x ∈ U . This of course will give the same bound for hu = ∇g̃ and
the proof will be complete.
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In order to bound hs,b(x) for almost every x ∈ U we recall from (2.37)
that dD(y) ≤ 2dj holds for all y in a special cube Qj and that by definition
a boring cube has diameter at least 1. With Jb,x and Js,x the sets of those
j ∈ J for which x is contained in the boring respectively special cube Qj

it follows

|hs,b(x)| .
∑
j∈Jb,x

1
dj
|ũQj |+

∑
j∈Js,x

1
dj
|ũQj |

≤
∑
j∈Jb,x

−
∫
Qj
|ũ|+

∑
j∈Js,x

−
∫
Qj

|ũ(y)|
dD(y) dy.

Introducing elements zj ∈ 12
√
dQj∩F and bringing into play the maximal

operator in the usual manner, we get

.
∑
j∈Jb,x

α +
∑
j∈Js,x

α ≤ 12dα,

the last step being due to (4).
Preliminary to the estimate of hu(x) + hs,b(x) fix an index j0 ∈ J such

that x ∈ Qj0 and note that for any cube Qj that contains x as well

5
6dj ≤ d(Qj, D) ≤ d(x,D) ≤ d(Qj0 , D) + dj0 ≤ 5dj0(2.41)

holds as a consequence of (5). The same estimate is true with the roles
of j and j0 interchanged. So, with Q∗j0 := 13Qj0 every such cube satisfies
Qj ⊆ Q∗j0 . Again denote by Jx the set of all j ∈ J such that Qj contains
x. Due to ∑j∈J ∇ϕj = 0 almost everywhere on U we find

hu(x) + hs,b(x) =
∑
j∈Jx

ũQj∇ϕj(x) =
∑
j∈Jx

(ũQj − ũQ∗j0 )∇ϕj(x)

and thus by (d),

|hu(x) + hs,b(x)| .
∑
j∈Jx

1
dj
|ũQj − ũQ∗j0 |.

For j ∈ Jx we have

|ũQj − ũQ∗j0 | =
∣∣∣∣∣−
∫
Qj
ũ(y)− ũQ∗j0 dy

∣∣∣∣∣ ≤ −
∫
Qj
|ũ(y)− ũQ∗j0 | dy

. −
∫
Q∗j0

|ũ(y)− ũQ∗j0 | dy
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since Qj ⊆ Q∗j0 . The Poincaré estimate (2.30) on the cube Q∗j0 gives

. diam(Q∗j0)−
∫
Q∗j0

|∇ũ| . dj −
∫
Q∗j0

|∇ũ|,

where we have used (2.41) with the roles of j and j0 interchanged. By
(2.27) there exists again some z ∈ Q∗j0 ∩ F and the ongoing estimate can
be completed as usual by

≤ djM(|∇ũ|)(z) ≤ djα.

Gluing together the previous two estimates gives the desired bound

|hu(x) + hs,b(x)| ≤
∑
j∈Jx

1
dj
|ũQj − ũQ∗j0 | . α#Jx ≤ 12dα

in view of (4).

Step 6: Proof of (vi)

Owing to (2.25) and the definition of g it holds

‖g‖W1,p(Ω) ≤ ‖g̃‖W1,p(Rd) . C
1/p
E ‖u‖W1,p

D (Ω) +
∥∥∥∥∑
j∈J

b̃j

∥∥∥∥
W1,p(Rd)

.

So, we have to prove that the rightmost sum converges in W1,p
D (Rd) to a

limit with norm under control by ‖u‖W1,p
D (Ω). We shall check the Cauchy

property for series and to this end we fix an arbitrary finite subset J0 of
J . We find∥∥∥∥ ∑

j∈J0

b̃j

∥∥∥∥p
W1,p(Rd)

≤
∫
Rd

( ∑
j∈J0

|b̃j|+ |∇b̃j|
)p
.
∫
Rd

∑
j∈J0

|b̃j|p + |∇b̃j|p

=
∑
j∈J0

∫
Qj
|b̃j|p + |∇b̃j|p,

where we emphasize that due to (4) the second estimate involves only sums
of at most 12d non-zero terms and thus holds true for an implicit constant
depending only on d and p. Investing the estimates (2.29), (2.30), and
(2.33) for p = q on usual cubes, (2.35) on boring cubes and in addition
(2.37) on special cubes, we find

.
∑
j∈J0

∫
Qj
|ũ|p + |∇ũ|p +

∣∣∣∣∣ ũdD
∣∣∣∣∣
p
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=
∫
Rd

∑
j∈J0

1Qj

(
|ũ|p + |∇ũ|p +

∣∣∣∣∣ ũdD
∣∣∣∣∣
p)
.

As a consequence of (4), the series∑j∈J 1Qj converges pointwise to a func-
tion bounded everywhere by 12d. By the dominated convergence theorem
we can infer that ∑j∈J b̃j is Cauchy in W1,p(Rd). The limit is in fact inde-
pendent of the order of summation since this sum is finite at every point.
Revisiting the calculation above for J = J0 we find

∥∥∥∥∑
j∈J

b̃j

∥∥∥∥p
W1,p(Rd)

.
∫
Rd
|ũ|p + |∇ũ|p +

∣∣∣∣∣ ũdD
∣∣∣∣∣
p

≤ CE‖u‖W1,p
D (Ω)

by (2.25). This completes the estimate.
It remains to check the boundary behavior of g. In Step 2 we have seen

that all functions b̃j are contained in W1,p
D (Rd). Since the latter is a closed

subspace of W1,p(Rd), the argument above reveals ∑j∈J b̃j ∈ W1,p
D (Rd).

Since ũ belongs to this space as well, so does g̃. Finally, restricting to Ω
gives g ∈W1,p

D (Ω).

Step 7: Proof of (iii)

After all it remains to check g ∈ W1,∞
D (Ω) with the appropriate norm

bound. The statement of Steps 4 and 5 is

‖g̃‖W1,∞(Rd) +
∥∥∥∥∥ g̃dD

∥∥∥∥∥
L∞(Rd)

. α

and so by Remark 2.5.5 there is a Lipschitz continuous representative g̃ of g̃
with Lipschitz constant bounded by a generic multiple of α. As restricting
to Ω does not enlarge the norms, the only question left is whether g̃

vanishes everywhere on D. This, however, is an immediate consequence
of g̃ ∈W1,p

D (Rd), see Step 6, and Lemma 2.5.7.

To proceed further, we need to recall the (maximal) decreasing rear-
rangement of a measurable function and its connection to theK-functional
of real interpolation. Definitions and background on real interpolation
spaces can be refreshed from Section 1.3.2.
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Definition 2.5.13. Let f : X → C be a measurable function on a measure
space (X,µ). The decreasing rearrangement of f is the decreasing function
f ∗ : R+ → R defined by

f ∗(t) = inf
{
α ≥ 0; µ({x ∈ X; |f(x)| > α}) ≤ t

}
and the function f ∗∗ : R+ → R defined by

f ∗∗(t) := −
∫ t

0
f ∗(s) ds

is called maximal decreasing rearrangement of f .

Proposition 2.5.14 ([36, Thm. 5.2.1]). Let (X,µ) be a σ-finite measure
space. Then for every f ∈ L1(X,µ;C) + L∞(X,µ;C) the K-functional of
real interpolation is given by

K
(
t, f,L1(X,µ;C),L∞(X,µ;C)

)
= tf ∗∗(t) (t > 0).

Lemma 2.5.15. Let E ⊆ Rd be measurable and f ∈ Lp(E). Then for
every 1 < p <∞ it holds

‖f‖Lp(E) = ‖f ∗‖Lp(R+) ' ‖f ∗∗‖Lp(R+)

with implicit constants depending only on p.

Proof. The first equality is well-known, see, e.g., [36, p. 8]. The second
part is a consequence of [34, Thm. 3.3.8] but for convenience we include
a direct and much shorter argument. Let g be the zero-extension of f ∗ to
all of R. Since f ∗ is positive and decreasing on R+,

(Mg)(t) = sup
a,b∈R
a≤t≤b

−
∫ b

a
g(s) ds = −

∫ t

0
g(s) ds = −

∫ t

0
f ∗(s) ds = f ∗∗(t)

holds for every t > 0. So, Lemma 2.5.9 and Theorem 2.5.10 ensure

‖f ∗‖Lp(R+) = ‖g‖Lp(R) ≤ ‖Mg‖Lp(R) = ‖f ∗∗‖Lp(R+)

≤ ‖M‖Lp(R)→Lp(R)‖g‖Lp(R)

= ‖M‖Lp(R)→Lp(R)‖f ∗‖Lp(R+),

where, ‖M‖Lp(R)→Lp(R) is a finite constant depending only on p.
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Combining Proposition 2.5.14 and the adapted Calderón-Zygmund de-
composition, we can determine certain real interpolation spaces between
the endpoint spaces W1,1

D and W1,∞
D . The proof relies on explicit pointwise

estimates for the K-functional similar to the celebrated result of DeVore
and Scherer [34, Thm. 5.5.12] for Sobolev spaces on Rd. The same tech-
nique has been utilized in [16, Sec. 8.3].

Lemma 2.5.16. Let Ω and D satisfy Assumption 2.5.1 and 1 < p < ∞.
Then up to equivalent norms

(
W1,1

D (Ω),W1,∞
D (Ω)

)
1−1/p,p

= W1,p
D (Ω)

and the hidden equivalence constants can be chosen scale invariant on large
scales.

Proof. To simplify notation we shall omit the dependence of function
spaces on Ω, that is, we write X instead of X(Ω), where X can be any
relevant function space. By

‖u‖1−1/p,p :=
( ∫ ∞

0

(
t−1K(t, u,W1,1

D ,W1,∞
D )

)p
dt
)1/p

(2.42)

we denote the norm on the real interpolation space (W1,1
D ,W1,∞

D )1−1/p,p.
We prove the two required inclusions separately.

Step 1: The inclusion ‘⊆’

Fix u ∈ (W1,1
D ,W1,∞

D )1−1/p,p. Then u ∈ W1,1
D + W1,∞

D making sure that at
least u has distributional derivatives up to order 1 in L1 + L∞. Since the
embedding W1,∞

D ⊆ W1,∞ is a contraction, see Remark 2.5.5, we obtain
for every t > 0 that

K(t, u,W1,1
D ,W1,∞

D ) = inf
u0∈W1,1

D , u1∈W1,∞
D

u=u0+u1

‖u0‖W1,1
D

+ t‖u1‖W1,∞
D

≥ inf
u0∈W1,1

D , u1∈W1,∞

u=u0+u1

‖u0‖W1,1
D

+ t‖u1‖W1,∞ .
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2.5 Scale invariant interpolation identities for W1,p
D

Writing out the Sobolev norms and considering u = u0 + u1 and ∂ju =
∂ju0 + ∂ju1, j = 1, . . . , d, as independent conditions, we find

≥ inf
u0∈L1, u1∈L∞
u=u0+u1

‖u0‖L1 + t‖u1‖L∞

+
d∑
j=1

inf
u0∈L1, u1∈L∞
∂ju=u0+u1

‖u0‖L1 + t‖u1‖L∞

= K(t, u,L1,L∞) +
d∑
j=1

K(t, ∂ju,L1,L∞).

Now, consider the equality of theK-functional and the maximal decreasing
rearrangement provided by Proposition 2.5.14. There, the left-hand side
is sublinear in the variable f and the right-hand side is invariant under
replacing f by |f |. So,

= K(t, |u|,L1,L∞) +
d∑
j=1

K(t, |∂ju|,L1,L∞)

≥ K
(
t, |u|+

d∑
j=1
|∂ju|,L1,L∞

)

= t
(
|u|+

d∑
j=1
|∂ju|

)∗∗
(t).

Plugging this estimate back into the right-hand side of (2.42) gives

‖u‖p1−1/p,p ≥
∥∥∥∥(|u|+ d∑

j=1
|∂ju|

)∗∗∥∥∥∥p
Lp(R+)

and finally Lemma 2.5.15 allows to complete the ongoing estimate by

'
∥∥∥∥|u|+ d∑

j=1
|∂ju|

∥∥∥∥p
Lp
≥ ‖u‖pLp +

d∑
j=1
‖∂ju‖pLp = ‖u‖pW1,p

with implicit constants depending only on p. So, it remains to check
the boundary behavior of u. By Theorem 1.3.9, u can be approximated
by a sequence {un}n ⊆W1,1

D ∩W1,∞
D in the interpolation norm ‖ · ‖1−1/p,p.

Lemma 2.5.6 guarantees {un}n ⊆W1,p
D and by what we have shown above,
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2 Hardy’s inequality

{un}n converges to u in the W1,p-norm. Since W1,p
D is a closed subspace

of W1,p, we eventually see that

‖u‖W1,p
D

= ‖u‖W1,p . ‖u‖1−1/p,p

holds with an implicit constant depending only on p.

Step 2: The inclusion ‘⊇’

Fix u ∈ W1,p
D . First, we note that u ∈ W1,1

D ⊆ W1,1
D + W1,∞

D since Ω is
bounded. Again we start with deriving a pointwise estimate for the K-
functional. Given t > 0 let u = ∑

j∈J bj + g be the Calderón-Zygmund
decomposition of f with height

α(t) :=
(
M
(
|∇ũ|+ |ũ|+ |ũ|/ dD

))∗
(t) (t > 0),

where ũ is the extension of u provided by Example 2.5.3 we had already
used in the proof of Lemma 2.5.11. By definition of the decreasing rear-
rangement and continuity of the Lebesgue measure from below, the cor-
responding set

Ut :=
{
x ∈ Rd; M

(
|∇ũ|+ |ũ|+ |ũ|/ dD

)
(x) > α(t)

}

has measure |Ut| ≤ t. Hence, Properties (iii), (iv), and (v) of the Calderón-
Zygmund decomposition yield

∥∥∥∥∑
j∈J

bj

∥∥∥∥
W1,1
D

+ t‖g‖W1,∞
D
≤
∑
j∈J
‖bj‖W1,1

D
+Ntα(t) ≤ 2N2tα(t),

for N as in Lemma 2.5.11. In particular, K(t, u,W1,1
D ,W1,∞

D ) ≤ 2N2tα(t).
Now, for every t > 0 we invest the latter estimate on the right-hand

side of (2.42) so to find

‖u‖1−1/p,p .
( ∫ ∞

0
α(t)p dt

)1/p

=
∥∥∥∥(M(

|∇ũ|+ |ũ|+ |ũ|/ dD
))∗∥∥∥∥

Lp(R+)
.
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2.5 Scale invariant interpolation identities for W1,p
D

By Lemma 2.5.15 and the Lp-boundedness of the maximal operator we
conclude

=
∥∥∥M(

|∇ũ|+ |ũ|+ |ũ|/ dD
)∥∥∥

Lp(Rd)

.
∥∥∥|∇ũ|+ |ũ|+ |ũ|/ dD

∥∥∥
Lp(Rd)

with implicit constants that are scale invariant on large scales. With a
final view on Example 2.5.3 this gives

‖u‖1−1/p,p . ‖u‖W1,p
D

and the implicit constants remain scale invariant on large scales.

Finally, we obtain the main result of this section by reiteration.

Theorem 2.5.17. Let Ω and D satisfy Assumption 2.5.1. Let 0 < θ < 1,
let p0, p1 be subject to the restrictions in the formulas below, and put

1
p

= 1− θ
p0

+ θ

p1
.

Then the following interpolation identities hold up to equivalent norms
and all hidden equivalence constants can be chosen scale invariant on large
scales:

(
W1,p0

D (Ω),W1,p1
D (Ω)

)
θ,p

= W1,p
D (Ω) (1 ≤ p0 < p1 ≤ ∞),(i)

[
W1,p0

D (Ω),W1,p1
D (Ω)

]
θ

= W1,p
D (Ω) (1 < p0 < p1 <∞).(ii)

Proof. In order to simplify notation, we omit the dependence of the rele-
vant function spaces on Ω. The first assertion follows from Lemma 2.5.16
and Theorem 1.3.10 applied to the couple (W1,1

D ,W1,∞
D ), since

(
W1,p0

D ,W1,p1
D

)
θ,p

=
((

W1,1
D ,W1,∞

D

)
1−1/p0,p0

,
(
W1,1

D ,W1,∞
D

)
1−1/p1,p1

)
θ,p

=
(
W1,1

D ,W1,∞
D

)
1−1/p,p

= W1,p
D .
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2 Hardy’s inequality

Relying on Theorem 1.3.17 instead, the second assertion
[
W1,p0

D ,W1,p1
D

]
θ

=
[(

W1,1
D ,W1,∞

D

)
1−1/p0,p0

,
(
W1,1

D ,W1,∞
D

)
1−1/p1,p1

]
θ

=
(
W1,1

D ,W1,∞
D

)
1−1/p,p

= W1,p
D

follows. Hidden implicit constant in these calculation are either scale in-
variant on large scales thanks to Lemma 2.5.16 or are caused by reiteration
and thus depend only on the parameters θ, p0, and p1, see Remarks 1.3.11
and 1.3.18.
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CHAPTER 3

Functional calculus for bisectorial and sectorial
operators

We interrupt the development of the general theory on divergence-form
operators subject to mixed boundary conditions in order to provide the
essentials of the holomorphic functional calculus for bisectorial and secto-
rial operators. This includes the H∞-calculus and its relation to quadratic
estimates and, in particular, an abstract version of the Kato square root
problem. The presented results are of fundamental importance for all
subsequent chapters.
Functional calculus is about ‘inserting operators into functions’, that is,

to render meaningful expressions such as

√
A,

√
A2, and e−tA,

where A is an in general unbounded operator in a Banach space. First
ideas not relying on the spectral theorem for self-adjoint operators date
back to the work of Riesz and Dunford [49, Ch. VII]. Inspired by the
reproducing structure

f(λ) = 1
2πi

∫
Γ

f(z)
z − λ

dz
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3 Functional calculus for bisectorial and sectorial operators

of Cauchy’s integral formula for holomorphic functions, they defined

f(A) = 1
2πi

∫
Γ
f(z)(z − A)−1 dz

whenever A is a bounded operator, f is holomorphic in a neighborhood of
the spectrum σ(A), and Γ is a closed rectifiable curve that surrounds this
compact set counterclockwise. Extensions to unbounded operators are al-
ready found in Dunford and Schwartz [49] and Krĕın [99]. However,
more recent approaches fundamentally promoted by McIntosh and col-
laborators turned out more powerful and transparent at the same time,
see [5, 47,73,117] and references therein.
Due to manifold applications in the theory of parabolic problems it be-

came manifest that the perhaps most important class of operators with
a meaningful holomorphic functional calculus is that of sectorial opera-
tors. An all-embracing treatment of this theory and further background
material is found in Haase’s textbook [73].
On the contrary, the closely related class of bisectorial operators has

only been treated negligently, mostly by referring that ‘all works simi-
lar for bisectorial operators’ [5, 48]. Of course, this cannot be denied in
general. However, since bisectorial operators are most eminent for this
thesis, we decided for the sake of self-containedness to go the other way
round here. Starting from abstract functional calculi in Section 3.1, we
carefully develop the functional calculus for bisectorial operators in Sec-
tion 3.2 and outline the necessary changes for the sectorial case. We pay
special attention to the boundedness of the H∞-calculus for non-injective
operators and their connection to quadratic estimates in Sections 3.3 and
3.4. Terminology and presentation of the matter is adopted from Haase’s
book.

3.1 Abstract functional calculi
An abstract functional calculus over a Banach space X is a triple (E ,M,Φ)
consisting of a unital commutative algebraM, a subalgebra E ⊆M with
1 /∈ E in general, and an algebra homomorphism Φ : E → L(X ). An
abstract functional calculus is proper if the set

Reg(E) := {e ∈ E ; Φ(e) is injective}
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3.1 Abstract functional calculi

is non-empty. Each member of Reg(E) is called a regularizer , the name
stemming from the following extension procedure: If for f ∈ M there
exists a regularizer e such that ef ∈ E , then

Φ(f) := Φ(e)−1Φ(ef)

can be defined as a closed operator in X . In this case f is said to be
regularizable by E . The definition of Φ(f) is independent of the particular
choice of e and consistent if f ∈ E [73, Lem. 1.2.1]. Putting

Mr := {f ∈M; f is regularizable by E}

we obtain an extension

Φ :Mr → {closed operators in X}

of the original mapping Φ : E → L(X ). The algebraMr is called domain
of the abstract functional calculus (E ,M,Φ).
Becoming more specific, let Ω ⊆ C be an open set and denote byM(Ω)

the algebra of meromorphic functions on Ω. Suppose we are given a closed
operator A in a Banach space X along with a basic algebra E(Ω) of mero-
morphic functions on Ω for which we have – by whatever means – designed
a meaningful method

ΦΩ
A = (f 7→ f(A)) : E(Ω)→ L(X)

of inserting A into functions from E(Ω). Here, meaningful means that ΦΩ
A

is an algebra homomorphism. In order to make sure that the abstract
functional calculus (E(Ω),M(Ω),ΦΩ

A) carries enough information on the
underlying operator A we introduce the following notions.

Definition 3.1.1. The coordinate function z 7→ z is simply denoted by z.
Hence, the symbols f(z) and f are interchangeable. For a symbol replacing
a complex number (other than z of course) we do not distinguish between
the complex number and the corresponding constant function.

Definition 3.1.2. Let A be a closed operator in a Banach space X and let
Ω ⊆ C be an open set. An abstract functional calculus (E(Ω),M(Ω),ΦΩ

A)
as above is called meromorphic functional calculus for A provided the
following hold.
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3 Functional calculus for bisectorial and sectorial operators

(i) The function z is regularizable by E(Ω) and z(A) = A holds.

(ii) If an operator T ∈ L(X ) commutes with A, then it also commutes
with e(A) for every e ∈ E(Ω).

The domain of a meromorphic functional calculus (E(Ω),M(Ω),ΦΩ
A) for

A is

M(Ω)A := {f ∈M(Ω); f is regularizable by E(Ω)}.

More suggestively, we shall write f(A) instead ΦΩ
A(f) also for f ∈M(Ω)A.

The most important algebraic properties of meromorphic functional calculi
are summarized in the fundamental theorem of functional calculus [73,
Thm. 1.3.2].

Theorem 3.1.3 (Fundamental theorem of functional calculus). Let A be
a closed operator in a Banach space X , let Ω ⊆ C be an open set, and
let (E(Ω),M(Ω),ΦΩ

A) be a meromorphic functional calculus for A. Let
f ∈M(Ω)A. Then the following assertions hold.

(i) If T ∈ L(X ) commutes with A, then it also commutes with f(A). If
f(A) ∈ L(X ), then f(A) commutes with A.

(ii) The functions 1 and z yield the operators 1(A) = Id and z(A) = A.

(iii) Let also g ∈M(Ω)A. Then

f(A) + g(A) ⊆ (f + g)(A) and f(A)g(A) ⊆ (fg)(A).

Furthermore, D(f(A)g(A)) = D((fg)(A)) ∩ D(g(A)) and there is
equality in the relations above if g(A) ∈ L(X ).

(iv) It holds f(A) = g(A)−1f(A)g(A) if g ∈M(Ω)A is such that g(A) is
bounded and injective.

(v) Let λ ∈ C be such that (λ− f)−1 ∈M(Ω). Then

1
λ− f

∈M(Ω)A ⇐⇒ λ− f(A) is injective.

In this case (λ−f)−1(A) = (λ−f(A))−1. In particular, λ ∈ ρ(f(A))
if and only if (λ− f)−1(A) is well-defined and bounded.
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3.2 Functional calculi for sectorial and bisectorial operators

If there is a method allowing to insert A into a basic class of functions,
then the abstract framework of meromorphic functional calculi provides a
meaningful extension of f(A) to a much broader class of functions for free.
However, a particular method to start with cannot be pulled out of nothing
and in fact is only known for certain very specific classes of operators,
among which are the sectorial and bisectorial ones to be discussed in the
next section.

3.2 Functional calculi for sectorial and
bisectorial operators

In this section we apply the abstract theory on meromorphic functional
calculi to sectorial and bisectorial operators. Given φ ∈ (0, π) denote by

S+
φ := {z ∈ C \ {0} : |arg z| < φ}

the open sector with vertex 0 and opening angle 2φ symmetric around the
positive real axis. If φ ∈ (0, π2 ) then

Sφ := S+
φ ∪ −S+

φ

is the corresponding open bisector . These notions are extended to the
case φ = 0 by setting S+

0 := [0,∞) and S0 := (−∞,∞).

Definition 3.2.1. An operator A in a Banach space X is sectorial of angle
φ ∈ [0, π) if its spectrum is contained in S+

φ and if for every ψ ∈ (φ, π)
there are resolvent bounds

sup
{
‖λ(λ− A)−1‖X→X : λ ∈ C \ S+

ψ

}
<∞.

Likewise, A is bisectorial of angle φ ∈ [0, π2 ) if σ(A) ⊆ Sφ and if for every
ψ ∈ (φ, π2 ) there are resolvent bounds

sup
{
‖λ(λ− A)−1‖X→X : λ ∈ C \ Sψ

}
<∞.

First properties of (bi)sectorial operators are collected in the subsequent
proposition.
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3 Functional calculus for bisectorial and sectorial operators

Proposition 3.2.2 (All-purpose proposition for (bi)sectorial operators).
Let A be a bisectorial operator on a Banach space X . Then the following
assertions hold.

(i) If n ∈ N and x ∈ D(A), then

lim
t→∞

(it)n(it+ A)−nx = x and lim
t→∞

An(it+ A)−nx = 0.

(ii) If n ∈ N and x ∈ R(A), then

lim
t→0

(it)n(it+ A)−nx = 0 and lim
t→0

An(it+ A)−nx = x.

In particular N (A) ∩ R(A) = {0}, so that R(A) = X implies that
A is injective.

(iii) For every n ∈ N the space D(An)∩R(An) is dense in D(A)∩R(A).

(iv) If X is reflexive, then A is densely defined and induces a topological
decomposition X = N (A)⊕R(A).

Upon replacing the imaginary unit i by 1, the same results hold for sectorial
operators.

Proof. (i) First assume x ∈ D(A). Repeatedly applying the elemen-
tary identity x = it(it+ A)−1x+ (it)−1it(it+ A)−1Ax leads to

x = (it)n(it+ A)−nx+ 1
it

n∑
k=1

(it)k(it+ A)−kAx.

The second term vanishes in the limit t→∞, which proves the first
claim. For the second claim expand the right-hand side of

An(it+ A)−nx = (1− it(it+ A)−1)nx(3.1)

and use the first claim to prove that it tends to ∑n
k=0

(
n
k

)
(−1)kx = 0

as t→ ∞. In order to extend these results to all x ∈ D(A), simply
note that {(it)n(it+A)−n}t>0 is a bounded subset of L(X ) for every
n ∈ N and so is {An(it+ A)−n}t>0 thanks to (3.1).
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3.2 Functional calculi for sectorial and bisectorial operators

(ii) Again it suffices to consider x ∈ R(A). Choose y ∈ D(A) such that
Ay = x. This time it is it(it+ A)−1Ay = ity − (it)2(it+ A)−1y that
has to be applied repeatedly in order to find

(it)n(it+ A)−nAy = it
{

(it)n−1(it+ A)−(n−1)y − (it)n(it+ A)−ny
}
.

The right-hand side of this identity vanishes in the limit t → 0
and the conclusion follows. As before, the second part follows from
the first when expanding the right-hand side of (3.1). Finally, if
x ∈ N (A) ∩R(A), then by what has been shown above,

0 = Ax = lim
t→0

(it+ A)−1Ax = lim
t→0

A(it+ A)−1x = x.

(iii) Given x ∈ D(A) ∩R(A) define approximants in D(An) ∩R(An) by

xt := (it)n(it+ A)−nAn(it−1 + A)−nx (t > 0).

Since {(it)n(it+A)−n}t>0 is uniformly bounded in L(X ), the triangle
inequality yields

‖xt − x‖ . ‖An(it−1 + A)−nx− x‖+ ‖(it)n(it+ A)−nx− x‖.

The right-hand side vanishes in the limit t→∞ due to (i) and (ii).

(iv) We first prove that D(A) is dense in X . Fix an arbitrary x ∈ X .
By bisectoriality of A, the set {it(it + A)−1x}t>0 is bounded in X .
Since X is reflexive, there are strictly positive numbers tk ↗∞ such
that {itk(itk +A)−1x}k converges weakly to some limit y ∈ X . Now,
{(itk + A)−1x}k converges strongly to 0 and so

(itk + A)−1x⊕ A(itk + A)−1x ⇀ 0⊕ (x− y) (in X ⊕ X )

as k → ∞. By the Hahn-Banach theorem strong and weak closure
coincide for convex sets. Applying this result to the graph of A,
we can infer x − y = A(0) = 0. However, y is contained in the
weak closure of D(A) in X by construction and so once more by the
Hahn-Banach theorem x ∈ D(A).
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3 Functional calculus for bisectorial and sectorial operators

Owing to (ii) the decomposition N (A)⊕R(A) is direct. To see that
it is a decomposition of the whole space X , fix x ∈ X . This time, we
use the reflexivity of X to obtain strictly positive numbers tk ↘ 0
such that {itk(itk +A)−1x}k converges weakly to some limit y ∈ X .
Note that

itkA(itk + A)−1x = itkx− itk
(
itk(itk + A)−1x

)
(3.2)

converges strongly to 0 as k → ∞. Employing the coincidence of
weak and strong closure of the graph of A as before, y ∈ D(A) and
Ay = 0, that is, y ∈ N (A). Moreover, multiplying both sides of
(3.2) by (itk)−1 and passing to the weak limit as k → ∞ reveals
x− y as an element of the weak closure of R(X ). The usual Hahn-
Banach argument pays for x−y ∈ R(X ). Hence, x ∈ N (A)⊕R(A).
Finally, N (A)⊕R(A) is a topological decomposition since

‖y‖ ≤ lim inf
k→∞

‖itk(itk + A)−1x‖ . ‖x‖.

Finally, if A is a sectorial operator, then proofs for all four items can be
obtained by simply replacing the imaginary unit i by 1 in all the arguments
given above.

Corollary 3.2.3. Let A be a densely defined bisectorial operator in a
Banach space X and let Y ⊆ X be a closed subspace. If there is an
unbounded sequence {an}n of positive real numbers such that Y is invariant
under (ian − A)−1 for every n ∈ N, then Y is invariant under A. Upon
replacing i by 1, the same holds true for sectorial operators.

Proof. Let y ∈ D(A) ∩ Y . The claim x := Ay ∈ Y follows immediately
from part (i) of Proposition 3.2.2.

3.2.1 Construction of the functional calculi
Let A be a bisectorial operator of angle φ ∈ [0, π2 ) in a Banach space X . In
this subsection we construct for each ψ ∈ (φ, π2 ) a meromorphic functional
calculus for A allowing to insert this operator into certain meromorphic
functions defined on the bisector Sψ. We will take special care to providing
arguments that can easily be adapted to sectorial operators. In fact, every
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3.2 Functional calculi for sectorial and bisectorial operators

statement and every proof of this section is convertible into an analog for
a sectorial operator A of angle φ ∈ [0, π) by simply replacing bisectors by
sectors and the imaginary unit i by 1.
It all starts from the algebra

H∞0 (Sψ) :=
{
f : Sψ → C holomorphic;

∃C, s > 0 ∀ z ∈ Sψ : |f(z)| ≤ C min{|z|s , |z|−s}
}

of regularly decaying holomorphic functions on Sψ. Given f ∈ H∞0 (Sψ),
define a bounded linear operator f(A) on X via the Cauchy integral

f(A) := 1
2πi

∫
∂ Sν

f(z)(z − A)−1 dz,(3.3)

where ν ∈ (φ, ψ) and the boundary curve ∂ Sν surrounds σ(A) in counter-
clockwise direction, that is

∂ Sν = −R+eiν ⊕ R+ei(π−ν) ⊕−R+e−i(π−ν) ⊕ R+e−iν ,

see also Figure 5.
Here, the symbol ⊕ is used for the concatenation of oriented curves. The
integral in (3.3) converges absolutely due to the decay of f and is inde-
pendent of the particular choice of ν due to Cauchy’s integral theorem.
The definition of f(A) can be extended from H∞0 (Sψ) to the Dunford-Riesz
class

E(Sψ) := H∞0 (Sψ)⊕ 〈(i + z)−1〉 ⊕ 〈1〉,

by defining

g(A) := f(A) + c(i + A)−1 + d

whenever g ∈ E(Sψ) is of the form g = f + c(i + z)−1 + d for f ∈ H∞0 (Sψ)
and c, d ∈ C. Note that such a representation is unique since g has limits
−ic+ d and d in 0 and ∞, respectively.
We consider two important examples of non-elementary functions in the

Dunford-Riesz class.
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σ(A)

σ(A)

Im

Re

∂Sψ

∂Sφ

∂Sν

Figure 5: The oriented boundary ∂ Sν in the Cauchy integral defining f(A)
for regularly decaying holomorphic f .

Example 3.2.4. Let φ ∈ (0, π2 ) and let f : Sφ → C be a bounded holo-
morphic function that extends holomorphically to a neighborhood of 0
and for which there exists s > 0 such that |f(z)| ∈ O(|z|−s) as |z| → ∞
within Sφ. Then f ∈ E(Sφ).

Proof. The function f − if(0)(i + z)−1 is an element of H∞0 (Sφ) since by
holomorphy |f(z)− f(0)| . |z| for z in a neighborhood of z = 0.

Example 3.2.5. Let φ ∈ (0, π2 ) and let f ∈ H∞0 (Sφ) satisfy
∫∞

0 f(t) dt
t

=
−
∫ 0
−∞ f(t) dt

t
. For z ∈ Sφ define

F0,1(z) :=
∫ 1

0
f(tz) dt

t
and F1,∞(z) :=

∫ ∞
1

f(tz) dt
t
.

Then F0,1, F1,∞ ∈ E(Sφ) and F0,1 + F1,∞ = c, where c =
∫∞

0 f(t) dt
t
.
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3.2 Functional calculi for sectorial and bisectorial operators

Proof. Choose constants C, s > 0 such that |f(z)| ≤ C min{|z|s , |z|−s}
for all z ∈ Sφ. Then

|F0,1(z)| ≤ C
∫ 1

0
|tz|s dt

t
= Cs−1 |z|s (z ∈ Sφ)

and likewise |F1,∞(z)| ≤ Cs−1 |z|−s. This not only proves that F0,1 and
F1,∞ are well-defined but also that the former decays regularly at 0 and
that the latter decays regularly at ∞. To see that F0,1 is holomorphic on
Sφ let 4 ⊆ Sψ be a compact triangle, use Fubini’s theorem and Cauchy’s
integral theorem to find

∫
∂4

F0,1(z) dz =
∫
∂4

∫ 1

0
f(tz) dt

t
dz =

∫ 1

0

∫
∂4

f(tz) dzdt
t

= 0

and conclude by Morera’s theorem. Holomorphy of F1,∞ is proved analo-
gously. If z ∈ R±, then by the substitution rule

F0,1(z) + F1,∞(z) =
∫ ∞

0
f(tz) dt

t
= ±

∫
R±
f(t) dt

t
= c,(3.4)

and by the identity theorem for holomorphic functions this identity ex-
tends to the whole bisector. In virtue of the decomposition

F0,1 =
(
ic(i + z)−1 − F1,∞

)
− ic(i + z)−1 + c

=
(
F0,1 − cz(i + z)−1

)
− ic(i + z)−1 + c

the function F0,1 becomes a member of E(Sφ) and with a view to (3.4) so
does F1,∞.

Let us build back the bridge to the abstract framework of Section 3.1.

Lemma 3.2.6. If A is a bisectorial operator of angle φ ∈ [0, π2 ) in a
Banach space X , then for each ψ ∈ (φ, π2 ) the mapping

Φψ
A := (g 7→ g(A)) : E(Sψ)→ L(X )

is an algebra homomorphism.
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3 Functional calculus for bisectorial and sectorial operators

Proof. Since H∞0 (Sψ)⊕〈(i+z)−1〉⊕〈1〉 is a direct decomposition, the map-
ping Φψ

A is linear. To prove multiplicativity let gj = fj + cj(i + z)−1 + dj,
j = 1, 2, be two functions in E(Sψ). Expanding g1g2 into mixed prod-
ucts it suffices to prove the three identities (f1f2)(A) = f1(A)f2(A),
((i + z)−1f1)(A) = (i + A)−1f1(A), and ((i + z)−2)(A) = (i + A)−2.
To prove the first one, choose the angles ν1 and ν2 in the definitions of

f1(A) and f2(A), respectively, such that φ < ν1 < ν2 < ψ. By Fubini’s
theorem and the resolvent identity

f1(A)f2(A) = 1
(2πi)2

∫
∂ Sν2

∫
∂ Sν1

f1(z1)f2(z2)(z1 − A)−1(z2 − A)−1 dz1 dz2

= −1
2πi

∫
∂ Sν2

f2(z2)
(

1
2πi

∫
∂ Sν1

f1(z1)
z2 − z1

dz1

)
(z2 − A)−1 dz2

+ 1
2πi

∫
∂ Sν1

f1(z1)
(

1
2πi

∫
∂ Sν2

f2(z2)
z2 − z1

dz2

)
(z1 − A)−1 dz1.

Since on the right-hand side z2 lies outside the region enclosed by ∂ Sν1

and z1 lies inside the region enclosed by ∂ Sν2 , Cauchy’s integral theorem
gives

= 0 + 1
2πi

∫
∂ Sν1

f1(z1)f2(z1)(z1 − A)−1 dz1 = (f1f2)(A).

For the second identity apply again the resolvent identity to find

(i + A)−1f1(A) = 1
2πi

∫
∂ Sν1

f1(z1)
i + z1

(z1 − A)−1 dz1

+ 1
2πi

∫
∂ Sν1

f1(z1)
i + z1

(i + A)−1 dz1.

The first integral on the right-hand side defines ((i + z)−1f1)(A) and the
second integral vanishes due to Cauchy’s integral theorem as−i lies outside
the region enclosed by ∂ Sν1 . For the third identity first note

(i + z)−2 = −i
i + z

+ iz
(i + z)2 =: −i

i + z
+ f ∈ E(Sψ).(3.5)

Now, let φ < ν < ψ. Since f is holomorphic on C \ {−i} and regularly
decaying on Sψ, Cauchy’s integral theorem yields

f(A) = 1
2πi

∫
Γ
f(z)(z − A)−1 dz,
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where Γ is a closed curve in C \ Sφ surrounding −i in clockwise direction.
Owing to Cauchy’s integral formula

f(A) = − d
dz
[
iz(z − A)−1

]
(−i) = (i + A)−2 + i(i + A)−1.

As by definition (i + z)−1(A) = (i + A)−1, the conclusion follows from
(3.5).

Theorem 3.2.7. If A be a bisectorial operator of angle φ ∈ [0, π2 ) in a
Banach space X , then for each ψ ∈ (φ, π2 ) the triple (E(Sψ),M(Sψ),Φψ

A)
is a meromorphic functional calculus for A.

Proof. Lemma 3.2.6 asserts that (E(Sψ),M(Sψ),Φψ
A) is an abstract func-

tional calculus. Moreover, if T ∈ L(X ) commutes with A, then it com-
mutes with all resolvents of A and hence with e(A) for every e ∈ E(Sψ).
It remains to prove that z is regularizable by E(Sψ) and that z(A) = A.
To this end choose e = (i + z)−2 ∈ E(Sψ) as a regularizer for z. Indeed,
ez is regularly decaying on Sψ and Lemma 3.2.6 asserts e(A) = (i +A)−2,
which is injective. The decomposition

ez = z(i + z)−2 = (i + z)−1 − i(i + z)−2

in combination with Lemma 3.2.6 allows to conclude

(ez)(A) = (i + A)−1 − i(i + A)−2 = A(i + A)−2.

Consequently, z(A) = e(A)−1(ez)(A) = A and the proof is complete.

The construction of the functional calculus for the bisectorial operator
A can be completed by joining all meromorphic functional calculi provided
by Theorem 3.2.7 as an inductive limit. More precisely, let

M[Sφ] :=
⋃

φ<ψ<π
2

M(Sψ)

and similarly define H∞0 [Sφ] and E [Sφ]. If φ < ψ < ϕ < π
2 , then the

algebra M(Sϕ) can naturally be regarded as a subalgebra of M(Sψ) by
restricting from Sϕ to Sψ. As by construction the meromorphic functional
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3 Functional calculus for bisectorial and sectorial operators

calculi (E(Sψ),M(Sψ),Φψ
A) and (E(Sϕ),M(Sϕ),Φϕ

A) are consistent on Sϕ,
an algebra homomorphism

ΦA := (f 7→ f(A)) : E [Sφ]→ L(X )

can be defined by setting it equal to Φψ
A on E(Sψ) for every ψ ∈ (ϕ, π2 ). In

this manner, (E [Sφ],M[Sφ],ΦA) becomes a meromorphic functional calcu-
lus for A called natural functional calculus or simply the functional calcu-
lus. Its domain is given by

M[Sφ]A = {f ∈M[Sφ]; f is regularizable by E [Sφ]} =
⋃

φ<ψ<π
2

M(Sψ)A.

To illustrate the power of this functional calculus, let us consider two ex-
amples. Within the scope of fractional powers, holomorphic semigroups,
and the H∞-calculus, more specific examples will be discussed in Sec-
tions 3.2.4, 3.2.5, and 3.3.

Example 3.2.8. The most common regularizers are the natural powers
of (i + z)−1. They give rise to a meaningful definition of f(A) provided
f ∈M[Sφ] is such that (i+z)−mf ∈ E [Sψ] holds for some m ∈ N. Roughly
speaking, this means that f(z) approaches a finite limit at z = 0 with
polynomial order of convergence and that it grows at most polynomially
as |z| → ∞.

Example 3.2.9. If in addition A is injective, then also the powers of
z(i + z)−2 serve as regularizers. So, in this case even polynomial growth
of f at 0 is admissible.

Finally, if A is a sectorial operator of angle φ ∈ (0, π) in X , then the
functional calculus for A can be set up in a very similar fashion. We write
(E [S+

φ ],M[S+
φ ],ΦA) for this meromorphic functional calculus and denote

its domain byM[S+
φ ]A.

3.2.2 Transformed functional calculi
The following question underlies all of the subsequently presented results:
Suppose A is a (bi)sectorial operator in a Banach space X and we are
given a rule ] that links operators B in X to operators B] in a possibly
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3.2 Functional calculi for sectorial and bisectorial operators

different Banach space X ] and functions f to functions f ]. Moreover,
suppose A] is again (bi)sectorial. Does this imply

f(A]) = f ](A)]

for some functions f? And if so, for which? The transformations discussed
in this section are, in progressive order of difficulty, similarities, scalings,
restrictions, and adjoints.

Similarities

Concerning similarity transformations A 7→ TAT−1 we record the follow-
ing result.

Proposition 3.2.10. Let X and Y be Banach spaces and let A be a
(bi)sectorial operator in X . If T : X → Y is an isomorphism, then
B := TAT−1 is a (bi)sectorial operator of the same angle in Y and the
identity

f(TAT−1) = Tf(A)T−1

holds for every f in the domain of the functional calculus for A.

Proof. We concentrate on the case that A is bisectorial of angle φ ∈ [0, π2 ).
Let ψ ∈ (φ, π2 ).
By similarity, the resolvent sets of A and B coincide and the identity

(λ − B)−1 = T (λ − A)−1T−1 holds for every λ ∈ ρ(A). Hence, B is
bisectorial of angle φ in Y . The claim for f ∈ E [Sφ] is immediate from
that. Finally, take f in the domain of the functional calculus for A and
let e be a corresponding regularizer. As e(B) = Te(A)T−1, the function e
regularizes f also in the functional calculus for B and

f(B) = e(B)−1(ef)(B) =
(
Te(A)T−1

)(
T (ef)(A)T−1

)
= T

(
e(A)−1(ef)(A)

)
T = Tf(A)T−1

follows.
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3 Functional calculus for bisectorial and sectorial operators

Scalings

Also concerning scalings A 7→ tA, where t > 0, the functional calculi are
well-behaved in the best possible way.

Proposition 3.2.11. Let A be a (bi)sectorial operator in a Banach space
X and let t > 0. The operator tA is (bi)sectorial of the same angle as A
and the identity

f(tA) = f(tz)(A)

holds true for every f in the domain of the functional calculus for tA.
Moreover, if φ denotes the angle of (bi)sectoriality of A and g ∈ E [Sφ]

(respectively g ∈ E [S+
φ ]), then {g(tA)}t>0 is uniformly bounded in L(X ).

Proof. Again, we only consider the case that A is bisectorial of angle
φ ∈ [0, π2 ). From

zt−1(zt−1 − A)−1 = z(z − tA)−1 (z ∈ C \ Sφ, t > 0)(3.6)

we can infer that tA is bisectorial of angle φ. Now, let g = f+c(i+z)−1+d,
where f ∈ H∞0 [Sφ] and c, d ∈ C. We abbreviate g(tz) by gt and so on.
Example 3.2.4 guarantees that ct−1(it−1 + z)−1 belongs to E [Sψ]. Hence,
gt ∈ E [Sψ]. The identity claimed in Proposition 3.2.11 is obvious for d and
by definition of the functional calculus and Theorem 3.1.3(v) also

(i + z)−1(tA) = (i + tA)−1 = t−1(it−1 + A)−1

= t−1(it−1 + z)−1(A) = (i + tz)−1(A)

holds. For the remaining summand a simple substitution yields for an
appropriate ν ∈ (φ, π2 ) that

f(tA) = 1
2πi

∫
Sν
f(z)t−1(zt−1 − A)−1 dz

= 1
2πi

∫
Sν
f(tz)(z − A)−1 dz = ft(A).

Taking norms in (3.6) as well as in the equation above also proves

‖(i + z)−1(tA)‖X→X + ‖f(tA)‖X→X

. sup
z∈C\Sν

‖z(z − A)−1‖X→X +
∫

Sν
|f(z)| d |z|

|z|
<∞
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with an implicit constant independent of t.
Finally, consider a general function f in the domain of the functional

calculus for tA and let e be a suitable regularizer. As e(tA) = et(A)
and (ef)(tA) = (etft)(A), the function ft can be regularized by et in the
functional calculus for A and

f(tA) = e(tA)−1(ef)(tA) = et(A)−1(etft)(A) = ft(A)

follows.

Restrictions

In order to study restrictions of (bi)sectorial operators to closed subspaces,
we need the following concept.

Definition 3.2.12. Let A be an unbounded operator in a Banach space
X and let Y ⊆ X be a closed subspace. The operator A|Y defined by

D(A|Y) := {y ∈ D(A) ∩ Y ;Ay ∈ Y}, A|Yy := Ay

is called part of A in Y . It is the maximal restriction of A to an operator
in Y .

Note carefully that (bi)sectoriality is not preserved under restrictions in
general.

Example 3.2.13. In X = `2 consider A : {an}n 7→ {nan}n with maximal
domain and let Y := {{an}n ∈ `2; a1 = a2}. Then σ(A) = N and for every
λ ∈ C \N the resolvent (λ−A)−1 is the bounded multiplication operator
{an}n 7→ {(λ− n)−1an}n. So, A is (bi)sectorial of angle 0. Now, consider
the sequence a ∈ Y given by a1 = a2 = 1 and an = 0 for n ≥ 3 and take an
arbitrary λ ∈ C \N. Since (λ−A)−1a is not a member of Y , the sequence
a cannot belong to the range of λ − A|Y . This proves C \ N ⊆ σ(A|Y),
which in turn prevents A|Y from being (bi)sectorial in Y .

The subspace Y in Example 3.2.13 lacks in invariance under the resol-
vents of A. If this is imposed as an additional assumption, then (bi)secto-
riality is inherited to A|Y and the functional calculi of A and A|Y are
compatible in the sense to be expected.
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3 Functional calculus for bisectorial and sectorial operators

Lemma 3.2.14. Let A be a (bi)sectorial operator of angle φ in a Banach
space X and suppose that Y is a closed subspace of X that is invariant
under (λ− A)−1 for every λ ∈ ρ(A). Then ρ(A) ⊆ ρ(A|Y) and

(λ− A|Y)−1 = (λ− A)−1|Y

for every λ ∈ ρ(A). In particular, A|Y is again (bi)sectorial of angle φ.
Moreover, if A is densely defined, then D(A|Y) = D(A) ∩ Y.

Proof. Let λ ∈ ρ(A). Since Y is invariant under resolvents of A, the
part (λ − A)−1|Y is defined everywhere on Y and bounded. Moreover,
by a routine calculation it is seen to be a left and right inverse for the
restriction (λ − A)|Y = λ − A|Y . If in addition A is densely defined,
then Y is A-invariant thanks to Corollary 3.2.3 and D(A|Y) = D(A) ∩ Y
follows.

Proposition 3.2.15. Let A be a bisectorial operator of angle φ ∈ [0, π2 ) in
a Banach space X . Suppose Y is a closed subspace of X that is invariant
under (λ − A)−1 for every λ ∈ ρ(A). Then A|Y is again bisectorial of
angle φ and the following assertions hold.

(i) If f ∈ E [Sφ], then Y is invariant under f(A), and f(A|Y) = f(A)|Y .

(ii) If f ∈M[Sφ]A, then f ∈M[Sφ]A|Y and f(A|Y) = f(A)|Y .

Upon replacing bisectors by sectors, the same results hold true if A is a
sectorial operator of angle φ ∈ [0, π).

Proof. We begin with the first assertion. Thanks to Lemma 3.2.14 it
suffices to consider f ∈ H∞0 [Sψ] and in this case

f(A)y = 1
2πi

∫
∂ Sν

f(z)(z − A)−1y dz

= 1
2πi

∫
∂ Sν

f(z)(z − A|Y)−1y dz = f(A|Y)y ∈ Y

holds for every y ∈ Y and an appropriate choice of ν ∈ (φ, π2 ).
For the second assertion take a regularizer e for f in the functional

calculus of A. The first assertion assures e(A|Y) = e(A)|Y as well as
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(ef)(A)|Y = (ef)(A|Y). So, e(A|Y) is an injective operator on Y , meaning
that e also regularizes f in the functional calculus for A|Y . Thus,

f(A|Y) = e(A|Y)−1(ef)(A|Y) = (e(A)|Y)−1 ◦ (ef)(A)|Y
= e(A)−1|Y ◦ (ef)(A)|Y =

(
e(A)−1(ef)(A)

)
|Y = f(A)|Y .

Upon the usual modifications the same arguments apply if A is a sec-
torial operator.

The concepts discussed above allow to define the injective part of a
(bi)sectorial operator.

Example 3.2.16. Let A be a bisectorial operator of angle φ ∈ [0, π2 ) in a
Banach space X and let Y := R(A).

(i) The space Y is invariant under (λ − A)−1 for every λ ∈ ρ(A). The
part A|Y is a (bi)sectorial operator of angle φ in Y with dense range
in Y . In particular, it is injective in view of Proposition 3.2.2.(ii).
Therefore A|Y is also called injective part of A. Its domain is given
by D(A|Y) = D(A) ∩ Y and A|Y has dense domain in Y provided A
has dense domain in X .

(ii) If X is reflexive, then for every f ∈ E [Sφ] the decomposition of
vector spaces X = N (A)⊕ Y induces a decomposition of operators
f(A) = f(0) Id⊕f(A|Y), where f(0) := limSψ3z→0 f(z). Moreover,
D(f(A|Y)) = D(f(A)) ∩ Y remains true for every f in the domain
of the functional calculus for A.

Similar results hold for sectorial operators.

Proof. (i) Invariance of Y = R(A) under all resolvents of A follows
since resolvents of A commute with A. Lemma 3.2.14 yields (bi)sec-
toriality of A|Y on Y with the same angle as A. Since Y is the closure
of the range of A, we obviously have D(A|Y) = D(A)∩Y . Owing to
Proposition 3.2.2(ii) each y ∈ Y can be approximated by elements

yt = Axt, where xt = (it+ A)−1y,

as t → 0 (replace i by 1 here if A is sectorial). Since Y is invariant
under resolvents of A, the elements xt, t > 0, belong to D(A|Y),
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thereby showing y ∈ R(A|Y). Injectivity of A|Y follows again from
Proposition 3.2.2(ii). Finally, if A has dense domain in X , then part
(iii) of Proposition 3.2.2 yields

Y = D(A) ∩R(A) = D(A) ∩R(A) ⊆ D(A|Y) ⊆ Y .

(ii) We only consider bisectorial operators. The modifications in the
sectorial case are straightforward. Let ψ ∈ (φ, π2 ) and fix f ∈ E(Sψ)
along with a representation

f = g + c(i + z)−1 + d (g ∈ H∞0 (Sψ), c, d ∈ C).

The decomposition of vector spaces is due to Proposition 3.2.2(iv).
Owing to Proposition 3.2.15(i) we only have to consider x in the
nullspace of A and prove the identity f(A)x = f(0)x = ( ci + d)x. In
this case (z − A)−1x = z−1x holds for all z ∈ ρ(A), so that

f(A)x = 1
2πi

∫
∂ Sν

g(z)x dz
z

+ c

i x+ dx

for some angle ν ∈ (φ, ψ). As a consequence of the regular decay of g
and Cauchy’s integral theorem the contour integral above vanishes.

Now, take f in the domain of the functional calculus for A and let
e be a regularizer for f . Since both components of the topological
decomposition X = N (A)⊕Y are e(A)-invariant, the inverse e(A)−1

maps R(e(A))∩Y into Y . Thus, f(A) maps D(f(A))∩Y into Y and
consequently, D(f(A)) ∩ Y = D(f(A)|Y). Proposition 3.2.15 yields
the claim.

Adjoints

Suppose A is a densely defined (bi)sectorial operator A on a Banach space
X . Then the adjoint operator A∗ is defined on the dual space X ∗ and
owing to

((λ− A)−1)∗ = (λ− A∗)−1 (λ ∈ ρ(A))
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it is (bi)sectorial of the same angle as A. Concerning functional calculus,
the natural identity in question is f(A)∗ = f ∗(A∗), where f ∗(z) = f(z) is
the conjugate of f .
To start with, suppose (E ,M,Φ) is an abstract functional calculus over

a Banach space X . Then

Φ∗ := (e 7→ Φ(e∗)∗) : E → L(X ∗)

is an algebra homomorphism turning (E ,M,Φ∗) into an abstract func-
tional calculus over X ∗, called adjoint functional calculus. This is the
equivalent of the construction in [73, Sec. 2.6.1] for our setting of anti-
dual spaces.

Proposition 3.2.17 ([73, Prop. 2.6.1]). Let (E ,M,Φ) be an abstract func-
tional calculus over a Banach space X with adjoint calculus (E ,M,Φ∗),
and let f ∈ M. Suppose there exists a regularizer e ∈ E for f in the
calculus (E ,M,Φ) and a sequence {fk}k ⊆Mr such that

(i) it holds Φ(fk) ∈ L(X ) and R(Φ(fk)) ⊆ R(Φ(e)) for every k ∈ N,

(ii) the sequence {Φ(fk)}k converges strongly to the identity on X .

Then e regularizes f in the adjoint calculus (E ,M,Φ∗) and Φ(f ∗)∗ =
Φ∗(f) holds.

Taking into account the all-purpose proposition for (bi)sectorial oper-
ators, Proposition 3.2.2, we can give a satisfactory answer to the initial
question.

Proposition 3.2.18. Let A be a densely defined bisectorial operator of
angle φ ∈ [0, π2 ) on a Banach space X . Then A∗ is a bisectorial operator
of angle φ on X ∗ and the identity

f(A)∗ = f ∗(A∗)

holds for every f ∈ M[Sφ] that is regularizable by a power of (i + z)−1 in
the functional calculus for A. In particular, this applies to f ∈ E [Sφ]. If
in addition A has dense range, then it also holds for every f ∈M[Sφ] that
is regularizable by a power of z(i + z)−2 in the functional calculus for A.
Upon replacing bisectors by sectors and the imaginary unit i by 1, the

same results hold for a sectorial operator A of angle φ ∈ [0, π).
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Proof. We already know that A∗ is bisectorial of angle φ and that the
assertion holds if λ ∈ C \ Sφ and f = (λ− z)−1. Let f ∈ H∞0 (Sψ) for some
ψ ∈ (φ, π2 ), choose ν ∈ (φ, ψ), and compute

f(A)∗ = − 1
2πi

∫
∂ Sν

f(z)
(
(z − A)−1

)∗
dz

= − 1
2πi

∫
∂ Sν

f(z)(z − A∗)−1 dz

= 1
2πi

∫
∂ Sν

f(z)(z − A∗)−1 dz = f ∗(A∗).

This completes the proof for f ∈ E [Sφ]. As a consequence, (f ∗(A))∗ =
f(A∗), meaning that the adjoint functional calculus of (E [Sφ]),M[Sφ],ΦA)
simply is (E [Sφ],M[Sφ],ΦA∗).
To establish the claim in the general case we appeal to Proposition 3.2.17

and construct a sequence {fk}k with the required properties. If f ∈M[Sφ]
is regularizable in the functional calculus for A by e = (i + z)−n for some
n ∈ N, then Proposition 3.2.2 ensures that fk = (ik)n(ik + z)−n does the
job. Likewise, if f ∈ M[Sφ] is regularizable in the functional calculus
for A by e = zn(i + z)−2n for some n ∈ N and if A has dense range,
then we can take fk := (ik)nzn(ik−1 + z)−n(ik + z)−n, see the proof of
Proposition 3.2.2(iii).

Remark 3.2.19. Recall from Proposition 3.2.2 that if the Banach space
X is reflexive, then D(A) = X is automatically satisfied and R(A) = X
is equivalent to A being injective. So, in this case f(A)∗ = f ∗(A∗) holds
for all common functions in the functional calculus for A.

3.2.3 A composition rule
Suppose A is a bisectorial operator of angle φ ∈ [0, π2 ) in a Banach space
X . As for every λ ∈ C \ S2φ,+ there is a factorization

λ− A2 = −(
√
λ− A)(−

√
λ− A)(3.7)

with ±
√
λ ∈ C \ Sφ, the operator A2 is sectorial of angle 2φ. Since

also every holomorphic function f on S2φ,+ corresponds to a holomorphic
function f(z2) on Sφ, it is natural to ask for a composition rule

f(z2)(A) = f(A2)
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provided f(A2) is defined.

Theorem 3.2.20. Let A be a bisectorial operator of angle φ ∈ [0, π2 ). If a
meromorphic function f belongs to the domain of the functional calculus
for the sectorial operator A2, then f(z2) belongs to the domain of the
functional calculus for the bisectorial operator A and the composition rule
f(z2)(A) = f(A2) holds.

Proof. We first consider the case g ∈ E(S2ψ,+) for some ψ ∈ (φ, π2 ).
By definition there is a decomposition g = f + c(1 + z)−1 + d, where
f ∈ H∞0 (S2ψ,+) and c, d ∈ C. Then

g(z2) = f(z2) + c(i + z)−1(−i + z)−1 + d ∈ E(Sψ),

taking into account Example 3.2.4. The composition rule is certainly true
for the constant part d. For the resolvent parts note that if λ ∈ C \ S2φ,+,
then (3.7) and Theorem 3.1.3 justify the calculation

(λ− z)−1(A2) = (λ− A2)−1 = −(
√
λ− A)−1(−

√
λ− A)−1

=
[
− (
√
λ− z)−1(A)

][
(−
√
λ− z)−1(A)

]
= (λ− z2)−1(A).

To handle the part involving f choose ν such that φ < ν < ψ and employ
(3.7) and the resolvent identity to find

f(A2) = 1
2πi

∫
∂ S2ν,+

f(z)(z − A2)−1 dz

= −1
2πi

∫
∂ S2ν,+

f(z)(
√
z − A)−1(−

√
z − A)−1 dz

= 1
2πi

∫
∂ S2ν,+

f(z)
(
(
√
z − A)−1 − (−

√
z − A)−1

) dz
2
√
z
.

Substituting
√
z ↔ z, this integral can be transformed to a contour inte-

gral over S+
ν . Consequently,

= 1
2πi

∫
∂ Sν,+

f(z2)
(
(z − A)−1 − (−z − A)−1

)
dz

= 1
2πi

∫
∂ Sν,+⊕− ∂ Sν,+

f(z2)(z − A)−1 dz

= f(z2)(A),
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since ∂ Sν = ∂ Sν,+ ⊕− ∂ Sν,+ with respect to the appropriate orientation.
For the general case assume that f belongs to the domain of the func-

tional calculus for A2 and pick a regularizer e ∈ E [S2φ,+] for f . From above
we can infer that e(z2) ∈ E [Sφ] is a regularizer in the functional calculus
for A and that e(z2)f(z2) = (ef)(z2) ∈ E [Sφ]. Hence, f(z2) belongs to the
domain of the functional calculus for A and

f(z2)(A) = [e(z2)(A)]−1[(ef)(z2)(A)] = e(A2)−1(ef)(A2) = f(A2)

follows.

3.2.4 Fractional powers
Let A be a sectorial operator of angle φ ∈ [0, π) in a Banach space X .
Given the preface to this thesis, it is not surprising that the square root√
A and, more generally, the fractional powers Aα are of particular inter-

est. These operators are defined by means of the functional calculus for
sectorial operators as follows: Agreeing on the complex logarithm to be
defined on its principal branch, for each complex number α with Reα > 0
the function zα is holomorphic on C \ (−∞, 0] and regularizable in the
functional calculus for A by (1 + z)−n with n a natural number larger
than Reα. The resulting operators

Aα := (zα)(A) (Reα > 0)

are called fractional powers of the sectorial operator A. In the case α = 1
2

we usually write
√
A instead of A1/2.

The most important properties of these operators are collected below.

Proposition 3.2.21 ([73, Prop. 3.1.1]). Let A be a sectorial operator
of angle φ ∈ [0, π) in a Banach space X and let α, β ∈ C+. Then the
following assertions hold.

(i) The law of exponents Aα+β = AαAβ is satisfied. In particular, the
fractional powers of A coincide with the usual powers of A if α ∈ N.

(ii) If Reα < Re β, then D(Aβ) ⊆ D(Aα). If in addition A is densely
defined, then D(Aβ) is a core of Aα.

136



3.2 Functional calculi for sectorial and bisectorial operators

(iii) It holds N (Aα) = N (A) and if A is invertible, then so is Aα.

Proposition 3.2.22 ([73, Prop. 3.1.9]). Let A be a sectorial operator of
angle φ ∈ [0, π) in a Banach space X and let α ∈ C+. Then for every
ε > 0 there is equality of domains D(Aα) = D((A+ ε)α).

Remark 3.2.23. (i) There are at least two legitimate definitions for
the operator (A+ε)α, namely (z+ε)α(A) using the functional calcu-
lus for A and zα(A+ε) using the functional calculus for the sectorial
operator A+ ε. Fortunately, the latter two operators coincide as an
instance of the omnibus composition rule [73, Thm. 2.4.2].

(ii) The graph norms of Aα and (A + ε)α are equivalent. To see this,
first note

g := zα

(z + ε)α =
(

zα

(z + ε)α + 1
1 + z

− 1
)
− 1

1 + z
+ 1 ∈ E [S+

φ ].

Hence g(A) ∈ L(X ) and so Aα = g(A)(A+ε)α due to Theorem 3.1.3.
Consequently,

‖x‖+ ‖Aαx‖ . ‖x‖+ ‖(A+ ε)αx‖ (x ∈ D(Aα))

and the reverse estimate follows from the open mapping theorem.

A composition rule similar to Theorem 3.2.20 makes the functional cal-
culi for A compatible with the functional calculi of its fractional powers.

Proposition 3.2.24 ([73, Prop. 3.1.2, Prop. 3.1.4]). Let A be a sectorial
operator of angle φ ∈ [0, π) on a Banach space X . If α ∈ (0, π

φ
), then Aα

is sectorial of angle αφ. Moreover, if a meromorphic function f belongs
to the domain of the functional calculus for Aα, then f ◦ zα belongs to the
domain of the functional calculus for A and the identity

f(Aα) = (f ◦ zα)(A)

holds true.

The following integral representation for fractional powers turned out
useful on occasions. For a proof see [73, Prop. 3.1.12].
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3 Functional calculus for bisectorial and sectorial operators

Proposition 3.2.25 (Balakrishnan representation). Let A be a sectorial
operator of angle φ ∈ [0, π) in a Banach space X and let 0 < Reα < 1.
Then

Aαx = sinαπ
π

∫ ∞
0

tα−1(t+ A)−1Ax dt (x ∈ D(A)).

Fractional powers of bisectorial operators are a more delicate matter
since the functions zα defined via the principal branch of the logarithm
are not holomorphic on any bisector. Of course, we could switch to a
branch of the logarithm on the simply connected domain C \ i[0,∞), but
the benefit of this workaround usually does not compensate all the tedious
inconveniences it causes, such as incompatibility with the usual powers.
A better replacement for fractional powers when dealing with a bisectorial
operator A are the pseudo fractional powers defined by

(A2)α := zα(A2) = (z2)α(A) (Reα > 0).

Here, the second equality is by the composition rule, Theorem 3.2.20.
Since the pseudo fractional powers of a bisectorial operator coincide with
the fractional powers of its square, the statements of Proposition 3.2.21,
and in particular the law of exponents, directly carry over to these oper-
ators.

3.2.5 Bounded holomorphic semigroups
In this section we review the basic properties of bounded holomorphic
semigroups and their classical connection to sectorial and bisectorial op-
erators. For further background on operator semigroups we refer to the
excellent textbooks of Engel-Nagel [56], Pazy [130], and Arendt-
Batty-Hieber-Neubrander [7]. Functional calculus allows to render
meaningful the naive solution formula x(t) = e−tAx0 for the abstract
Cauchy problem ẋ(t) + Ax(t) = 0 (t > 0),

x(0) = x0 ∈ X ,

whenever A is sectorial of angle smaller than π
2 in a Banach space X .

Indeed,

e−λz =
(
e−λz − (1 + z)−1

)
+ (1 + z)−1 ∈ E [Sφ]
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3.2 Functional calculi for sectorial and bisectorial operators

provided |arg λ| + φ < π
2 . Hence, to each sectorial operator of angle

φ ∈ [0, π2 ) on X there corresponds a one parameter family

e−λA := e−λz(A) ∈ L(X ) (λ ∈ S+
π/2−φ ∪ {0}).

The following properties are straightforward from the definition of func-
tional calculus, see also [73, Prop. 3.4.1].

Proposition 3.2.26. Let A be a sectorial operator of angle φ ∈ [0, π2 ) in
a Banach space X and let

T (λ) := e−λA (λ ∈ S+
π/2−φ ∪ {0}).

Then the following assertions hold.

(i) The functional equation

T (0) = Id and T (λ+ µ) = T (λ)T (µ) (λ, µ ∈ S+
π/2−φ)

is satisfied.

(ii) The mapping

T := (λ 7→ T (λ)) : S+
π/2−φ → L(X )

is holomorphic with derivatives given by T (n) = (−A)nT , n ∈ N.

(iii) For each ψ ∈ (φ, π2 ) the family {T (λ); λ ∈ S+
π/2−ψ} is uniformly

bounded.

(iv) The identity

(λ+ A)−1 =
∫ ∞

0
e−λtT (t) dt

holds true if Reλ > 0.

(v) If x ∈ D(A) ∩R(A), then

lim
|λ|→0, |arg λ|≤ψ

T (λ)x = x and lim
|λ|→∞, |arg λ|≤ψ

T (λ)x = 0

for each ψ ∈ (0, π2 − φ).

139



3 Functional calculus for bisectorial and sectorial operators

A family T = {T (λ); λ ∈ S+
π/2−φ} of bounded linear operators on a

Banach space X that satisfies (i) and (ii) of Proposition 3.2.26 is called
holomorphic semigroup of angle π

2 − φ on X . It is called bounded if in ad-
dition (iii) is satisfied. A holomorphic semigroup of angle π

2 −φ is strongly
continuous if the first limit in (v) holds for x ∈ X and it is strongly stable if
so does the second limit. If, given a bounded holomorphic semigroup T of
some angle, there exists an operator A satisfying (iv), then this operator is
called generator of T . In this terminology Proposition 3.2.26 reformulates
as follows.

Proposition 3.2.27. Every densely defined sectorial operator A of angle
φ ∈ [0, π2 ) with dense range in a Banach space X generates a bounded,
strongly continuous, strongly stable, holomorphic semigroup T of angle
π
2 − φ on X given by

T (λ) = e−λA (λ ∈ S+
π/2−φ ∪ {0}).

For a bisectorial operator there is no direct way to define non-trivial
operator exponentials since for every λ ∈ C \ {0} the function e−λz grows
exponentially fast as its argument approaches∞ within any given bisector.
What can be defined though are exponentials

e−λ[z] (Reλ > 0),

where here and throughout we put

[z] :=
√
z2 = ±z (z ∈ C±).

In fact, e−λ[z] ∈ E [Sφ] provided that |arg λ| + φ < π
2 . So, the natural

construction to associate an operator semigroup with a given bisectorial
operator A of angle φ ∈ [0, π2 ) on a Banach space X is to put

T (λ) := (e−λ[z])(A) (λ ∈ S+
π/2−φ ∪ {0}).

Since [z] decays regularly at 0, the operator [A] := [z](A) is well-defined in
the functional calculus for A, see Example 3.2.8. The following theorem
does not come as a surprise.
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Theorem 3.2.28. Let A be a densely defined bisectorial operator of angle
φ ∈ [0, π2 ) in a Banach space X . Then

T (λ) := (e−λ[z])(A) (λ ∈ S+
π/2−φ ∪ {0})

is the bounded, strongly continuous, holomorphic semigroup generated by
[A].

Proof. First, we claim that [A] is a densely defined sectorial operator of
angle φ. Indeed, A2 is sectorial of angle 2φ, see Section 3.2.3, and densely
defined due to Proposition 3.2.2(i). Proposition 3.2.21(ii) implies that
[A] =

√
A2 is densely defined as well and Proposition 3.2.24 guarantees

that it is sectorial of angle φ. In particular, [A] generates a bounded,
strongly continuous, holomorphic semigroup T of angle π

2 − φ given by

T (λ) = e−λz([A]) (λ ∈ S+
π/2−φ ∪ {0}).

However, owing to Proposition 3.2.24 and Theorem 3.2.20, these semi-
group operators can also be build as

e−λz([A]) = e−λz(
√
A2) = e−λ

√
z(A2)

= e−λ
√
z2(A) = e−λ[z](A) (λ ∈ S+

π/2−φ ∪ {0})

and the conclusion follows.

Remark 3.2.29. In the setting of Theorem 3.2.28, the space D(A2) is
a core for both A and [A]. This is a consequence of Proposition 3.2.2(i)
and Proposition 3.2.21(ii). The question whether even D(A) = D([A])
holds true is much more involved and we shall come back to it later on in
Section 3.3.4.

3.3 The H∞-calculus
Regularly decaying holomorphic functions such as z(i + z)−1 correspond
to bounded operators in the functional calculus for bisectorial operators,
whereas unbounded functions such as z usually correspond to unbounded
operators. This section is devoted to the borderline case for this phe-
nomenon: Under which conditions do merely bounded holomorphic func-
tions correspond to bounded operators?
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Although the pure notion of an H∞-calculus can be set up for general
injective (bi)sectorial operators, most of the more sophisticated results
require operators with dense domain and dense range. These additional
assertions imply injectivity. Conversely, every injective bisectorial op-
erator on a reflexive Banach space fits into this setup due to Proposi-
tion 3.2.2.(iv). Operators with non-dense range will briefly be discussed
in Section 3.3.3. For further generalizations see, e.g., [73, Ch. 5]. Again,
we present the results for bisectorial operators in a way allowing for an
almost literal adoption to the sectorial case.
A beautiful proof of the following vector-valued version of Vitali’s the-

orem from complex function theory was found by Arendt and Nikol-
ski [9], see also [7, Thm. A.5].
Theorem 3.3.1 (Vitali). Let Ω ⊆ C be a domain and let X be a Banach
space. Let fn : Ω→ X be holomorphic functions (n ∈ N) such that for all
compact sets K ⊆ Ω it holds

sup
n∈N, z∈K

‖fn(z)‖ <∞.

If the set {z ∈ Ω; fn(z) converges} has a limit point in Ω, then {fn}n∈N
converges to a holomorphic function f : Ω → X uniformly on compact
subsets of Ω.
The next lemma provides an elementary, though important estimate for

the primary functional calculus.
Lemma 3.3.2 (Baby convergence lemma). Let A be a bisectorial operator
of angle φ ∈ [0, π2 ) in a Banach space X and let ψ ∈ (φ, π2 ). Let {fn}n∈N
be a sequence in H∞0 (Sψ) that converges pointwise on Sψ to a function f .
Suppose there exists s > 0 such that

|fn(z)| . min
{
|z|s , |z|−s

}
(z ∈ Sψ, n ∈ N).(3.8)

Then f ∈ H∞0 (Sψ) and fn(A) converges to f(A) in operator norm. Upon
replacing bisectors by sectors, the same result holds for sectorial operators.
Proof. Due to the uniform estimate (3.8), Vitali’s theorem applies on
both connected components of Sψ to the sequence {fn}n∈N and yields
f ∈ H∞0 (Sψ). The convergence fn(A) → f(A) in operator norm follows
by the dominated convergence theorem applied to the defining Cauchy
integrals, taking min{|z|s , |z|−s}‖(z−A)−1‖X→X as integrable majorizing
function.
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3.3.1 Boundedness of the H∞-calculus
For U ⊆ C an open set let H∞(U) be the Banach algebra of bounded
holomorphic functions on U equipped with the supremum norm ‖ · ‖∞,U .
Suppose A is an injective bisectorial operator of angle φ ∈ [0, π2 ) on a Ba-
nach space X . For each angle ψ ∈ (φ, π2 ) and every bounded holomorphic
function f ∈ H∞(Sψ) an operator f(A) can be defined using z(i + z)−2 as
a regularizer. The map

H∞(Sψ)→ {closed operators in X}, f 7→ f(A)

is called H∞(Sψ)-calculus for the injective bisectorial operator A. A similar
notion can be set up for injective sectorial operators.

Definition 3.3.3. Let A be an injective bisectorial operator of some angle
φ ∈ [0, π2 ) in a Banach space X and let ψ ∈ (φ, π2 ). The H∞(Sψ)-calculus
for A is called bounded (with bound Cψ > 0) if

‖f(A)‖X→X ≤ Cψ‖f‖∞,Sψ (f ∈ H∞(Sψ)).

A similar notion is introduced for injective sectorial operators.

Remark 3.3.4. If in the setting of Definition 3.3.3 the H∞(Sψ)-calculus
for A is bounded, then

H∞(Sψ)→ L(X ), f 7→ f(A)

is a bounded algebra homomorphism with norm at most Cψ. This is a
consequence of Theorem 3.1.3.

The next result is originally due to McIntosh [117].

Proposition 3.3.5 (Convergence lemma). Suppose A is a bisectorial op-
erator of angle φ ∈ [0, π2 ) with dense domain and dense range in a Ba-
nach space X . Let ψ ∈ (φ, π2 ) and let {fn}n∈N be a bounded sequence in
H∞(Sψ) that converges pointwise on Sψ to a function f . Suppose further-
more fn(A) ∈ L(X ) for every n and that

sup
n
‖fn(A)‖X→X =: C <∞

holds. Then f ∈ H∞(Sψ), f(A) ∈ L(X ), and fn(A) → f(A) strongly
on X . Upon replacing bisectors by sectors, the same applies to sectorial
operators.
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Proof. We concentrate on the bisectorial case. Vitali’s theorem assures
f ∈ H∞(Sψ). Putting e := z(i + z)−2 the sequence {fne}n satisfies the
assumptions of the baby convergence lemma. So, taking into account
Theorem 3.1.3(iii),

fn(A)e(A) = (fne)(A)→ (fe)(A) = f(A)e(A)(3.9)

in operator norm. Now, R(e(A)) = R(A(i + A)−2) = D(A) ∩ R(A) and
the latter is dense in X due to Proposition 3.2.2(iii). By assumption
{fn(A)}n is a bounded sequence of bounded operators and it has just
turned out to converge strongly on a dense subset of X . Thus, it converges
strongly everywhere on X to a bounded operator T and it remains to prove
T = f(A). To this end take x ∈ X . Since A is injective, e is a regularizer
for f as well as for each fn in the functional calculus for A. Thus,

e(A)−1(fne)(A)x = fn(A)x→ Tx.(3.10)

Since the operator e(A)−1 is closed, the limits (3.9) and (3.10) imply
(fe)(A)x ∈ D(e(A)−1) as well as e(A)−1(fe)(A)x = Tx. By definition
of the functional calculus this means x ∈ D(f(A)) and f(A)x = Tx.

As a corollary we obtain two weaker assumption implying the bounded-
ness of the H∞-calculus. Upon replacing bisectors by sectors, both results
remain valid for sectorial operators and their proofs are literally the same.

Corollary 3.3.6. Let A be a bisectorial operator of angle φ ∈ [0, π2 ) with
dense domain and dense range in a Banach space X and let ψ ∈ (φ, π2 ).
If there exists a constant Cψ > 0 such that

‖f(A)‖X→X ≤ Cψ‖f‖∞,Sψ (f ∈ H∞0 (Sψ)),

then the H∞(Sψ)-calculus for A is bounded with bound Cψ.

Proof. Given f ∈ H∞(Sψ), put e = z2(1 + z2)−2 and define a pointwise
approximating sequence by fn = e1/nf , n ∈ N. Then each fn belongs to
H∞0 (Sψ) and satisfies

‖fn‖∞,Sψ ≤ ‖f‖∞,Sψ‖e‖
1/n
∞,Sψ .
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By assumption this carries over to

‖fn(A)‖X→X ≤ Cψ‖f‖∞,Sψ‖e‖
1/n
∞,Sψ (n ∈ N).

Proposition 3.3.5 guarantees that the sequence {fn(A)}n converges strong-
ly to f(A) ∈ L(X ) and letting n tend to ∞ in the estimate above reveals
‖f(A)‖ ≤ Cψ‖f‖∞,Sψ .

Corollary 3.3.7. Let A be a bisectorial operator of angle φ ∈ [0, π2 ) with
dense domain and dense range in a Banach space X and let ψ ∈ (φ, π2 ).
If f(A) ∈ L(X ) for every f ∈ H∞(Sψ), then the H∞(Sψ)-calculus for A is
bounded.

Proof. The convergence lemma precisely tells that

{f ∈ H∞(Sψ); f(A) ∈ L(X )} ⊆ H∞(Sψ)→ L(X ), f 7→ f(A)

is a closed operator. By assumption this map is everywhere defined and
the closed graph theorem yields the claim.

We conclude this section with the following duality result.

Proposition 3.3.8. Let A be a bisectorial operator of angle φ ∈ [0, π2 ) with
dense domain and dense range in a Banach space X and let ψ ∈ (φ, π2 ).
If the H∞(Sψ)-calculus for A is bounded with bound Cψ, then so is the
H∞(Sψ)-calculus for A∗. Up to the usual modifications the same holds
true in the sectorial case.

Proof. Recall from the treatise of adjoints in Section 3.2.2 that A∗ is
a bisectorial operator of angle φ in X ∗. As the adjoint of a a closed
operator with dense domain and dense range is injective [73, Sec. A.4],
the operator A∗ has a well-defined H∞(Sψ)-calculus on X ∗. Since every
element of H∞(Sψ) is regularizable by z(i + z)−2, the claim follows from
Proposition 3.2.18. The proof in the sectorial case is similar.

3.3.2 McIntosh approximation
The purpose of this section is to give a self-contained proof of a fun-
damental approximation result for bisectorial operators originally due to
McIntosh [117].
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Theorem 3.3.9 (McIntosh approximation). Let A be a bisectorial oper-
ator of angle φ ∈ [0, π2 ) on a Banach space X and let f ∈ H∞0 [Sφ] satisfy∫
R± f(t) dt

t
= ±1. Then,

∫ b

a
f(tA)x dt

t
=
(∫ b

a
f(tz) dt

t

)
(A)x a→0, b→∞−→ x (x ∈ D(A) ∩R(A)).

Remark 3.3.10. The operators f(tA), t > 0, are unambiguously defined
in view of Section 3.2.2 on scalings.

Remark 3.3.11. The proof of Theorem 3.3.9 will reveal that up to the
usual modification the same result holds for sectorial operators, but that
in the case of a sectorial operator it suffices to assume

∫∞
0 f(t) dt

t
= 1 since

σ(A) ∩ R− = ∅.

Proof of Theorem 3.3.9. Fix ψ ∈ (φ, π2 ) such that f ∈ H∞0 (Sψ). For
0 < a < b <∞ define

Fa,b : Sψ → C, Fa,b(z) :=
∫ b

a
f(tz) dt

t
.

The argument is in three consecutive steps.

Step 1: Estimates for Fa,b

In this step we demonstrate that {Fa,b}0<a<b<∞ is a bounded subfamily of
H∞0 (Sψ). As f belongs to H∞0 (Sψ), there exists s > 0 such that

|Fa,b(z)| .
∫ b

a
min{|tz|s , |tz|−s} dt

t
=
∫ b|z|

a|z|
min{ts, t−s} dt

t

≤
∫ ∞

0
min{ts, t−s} dt

t
= 2
s

for all 0 < a < b < ∞ and every z ∈ Sψ. By the dominated convergence
theorem each Fa,b is continuous on Sψ. Moreover, if 4 ⊆ Sψ is any closed
triangle, then by Fubini’s theorem and Cauchy’s integral theorem

∫
∂4

Fa,b(z) dz =
∫
∂4

∫ b

a
f(tz) dt

t
dz =

∫ b

a

∫
∂4

f(tz) dz dt
t

= 0.
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As a consequence of Morera’s theorem Fa,b is holomorphic on Sψ. Finally,
to see that Fa,b is regularly decaying, start again from

|Fa,b(z)| .
∫ b|z|

a|z|
min{ts, t−s} dt

t
(z ∈ Sψ).

If |z| ≤ b−1, then the right-hand side is bounded by
∫ b|z|

0 ts−1 dt = bss−1 |z|s

from above. Likewise, if |z| ≥ a−1, then
∫∞
a|z| t

−s−1 dt = a−ss−1 |z|−s is an
upper bound.
In particular, the operator Fa,b(A) is defined via the primary functional

calculus for A and with ν ∈ (φ, ψ) and the help of Fubini’s theorem the
representation

Fa,b(A) = 1
2πi

∫ b

a

∫
∂ Sν

f(tz)(z − A)−1 dz dt
t

=
∫ b

a
f(tA) dt

t
.(3.11)

follows.

Step 2: Convergence in a special case

Next, we prove the claim in the case x ∈ D(A)∩R(A). Put e := z(i+z)−2.
Due to (3.11) and R(e(A)) = D(A) ∩R(A) it suffices to show

Fan,bn(A)e(A) = (Fan,bne)(A) n→∞−→ e(A)(3.12)

in operator norm for all sequences {an}n and {bn}n tending to 0 and
∞, respectively. The sequence {Fan,bne}n is bounded in H∞0 (Sψ) with a
uniform estimate

|(Fan,bne)(z)| . min{|z| , |z|−1} (z ∈ Sψ, n ∈ N)

due to Step 1. Moreover, if z ∈ R±, then

Fan,bn(z) =
∫ bn

an
f(tz) dt

t
=
∫ bnz

anz
f(t) dt

t
n→∞−→ sgn(z)

∫
R±
f(t) dt

t
= 1

by assumption. Vitali’s theorem allows to extend this pointwise conver-
gence to all z ∈ Sψ and in view of the identity theorem the limit function
must be 1. So, we are in position to apply Lemma 3.3.2 to the sequence
{Fan,bne}n and (3.12) follows.
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3 Functional calculus for bisectorial and sectorial operators

Step 3: Convergence in the general case

Strong convergence can be extended fromD(A)∩R(A) to its closure by the
usual 3ε-argument, once {Fa,b(A)}0<a<b<∞ has been uniformly bounded
in L(X ). This will conclude the proof due to the side result

D(A) ∩R(A) = D(A) ∩R(A)

of Proposition 3.2.2(iii). To prove uniform boundedness, start again from
(3.11) and split

Fa,b(A) =
∫ b

0
f(tA)x dt

t
−
∫ a

0
f(tA) dt

t
=
∫ 1

0
f(btA) dt

t
−
∫ 1

0
f(atA) dt

t
.

This suggests to consider the function F0,1 =
∫ 1
0 f(tz) dt

t
∈ E(Sφ), see

Example 3.2.5. As in the final paragraph of Step 1, F0,1(A) =
∫ 1

0 f(tA) dt
t

and since the same applies to the sectorial operators bA and aA in place
of A, compare with Proposition 3.2.11,

Fa,b(A) = F0,1(bA)− F0,1(aA).

Once again referring to Proposition 3.2.11, the operators on the right-hand
side are uniformly bounded in norm with respect to a and b.

Example 3.3.12. The standard regularizers 2 sgn(z)z
π(1+z2) and 2z2

(1+z2)2 fit the
assumptions of Theorem 3.3.9.

3.3.3 Operators with non-dense range
It is convenient to define an H∞-calculus also for (bi)sectorial operators
with non-dense range. This is done best by restricting to the injective
part of such an operator.

Definition 3.3.13. Let A be a bisectorial operator of angle φ ∈ [0, π2 ) on
a Banach space X . For each ψ ∈ (φ, π2 ) and every f ∈ H∞(Sψ) define

f(A) := f(A|R(A))

as an operator in R(A). The H∞(Sψ)-calculus for A is said to be bounded
on R(A) (with bound Cψ > 0) if the H∞(Sψ)-calculus for the injective
part of A is bounded on R(A) (with bound Cψ > 0).
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Remark 3.3.14. Due to Proposition 3.2.15, Definition 3.3.13 is clear
without ambiguity. It can literally be adopted to sectorial operators.

As an application we answer a question raised in Remark 3.2.29 on the
comparability of A and [A]. In fact, the following result is far more than
a simple playing around – it lies at the heart of the Kato square root
problem and many other deep results of the Calderón program [30, p.463]
and has advanced the development of H∞-functional calculus in the first
place.

Proposition 3.3.15 (Abstract Kato square root problem). Let A be a
bisectorial operator of angle φ ∈ [0, π2 ) on a reflexive Banach space X and
assume that its H∞(Sψ)-calculus is bounded on R(A) for some ψ ∈ (φ, π2 ).
Then D(A) = D([A]) with equivalent graph norms.

Proof. For brevity put Y := R(A) and let B := A|Y be the injective
part of A. With f := z

[z] ∈ H∞(Sψ), Theorem 3.1.3 yields f(B)[B] ⊆ B

and f(B)B ⊆ [B]. However, f(B) ∈ L(Y) by assumption, so that in fact
there is equality in both of these inclusions. Hence, D(B) = D([B]) with
equivalent homogeneous graph norms. It remains to lift this property
to A. The composition rule in Theorem 3.2.20 yields [A] =

√
A2 and

so N (A) = N ([A]) thanks to Proposition 3.2.21(iii). Hence, the direct
decomposition X = N (A) ⊕ Y from Proposition 3.2.2(iv) induces direct
decompositions

D(A) = N (A)⊕D(A) ∩ Y = N (A)⊕D(B)

and

D([A]) = N ([A])⊕D([A]) ∩ Y = N ([A])⊕D([B]),

where the respective second equalities are due to Example 3.2.16. Now,
D(A) = D([A]) with equivalent graph follows from the respective claim
for B established in the first part of the proof.

3.3.4 The spectral decomposition of bisectorial
operators

The spectrum of a bisectorial operator A splits into the three parts

σ(A) =
(
σ(A) ∩ C−

)
∪
(
σ(A) ∩ {0}

)
∪
(
σ(A) ∩ C+

)
.
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3 Functional calculus for bisectorial and sectorial operators

From the spectral theoretic point of view, the natural question is whether
this induces a topological spectral decomposition

X = X−A ⊕N (A)⊕X+
A

of the underlying Banach space X into A-invariant closed subspaces X±A
such that the restrictions A± of A to X±A satisfy σ(A±)\{0} = σ(A)∩C±.
A dichotomy at 0 occurs since the spectral properties of A at 0 have not
been specified further. The objective of this section is to establish this
spectral topological decomposition for bisectorial operators that have a
bounded H∞-calculus of some angle.

Definition 3.3.16. Let A be a bisectorial operator of angle φ ∈ [0, π2 )
in a Banach space X and assume that its H∞(Sψ)-calculus is bounded on
R(A) for some ψ ∈ (φ, π2 ). Define

P±A := 1C±(A) and X±A := R(P±A ).

The operators P±A are called generalized Hardy projections and their ranges
are called generalized Hardy spaces associated with A.

The following two lemmas justify this nomenclature.

Lemma 3.3.17. Let A be a bisectorial operator of angle φ ∈ [0, π2 ) in a
Banach space X and assume that its H∞(Sψ)-calculus is bounded on R(A)
for some ψ ∈ (φ, π2 ). Then P±A are bounded projections on R(A) that
induce a topological decomposition R(A) = X−A ⊕X+

A .

Proof. By assumption the operators P±A = 1C±(A|R(A)) are bounded on
R(A). Since

(f 7→ f(A)) : H∞(Sψ)→ L(R(A))

is an algebra homomorphism, 12
C± = 1C± and 1C−∩Sψ + 1C+∩Sψ = 1Sψ

translate to (P±A )2 = P±A and P−A + P+
A = IdR(A).

Lemma 3.3.18. Let A be a bisectorial operator of angle φ ∈ [0, π2 ) in a
Banach space X and assume that its H∞(Sψ)-calculus is bounded on R(A)
for some ψ ∈ (φ, π2 ). Then the generalized Hardy spaces associated with A
are invariant under A as well as under (λ−A)−1 for every λ ∈ ρ(A). Here,
A-invariant means that AP±A x = P±AAx holds for every x ∈ D(A)∩R(A).
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Proof. This is a direct consequence of Theorem 3.1.3, taking into account
that P±A = 1C±(A) are bounded.

In the proof of the spectral decomposition we will need the following
auxiliary result.

Lemma 3.3.19. Let A be an operator with non-empty resolvent set in a
Banach space X . Suppose that X splits topologically into a sum of two
closed subspaces Y and Z that are both invariant under (λ−A)−1 for every
λ ∈ ρ(A). If P is the projection onto Y, then PA ⊆ AP . Moreover, there
is a spectral decomposition σ(A) = σ(A|Y) ∪ σ(A|Z).

Proof. Fix an element λ ∈ ρ(A) and split x ∈ D(A) as

x = (λ− A)−1P (λ− A)x+ (λ− A)−1(1− P )(λ− A)x := x1 + x2.

Since both Y and Z are invariant under resolvents of A, x1 ∈ Y and
x2 ∈ Z. Since Y ⊕Z is a direct sum, this implies x1 = Px ∈ D(A). Thus,
(λ− A)Px = P (λ− A)x and APx = PAx follows.
Concerning the spectra, first let λ ∈ ρ(A) and note that since Y is

invariant under resolvents of A, the part (λ−A)−1|Y is defined everywhere
on Y and bounded. By a routine calculation it is seen to be a left and
right inverse for (λ−A)|Y = λ−A|Y . Hence, σ(A|Y) ⊆ σ(A) and similarly
for A|Z . If conversely λ ∈ ρ(A|Y) ∩ ρ(A|Z), then the first part reveals

Rλ := (λ− A|Y)−1P + (λ− A|Z)−1(1− P ) ∈ L(X )

as a two-sided inverse for (λ− A) and thus λ ∈ ρ(A) follows.

Now, we are in the position to prove that the generalized Hardy spaces
are the sought-after spectral subspaces for A.

Theorem 3.3.20. Let A be a bisectorial operator of angle φ ∈ [0, π2 ) in a
Banach space X and assume that its H∞(Sψ)-calculus is bounded on R(A)
for some ψ ∈ (φ, π2 ). Then the following assertions hold.

(i) The generalized Hardy spaces X±A are invariant under A and all
resolvents of A. They form a topological decomposition

R(A) = X−A ⊕X+
A .
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3 Functional calculus for bisectorial and sectorial operators

(ii) Let A± be the part of A in X±A . Then A+ is a sectorial operator of
angle φ in X+

A and −A− is a sectorial operator of angle φ in X−A .
In particular, both operators are bisectorial of angle φ.

(iii) If in addition X is reflexive, then σ(A±)\{0} = σ(A)∩C± and there
is a topological spectral decomposition

X = X−A ⊕N (A)⊕X+
A .

Proof. The first item is precisely the statement of Lemma 3.3.17 and the
second part of the third one then follows from Proposition 3.2.2(iv). The
proof of the remaining assertions is in four short steps.

Step 1: ρ(A) ⊆ ρ(A±) with appropriate resolvent bounds

Applying Lemma 3.2.14 twice to first restrict from X to R(A) and after-
wards to X±A , we find ρ(A) ⊆ ρ(A±) and

(λ− A±)−1 = (λ− A)−1|X±A (λ ∈ ρ(A)).

Moreover, A± is bisectorial of angle φ on X±A and the simple but important
identity

1C±(A±) = 1C±(A)|X±A = IdX±A(3.13)

holds true.

Step 2: The inclusion C∓ ⊆ ρ(A±)

Throughout this step let λ ∈ C∓ and put f±λ := (λ − z)−11C± . Then
f±λ ∈ H∞(Sψ) and thus f±λ (A) is a bounded operator on R(A). We claim

f±λ (A)|X±A = f±λ (A±) = (λ− A±)−1.

The first equality is again a consequence of Proposition 3.2.15. More-
over, f±λ = 1C±f

±
λ implies f±λ (A) = P±A f

±
λ (A). Hence, R(f±λ (A)) ⊆ X±A

and therefore f±λ (A±) is everywhere defined and bounded on X±A . Theo-
rem 3.1.3 in combination with (3.13) yields

(λ− A±)f±λ (A±), f±λ (A±)(λ− A±) ⊆ ((λ− z)f±λ )(A±) = 1C±(A±) = 1

showing that f±λ (A±) is a two-sided inverse for λ− A±.
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Step 3: Resolvent estimates on C∓

The goal of this step is to prove the resolvent estimate

‖(λ− A±)−1‖ . |λ|−1 (λ ∈ C∓).(3.14)

Since we already know that A± is bisectorial of angle φ, this will imply
that ∓A± is even sectorial of angle φ. In order to establish (3.14), we first
use Step 2 and the boundedness of the H∞(Sψ)-calculus for A to find

‖(λ− A±)−1‖X±A→X±A = ‖f±λ (A)‖ . ‖f±λ ‖∞,Sψ (λ ∈ C∓).

By symmetry it suffices to consider the case λ ∈ C−. Clearly,

‖f+
λ ‖∞,Sψ ≤

1
d(λ, S+

ψ ) (λ ∈ C−).

Now, if |arg λ| ≥ π
2 +ψ, then the origin is the point in S+

ψ closest to λ and
hence d(λ, S+

ψ ) = |λ|. Otherwise, let d be the foot of the perpendicular
from λ to the halfray [0,∞)eiψ and note

d(λ, S+
ψ ) = |d− λ| = |λ| sin(| arg λ| − ψ) ≥ sin(π2 − ψ) = |λ| cosψ,

see also Figure 6. Altogether, this establishes (3.14).

Step 4: Nesting the spectrum of A±

It remains to prove the spectral equality σ(A±) \ {0} = σ(A) ∩ C±. The
first two steps provide the inclusion

σ(A±) \ {0} ⊆
(
σ(A) ∩ C \ C∓

)
\ {0} = σ(A) ∩ C±,

where for the second equality we have utilized that σ(A)∩ iR ⊆ {0} holds
by bisectoriality. On the other hand, applying Lemma 3.3.19 twice leads
to the converse inclusion

σ(A) ∩ C± =
(
σ(A−) ∪ σ(A|N (A)) ∪ σ(A+)

)
∩ C±

= σ(A±) ∩ C±

⊆ σ(A±) \ {0}.

Here, reflexivity has guaranteed that X splits into the topological sum
N (A)⊕R(A).
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Im

b

b

λ

d

Sψ

Re

Figure 6: The case | arg λ| < π
2 +ψ in Step 3 of the proof of Theorem 3.3.20.

3.4 Quadratic estimates
(Bi)sectorial operators A with a bounded H∞-calculus on the closure of
their range are closely related to those satisfying quadratic estimates∫ ∞

0
‖f(tA)x‖2 dt

t
' ‖x‖2 (x ∈ R(A)),

where f is some appropriate regularly decaying holomorphic function.
Seminal results in this direction are due to McIntosh [117] relying on
earlier ideas of Yagi, see also [43]. We give a short account of the the-
ory for bisectorial operators with dense domain and outline the necessary
changes for sectorial operators.
We begin by rendering the notion of quadratic estimates more precisely.

Definition 3.4.1. Let φ ∈ (0, π2 ). A function in H∞0 (Sφ) is called degen-
erate if its restriction to one of the sets R± is identically zero.
Remark 3.4.2. In view of the identity theorem there is no akin notion of
non-trivial degenerate holomorphic functions on connected open subsets
such as sectors.
Definition 3.4.3. Let A be a densely defined bisectorial operator of angle
φ ∈ [0, π2 ) in a Banach space X and let f ∈ H∞0 [Sφ] be non-degenerate. If∫ ∞

0
‖f(tA)x‖2 dt

t
' ‖x‖2 (x ∈ R(A)),(3.15)
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3.4 Quadratic estimates

then A is said to satisfy quadratic estimates for f . Similarly, densely
defined sectorial operators A of angle φ ∈ [0, π) that satisfy quadratic
estimates for some f ∈ H∞0 [S+

φ ] are introduced.

Definition 3.4.3 will turn out independent of the particular choice of f :
Once (3.15) holds for some admissible function, then it already holds for
all such functions. Therefore we can simply speak of densely defined bisec-
torial operators that satisfy quadratic estimates. The proof of this result,
however, requires some preparations.

Lemma 3.4.4. Let A be a bisectorial operator of angle φ ∈ [0, π2 ) in a
Banach space X and let ψ ∈ (φ, π2 ). For any two f1, f2 ∈ H∞0 (Sψ) there
exists a positive function ζ ∈ L1(0,∞; dr

r
) such that

‖f1(sA)f2(tA)‖X→X . ζ(st−1) (s, t > 0).

Up to the usual modifications the same applies to sectorial operators.

Proof. Fix ν ∈ (φ, ψ) and choose exponents αj > 0, j = 1, 2, such that
the bounds |fj(z)| . min{|z|αj , |z|−αj} are satisfied for all z ∈ Sψ. The
most direct estimate on the Cauchy integral gives

‖f1(sA)f2(tA)‖X→X =
∥∥∥∥∥ 1

2πi

∫
∂ Sν

f1(sz)f2(tz)(z − A)−1 dz
∥∥∥∥∥
X→X

.
∫ ∞

0
min{|sz|α1 , |sz|−α1}min{|tz|α2 , |tz|−α2} d |z|

|z|

and by substituting t |z| ↔ u it follows

=
∫ ∞

0
min

{∣∣∣∣st u
∣∣∣∣α1

,
∣∣∣∣st u

∣∣∣∣−α1}
min{|u|α2 , |u|−α2} du

u

=: ζ(st−1).

Integrability of ζ with respect to dr
r

follows by the substitution ru ↔ r

and Tonelli’s theorem:
∫ ∞

0
ζ(r) dr

r
=
(∫ ∞

0
min{|r|α1 , |r|−α1} dr

r

)(∫ ∞
0

min{|u|α2 , |u|−α2} du
u

)

= 4
α1α2

.
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We also need the following concept.

Definition 3.4.5. The normalized conjugate of a non-degenerate function
f ∈ H∞0 (Sφ), 0 < φ < π

2 , is defined by

f \(z) := 1
c±
f ∗(z) = 1

c±
f(z) (z ∈ Sφ ∩ C±),

where c± = ±
∫
R± |f(t)|2 dt

t
. Similarly, if f ∈ H∞0 (S+

φ ), 0 < φ < π, is not
identically zero, then its normalized conjugate is

f \(z) := 1
c
f ∗(z) = 1

c
f(z) (z ∈ Sφ),

where c =
∫
R+ |f(t)|2 dt

t
.

Remark 3.4.6. Let f ∈ H∞0 (Sφ), 0 < φ < π
2 , be non-degenerate. By

construction its normalized conjugate belongs to H∞0 (Sφ) and satisfies∫
R± f

\(t)f(t) dt
t

= ±1. Similarly, if f ∈ H∞0 (S+
φ ), 0 < φ < π, is not

identically zero, then
∫
R+ f \(t)f(t) dt

t
= 1.

Now, we can come up with the promised ‘for some/for all result’.

Proposition 3.4.7. Let A be a densely defined bisectorial operator of
angle φ ∈ [0, π2 ) in a Banach space X . If f, g ∈ H∞0 [Sφ] are any two
regularly decaying holomorphic functions and if g is non-degenerate, then

∫ ∞
0
‖f(tA)x‖2 dt

t
.
∫ ∞

0
‖g(tA)x‖2 dt

t
(x ∈ R(A)).

In the sectorial case the conclusion holds for all non-zero regularly decaying
holomorphic functions in the functional calculus for A.

Proof. Choose ψ ∈ (φ, π2 ) such that f, g ∈ H∞0 (Sψ). Then g\g ∈ H∞0 (Sψ)
and by construction

∫
R±(g\g)(t) dt

t
= ±1. Now, fix x ∈ R(A). The-

orem 3.3.9 yields the identity
∫∞

0 (gg\)(tA)x dt
t

= x in the sense of an
inproper Riemann integral. Hence,

∫ ∞
0
‖f(sA)x‖2 ds

s
≤
∫ ∞

0

(∫ ∞
0
‖f(sA)g\(tA)g(tA)x‖ dt

t

)2 ds
s
.
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Lemma 3.4.4 provides a positive function ζ ∈ L1(0,∞; dr
r

) such that

.
∫ ∞

0

(∫ ∞
0

ζ
(s
t

)
‖g(tA)x‖ dt

t

)2 ds
s

and the Cauchy-Schwarz inequality bounds the right-hand side by

≤
∫ ∞

0

(∫ ∞
0

ζ
(s
t

) dt
t

)(∫ ∞
0

ζ
(s
t

)
‖g(tA)x‖2 dt

t

)
ds
s
.

A straightforward calculation invoking the substitution rule and Tonelli’s
theorem reveals

=
(∫ ∞

0
ζ(r) dr

r

)2(∫ ∞
0
‖g(tA)x‖2 dt

t

)

and the conclusion follows.

Corollary 3.4.8. Let A be a densely defined bisectorial operator of angle
φ ∈ [0, π2 ) in a Banach space X . If A satisfies quadratic estimates for
some non-degenerate function f ∈ H∞0 [Sφ], then∫ ∞

0
‖f(tA)x‖2 dt

t
. ‖x‖2 (x ∈ R(A))

holds for all f ∈ H∞0 [Sφ] and the reverse estimate & holds for all non-
degenerate such f .
In the sectorial case quadratic estimates for some non-zero regularly de-

caying holomorphic function imply quadratic estimates for all such func-
tions.

Corollary 3.4.9 (Schur’s estimate). Let A be a densely defined bisectorial
operator of angle φ ∈ [0, π2 ) in a Banach space X . If {Ts} ⊆ L(X ) is a
family of operators for which there exists ζ ∈ L1(0,∞; dr

r
) and C > 0 such

that

‖TstA(1 + t2A2)−1‖X→X ≤ Cζ(st−1) (s, t > 0),

then∫ ∞
0
‖Tsx‖2 ds

s
≤ 4C

π2 ‖ζ‖
2
L1(0,∞; dr

r
)

∫ ∞
0
‖t sgn(A)A(1 + t2A2)−1x‖2 dt

t

for all x ∈ R(A).
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Proof. Put g = 2 sgn(z)z
π(1+z2) , so that g ∈ H∞0 [Sφ] is non-degenerate and sat-

isfies g\ = g. The conclusion follows literally as in the proof of Proposi-
tion 3.4.7 upon replacing f(sA) with Ts.

On reflexive Banach spaces upper quadratic estimates imply lower qua-
dratic estimates for the adjoint. This is a highly valuable result whenever
one tries to prove quadratic estimates for a subclass of (bi)sectorial op-
erators that is invariant under taking adjoints, e.g., operators associated
with sectorial sesquilinear forms on Hilbert spaces.

Lemma 3.4.10. Let A be a bisectorial operator of angle φ ∈ [0, π2 ) in a
reflexive Banach space X . If for every non-degenerate f ∈ H∞0 [Sφ] there
are upper quadratic estimates

∫ ∞
0
‖f(tA)x‖2 dt

t
. ‖x‖2 (x ∈ R(A)),

then for every such such f there are lower quadratic estimates

‖x∗‖2 .
∫ ∞

0
‖f(tA∗)x∗‖2 dt

t
(x∗ ∈ R(A∗)).

In particular, if both A and A∗ satisfy upper quadratic estimates for every
non-degenerate f ∈ H∞0 [Sφ], then they already satisfy quadratic estimates
for all such f .
Up to the usual modifications the same applies to sectorial operators.

Proof. From Proposition 3.2.2(iv) and the part of Section 3.2.2 on ad-
joints we recall the following facts: The operator A has dense domain, it
induces a topological decomposition X = N (A) ⊕ R(A), and its adjoint
A∗ is densely defined and bisectorial of angle φ in X ∗.
In the following 〈· | ·〉 denotes the dual pairing between X ∗ and X . To

prove the lower bound for A∗ take a non-degenerate f ∈ H∞0 [Sφ] and let f \
be its normalized conjugate. Due to Theorem 3.3.9 for every x ∈ X and
every x∗ ∈ R(A∗) it holds in the sense of an inproper Riemann integral
that

|〈x∗ | x〉|2 =
∣∣∣∣∣
∫ ∞

0
〈f \(tA∗)f(tA∗)x∗ | x〉 dt

t

∣∣∣∣∣
2

.
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The identity (f \)∗(tA)∗ = f \(tA∗), t > 0, provided by Proposition 3.2.18
allows to proceed as follows

=
∣∣∣∣∣
∫ ∞

0
〈f(tA∗)x∗ | (f \)∗(tA)x〉 dt

t

∣∣∣∣∣
2

≤
(∫ ∞

0
‖f(tA∗)x∗‖2 dt

t

)(∫ ∞
0
‖(f \)∗(tA)x‖2 dt

t

)
.

Decompose x = xN +xR according to X = N (A)⊕R(A). As (f \)∗(0) = 0,
Example 3.2.16 gives (f \)∗(tA)x = (f \)∗(tA)xR for every t > 0. Conse-
quently,

=
(∫ ∞

0
‖f(tA∗)x∗‖2 dt

t

)(∫ ∞
0
‖(f \)∗(tA)xR‖2 dt

t

)

and investing the upper estimate for A and the continuity of the projection
X → R(A),

.

(∫ ∞
0
‖f(tA∗)x∗‖2 dt

t

)
‖x‖2.

Passing to the supremum over all x ∈ X with norm 1 yields the required
lower estimate.
For the second part simply note that upon identifying X and X ∗∗ by

reflexivity, A is the adjoint of A∗ [73, Sec. A.4]. Hence, by interchang-
ing the roles of A and A∗, upper quadratic estimates for A∗ imply lower
quadratic estimates for A.

The following theorem builds the bridge between quadratic estimates
and the boundedness of the H∞-calculus.

Theorem 3.4.11. Let A be a densely defined bisectorial operator of angle
φ ∈ [0, π2 ) in a Banach space X . Consider the following statements:

(i) The operator A satisfies quadratic estimates for some non-degene-
rate f ∈ H∞0 [Sφ].

(ii) The operator A satisfies quadratic estimates for all non-degenerate
f ∈ H∞0 [Sφ].
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(iii) For every ψ ∈ (φ, π2 ) the H∞(Sψ)-calculus for A is bounded on R(A).

Then (i) ⇔ (ii) ⇒ (iii) and the implication (iii) ⇒ (i) holds at least if
X is a Hilbert space. Upon replacing bisectors by sectors, the same result
applies to sectorial operators.

For the proof we need one more lemma.

Lemma 3.4.12 (Unconditionality lemma). Let 0 < φ < ψ < π
2 and

f ∈ H∞0 (Sψ). There exists a constant C > 0 such that the following holds.
If A is a bisectorial operator of angle φ with dense domain and dense range
in a Banach space X such that the H∞(Sψ)-calculus for A is bounded with
bound Cψ, then ∥∥∥∥∑

k∈Z
akf(t2kA)

∥∥∥∥
X→X

≤ CCψ‖a‖`∞

for all t > 0 and all sequences {ak}k∈Z with only finitely many non-zero
elements. Upon replacing bisectors by sectors, the same applies to sectorial
operators.

Proof. Choose C > 0 and s > 0 such that |f(z)| ≤ C min{|z|s , |z|−s}
holds for all z ∈ Sψ and fix t > 0. For each z ∈ Sψ let k(z) be the
unique integer satisfying 1 ≤ |2k(z)z| < 2. The rest is by straightforward
estimating ∥∥∥∥∑

k∈Z
akf(t2kA)

∥∥∥∥
X→X

=
∥∥∥∥(∑

k∈Z
akf(t2kz)

)
(A)

∥∥∥∥
X→X

≤ Cψ

∥∥∥∥∑
k∈Z

akf(t2kz)
∥∥∥∥
∞,Sψ

≤ Cψ‖a‖`∞ sup
z∈Sψ

∑
k∈Z
|f(2kz)|

and using that by an index shift

sup
z∈Sψ

∑
k∈Z
|f(2kz)| ≤ C sup

z∈Sψ

∑
k∈Z

min{|2kz|s, |2kz|−s}

= C sup
z∈Sψ

∑
k∈Z

min{|2k+k(z)z|s, |2k+k(z)z|−s}

≤ C
(∑
k≥0

2−ks +
∑
k<0

2s2ks
)

= C
2s + 1
2s − 1 .
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3.4 Quadratic estimates

Proof of Theorem 3.4.11. Without loss of generality we can assume
that A has dense domain and dense range – otherwise we can replace A
with its injective part A|R(A) and X with R(A), see Example 3.2.16 and
Definition 3.3.13.
The equivalence (i)⇔ (ii) is one of the statements of Corollary 3.4.8.
In order to prove (ii) ⇒ (iii) fix an angle ψ ∈ (φ, π2 ) and take a non-

degenerate f ∈ H∞0 (Sψ). By assumption, A satisfies quadratic estimates
for f . We appeal to Corollary 3.3.6 and establish a uniform bound for the
H∞0 (Sψ)-calculus for A. To this end let g ∈ H∞0 (Sψ) be arbitrary. Perform
the same steps as in the proof of Lemma 3.4.4, but bound g simply by its
supremum norm on Sψ in the very first estimate to find

‖f(sA)g(A)f \(tA)‖X→X . ‖g‖∞,Sψζ(st−1) (s, t > 0)(3.16)

for some ζ ∈ L1(0,∞; dr
r

) and an implicit constant not depending on g.
By assumption

‖g(A)x‖2 .
∫ ∞

0
‖f(sA)g(A)x‖2 ds

s

holds for every x ∈ X . Theorem 3.3.9 yields
∫∞

0 f \(tA)f(tA)x dt
t

= x in
the sense of an inproper Riemann integral, so that invoking (3.16),

≤
∫ ∞

0

(∫ ∞
0
‖f(sA)g(A)f \(tA)f(tA)x‖ dt

t

)2 ds
s

. ‖g‖2
∞,Sψ

∫ ∞
0

(∫ ∞
0

ζ(st−1)‖f(tA)x‖ dt
t

)2 ds
s
.

Now, the usual Cauchy-Schwarz-Tonelli argument from, e.g., the proof of
Proposition 3.4.7 pays for the upper bound

. ‖g‖2
∞,Sψ

∫ ∞
0
‖f(tA)x‖2 dt

t

and once again by quadratic estimates for A, ‖g(A)x‖2 . ‖g‖2
∞,Sψ‖x‖

2

with an implicit constant independent of x and g. This concludes the
proof of the implication (ii)⇒ (iii).
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3 Functional calculus for bisectorial and sectorial operators

Now, assume (iii) and that X is a Hilbert space. Let ψ ∈ (φ, π2 ). Fix
any f ∈ H∞0 (Sψ) and for the moment also fix N ∈ N. For every x ∈ X
and every t > 0 split

∫ 2N

2−N
‖f(tA)x‖2 dt

t
=

N−1∑
k=−N

∫ 2k+1

2k
‖f(tA)x‖2 dt

t

=
N−1∑
k=−N

∫ 2

1
‖f(t2kA)x‖2 dt

t
.

Let {ek}k∈Z := { 1√
π
eikz}k∈Z be the standard orthonormal basis of L2(0, π).

Employing the orthogonality relation of the ek and the unconditionality
lemma (Lemma 3.4.12),

N−1∑
k=−N

‖f(t2kA)x‖2 =
∫ π

0

∥∥∥∥ N−1∑
k=−N

ek(s)f(t2kA)x
∥∥∥∥2

ds

.
∫ π

0
‖{ek(s)}k∈Z‖2

`∞‖x‖2 ds = ‖x‖2

with an implicit constant independent of N . Concatenating the previous
two estimates and letting N tend to∞ gives the upper quadratic estimate

∫ ∞
0
‖f(tA)x‖2 dt

t
. ‖x‖2 (x ∈ X ).(3.17)

Thanks to Proposition 3.3.8 the H∞(Sψ)-calculus for A∗ is bounded as
well. Thus, for every f ∈ H∞0 (Sψ) the upper estimate (3.17) with A∗

in place of A can be deduced by the same argument as above and the
conclusion follows from Lemma 3.4.10.

Remark 3.4.13. The implication (iii)⇒ (i) in Theorem 3.4.11 is limited
to Hilbert spaces. Still, the much more involved characterizations of op-
erators with a bounded H∞-calculus on general Banach spaces obtained,
e.g., by Kunstmann and Weis [100] heavily rely on the unconditionality
lemma.

For a later use we state the following quantitative extension of Theo-
rem 3.4.11 in the case of the standard non-degenerate function z(1+z2)−1,
which follows by tracking constants in the proof of (ii)⇒ (iii).
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3.4 Quadratic estimates

Corollary 3.4.14 (Explicit bounds for the H∞-calculus). Let A be a
densely defined bisectorial operator of angle φ ∈ [0, π2 ) in a Banach space
X and suppose there are constants c1, c2 > 0 such that

c1‖x‖2 ≤
∫ ∞

0
‖tA(1 + t2A2)−1‖2 dt

t
≤ c2‖x‖2 (x ∈ R(A)).

Then for each ψ ∈ (φ, π2 ) there exists a constant Cψ depending only on ψ
such that the H∞(Sψ)-calculus for A is bounded on R(A) with bound

Cψ
√
c2√
c1

sup
z∈Sψ
‖z(z − A)−1‖X→X .

Even on separable Hilbert spaces there exist (bi)sectorial operators of
angle 0 that do not have a bounded H∞-calculus of any angle on the closure
of their range [73, Sec. 9.1]. We close this section with a simple proof of
the well-known result that for a self-adjoint operator on a Hilbert space
the H∞-calculus of any angle is bounded. For further positive results the
reader can refer to [73, Ch. 7].
Example 3.4.15. Let A be a self-adjoint operator in a Hilbert space H.
Then A is bisectorial of angle 0 and satisfies quadratic ‘estimates’∫ ∞

0
‖tA(1 + t2A2)−1u‖2 dt

t
= 1

2‖u‖
2 (u ∈ R(A)).

Proof. By classical Hilbert space theory, e.g., [73, Prop. C.4.2], the spec-
trum of A is a subset of R and on C \ R there are resolvent bounds

‖(z − A)−1‖H→H ≤
1
|Im z|

= 1
|z| |sin(arg z)| (z ∈ C \ R),

showing that A is bisectorial of angle 0. Now, put f := z(1 + z2)−1 and
let u ∈ R(A). Owing to Theorem 3.3.9 and Example 3.3.12 the equality∫∞

0 f 2(tA)u dt
t

= 1
2u holds in the sense of an inproper Riemann integral.

Thus,
1
2‖u‖

2 =
( ∫ ∞

0
f 2(tA)u dt

t

∣∣∣∣ u) =
∫ ∞

0
(f(tA)f(tA)u | u) dt

t

and since f(tA)∗ = f(tA∗) = f(tA) by Proposition 3.2.18 and self-adjoint-
ness,

=
∫ ∞

0
(f(tA)u | f(tA)u) dt

t
=
∫ ∞

0
‖f(tA)u‖2 dt

t

as required.
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CHAPTER 4

Perturbed Dirac type operators on Ahlfors regular sets

As outlined in the preface, the first step toward the resolution of the Lions
problem is a reduction theorem in the fashion of McIntosh [118] elimi-
nating all issues arising from non-smooth coefficients in one fell swoop. In
the present chapter we will achieve this intermediate goal.
Staying a little more general, we consider a coupled second-order m×m

elliptic system

Au = −
d∑

i,j=1
∂i(µi,j∂ju)

in divergence-form with bounded Cm×m-valued coefficients µi,j on a do-
main Ω ⊆ Rd. As usual, A is interpreted as a maximal accretive opera-
tor in L2(Ω) via a sesquilinear form defined on some closed subset V of
W1,2(Ω) that contains W1,2

0 (Ω) and satisfies a certain localization property.
Of course, the case V = W1,2

D (Ω) is included in these considerations. Un-
der very mild assumptions on Ω and V made precise below, we show that
the resolution of the Kato square root problem for such systems can be
deduced from a regularity result for the fractional powers of the negative
Laplacian in the same geometric setting.
The operator theoretic fundament is the ΠB-type Theorem 4.1.11, which

is in the fashion of Axelsson-Keith-McIntosh [29, 30]. Of course, we
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4 Perturbed Dirac type operators on Ahlfors regular sets

will recall the essentials of Axelsson, Keith, and McIntosh’s operator
framework beforehand. The proof of the ΠB-theorem will then occupy
most of this chapter. Our argument builds upon the techniques being
introduced in [30] as did many other square root type results, e.g., [29,31,
32, 124] before, but as a novelty it allows the presence of a non-smooth
boundary. Finally, in Section 4.3 we will obtain the alluded reduction
theorem as a special instance of the ΠB-theorem. Throughout this chapter
we assume the following setup. Starting from now, we fix the codimension
m ≥ 1, that is, the number of equations in a system Au = f .

Assumption 4.0.1.

(Ω) The domain Ω ⊆ Rd, d ≥ 2, is a d-set.

(∂ Ω) The boundary ∂ Ω is a (d− 1)-set.

(V) The form domain V is a closed subspace of W1,2(Ω)m that contains
W1,2

0 (Ω)m and is stable under multiplication by smooth scalar func-
tions, that is,

ϕV ⊆ V (ϕ ∈ C∞c (Rd;C)).

Moreover, V has the W1,2-extension property, that is, there exists a
bounded extension operator E : V →W1,2(Rd)m.

(α) For some α ∈ (0, 1) the complex interpolation space [L2(Ω)m,V ]α
coincides with the Bessel potential space Hα,2(Ω)m up to equivalent
norms.

Some comments on these assumptions are in order.

Remark 4.0.2. In the field of partial differential equations Assump-
tion (Ω) also runs under d-Ahlfors condition or measure density condi-
tion [74] and Assumption (∂ Ω) is also known as Ahlfors-David condition.

Remark 4.0.3. Applications we have in mind are of course mixed Dirich-
let/Neumann boundary conditions, that is, V = W1,2

D (Ω)m for a closed
subset D of ∂ Ω. For this choice the W1,2-extension property has exhaus-
tively been discussed in Section 2.2.
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Remark 4.0.4. Assumption (α) should be considered as a geometric one.
A common way to force its validity is to assume that Ω is a W1,2-extension
domain and that[

L2(Ω)m,W1,2
0 (Ω)m

]
α

=
[
L2(Ω)m,W1,2(Ω)m

]
α

(Mc)

holds up to equivalent norms. Indeed, due to Lemma 1.1.13, Theo-
rem 1.3.20(iv), and Remark 1.3.21 the right-hand side then coincides with
Hα,2(Ω)m so that Assumption (α) is a direct consequence of the inclusions
W1,2

0 (Ω)m ⊆ V ⊆W1,2(Ω)m.
Condition (Mc) has been introduced in this context byMcIntosh [118].

Among the W1,2-extension domains satisfying (∂ Ω) andMcIntosh’s con-
dition for all α ∈ (0, 1

2) are the whole space Rd [142, Sec. 2.4.1], the
upper half space Rd

+ [142, Sec. 2.10] from which the result for special Lip-
schitz domains can be deduced, as well as bounded Lipschitz domains [68,
Thm. 3.1], [142, Sec. 4.3.1]. By Proposition 2.2.11 every W1,2-extension
domain satisfies (Ω), so that Assumption 4.0.1 reduces to the stability
assumption on V in this case.
However, configurations in which Ω is not a Sobolev extension domain

though (Ω), (∂ Ω), (V), and Assumption (α) are satisfied, naturally occur
in the treatment of mixed boundary value problems and will in fact be
the main subject of Chapter 5.

Concerning the coefficients of the operator Au = −∑d
i,j=1 ∂i(µi,j∂ju) we

make the following standard ellipticity assumption.

Assumption 4.0.5. We assume µi,j ∈ L∞(Ω;L(Cm)) for 1 ≤ i, j ≤ d

and that the associated sesquilinear form

a : V × V → C, a(u, v) =
d∑

i,j=1

∫
Ω
µi,j∂ju · ∂iv

is elliptic in the sense that for some λ > 0 it satisfies the Gårding inequal-
ity

Re a(u, u) ≥ λ‖∇u‖2
L2(Ω)dm (u ∈ V).(4.1)

We define the divergence-form operator −∑d
i,j=1 ∂i(µi,j∂ju) properly by

means of Kato’s form method [91]. Since V is dense in L2(Ω)m and a
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4 Perturbed Dirac type operators on Ahlfors regular sets

is elliptic, classical form theory [91, Ch. VI] yields that the associated
operator A in L2(Ω)m given by

a(u, v) = (Au | v)L2(Ω)m (u ∈ D(A), v ∈ V)

on

D(A) :=
{
u ∈ V : a(u, ·) boundedly extends to L2(Ω)m

}
is maximal accretive, that is, closed and for z in the open left complex
halfplane z − A is invertible with operator norm

‖(z − A)−1‖L2(Ω)m→L2(Ω)m ≤
1

|Re(z)| (Re z < 0).

In particular, A is sectorial of angle π
2 . This allows to define fractional

powers (ε + A)α for all α, ε ≥ 0 by means of the functional calculus for
sectorial operators, see Section 3.2.4. The so-defined square root

√
A of A

can also be characterized as the unique maximal accretive operator such
that

√
A
√
A = A holds in the sense of unbounded operators, see [91,

Thm. V.3.35] and [73, Cor. 7.1.13]. Finally, the choice µi,j = δi,j IdCm×m ,
where δ is Kronecker’s delta, yields the negative of the (coordinatewise)
weak Laplacian ∆V with form domain V .

4.1 Quadratic estimates for perturbed Dirac
type operators

In their seminal 2006 paper [30], Axelsson, Keith, andMcIntosh have
introduced an operator theoretic framework of so-called perturbed Dirac
type operators that allows to unify some of the most distinguished prob-
lems of harmonic analysis, amongst which are the Kato square root prob-
lem and the Cauchy integral on Lipschitz curves.
It all begins with a triple {Γ, B1, B2} of operators in a complex Hilbert

space H satisfying the following three hypotheses.

(H1) The operator Γ is nilpotent, that is, closed, densely defined, and
satisfies R(Γ) ⊆ N (Γ). In particular Γ2 = 0 on D(Γ).
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4.1 Quadratic estimates for perturbed Dirac type operators

(H2) The operators B1 and B2 are defined on the whole of H. There exist
κ1, κ2 > 0 such that they satisfy the accretivity conditions

Re(B1u | u)H ≥ κ1‖u‖2
H (u ∈ R(Γ∗)),

Re(B2u | u)H ≥ κ2‖u‖2
H (u ∈ R(Γ))

and there exist K1, K2 such that they satisfy the boundedness con-
ditions

‖B1u‖H ≤ K1‖u‖H and ‖B2u‖H ≤ K2‖u‖H (u ∈ H).

(H3) The operator B2B1 maps R(Γ∗) into N (Γ∗) and the operator B1B2
maps R(Γ) into N (Γ). In particular, Γ∗B2B1Γ∗ = 0 on D(Γ∗) and
ΓB1B2Γ = 0 on D(Γ).

For every nilpotent operator Γ the triple {Γ, Id, Id} satisfies the hypothe-
ses above. The operator theoretic framework arising from this choice is
called unperturbed and the operators B1 and B2 are called perturbations.
If Γ is nilpotent, then Γ∗ is closed, densely defined, and from

(Γ∗u | Γv)H = (u | Γ2v) = 0 (u ∈ D(Γ∗), v ∈ D(Γ))

we can infer R(Γ∗) ⊆ N (Γ∗). Hence, Γ∗ is again nilpotent and the follow-
ing symmetry is immediate.

Lemma 4.1.1. If {Γ, B1, B2} satisfies any of (H1) - (H3), then the triples
{Γ∗, B2, B1}, {Γ∗, B∗2 , B∗1}, and {Γ, B∗1 , B∗2} satisfy the same hypothesis for
the same choices of constants in (H2).

The main actors in this section are the following composite operators.

Definition 4.1.2. Let Γ∗B := B1Γ∗B2, Π := Γ + Γ∗, and ΠB := Γ + Γ∗B.
The operator Π is called Dirac type operator and ΠB is called perturbed
Dirac type operator .

First properties of these operators are listed below.

Lemma 4.1.3 ([30, Lem. 4.1]). The operator Γ∗B is nilpotent.
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4 Perturbed Dirac type operators on Ahlfors regular sets

Proposition 4.1.4 ([30, Prop. 2.2]). The operator ΠB induces the alge-
braic and topological Hodge decomposition

H = N (ΠB)⊕R(Γ∗B)⊕R(Γ)(4.2)

and in particular

N (ΠB) = N (Γ∗B) ∩N (Γ) and R(ΠB) = R(Γ∗B)⊕R(Γ)(4.3)

topologically.

Proposition 4.1.5 ([30, Prop. 2.5]). The perturbed Dirac type operator
ΠB is bisectorial of some angle ω ∈ (0, π2 ).

Proposition 4.1.6 ([30, Cor. 4.3]). The unperturbed operator Π is self-
adjoint.

Since ΠB = Γ+Γ∗B is bisectorial, we can introduce the following families
of auxiliary operators.

Definition 4.1.7. For each t ∈ R \ {0} define the following operators.

RB
t := (1 + itΠB)−1

PB
t := (1 + t2Π2

B)−1 = 1
2(RB

t +RB
−t) = RB

t R
B
−t

QB
t = tΠBP

B
t = 1

2i(R
B
−t −RB

t )

ΘB
t := tΓ∗BPB

t .

In the unperturbed case B1 = B2 = Id, we simply write Rt, Pt, Qt, and
Θt.

Lemma 4.1.8. The families {RB
t }t∈R\{0}, {PB

t }t∈R\{0}, {QB
t }t∈R\{0}, and

{ΘB
t }t∈R\{0} are uniformly bounded in L(H).

Proof. Bisectoriality of ΠB gives all claims except the one for ΘB
t . Here,

we use that due to (4.3) the operator norm of ΘB
t is controlled by that of

QB
t .

The framework traced out by (H1) - (H3) is already strong enough to
supply certain quadratic estimates.
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4.1 Quadratic estimates for perturbed Dirac type operators

Proposition 4.1.9 ([30, Prop. 4.8]). Let {Γ, B1, B2} satisfy hypotheses
(H1)-(H3). Then

∫ ∞
0
‖ΘB

t (1− Pt)u‖2
H

dt
t
. ‖u‖2

H (u ∈ R(Γ)).

Moreover, a sufficient condition for the quadratic estimate
∫ ∞

0
‖tΠB(1 + t2Π2

B)−1u‖2
H

dt
t
' ‖u‖2

H (u ∈ R(ΠB))

is that ∫ ∞
0
‖ΘB

t Ptu‖2
H

dt
t
. ‖u‖2

H (u ∈ R(Γ))

and the three analogous estimates obtained by replacing {Γ, B1, B2} with
{Γ∗, B2, B1}, {Γ∗, B∗2 , B∗1}, and {Γ, B∗1 , B∗2} hold.

Let us remark that all explicit and implicit estimates adopted from [30]
in this section are quantitative, by which we mean that occurring constants
only depend on κ1, κ2, K1, and K2 fixed in the premise of (H2). This fact
is already hidden at the beginning of [30, Sec. 2] and has been reworked
in greatest details in the master’s thesis of Tolksdorf [141, Ch. 3]. It
concerns the norms of the projections implicit in Proposition 4.1.4, the
angle of bisectoriality in Proposition 4.1.5, the bounds in Lemma 4.1.8,
and the implicit constants in Proposition 4.1.9. The resolvents bounds
implicit in Proposition 4.1.5 in addition depend of course on the respective
opening angles of relevant (bi)sectors.
Starting from now, we assume H = L2(Ω)km for some k ∈ N and that

Ω and V satisfy Assumption 4.0.1. For brevity we put N = mk. Similar
to previous work by Axelsson-Keith-McIntosh [29,30], Morris [124]
or Bandara [31, 32] the set of hypotheses (H1) - (H3) is completed by
localization and coercivity assumptions on the unperturbed operators and
the perturbations in order to obtain quadratic estimates for the perturbed
operator ΠB. The slight difference between our hypotheses (H7) and the
corresponding hypothesis in [29] stresses that no further knowledge on the
occurring interpolation spaces between H and V is necessary.

(H4) The operators B1 and B2 are multiplication operators induced by
L∞(Ω;L(CN))-functions.
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4 Perturbed Dirac type operators on Ahlfors regular sets

(H5) For every ϕ ∈ C∞c (Rd;C) the associated multiplication operator Mϕ

maps D(Γ) into itself and the commutator

[Γ,Mϕ] = ΓMϕ −MϕΓ defined on D([Γ,Mϕ]) = D(Γ)

acts as a multiplication operator induced by some matrix-valued
function cϕ ∈ L∞(Ω;L(CN)) with entries

|ci,jϕ (x)| . |∇ϕ(x)| (x ∈ Ω, 1 ≤ i, j ≤ N)

for an implicit constant independent of ϕ.

(H6) For every open ball B centered in Ω, and for all u ∈ D(Γ) and
v ∈ D(Γ∗) with compact support in B ∩ Ω it holds∣∣∣∣∣

∫
Ω

Γu
∣∣∣∣∣ . |B| 12‖u‖H and

∣∣∣∣∣
∫

Ω
Γ∗v

∣∣∣∣∣ . |B| 12‖v‖H.
(H7) There exist β1, β2 ∈ (0, 1] such that the pseudo fractional powers of

Π satisfy

‖u‖[H,Vk]β1
. ‖(Π2)β1/2u‖H and ‖v‖[H,Vk]β2

. ‖(Π2)β2/2v‖H

for all u ∈ R(Γ∗) ∩ D(Π2) and all v ∈ R(Γ) ∩ D(Π2).

The additional hypotheses (H4) - (H7) also obey the symmetries from
Lemma 4.1.1:

Lemma 4.1.10. If the triple of operators {Γ, B1, B2} satisfies any of (H4)
- (H7), then the triples {Γ∗, B2, B1} , {Γ∗, B∗2 , B∗1}, and {Γ, B∗1 , B∗2} satisfy
the same hypothesis and up to permutation the implicit constants are the
same.

Proof. All claims are obvious except for (H5) under the replacement of
Γ by Γ∗. Here, take ϕ ∈ C∞c (Rd;C) and note that for u ∈ D(Γ) and
v ∈ D(Γ∗) the identity

(Γu | ϕv)H = (ΓMϕu | v)H − ([Γ,Mϕ]u | v)H = (u |MϕΓ∗v − c∗ϕv)H

holds. Hence, ϕD(Γ∗) ⊆ D(Γ∗) and [Γ∗,Mϕ] acts as the multiplication
operator induced by −c∗ϕ.
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4.2 Proof of Theorem 4.1.11

The ultimate goal in this chapter is to establish the following ΠB-type
theorem on quadratic estimates for perturbed Dirac type operators. The
importance of the additional information on the implicit constants will
only become clear later on in Chapter 6.

Theorem 4.1.11. Suppose Ω and V satisfy Assumption 4.0.1 and let
k ∈ N. In the Hilbert space H = L2(Ω)mk consider a triple of operators
{Γ, B1, B2} satisfying hypotheses (H1) - (H7). Then the perturbed Dirac
type operator ΠB is bisectorial of some angle ω ∈ (0, π2 ) and satisfies
quadratic estimates

∫ ∞
0
‖tΠB(1 + t2Π2

B)−1u‖2
H

dt
t
' ‖u‖2

H (u ∈ R(ΠB)).

The angle ω and the implicit constants above depend on B1 and B2 only
through the constants quantified in (H2).

Corollary 4.1.12. Suppose the setup of Theorem 4.1.11. Then for every
0 < ψ < ω the operator ΠB has a bounded H∞(Sψ)-calculus on R(ΠB) with
a bound that depends on B1 and B2 only through the constants quantified
in (H2)

Proof. This a a direct consequence of Corollary 3.4.14, taking into ac-
count that implicit constants in the resolvent bounds for ΠB depend only
on the constants quantified in (H2), see the paragraph below Proposi-
tion 4.1.9.

Corollary 4.1.13. In the setup of Theorem 4.1.11 the domains D(ΠB),
D([ΠB]), and D(

√
Π2
B) coincide and their graph norms are equivalent.

Proof. The equality [ΠB] =
√

Π2
B is due to the composition rule, Theo-

rem 3.2.20 and the rest follows from the abstract Kato square root prob-
lem, Proposition 3.3.15.

4.2 Proof of Theorem 4.1.11
Throughout we assume that Γ, B1, and B2 are operators in H satisfying
(H1) - (H7). We put N = km so that H = L2(Ω)N . We shall stick to the
notions introduced in Section 4.1 but simply write ‖ · ‖ instead of ‖ · ‖H as
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4 Perturbed Dirac type operators on Ahlfors regular sets

long as no misunderstandings are expected. We shall repeatedly use the
discussed properties of the operators introduced in Section 4.1 without
further referencing. In order to get the correct dependence of implicit
constants, we make the following

Agreement 4.2.1. Throughout the proof, the symbols ., &, and ' are
reserved for estimates invoking implicit constants that depend on B1 and
B2 only through the constants quantified in (H2).

Recall from the paragraph below Proposition 4.1.9 that this temporal
redefinition of symbols does not effect the estimates from Section 4.1. The
story of proof of Theorem 4.1.11 is told in six subsections.

4.2.1 Reduction to finite time
Thanks to Proposition 4.1.9 it suffices to prove the one-sided estimate

∫ ∞
0
‖ΘB

t Ptu‖2 dt
t
. ‖u‖2 (u ∈ R(Γ))(4.4)

and the three analogous estimates obtained by replacing {Γ, B1, B2} with
{Γ∗, B2, B1}, {Γ∗, B∗2 , B∗1}, and {Γ, B∗1 , B∗2}. In fact, thanks to Lem-
mas 4.1.1 and 4.1.10 it suffices to establish (4.4) only. We can immediately
show that the integral over t ≥ 1 is tame.

Lemma 4.2.2 (Reduction to finite time). It holds
∫ ∞

1
‖ΘB

t Ptu‖2 dt
t
. ‖u‖2 (u ∈ R(Γ)).

Proof. Let u = Γw ∈ R(Γ). By nilpotence of Γ and Γ∗ we check

Ptu = (1 + t2Π2)−1Γ(1 + t2Π2)(1 + t2Π2)−1w

= Γ(1 + t2Π2)−1w = ΓPtw (t ∈ R \ {0}).
(4.5)

Hence, the second part of (H7) applies to v = Ptu. In combination with
Lemma 4.1.8 and the continuous inclusion [H,Vk]β2 ⊆ H + Vk = H this
leads to∫ ∞

1
‖ΘB

t Ptu‖2 dt
t
.
∫ ∞

1
‖Ptu‖2

[H,Vk]β2

dt
t
.
∫ ∞

1
‖(t2Π2)β2/2Ptu‖2 dt

t
.
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4.2 Proof of Theorem 4.1.11

The unperturbed counterpart of Proposition 4.1.4 gives R(Γ) ⊆ R(Π)
and so quadratic estimates with f = (z2)β2/2(1 + z)−1 for the self-adjoint
operator Π allows to bound the right-hand side by a multiple of ‖u‖2, see
Example 3.4.15.

4.2.2 Dyadic decomposition
To proceed further, we introduce a slightly modified version of Christ’s
dyadic decomposition for doubling metric measure spaces [40, Thm. 11].
In fact, when aiming only at a truncated dyadic cube structure with a
common bound for the diameter of all dyadic cubes, then Christ’s argu-
ment literally applies to locally doubling metric measure spaces. This has
been previously noticed, e.g., by Morris [124]. Here, a metric measure
space X with metric ρ and positive Borel measure µ is doubling if there
is a constant C > 0 such that

µ({x ∈ X : ρ(x, x0) < 2r}) ≤ Cµ({x ∈ X : ρ(x, x0) < r})

holds for each x0 ∈ X and every r > 0. It is locally doubling if the above
holds for all x0 ∈ X and all r ∈ (0, 1]. Note Assumption 4.0.1(Ω) entails
that Ω equipped with the restricted Euclidean metric and the restricted
Lebesgue measure is locally doubling.

Theorem 4.2.3 ([40, Thm.11], [124, Prop.4.2]). Let Assumption 4.0.1(Ω)
hold. There exists a collection {Qk

α ⊆ Ω : k ∈ N0, α ∈ Ik} of open
sets, where Ik are countable index sets, and constants δ ∈ (0, 1) and
a0, η̂, C1, Ĉ2 > 0 such that:

(1) |Ω \ ⋃α∈Ik Qk
α| = 0 for each k ∈ N0.

(2) If l ≥ k, then for each α ∈ Ik and each β ∈ Il either Ql
β ⊆ Qk

α or
Ql
β ∩Qk

α = ∅.

(3) If l ≤ k, then for each α ∈ Ik there is a unique β ∈ Il such that
Qk
α ⊆ Ql

β.

(4) It holds diam(Qk
α) ≤ C1δ

k for each k ∈ N0 and each α ∈ Ik.

(5) For each Qk
α, k ∈ N0, α ∈ Ik, there exists zkα ∈ Ω such that

B(zkα, a0δ
k) ∩ Ω ⊆ Qk

α.

175



4 Perturbed Dirac type operators on Ahlfors regular sets

(6) If k ∈ N0, α ∈ Ik, and t > 0, then

|{x ∈ Qk
α; d(x,Ω \Qk

α) ≤ tδk}| ≤ Ĉ2t
η̂|Qk

α|.

By a slight abuse of notation we refer to the Qk
α as dyadic cubes. We

denote the family of all dyadic cubes by ∆ and each family of fixed step
size δk by ∆δk := {Qk

α : α ∈ Ik}. Moreover, for k ∈ N0 and t ∈ (δk+1, δk]
the family of dyadic cubes of step size t is ∆t := ∆δk . The sidelength of
Q ∈ ∆δk is l(Q) := δk.

Remark 4.2.4.

(i) Assumption 4.0.1(Ω) in combination with (4) and (5) of Theorem
4.2.3 imply |Q| ' l(Q)d for all Q ∈ ∆.

(ii) Since the dyadic cubes are open, for each t ∈ (0, 1] the family ∆t is
countable.

(iii) The first item of Theorem 4.2.3 implies that there exists a nullset
N ⊆ Ω such that for each t ∈ (0, 1] and every x ∈ Ω \N there exists
a unique cube Q ∈ ∆t that contains x.

A substantial drawback of Theorem 4.2.3 is that part (6) gives an esti-
mate for the inner boundary strips of dyadic cubes only near their relative
boundary with respect to Ω. This of course is a relict of the very con-
struction. An appropriate measure theoretic assumption on ∂ Ω allowing
to control the complete boundary strip is (d− 1)-Ahlfors regularity.

Lemma 4.2.5. Under Assumptions (Ω) and (∂ Ω) there exist constants
η, C2 > 0 such that∣∣∣{x ∈ Q; d(x,Rd \Q) ≤ tδk}

∣∣∣ ≤ C2t
η |Q|

for each k ∈ N0, Q ∈ ∆δk , and t > 0.

Proof. Put η := min{1, η̂}, where η̂ is given by Theorem 4.2.3. If t ≥ 1,
then the estimate in question holds with C2 = 1 since the set on the
left-hand side is a subset of Q. If t < 1 split

E : =
{
x ∈ Q; d(x,Rd \Q) ≤ tδk

}
⊆
{
x ∈ Q; d(x,Ω \Q) ≤ tδk

}
∪
{
x ∈ Q; d(x,Rd \ Ω) ≤ tδk

}
.
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4.2 Proof of Theorem 4.1.11

Property (6) of the dyadic decomposition gives a bound for the measure
of the first set on the right-hand side. For the second set Lemma 1.2.31
applies with r0 := C1 as in Theorem 4.2.3, t0 := 1

C1
, and r and t replaced

by C1δ
k and t

C1
, respectively. Altogether,

|E| . Ĉ2t
η̂ |Q|+ tδkd.

The conclusion follows from Remark 4.2.4(i) and since t < 1.

4.2.3 Off-diagonal estimates
The boundedness assertions of Lemma 4.1.8 self-improve to off-diagonal
estimates. These will be a crucial instrument in the following. For the
sake of completeness we include a proof, closely following [30, Prop. 5.2].
Recall that given z ∈ C we write 〈z〉 = 1 + |z|.

Proposition 4.2.6 (Off-diagonal estimates). Let Ut be either of the oper-
ators RB

t , PB
t , QB

t or ΘB
t . Then for every M ∈ N0 there exists a constant

AM > 0 such that

∥∥∥1FUt(1Eu)
∥∥∥ . AM

〈d(E,F )
t

〉−M
‖1Eu‖

holds for all u ∈ H, all t ∈ R \ {0}, and all bounded Borel sets E,F ⊆ Ω.

Proof. The claim forM = 0 is a consequence of the uniform boundedness
of {UB

t }t∈R, see Lemma 4.1.8. In a first step we prove the claim for
Ut = RB

t by induction on M and in a second step we deduce the claim for
the other possible choices by (more or less) algebraic manipulations.

Step 1: Proof for RB
t

Assume the claim for M − 1. Fix u, E, and F as required and put
v := 1Eu. If |t| ≥ d(E,F ), then we can take AM := 2M . In the remaining
case 0 < |t| < d(E,F ) it holds 〈d(E,F )/t〉 ≤ 2 d(E,F )/ |t| and so it is
enough to prove

‖1FRB
t v‖ ≤ AM

( |t|
d(E,F )

)M
‖v‖.(4.6)
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4 Perturbed Dirac type operators on Ahlfors regular sets

Define open sets

Fθ :=
{
x ∈ Rd; d(x, F ) < θ d(E,F )

}
(0 < θ < 1).

Convolve 1F1/4 with a suitable kernel to obtain a smooth function ϕ with
range in [0, 1], identically 1 on F , support in F1/2, and ‖∇ϕ‖∞ ≤ cd

d(E,F )
with cd depending only on the dimension d. Since ϕ is scalar-valued, Mϕ

commutes with the multiplication operators B1 and B2. So, by (H5) and
its counterpart for Γ∗ the commutator relations

[Γ∗B,Mϕ]w = B1[Γ∗,Mϕ]B2w (w ∈ D(Γ∗B)(4.7)

and

[Mϕ, R
B
t ] = RB

t [1 + itΠB,Mϕ]RB
t = itRB

t [Γ + Γ∗B,Mϕ]RB
t

= itRB
t

(
[Γ,Mϕ] +B1[Γ∗,Mϕ]B2

)
RB
t

follow. Observe also that supp(ϕ) ⊆ F1/2 ⊆ Rd \E and ϕ = 1 on F imply

|1FRB
t v| ≤ |MϕR

B
t v| = |[Mϕ, R

B
t ]v| (a.e. on Ω).

Whence,

‖1FRt
Bv‖ ≤ ‖[Mϕ, R

B
t ]v‖

. |t|
(
‖[Γ,Mϕ]RB

t v‖+ ‖B1[Γ∗,Mϕ]B2R
B
t v‖

)
.

Hypothesis (H5), its adjoint counterpart, and the inductive assumption
yield

.
|t|

d(E,F )‖1F1/2∩ΩR
B
t v‖

≤ AM−1
|t|

d(E,F )

( |t|
d(E,F1/2 ∩ Ω)

)M−1
‖v‖.

This establishes (4.6) and thus completes the inductive step due to

d(E,F1/2 ∩ Ω) ≥ d(E,F1/2) ≥ 1
2 d(E,F ).
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4.2 Proof of Theorem 4.1.11

Step 2: Proof for the other operators

Let M ∈ N. The claims for PB
t and QB

t follow immediately, for these op-
erators are linear combinations of RB

t and RB
−t, see Lemma 4.1.8. Finally,

consider ΘB
t . Fix u, E, and F as required and put v := 1Eu as before.

Again only the case 0 < |t| < d(E,F ) is of interest. With ϕ as above
write

‖1FΘB
t v‖ ≤ ‖MϕΘB

t v‖ ≤ t‖[Γ∗B,Mϕ]PB
t v‖+ t‖Γ∗BMϕP

B
t v‖,

where due to (4.3) the second term on the right-hand side is under control
by

t‖ΠBMϕP
B
t v‖ ≤ t‖[Γ,Mϕ]PB

t v‖+ t‖[Γ∗B,Mϕ]PB
t v‖+ ‖MϕQ

B
t v‖.

Due to (4.7) and (H5) it follows

‖1FΘB
t v‖ . t‖[Γ,Mϕ]PB

t v‖+ t‖[Γ∗,Mϕ]B2P
B
t v‖+ ‖MϕQ

B
t v‖

.
|t|

d(E,F )‖1F1/2∩ΩP
B
t v‖+ ‖1F1/2Q

B
t v‖,

which yields the claim upon applying off-diagonal estimates with exponent
M − 1 for PB

t and exponent M for QB
t , respectively.

The next lemma helps to control the sums that naturally crop up when
combining off-diagonal estimates with a dyadic decomposition of space.

Lemma 4.2.7. The following hold true for each M > d+ 1.

(i) There exists cM > 0 depending solely on M and Ω such that

∑
R∈∆t

〈d(x,R)
t

〉−M
≤ cM (x ∈ Rd, t ∈ (0, 1]).

(ii) Let l ∈ N0, t ∈ (0, 1], Q ∈ ∆t, and F ⊆ Rd be such that d(Q,F ) ≥ lt.
Then exist cl,1, cl,2 ≥ 0 depending solely on l, M , and Ω such that

∑
R∈∆t

〈d(Q,R ∩ F )
s

〉−M
≤ cl,1 + cl,2

(
s

t

)M
(s > 0).

If l > 0, then one can choose cl,1 = 0.
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Proof. To show the first statement fix x ∈ Rd and t ∈ (0, 1]. Fix k ∈ N0
such that δk+1 < t ≤ δk. With C1 as in Theorem 4.2.3 put

Ω−1 := Ω−2 := ∅ and Ωn := B(x, (n+ 1)C1δ
k) ∩ Ω (n ∈ N0).

If R ∈ ∆t intersects an annulus Ωn\Ωn−1, n ∈ N, then due to property (4)
of the dyadic decomposition

d(x,R) ≥ d(x,Ωn+1 \ Ωn−2) ≥ (n− 1)C1δ
k ≥ (n− 1)δ−1C1t.(4.8)

Lemma 1.2.23 allows to extend Assumption (Ω) to all x ∈ Ω and all radii
r ∈ (0, a0), where a0 > 0 is given by Theorem 4.2.3. Properties (4) and
(5) of the dyadic decomposition yield

#
{
R ∈ ∆t : R ∩ (Ωn \ Ωn−1) 6= ∅

}
.
|Ωn+1|
(a0δk)d

≤ Cd
1 (n+ 2)d
ad0

(n ∈ N0).
(4.9)

Now, rearrange the cubes in ∆t according to the first annulus that they
intersect to find∑
R∈∆t

〈d(x,R)
t

〉−M
≤
∞∑
n=0

Cd
1 (n+ 2)d
cad0

(1 + (n− 1)δ−1C1)−M =: cM <∞

thanks to M > d+ 1.
The second claim is very similar. Choose an arbitrary x ∈ Q and define

Ωn, n ≥ −2, as before. By (4.9) there are at most of order Cd1 (n+2)d
ad0

cubes
R ∈ ∆t intersecting an annulus Ωn \ Ωn−1, n ∈ N0. If this happens, then
by assumption on F , property (4) of the dyadic decomposition, and (4.8),

d(Q,R ∩ F ) ≥ max
{

d(Q,R), d(Q,F )
}

≥ max
{

d(x,R)− diam(Q), d(Q,F )
}

≥ max
{

(n− 2)δ−1C1t, lt
}
.

Rearranging cubes as before leads to

∑
R∈∆t

〈d(Q,R ∩ F )
s

〉−M
.
Cd

1
ad0

l+2∑
n=0

(n+ 2)d
(

1 + lt

s

)−M

+ Cd
1
ad0

∞∑
n=l+3

(n+ 2)d
((n− 2)δ−1C1t

s

)−M
.
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Since M > d + 1, the second sum is controlled by a generic multiple of
sM t−M and if l > 0, then the simple estimate 1 + lt

s
≥ lt

s
shows that so is

the first one.

A consequence of the preceding lemma is the following. Take w ∈ CN

and regard it as a constant function on Ω. Also fix s ∈ (0, 1]. If Q ∈ ∆t

for some t ∈ (0, 1], then Proposition 4.2.6 and the second part of Lemma
4.2.7 assure

∑
R∈∆t

‖1QΘB
s (1Rw)‖ .

∑
R∈∆t

〈d(Q,R)
s

〉−(d+2)
‖1Rw‖ <∞.

As the measure of each cube Q ∈ ∆t is comparable to td, each bounded
subset of Ω is covered up to a set of measure zero by finitely many
cubes Q ∈ ∆t. Now, define ΘB

s w ∈ L2
loc(Ω)N by setting it equal to∑

R∈∆t
1QΘB

s (1Rw) on each Q ∈ ∆t. This definition is independent of
the particular choice of t. Indeed, if 0 < t1 < t2 ≤ 1 and Q1 ∈ ∆t1 is a
subcube of Q2 ∈ ∆t2 then

1Q1

∑
R2∈∆t2

1Q2ΘB
s (1R2w) =

∑
R2∈∆t2

∑
R1∈∆t1
R1⊆R2

1Q1ΘB
s (1R1w)

=
∑

R1∈∆t1

1Q1ΘB
s (1R1w)

by properties (1), (2), and (3) of the dyadic decomposition.
These considerations give rise to the following definition.

Definition 4.2.8. Let 0 < t ≤ 1. The principal part of ΘB
t is defined as

γt : Ω→ L(CN), γt(x) : w 7→ (ΘB
t w)(x).

Remark 4.2.9. If Ω is bounded, then H contains the constant CN -valued
functions and the direct definition of ΘB

t w for t ∈ (0, 1] and w ∈ CN

coincides with the one above.

Admittedly, the definition of the principal part is so involved that even
measurability is not completely obvious at first sight. To be on the safe
side, we prove the following.

181



4 Perturbed Dirac type operators on Ahlfors regular sets

Lemma 4.2.10. For each dyadic cube Q ∈ ∆ the map t 7→ γt|Q is a
measurable function on (0, 1] with values in L2(Q;L(CN)).

Proof. Let w ∈ CN . Since ΘB
t is build from resolvents of ΠB, the quantity

ΘB
t (1Rw)|Q depends continuously on t ∈ (0, 1] with respect to the norm of

L2(Q)N for every dyadic cube R ∈ ∆. Since pointwise limits of measurable
functions are measurable, ΘB

t w|Q is measurable on (0, 1] with values in
L2(Q)N . Identifying L(CN) with CN×N and letting w run through the
standard basis of CN yields the claim.

Next, we introduce the dyadic averaging operator.

Proposition 4.2.11. Let t ∈ (0, 1]. The dyadic averaging operator At
defined for u ∈ H as

Atu(x) := −
∫
Q(x,t)

u(y) dy (x ∈ Ω \N),

where Q(x, t) is uniquely characterized by x ∈ Q(x, t) ∈ ∆t, is a contrac-
tion on H.

Proof. Simply split Ω \ N into the dyadic cubes ∆t and apply Jensen’s
inequality to find

‖Atu‖2 =
∑
Q∈∆t

∫
Q
|Atu|2 =

∑
Q∈∆t

|Q|
∣∣∣∣∣−
∫
Q
u

∣∣∣∣∣
2

≤
∑
Q∈∆t

|Q| −
∫
Q
|u|2 = ‖u‖2

as required.

Lemma 4.2.12. If t ∈ (0, 1], then the operator γtAt : H → H acting
via (γtAtu)(x) = γt(x)(Atu)(x) is bounded with operator norm uniformly
bounded in t. Moreover,

−
∫
Q
‖γt(x)‖2

L(CN ) dx . 1 (Q ∈ ∆t)

with an implicit constant independent of t.
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Proof. Let us begin with the second claim. Fix Q ∈ ∆t and let {ej}Nj=1
be the standard unit vectors in CN . Then
(∫

Q
‖γt(x)‖2

L(CN ) dx
)1/2

.
N∑
j=1

(∫
Q
|γt(x)ej|2 dx

)1/2

≤
N∑
j=1

∑
R∈∆t

(∫
Q
|(ΘB

t (1Rej))(x)|2 dx
)1/2

and Proposition 4.2.6, Remark 4.2.4(1), and Lemma 4.2.7 yield

.
N∑
j=1

∑
R∈∆t

〈d(R,Q)
t

〉−(d+2)
|Q|1/2 . |Q|1/2

uniformly in t. Rearranging terms yields the claim. For the first claim use
the definition of the dyadic averaging operator to find

‖γtAtu‖2 =
∑
Q∈∆t

‖1QγtAtu‖2 ≤
∑
Q∈∆t

∫
Q
‖γt(x)‖2

L(CN )

(
−
∫
Q
|u|
)2

dx

.
∑
Q∈∆t

∫
Q
|u|2 = ‖u‖2

uniformly in t, the second to last step being due to Jensen’s inequality.

4.2.4 Splitting the finite time integral
For u ∈ R(Γ) integration over t ∈ (0, 1] on the left-hand side of (4.4) is
now split as

∫ 1

0
‖ΘB

t Ptu‖2 dt
t
.
∫ 1

0
‖(ΘB

t − γtAt)Ptu‖2 dt
t

+
∫ 1

0
‖γtAt(Pt − 1)u‖2 dt

t

+
∫ 1

0

∫
Ω
‖γt(x)‖2

L(CN ) |Atu(x)|2 dx dt
t

.

(4.10)

The idea behind this splitting is to compensate the non-integrable singu-
larity at t = 0 arising from the measure dt

t
as follows: In the first term

ΘB
t Ptu is compared with its averages over dyadic cubes. Letting t → 0,
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4 Perturbed Dirac type operators on Ahlfors regular sets

the difference is expected to vanish since the diameter of the cubes used
for the ‘discretization’ by averaging shrinks to zero. In the second term Pt
is compared with the identity operator, which in view of Proposition 3.2.2
coincides with the strong limit of Pt as t→ 0. Finally, the third and most
difficult term cries for a Carleson measure estimate.
Due to Lemma 4.2.2 it remains to bound each of the three terms on the

right-hand side by a generic multiple of ‖u‖2. This will be done in the
remaining subsections.

4.2.5 Principal part approximation
This subsection is concerned with estimating the first two terms on the
right-hand side of (4.10). As usual, uS := −

∫
S u is the mean value of an

integrable function u : S → Cn over a set S ⊆ Rd with Lebesgue measure
|S| > 0. The following weighted Poincaré inequality is the key instrument
to handle the first term in (4.10). For the proof we suggest to recall the
local Poincaré inequality from Lemma 2.3.6.

Proposition 4.2.13 (A weighted Poincaré inequality). For each exponent
M > 2d+ 2 there exists CM > 0 such that

∫
Rd
|u(x)− uQ|2

〈d(x,Q)
t

〉−M
dx

≤ CM

∫
Rd
|t∇u(x)|2

〈d(x,Q)
t

〉2d+2−M
dx

holds for all t ∈ (0, 1], all Q ∈ ∆t, and all u ∈W1,2(Rd).

Proof. Let t ∈ (0, 1] and Q ∈ ∆t. Fix some arbitrary x0 ∈ Q, let T
be the affine transformation x 7→ x0 − t−1x, and put S := T (Q). Upon
replacing u by u ◦ T−1 it suffices to prove

∫
Rd
|u(x)− uS|2 〈d(x, S)〉−Mdx

.
∫
Rd
|∇u(x)|2 〈d(x, S)〉2d+2−Mdx

(4.11)

for arbitrary u ∈ W1,2(Rd) and an implicit constant independent of S
and u.
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4.2 Proof of Theorem 4.1.11

Let C1 and δ be as in Theorem 4.2.3. Due to property (4) of the dyadic
decomposition, S ⊆ B(0, C1δ

−1) and |S| ' 1. Hence, for r ≥ C1δ
−1 the

local Poincaré inequality from Lemma 2.3.6 applies with Ω = B(0, r) and
S as above, yielding

∫
Rd
|u(x)− uS|2 1B(0,r)(x) dx . r2d+2

∫
Rd
|∇u(x)|2 1B(0,r)(x) dx

with an implicit constant independent of u and r. Integration with respect
to r−M−1dr gives

∫
Rd
|u(x)− uS|2

∫ ∞
C1δ−1

1B(0,r)(x)r−M−1 dr dx

.
∫
Rd
|∇u(x)|2

∫ ∞
C1δ−1

r2d+1−M1B(0,r)(x) dr dx.

For fixed x ∈ Rd the inner integrands become non-zero precisely when r
gets larger than max{|x| , C1δ

−1} and it is straightforward to verify (draw
a sketch!) that

C1δ
−1

1 + C1δ−1 · (1 + d(x, S)) ≤ max{|x| , C1δ
−1} ≤ (1 + C1δ

−1)(1 + d(x, S)).

Thus, (4.11) follows from the previous estimate by a simple computation
of the inner integrals.

Proposition 4.2.14 (First term estimate). It holds

∫ 1

0
‖(ΘB

t − γtAt)Ptu‖2 dt
t
. ‖u‖2 (u ∈ R(Γ)).

Proof. We first inspect the integrand ‖(ΘB
t −γtAt)v‖2 for arbitrary t < 1

and v ∈ Vk. Split Ω into dyadic cubes Q ∈ ∆t and decompose v as∑
R∈∆t

1Rv in order to find by the definitions of the principal part and the
dyadic averaging operator

‖(ΘB
t − γtAt)v‖2 =

∑
Q∈∆t

∥∥∥∥ ∑
R∈∆t

1QΘB
t (1Rv − 1RvQ)

∥∥∥∥2
.
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4 Perturbed Dirac type operators on Ahlfors regular sets

Off-diagonal estimates, cf. Proposition 4.2.6, yield

.
∑
Q∈∆t

{ ∑
R∈∆t

〈d(R,Q)
t

〉−3d−4
‖1R(v − vQ)‖

}2

and by the Cauchy-Schwarz inequality and Lemma 4.2.7,

.
∑
Q∈∆t

∑
R∈∆t

〈d(R,Q)
t

〉−3d−4
‖1R(v − vQ)‖2.

If Q,R ∈ ∆t and x ∈ R, then d(x,Q) ≤ d(R,Q) +C1δ
−1t by property (4)

of the dyadic decomposition. Consequently,

.
∑
Q∈∆t

∑
R∈∆t

∫
R
|v(x)− vQ|2

〈d(x,Q)
t

〉−3d−4
dx

=
∑
Q∈∆t

∫
Ω
|v(x)− vQ|2

〈d(x,Q)
t

〉−3d−4
dx.

Now, we use Assumption 4.0.1(V) coordinatewise in order to construct
a Sobolev extension Ev ∈ W1,2(Rd)N of v to which Proposition 4.2.13
applies coordinatewise. Switching sum and integral then leads to

≤
∫
Rd
|t∇(Ev)(x)|2

∑
Q∈∆t

〈d(x,Q)
t

〉−d−2
dx . t2‖v‖2

Vk ,

the second step being due to Lemma 4.2.7 and boundedness of the exten-
sion operator.
On the other hand, Lemmas 4.1.8 and 4.2.12 bound ‖ΘB

t − γtAt‖L(H)
uniformly in t ∈ (0, 1]. Invoking (H7), complex interpolation with the
previous estimate yields

‖(ΘB
t − γtAt)v‖2 . t2β2‖v‖2

[H,Vk]β2
. ‖(t2Π2)β2/2v‖2

for all v ∈ R(Γ) ∩ D(Π2) and all t ∈ (0, 1]. In particular, if u ∈ R(Γ),
then due to (4.5) the previous estimate applies to v = Ptu. Hence,
∫ 1

0
‖(ΘB

t − γtAt)Ptu‖2 dt
t
.
∫ 1

0
‖(t2Π2)β2/2Ptu‖2 dt

t
=
∫ 1

0
‖f(tΠ)u‖2 dt

t
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with a regularly decaying holomorphic function f = (z2)β2/2(1 + z2)−1.
Recall that by the unperturbed counterpart of (4.3) it holdsR(Γ) ⊆ R(Π).
So, employing quadratic estimates for the self-adjoint operator Π as in
Example 3.4.15, the right-most integral can be controlled by a multiple
of ‖u‖2.

Remark 4.2.15. In contrast to [29] we do not require a weighted Poincaré
inequality on Ω to handle the first term on the right-hand side of (4.10).
This is a key observation in order to dispense with smooth local coordinate
charts around ∂ Ω.

We head toward the second term in (4.10). The first ingredient is an
interpolation inequality for the unperturbed operators Γ, Γ∗, and Π.

Lemma 4.2.16. If Υ is either of the operators Γ, Γ∗ or Π then with η > 0
given by Lemma 4.2.5,

∣∣∣∣∣−
∫
Q

Υu
∣∣∣∣∣
2

.
1
tη

(
−
∫
Q
|u|2

)η/2(
−
∫
Q
|Υu|2

)1−η/2

+ −
∫
Q
|u|2

holds for all t ∈ (0, 1], all Q ∈ ∆t, and all u ∈ D(Υ).

Proof. Fix t ∈ (0, 1], Q ∈ ∆t, and u ∈ D(Υ). Write the estimate in
question as

X . t−ηY η/2Z1−η/2 + Y.

If Y = 0 then (H5), which by Lemma 4.1.10 applies to any of the possible
choices of Υ, yields Z = 0. Also X ≤ Z by Jensen’s inequality. Starting
from now, assume Y, Z > 0 and put τ := Y 1/2Z−1/2 > 0. In the case τ ≥ t

simply note

X ≤ Z ≤ τ ηt−ηZ = t−ηY η/2Z1−η/2.

Now, assume τ < t. Let Qr := {x ∈ Q; d(x,Rd \ Q) ≤ r}, r > 0, be
the inner boundary strips of thickness r. Recall from Lemma 4.2.5 the
estimate

|Qr| ≤ C2r
ηl(Q)−η |Q| ≤ C2r

ηt−η |Q| (r > 0).(4.12)
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4 Perturbed Dirac type operators on Ahlfors regular sets

Convolve 1Q\Qτ/2 by a suitable kernel to obtain ϕ ∈ C∞c (Q) with range in
[0, 1], equal to 1 on Q \ Qτ , and such that ‖∇ϕ‖∞ ≤ c

τ
for some c > 0

depending solely on d. Owing to (H5) the commutator [Υ,Mϕ] acts on
D(Υ) as a multiplication operator with inducing function cϕ such that
‖cϕ‖L(CN ) . |∇ϕ| a.e. on Ω. Expanding

Υu = (1− ϕ)Υu− [Υ,Mϕ]u+ Υ(ϕu)

gives ∣∣∣∣∣
∫
Q

Υu
∣∣∣∣∣
2

≤ 3
∣∣∣∣∣
∫
Q

(1− ϕ)Υu
∣∣∣∣∣
2

+ 3
∣∣∣∣∣
∫
Q

[Υ,Mϕ]u
∣∣∣∣∣
2

+ 3
∣∣∣∣∣
∫
Q

Υ(ϕu)
∣∣∣∣∣
2

.

Now, use that 1 − ϕ and ∇ϕ vanish on Q \ Qτ to estimate the first two
terms on the right-hand side by means of Hölder’s inequality. For the third
term use (H6), noting that by property (4) of the dyadic decomposition
Q is contained in a ball B centered in Ω with measure comparable to |Q|.
Altogether,∣∣∣∣∣

∫
Q

Υu
∣∣∣∣∣
2

. |Qτ |
∫
Q
|Υu|2 + τ−2 |Qτ |

∫
Q
|u|2 + |Q|

∫
Q
|u|2 .

Plugging in (4.12) for r = τ and translating back into the language of X,
Y , and Z, this is

|Q|2X . τ ηt−η |Q|2 Z + τ η−2t−η |Q|2 Y + |Q|2 Y
= 2 |Q|2 t−ηY η/2Z1−η/2 + |Q|2 Y,

from which the claim follows upon dividing by |Q|2.

Proposition 4.2.17 (Second term estimate). It holds∫ 1

0
‖γtAt(Pt − 1)u‖2 dt

t
. ‖u‖2 (u ∈ H).

Proof. Since At is a dyadic averaging operator, A2
t = At. Lemma 4.2.12

bounds ‖γtAt‖L(H) uniformly in t ∈ (0, 1] so that in fact it suffices to
establish ∫ 1

0
‖At(Pt − 1)u‖2 dt

t
. ‖u‖2 (u ∈ H).
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4.2 Proof of Theorem 4.1.11

This is certainly true for u ∈ N (Π) since then Ptu = u holds for all t ∈ R.
Since Π is bisectorial, H = N (Π)⊕R(Π). Whence, it suffices to consider
u ∈ R(Π). On recalling Qs = sΠ(1 + s2Π2)−1, in this case the claim
is an instance of Schur’s estimate (Corollary 3.4.9 and Example 3.4.15)
applied to the self-adjoint operator Π, once we have found a function
ζ ∈ L1(0,∞; dr

r
) such that

‖At(Pt − 1)Qs‖H→H . ζ(ts−1) (t ∈ (0, 1], s > 0).(4.13)

The proof of this estimate closely follows the lines of [29, Prop. 5]. Fix
t ∈ (0, 1] and s > 0. Direct algebraic manipulations with resolvents of Π
reveal the identities

(1− Pt)Qs = t

s
Qt(1− Ps) and PtQs = s

t
QtPs.

Hence, by uniform boundedness of At, Pt, and Qs with respect to the
parameters t ∈ (0, 1] and s > 0, see Lemma 4.1.8 and Proposition 4.2.11,

‖At(1− Pt)Qs‖H→H . ‖(1− Pt)Qs‖H→H

= t

s
‖Qt(1− Ps)‖H→H .

t

s
.

(4.14)

We stick with this estimate if t ≤ s. If s < t, then in the same manner

‖At(1− Pt)Qs‖H→H ≤
s

t
‖AtQtPs‖H→H + ‖AtQs‖H→H

.
s

t
+ ‖AtQs‖H→H.

(4.15)

To bound ‖AtQs‖H→H, take u ∈ H, split Ω into dyadic cubes, and apply
Lemma 4.2.16 to find

‖AtQsu‖2 =
∑
Q∈∆t

|Q|
∣∣∣∣∣−
∫
Q
Qsu

∣∣∣∣∣
2

=
∑
Q∈∆t

|Q| s2
∣∣∣∣∣−
∫
Q

ΠPsu
∣∣∣∣∣
2

.
sη

tη
∑
Q∈∆t

(∫
Q
|Psu|2

)η/2(∫
Q
|Qsu|2

)1−η/2

+ s2‖Psu‖2.

Next, decompose u = ∑
R∈∆t

1Ru in order to bring into play the off-
diagonal estimates for Ps and Qs, see Proposition 4.2.6:

.
sη

tη
∑
Q∈∆t

{ ∑
R∈∆t

〈d(Q,R)
s

〉−(d+2)
‖1Ru‖

}2

+ s2‖Psu‖2.
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4 Perturbed Dirac type operators on Ahlfors regular sets

Recall s < t ≤ 1 and apply the Cauchy-Schwarz inequality to find

≤ s

t
‖Psu‖2 + sη

tη
∑
Q∈∆t

{ ∑
R∈∆t

〈d(Q,R)
t

〉−(d+2)
}

×
{ ∑
R∈∆t

〈d(Q,R)
t

〉−(d+2)
‖1Ru‖2

}
.

By Lemma 4.2.7 and the uniform boundedness of Ps the estimate can be
completed as

.
sη

tη
∑
R∈∆t

‖1Ru‖2 + s

t
‖Psu‖2 .

sη

tη
‖u‖2 + s

t
‖u‖2.

Plugging this back into (4.15) and comparing with (4.14) reveals

‖At(1− Pt)Qs‖H→H . ζ(ts−1)

with ζ ∈ L1(0,∞; dr
r

) given by ζ(r) := min{r, r−1 + r−η}. This establishes
our goal (4.13).

4.2.6 Reduction to a Carleson measure estimate
After all it remains to estimate the last term in (4.10) appropriately, that
is to establish∫ 1

0

∫
Ω
‖γt(x)‖2

L(CN ) |Atu(x)|2 dx dt
t
. ‖u‖2 (u ∈ R(Γ)).(4.16)

The proof follows the usual strategy of reducing the problem to a Carleson
measure estimate, which in turn is established by a T (b) procedure, see,
e.g., [18, 29, 30, 32, 124]. However, since only the last two references deal
with the case Ω 6= Rd but under different underlying hypotheses, we give
full details for our setup.
Recall the notion of a (dyadic) Carleson measure.

Definition 4.2.18. The Carleson box RQ of Q ∈ ∆ is the Borel set given
by RQ := Q× (0, l(Q)]. A positive Borel measure ν on Ω× (0, 1] satisfying
the dyadic Carleson condition

‖ν‖C := sup
Q∈∆

ν(RQ)
|Q|

<∞

is called dyadic Carleson measure on Ω× (0, 1].
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4.2 Proof of Theorem 4.1.11

An elegant proof of the following dyadic version of Carleson’s theorem
can be found in Morris [124, Thm. 4.3].

Theorem 4.2.19. If ν is a dyadic Carleson measure on Ω× (0, 1], then
∫∫

Ω×(0,1]
|Atu(x)|2 dν(x, t) . ‖ν‖C‖u‖2 (u ∈ H).

So, (4.16) follows if ‖γt(x)‖2
L(CN )

dx dt
t

is a dyadic Carleson measure on
Ω × (0, 1]. We begin by fixing σ > 0; its value to be chosen later. Also,
by compactness, we fix a finite set F in the boundary of the unit ball of
L(CN) such that the sets

Kν :=
{
ν ′ ∈ L(CN) \ {0};

∥∥∥∥ ν ′

‖ν ′‖L(CN )
− ν

∥∥∥∥
L(CN )

≤ σ
}

(ν ∈ F)(4.17)

cover L(CN) \ {0}. By a standard argument using the John-Nierenberg
lemma, the following proposition will imply Carleson’s condition for the
measure ‖γt(x)‖2

L(CN )
dxdt
t

.

Proposition 4.2.20. There exist β, β′ > 0 such that for each Q ∈ ∆ and
for each ν ∈ L(CN) with ‖ν‖L(CN ) = 1, there is a collection {Qk}k ⊆ ∆
of pairwise disjoint subcubes of Q such that |EQ,ν | > β |Q|, where EQ,ν :=
Q \ ⋃kQk, and such that

∫∫
(x,t)∈E∗Q,ν
γt(x)∈Kν

‖γt(x)‖2
L(CN )

dx dt
t
≤ β′ |Q| ,(4.18)

where E∗Q,ν := RQ \
⋃
k RQk .

Indeed, fix Q ∈ ∆ and for the moment also fix ν ∈ F . Considering ∅ as
a subcube of Q with l(∅) := 0, we can without loss of generality assume
that all collections obtained from Proposition 4.2.20 are countably infinite.
Apply Proposition 4.2.20 to Q in order to find

RQ,ν := {(x, t) ∈ RQ : γt(x) ∈ Kν}
⊆ E∗Q,ν ∪

⋃
α1∈N
{(x, t) ∈ RQα1

: γt(x) ∈ Kν}.
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4 Perturbed Dirac type operators on Ahlfors regular sets

The upshot is that Proposition 4.2.20 reapplies to each non-empty cube
Qα1 , yielding E∗Qα1,ν

and a collection {RQα1α2
}α2∈N. Iterating this proce-

dure n times and using multiindex notation

RQ,ν ⊆
n⋃
k=0

⋃
α∈Nk

E∗Qα,ν ∪
⋃

α∈Nn+1

{(x, t) ∈ RQα : γt(x) ∈ Kν},

where the term for k = 0 is understood as E∗Q,ν . Due to β > 0, the
generation of the selected subcubes increases each time applying Propo-
sition 4.2.20. Hence, it holds l(Qα) ≤ δn+1l(Q) for each α ∈ Nn+1

and therefore (x, t) ∈ RQα can only happen for t ≤ δn+1l(Q). Hence,
RQ,ν ⊆

⋃∞
k=0

⋃
α∈Nk E

∗
Qα,ν . Monotone convergence and Proposition 4.2.20

yield

∫∫
(x,t)∈RQ
γt(x)∈Kν

‖γt(x)‖2
L(CN )

dx dt
t
≤
∞∑
k=0

∑
α∈Nk

∫∫
(x,t)∈E∗Qα,ν
γt(x)∈Kν

‖γt(x)‖2
L(CN )

dx dt
t

≤
∞∑
k=0

∑
α∈Nk

β′ |Qα| .

Proposition 4.2.20 also guarantees ∑α∈N |Qα| = |Q|− |EQ,ν | < (1−β) |Q|,
so that by induction

≤
∞∑
k=0

(1− β)kβ′ |Q| = β′

β
|Q| .

Finally, summation over the finite set F verifies Carleson’s condition

∫∫
RQ
‖γt(x)‖2

L(CN )
dx dt
t
≤
∑
ν∈F

∫∫
(x,t)∈RQ
γt(x)∈Kν

‖γt(x)‖2
L(CN )

dx dt
t

≤ (#F)β′
β

|Q| .

4.2.7 The proof of Proposition 4.2.20
Our final task is to prove Proposition 4.2.20. We closely follow the treat-
ment in Axelsson-Keith-McIntosh [30, pp. 23-26]. For the proof keep
Q ∈ ∆ and ν ∈ L(CN) with ‖ν‖L(CN ) = 1 fixed and put τ := l(Q) for
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4.2 Proof of Theorem 4.1.11

brevity. Define the dilated cube 2Q := {x ∈ Rd; d(x,Q) ≤ l(Q)}. Since
the adjoint matrix ν∗ ∈ L(CN) has norm 1, there are ω, ω̂ ∈ CN such that

|ω| = |ω̂| = 1 and ω = ν∗ω̂.(4.19)

We prepare for a T (b)-type argument but similar to Auscher-Rosén-
Rule [10, Sec. 3.6] we use 12Qω as a test function rather than some
smoothened version of it. This leads to a simplification of the argument
compared to [29, Sec. 4.4].
In the subsequent estimates a constant is called admissible if it only

depends on dimensions, the domain Ω, and the constants quantified in
Assumption (H2). For ε > 0 we then put

fωQ,ε := (1− ετ iΓRB
ετ )12Qω

= 12Qω − ετ iΓ(1 + ετ iΠB)−112Qω = (1 + ετ iΓ∗B)RB
ετ12Qω

and derive the following estimates.

Lemma 4.2.21. There exist admissible constants A1, A2, A3 > 0 such
that for all ε > 0 it holds

‖fωQ,ε‖ ≤ A1 |Q|1/2 ,
∫∫

RQ
|ΘB

t f
ω
Q,ε(x)|2 dx dt

t
≤ A2

ε2 |Q| ,

and
∣∣∣∣−∫
Q
fωQ,ε − ω

∣∣∣∣2 ≤ A3(εη + ε2).

Proof. Note |2Q| . (1 + C1)dl(Q)d . |Q| by property (4) of the dyadic
decomposition. Hence, (4.3) and Lemma 4.1.8 yield

‖ΓRB
ετ12Qω‖+ ‖Γ∗BRB

ετ12Qω‖ . ‖ΠBR
B
ετ12Qω‖

= (ετ)−1‖(1−RB
ετ )12Qω‖

. (ετ)−1 |Q|1/2
(4.20)

with admissible implicit constants. From this, the first estimate follows.
For the second estimate the same calculation as in (4.5) with Γ∗B in place
of Γ∗ reveals

ΘB
t f

ω
Q,ε = tΓ∗BPB

t (1 + ετ iΓ∗B)RB
ετ12Qω = tPB

t Γ∗B(1 + ετ iΓ∗B)RB
ετ12Qω

= tPB
t Γ∗BRB

ετ12Qω,
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since Γ∗B is nilpotent, see Lemma 4.1.3. On recalling l(Q) = τ , integration
gives ∫∫

RQ
ΘB
t f

ω
Q,ε(x)|2 dx dt

t
≤
∫ τ

0
t‖PB

t Γ∗BRB
ετ12Qω‖2 dt

.
∫ τ

0
t‖Γ∗BRB

ετ12Qω‖2 dt

and (4.20) yields the claim. For the third estimate apply Lemma 4.2.16
with Υ = Γ to find∣∣∣∣−∫

Q
fωQ,ε − ω

∣∣∣∣2 =
∣∣∣∣−∫
Q

(fωQ,ε − 12Qω)
∣∣∣∣2

= (ετ)2
∣∣∣∣−∫
Q

ΓRB
ετ12Qω

∣∣∣∣2
.

(ετ)2

τ η

(
−
∫
Q
|RB

ετ12Qω|2
)η/2
·
(
−
∫
Q
|ΓRB

ετ12Qω|2
)1−η/2

+ (ετ)2−
∫
Q
|RB

ετ12Qω|2.

Due to (4.20) and since τ ≤ 1, it follows

.
(ετ)2

τ η
· (ετ)η−2 + (ετ)2 ≤ εη + ε2.

From now on we keep ε > 0 fixed as the solution of A3(εη + ε2) = 1
2

with A3 as in the preceding lemma. We shall simply write fωQ instead of
fωQ,ε. Owing to Lemma 4.2.21 and |ω| = 1 we find

2 Re
(
ω
∣∣∣∣ −∫

Q
fωQ

)
=
∣∣∣∣−∫
Q
fωQ

∣∣∣∣2 + |ω|2 −
∣∣∣∣−∫
Q
fωQ − ω

∣∣∣∣2 ≥ 1
2 .(4.21)

The following lemma is a straightforward adaption of [30, Lem. 5.11].

Lemma 4.2.22. There exist admissible constants β, ρ > 0 and a collection
{Qk}k ⊆ ∆ of mutually disjoint subcubes of Q such that |EQ,ν | > β |Q|,
where EQ,ν := Q \ ⋃kQk, and such that

Re
(
ω

∣∣∣∣ −∫
Q′
fωQ

)
≥ ρ and −

∫
Q′
|fωQ| ≤

1
ρ

(4.22)

for all dyadic subcubes Q′ ∈ ∆ of Q whose Carleson box satisfies RQ′

intersects E∗Q,ν := RQ \
⋃
k RQk .
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Proof. Let ρ > 0; its value to be chosen later. Put B as the (countable)
collection of all ‘bad’ subcubes Q′ ∈ ∆ of Q that fail at least one of the
inequalities in (4.22). Inductively construct {Qk}k as the collection of
maximal cubes contained in B. As usual, a member of B is maximal if
it is not contained in a larger cube from this collection. By maximality
the cubes Qk are pairwise disjoint. Suppose a subcube Q′ ∈ ∆ of Q fails
one of the inequalities in (4.22). Then it must be contained in a maximal
such cube Qk. Hence, RQ′ is a subset of RQk and as such cannot intersect
E∗Q,ν .
It remains to adjust ρ in such a way that |EQ,ν | > β |Q| holds for some

admissible β > 0. To this end let B1 be the subset of those cubes in {Qk}k
that fail the first estimate in (4.22) and put B2 := {Qk}k \B1. This yields
the rough estimate∣∣∣∣EQ,ν ∣∣∣∣ =

∣∣∣∣Q \ (⋃B1 ∪
⋃
B2

)∣∣∣∣ ≥ ∣∣∣∣Q \⋃B1

∣∣∣∣− ∣∣∣∣⋃B2

∣∣∣∣.(4.23)

Since each member of B2 fails the second inequality in (4.22), Hölder’s
inequality and Lemma 4.2.21 yield∣∣∣∣⋃B2

∣∣∣∣ =
∑
Q′∈B2

|Q′| ≤ ρ
∑
Q′∈B2

∫
Q′

∣∣∣fωQ∣∣∣ ≤ ρ
∫
Q

∣∣∣fωQ∣∣∣
≤ ρ |Q|1/2 ‖fωQ‖ ≤ A1ρ |Q| .

(4.24)

On the other hand, (4.21) gives

1
4 |Q| ≤ Re

(
ω
∣∣∣∣ ∫

Q
fωQ

)
=

∑
Q′∈B1

Re
(
ω

∣∣∣∣ ∫
Q′
fωQ

)
+ Re

(
ω

∣∣∣∣ ∫
Q\
⋃
B1
fωQ

)
,

so that due to the defining property of B1, Hölder’s inequality, and Lem-
ma 4.2.21,

≤ ρ
∑
Q′∈B1

|Q′|+
∣∣∣∣Q \⋃B1

∣∣∣∣1/2‖fωQ‖ ≤ ρ |Q|+ A1

∣∣∣∣Q \⋃B1

∣∣∣∣1/2 |Q|1/2 .
Rearranging reveals ( 1

4A1
− ρ

A1
)2 |Q| ≤ |Q \ ⋃B1| provided that ρ < 1

4 .
Choosing ρ even smaller so to achieve β := ( 1

4A1
− ρ

A1
)2 − A1ρ > 0, we

conclude |EQ,ν | > β |Q| from (4.23) and (4.24).
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4 Perturbed Dirac type operators on Ahlfors regular sets

Let ρ, {Qk}k, EQ,ν , and E∗Q,ν be as provided by Lemma 4.2.22. We shall
prove the estimates in Proposition 4.2.20 for these choices. Eventually, we
fix the value of σ > 0 determining the size of the ‘pizza slices’ Kν , see
(4.17), as σ := ρ2

2 . For the next lemma recall that N is the exceptional
set of points x ∈ Ω that for some generation t > 0 are not contained in
any dyadic cube Q ∈ ∆t.

Lemma 4.2.23. Suppose (x, t) ∈ E∗Q,ν is such that x /∈ N and γt(x) ∈ Kν.
Then

|γt(x)AtfωQ(x)| ≥ ρ

2‖γt(x)‖L(CN ).

Proof. Due to x /∈ N there exists a unique Q′ ∈ ∆t that contains x.
Hence (x, t) ∈ RQ′ ∩ E∗Q,ν . Since by definition Atf

ω
Q(x) = −

∫
Q′ f

ω
Q, the

previous lemma and the relations between ν, ω, and ω̂, see (4.19), yield∣∣∣ν(AtfωQ(x))
∣∣∣ ≥ Re

(
ω̂
∣∣∣ ν(AtfωQ(x))

)
= Re

(
ω
∣∣∣ AtfωQ(x)

)
≥ ρ

and furthermore – due to γt(x) ∈ Kν – also∣∣∣∣∣ γt(x)
‖γt(x)‖(AtfωQ(x))

∣∣∣∣∣ ≥ ∣∣∣ν(AtfωQ(x))
∣∣∣− ∣∣∣AtfωQ(x)

∣∣∣ · ∥∥∥∥∥ γt(x)
‖γt(x)‖ − ν

∥∥∥∥∥ ≥ ρ

2

as required.

Finally we complete the proof of Proposition 4.2.20 by establishing the
estimate (4.18). The crucial observation is that Lemma 4.2.23 allows to
reintroduce the dyadic averaging operator:∫∫

(x,t)∈E∗Q,ν
γt(x)∈Kν

‖γt(x)‖2
L(CN )

dx dt
t
≤ 2
ρ

∫∫
RQ
|γt(x)AtfωQ(x)|2 dx dt

t

.
∫∫

RQ
|ΘB

t f
ω
Q|2

dx dt
t

+
∫∫

RQ
|(ΘB

t − γtAt)fωQ|2
dx dt
t

.

Lemma 4.2.21 bounds the first term on the right-hand side by A2ε
−2 |Q|.

In order to handle the second one, put u := ετ iΓRB
ετ12Qω ∈ R(Γ). Due to

fωQ = 12Qω − u it remains to show that∫ τ

0
‖1Q(ΘB

t − γtAt)12Qω‖2 dt
t

+
∫ τ

0
‖1Q(ΘB

t − γtAt)u‖2 dt
t

(4.25)
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4.3 The reduction theorem

is under control by |Q|. For the first term on the left-hand side note
At12Qω(x) = ω for all x ∈ Q \ N and t ∈ (0, τ) so that by definition of
the principal part

1Q(ΘB
t 12Qω − γtAt12Qω) = 1Q

∑
R∈∆τ

ΘB
t (1R12Qω)−ΘB

t (1Rω).

Hence,

‖1Q(ΘB
t 12Qω − γtAt12Qω)‖ ≤

∑
R∈∆τ

‖1QΘB
t (1R∩(Rd\2Q)ω)‖.

Proposition 4.2.6 bounds the right-hand side by

∑
R∈∆τ

〈d(Q,R ∩ (Rd \ 2Q))
t

〉−(d+2)
‖1R∩(Rd\2Q)ω‖.

Since dyadic cubes of the same step size are comparable in measure, we
get for each R ∈ ∆τ that ‖1R∩(Rd\2Q)ω‖ ≤ |R|1/2 ' |Q|1/2. Now, the
latter sum is under control by the second part of Lemma 4.2.7 with l = 1.
Altogether,

‖1Q(ΘB
t 12Qω − γtAt12Qω)‖ . |Q|1/2 t

d+2

τ d+2 .

Going back to (4.25) this gives the right bound for the first term. The
second one is bounded by∫ 1

0
‖ΘB

t (1− Pt)u‖2 + ‖(ΘB
t − γtAt)Ptu‖2 + ‖γtAt(Pt − 1)u‖2 dt

t

and these three terms have already been taken care of in Propositions 4.1.9,
4.2.14, and 4.2.17 by bounding them by a multiple of ‖u‖2. However,
as u = ετ iΓRB

ετ12Qω, we find in view of (4.20) that ‖u‖2 . |Q|. This
completes the proof of Proposition 4.2.20. �

4.3 The reduction theorem
Eventually we are in the position to prove the reduction theorem alluded
in the preface. This constitutes the first major step toward resolving the
Lions problem.
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4 Perturbed Dirac type operators on Ahlfors regular sets

Theorem 4.3.1. Let Assumptions 4.0.1 and 4.0.5 be satisfied and let
∆V be the weak Laplacian with form domain V. If for the same α as in
Assumption (α) it holds

D((1−∆V)1/2+α/2) ⊆ H1+α,2(Ω)m(E)

with continuous inclusion, then A has the square root property

D(
√
A) = D(

√
1 + A) = V with ‖(

√
1 + A)u‖L2(Ω)m ' ‖u‖V (u ∈ V).

By a classical result of Kato [91, Thm. VI.2.23] the self-adjoint oper-
ator 1−∆V has the square root property D(

√
1−∆V) = V ⊆W1,2(Ω)m.

Hence, the core of Theorem 4.3.1 is that the Kato square root problem
follows from an extrapolation problem for the Laplacian, or to put it sim-
ple:

If the square root property for the negative Laplacian
with form domain V extrapolates to fractional powers
with exponent slightly above 1

2 , then every elliptic dif-
ferential operator in divergence-form with form domain
V has the square root property.

Remark 4.3.2.

(i) The conditions (Mc), see Remark 4.0.4, and (E) are those imposed
byMcIntosh in [118] in order to solve the Kato square root problem
if the coefficients of A are Hölder continuous.

(ii) For the choice V = W1,2
D (Ω)m we will establish (α) and (E) for all

sufficiently small values of α in Chapter 5.
Proof of Theorem 4.3.1. We shall put Theorem 4.3.1 down to Theo-
rem 4.1.11 by considering a triple of judiciously chosen operator matrices
on the Hilbert space

H := L2(Ω)m × L2(Ω)m × L2(Ω)dm.

This idea is taken from [29] but as the underlying hypotheses slightly
differ, we shall give the full argument. Roughly speaking, Π and ΠB will
be chosen such that Π2 and Π2

B are related to −∆V and A, respectively.
The perturbative structure of the ΠB-theorem (quadratic estimates are for
free for the self-adjoint operator Π) will then translate to the perturbative
structure of the reduction theorem.
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4.3 The reduction theorem

Step 1: Choosing the auxiliary operators

The differential operator Au = −∑d
i,j=1 ∂i(µi,j∂ju) is realized by means

of the sesquilinear form a : V × V → C. Let U : L2(Ω)dm → L2(Ω)dm
be the multiplication operator induced by (µi,j)1≤i,j≤d ∈ L∞(Ω;L(Cdm))
and define the operator ∇Vu := ∇u on D(∇V) := V , which owing to
Assumption (V) is closed. The operator triple under consideration is

Γ :=


0 0 0

1 0 0

∇V 0 0

 , B1 :=


1 0 0

0 0 0

0 0 0

 , B2 :=


0 0 0

0 1 0

0 0 U


defined on their natural domains. By these choices

ΠB = Γ +B1Γ∗B2 =


0 1 (∇V)∗U

1 0 0

∇V 0 0

(4.26)

and since by definition of the form method A = (∇V)∗U∇V , it follows

Π2
B =


1 + A 0 0

0 1 (∇V)∗U

0 ∇V ∇V(∇V)∗U

 .

The corresponding unperturbed operators Π and Π2 are

Π =


0 1 (∇V)∗

1 0 0

∇V 0 0

 and Π2 =


1−∆V 0 0

0 1 (∇V)∗

0 ∇V ∇V(∇V)∗

 .(4.27)

On assuming that this triple satisfies (H1) - (H7), Corollary 4.1.13 reveals
that

√
Π2
B and ΠB share the same domain and have equivalent graph
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4 Perturbed Dirac type operators on Ahlfors regular sets

norms. Since Π2
B is a block-diagonal sectorial operator matrix, both blocks

are sectorial as well. Starting from the block form of its resolvents, we
obtain by the very construction of the functional calculus for sectorial
operators that

√
Π2
B =



√
1 + A 0

0

√√√√√√
 1 (∇V)∗U

∇V ∇V(∇V)∗U



 .

So, restricting to L2(Ω)m × {0} × {0} and comparing with (4.26), we find

D(
√

1 + A) = V with ‖u‖2 + ‖
√

1 + Au‖2 ' ‖u‖2 + ‖∇u‖2 (u ∈ V).

To conclude, it suffices to note that firstly
√
A and

√
1 + A share the same

domain, and that secondly the L2-norm on the left-hand side above can
be ignored as invertibility carries over from 1+A to its square root. These
statements are proved in Propositions 3.2.22 and 3.2.21, respectively.

Step 2: Checking the hypotheses

It remains to check that the operators specified in the first step meet the
assumptions (H1) - (H7):

X (H1) This is clear from the very definition of Γ.

X (H2) Only accretivity of B2 is a concern. Here, note that the Gårding
inequality from Assumption 4.0.5 gives

Re(B2Γu | Γu)H = Re(u1 | u1)2 + Re(U∇Vu1 | ∇Vu1)2

= ‖u1‖2
2 + Re a(u1, u1)

≥ ‖u1‖2
2 + λ‖∇u1‖2

2 ' ‖Γu‖2
H

for every u ∈ R(Γ) with components uj, 1 ≤ j ≤ 3, according to the
definition of H.

X (H3) Simply note that B2B1 = 0 = B1B2.

X (H4) This is satisfied by definition.
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4.3 The reduction theorem

X (H5) The domain of Γ is V×L2(Ω)m×L2(Ω)dm. Hence, invariance under
multiplication by ϕ ∈ C∞c (Rd;C) is guaranteed by Assumption (V)
and for u ∈ D(Γ) the commutator acts as

[Γ,Mϕ]u =


0

ϕu1

∇(ϕu1)

−


0

ϕu1

ϕ∇u1

 =


0

0

(u1∂jϕ)>j

 .

X (H6) Since integral over the gradient of a compactly supported function
vanishes, the estimate for Γ is immediate from Hölder’s inequality.
For the adjoint estimate assume u ∈ D(Γ∗) has compact support in
B∩Ω for some ball B centered in Ω. Take ϕ ∈ C∞c (Ω;R) identically
one on the support of u. Since (H5) holds for Γ, it also holds for
Γ∗, see Lemma 4.1.10. Hence, supp Γ∗u ⊆ suppu by applying the
commutator estimate with every smooth function that vanishes on
the support of u. Denote by {ej}2m+dm

j=1 the standard basis of C2m+dm.
Then ϕej is contained in W1,2

0 (Ω)2m+dm ⊆ V2+d by Assumption (V)
so that with respect to scalar products in C2m+dm,

( ∫
Ω

Γ∗u
∣∣∣∣ ej) =

∫
Ω

(
Γ∗u

∣∣∣ ϕej) =
∫

Ω

(
Γ(ϕej)

∣∣∣ u).
Since by construction |Γ(ϕej)| ≤ 1 holds everywhere on supp(u), the
right-hand side is bounded in absolute value by |B|1/2 ‖u‖H thanks
to Hölder’s inequality. Taking absolute values and summing up over
j gives the required estimate.

X (H7) For the first part take β1 = 1. Since any u ∈ R(Γ∗) ∩ D(Π2) has
components u1 ∈ V and u2 = 0, u3 = 0,

‖u‖Vd+2 =
(
‖u1‖2

2 + ‖∇u1‖2
2

)1/2
= ‖Γu‖H = ‖Πu‖H ' ‖

√
Π2u‖H,

the last part being due to the solution of the abstract Kato square
root problem for self-adjoint operators, see Proposition 3.3.15, The-
orem 3.4.11, and Example 3.4.15.
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4 Perturbed Dirac type operators on Ahlfors regular sets

For the second part take β2 = α as in Assumption 4.0.1 and let

v =
[
0 w ∇Vw

]>
∈ R(Γ) ∩ D(Π2)

be arbitrary. By Assumption (α) and since the gradient operator
∇ : H1+α,2(Ω)m → Hα,2(Ω)dm is bounded,

‖v‖[H,Vd+2]α ' ‖w‖Hα,2(Ω)m + ‖∇w‖Hα,2(Ω)dm . ‖w‖H1+α,2(Ω)m .

Since w ∈ D((∇V)∗∇V) = D(1 − ∆V), Assumption (E) in Theo-
rem 4.3.1 gives

‖v‖[H,Vd+2]α . ‖(1−∆V)1/2+α/2w‖L2(Ω)m ,(4.28)

where again Proposition 3.2.21 and the invertibility of 1−∆V allowed
to place a homogeneous graph norm on the right-hand side. From
the block structure in (4.27) we can infer

(1−∆V)1/2+α/2w = (Π2)1/2+α/2u for u =
[
w 0 0

]>
∈ D(Π2)

and in addition Πu = v. Taking into account once more the solution
of the abstract Kato square root problem for Π,

‖(1−∆V)1/2+α/2w‖L2(Ω)m = ‖(Π2)1/2(Π2)α/2u‖H ' ‖Π(Π2)α/2u‖H
= ‖(Π2)α/2Πu‖H = ‖(Π2)α/2v‖H,

which, plugged in on the right-hand side of (4.28), yields the required
estimate.
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CHAPTER 5

Solution of Kato’s conjecture for mixed boundary
conditions

In this chapter, which is the centerpiece of this thesis, we shall complete
the treatment of the Lions problem for mixed boundary conditions. This
will be done by establishing the extrapolation results for the negative
Laplacian required in Theorem 4.3.1. Our proof is based on a clever
interpolation argument going back to Pryde [131]. The same idea has
been utilized by Axelssson, Keith, and McIntosh [29].
For simplicity, we first consider a single elliptic differential operator in

divergence form −∇ · µ∇ with bounded complex coefficients on a domain
Ω, subject to Dirichlet boundary conditions on some closed subsetD of the
boundary ∂ Ω and natural boundary conditions on ∂ Ω\D. We let A be the
maximal accretive realization of −∇·µ∇ on L2(Ω) via a sesquilinear form.
The Kato square root problem for A amounts to identifying the domain
of A1/2 as the domain of the corresponding form, that is, the subspace
W1,2

D (Ω) of the first-order Sobolev space W1,2(Ω).
An extensive historical account on the Kato square root problem, in-

cluding a comparison to earlier square root type results, has been given
in the preface. Here, we only remark again that up to now the affirmative
answer to the Lions problem in case of merely bounded coefficients µ was
known only on smooth domains and under the additional assumption that
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5 Solution of Kato’s conjecture for mixed boundary conditions

D and ∂ Ω \ D are separated within ∂ Ω by a smooth interface. This is
due to the celebrated result of Axelssson, Keith, and McIntosh [29],
which also allows to skip to global bi-Lipschitz images of such domains.
In this chapter we will solve the Lions problem directly on bounded

domains Ω beyond the Lipschitz class. More precisely, we can dispense
with the Lipschitz property of Ω in the following sense.

Assumption 5.0.1.

(i) The domain Ω ⊆ Rd, d ≥ 2, is bounded and d-Ahlfors regular.

(ii) The Dirichlet part D ⊆ ∂ Ω is closed and either empty or (d − 1)-
Ahlfors regular.

(iii) The domain Ω satisfies the Lipschitz condition around every bound-
ary point x ∈ ∂ Ω \D.

Remark 5.0.2. Altogether, Assumption 5.0.1 is slightly more restrictive
than (Ω) and (∂ Ω) of Assumption 4.0.1 required in the previous chapter.
In fact, recall from Definition 2.2.17 that Assumption (iii) means that for
every x ∈ ∂ Ω \D there exists an open neighborhood Ux and a bi-Lipschitz
map Φx from Ux onto the unit cube (−1, 1)d such that

Φx(x) = 0,
Φx(Ω ∩ Ux) = (−1, 1)d−1 × (−1, 0),

Φx(∂ Ω ∩ Ux) = (−1, 1)d−1 × {0}.

As a bi-Lipschitz image of the (d−1)-set (−1, 1)d−1×{0}, each set ∂ Ω∩Ux
is a (d−1)-set [147, Thm. 28.10]. So, by compactness and Assumption (ii)
we see that ∂ Ω is the union of finitely many (d−1)-sets and thus a (d−1)-
set as well, see Lemma 1.2.24.

Assumption 5.0.1 will be a standing assumption for the whole chapter.
Concerning geometry, we note that in view of Proposition 1.2.30 it forces a
plumpness, or interior corkscrew condition on Ω, which, roughly speaking,
excludes outward cusps also along the Dirichlet part. On the other hand,
this does not exclude a domain Ω that is sliced or touches its boundary
from two sides. A striking constellation that notably violates the Lipschitz
property is depicted in Figure 7 below. As special cases the pure Dirichlet

204



D

Ω

Figure 7: The domain Ω ⊆ R2 is obtained by smoothly deforming an acute
triangle such that one apex touches the opposed side from out-
side. Afterwards a closed line segment is removed from its inte-
rior. Around the points on this line segment, as well as around
the former apex, the Lipschitz condition for ∂Ω is violated as Ω
does not locally lie on one side of its boundary – but these parts
belong to the Dirichlet part D. Around ∂Ω \D the boundary
of Ω is smooth and since D is a union of Lipschitz curves, it
satisfies the Ahlfors-David condition.

(D = ∂ Ω) and the pure Neumann case (D = ∅) are included. Let us
stress that in the former we can dispense with the Lipschitz property of
the domain completely.
Due to the generality of our geometric setting – in particular because

localization techniques are not feasible around the Dirichlet part of the
boundary – the adaption of Pryde’s argument requires some prepara-
tions. These lead to new results that are interesting on their own ac-
count. We develop a suitable interpolation theory for a continuous scale
of fractional Sobolev spaces {Hs,2

D (Ω)}1/2<s<3/2 adapted to mixed bound-
ary conditions in Section 5.4, relying on two key ingredients. Firstly, in
Section 5.2 we construct a degree-independent extension operator, heav-
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ily resting on Rogers’ universal extension operator for (ε, δ)-domains,
see Theorem 2.2.21, and recent results on fractional Hardy inequalities
[51, 82, 83, 143]. Secondly, we prove a fractional Hardy type inequality
for Sobolev spaces with partially vanishing boundary trace in Section 5.3,
thereby extending Theorem 2.3.9 to spaces of fractional differentiability.
Finally, in Section 5.6 we present the solution of the Kato square root

problem for −∇ · µ∇ complemented with mixed boundary conditions. In
Section 5.6.1 we give an extension to coupled elliptic systems, where we
can even allow for a different Dirichlet part for each component.

5.1 A continuous scale of Sobolev spaces
related to mixed boundary conditions

We introduce a continuous scale of Sobolev spaces related to mixed bound-
ary conditions and establish some preliminary properties that will be
needed later on. Although these spaces are often considered from a Besov
point of view, we shall use the Bessel potential notation Hs,2 to stress the
Hilbert space structure of the problems dealt with in this chapter. There
is no harm in doing so as in the Hilbert space case

Hs,2(Rd) = Bs,2
2 (Rd) = Fs,22 (Rd) (s ≥ 0)

holds up to equivalent norms. To refresh the definition of these function
spaces, the reader may refer to Section 1.1, in particular to Theorem 1.1.6.
As usual, the analogs of these spaces on domains are defined via restriction,
see Section 1.1.2.

5.1.1 The spaces Hs,2
F

For the Sobolev spaces with partially vanishing boundary traces we restrict
ourselves to spaces with differentiability order s ∈ (1

2 ,
3
2). The reason

behind this restriction is that – just by the methods that will be discussed
in this section – for larger values of s there will be a trace in an L2-
sense also for some derivatives of the functions under investigation. These,
however, are nothing but a meaningless obstacle when it comes to weak
solutions of second-order divergence-form equations with mixed boundary
conditions.
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Fractional Sobolev spaces on (d−1)-sets can be defined in a natural way
as long as s ∈ (0, 1). We follow the presentation in Jonsson-Wallin [87]
but for consistency stick to the notation Hs,2 rather than Bs

2,2.

Definition 5.1.1. Let F ⊆ Rd be a (d − 1)-set and s ∈ (0, 1). The
fractional Sobolev space Hs,2(F ) consists of those f ∈ L2(F, Hd−1) that
satisfy

‖f‖Hs,2(F ) :=
(∫

F
|f(x)|2 dHd−1(x)

+
∫∫

x,y∈F
|x−y|<1

|f(x)− f(y)|2

|x− y|d−1+2s dHd−1(x) dHd−1(y)
)1/2

<∞.

Equipped with the norm ‖ · ‖Hs,2(F ) it becomes a Banach space.

The ultimate instrument for the treatment of Sobolev spaces with par-
tially vanishing boundary traces is the following extension-restriction re-
sult due to Jonsson and Wallin [87]. We refer to Sections VII.1.1 and
VII.2.1 in [87] for the first two assertions and to [75, Thm. 2.5] for the
third.

Proposition 5.1.2. Let F ⊆ Rd be a (d− 1)-set and s ∈ (1
2 ,

3
2).

(i) For f ∈ Hs,2(Rd) the limit

(RFf)(x0) := lim
r→0
−
∫
B(x0,r)

f(x) dx

exists for Hd−1-almost all x0 ∈ F . The so-defined restriction opera-
tor RF maps Hs,2(Rd) boundedly onto Hs−1/2,2(F ).

(ii) There is a bounded extension operator EF : Hs−1/2,2(F ) → Hs,2(Rd)
which forms a right inverse for RF . By construction EF does not
depend on s.

(iii) The operator EF maps Lipschitz continuous functions on F to Lip-
schitz continuous functions on Rd.

Remark 5.1.3. The existence of the limit in (i) has of course already been
used to define the regular representative of f . In fact, by Corollary 1.2.33
we have RFf = f almost everywhere on F with respect to Hd−1. The
point here is that the assignment f 7→ f|F gives rise to a bounded operator
between Banach spaces.
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5 Solution of Kato’s conjecture for mixed boundary conditions

An important remark concerning all results borrowed from Jonsson-
Wallin [87] is the following.

Remark 5.1.4. All results in [87] are formulated for closed l-sets only.
However, if F is an l-set, then so is its closure F and moreover F \ F
is an Hl-nullset [87, Sec. VIII.1.1]. Therefore, most results in [87] can
effortless be carried over to general l-sets. For instance, we have used this
fact already in our formulation of Proposition 5.1.2.

Now we come to the central definition of this section.

Definition 5.1.5. Let F ⊆ Rd be a (d− 1)-set, s ∈ (1
2 ,

3
2), and RF as in

Proposition 5.1.2.

(i) Put

Hs,2
F (Rd) :=

{
f ∈ Hs,2(Rd); RFf = 0 Hd−1-a.e. on F

}
,

which by continuity of RF is a closed subspace of Hs,2(Rd) and thus
complete under the inherited norm. It is convenient to also define
Hs,2
∅ (Rd) := Hs,2(Rd).

(ii) If Ξ ⊆ Rd is a domain and F ⊆ Ξ, put

Hs,2
F (Ξ) := {f |Ξ; f ∈ Hs,2

F (Rd)}

and equip it with the usual quotient norm. Again, also define
Hs,2
∅ (Ξ) := Hs,2(Ξ).

We collect first properties of the spaces Hs,2
F . A direct consequence of

Proposition 5.1.2 is that they are complemented in Hs,2.

Lemma 5.1.6. If F ⊆ Rd is a (d−1)-set and s ∈ (1
2 ,

3
2), then Hs,2

F (Rd) is a
complemented subspace of Hs,2(Rd) with corresponding bounded projection
PF := Id−EFRF .

Proof. The right inverse property RFEF = Id on Hs−1/2,2(F ), see Propo-
sition 5.1.2, immediately implies P 2

F = PF . Moreover, f ∈ Hs,2(Rd) satis-
fies PFf = f if and only if EFRFf = 0 holds. Again by the right inverse
property the latter is equivalent to RFf = 0, that is, to f ∈ Hs,2

F (Rd).
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The following lemma on multiplication operators will be needed later
on.

Lemma 5.1.7. Let Ξ ⊆ Rd be a domain and let η : Rd → C be bounded
and twice differentiable with bounded derivatives up to order two.

(i) If s ∈ [0, 2], then the multiplication operator Mη associated with η is
bounded on Hs,2(Ξ).

(ii) Assume that E ⊆ Ξ is a (d− 1)-set and that F ⊆ E is either empty
or a (d − 1)-set. If η vanishes on E \ F , then Mη maps Hs,2

F (Ξ)
boundedly into Hs,2

E (Ξ) for each s ∈ (1
2 ,

3
2).

Proof. For the first claim let s ∈ [0, 2]. Since Mη is bounded on L2(Rd)
and on H2,2(Rd), its boundedness on Hs,2(Rd) follows by complex inter-
polation, see Theorem 1.3.20. Boundedness on Hs,2(Ξ) then is immediate
from the definition of the quotient norm.
For the second claim let s ∈ (1

2 ,
3
2), fix f ∈ Hs,2

F (Ξ), and let g ∈ Hs,2
F (Rd)

be an extension of f . Passing to the limit r → 0, due to Proposition 5.1.2
the left-hand side of

−
∫
B(x0,r)

Mηg(x) dx = −
∫
B(x0,r)

g(x)(η(x)− η(x0)) dx+ η(x0)−
∫
B(x0,r)

g(x) dx

converges to REMηg(x0) forHd−1-almost all x0 ∈ E and, as a consequence
of g ∈ Hs,2

F (Rd), the second term on the right-hand side tends to zero for
Hd−1-almost all x0 ∈ F . Taking into account that η vanishes on E \ F it
follows for Hd−1-almost all x0 ∈ E that

REMηg(x0) = lim
r→0
−
∫
B(x0,r)

g(x)(η(x)− η(x0)) dx.(5.1)

Now, note that RE |g| (x0) is defined for Hd−1-almost all x0 ∈ E: Indeed,
let t ∈ (1

2 , 1) be smaller than s. Then of course g ∈ Ht,2(Rd) and due
to t < 1 we can check |g| ∈ Ht,2(Rd) by the reverse triangle inequality.
If finally x0 ∈ E is such that the limit in (5.1) exists and RE |g| (x0) is
defined, then

|REMηg(x0)| ≤ lim
r→0
‖η − η(x0)‖L∞(B(x0,r))−

∫
B(x0,r)

|g(x)| dx = 0

by continuity of η. This proves REMηg = 0, hence Mηg ∈ Hs,2
E (Rd). Since

g was an arbitrary Hs,2
F (Rd)-extension of f , boundedness of the operator

Mη : Hs,2
F (Ξ)→ Hs,2

E (Ξ) follows from the first claim.
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5 Solution of Kato’s conjecture for mixed boundary conditions

There is sort of an ambiguity in Definition 5.1.5 for the case s = 1,
which we dissolve by showing that H1,2

F defined via restriction coincides
with W1,2

F defined as the completion of C∞F in the first-order Sobolev norm.
Proposition 5.1.8.

(i) If F ⊆ Rd is a (d− 1)-set, then H1,2
F (Rd) = W1,2

F (Rd) with equivalent
norms.

(ii) Under Assumption 5.0.1 it holds H1,2
D (Ω) = W1,2

D (Ω) with equivalent
norms.

Proof. As H1,2(Rd) = W1,2(Rd) with equivalent norms, the (k, p)-synthe-
sis in its version stated in Proposition 1.2.38 immediately gives the first
claim provided F is closed. The general case now follows from the simple
observation that

C∞F (Rd) = C∞
F

(Rd), W1,2
F (Rd) = W1,2

F
(Rd), and H1,2

F (Rd) = H1,2
F

(Rd),

where the last equality is due to Remark 5.1.4. For the second claim we
note that according to Theorem 2.2.23 there exists a bounded extension
operator W1,2

D (Ω)→W1,2
D (Rd). Thus, Lemma 1.1.13 gives

W1,2
D (Ω) = {f |Ω; f ∈W1,2

D (Rd)}

with equivalent norms if the space on the right-hand is equipped with its
natural quotient norm. Invoking the first part, this latter space is precisely
H1,2
D (Ω).

Corollary 5.1.9. Let Ξ ⊆ Rd be a domain, F ⊆ Ξ be either empty or a
(d− 1)-set, and s ∈ (1

2 , 1]. Then C∞F (Ξ) is dense in Hs,2
F (Ξ).

Proof. Obviously C∞F (Ξ) is a subset of Hs,2
F (Ξ). To prove density, fix

f ∈ Hs,2
F (Ξ) and choose an extension g ∈ Hs,2

F (Rd) of f . Let {gn}n be a
sequence from C∞c (Rd) converging to g in Hs,2(Rd), see Theorem 1.1.6. If
F = ∅, then {gn|Ξ}n ⊆ C∞F (Ξ) converges to f in Hs,2

F (Ξ). So, for the rest of
the proof assume that F is a (d− 1)-set and let PF : Hs,2(Rd)→ Hs,2

F (Rd)
be the projection introduced in Lemma 5.1.6.
Then {PFgn}n converges to PFg = g in Hs,2(Rd). Owing to Lemma 5.1.6

also {PFgn}n ⊆ H1,2
F (Rd). By Proposition 5.1.8 for every n ∈ N there exists

hn ∈ C∞F (Rd) such that ‖hn−PFgn‖H1,2(Rd) ≤ 1
n
. Since Hs,2(Rd) ⊆ H1,2(Rd)

with continuous embedding, the sequence {hn|Ξ}n converges to g|Ξ = f in
Hs,2
F (Ξ).
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5.2 Universal extension operators for the
Hs,2
D -scale

The following extension theorem is the main result of this section and lies
at the heart of the interpolation theory for the spaces Hs,2

D (Ω) built up
later on in Section 5.4.
Theorem 5.2.1. There are bounded extension operators E,EF : L2(Ω)→
L2(Rd) with the following properties.

(i) The operator E restricts to a bounded operator Hs,2(Ω)→ Hs,2(Rd) if
s ∈ (0, 1

2) and to a bounded operator Hs,2
D (Ω)→ Hs,2

D (Rd) if s ∈ (1
2 ,

3
2).

(ii) The operator EF restricts to a bounded operator Hs,2(Ω)→ Hs,2(Rd)
if s ∈ (0, 1

2) and to a bounded operator Hs,2
D (Ω)→ Hs,2

D (Rd) provided
s ∈ (1

2 , 1).

(iii) There is a bounded domain ΩF ⊆ Rd that contains Ω and avoids D
such that if f ∈ L2(Ω) vanishes a.e. on a neighborhood of D, then
supp(EFf) ⊆ ΩF.

Remark 5.2.2. The advantage of EF over E is that for the former we
have control on the support of the extended functions. The full meaning
of the domain ΩF will become clear only in Section 5.3.
Remark 5.2.3. A common mistake is to consider Theorem 5.2.1 as a
trivial consequence of Theorem 2.2.23 providing a universal extension op-
erator E : Wk,p

D (Ω) → Wk,p
D (Rd) even for all k ∈ N0 and all 1 < p < ∞.

In fact, this sort of reasoning would already require interpolation theory
for the spaces Wk,p

D (Ω) with respect to the differentiability index k, which
is precisely one of the main results to be established in this chapter by
means of the extension operator provided by Theorem 5.2.1.
Corollary 5.2.4. The spaces Hs,2

D (Ω), 1
2 < s < 3

2 , and Hs,2(Ω), 0 ≤ s < 1
2 ,

are reflexive.

Proof. Let 1
2 < s < 3

2 . First, Hs,2
D (Rd) is reflexive as a closed subspace of

the reflexive space Hs,2(Rd). Since E : Hs,2
D (Ω) → Hs,2

D (Rd) is a bounded
right-inverse for the restriction operator R : Hs,2

D (Rd) → Hs,2
D (Ω), it im-

mediately follows that E is an isomorphism from Hs,2
D (Ω) onto the closed

subspace E(Hs,2
D (Ω)) of Hs,2

D (Rd). The argument in the case 0 ≤ s < 1
2 is

similar.
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5 Solution of Kato’s conjecture for mixed boundary conditions

We will develop the proof of Theorem 5.2.1 in Sections 5.2.1/5.2.2 below.
As in Section 2.2.2 the underlying strategy is:

Extend by zero over D and use bi-Lipschitz charts to extend over ∂ Ω \D.

This suggests to study the zero extension operator

E0 : L2(Ω)→ L2(Rd), (E0f)(x) =

f(x), if x ∈ Ω,
0, if x ∈ Rd \ Ω,

first. Recall from Remark 5.0.2 that ∂ Ω is a (d− 1)-set. While obviously
E0 is bounded from L2(Ω) into L2(Rd) as well as from H1,2

∂Ω(Ω) into H1,2
∂Ω(Rd)

(for the latter use that C∞∂Ω(Ω) is dense in H1,2
∂Ω(Ω) by Proposition 5.1.8)

the question whether it acts boundedly between fractional Sobolev spaces
is much more involved. Roughly speaking, the problem stems from the
non-local norm of these spaces.
For a clear presentation of the proofs we introduce the following notion.

Definition 5.2.5. Let Ξ1,Ξ2 ⊆ Rd be domains and s ≥ 0. An operator
T : L2(Ξ1) → L2(Ξ2) is called Hs,2-bounded if it restricts to a bounded
operator from Hs,2(Ξ1) into Hs,2(Ξ2).

5.2.1 Hs,2-boundedness of the zero extension operator
Our approach to Hs,2-boundedness of the zero extension operator bears
on an intrinsic connection with the fractional Hardy inequality. This idea
is taken from Ihnatsyeva-Vähäkangas [83].

Lemma 5.2.6. For each s ∈ (0, 1) the zero extension operator E0 satisfies

∫∫
x,y∈Ω
|x−y|<1

|E0f(x)− E0f(y)|2

|x− y|d+2s dx dy .
∫∫

x,y∈Ω
|x−y|<1

|f(x)− f(y)|2

|x− y|d+2s dx dy

+
∫

Ω

|f(x)|2

d∂Ω(x)2s dx (f ∈ Hs,2(Ω)).

Proof. SetM := {(x, y) ∈ Rd×Rd; |x− y| < 1} and note that if s ∈ (0, 1)
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and f ∈ Hs,2(Ω) then

∫∫
x,y∈Ω
|x−y|<1

|E0f(x)− E0f(y)|2

|x− y|d+2s dx dy

=
∫

Ω

∫
Ω

|f(x)− f(y)|2

|x− y|d+2s 1M(x, y) dx dy

+ 2
∫

Ω
|f(x)|2

∫
Rd\Ω

1
|x− y|d+2s1M(x, y) dy dx.

Since for each x ∈ Ω the ball B(x, d∂Ω(x)) is contained in Ω, the desired
estimate follows from

∫
Rd\Ω

1
|x− y|d+2s1M(x, y) dy ≤

∫
Rd\B(x,d∂Ω(x))

1
|x− y|d+2s dy

' 1
d∂Ω(x)2s (x ∈ Ω).

Up to technical details, Lemma 5.2.6 reduces Hs,2-boundedness of E0
to the question whether the L2(Ω)-norm of |f | d−s∂Ω can be controlled in
terms of ‖f‖Hs,2(Ω) or ‖f‖Hs,2

∂Ω(Ω), respectively. Such an estimate is called
a fractional Hardy inequality. The subsequent propositions due to Dyda,
Ihnatsyeva, and Vähäkangas summarize the state of the art concern-
ing such inequalities in our geometric setting.

Proposition 5.2.7 ([83, Thm. 1.2]). Let 0 < s < d
2 and let Ξ ⊆ Rd be

a bounded domain whose boundary has Aikawa dimension strictly smaller
than d− 2s. Then

∫
Ξ

|f(x)|2

d∂Ξ(x)2s dx . ‖f‖2
Hs,2(Ξ) (f ∈ Hs,2(Ξ)).

Proposition 5.2.8 ([143, Thm. 2]). Let s > 0 and let Ξ ⊆ Rd be a
bounded κ-plump domain whose boundary has lower Assouad dimension
dimAS(∂ Ξ) > d− 2s. Then

∫
Ξ

|f(x)|2

d∂Ξ(x)2s dx .
∫

Ξ

∫
Ξ

|f(x)− f(y)|2

|x− y|d+2s dx dy (f ∈ C∞c (Ξ)).
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5 Solution of Kato’s conjecture for mixed boundary conditions

By Assumption 5.0.1 and the subsequent remarks, the domain Ω under
consideration is bounded, κ-plump, and its boundary is a (d− 1)-set. As
we recall from Theorem 1.2.49, this implies

dimAS(∂ Ω) = dimA(∂ Ω) = d− 1,

so that Proposition 5.2.7 and Proposition 5.2.8 apply to Ξ = Ω provided
0 < s < 1

2 and 1
2 < s < 1, respectively. Note that the right-hand side of

the inequality from Proposition 5.2.8 is dominated by the Hs,2
∂Ξ(Ξ)-norm.

Moreover, Proposition 5.2.8 extends to all f ∈ Hs,2
∂Ω(Ω) by density, taking

into account Corollary 5.1.9 and Fatou’s lemma. Let us summarize these
observations.

Corollary 5.2.9. If 0 < s < 1
2 , then fractional Hardy inequality

∫
Ω

|f(x)|2

d∂Ω(x)2s dx . ‖f‖2
Hs,2(Ω) (f ∈ Hs,2(Ω))

holds true and if 1
2 < s < 1, then similarly

∫
Ω

|f(x)|2

d∂Ω(x)2s dx . ‖f‖2
Hs,2
∂Ω(Ω) (f ∈ Hs,2

∂Ω(Ω))

We state and prove the main result on zero extensions on fractional
Sobolev spaces.

Theorem 5.2.10. The zero extension operator E0 restricts to a bounded
operator Hs,2(Ω) → Hs,2(Rd) if s ∈ [0, 1

2) and to a bounded operator
Hs,2
∂Ω(Ω)→ Hs,2

∂Ω(Rd) if s ∈ (1
2 ,

3
2).

Proof. The easy cases s = 0 and s = 1 have already been discussed. If
s ∈ (0, 1

2), then Lemma 5.2.6 and Corollary 5.2.9 yield

∫∫
x,y∈Ω
|x−y|<1

|E0f(x)− E0f(y)|2

|x− y|d+2s dx dy . ‖f‖2
Hs,2(Ω) (f ∈ Hs,2(Ω)),

where we have again used that the first term on the right-hand side in
Lemma 5.2.6 is dominated by the Hs,2(Ω)-norm. Since E0 is L2-bounded
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the conclusion follows. Likewise, if s ∈ (1
2 , 1), then it follows from Lem-

ma 5.2.6 and Corollary 5.2.9 that E0 maps Hs,2
∂Ω(Ω) boundedly into Hs,2(Rd)

and it remains to check that in fact E0f ∈ Hs,2
∂Ω(Rd) if f ∈ Hs,2

∂Ω(Ω). This
is certainly true if f ∈ C∞∂Ω(Ω) and thus follows for general f ∈ Hs,2

∂Ω(Ω)
by approximation, see Corollary 5.1.9.
Finally, let s ∈ (1, 3

2) and f ∈ Hs,2
∂Ω(Ω) ⊆ H1,2

∂Ω(Ω). Write [ · ]s−1,2 for
the usual seminorm on Hs−1,2(Rd) with integration over x, y ∈ Rd with
|x− y| < 1. The assertion for s = 1 yields

‖E0f‖2
Hs,2(Rd) = ‖E0f‖2

H1,2(Rd) +
d∑
j=1

[∂j(E0f)]2s−1,2

. ‖f‖2
Hs,2
∂Ω(Ω) +

d∑
j=1

[∂j(E0f)]2s−1,2.

Note ∂j(E0f) = E0(∂jf) for 1 ≤ j ≤ d, which is obvious if f ∈ C∞∂Ω(Ω)
and then extends to general f ∈ H1,2

∂Ω(Ω) by density. Since the derivation
operators ∂j are bounded from Hs,2

∂Ω(Ω) into Hs−1,2(Ω), the assertion for
s− 1 yields

[∂j(E0f)]s−1,2 = [E0(∂jf)]s−1,2 ≤ ‖E0(∂jf)‖Hs−1,2(Rd)

. ‖∂jf‖Hs−1,2(Ω) . ‖f‖Hs,2
∂Ω(Ω)

for each 1 ≤ j ≤ d. Altogether,

‖E0f‖Hs,2(Rd) . ‖f‖Hs,2
∂Ω(Ω).

To conclude, note that

E0f ∈ E0(H1,2
∂Ω(Ω)) ⊆ H1,2

∂Ω(Rd)

by the claim for s = 1 implies R∂Ω(E0f) = 0, so that in fact E0f is a
member of Hs,2

∂Ω(Rd).

5.2.2 Proof of Theorem 5.2.1
The argument relying on a localization procedure similar to the one in
Proposition 2.2.6 is divided into five consecutive steps. In fact, the con-
struction of the extension operator is exactly the same and proving Hs,2-
boundedness is the major difficulty. For the sake of readability and further
reference we repeat the construction of the extension operator on the fly.
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5 Solution of Kato’s conjecture for mixed boundary conditions

Step 1: Local extension operators

Since ∂ Ω \D is compact we can, according to Assumption 5.0.1, fix an
open covering ⋃nj=1 Uj of ∂ Ω \D with the following property: For every
1 ≤ j ≤ n there is a bi-Lipschitz map Φj from Uj onto the open unit cube
(−1, 1)d such that

Φj(Ωj) = (−1, 1)d−1 × (−1, 0) and Φj(∂ Ω ∩ Uj) = (−1, 1)d−1 × {0},

where Ωj := Ω∩Uj. We can assume that none of the sets Uj is superfluous,
that is, ∂ Ω \D ∩Uj 6= ∅ for all j. With this convention n = 0 in the case
D = ∂ Ω.
We recall from Lemma 2.2.20 that each domain Ωj is an (ε, δ)-domain for

some values of ε, δ > 0 and thus is a universal Sobolev extension domain
due to Roger’s result, Theorem 2.2.21. If only a bounded extension
operator for first-order Sobolev spaces is needed, we can rely on an easy
reflection technique instead:

Transform Ωj to the lower half-cube, extend to the unit
cube by even reflection and transform back to Uj.

This procedure has the advantage of a control on the extended function
outside of Ω needed later on for the construction of EF. A precise math-
ematical statement for this fact reads as follows.

Lemma 5.2.11 ([66, Lem. 3.4]). Let 1 ≤ j ≤ n and denote by

S : L2((−1, 1)d−1 × (−1, 0))→ L2((−1, 1)d),
(Sf)(x) = f(x1, . . . , xd−1,− sgn(xd)xd)

the extension operator by even reflection. Then

E?,j : L2(Ωj)→ L2(Uj), (E?,jf)(x) = S(f ◦ Φ−1
j )(Φj(x))

is a bounded extension operator that is also H1,2(Ωj)→ H1,2(Uj) bounded.
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Step 2: Construction and Hs,2-boundedness of E

Fix universal extension operators Ej : L2(Ωj) → L2(Rd), 1 ≤ j ≤ n,
according to Roger’s theorem. Also fix a cut-off function η ∈ C∞c (Rd)
that is identically one in a neighborhood of ∂ Ω \D and has its support
in ⋃nj=1 Uj. Let η1, . . . , ηn be a smooth partition of unity on supp(η) sub-
ordinated to U1, . . . , Un. Finally, take cut-off functions χj ∈ C∞c (Uj),
1 ≤ j ≤ n, with χj identically one on supp(ηj). With this notation put

E : L2(Ω)→ L2(Rd), Ef = E0((1− η)f) +
n∑
j=1

χjEj(ηjηf),(5.2)

where E0 is the zero extension operator. Note that E is indeed an ex-
tension operator since for f ∈ L2(Ω) the restriction of Ef to Ω coincides
with

(1− η)f +
n∑
j=1

χjηjηf = (1− η)f +
n∑
j=1

ηjηf = (1− η)f + ηf = f.

In the remainder of this step we prove that E restricts to a bounded op-
erator Hs,2

D (Ω) → Hs,2(Rd) if s ∈ (1
2 ,

3
2). The question whether E in fact

maps Hs,2
D (Ω) into Hs,2

D (Rd) is postponed until Step 5. Upon replacing the
symbol Hs,2

F by Hs,2 for any (d− 1)-set F occurring in the following, liter-
ally the same argument will show that E restricts to a bounded operator
Hs,2(Ω)→ Hs,2(Rd) if s ∈ [0, 1

2).
Let f ∈ Hs,2

D (Ω). Throughout, implicit constants may depend on all
other parameters but on f .
Since 1− η vanishes on ∂ Ω \D, the multiplication operator associated

with 1−η maps Hs,2
D (Ω) boundedly into Hs,2

∂Ω(Ω), cf. Lemma 5.1.7. Invoking
Theorem 5.2.10, we find

‖E0((1− η)f)‖Hs,2(Rd) . ‖(1− η)f‖Hs,2
∂Ω(Ω) . ‖f‖Hs,2D (Ω).(5.3)

Concerning the remaining terms in (5.2) note that for 1 ≤ j ≤ n Lem-
ma 5.1.7 yields

‖ηjηf‖Hs,2(Ωj) ≤ ‖ηjηf‖Hs,2(Ω) . ‖f‖Hs,2(Ω) ≤ ‖f‖Hs,2D (Ω)
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and

‖χjEj(ηjηf)‖Hs,2(Rd) . ‖Ej(ηjηf)‖Hs,2(Rd),

since ηjη and χj are smooth and compactly supported. Hence, the only
task is to prove Hs,2-boundedness of Ej. To this end, note that by con-
struction Ej is Hk,2-bounded if k = 0, 2, so that

Ej :
[
L2(Ωj),H2,2(Ωj)

]
s/2
→
[
L2(Rd),H2,2(Rd)

]
s/2

boundedly.

Theorem 1.3.20 and the subsequent remark assert that the left- and right-
hand side spaces above coincide with Hs,2(Ωj) and Hs,2(Rd), respectively,
up to equivalent norms.

Step 3: Construction and Hs,2-boundedness of EF

For the construction of EF we rely on the same pattern as for E but use
E?,j, 1 ≤ j ≤ n, defined in Lemma 5.2.11, as local extension operators.
Since these operators only extend from Ωj to Uj, we introduce the respec-
tive zero extension operators E0,j : L2(Uj) → L2(Rd). With η, ηj, and χj
as in Step 2 we then put

EF : L2(Ω)→ L2(Rd), EFf = E0((1− η)f) +
n∑
j=1

E0,j(χjE?,j(ηjηf)).

(5.4)

In analogy with Step 2 we focus on s ∈ (1
2 , 1) and prove that EF restricts

to a bounded operator Hs,2
D (Ω) → Hs,2(Rd). The zero extension term in

(5.4) has already been taken care of in (5.3) so that it suffices to consider
the terms containing E?,j.
For k = 0, 1, Lemmas 5.1.7/5.2.11 yield that MχjE?,jMηjη is bounded

from Hk,2(Ωj) into Hk,2(Uj). Here, as usual, M denotes the corresponding
multiplication operator. Since χj has compact support in Uj it follows that
E0,jMχjE?,jMηjη maps Hk,2(Ωj) boundedly into Hk,2(Rd). A similar inter-
polation argument as in Step 2 reveals [L2(Ωj),H1,2(Ωj)]s = Hs,2(Ωj) if one
relies on the H1,2-boundedness of Ej rather than on its H2,2-boundedness.
Hence, by complex interpolation, E0,jMχjE?,jMηjη maps Hs,2(Ωj) bound-
edly into Hs,2(Rd), that is,

‖E0,j(χjE?,j(ηjηf))‖Hs,2(Rd) . ‖f‖Hs,2(Ωj) ≤ ‖f‖Hs,2D (Ω) (f ∈ Hs,2
D (Ω)).

Going back to (5.4), the boundedness of EF : Hs,2
D (Ω)→ Hs,2(Rd) follows.
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Step 4: E and EF map into spaces with vanishing trace on D

To conclude the proof of the first two items of Theorem 5.2.1 we have yet
to show that E and EF in fact map Hs,2

D (Ω) into Hs,2
D (Rd) if s ∈ (1

2 ,
3
2)

and s ∈ (1
2 , 1), respectively. Since the proofs are almost identical, we

concentrate on E. Also, only the case D 6= ∅ is of interest. Recall from
(5.2) that Ef is given by

Ef = E0((1− η)f) +
n∑
j=1

χjEj(ηjηf),

where η is smooth and identically one in a neighborhood of ∂ Ω \D, the
functions χj and ηj are smooth, and the local Sobolev extension opera-
tors Ej : L2(Ωj) → L2(Rd) are chosen according to Theorem 2.2.21. As
this is the same construction as used in Section 2.2.2, Theorem 2.2.12 in
combination with Proposition 5.1.8 yields

C∞D (Ω) ⊆W1,2
D (Ω) = H1,2

D (Ω) E−−−→ W1,2
D (Rd) = H1,2

D (Rd).(5.5)

Now, let s ∈ (1
2 ,

3
2), f ∈ Hs,2

D (Ω), and pick some t ∈ (1
2 , 1) not larger

than s. Use Corollary 5.1.9 to approximate f in Ht,2
D (Ω) by a sequence

{fn}n ⊆ C∞D (Ω). Step 2 infers that {Efn}n converges to Ef in Ht,2(Rd).
A consequence of (5.5) is RDEfn = 0 for each n ∈ N and therefore
RDEf = 0 by continuity of RD, see Proposition 5.1.2. This exactly means
that Ef does not only belongs to Hs,2(Rd) as guaranteed by Step 2 but
even to Hs,2

D (Rd).

Step 5: The support property of EF

In order to prove the third item of Theorem 5.2.1 let f ∈ L2(Ω) be such
that there is an open set U ⊇ D with f = 0 a.e. on Ω∩U . Then (1− η)f
has compact support in Ω and clearly so has E0(1−η)f . If 1 ≤ j ≤ n, then
ηηj has compact support in Uj. Hence, E?,j(ηηjf) has compact support in
Uj \D by construction of E?,j, see Lemma 5.2.11, and the same remains
true for E0,j(χjE?,j(ηηjf)). In a nutshell, EFf has compact support in

ΩF := Ω ∪
n⋃
j=1

(Uj \D),
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5 Solution of Kato’s conjecture for mixed boundary conditions

see (5.4). Clearly ΩF is open, contains Ω, and avoids D. The sets Uj \D
are contained in bi-Lipschitz images of the open unit cube and therefore
are bounded. Hence, ΩF is bounded and it remains to show that it is
connected. Since the union of connected sets with a common point is
again connected, it suffices to show that for 1 ≤ j ≤ n the set Uj \ D is
connected and has non-empty intersection with Ω.
By construction Uj intersects ∂ Ω \D. Since Uj is open, it must intersect

both Ω and ∂ Ω \D. The latter implies that Φj(Uj \D) ⊆ (−1, 1)d does
not only contain the lower and upper open half of the unit cube but also
a point from their common frontier (−1, 1)d−1 × {0}. From this it follows
that Φj(Uj \D) is (arcwise) connected and by continuity of Φ−1

j the same
holds for Uj \D. �

5.3 Fractional Hardy inequalities for partially
vanishing trace

In this section we study fractional Hardy type inequalities where – in
contrast to the results presented in Section 5.2.1 – the functions vanish
only on the Dirichlet part D of ∂ Ω. So, we are concerned with estimates
of the form

∫
Ω

|f(x)|2

dD(x)2s dx . ‖f‖2
Hs,2D (Ω).

In the case s = 1 this inequality has exhaustively been investigated
in Chapter 2. In particular, we are encouraged by the results of Sec-
tion 2.1 not to try proving such estimates from scratch but rather use
suitable extension-restriction arguments to eventually boil down the claim
to known results in the case D = ∂ Ω.
The following concept of fat sets turned out to be essential in the area

of (fractional) Hardy inequalities, see, e.g., [81, 101,104].

Definition 5.3.1. Let 0 < 2s < d. The Riesz kernel of order s > 0 on
Rd is given by Is(x) := |x|s−d. The (s, 2)-Riesz capacity of a set E ⊆ Rd

is defined by

Rs,2(E) := inf
{
‖f‖2

L2(Rd); f ≥ 0 on Rd and f ∗ Is ≥ 1 on E
}
.
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5.3 Fractional Hardy inequalities for partially vanishing trace

and a set E ⊆ Rd is called (s, 2)-uniformly fat if

Rs,2(E ∩B(x, r)) & rd−2s (x ∈ E, r > 0).

Remark 5.3.2. The (s, 2)-Riesz capacity is closely related to the (s, 2)-
Bessel capacity and in fact these quantities are comparable on families of
uniformly bounded subsets of Rd. For proofs an further details the reader
may consult [2, Sec. 5.1].

The mere definition of (s, 2)-uniform fatness will have an inferior stand-
ing in this chapter as we have at hand the following two criteria.

Proposition 5.3.3 ([81, Prop. 3.11]). Let 0 < 2s < d. If an unbounded
Borel set is l-thick for some d− 2s < l ≤ d, then it is (s, 2)-uniformly fat.

Proposition 5.3.4 ([101, pp. 2197-2198]). Let 0 < l ≤ d. If a domain
Ξ ⊆ Rd satisfies the inner boundary density condition

H∞d−1

(
∂ Ξ ∩B(x, 2 d∂Ξ(x))

)
& d∂Ξ(x)d−1 (x ∈ Ξ),(5.6)

then its complement is l-thick.

On recalling Lemmas 1.2.23, we can record the following corollary.

Corollary 5.3.5. Each bounded domain Ξ ⊆ Rd with l-thick boundary
has an (s, 2)-uniformly fat complement for every d− l < 2s < d.

As a preparatory step we show a fractional Hardy inequality for test
functions with compact support in a domain Ξ ⊆ Rd under considerably
weaker geometric assumptions than in Proposition 5.2.8. The price we
have to pay is a double integral over Rd instead of Ξ on the right-hand
side. The proof is by recombining ideas from [51] and [82].

Proposition 5.3.6. Let 0 < 2s < d and let Ξ ⊆ Rd be a bounded domain
with (s, 2)-uniformly fat complement. Then

∫
Ξ

|f(x)|2

d∂Ξ(x)2s dx .
∫
Rd

∫
Rd

|f(x)− f(y)|2

|x− y|2s+d
dx dy

holds for every f ∈ C∞(Rd) with compact support in Ξ.
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5 Solution of Kato’s conjecture for mixed boundary conditions

Proof. LetW be a Whitney decomposition of Ξ, that is,W is a countable
family of closed dyadic cubes in Rd with pairwise disjoint interiors such
that Ξ = ⋃

Q∈W Q and such that

diam(Q) ≤ dist(Q, ∂ Ξ) ≤ 4 diam(Q) (Q ∈ W).(5.7)

We refer to [138, Sec. VI.1] for this classical construction. Denote the
center of Q ∈ W by xQ and its side length by l(Q). Let Q∗ := 40

√
dQ be

the dilated cube having center xQ and side length l(Q∗) = 40
√
d · l(Q),

and set BQ∗ := B(xQ, c−1
d l(Q∗)) with cd > 0 a constant depending only on

d; its value to be specified later on.
Now, take f ∈ C∞(Rd) with compact support in Ξ. Splitting Ξ into

Whitney cubes and employing (5.7) leads to

∫
Ξ

|f(x)|2

d∂Ξ(x)2s dx ≤ 2
∑
Q∈W

diam(Q)−2s
(
|Q| |fBQ∗ |

2 +
∫
Q
|f − fBQ∗ |

2
)
,

where fBQ∗ denotes the average of f over BQ∗ . The following average
estimates on Whitney cubes of a bounded domain with uniformly fat
complement are implicit in the proof of [51, Thm. 1.3], see the part below
[51, Eq. (4.4)].

Let 0 < 2s < d, let Ξ ⊆ Rd be a bounded domain with (s, 2)-
uniformly fat complement, and let W be a Whitney decomposition
of Ξ. There exist constants cd > 0 and r ∈ (1, 2) such that

|Q| |fBQ∗ |
2 +

∫
Q
|f − fBQ∗ |

2

. |Q∗|2+2s/d−4/r
(∫

Q∗

∫
Q∗

|f(x)− f(y)|r

|x− y|dr/2+rs dx dy
)2/r

holds for each f ∈ C∞(Ξ) with compact support in Ξ and every cube
Q ∈ W, where Q∗ = 40

√
dQ and BQ∗ depends on cd as before.

Henceforth fix cd and r as above. Next, introduce the auxiliary function

F (x, y) := |f(x)− f(y)|r

|x− y|dr/2+rs (x, y ∈ Rd)
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5.3 Fractional Hardy inequalities for partially vanishing trace

and note that f ∈ Hs,2(Rd) entails F ∈ L2/r(Rd × Rd). The combination
of the previous two estimates then reads

∫
Ξ

|f(x)|2

d∂Ξ(x)2s dx

.
∑
Q∈W

diam(Q)−2s |Q∗|2+2s/d−4/r
(∫

Q∗

∫
Q∗
F (x, y) dx dy

)2/r

and since Q and Q∗ are comparable in measure,

.
∑
Q∈W
|Q|2 |Q∗|−4/r

(∫
Q∗

∫
Q∗
F (x, y) dx dy

)2/r

=
∑
Q∈W
|Q|2

(
−
∫
Q∗×Q∗

F dx dy
)2/r

.

Now, recall the Hardy-Littlewood maximal operator on L1
loc(Rd ×Rd) de-

fined by

(Mh)(x, y) := sup
Q∈Q(x,y)

−
∫
Q
|h| ((x, y) ∈ Rd × Rd),

where Q(x, y) is the collection of closed cubes in Rd × Rd that contain
(x, y) ∈ Rd ×Rd. By means ofM the ongoing estimate can be continued
as follows:

∫
Ξ

|f(x)|2

d∂Ξ(x)2s dx ≤
∑
Q∈W

∫
Q×Q

(
−
∫
Q∗×Q∗

F

)2/r

dx dy

≤
∑
Q∈W

∫
Rd×Rd

1Q×Q(x, y) (MF (x, y))2/r dx dy.

As the Whitney cubes have pairwise disjoint interiors, ∑Q∈W 1Q×Q ≤ 1
holds a.e. on Rd×Rd. Monotone convergence and the boundedness ofM
on L2/r(Rd × Rd), see Theorem 2.5.10, yield

≤
∫
Rd×Rd

(MF (x, y))2/r dx dy

.
∫
Rd×Rd

F (x, y)2/r dx dy.

This completes the proof by definition of F .
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5 Solution of Kato’s conjecture for mixed boundary conditions

To proceed further, let ΩF be as in Theorem 5.2.1 and recall that this
is a bounded domain that contains Ω and avoids D. Let Q ⊆ Rd be an
open cube that contains ΩF and define as in Lemma 2.1.2 the auxiliary
domain

Ω• :=
⋃{

U ; U ⊆ Q \D is a domain that contains Ω
}
.(5.8)

Note that then ΩF is a subdomain of Ω•.

Lemma 5.3.7. The complement of Ω• is (s, 2)-uniformly fat for each
1 < 2s < d.

Proof. As by assumption D is a (d − 1)-set, the same is true for ∂ Ω•
thanks to Lemma 2.1.4. This implies that ∂ Ω• is (d − 1)-thick, see
Lemma 1.2.25. So, Corollary 5.3.5 yields the claim.

Now, we are in a position to prove a fractional Hardy inequality on
Hs,2
D (Ω).

Theorem 5.3.8. If s ∈ (1
2 , 1), then the following fractional Hardy type

inequality holds true:

∫
Ω

|f(x)|2

dD(x)2s dx . ‖f‖2
Hs,2D (Ω) (f ∈ Hs,2

D (Ω)).(5.9)

Proof. Let s ∈ (1
2 , 1) and fix f ∈ C∞D (Ω). Let EF be the extension

operator provided by Theorem 5.2.1. Since in any case D is a subset of
∂ Ω•,

∫
Ω

|f(x)|2

dD(x)2s dx ≤
∫

Ω

|f(x)|2

d∂Ω•(x)2s dx ≤
∫

Ω•

|EFf(x)|2

d∂Ω•(x)2s dx.(5.10)

Part (iii) of Theorem 5.2.1 asserts that the support of EFf ∈ Hs,2
D (Rd)

is a subset of ΩF ⊆ Ω•. Let η be a smooth function with support in Ω•
that is identically one on supp(EFf). By density choose {un}n ⊆ C∞c (Rd)
approximating EFf in Hs,2(Rd). Lemma 5.1.7 guarantees that {ηun}n
converges to ηEFf = EFf in Hs,2(Rd). After passing to a subsequence we
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5.3 Fractional Hardy inequalities for partially vanishing trace

can assume that {ηun}n converges pointwise a.e. on Rd. Fatou’s lemma
and Proposition 5.3.6 applied with Ξ = Ω• then yield

∫
Ω•

|EFf(x)|2

d∂Ω•(x)2s dx ≤ lim inf
n→∞

∫
Ω•

|η(x)un(x)|2

d∂Ω•(x)2s dx

. lim inf
n→∞

∫
Rd

∫
Rd

|η(x)un(x)− η(y)un(y)|2

|x− y|2s+d
dx dy.

As the rightmost term is under control by ‖ηun‖2
Hs,2(Rd), Theorem 5.2.1

gives

. lim inf
n→∞

‖ηun‖Hs,2(Rd)

= ‖EFf‖Hs,2(Rd)

. ‖f‖Hs,2D (Ω).

In combination with (5.10) this gives the claim of Theorem 5.3.8 in the
special case f ∈ C∞D (Ω).
To establish the claim for general f ∈ Hs,2

D (Ω), we use Corollary 5.1.9
to approximate f in Hs,2

D (Ω) by a sequence {fn}n ⊆ C∞D (Ω) and then
conclude by means of Fatou’s lemma as before.

The proof presented above is the original approach published in a joint
article with Haller-Dintelmann and Tolksdorf [54]. When prepar-
ing a talk on fractional Hardy inequalities, I tried to carry out that Propo-
sition 5.3.6, which of course is of interest on its own account, is in a sense
necessary to establish Theorem 5.3.8. By this I meant that after the ex-
tension procedure the geometry of Ω• may be too bad as to appeal to pre-
viously established fractional Hardy inequalities such as Corollary 5.2.9.
After a fruitless search for counterexamples I noticed that besides the
thickness of the boundary, also the d-Ahlfors regularity is inherited from
Ω to Ω•.

Lemma 5.3.9. Let Ω ⊆ Rd be a bounded domain and let Q ⊆ Rd be an
open cube that contains Ω. If Ω is a d-set, then so is Ω• defined in (5.8).

Proof. Let l(Q) be the sidelength of Q. Owing to Lemma 1.2.23 it suffices
to consider x ∈ Ω• and 0 < r ≤ min{1, l(Q)}.
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5 Solution of Kato’s conjecture for mixed boundary conditions

First suppose that B(x, r2) intersects Ω. In this case there exists y ∈ Ω
such that B(y, r2) ⊆ B(x, r) and therefore

2−drd . |B(y, r2) ∩ Ω| ≤ |B(x, r) ∩ Ω•| ≤ |B(x, r)| . rd

as required, thanks to Ω ⊆ Ω• and d-Ahlfors regularity of the former set.
Now, suppose that B(x, r2) is disjoint to Ω. The set U := B(x, r2) ∩ Q

is the intersection of two open convex sets and thus a domain, which by
assumption is contained in Q and avoids D. Since x is contained in both
domains U and Ω•, the subset U ∪Ω• of Q \D is a domain that contains
Ω. By maximality of Ω• this already implies

B(x, r2) ∩Q = U ⊆ Ω•,

which in turn yields

|B(x, r2) ∩Q| ≤ |B(x, r) ∩ Ω•| ≤ |B(x, r)| . rd.

Concerning the left-hand side note that in each pair of parallel sides of
the cube Q there is one whose distance to x ∈ Q exceeds l(Q)

2 ≥
r
2 . This

determines at least one among the 2d orthants of a Cartesian coordinate
system centered in x with the property that the part of B(x, r2) within
this orthant is entirely contained in Q. It follows

|B(x, r2) ∩Q| ≥ 1
2d |B(x, r2)| & rd

and the proof is complete.

By means of the preceding lemma we give an alternative proof for The-
orem 5.3.8. This argument is much more in the spirit of Section 2.1 as it
avoids the new fractional Hardy inequality Proposition 5.3.6 and simply
rests on Corollary 5.2.9 instead.

Alternative proof of Theorem 5.3.8. Choose Q and Ω• as before. By
Assumption 5.0.1 the Dirichlet part D is a (d− 1)-set and the domain Ω
is a d-set. Owing to Lemmas 2.1.4 and 5.3.9 these properties are inherited
to ∂ Ω• ∈ {D,D ∪ ∂ Q} and Ω•, respectively. Hence, Assumption 5.0.1
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5.4 Interpolation theory

also holds with (∂ Ω•,Ω•) in place of (D,Ω). In particular, Corollary 5.2.9
for this setup reads

∫
Ω•

|g(x)|2

d∂Ω•(x)2s dx . ‖g‖2
Hs,2
∂Ω• (Ω•) (g ∈ Hs,2

∂Ω•(Ω•)).(5.11)

Now, fix a smooth function η that is identically one on Ω and has support
in Q. Due to Lemma 5.1.7 the induced multiplication operator satisfies

Mη : Hs,2
D (Ω•)→ Hs,2

∂Ω•(Ω•) boundedly.

Hence, if E is the extension operator provided by Theorem 5.2.1, then

MηRΩ•E : Hs,2
D (Ω)→ Hs,2

∂Ω•(Ω•)

is a bounded extension operator, which we shall denote by E•. So, given
f ∈ Hs,2

D (Ω) it holds
∫

Ω

|f(x)|2

dD(x)2s dx ≤
∫

Ω

|f(x)|2

d∂Ω•(x)2s dx ≤
∫

Ω•

|E•f(x)|2

d∂Ω•(x)2s dx

. ‖E•f‖2
Hs,2
∂Ω• (Ω•) . ‖f‖Hs,2D (Ω)

since in any caseD is a subset of ∂ Ω• and (5.11) applies with g = E•f .

5.4 Interpolation theory
In Section 2.5 we have used a direct approach from real harmonic analysis
to set up interpolation theory for the spaces W1,p

D (Ω) with respect to the
integrability parameter p. Now we fix p = 2 and consider the ambient
fractional Sobolev scale of space

Hs0,2(Ω) and Hs1,2
D (Ω) (0 ≤ s0 <

1
2 < s1 <

3
2).

A complete picture of interpolation properties of these spaces is governed
by Theorem 5.4.1 below. Let us remark that there already exists a fully
developed interpolation theory with respect to the differentiability param-
eter s for Sobolev spaces that incorporate mixed boundary conditions, see,
e.g., [123] and [68]. However, at least to our knowledge, no results obtained
so far can cover our very general geometric assumptions on Ω and D, let
alone can dispense with coordinate charts around D.
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5 Solution of Kato’s conjecture for mixed boundary conditions

Theorem 5.4.1. Let θ ∈ (0, 1), s0, s1 ∈ (1
2 ,

3
2), and sθ := (1− θ)s0 + θs1.

Then the following hold up to equivalent norms.

(i)
[
Hs0,2
D (Ω),Hs1,2

D (Ω)
]
θ

=
(
Hs0,2
D (Ω),Hs1,2

D (Ω)
)
θ,2

= Hsθ,2
D (Ω).

(ii)
[
L2(Ω),H1,2

D (Ω)
]
θ

=
(
L2(Ω),H1,2

D (Ω)
)
θ,2

=

Hθ,2
D (Ω), if θ > 1

2 ,
Hθ,2(Ω), if θ < 1

2 .

Remark 5.4.2. The reiteration theorems, Theorems 1.3.10 and 1.3.14 al-
lows to determine real and complex interpolation spaces between Hs0,2(Ω)
and Hs1,2

D (Ω) for 0 ≤ s0 <
1
2 < s1 ≤ 3

2 . As a rule of thumb, the trace zero
condition on D is maintained under interpolation whenever it is defined,
that is, whenever the resulting Sobolev space has differentiability order
larger than 1

2 .

Compared to Section 2.5 the techniques of proof are quite different.
Instead of a qualitative analysis of the associated K-functional we make
use of abstract interpolation principles for complemented subspaces and
retraction/coretraction pairs. The reader can refer to Section 1.2 for this
theory.
For the rest of this section the numbers (i) and (ii) will refer to the

respective items of Theorem 5.4.1. For simplicity of exposition we shall
not distinguish between Banach spaces X0 and X1 that coincide as sets
and carry equivalent norms in this section and simply X0 = X1 in this
situation.

5.4.1 Proof of (i)
If 1

2 < s < 3
2 and D 6= ∅, then Hs,2

D (Rd) is a complemented subspace of
Hs,2(Rd) in virtue of the projection PD introduced in Lemma 5.1.6. So,
owing to Corollary 1.3.6 on interpolation of complemented subspaces with
data

X =
(
Hs0,2
D (Rd),Hs1,2

D (Rd)
)

and Z = Hs0,2
D (Rd)

and the usual rules for interpolation rules for Bessel potential spaces, parts
(iv) and (vii) of Theorem 1.3.20,(

Hs0,2
D (Rd),Hs1,2

D (Rd)
)
θ,2

= Hsθ,2
D (Rd) =

[
Hs0,2
D (Rd),Hs1,2

D (Rd)
]
θ
.(5.12)
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For brevity write F(Hs0,2
D (Ω),Hs1,2

D (Ω)) for any of the interpolation spaces
occurring in (i). The claim

F(Hs0,2
D (Ω),Hs1,2

D (Ω)) = Hsθ,2
D (Ω).

then follows from the previous equality on applying Corollary 1.3.7 with
E the extension operator provided by Theorem 5.2.1 and R = RΩ the
canonical restriction operator.

5.4.2 Proof of the first equality in (ii)
In virtue of Proposition 5.1.8 the space H1,2

D (Ω) may equivalently be nor-
med by the Hilbertian W1,2

D (Ω)-norm. Due to

C∞c (Ω) ⊆W1,2
D (Ω) = H1,2

D (Ω)

the continuous inclusion H1,2
D (Ω) ⊆ L2(Ω) is dense. Hence, the first equal-

ity in (ii) is a consequence of Proposition 1.3.16 to the effect that in this
situation (θ, 2)-real and θ-complex interpolation coincide.

5.4.3 Proof of the second equality in (ii)
The second equality in (ii) is significantly harder to prove than (i) because
the restriction operator RD is not defined on L2(Rd). Our proof relies on
a characterization of real interpolation spaces via traces of Banach space-
valued fractional Sobolev spaces on the real line. Let us recall some notions
and properties of these spaces first.
For X a Banach space, L2(R;X ) is the usual Bochner-Lebesgue space

of X -valued square integrable functions on the real line. For s > 0 the re-
spective (fractional) Sobolev spaces Hs,2(R;X ) are defined as in the scalar-
valued case, see Definition 1.1.1, upon replacing absolute values by norms
on X . If s ∈ R+ is not an integer and bsc denotes the integer part of s,
then (

Hbsc,2(R;X ),Hbsc+1,2(R;X )
)
s−bsc,2

= Hs,2(R;X )(5.13)

by literally the same proof as in [107, Ex. 1.8]. If s > 1
2 , then each

F ∈ Hs,2(R;X ) has a continuous representative and this gives rise to a
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5 Solution of Kato’s conjecture for mixed boundary conditions

continuous inclusion

Hs,2(R;X ) ⊆ BUC(R;X ),(5.14)

into the space of bounded uniformly continuous functions equipped with
supremum norm, see [122, Prop. 7.4], or [69, Thm. 5.2] for a more direct
proof that also applies in the X -valued setting. Note that in [69, 122]
the spaces Hs,2(R;X ) for non-integer s are defined via (5.13). If s > 1

2 ,
we will, starting from now, identify the elements in Hs,2(R;X ) with their
continuous representatives. In virtue of this identification F ∈ Hs,2(R;X )
can be evaluated at each t ∈ R in a meaningful way.
The following characterization of real interpolation spaces due to Gris-

vard is of fundamental importance for our further considerations. It
gives a description of (θ, 2)-real interpolation spaces via traces of L2-based
Sobolev spaces. This will enable us to study these interpolation spaces
using the tools from Section 5.1.

Theorem 5.4.3 ([70, Thm. 5.12]). Let the Banach space X1 be densely
and continuously included into the Banach space X0 and let s > 1

2 . Then

(
X0,X1

)
1−1/(2s),2

=
{
f⊗(0); f⊗ ∈ L2(R;X1) ∩ Hs,2(R;X0)

}

as coinciding sets.

The notation used in Theorem 5.4.3 stems from the fact that in the
following X0 and X1 will always be function spaces on Rd. It is then
convenient to identify L2(R;X1) ∩ Hs,2(R;X0) with a function space on
Rd+1. More precisely, if for f ∈ C∞c (Rd+1) we put

f⊗ : R→ C∞c (Rd), t 7→ f(t, ·),

where we think of Rd+1 as identified with R×Rd, then the following holds.

Lemma 5.4.4. If s ≥ 0, then f 7→ f⊗ extends by density to a bounded
operator from Hs,2(Rd+1) into L2(R; Hs,2(Rd)) ∩ Hs,2(R; L2(Rd)). This ex-
tension is also denoted by f 7→ f⊗ in the following.
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Proof. Recall that C∞c (Rd+1) is dense in Hs,2(Rd+1) for each s ≥ 0. If
s ∈ N0, then Fubini’s theorem yields

‖f⊗‖2
L2(R;Hs,2(Rd)) + ‖f⊗‖2

Hs,2(R;L2(Rd)) = ‖f‖2
Hs,2(Rd+1) (f ∈ C∞c (Rd+1))

and the conclusion follows.
Now, assume s ∈ R+ \ N0 and put k := bsc and θ := s − k. By the

interpolation identities in Theorem 1.3.20,

(
Hk,2(Rd+1),Hk+1,2(Rd+1)

)
θ,2

= Hs,2(Rd+1)

=
[
Hk,2(Rd+1),Hk+1,2(Rd+1)

]
θ
.

(5.15)

Hence, (θ, 2)-real and θ-complex interpolation of the claims for k and k+1
show that f 7→ f⊗ acts as a bounded operator from Hs,2(Rd+1) into both

(
Hk,2(R; L2(Rd)),Hk+1,2(R; L2(Rd))

)
θ,2

and

[
L2(R; Hk,2(Rd)),L2(R; Hk+1,2(Rd))

]
θ
.

To conclude, note that by (5.13) the left-hand space is Hs,2(R; L2(Rd)),
whereas Theorem 1.3.22 reveals the right-hand space as L2(R; Hs,2(Rd)),
taking into account (5.15) for function spaces on Rd.

As a technical tool we need the following property of l-sets. To distin-
guish objects in Rd+1 from their counterparts in Rd we shall keep on using
bold letters for the former.

Lemma 5.4.5. Let 0 < l ≤ d. If E ⊆ Rd is an l-set and I ⊆ R is an
interval that is not reduced to a single point, then I × E is an (l + 1)-set
in Rd+1.

Proof. First note that for (t, x) ∈ I × E and r > 0 it holds

(t− r, t+ r)×B(x, r) ⊆ B((t, x), 2r) ⊆ (t− 2r, t+ 2r)×B(x, 2r).
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5 Solution of Kato’s conjecture for mixed boundary conditions

It is a classical result that Hl+1(U × V ) ' |U | · Hl(V ) holds with implicit
constants depending only on d, provided that U ⊆ R is Lebesgue mea-
surable and V ⊆ Rd has finite Hl-measure, see, e.g., [60, Thm. 2.10.45].
Thus, intersecting the inclusions above with I × E leads to

Hl+1
(
(I × E) ∩B((t, x), 2r)

)
' rl+1 ((t, x) ∈ I × E, 2r < 1).

Upon a modification of implicit constants, this comparability extends to
0 < r ≤ 1 by Lemma 1.2.23.

Corollary 5.4.6. The infinite D cylinder Ω↑D := ({0} × Ω) ∪ (R ×D)
is a d-set in Rd+1.

Proof. If D 6= ∅, then Lemma 5.4.5 asserts that R × D is a d-set in
Rd+1. Moreover, {0} × Ω is a d-set in Rd+1 due to Assumption 5.0.1 and
Lemma 1.2.18. Hence, the conclusion follows from Lemma 1.2.24.

The next result shows that functions on Ω can be trivially extended to
Ω ↑D without losing Sobolev regularity. Here, the fractional Hardy type
inequality from Section 5.3 comes into play.

Proposition 5.4.7. Let s ∈ (1
2 , 1). For each f ∈ Hs,2

D (Ω) the function

f↑ : Ω↑D → C, f↑(t, x) =

f(x), if t = 0, x ∈ Ω,
0, if x ∈ D,

is contained in Hs,2(Ω ↑ D, Hd), where Hd denotes the d-dimensional
Hausdorff measure in Rd+1, and satisfies ‖f↑‖Hs,2(Ω↑D,Hd) . ‖f‖Hs,2(Ω).
A similar statement holds if s ∈ (0, 1

2) and f ∈ Hs,2(Ω).

Proof. First let s ∈ (1
2 , 1). Since the outer measure E 7→ Hd({0} × E)

on Rd is a translation invariant Borel measure that assigns finite measure
to the unit cube, the induced measure coincides up to a norming constant
cd > 0 with the d-dimensional Lebesgue measure. For a proof of this
classical fact from elementary measure theory see, e.g., [33, Thm. 8.1].
Thus, f↑ ∈ L2(Ω↑D, Hd) is a consequence of f ∈ L2(Ω).
To compute the Hs,2(Ω ↑D,Hd)-norm of f↑, we split integration over

(Ω↑D)×(Ω↑D) according to the definition of f↑ and use Tonelli’s theorem
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5.4 Interpolation theory

to find

∫∫
x,y∈Ω↑D
|x−y|<1

|f↑(x)− f↑(y)|2

|x− y|d+2s dHd(x) dHd(y)

≤cd
∫∫

x,y∈Ω
|x−y|<1

|f(x)− f(y)|2

|x− y|d+2s dx dy

+ 2
∫
{0}×Ω

∫
x∈R×D
|x−y|<1

|f↑(y)|2

|x− y|d+2s dHd(x) dHd(y).

(5.16)

The first integral on the right-hand side is bounded by ‖f‖2
Hs,2D (Ω). In

order to handle the second one, fix y = (0, y) ∈ {0} × Ω. If the inner
domain of integration is non-empty, then there exists an n0 ∈ N0 such
that 2−(n0+1) < d(y,R×D) < 2−n0 . Splitting the domain of integration
into frame-like pieces

Cn :=
(
R×D

)
∩
(
(B(y, 2−n) \B(y, 2−(n+1))

)
(0 ≤ n ≤ n0)

leads to
∫

x∈R×D
|x−y|<1

1
|x− y|d+2s dHd(x) ≤

n0∑
n=0

2(n+1)(d+2s)Hd(Cn)

.
n0∑
n=0

2(n+1)(d+2s)2−dn,

where the second step follows since Ω ↑D is a d-set in Rd+1. An explicit
computation gives

n0∑
n=0

2(n+1)(d+2s)2−dn = 2d+2s

22s − 1(22s(n0+1) − 1)

. d(y,R×D)−2s = d(y,D)−2s

with implicit constants depending only on d and s. Now, Theorem 5.3.8
allows to estimate

∫
{0}×Ω

∫
x∈R×D
|x−y|<1

|f↑(y)|2

|x− y|d+2s dHd(x) dHd(y) .
∫

Ω

|f(y)|2

dD(y)2s dy . ‖f‖2
Hs,2D (Ω).
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5 Solution of Kato’s conjecture for mixed boundary conditions

With a view on (5.16) this completes the proof in the case s > 1
2 .

If s < 1
2 , the argument is literally the same except that we can simply

rest on Proposition 5.2.7 instead of Theorem 5.3.8, noting that of course
dD(y) ≥ d∂Ω(y) holds for each y ∈ Ω.

We have collected all tools that are necessary to establish the second
equality in (ii). The challenge is, as it turns out, to determine any inter-
polation space between L2(Ω) and a Sobolev space incorporating mixed
boundary conditions in the first place. This is done in the subsequent
proposition. The actual proof can then be completed using reiteration
techniques.

Proposition 5.4.8. If s ∈ (0, 1) and ϑ = 2
2s+1 , then

(
L2(Ω),Hs+1/2,2

D (Ω)
)
ϑs,2

=

Hs,2
D (Ω), if s > 1

2 ,
Hs,2(Ω), if s < 1

2 .

Proof. We prove both continuous inclusions separately.
⊆ : For brevity put X := (L2(Ω),Hs+1/2

D (Ω))ϑs,2. Let E be the extension
operator provided by Theorem 5.2.1. By (ϑs, 2)-real interpolation and the
interpolation rules provided by Theorem 1.3.20, E is bounded from X into(

L2(Rd),Hs+1/2,2
D (Rd)

)
ϑs,2
⊆
(
L2(Rd),Hs+1/2,2(Rd)

)
ϑs,2

= Hs,2(Rd).
(5.17)

To see that E in fact maps into Hs,2
D (Rd) if D 6= ∅ and s > 1

2 , first note
that in this case ϑs ∈ (1

2 , 1). Hence, it is possible to find λ ∈ (1
2 , ϑs) and

γ ∈ (0, 1) such that ϑs = (1 − γ)λ + γ. The reiteration theorem for real
interpolation, Theorem 1.3.10 yields

E(X ) ⊆
(
L2(Rd),Hs+1/2,2

D (Rd)
)
ϑs,2

=
((

L2(Rd),Hs+1/2,2
D (Rd)

)
λ,2
,Hs+1/2,2

D (Rd)
)
γ,2

=:
(
Y0,Y1

)
γ,2
.

As in (5.17) it follows that Y0 is continuously included in Hλ(s+1/2),2(Rd).
Since the exponent λ(s+ 1

2) is strictly larger than 1
2 , the restriction oper-

ator RD is defined on both Y0 and Y1, mapping them into the respective
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5.4 Interpolation theory

Sobolev spaces on D. However, by definition, Y1 is contained in the null
space of RD. Since (γ, 2)-real interpolation is exact of type γ, see Theo-
rem 1.3.9, (Y0,Y1)γ,2 and hence E(X) is contained in the null space of RD

as well. Due to (5.17) this implies E(X ) ⊆ Hs,2
D (Rd).

From the considerations above we conclude that if s > 1
2 , then each

f ∈ X belongs to Hs,2
D (Ω) as the restriction of Ef ∈ Hs,2

D (Rd) and that,
since E : X → Hs,2

D (Rd) is bounded, this inclusion is continuous. Likewise,
if s < 1

2 , then X ⊆ Hs,2(Ω) with continuous inclusion.
⊇ : We concentrate on the case s > 1

2 . Upon replacing Hs,2
D (Ω) by

Hs,2(Ω) the proof in the case s < 1
2 is literally the same. The roadmap for

the somewhat involved argument reads as follows:

Hs+1/2,2
R×D (Rd+1) Lem. 5.4.4−−−−−−→ L2

(
R; Hs+1/2,2

D (Rd)
)
∩ Hs+1/2,2

(
R; L2(Rd)

)
EΩ↑D

x yRΩ

Hs,2(Ω↑D) L2
(
R; Hs+1/2,2

D (Ω)
)
∩ Hs+1/2,2

(
R; L2(Ω)

)
Prop. 5.4.7

x yThm. 5.4.3

Hs,2
D (Ω)

(
L2(Ω),Hs+1/2,2

D (Ω)
)
ϑs,2

.

Figure 8: A flow diagram for the proof of the inclusion ⊇.

To make this precise, first note that in view of Theorem 5.4.3 and the
bounded inverse theorem it suffices to construct for general f ∈ Hs,2

D (Ω) a
function f⊗ such that

f⊗ ∈ L2
(
R; Hs+1/2,2

D (Ω)
)
∩ Hs+1/2,2

(
R; L2(Ω)

)
, f⊗(0) = f.(5.18)

For the construction let f↑ ∈ Hs,2(Ω ↑ D, Hd) be given by Proposi-
tion 5.4.7. Apply Proposition 5.1.2 to the d-set Ω ↑D ⊆ Rd+1 to obtain
an extension g ∈ Hs+1/2,2(Rd+1) of f↑. In virtue of Lemma 5.4.4 this
extension is related to the the Banach space-valued function

g⊗ ∈ L2
(
R; Hs+1/2,2(Rd)

)
∩ Hs+1/2,2

(
R; L2(Rd)

)
.

A closer inspection of g⊗ making use of the exact definition of f↑ reveals
the following.
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5 Solution of Kato’s conjecture for mixed boundary conditions

(i) By definition of f↑ it holds g ∈ Hs+1/2,2
R×D (Rd+1) ⊆ H1,2

R×D(Rd+1). Note
that this notation is meaningful for R × D is either empty or a
d-set in Rd+1 thanks to Lemma 5.4.5. Corollary 5.1.9 provides a
sequence {gn}n of smooth, compactly supported functions whose
support avoids R×D that approximates g in H1,2(Rd+1). Owing to
Lemma 5.4.4 we can, after passing to a suitable subsequence, assume
for almost all t ∈ R that

lim
n→∞

gn(t, ·) = lim
n→∞

(gn)⊗(t) = g⊗(t) (in H1,2(Rd)).

Since gn(t, ·) ∈ C∞D (Rd) for all t ∈ R by construction, this en-
tails that for a.e. t ∈ R the function g⊗(t) ∈ Hs+1/2,2(Rd) satis-
fies RD(g⊗(t)) = 0, so that it is contained in the closed subspace
Hs+1/2,2
D (Rd). Here, RD is the restriction operator to the (d−1)-setD,

cf. Proposition 5.1.2, and we have used its boundedness from H1,2(Rd)
onto L2(D,Hd−1). Summing up, it follows g⊗ ∈ L2

(
R; Hs+1/2,2

D (Rd)
)
.

(ii) Lemma 5.4.4 in combination with the embedding (5.14) reveals g⊗(0)
as the L2(Rd)-limit of {gn(0, ·)}n. As {0} × Ω is a d-set in Rd+1 by
Assumption 5.0.1 and Lemma 1.2.18, Proposition 5.1.2 provides a
bounded restriction operator

R{0}×Ω : H1,2(Rd+1)→ L2({0} × Ω, Hd)

and it also follows

lim
n→∞

gn|{0}×Ω = lim
n→∞

R{0}×Ω(gn) = R{0}×Ω(g) = f↑|{0}×Ω

as a limit in L2({0} × Ω, Hd). Identifying the two measure spaces
(Ω, | · |) and ({0} × Ω, Hd) as in the proof of Proposition 5.4.7, we
conclude from the previous observations that g⊗(0) = f holds a.e.
on Ω.

Altogether,

g⊗ ∈ L2
(
R; Hs+1/2,2

D (Rd)
)
∩ Hs+1/2,2

(
R; L2(Rd)

)
, g⊗(0)|Ω = f,

so that (5.18) holds for the choice f⊗(t) := g⊗(t)|Ω, t ∈ R.
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5.4 Interpolation theory

Now, the proof of the second equality in (ii) can easily be completed.
In the following all function spaces will be on Ω, so for brevity we shall
write L2 instead of L2(Ω) and so on. We have to show(

L2,H1,2
D

)
s,2

= Hs,2
D and

(
L2,H1,2

D

)
t,2

= Ht,2 (0 < t < 1
2 < s < 1).

Given s ∈ (1
2 , 1) set ϑ := 2

2s+1 . Observe that ϑs < ϑ < 1 so that there
exists a λ ∈ (0, 1) such that ϑ = (1 − λ)ϑs + λ. Using in sequence
the reiteration theorem for real interpolation, Theorem 1.3.10, as well as
Proposition 5.4.8 and Theorem 5.4.1(i), leads to(

L2,Hs+1/2,2
D

)
ϑ,2

=
((

L2,Hs+1/2,2
D

)
ϑs,2

,Hs+1/2,2
D

)
λ,2

=
(
Hs,2
D ,Hs+1/2,2

D

)
λ,2

= H1,2
D .

Reapplication of the reiteration theorem and Proposition 5.4.8 yield the
desired equality(

L2,H1,2
D

)
s,2

=
(
L2,

(
L2,Hs+1/2,2

D

)
ϑ,2

)
s,2

=
(
L2,Hs+1/2,2

D

)
ϑs,2

= Hs,2
D .

Likewise for t ∈ (0, 1
2) set ϑ := 2

2t+1 and employ in sequence the reiteration
theorem, the identity above for the choice s = t+ 1

2 , and Proposition 5.4.8
to find(

L2,H1,2
D

)
t,2

=
(
L2,

(
L2,H1,2

D

)
t+1/2,2

)
ϑt,2

=
(
L2,Ht+1/2

D

)
ϑt,2

= Ht,2.

This completes the proof. �

5.4.4 A remark on the critical case θ = 1
2

As the trace operatorRD from Proposition 5.1.2 is only defined on Hθ,2(Rd)
if θ > 1/2, there is no analogously defined space H1/2,2

D (Ω). Still, of course,
there are (1

2 , 2)-real and 1
2 -complex interpolation spaces between L2(Ω)

and H1,2
D (Ω) and the question arises if these spaces know about the trace-

zero condition on D in any reasonable sense. Below we characterize these
spaces by a suitable fractional Hardy type inequality.

Proposition 5.4.9. The following spaces coincide up to equivalent norms:

(L2(Ω),H1,2
D (Ω))1/2,2 = [L2(Ω),H1,2

D (Ω)]1/2 = H1/2,2(Ω) ∩ L2(Ω, dx
dD(x)).
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5 Solution of Kato’s conjecture for mixed boundary conditions

Remark 5.4.10. By definition the rightmost space consists of all func-
tions f ∈ H1/2,2(Ω) that satisfy the fractional type Hardy inequality∫

Ω

|f(x)|2

dD(x) dx <∞.

Proof of Proposition 5.4.9. For brevity put

X := (L2(Ω),H1,2
D (Ω))1/2,2 and Y := H1/2,2(Ω) ∩ L2(Ω, dx

dD(x)).

First, recall from Theorem 5.4.1 that X = [L2(Ω),H1,2
D (Ω)]1/2.

In order to prove X = Y , first let f ∈ Y . Then f↑ defined in Proposi-
tion 5.4.7 belongs to H1/2,2(Ω ↑D, Hd). Indeed, in the proof of Proposi-
tion 5.4.7 the restriction s > 1

2 has only been used in the very last estimate
in order to guarantee that

∫
Ω |f(x)|2 dD(x)−2s dx is finite. For f ∈ Y and

s = 1
2 this, however, follows by definition of Y . Therefore f ∈ X follows

literally as in part ‘⊇’ of the proof of Proposition 5.4.8.
The next step is to prove X ⊆ H1/2,2(Ω) with continuous inclusion. To

this end, let E be the extension operator provided by Theorem 5.2.1. By
Theorem 1.3.20,

(L2(Rd),H1,2(Rd))1/2,2 = H1/2,2(Rd),

so that E maps X boundedly into H1/2,2(Rd). Since the restriction from
H1/2,2(Rd) onto H1/2,2(Ω) is bounded, the claim follows.
It remains to prove X ⊆ L2(Ω, dx

dD(x)) with continuous inclusion. Here,
note that due to Corollary 2.4.8 there is a continuous inclusion

H1,2
D (Ω) ⊆ L2(Ω, dx

dD(x)).

Hence, the claim follows by (1
2 , 2)-real interpolation of L2-spaces with a

change of measure, see Theorem 1.3.23.
Remark 5.4.11. Unlike in the case s ∈ (0, 1

2), the fractional Hardy in-
equality occurring above encapsulates some boundary behavior on D and
is not satisfied by every function f ∈ H1/2,2(Ω), compare with Proposi-
tion 5.2.7. For example, let Ω = B(0, 1), D = ∂B(0, 1), and f = 1. Then
of course f ∈ H1/2,2(Ω) but∫

Ω
|f(x)|2 dD(x)−1 dx '

∫ 1

0
rd−1(1− r)−1 dr =∞.

This also shows that the upper bound for the range of exponents in Propo-
sition 5.2.7 is sharp.
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5.5 Extrapolation theorem for the Laplacian

5.5 Extrapolation theorem for the fractional
powers of the Laplacian

We return to differential operators and establish optimal Sobolev regu-
larity for the domains of the fractional powers of the weak Laplacian on
L2(Ω) with form domain V = W1,2

D (Ω). Let us recall that by this we
mean the maximal accretive operator −∆V associated with the bounded
symmetric sesquilinear form

V × V → C, (u, v) 7→
∫

Ω
∇u · ∇v.

For technical reasons it will be more convenient to work with 1−∆V , which
is the invertible maximal accretive operator associated with the form

j : V × V → C, j(u, v) =
∫

Ω
u · v +

∫
Ω
∇u · ∇v.

We shall frequently use without further reference that the domains of
corresponding fractional powers of −∆V and 1 − ∆V coincide (Proposi-
tion 3.2.22). Moreover, domains of closed operators will always be consid-
ered as a Banach space with respect to the graph norm.

Proposition 5.5.1 ([107, Cor. 4.30]). If B is an invertible maximal accre-
tive operator on a Hilbert space, then for all α, β ≥ 0 and for all θ ∈ [0, 1]
it holds

[
D(Bα),D(Bβ)

]
θ

= D(B(1−θ)α+θβ).

On recalling that by Proposition 5.1.8 and the square root property
for operators associated with bounded symmetric sesquilinear forms [91,
Thm. VI.2.23] it holds

H1,2
D (Ω) = V = D((1−∆V)1/2)

up to equivalent norms, part (ii) of Theorem 5.4.1 translates into the
following result.
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5 Solution of Kato’s conjecture for mixed boundary conditions

Proposition 5.5.2. Let −∆V be the weak Laplacian with form domain
V. Then up to equivalent norms

D((1−∆V)α) =

H2α,2
D (Ω), if α ∈ (1

4 ,
1
2 ],

H2α,2(Ω), if α ∈ [0, 1
4).

By optimal Sobolev regularity for the fractional powers of −∆V we mean
that the formula from Proposition 5.5.2 extrapolates slightly above the
exponent α = 1

2 , that is,

D((1−∆V)α) = H2α,2
D (Ω) (α ∈ (1

2 ,
1
2 + ε))

for some 0 < ε < 1
4 . In order to prove so, we will use an interpola-

tion/extrapolation argument due to Pryde [131]. All function spaces
occurring in the following will be on Ω and for brevity we will write again
L2 instead of L2(Ω) and so on. We begin with some interpolation estimates
for the sesquilinear form j.

Lemma 5.5.3. If α ∈ [1
2 ,

3
4), then

|j(u, v)| . ‖u‖D((1−∆V )α)‖v‖H2−2α,2
D

(u ∈ D((1−∆V)α), v ∈ V).

Proof. By Proposition 3.2.21, D(1−∆V) is a core for D((1−∆V)α) and
since the latter is continuously included intoD((1−∆V)1/2) = V , it suffices,
by approximation, to consider the special case u ∈ D(1 − ∆V). As with
1 − ∆V also its fractional powers are self-adjoint, see Proposition 3.2.18,
it follows
∣∣∣j(u, v)

∣∣∣ =
∣∣∣((1−∆V)u

∣∣∣ v)
L2

∣∣∣ =
∣∣∣((1−∆V)αu

∣∣∣ (1−∆V)1−αv
)

L2

∣∣∣
≤ ‖u‖D((1−∆V )α)‖v‖D((1−∆V )1−α)

for all v ∈ V . This is the claim since D((1 − ∆V)1−α) = H2−2α,2
D up to

equivalent norms, see Proposition 5.5.2.

Lemma 5.5.4. If α ∈ (1
4 ,

1
2 ], then

|j(u, v)| . ‖u‖H2α,2
D
‖v‖H2−2α,2

D
(u ∈ V , v ∈ H2−2α,2

D ).
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5.5 Extrapolation theorem for the Laplacian

Proof. Recall from Remark 5.0.2 that ∂ Ω is a (d− 1)-set. Hence, if the
pair (Ω, D) satisfies Assumption 5.0.1, then so does (Ω, ∂ Ω). Therefore,
Theorem 5.4.1 combined with the duality principle for complex interpola-
tion, Proposition 1.3.15, yields the interpolation identities

[
L2,H1,2

D

]
2α

= H2α,2
D and

[
(L2)∗, (H1,2

∂Ω)∗
]

1−2α
= (H1−2α,2)∗.(5.19)

Let 1 ≤ j ≤ d. By Corollary 5.1.9 the test function space C∞c (Ω) is dense
in H1,2

∂Ω. Given f ∈ L2, the distributional derivative ∂jf can therefore be
canonically regarded as an element of (H1,2

∂Ω)∗. In virtue of this identifica-
tion

∂j :
[
L2,H1,2

D

]
2α
→
[
(H1,2

∂Ω)∗, (L2)∗
]

2α
=
[
(L2)∗, (H1,2

∂Ω)∗
]

1−2α

is bounded. Taking into account (5.19), we conclude that ∂j maps H2α,2
D

boundedly into (H1−2α,2)∗. To establish the actual claim, simply note that
∂j also maps H2−2α,2

D boundedly into H1−2α,2, where this time distributional
derivatives are identified with L2-functions rather than functionals. So, for
u ∈ V and v ∈ H2−2α,2

D we conclude

|j(u, v)| ≤ ‖u‖L2‖v‖L2 +
d∑
j=1
‖∂ju‖(H1−2α,2)∗‖∂jv‖H1−2α,2

. ‖u‖H2α,2
D
‖v‖H2−2α,2

D

and the proof is complete.

Our main result is now a surprisingly simple consequence of the interpo-
lation theory established in Section 5.4 and S̆nĕıberg’s stability theorem,
Theorem 1.3.24. In the proof we shall consider the interpolation couples

(X0,X1) := (H2/3,2
D ,H4/3,2

D ) and (Y0,Y1) := (X ∗1 ,X ∗0 ).

For completeness let us mention the following: By Theorem 5.4.1 the
complex interpolation spaces induced by the couple (X0,X1) are, up to
equivalent norms,

[
X0,X1

]
θ

= H2α,2
D (θ ∈ [0, 1], α = 1+θ

3 ).(5.20)
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5 Solution of Kato’s conjecture for mixed boundary conditions

From Theorems 5.4.1(i) and 1.3.13 we can also infer that the smallest
space H4/3,2

D is dense in H2α,2
D for each α ∈ [1

3 ,
2
3 ]. For these values of α the

anti dual spaces (H2α,2
D )∗ can then be naturally embedded into (H4/3,2

D )∗
via restriction of functionals. In virtue of these embeddings (Y0,Y1) is an
interpolation couple and due to reflexivity of X0, see Corollary 5.2.4, and
duality for complex interpolation as in Proposition 1.3.15, the induced
interpolation spaces are[

Y0,Y1
]
θ

= (H2−2α,2
D )∗ (θ ∈ [0, 1], α = 1+θ

3 ).

Theorem 5.5.5. Let Assumptions 5.0.1 be satisfied and let ∆V be the
weak Laplacian with form domain V. Then

D((−∆V)α) = H2α,2(Ω) (α ∈ (0, 1
4))

and there exists an ε ∈ (0, 1
4) such that

D((−∆V)α) = H2α,2
D (Ω) (α ∈ (1

4 ,
1
2 + ε)).

Proof. The first part as well as the second part for α ≤ 1
2 is due to

Proposition 5.5.2. The difficult part is the extension to larger values of α.
With Xj,Yj, j = 0, 1, as above, Lemma 5.5.4 can be reformulated as

asserting that the duality map u 7→ j(u, ·) extends by density from V to a
bounded operator

J : X0 → Y0,

which, owing to the symmetry of j, maps X1 boundedly into Y1. Hence,
by Theorem 1.3.24 the set

I :=
{
α ∈ (1

3 ,
2
3)
∣∣∣ J : H2α,2

D → (H2−2α,2
D )∗ is an isomorphism

}
is open in (1

3 ,
2
3). Since j is a bounded coercive sesquilinear form on V , the

very statement of the Lax-Milgram lemma is that α = 1
2 is a member of

I. As therefore the latter is non-empty, there also exists ε0 ∈ (0, 1
6) such

that [1
2 − ε0,

1
2 + ε0] ⊆ I.

Now, let α ∈ [1
2 ,

1
2 +ε0] and take u ∈ D((1−∆V)α) ⊆ V . A reformulation

of Lemma 5.5.3 is that Ju = j(u, ·) is a bounded conjugate-linear functional
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5.6 The solution of Kato’s conjecture

on H2−2α,2
D with norm not exceeding the graph norm of u. Due to α ∈ I

it follows u ∈ H2α,2
D with bound

‖u‖H2α,2
D
. ‖Ju‖(H2−2α,2

D )∗ . ‖u‖D((1−∆V )α).

This establishes D((1−∆V)α) ⊆ H2α,2
D with continuous inclusion.

In order to see that for α close enough to 1
2 we have in fact equality, first

recall from Proposition 5.5.2 that H2α,2
D = D((1−∆V)α) holds if α ∈ (1

4 ,
1
2 ].

Now,

Id : D((1−∆V)α)→ H2α,2
D

is bounded provided α ∈ (1
4 ,

1
2 + ε0] and an isomorphism provided that

α ∈ (1
4 ,

1
2 ]. Since the domains of the fractional powers of 1−∆V interpolate

according to Proposition 5.5.1, we can re-apply Theorem 1.3.24 to obtain
0 < ε < ε0 such that Id : D((1−∆V)α)→ H2α,2

D is an isomorphism for all
α ∈ [1

2 ,
1
2 + ε).

5.6 The solution of Kato’s conjecture for
mixed boundary conditions

A long story comes to an end: After all preliminary work being done in
this and the previous chapter, we eventually resolve the Kato square root
problem for mixed boundary conditions, thereby answering J. L. Lions’
question from 1962 [105] to the affirmative. For simplicity we first consider
a single divergence-form operator

−∇ · µ∇

on Ω subject to mixed boundary conditions on D, which we identify with
the maximal accretive operator in L2(Ω) associated with the sesquilinear
form

a : V × V → C, a(u, v) =
∫

Ω
µ∇u · ∇v

as usual. As before, V = W1,2
D (Ω). For convenience we repeat the common

ellipticity assumption, Assumption 4.0.5.
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5 Solution of Kato’s conjecture for mixed boundary conditions

Assumption 5.6.1. It holds µ ∈ L∞(Ω;Cd×d) and for some λ > 0 the
Gårding inequality

Re a(u, u) ≥ λ‖∇u‖2
L2(Ω;Cd) (u ∈ V)

is satisfied.

Theorem 5.6.2 (The solution of the Kato problem). Let Ω ⊆ Rd be a
domain with Dirichlet part D ⊆ ∂ Ω satisfying Assumption 5.0.1 and let
µ satisfy Assumption 5.6.1. Let A be the maximal accretive operator on
L2(Ω) associated with −∇ · µ∇ on the form domain V = W1,2

D (Ω). Then
the domain of

√
A coincides with the form domain V and the homogenous

estimate

‖
√
Au‖L2(Ω) ' ‖∇u‖L2(Ω;Cd) (u ∈ D(

√
A))

holds true.

Remark 5.6.3. In the case of a real coefficient matrix µ ∈ L∞(Ω;Rd×d),
Theorem 5.6.2 also implies the solution to the square root problem for
mixed boundary conditions on Lp(Ω), 1 < p < 2, due to a result of
Auscher, Badr, Haller-Dintelmann, and Rehberg [16]: For every
1 < p < 2 the operator A is closable in Lp(Ω) and its closure Ap is a
sectorial operator with D(

√
Ap) = W1,p

D (Ω).

For the proof we need one final lemma.

Lemma 5.6.4. Suppose the setup of Theorem 5.6.2. If D(
√
A) = V with

the inhomogeneous estimate

‖
√

1 + Au‖L2(Ω) ' ‖u‖L2(Ω) + ‖∇u‖L2(Ω;Cd) (u ∈ D(
√
A)),

then also

‖
√
Au‖L2(Ω) ' ‖∇u‖L2(Ω;Cd) (u ∈ D(

√
A)).

Proof. Throughout the proof we abbreviate L2-norms by ‖ · ‖2. The
key observation is that our geometric framework allows for a Poincaré
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5.6 The solution of Kato’s conjecture

inequality on V ∩R(A). Since A is maximal accretive and hence sectorial
of angle π

2 , there is a topological kernel-range splitting

L2(Ω) = N (A)⊕R(A),(5.21)

the closure taken in L2(Ω), see Proposition 3.2.2. Abbreviate Y := R(A)
and equip it with the L2(Ω)-norm. We also need the space X := V ∩ Y
which is closed under the norm u 7→ (

∫
Ω |u|

2 + |∇u|2)1/2 inherited from V .
Its meaning stems from the global Poincaré inequality

‖u‖2 . ‖∇u‖2 (u ∈ X ).(5.22)

Indeed, by Proposition 2.3.4 a sufficient condition for this inequality is that
X embeds compactly into L2(Ω) and does not contain non-zero constant
functions. Compactness of the embedding follows from Remark 1.1.14
since there is a bounded extension operator E : V → W1,2(Rd) and con-
stant non-zero functions that belong to V also belong to the nullspace of
A and thus – by the kernel-range splitting – cannot be contained in X .
Now, define B as the injective part of A, that is, the maximal restriction

of A to an operator on Y . For details, see Example 3.2.16. Then B is
maximal accretive on the Hilbert space Y and its domain is given by
D(B) = D(A) ∩ Y ⊆ X . By ellipticity of a,

‖Au‖2‖u‖2 ≥ |(Au | u)2| = |a(u, u)| ≥ λ‖∇u‖2
2 (u ∈ D(A)).

This implies that firstly N (A) only contains constant functions and sec-
ondly that due to (5.22) every w ∈ D(B) satisfies the a priori estimate
‖Bw‖2 & ‖w‖2. Hence, B is injective with closed range and the kernel-
range decomposition for maximal accretive operators entails that B is in-
vertible. By Proposition 3.2.21 invertibility is inherited to

√
B, which coin-

cide with the maximal restriction of
√
A to Y and has domain D(

√
A)∩Y ,

see again Example 3.2.16. Consequently,

‖
√
Aw‖2 ' ‖w‖2 + ‖

√
Aw‖2 (w ∈ D(

√
B)).

Now, taking into account the assumptions and that D(
√
A) = D(

√
1 + A)

holds up to equivalent norms, D(
√
B) = V ∩ Y = X follows with equiva-

lences

‖
√
Aw‖2 ' ‖w‖2 + ‖∇w‖2 ' ‖∇w‖2 (w ∈ D(

√
B)).(5.23)

245



5 Solution of Kato’s conjecture for mixed boundary conditions

Here, the second part is due to the Poincaré estimate (5.22).
In order to prove the required homogeneous estimate ‖

√
Au‖2 ' ‖∇u‖2

for u ∈ V , split u = v + w according to (5.21) where ad hoc v ∈ N (A)
and w ∈ Y . We already know ∇v = 0 and

√
Av = 0 is a consequence

of Proposition 3.2.21(iii). Moreover, w belongs to D(
√
B) = X = V ∩ Y

since both u and v belong to V . Hence, (5.23) applies and

‖
√
Au‖2 = ‖

√
Aw‖2 ' ‖∇w‖2 = ‖∇v‖2

follows.

Proof of Theorem 5.6.2. Of course we appeal to Theorem 4.3.1. Since
the ellipticity assumption on µ is the same as in Assumption 4.0.5, this
result yields the square root property

D(
√
A) = V with ‖

√
1 + Au‖L2(Ω) ' ‖u‖2 + ‖∇u‖2(5.24)

for all u ∈ D(
√
A) for the following price:

(Ω) The domain Ω is a d-set.

(∂ Ω) The boundary ∂ Ω is a (d− 1)-set.

(V) The form domain V is a closed subspace of W1,2(Ω) that contains
W1,2

0 (Ω) and is stable under multiplication by smooth functions.
Moreover, there is a bounded extension operator E : V →W1,2(Rd).

(α) For some α ∈ (0, 1) the complex interpolation space [L2(Ω;Cm),V ]α
coincides with the Bessel potential space Hα,2(Ω;Cm) up to equiva-
lent norms.

(E) For the same α as above D((−∆V)1/2+α/2) ⊆ H1+α(Ω) holds with
continuous inclusion.

Now, Assumption 5.0.1 takes care of (Ω) and (∂ Ω), see also Remark 5.0.2.
Since here V is the closure of C∞D (Ω) in W1,2(Ω), the first part of (V) is
obvious, whereas the second one follows from Theorem 2.2.23. Moreover,
(α) is even satisfied for all α ∈ (0, 1

2) owing to to Theorem 5.4.1(ii) and in
Theorem 5.5.5 we have established the crucial assumption (E) for α suffi-
ciently small. It remains to upgrade the inhomogeneous estimate (5.24) to
the at first sight stronger homogeneous estimate required in the theorem,
but this is precisely the statement of Lemma 5.6.4.
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5.6 The solution of Kato’s conjecture

For a later use we record one of the intermediate results in the proofs
of Theorem 5.6.2 and Lemma 5.6.4 as a separated result.

Corollary 5.6.5. In the setup of Theorem 5.6.2 the restriction of A to
R(A) is an invertible maximal accretive operator.

5.6.1 An extension to elliptic systems
In this section we sketch how to extend Theorem 5.6.2 to coupled systems
of elliptic operators on Ω of the form

(Au)1 = −
d∑

i,j=1

m∑
k=1

∂i(µ1,k
i,j ∂juk)

... ... ...

(Au)m = −
d∑

i,j=1

m∑
k=1

∂i(µm,ki,j ∂juk)

with coefficients µl,ki,j ∈ L∞(Ω) and mixed boundary conditions with possi-
bly different Dirichlet parts Dk for each component uk. As for geometry,
we assume that each pair (Ω, Dk) satisfies Assumption 5.0.1.

Assumption 5.6.6.

(i) The domain Ω ⊆ Rd, d ≥ 2, is bounded and a d-set.

(ii) The Dirichlet parts Dk, 1 ≤ k ≤ m, are closed subsets of ∂ Ω and
each of them is either empty or a (d− 1)-set.

(iii) The domain Ω satisfies the Lipschitz condition around every point
in the closure of ∂ Ω \ ⋂mk=1Dk = ⋃m

k=1 ∂ Ω \Dk.

To define an appropriate form domain for A, first take Vk, 1 ≤ k ≤ m,
as the closure of C∞Dk(Ω) under the norm ‖uk‖Vk := (

∫
Ω |uk|

2 + |∇uk|2)1/2

and then put

V :=
m∏
k=1
Vk =

m∏
k=1

W1,2
Dk

(Ω).
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5 Solution of Kato’s conjecture for mixed boundary conditions

We identify A with the maximal accretive operator in L2(Ω)m associated
with the elliptic sesquilinear form

a : V× V→ C, a(u, v) =
d∑

i,j=1

m∑
l,k=1

∫
Ω
µl,ki,j∂juk · ∂ivl

and make the following assumption.

Assumption 5.6.7. There exists some λ > 0, such that the Gårding
inequality holds:

Rea(u, u) ≥ λ
m∑
k=1
‖∇uk‖2

L2(Ω)d (u ∈ V).

Here, and throughout, we write uk, 1 ≤ k ≤ m, for the component func-
tions of u ∈ L2(Ω)m. This setup for elliptic systems has been previously
studied, e.g., in [75]. For a survey on regularity results for elliptic systems
with rough coefficients, see, e.g., [114].
For 1 ≤ k ≤ m let ∆Vk be the weak Laplacian with form domain Vk.

For the choice µl,ki,j = δi,jδl,k, where δ is Kronecker’s delta, the sesquilinear
form a becomes

V× V→ C, (u, v) 7→
m∑
k=1

∫
Ω
∇uk · ∇vk

and it can easily be checked that the associated operator is the negative
componentwise Laplacian

−∆V = diag(−∆V1 , . . . ,−∆Vm) on D(−∆V) =
m∏
k=1
D(−∆Vk).

The subsequent theorem solves the Kato square root problem for the
general coupled elliptic system A. The proof relies again on Theorem 4.3.1,
which we had directly proved for systems. The key observation is the
following decoupling property:

It suffices to work with the diagonal system −∆V instead of
the general coupled system A. However, all required prop-
erties of the system −∆V can be obtained from the previous
sections by coordinatewise considerations.
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5.6 The solution of Kato’s conjecture

Theorem 5.6.8 (The solution of the Kato problem for systems). Under
Assumptions 5.6.6 and 5.6.7 the domain of

√
A coincides with the form

domain V and

‖
√
Au‖L2(Ω)m ' ‖(∇uk)mk=1‖L2(Ω)dm (u ∈ D(

√
A)).

Proof. The argument literally follows the proof of Theorem 5.6.2. First
of all, Theorem 4.3.1 gives D(

√
A) = V along with the inhomogeneous

estimate

‖
√

1 + Au‖L2(Ω)m ' ‖(uk)mk=1‖L2(Ω)m + ‖(∇uk)mk=1‖L2(Ω)dm(5.25)

for all u ∈ D(
√
A) provided we can take care of the following:

(V) The form domain V is a closed subspace of W1,2(Ω)m that con-
tains W1,2

0 (Ω)m and is stable under multiplication by smooth scalar
functions. Moreover, there exists a bounded extension operator
E : V→W1,2(Rd)m.

(α’) For some α ∈ (0, 1) the complex interpolation space [L2(Ω)m,V]α
coincides with the Bessel potential space Hα,2(Ω)m up to equivalent
norms.

(E’) For the same α as above D((−∆V)1/2+α/2) ⊆ H1+α,2(Ω)m with con-
tinuous inclusion.

Note that we have not listed the assumptions (Ω) and (∂ Ω) which have
already been discussed in the proof of Theorem 5.6.2. Therein, we have
also checked that for each 1 ≤ k ≤ m the space Vk is stable under multi-
plication by smooth scalar-valued functions and that it admits a bounded
extension operator Ek : Vk → W1,2(Rd). Thus, (V) follows. To estab-
lish (α’) and (E’) first note that if Re(α) > 0, then the Balakrishnan
Representation, Proposition 3.2.25, readily yields

(−∆V)α = diag((−∆V1)α, . . . , (−∆Vm)α)

on

D((−∆V)α) =
m∏
k=1
D((−∆Vk)α).
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5 Solution of Kato’s conjecture for mixed boundary conditions

Thanks to Theorem 5.5.5 each −∆Vk satisfies (α) and (E) from the proof
of Theorem 5.6.2 not only for a single α but for all α in some open interval
with lower endpoint 0. Hence, (α) and (E) are met simultaneously by all
−∆Vk , 1 ≤ k ≤ m, if α > 0 is sufficiently small. This immediately verifies
(E’) and since the complex interpolation functor commutes with Cartesian
products as discussed in Corollary 1.3.8, also (α’) holds.
Finally, the required homogeneous estimate can be deduced from (5.25)

by the same arguments as in the proof of Lemma 5.6.4. Note that the
proof of Proposition 2.3.4 carries over to Cm-valued spaces word by word
under the assumption that the respective subspace does not contain any
non-zero constant function. This modification is of course necessary, since
the space of constant functions in this case is m-dimensional.

Remark 5.6.9. There does not seem to be a direct way to extend The-
orem 5.6.2 to coupled systems. In fact, without knowing that the claim
can be reduced to a decoupled diagonal system −∆V, the former results
are rather surprising.
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CHAPTER 6

Mixed boundary value problems on cylindrical domains

In this final chapter we present an application of our resolution of Kato’s
conjecture for elliptic systems, Theorem 5.6.8, to classical elliptic bound-
ary value problems. Thereby, we also return to the original motivations
of Kato [92] and Lions [105] having led to the formulation of the Kato
square root problem in the first place, compare with the preface. For his-
torical reasons we prefer to change notation is this chapter and write L and
al,ki,j instead of A and µl,ki,j for the elliptic operators and their coefficients,
respectively.
We consider elliptic m×m-systems of second-order equations

(Lu)l(t, x) = −
d∑

i,j=0

m∑
k=1

∂i(al,ki,j (x)∂juk(t, x)) = 0 (l = 1, . . . ,m)(ES)

posed on a cylindrical domain R+×Ω with a bounded base Ω ⊆ Rd. Here,
and throughout, we write (t, x) ∈ R1+d, where we think of t ∈ R as the dis-
tinguished perpendicular direction and x ∈ Rd as the tangential direction.
We will assume that the coefficient tensor A(t, x) = (al,ki,j )

l,k=1,...,m
i,j=0,...,d (t, x) is

bounded on R+ × Ω and independent of the perpendicular variable, that
is, A(t, x) = A(x). The equations are complemented with mixed Dirich-
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6 Mixed boundary value problems on cylindrical domains

let/Neumann conditions

(BC)
u = 0 (on R+ ×D)

ν · A∇t,x u = 0 (on R+ × (∂ Ω \D))

on the lateral boundary, see Figure 9 for illustration. Here, ν denotes the
formal outer unit normal vector to the boundary of R+ × Ω. Geometric
assumptions on Ω and the Dirichlet part D are as in Chapter 5. In partic-
ular, the pure Dirichlet case D = ∂ Ω and the pure Neumann case D = ∅
are not excluded. Finally, on the bottom of the cylinder we prescribe one
of the following inhomogeneous boundary conditions given some data ϕ:

The Dirichlet condition u(0, ·) = ϕ ∈ L2(Ω)m,(Dir-A)

The Neumann condition (A∇t,x u)⊥(0, ·) = ϕ ∈ L2(Ω)m,(Neu-A)

The Dirichlet regularity condition ∇x u(0, ·) = ϕ ∈ L2(Ω)dm.(Reg-A)

Here, we already utilized the notation f = [f⊥, f‖]> ∈ Cm×Cdm for vectors
in Euclidean space of dimension n := (1 + d)m. Given f ∈ Cn, we call
f⊥ ∈ Cm the scalar part and f‖ ∈ Cdm the tangential part of f . Also, we
shall frequently identify

L2(R1+d) ∼= L2(R; L2(Rd))
W1,2(R1+d) ∼= L2(R; W1,2(Rd)) ∩W1,2(R; L2(Rd))

as in Section 5.4.3 without further mentioning and write ft = f(t, ·) for
f ∈ L2(R1+d).
Modern theory of such and other boundary value problems for second-

order elliptic differential operators dates back to the groundbreaking re-
sult of Dahlberg [45], who was first to solve the Dirichlet problem for
∆u = 0 on a Lipschitz domain Ξ with boundary data ϕ ∈ L2(∂ Ξ,Hd−1)
in 1979, and since then was exhaustively promoted by Kenig and collab-
orators. A first coherent theory for the Neumann and regularity problems
for real and symmetric equations on the upper halfspace, that is, when
m = 1, A(t, x) ∈ R(1+d)×(1+d), and Ω = Rd, was introduced by Kenig
and Pipher in 1993 [94]. For this type of equations results are rather
complete by now. For example, Hofmann, Kenig, Mayboroda, and
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Figure 9: The cylinder R+×Ω ⊆ R3 is built from a non-Lipschitzian base
Ω ⊆ R2 (the heart) that satisfies the standing geometric as-
sumptions in this chapter. The lateral boundary splits into a
Dirichlet part R+ ×D (highlighted by bold lines) and its com-
plement carrying homogeneous Neumann boundary conditions.
On the bottom of our heart ({0}×Ω) one of the inhomogeneous
boundary conditions (Dir-A), (Neu-A), or (Reg-A) is imposed.

Pipher showed in 2012 that the Dirichlet problem on the upper halfs-
pace can be solved with data ϕ ∈ Lp(Rd) for all real and non-symmetric
equations with coefficients independent of the perpendicular variable, pro-
vided p is sufficiently large [79]. In the symmetric case this was known for
p ≥ 2− ε since the famous work of Jerison and Kenig [85].
All of these results heavily build on real-variable techniques, such as

maximum principles and harmonic measures, which for equations with
complex coefficients (let alone coupled systems of such) are not available
anymore.
A completely different and efficient approach has been proposed and

developed to full strength in a series of papers by Auscher, Axelsson,
and McIntosh [12, 14, 15], who revisited the idea that the second-order

253



6 Mixed boundary value problems on cylindrical domains

system for u is related to a first-order system for the conormal gradient f of
u, a vector formed of the conormal derivative and the tangential gradient
at each interior point, see Definition 6.1.13. The first-order system for f
then has the form of an ‘evolution equation’

∂tft + DBft = 0 (t > 0)(FO)

for D a first-order self-adjoint operator acting on the tangential variables
and B a bounded accretive multiplication operator. It is tempting to study
this system using semigroup methods. However, since DB will not be
sectorial but only bisectorial, the underlying evolution for f will be forward
on one part of L2(Ω)n (on which −DB is a semigroup generator) and
backward on another part (on which DB is a semigroup generator). Hence,
L2(Ω)n has to be split into spectral subspaces, the Hardy spaces associated
with DB, compare with Section 3.3.4. On the positive spectral space H+

DB
the first-order system can be solved by the formula ft = e−tDBh+, t > 0,
where h+ ∈ H+

DB, but even more is true:
Under suitable regularity conditions on the solution u to the second-

order equation, every corresponding conormal gradient f is given by such,
or an akin, semigroup formula. For the Dirichlet problem, regularity is ex-
pressed by a Lusin area bound and for the Neumann- and regularity prob-
lems a modified non-tangential maximal function in the spirit of Kenig
and Pipher’s seminal work [94] is used. Hence, this new approach pro-
duces representation formulas in the optimal classes of solutions as well as
a priori inequalities, which are new even for real equations, prior to any
solvability issues.
Having at hand the a priori semigroup formulas, well-posedness of the

three boundary value problems (Dir-A), (Neu-A), and (Reg-A) within
the natural classes of solutions translates to the question whether every
boundary value ϕ occurs as a trace of a semigroup orbit. We will come
back to this issue in more detail in Section 6.4.
On Ω = Rd the a priori representations have been obtained over the

last decade in a series of papers by Auscher, Axelsson, Hofmann,
McIntosh, and collaborators, see [12–15, 20] and references therein. Let
us remark that the proof of the boundedness of the spectral projections
onto the Hardy spaces H±DB heavily stems on the technology used to solve
the Kato square root problem on Rn in [18, 19].
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The case of a cylinder base with non-empty boundary bears new chal-
lenges of mostly geometric nature arising from the lateral boundary con-
ditions. These have – at least to our knowledge – not been addressed
before. We start out in Section 6.1 by proving equivalence of the first-
and second-order systems on the level of suitable L2

loc(R+ × Ω)-weak so-
lutions. Stemming on our ΠB-theorem, Theorem 4.1.11, we will prove in
Section 6.1.2 that the ‘infinitesimal generator’ DB occurring in (FO) sat-
isfies quadratic estimates. Then, by means of the bounded H∞-calculus,
the spectral Hardy space decomposition follows from Theorem 3.3.20.
In Section 6.2 we present a careful analysis of the so-obtained semigroup

solutions to the first-order system. In particular, we will identify them as
elements of the natural solution spaces for the three boundary value prob-
lems. As the proofs of the a priori representation theorems of Auscher
and Axelsson [12] on the upper halfspace are purely functional calculit-
ical, they are not affected by the presence of Ω and D and apply without
any difficulties in our case as well, once the quadratic estimates for DB
are established.
Finally, in Section 6.4 we prove well-posedness of (Dir-A), (Neu-A), and

(Reg-A) if A is either Hermitean, of block form, or sufficiently close to one
of these classes in the L∞-topology.
Let us remark that the restriction to t-independent coefficients is only

for simplicity of exposition. In fact, in [12], see in particular the roadmap
[12, Sec. 3], Auscher and Axelsson give an abstract argument that al-
lows to transfer all results, such as representation and traces for solutions,
to coefficients A(x) + E(t, x) if E is small in a particular norm. Details
for our geometric setup will be carried out in the forthcoming paper [17].

Energy solutions to the Neumann problem

Perhaps the most classical approach to elliptic boundary value problems
is by the Lax-Milgram lemma. Intended as an appetizer for the rest of
the chapter, let us illustrate this approach by means of the Neumann
problem (Neu-A) with a non-empty lateral Dirichlet part R+ ×D. These
restrictions will reduce technicalities to a minimum but still allow to dis-
cuss and compare the so-obtained solutions with the much more involved
DB-approach we shall pursue in the rest of the chapter. Of course, the
Dirichlet and Dirichlet regularity problem can be treated similarly, see,
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6 Mixed boundary value problems on cylindrical domains

e.g., Auscher-McIntosh-Mourgoglou [20] for the case Ω = Rd. We
use the shorthand notation Lu = − divt,x A∇t,x u. The respective Neu-
mann problem is the set of equations

− divt,x A∇t,x u = 0 (in R+ × Ω)
u = 0 (on R+ ×D)

ν · A∇t,x u = 0 (on R+ × (∂ Ω \D))
(A∇t,x u)⊥ = ϕ (on {0} × Ω),

(6.1)

where ϕ is a given function on {0} × Ω, its regularity to be specified
below. Note that on the base of R+ × Ω the unit vector in t-direction
is the inward pointing unit normal, so that the inhomogeneous boundary
condition really is of Neumann type. We seek to construct weak solutions
in the Energy space

E := L2(R+; W1,2
D (Ω)m) ∩W1,2(R+; L2(Ω)m).

We make the following geometry and ellipticity assumption.

Assumption 6.0.1.

(i) The set Ω ⊆ Rd, d ≥ 2, is a domain and D ⊆ ∂ Ω is non-empty and
closed.

(ii) On W1,2
D (Ω)m the Poincaré inequality ‖u‖L2(Ω)m . ‖∇x u‖W1,2

D (Ω)dm

holds.

(iii) For some λ > 0 the Gårding inequality

Re
∫ ∞

0

∫
Ω
A∇t,x u · ∇t,x u ≥ λ

∫ ∞
0

∫
Ω
| ∇t,x u|2 (u ∈ E)

is satisfied.

Remark 6.0.2. Assumption 6.0.1(ii) is to guarantee that E can equiva-
lently be normed by the homogeneous norm ‖∇t,x ·‖L2(R+;L2(Ω)n).

In order to derive a variational formulation of (6.1), suppose that u ∈ E
solves the set of equations in a formal sense and let v ∈ E be arbitrary.
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Splitting tangential and perpendicular derivatives yields

0 =
∫ ∞

0

∫
Ω
− divt,x A∇t,x u · v

=
∫ ∞

0

∫
Ω
− divx(A∇t,x u)‖ · v +

∫
Ω

∫ ∞
0
−∂t(A∇t,x u)⊥ · v.

Next, we formally integrate by parts taking into account the lateral bound-
ary conditions. In addition we use that L2-functions vanish at ∞ – at
least in the sense that they can be approximated in L2 by functions with
bounded support – in order to dispense with anti-derivatives at t = ∞.
This leads to the symmetrization

0 =
∫ ∞

0

∫
Ω

(A∇t,x u)‖ · ∇x v +
∫

Ω

∫ ∞
0

(A∇t,x u)⊥ · ∂tv

−
∫

Ω
(A∇t,x u)⊥ · v

∣∣∣∣t=∞
t=0

=
∫ ∞

0

∫
Ω
A∇t,x u · ∇t,x v −

∫
Ω
ϕ · v|t=0.

In order to make sense of the restriction v|t=0 we recall the trace charac-
terization of real interpolation spaces [107, Prop. 1.13]: Every element of
E admits a representative in the space C([0,∞), T ), where

T :=
(
L2(Ω)m,W1,2

D (Ω)m
)

1/2,2

is the trace space of the energy space E , and an equivalent norm on T may
be defined by

‖v0‖T := inf
{
‖v‖E ; v ∈ E and v(0) = v0

}
(v0 ∈ T ).(6.2)

These considerations lead to the classical concept of variational solutions
(also called energy solutions) to elliptic boundary value problems.

Definition 6.0.3. Let ϕ ∈ T ∗. An energy solution to the Neumann
problem (6.1) is a function u ∈ E satisfying

∫ ∞
0

∫
Ω
A∇t,x u · ∇t,x v = ϕ(v(0)) (v ∈ E).
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6 Mixed boundary value problems on cylindrical domains

Remark 6.0.4. Due to the dense embeddings W1,2
D (Ω)m ⊆ T ⊆ L2(Ω)m,

see Theorem 1.3.9, every function ϕ ∈ L2(Ω)m induces a unique bounded
conjugate-linear functional T 3 v 7→

∫
Ω ϕ · v on T , but more general

boundary data can be allowed in Definition 6.0.3.

Proposition 6.0.5. For each ϕ ∈ T ∗ there exists a unique energy solution
u of the Neumann problem (6.1) and the a priori estimate ‖u‖E . ‖ϕ‖T ∗
is satisfied.

Proof. This is just the Lax-Milgram lemma applied in the Hilbert space
E . Indeed, owing to Assumption 6.0.1 the sesquilinear form

a : E × E , (u, v) 7→
∫ ∞

0

∫
Ω
A∇t,x u · ∇t,x v

is coercive on E and by continuity of the trace map E → T a bounded
conjugate-linear functional Φ ∈ E∗ is defined by Φ(u) = ϕ(u(0)).

The fact that the coefficient tensor A is independent of the perpendic-
ular variable t reflects in the elliptic equation − divt,x A∇t,x u = 0 since
if u is a solution in the distributional sense say, then so are the shifted
functions u(s + ·, ·) for s > 0. Recalling that by Proposition 6.0.5 the
associated Neumann problem (6.1) is well-posed in the class of energy so-
lutions, we expect that solutions obey a semigroup flow, compare with,
e.g., [7, Ch. 3]. In order to carry out details, let us start with the en-
ergy solution u with boundary data ϕ ∈ T ∗ determined by the variational
equation ∫ ∞

0

∫
Ω
A∇t,x u · ∇t,x v = ϕ(v(0)) (v ∈ E).

The formal interpretation ϕ = (A∇t,x u)⊥|t=0 motivates to define a trace
(A∇t,x u)⊥|t=0 by means of the conjugate-linear functional

T → C, v0 7→
∫ ∞

0

∫
Ω
A(x)∇t,x u(t, x) · ∇t,x v(t, x) dx dt,

where on the right-hand side v ∈ E is any extension of v0. Since u is an
energy solution, this definition is independent of the choice of v. Guided
by the shift-invariance of the elliptic equation we then define the trace of
(A∇t,x u)⊥ to slices t = s, s > 0, as the respective trace for the shifted
solution u(s+ ·, ·) to t = 0.
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Definition 6.0.6. Let ϕ ∈ T ∗ and let u be the corresponding energy
solution of (6.1). For each s ≥ 0 define (A∇t,x u)⊥|t=s as the conjugate-
linear functional

T → C, v0 7→
∫ ∞

0

∫
Ω
A(x)∇t,x u(s+ t, x) · ∇t,x v(t, x) dx dt,

where on the right-hand side v ∈ E is any extension of v0.

Remark 6.0.7. In order to see that the definition of (A∇t,x u)⊥|t=s is
indeed independent of the particular extension of v0 ∈ T , let v(1), v(2) ∈ E
be two of them. Then (v(1) − v(2))(0) = 0 so that this function can be
extended to L2(R; W1,2

D (Ω)m) ∩W1,2(R; L2(Ω)m) by zero. Denoting this
extension by w, it follows∫ ∞

0

∫
Ω
A(x)∇t,x u(s+ t, x) · ∇t,x (v(1) − v(2))(t, x) dx dt

=
∫ ∞

0

∫
Ω
A(x)∇t,x u(t, x) · ∇t,x w(t− s, x) dx dt = ϕ(w(−s)) = ϕ(0) = 0.

We note that the so-defined traces are bounded conjugate-linear func-
tionals on T .

Lemma 6.0.8. If ϕ ∈ T ∗ and if u is the corresponding energy solution of
(6.1), then ∥∥∥(A∇t,x u)⊥|t=s

∥∥∥
T ∗
. ‖ϕ‖T ∗ (s ≥ 0).

Proof. Let v0 ∈ T . If v ∈ E is any extension of v0, then by means of the
Cauchy-Schwarz inequality∣∣∣(A∇t,x u)⊥|t=s(v0)

∣∣∣ ≤ ‖A‖∞‖u‖E‖v‖E .
As ‖u‖E . ‖ϕ‖T ∗ by Proposition 6.0.5, the claim follows from minimizing
over v.

For each s ≥ 0 we have obtained a bounded linear operator

T (s) : T ∗ → T ∗, ϕ 7→ (A∇t,x u)⊥|t=s,

where u ∈ E is the energy solution to (6.1) with data ϕ. The family
{T (s)}s≥0 is uniformly bounded in L(T ∗). Below we show that this family
is in fact a strongly continuous semigroup that governs the semigroup flow
of (A∇t,x u)⊥|t=s as it has been proposed by shift-invariance of the elliptic
equation under consideration.
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6 Mixed boundary value problems on cylindrical domains

Proposition 6.0.9. The family {T (s)}s≥0 is a uniformly bounded, strong-
ly continuous semigroup on T ∗. Moreover, if ϕ ∈ T ∗ and if u is the
associated energy solution, then

(A∇t,x u)⊥|t=s = T (s)ϕ (s ≥ 0).

Proof. Let ϕ ∈ T ∗ and let u ∈ E be the associated energy solution. By
definition T (s)ϕ acts on v0T via

〈T (s)ϕ | v0〉T ∗,T =
∫ ∞

0

∫
Ω
A(x)∇t,x u(s+ t, x) · ∇t,x v(t, x) dx dt,

where on the right-hand side v ∈ E is any extension of v0. Thus, T (0)ϕ = ϕ

by definition of u.
In order to prove strong continuity, first let v0 ∈ T with norm ‖v0‖T = 1

be arbitrary and let v ∈ E be an extension with norm ‖v‖E ≤ 2. Here, T
is normed by (6.2). By the most direct estimate∣∣∣∣〈T (s)ϕ− ϕ

∣∣∣∣ v0

〉
T ∗,T

∣∣∣∣
≤ 2‖A‖∞

( ∫ ∞
0

∫
Ω
| ∇t,x u(s+ t, x)−∇t,x u(t, x)|2 dx dt

)1/2
,

where the right-hand side vanishes in the limit s → 0 by continuity of
translation in L2(R1+d). As the right-hand side is also independent of v0,
this implies T (s)ϕ→ ϕ in T ∗ as s→ 0.
Finally, for the semigroup law let r, s > 0 and let w be the energy

solution associated with T (s)ϕ, that is, the unique function w ∈ E such
that ∫ ∞

0

∫
Ω
A(x)∇t,x w(t, x) · ∇t,x v(t, x) dx dt

=
∫ ∞

0

∫
Ω
A(x)∇t,x u(s+ t, x) · ∇t,x v(t, x) dx dt (v ∈ E).

Uniqueness of energy solutions yields w(t, x) = u(s+ t, x) for almost every
t > 0, x ∈ Ω. Hence, the action of T (r)T (s)ϕ on an arbitrary v0 ∈ T is
prescribed by

〈T (r)T (s)ϕ | v0〉T ∗,T =
∫ ∞

0

∫
Ω
A(x)∇t,x u(r + s+ t, x) · ∇t,x v(t, x) dx dt,

which is the same as 〈T (r + s)ϕ | v0〉T ∗,T .
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6.1 Reformulation as a first-order system

Remark 6.0.10. The reader is strongly warned not to overrate the state-
ment of Proposition 6.0.9. In fact, given ϕ ∈ T , the quantity (A∇t,x u)|⊥
can directly be obtained as an L2(R+,L2(Ω))-function by differentiating
u ∈ E but Proposition 6.0.9 relies on a more obscure slice-wise definition
on each level t = s. Hence, the semigroup constructed in Proposition 6.0.9
can only rightfully be called a semigroup representation for (A∇t,x u)|⊥ if
the latter L2-function coincides with the semigroup orbit starting at ϕ
within some common superordinate function space. For the moment, re-
solving this ambiguity lies beyond our scope and we will come back to it
in Section 6.5.

6.1 Reformulation as a first-order system
We prepare for a first-order approach to the elliptic system (ES) in the
spirit of Auscher-Axelsson-McIntosh [12, 14, 15]. Forgetting about
boundary conditions at the cylinder base for a while, we rigorously es-
tablish the equivalence of the second-order elliptic system to a first-order
system

∂tft(x) + DBft(x) = 0 (t > 0)

of Cauchy-Riemann type on the level of suitable L2
loc(R+ × Ω)-solutions.

We make the same geometric restrictions on Ω and the Dirichlet part D as
in our resolution of Kato’s conjecture for mixed boundary conditions. For
convenience, we repeat here Assumption 5.0.1 from the previous chapter.
We also recall from Remark 5.0.2 that these assumptions are stronger than
what is needed for the harmonic analysis presented in Chapter 4.

Assumption 6.1.1.

(i) The domain Ω ⊆ Rd, d ≥ 2, is bounded and d-Ahlfors regular.

(ii) The Dirichlet part D ⊆ ∂ Ω is closed and either empty or (d − 1)-
Ahlfors regular.

(iii) The domain Ω satisfies the Lipschitz condition around every bound-
ary point x ∈ ∂ Ω \D.

The next definition comprises the basic spaces and operators to be used
in the following.
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6 Mixed boundary value problems on cylindrical domains

Definition 6.1.2. Let V := W1,2
D (Ω)m and denote by∇V the distributional

gradient operator L2(Ω)m → L2(Ω)dm with domain D(∇V) := V . Let
divV := (−∇V)∗, define the self-adjoint operator

D :=

 0 divV

−∇V 0


on L2(Ω)n, and denote by H := R(D) the closure of its range.

Remark 6.1.3.

(i) Integration by parts reveals C∞c (Ω)dm as a subset of D((−∇V)∗) on
which (−∇V)∗ acts as the distributional divergence operator. This
justifies the more suggestive notation divV . However, note carefully
that under our very general assumptions on Ω we do not know an
explicit description of D(divV) as a space of distributions.

(ii) If D 6= ∅, then a coordinatewise application of Theorem 2.3.9 yields
the global Poincaré inequality ‖u‖2 . ‖∇u‖2 on V , showing that ∇V
is an injective operator with closed range. Similarly, if D = ∅, then
‖u−uΩ‖2 . ‖∇u‖2 on V thanks to Proposition 2.3.4, so that ∇V has
closed range and nullspace containing only the constants. So, since
R(∇V∗) = N (∇V)⊥, the Hilbert space H is more explicitly given by

H = N (∇V)⊥ ×R(−∇V),(6.3)

whereN (∇V)⊥ coincides with L2(Ω)m providedD 6= ∅ and otherwise
with the space of L2(Ω)m-functions with zero average on Ω.

As before we use the shorthand notation Lu = − divt,x A∇t,x u but we
impose a slightly stronger ellipticity condition.

Assumption 6.1.4. The coefficient tensor

A(t, x) = A(x) = (aα,βi,j (x))α,β=1,...,m
i,j=0,...,d ∈ L∞(Ω;L(C(1+d)m))

is bounded and measurable, t-independent, and accretive on the space
L2(Ω)m ×R(−∇V) in the sense that there exists some λ > 0 such that

Re
∫

Ω
A(x)f(x) · f(x) dx ≥ λ

∫
Ω
|f(x)|2 dx (f ∈ L2(Ω)m ×R(−∇V)).
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6.1 Reformulation as a first-order system

Remark 6.1.5. Assumption 6.1.4 is weaker than pointwise uniform ac-
cretivity of A and stronger than the Gårding inequality

Re
∫ ∞

0

∫
Ω
A(x)∇t,x u(t, x) · ∇t,x u(t, x) dx dt

≥ λ
∫ ∞

0

∫
Ω
| ∇t,x u(t, x)|2 dx dt

(6.4)

for u ∈ L2(R+;V) ∩W1,2(R+; L2(Ω)m) as in Assumption 6.0.1. In fact,
given such u, this follows by taking f = ∇t,x ut for fixed t > 0 in As-
sumption 6.1.4 and integrating over t. For further information on related
ellipticity concepts the reader can refer to [15, Sec. 2].

The decomposition Cn = Cd × Cdm induces a block decomposition

A =

A⊥⊥ A⊥‖

A‖⊥ A‖‖

 ∈ L∞(Ω;L(Cm × Cdm)).

Choosing u = [1Ew, 0]> in Assumption 6.1.4 for any measurable E ⊆ Ω
and any w ∈ Cm yields∫

E
Re

(
A⊥⊥(x)w · w − λ |w|2

)
dx ≥ 0

and thus

Re(A⊥⊥(x)w · w) ≥ λ |w|2 (a.e. x ∈ Ω),

that is, A⊥⊥ is pointwise uniformly accretive. The exceptional set can be
chosen independently of w as it suffices to consider vectors with entries in
the countable dense set Q+ iQ. We record this observation in a separated
corollary.

Corollary 6.1.6. Under Assumption 6.1.4 the matrix A⊥⊥ is pointwise
uniformly accretive. In particular, A⊥⊥(x) is invertible for a.e. x ∈ Ω and
A−1
⊥⊥ ∈ L∞(Ω;L(Cm)).

We define the following matrix-valued functions in L∞(Ω;L(Cn)):

A :=

 Id 0

A‖⊥ A‖‖

 , A :=

A⊥⊥ A⊥‖

0 Id

 , A
−1 =

A−1
⊥⊥ −A−1

⊥⊥A⊥‖

0 Id

 .
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6 Mixed boundary value problems on cylindrical domains

The multiplication operator associated with AA
−1 will be of particular

interest.

Definition 6.1.7. The bounded multiplication operator on L2(Ω)n asso-
ciated with AA−1 is denoted by B.

Lemma 6.1.8. If λ > 0 is as in Assumption 6.1.4, then

Re(Bf | f)L2(Ω)n ≥ λ‖A‖−2
L∞(Ω;L(Cn))‖f‖

2
L2(Ω)n (f ∈ L2(Ω)m ×R(−∇V)).

Proof. The purely algebraic proof follows the lines of [12, Prop. 4.1]. As
A is invertible in L∞(Ω;L(Cn)) and acts as the identity on the parallel
components, it induces an automorphism of L2(Ω)m × R(−∇V). Hence,
it suffices to consider elements f = Ag, where g ∈ L2(Ω)m ×R(−∇V). A
straightforward calculation gives

(
Bf

∣∣∣ f) =
(
AA

−1
f
∣∣∣ f) =

(
Ag

∣∣∣ Ag) =
( g⊥

(Ag)‖

 ∣∣∣∣∣
(Ag)⊥

g‖

)

and thus

Re
(
Bf

∣∣∣ f) = Re
(
Ag

∣∣∣ g) ≥ λ‖g‖2 = λ‖A−1
f‖2 ≥ λ‖A‖−2

∞ ‖f‖2,

where all unlabeled scalar products and norms are in L2(Ω)n.

6.1.1 L2
loc-solutions to the elliptic system

We start out by introducing a notion of L2
loc-weak solutions allowing to

study the elliptic system (ES) with lateral boundary conditions (BC) with-
out imposing any sort of boundary conditions on the cylinder base.

Definition 6.1.9.

(i) If D 6= ∅, then u ∈ L2
loc(R+;V)∩W1,2

loc(R+; L2(Ω)m) is called weak so-
lution to the elliptic system (ES) complemented with lateral bound-
ary conditions (BC) if

∫ ∞
0

(A∇t,x ut | ∇t,x vt)L2(Ω)n dt = 0 (v ∈ C∞c (R+;V)).(6.5)
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6.1 Reformulation as a first-order system

(ii) If D = ∅, then it is additionally required that u satisfies the no-flux
condition

lim
t→∞

∫
Ω

(A∇t,x u(t, x))⊥ dx = 0.

Remark 6.1.10.

(i) As in the formal derivation of the notion of energy solutions, the
Dirichlet condition on R+ × D is hidden in the space L2

loc(R+;V)
and the Neumann condition on R+ × (∂ Ω \ D) is encoded by a
formal integration by parts.

(ii) The no-flux condition is a common condition to rule out linear
growth of solutions at spatial infinity, see, e.g., [1]. It is plausible
to interpret this specialty of the pure Neumann case as a substitute
for the ‘Dirichlet boundary condition at spatial infinity’, which is
present in all other cases when the Dirichlet part R+ × D reaches
up to infinity.

Remark 6.1.11. If u is a weak solution in the sense of Definition 6.1.9,
then (6.5) extends to all v in the closure of C∞c (R+;V) within the Fréchet
space L2

loc(R+;V) ∩W1,2
loc(R+; L2(Ω)m). This applies, for instance, to all

v in the latter space with compact support in R+, as can be seen by
convolution with smooth mollifying kernels.

In fact, the flux
∫

Ω(A(x)∇t,x u(t, x))⊥ dx in the pure Neumann case is
independent of t:

Lemma 6.1.12. Suppose D = ∅. If u ∈ L2
loc(R+;V) ∩W1,2

loc(R+; L2(Ω)m)
satisfies (6.5), then there is a constant c ∈ Cm such that∫

Ω
(A(x)∇t,x u(t, x))⊥ dx = c (t > 0).

In particular, c = 0 if u is a weak solution.

Proof. Let y ∈ Cm. For every η ∈ C∞c (R+;R) the choice vt(x) = η(t)y,
t > 0, x ∈ Ω, is admissible in (6.5) and∫ ∞

0
η′(t)((A∇t,x ut)⊥ | y)L2(Ω)m dt = 0

follows. Hence, ((A∇t,x ut)⊥ | y)L2(Ω)m is independent of t. Letting y run
through the standard orthonormal basis of Cm yields the claim.
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6 Mixed boundary value problems on cylindrical domains

Definition 6.1.13. For u ∈ L2
loc(R+; W1,2(Ω)m) ∩W1,2

loc(R+; L2(Ω)m) the
conormal gradient is defined as

∇A u := A∇t,x u =

(A∇t,x u)⊥

∇x u

 ∈ L2
loc(R+; L2(Ω)n).

The main discovery of Auscher, Axelsson, and McIntosh [15] was
that an elliptic system (ES) becomes particularly easy when solving for
the conormal gradient ∇A u instead of the potential u itself. In fact, by a
formal computation divt,x A∇t,x u = 0 implies

∂t

(A∇t,x u)⊥

∇x u

 =

∂t(A∇t,x u)⊥

∇x ∂tu

 =

− divx(A∇t,x u)‖

∇x ∂tu



= −

 0 divx

−∇x 0

A
 ∂tu
∇x u

,
that is,

∂t∇A u = −

 0 divx

−∇x 0

BA∇t,x u = −

 0 divx

−∇x 0

B∇A u.

This computation suggests to study the first-order system of Cauchy-
Riemann type

∂tft + DBft = 0 (t > 0),(FO)

where the formal first-order differential operator has been replaced by its
realization D from Definition 6.1.2.

Definition 6.1.14. A weak solution to (FO) is a function f ∈ L2
loc(R+;H)

such that ∫ ∞
0

(ft | ∂tgt)L2(Ω)n dt =
∫ ∞

0
(Bft | Dgt)L2(Ω)n dt(6.6)

holds for all g ∈ C∞c (R+;D(D)).
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6.1 Reformulation as a first-order system

Remark 6.1.15. If D = ∅, then the tangential component of H is the
space of average-free L2(Ω)m-functions and thus takes care of the no-flux
condition.

Below, we rigorously prove the equivalence of the elliptic second-order
system (ES) and the first-order system (FO) through their respective no-
tions of weak solutions. This result is well-known in the case Ω = Rd, see
[12, Prop. 4.1], but we stress that due to the lateral boundary conditions
the argument for a bounded cylinder base Ω is more involved and cannot
go through on a purely distributional level.

Proposition 6.1.16. If D is non-empty, then there is a one-to-one cor-
respondence between weak solutions u to (ES) with lateral boundary con-
ditions (BC) and weak solutions f to (FO) given by

f = ∇A u.

If D is empty, then this correspondence becomes one-to-one if u is consid-
ered modulo constants in L2

loc(R+; L2(Ω)m).

Proof. The proof is subdivided into three steps. In order to increase
readability, all L2 inner products are abbreviated by (· | ·).

Step 1: Weak solutions are mapped to weak solutions

Assume that u is a weak solution to the elliptic system and put

f := ∇A u ∈ L2
loc(R+; L2(Ω)m ×R(−∇V)).(6.7)

If D is non-empty, then H = L2(Ω)m × R(−∇V) showing that f is H-
valued. Thanks to the no-flux condition on u and Lemma 6.1.12 the
same is true if D is empty. To see that f satisfies (6.6), fix an arbitrary
g ∈ C∞c (R+;D(D)). Then g⊥ is allowed as test function in Definition 6.1.9
and (6.5) rewrites as

∫ ∞
0

(
(ft)⊥

∣∣∣ ∂t(gt)⊥) dt =
∫ ∞

0

(
(Bft)‖

∣∣∣ (Dgt)‖
)

dt.
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For the tangential part note g‖ ∈ C∞c (R+;D((−∇V)∗)), so that∫ ∞
0

(
(ft)‖

∣∣∣ (∂tgt)‖
)

dt = −
∫ ∞

0

(
−∇V ut

∣∣∣ ∂t(gt)‖) dt

= −
∫ ∞

0

(
ut

∣∣∣ ∂t(−∇V)∗(gt)‖
)

dt.

Integration by parts, taking into account that g has compact support in
the t-direction, leads to

=
∫ ∞

0

(
∂tut

∣∣∣ (−∇V)∗(gt)‖
)

dt

=
∫ ∞

0

(
(Bft)⊥

∣∣∣ (Dgt)⊥
)

dt.

Adding the previous two identities yields (6.6).

Step 2: The correspondence is onto

Assume f ∈ L2
loc(R+;H) is a weak solution to the first-order system. Then,

by definition,

f‖ ∈ L2
loc(R+;R(−∇V)).

We first consider the case D 6= ∅. In virtue of the Poincaré inequality, ∇V
is an isomorphism from V onto R(∇V), see Remark 6.1.3. Hence, there
exists a potential u ∈ L2

loc(R+;V) such that ∇x u = f‖. We claim

u ∈W1,2
loc(R+; L2(Ω)m) with ∂tu = (Bf)⊥.(6.8)

Indeed, since R((−∇V)∗) is dense in L2(Ω)m by injectivity of −∇V , it
suffices to prove( ∫ ∞

0
ut∂tη(t) dt

∣∣∣∣ (−∇V)∗y
)

=
(
−
∫ ∞

0
(Bft)⊥η(t) dt

∣∣∣∣ (−∇V)∗y
)

for each η ∈ C∞c (R+;R) and each y ∈ D((−∇V)∗). Pulling the scalar
product inside the integral and taking adjoints, the left-hand side becomes∫ ∞

0

(
(−∇V)ut

∣∣∣ ∂tη(t)y
)

dt

= −
∫ ∞

0

(
(ft)‖

∣∣∣ ∂tη(t)y
)

dt.
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6.1 Reformulation as a first-order system

Since η(t)y ∈ C∞c (R+;D((−∇V)∗)), we can use g(t) = [0, η(t)y]> as test
function in (6.6) to obtain

= −
∫ ∞

0

(
ft

∣∣∣ ∂tgt) dt

= −
∫ ∞

0

(
Bft

∣∣∣ Dgt
)

dt

= −
∫ ∞

0

(
(Bft)⊥

∣∣∣ η(t)(−∇V)∗y
)

dt,

which coincides with the right-hand side of the identity in question. This
establishes (6.8). Summing up, u has the regularity required for a weak
solution to the second-order system and its conormal gradient is given by

∇A u = A

(Bf)⊥

f‖

 = AA
−1
f = f.

In order to see that u is a weak solution, let v ∈ C∞c (R+;V). Then
g := [v, 0]> ∈ C∞c (R+;D(D)) is allowed as test function in (6.6), which in
turn becomes

0 =
∫ ∞

0

(
(ft)⊥

∣∣∣ ∂tvt)+
(
(Bft)‖

∣∣∣ ∇x vt
)

dt

=
∫ ∞

0

(
A∇t,x u

∣∣∣ ∇t,x v
)

dt.

Now, consider the slightly more involved case D = ∅. Denote by V0 ⊆ V
the subspace of functions with zero average on Ω. Poincaré’s inequality
on V0 as discussed in Remark 6.1.3 allows again to construct a potential
ũ ∈ L2

loc(R+;V0) such that ∇x ũ = f‖. Then the argument succeeding (6.8)
at least yields that for every η ∈ C∞c (R+;R) the L2-valued integral∫ ∞

0
ũt∂tη(t) + (Bft)⊥η(t) dt

is contained in R((−∇V)∗)⊥ = N (∇V) and hence is a constant function
on Ω. The value of the constant is determined as the average integral over
Ω. Since ũt ∈ V0 for almost every t > 0, this average equals∫ ∞

0
η(t)

(
−
∫

Ω
(Bft)⊥ dx

)
dt,
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6 Mixed boundary value problems on cylindrical domains

so that altogether

∫ ∞
0

ũt∂tη(t) dt+
∫ ∞

0
(Bft)⊥η(t) dt =

∫ ∞
0

η(t)
(
−
∫

Ω
(Bft)⊥ dx

)
dt

for every η ∈ C∞c (R+;R). This means ∂tũ = (Bft)⊥ − 1
|Ω|
∫

Ω(Bft)⊥ dx in
the sense of W1,2

loc(R+; L2(Ω)m). In order to correct the right-hand side,
define a function taking its values in the constants by

C ∈W1,2
loc(R+;V), C(t) =

∫ t

0
−
∫

Ω
(Bfs)⊥ dx ds.

Then

u := ũ+ C ∈ L2
loc(R+;V) ∩W1,2

loc(R+; L2(Ω)m)

satisfies ∂tu = (Bf)⊥ and ∇x u = ∇x ũ = f‖. As in the case of non-empty
Dirichlet part this implies ∇A u = f and that u satisfies (6.5). Finally, the
no-flux condition is satisfied since (∇A u)⊥ = f⊥ ∈ H⊥.

Step 3: The correspondence is one-one

If u is a weak solution such that ∇A u = A∇t,x u = 0 in L2
loc(R+; L2(Ω)),

then ∇t,x u = 0 by invertibility of A. Thus, u is constant on the domain
R+×Ω. If in addition D is non-empty, then the global Poincaré inequality
on V only allows the choice u = 0.

6.1.2 Quadratic estimates for the infinitesimal generator
Proposition 6.1.16 manifests the equivalence of the second-order elliptic
system to a first-order system ∂tft + DBft = 0, with D a self-adjoint
first-order differential operator and B a bounded multiplication operator
that is accretive on H = R(D). Operators of this type have been closely
investigated over the last decades, at least in the case that D is injective,
see [5, 43] and references therein. Also the following proposition is well-
known in case that D is injective [5, Thm. H] but in the non-injective case
a complete proof is hardly found. We take this opportunity and finalize
the sketch of proof given in [15, Prop. 3.3].
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6.1 Reformulation as a first-order system

Proposition 6.1.17. Let D be a self-adjoint operator in a Hilbert space
K and let B ∈ L(K) be accretive on R(D), that is, assume there exists
κ > 0 such that Re(Bu | u) ≥ κ‖u‖2 for all u ∈ R(D). Then the following
hold true:

(i) DB has range R(DB) = R(D) and null space N (DB) = B−1N (D)
such that

K = N (DB)⊕R(DB)

topologically but in general non-orthogonally. Similarly, BD has
range R(BD) = BR(D), null space N (BD) = N (D), and induces a
topological splitting

K = N (BD)⊕R(BD).

(ii) The operators DB and BD are bisectorial of angle

ω := sup
06=u∈R(D)

|arg(Bu | u)| ∈ (0, π2 ).

Implicit constants above depend only on κ and K > 0 chosen such that
‖Bu‖ ≤ K‖u‖ holds for all u ∈ K.

Proof. Throughout the proof we allow the symbols . and ' to swallow
only constants that depend solely on κ and K.

(i) As a self-adjoint operator, D is densely defined and induces an or-
thogonal splitting K = N (D) ⊕ R(D). Since also B∗ is accretive
on R(D), the composite operator B∗D is closed and densely defined
and so is its adjoint (B∗D)∗ = DB, see, e.g., [73, Prop. A.4.2]. More-
over, ‖Bu‖ ' ‖u‖ ' ‖B∗u‖ for u ∈ R(D) by accretivity of B. So, if
u ∈ D(B∗D) and v ∈ N (D), then

‖B∗Du‖2 . ‖Du‖2 . |(BDu | Du)|
= |(Du | B∗Du+ v)| ≤ ‖Du‖‖B∗Du+ v‖

and thus ‖B∗Du‖ . ‖B∗Du+ v‖. By the triangle inequality

‖B∗Du‖+ ‖v‖ ≤ 2‖B∗Du‖+ ‖B∗Du+ v‖ . ‖B∗Du+ v‖,
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6 Mixed boundary value problems on cylindrical domains

showing that N (D)⊕R(B∗D) is a topological decomposition in K.
Moreover,

(
N (D)⊕R(B∗D)

)⊥
⊆ N (D)⊥ ∩R(B∗D)⊥

= R(D) ∩N (DB) = {0},

since if u ∈ R(D) ∩ N (DB), then Bu ∈ N (D) is orthogonal to u,
which by accretivity of B can only happen for u = 0. This establishes
K = N (D)⊕R(B∗D) topologically.

All other claims can now easily be proved: By accretivity of B∗ it
holds R(B∗D) = B∗R(D) and interchanging the roles of B and B∗
yields

K = N (D)⊕R(BD) = N (D)⊕ BR(D)(6.9)

topologically. The inclusion R(DB) ⊆ R(D) is clear. For the
converse let u = Dv and note that in virtue of the latter split-
ting v can be chosen in BR(D), so that in fact u ∈ R(DB). Fi-
nally, the orthogonal complements of the spaces on the right-hand
side of K = N (D) ⊕ R(B∗D) form the topological decomposition
K = R(DB)⊕N (DB) and N (BD) = N (D) is immediate by accre-
tivity of B.

(ii) Let u ∈ D(DB) and split it as u = v + w, where v ∈ N (DB) and
w ∈ R(D) ∩ D(DB). Since D is self-adjoint, (Bw | DBw) ∈ R and
thus for every λ ∈ C the identity

Im
(
λ(Bw | w)

)
= Im(Bw | λw) = Im(Bw | λw −DBw)

holds. Let now φ ∈ (ω, π2 ) and λ ∈ C \ Sφ. Then λ(Bw | w) belongs
to C \ Sφ−ω, a set on which the imaginary part is comparable to the
absolute value by multiplicative constants depending only on φ and
ω. Thus,

|λ(Bw | w)| ≤ cφ| Im(λ(Bw | w))| ≤ ‖Bw‖‖λw −DBw‖
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6.1 Reformulation as a first-order system

for a constant cφ depending only on φ and ω. As B is bounded
and accretive on R(D), ‖λw‖ . cφ‖λw − DBw‖ and thanks to the
topological splitting K = N (DB)⊕R(DB) the a priori estimate

|λ| ‖u‖ . cφ‖λu−DBu‖ (u ∈ D(DB), λ ∈ C \ Sφ)(6.10)

follows. In a similar manner split u ∈ D(B∗D) as u = v + B∗w,
where v ∈ N (B∗D) and w ∈ R(D) ∩ D(B∗DB∗), and use

|λ| ‖B∗w‖2 . | Im(B∗w | λw)| = | Im(B∗w | λw −DB∗w)
. ‖B∗w‖‖λB∗w − B∗DB∗w‖

to discover

|λ| ‖u‖ . cφ‖λu− B∗Du‖ (u ∈ D(B∗D), λ ∈ C \ Sφ).(6.11)

Since DB is the adjoint of B∗D, the estimates (6.10) and (6.11) yield
C \ Sφ ⊂ ρ(DB)∩ ρ(B∗D) along with the required resolvent bounds.
Upon interchanging B with B∗, the same is true for DB∗ and BD.

Remark 6.1.18. Since B∗ satisfies the same accretivity condition on
R(D) as B, Proposition 6.1.17 holds with B∗ in place of B.

Corollary 6.1.19. Suppose the setup of Proposition 6.1.17. The Hilbert
space adjoint of DB|R(D) in R(D) is given by PB∗D|R(D), where P is the
orthogonal projection in K onto R(D). Moreover, ‖PB∗Du‖ ' ‖Du‖ for
all u ∈ D(D) ∩R(D).

Proof. If u ∈ D(PB∗D|R(D)) and v ∈ D(DB|R(D)), then by a direct cal-
culation

(u | DBv) = (B∗Du | v) = (B∗Du | Pv) = (PB∗Du | v),

so that the adjoint of DB|R(D) extends PB∗D|R(D). Equality follows pro-
vided these operators share a common resolvent element. To this end,
note that by Lemma 3.2.14 the restriction DB|R(D) is bisectorial on R(D).
Moreover, PB∗D|R(D) = (PB∗|R(D))(D|R(D)) is a factorization into a self-
adjoint and a bounded accretive operator on R(D). So, PB∗D|R(D) is
bisectorial by Proposition 6.1.17. Finally, the equivalence of norms fol-
lows by accretivity of PB∗|R(D).
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6 Mixed boundary value problems on cylindrical domains

The abstract Hilbert space results above in particular entail that the
special DB operator introduced in Section 6.1.1 is bisectorial. For the
accretivity condition, see Lemma 6.1.8. A deep theorem that will pave
the way for all further results in this chapter is that this operator satis-
fies quadratic estimates on the closure of its range. The proof requires the
whole technology we have developed in order to solve the Kato square root
problem for mixed boundary conditions. This is a somewhat typical phe-
nomenon in the field of boundary value problems for elliptic systems with
t-independent coefficients as was first observed by Kenig [93, Rem. 2.5.6]
in 1994.

Theorem 6.1.20. Let Assumption 6.1.1 be satisfied. Let B be a multipli-
cation operator induced by a L∞(Ω;L(Cn))-function and suppose that B
is accretive on R(D), that is,

Re(Bu | u)L2(Ω)n & ‖u‖2
L2(Ω)n (u ∈ R(D)).

If T = DB or T = BD, then there are quadratic estimates∫ ∞
0
‖tT (1 + t2T 2)−1u‖2

L2(Ω)n
dt
t
' ‖u‖2

L2(Ω)n (u ∈ R(T )).

The implicit constants in the quadratic estimates can be chosen uniformly
for B in a bounded subset of L∞(Ω;L(Cn)) whose members satisfy a uni-
form lower bound in the accretivity condition.

For the proof we need the following fractional Poincaré inequality.

Lemma 6.1.21. If ∆V is the weak Laplacian on L2(Ω)m with form domain
V and α ∈ (0, 1), then

‖u‖L2(Ω)m . ‖(−∆V)αu‖L2(Ω)m (u ∈ D(∆V) ∩R(∆V)).

Proof. Corollary 5.6.5 assures that B := −∆V |R(∆V ) is an invertible sec-
torial operator on R(∆V ). Due to Proposition 3.2.21(iii) invertibility is
inherited to Bα, so that

‖u‖L2(Ω)m . ‖Bαu‖L2(Ω)m (u ∈ D(Bα)).

It suffices to remark that by general properties of restricted functional
calculi the operator Bα is the restriction of (−∆V)α toR(∆V) with domain
D((−∆V)α) ∩R(∆V), see Example 3.2.16 for details.
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6.1 Reformulation as a first-order system

Remark 6.1.22. If α = 1
2 , then Lemma 6.1.21 is indeed a Poincaré in-

equality of type ‖u‖2 . ‖∇u‖2. This is a consequence of the resolution of
the Kato problem for −∆V , see Theorem 5.6.8, and justifies the nomen-
clature ‘fractional Poincaré inequality’ for the general case α ∈ (0, 1).

Proof of Theorem 6.1.20. We will appeal to the ΠB-Theorem, Theo-
rem 4.1.11, on the Hilbert space L2(Ω)n⊕L2(Ω)n ' L2(Ω)2m(1+d). Thereon,
consider the operator matrices

Γ :=

0 0

D 0

 , B1 :=

B 0

0 0

 , and B2 :=

0 0

0 B


on their natural domains. For these choices

ΠB := Γ +B1Γ∗B2 =

0 BDB

D 0

 , Π2
B =

(BD)2 0

0 (DB)2

 ,
and thus

tΠB(1 + t2Π2
B)−1 =

 0 tBDB(1 + t2(DB)2)−1

D(1 + t2(BD)2)−1 0

 .
We claim that both quadratic estimates required in the theorem follow
from quadratic estimates of ΠB on R(ΠB): In fact, this is a direct con-
sequence of the equivalence ‖BDu‖ ' ‖Du‖ for all u ∈ D(D) and the
identities

R(BD) = BR(D) = BR(DB) = R(BDB) and R(DB) = R(D)

provided by Proposition 6.1.17. So, to complete the proof we have to
check that the hypotheses (H1) - (H7) in Theorem 4.1.11 are satisfied. In
the following all function spaces will be on Ω. We omit the dependence
on Ω as well as the dimension of the respective co-domain, which will be
clear from the context.
Clearly Γ is nilpotent and B1B2 = 0 = B2B1 holds. Since B is bounded

on L2 and accretive onR(D), the operator matricesB1 andB2 are bounded
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6 Mixed boundary value problems on cylindrical domains

on L2×L2 and accretive on R(Γ∗) and R(Γ), respectively. This takes care
of (H1) - (H3). Together with the addendum in Theorem 4.1.11 we also
obtain the required uniformity of the implicit constants with respect to
B. Hypothesis (H4) holds by definition of B. Next, (H5) and (H6) for
Γ and Γ∗ are first seen to be equivalent to analogous claims obtained by
replacing these operators by D and then by −∇V and divV . The required
estimates for −∇V , however, have already been checked in the proof of
Theorem 4.3.1 and the ones for the adjoint operator divV are for free
thanks to Lemma 4.1.10. The only hypothesis that has to be treated
more carefully is (H7). Since

Γ =

0 0

D 0

 and Π2 =

D2 0

0 D2


it is equivalent to the following:

There is α ∈ (0, 1] such that ‖u‖[L2,V1+d]α . ‖(D2)α/2u‖2

for all u ∈ R(D) ∩ D(D2).
( )

The difficulty is that this is a homogenous estimate with a fractional power
of a pure first-order differential operator on the right-hand side. Inevitably,
we have to factor out constants if the Dirichlet part of ∂ Ω is empty.
We choose α ∈ (0, ε), where ε ∈ (0, 1

4) is as in Theorem 5.5.5, and fix
u ∈ R(D) ∩ D(D2). Since

D =

 0 divV

−∇V 0

 and D2 =

−∆V 0

0 (−∇V) divV


it follows u⊥ ∈ D(∆V) ∩R(divV) and u‖ = −∇Vv⊥ for some v⊥ ∈ D(∆V).
We claim that without restrictions both u⊥ and v⊥ can be chosen in
R(∆V). In fact, the solution of the Kato problem, Theorem 5.6.8, for
the self-adjoint operator −∆V entails that −∇V and

√
−∆V share the

same nullspace. Since the nullspace of fractional powers is independent of
their positive exponent by Proposition 3.2.21,

R(divV) = N (−∇V)⊥ = N (
√
−∆V)⊥ = N (−∆V)⊥ = R(∆V)
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6.1 Reformulation as a first-order system

showing u⊥ ∈ R(∆V). Similarly, ∇V and −∆V share the same nullspace.
So, due to the orthogonal decomposition L2 = N (−∆V) ⊕ R(−∆V ) we
can assume v⊥ ∈ R(∆V ) without altering u‖ = −∇Vv⊥.
Now, within the functional calculus for the self-adjoint operator D,

(D2)α/2u = (D2)α/2
 u⊥

−∇Vv⊥



= (D2)α/2
u⊥

0

+ (D2)α/2D

v⊥
0



= (D2)α/2
u⊥

0

+ D(D2)α/2
v⊥

0



=

 (−∆V)α/2u⊥

−∇V(−∆V)α/2v⊥

 .
The solution of the Kato problem for −∆V entails

‖(D2)α/2u‖2
2 ' ‖(−∆V)α/2u⊥‖2

2 + ‖(−∆V)1/2+α/2v⊥‖2
2.

Since both u⊥ and v⊥ are elements of D(∆V) ∩ R(∆V), we can infer the
crucial estimate

‖(D2)α/2u‖2
2 ' ‖u⊥‖2

2 + ‖(−∆V)α/2u⊥‖2
2 + ‖v⊥‖2

2 + ‖(−∆V)1/2+α/2v⊥‖2
2

from Lemma 6.1.21. On the other hand, Theorem 5.5.5 yields

‖u‖2
[L2,V1+d]α ' ‖u⊥‖

2
Hα,2 + ‖u‖‖2

Hα,2

= ‖u⊥‖2
Hα,2 + ‖∇Vv⊥‖2

Hα,2

≤ ‖u⊥‖2
Hα,2 + ‖v⊥‖2

H1+α,2 .

The previous two estimates reduce our goal ( ) to the question whether
D((−∆V)α/2) ⊆ Hα,2 and D((−∆V)1/2+α/2) ⊆ H1+α,2 hold with continuous
embeddings – which is answered in the affirmative by Theorem 5.5.5.
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The check-up of (H5) in the proof above entails a localization property
that we record for a later use.

Corollary 6.1.23. Let ϕ ∈ C∞c (Rd;R) and let Mϕ be the associated mul-
tiplication operator on L2(Ω)n. Then MϕD(D) ⊆ D(D) and the commu-
tator [D,Mϕ] acts on D(D) as a multiplication operator induced by some
cϕ ∈ L∞(Ω;L(Cn)) satisfying

|cϕ(x)| . |∇ϕ(x)| (a.e. x ∈ Ω).

Bisectorial operators that satisfy quadratic estimates on the closure of
their range have been discussed in greatest generality in Section 3.3.4 and
Section 3.4. Let us recall from Corollary 3.4.14 that for each f ∈ H∞(Sψ),
ω < ψ < π

2 , the operator f(DB) on H = R(DB) is bounded with norm
estimate

‖f(DB)‖H→H . ‖f‖L∞(Sψ),(6.12)

where the implicit constant depends only on ψ and the implicit constants
in Theorem 6.1.20. Hence, the H∞(Sψ)-calculus enjoys again a uniformity
property in B. Similar operators can of course be defined for BD on the
Hilbert space BH. We also give a name to the injective part of DB, that
is, its restriction to R(DB) = H and its restriction to the Hardy spaces
H±DB.

Definition 6.1.24. The restriction of DB to H is denoted by Λ and the
restrictions of DB to H±DB are denoted by Λ±.

We close this section with a result on holomorphic dependence of the
H∞-calculus for DB with respect to the multiplicative perturbation B.
Knowing the uniformity property in Theorem 6.1.20, the argument follows
a standard pattern relying on Vitali’s theorem from complex analysis. For
convenience, we include the full argument.

Proposition 6.1.25. Let U ⊆ C be a domain and let B : U → L(L2(Ω)n)
be a holomorphic function. Assume that each operator Bz, z ∈ U , is
induced by an L∞(Ω;L(Cn))-function and that there exists K,κ > 0 such
that

Re(Bzu | u)L2(Ω)n ≥ κ‖u‖2 and ‖Bz‖L∞(Ω;L(Cn)) ≤ K
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6.1 Reformulation as a first-order system

for all z ∈ U and all u ∈ R(D). Then for each arctan(K
κ

) < ψ < π
2 and

each f ∈ H∞(Sψ) a holomorphic function is given by

(z 7→ f(DBz)) : U → L(H).

Proof. For brevity we simply write L2 instead of L2(Ω)n. Recall from
Proposition 6.1.17 that for each z ∈ U the operators DBz and B∗zD are bi-
sectorial of angle φ := arctan(K

κ
) and that the respective resolvent bounds

on C \ Sψ can be obtained uniformly in z. Also note that taking adjoints
is an isometry on L(L2), so that B∗ : U → L(L2) is holomorphic as well.
First, let λ ∈ C \ Sψ. Holomorphic dependence of (λ−B∗zD)−1 ∈ L(L2)

on z follows straightforwardly using the resolvent identity

(λ− B∗z0D)−1 − (λ− B∗z1D)−1 = (λ− B∗z0D)−1(B∗z0 − B∗z1)D(λ− B∗z1D)−1

valid for z0, z1 ∈ U on difference quotients. For this we have crucially
employed that the domain of B∗zD is independent of z. Taking adjoints,
holomorphy of (λ − DBz)−1 follows. Next, assume f ∈ H∞0 (Sψ) in which
case f(DBz) ∈ L(L2) is defined via a contour integral over ∂Sν for some
ν ∈ (φ, ψ). Continuous dependence of f(DBz) on z is immediate by
dominated convergence but as for each closed triangle4 ⊆ U the theorems
of Fubini and Cauchy yield∫
∂4

∫
∂Sν

f(λ)(λ−DBz)−1 dλ dz =
∫
∂Sν

∫
∂4
f(λ)(λ−DBz)−1 dz dλ = 0,

holomorphic dependence can be inferred from Morera’s theorem.
Finally, let f ∈ H∞(Sψ). By equivalence of weak and strong holo-

morphy [7, Prop. A.3] it suffices to prove holomorphic dependence of
f(DBz)u ∈ H on z for each fixed u ∈ H. To this end, let {fn}n ⊆ H∞0 (Sψ)
be a bounded sequence that converges pointwise to f . For instance,
fn = (z2(1 + z2)−2)1/nf does the job. By what we have shown before,
{fn(DBz)u}n is a sequence of boundedH-valued holomorphic functions on
U , and in fact, it is uniformly bounded due to the uniformity of the esti-
mate (6.12) with respect to B. The convergence lemma, Proposition 3.3.5,
gives pointwise convergence

fn(DBz)u n→∞−→ f(DBz)u (z ∈ U),

and so the claim follows from Vitali’s theorem, Theorem 3.3.1.

279



6 Mixed boundary value problems on cylindrical domains

6.2 Semigroup solutions to the first-order
system

Having reformulated the elliptic system (ES) with lateral boundary con-
ditions (BC) as the first-order system

∂tft + DBft = 0 (t ≥ 0)

for the conormal gradient f = ∇A u, it is tempting to solve this equation
by a semigroup formula ft = e−tDBf0. However, the evolution for DB is
forward in time on one part of H and backward in time on the other one
since DB is not sectorial but only bisectorial. Therefore, we have to con-
sider its restriction to the Hardy space H+

DB, which becomes a sectorial
semigroup generator. We recommend to recall the spectral decomposi-
tion of a bisectorial operator into sectorial operators on associated Hardy
spaces from Section 3.3.4.

Proposition 6.2.1. Given h+ ∈ H+
DB, the semigroup orbit ft = e−t[DB]h+,

t ≥ 0, is a weak solution to the first-order system (FO) with additional
regularity

f ∈ C0([0,∞);H+
DB) ∩ C∞(0,∞;H+

DB)

and estimates

sup
t≥0
‖ft‖L2(Ω)n ' ‖h+‖L2(Ω)n '

(∫ ∞
0
‖t∂tft‖2

L2(Ω)n
dt
t

)1/2

.

Proof. The restriction of {e−t[DB]}t≥0 to H+
DB is the bounded holomor-

phic semigroup generated by the sectorial operator DB|H+
DB
, see Theo-

rem 3.2.28. Hence, ∂tft = −DBft on R+ in the classical sense. For any
g ∈ C∞c (R+;D(D)) integration by parts reveals∫ ∞

0

(
ft

∣∣∣ ∂tgt)L2(Ω)n
dt = −

∫ ∞
0

(
DBft

∣∣∣ gt)L2(Ω)n
dt

=
∫ ∞

0

(
Bft

∣∣∣ Dgt
)

L2(Ω)n
dt,

that is, f is a weak solution to the first-order system in the sense of
Definition 6.1.14. The additional regularity and the asymptotics follow
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6.2 Semigroup solutions to the first-order system

from abstract semigroup theory, see Proposition 3.2.26. The first of the
estimates is by boundedness of the semigroup {e−t[DB]}t≥0 and the second
one is by quadratic estimates for DB with regularly decaying holomorphic
function [z]e−[z], see Theorem 6.1.20 and Corollary 3.4.8.

Remark 6.2.2. Since {e−t[DB]}t≥0 is a holomorphic semigroup, the same
argument as above proves that for every α > 0 and every h+ ∈ H+

DB a
solution to the first-order system is given by

ft = [DB]αe−t[DB] (t ≥ 0).

Such a solution still has asymptotics limt→∞ ft = 0 in H+
DB but in general

does not have an L2-limit at t = 0 – so, at first sight, it may seem to
useless. However, if u is a weak solution to the second-order system that
satisfies a Dirichlet condition (Dir-A) on {0} × Ω, which is a boundary
condition for the potential u itself, then ∇A u should be a weak solution
to the first-order system without a trace at t = 0 in the L2-sense.

In this section we present a careful analysis of the semigroup solutions
to the first-order system and prove that they are contained in the natural
solution spaces for the Dirichlet, Neumann, and regularity problems.

6.2.1 Off-diagonal decay
As a technical tool to be utilized in the following, we establish Lp off-
diagonal decay of arbitrary order for the resolvents of DB and p ≤ 2
sufficiently close to 2. We begin with the case p = 2.

Proposition 6.2.3 (L2 off-diagonal estimates). Let T = DB or T = BD.
Then for every M ∈ N0 there exists a constant AM > 0 such that

‖1F (1 + isT )−11Eu‖L2(Ω)n ≤ AM

〈d(E,F )
s

〉−M
‖1Eu‖L2(Ω)n

holds for all u ∈ L2(Ω)n, all s > 0, and all Borel sets E,F ⊆ Ω.

Proof. The proof stems on the localization property from Corollary 6.1.23
and is almost identical to the one of Proposition 4.2.6. So, we only outline
the differences and concentrate on the case T = DB. The other case
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6 Mixed boundary value problems on cylindrical domains

is similar. We adopt notation from Proposition 4.2.6 by abbreviating
Rs = (1 + isDB)−1 for s > 0.
Proceeding by induction on M as in the proof of Proposition 4.2.6, it

suffices to consider the case 0 < |s| < d(E,F ) and to establish an estimate

‖1FRs1Eu‖2 ≤ AM

( |s|
d(E,F )

)M
‖1Eu‖2(6.13)

under the assumption of the claim for M − 1. As in the proof of Propo-
sition 4.2.6 define a bounded open superset F1/2 of F with the property
d(E,F1/2) ≥ 1

2 d(E,F ) and construct a smooth function ϕ with range
in [0, 1], identically 1 on F , support in F1/2, and ‖∇ϕ‖∞ ≤ cd

d(E,F ) with
cd depending only on d. Since ϕ is scalar-valued, Mϕ commutes with
the multiplication operator B. Taking into account Corollary 6.1.23, the
commutator relations

[DB,Mϕ] = [D,Mϕ]B on D(DB) and [Mϕ, Rs] = isRs[D,Mϕ]BRs

follow. Then, due to supp(ϕ) ⊆ F1/2 ⊆ Rd \ E and ϕ = 1 on F ,

‖1FRs1Eu‖2 ≤ ‖ϕRs1Eu‖2 = ‖[Mϕ, Rs]1Eu‖2 . |s| ‖[D,Mϕ]BRs1Eu‖2,

the last step utilizing the bisectoriality of DB. Hence, Corollary 6.1.23
and the inductive assumption yield

‖1FRs1Eu‖2 .
|s|

d(E,F )‖1F1/2∩ΩRs1Eu‖2

≤ AM−1 |s|
d(E,F )

( |s|
d(E,F1/2 ∩ Ω)

)M−1
‖1Eu‖2.

Since d(E,F1/2) ≥ 1
2 d(E,F ), this implies (6.13).

To proceed further, we need the following, highly non-trivial interpo-
lation result. In fact, its proof requires the whole adapted Calderón-
Zygmund technology developed in Section 2.5.

Lemma 6.2.4. Let 0 < s ≤ 1. For 1 < p < ∞ let Xp
s(Ω) be the Banach

space W1,p
D (Ω)m with norm

(
‖ · ‖pLp(Ω)m +‖s∇·‖pLp(Ω)dm

)1/p
. Let 0 < θ < 1,

let 1 < p0, p1 <∞, and

1
pθ

= 1− θ
p0

+ θ

p1
.
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Then[
Xp0
s (Ω),Xp1

s (Ω)
]
θ

= Xpθ
s (Ω) and

[
Xp0
s (Ω)∗,Xp1

s (Ω)∗
]
θ

= Xpθ
s (Ω)∗

up to equivalent norms and the equivalence constants are independent of s.

Proof. The norm on Xp
s(Ω) is equivalent to the W1,p

D (Ω)m-norm but of
course the equivalence constants do depend on s. In order to see that the
equivalence constants in the interpolation result are independent of s, let
T : Lp(Ω)m → Lp(s−1Ω)m be the coordinate transform Tu(x) = u(sx).
Then T maps Xp

s(Ω) onto W1,p
s−1D(s−1Ω)m almost isometrically:

‖Tu‖W1,p
s−1D

(s−1Ω)m = s−d/p‖u‖Xps(Ω) (u ∈ Xp
s(Ω)).(6.14)

Since complex interpolation is exact and interchanges with Cartesian prod-
ucts, this implies

‖Tu‖[
W1,p0
s−1D

(s−1Ω),W1,p1
s−1D

(s−1Ω)
]m
θ

= s−d/pθ‖u‖[
Xp0s (Ω),Xp1s (Ω)

]
θ

for u ∈ [Xp0
s (Ω),Xp1

s (Ω)]θ, see Theorem 1.3.13 and Corollary 1.3.8. The
invaluable merit of Theorem 2.5.17 on interpolation identities that are in-
variant on large scales is that the norm on the left-hand side is comparable
to the W1,pθ

s−1D(s−1Ω)m-norm uniformly in 0 < s ≤ 1. So, a final application
of (6.14) leads to

‖u‖Xpθs (Ω) = sd/pθ‖Tu‖W1,pθ
s−1D

(s−1Ω)m ' ‖u‖
[

Xp0s (Ω),Xp1s (Ω)
]
θ

for all u ∈ W1,pθ
D (Ω)m uniformly in s. Since the spaces Xp

s(Ω) share the
common dense set C∞D (Ω)m and are reflexive as closed subspaces of the
reflexive spaces W1,p(Ω)m, the second of the identities in question follows
from the first and Proposition 1.3.15.

Next, we use S̆nĕıberg’s stability theorem to extend resolvents of DB to
bounded operators on Lp for p < 2 sufficiently close to 2.

Proposition 6.2.5. There is p0 ∈ (1, 2) such that if p ∈ (p0, 2), then
{(1 + isDB)−1}0<s≤1 extends to a uniformly bounded family of bounded
operators on Lp(Ω)n.
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6 Mixed boundary value problems on cylindrical domains

Proof. Given 0 < s ≤ 1 and f ∈ L2(Ω)n, define g ∈ L2(Ω)n by g :=
A
−1(1 + isDB)−1f . On recalling B = AA

−1 it follows f = Ag + isDAg,
that is,

f⊥
f‖

 =

(Ag)⊥

g‖

+ is

(−∇V)∗(Ag)‖

−∇V g⊥

 .
Now, insert the second equation g‖ = f‖ + is∇V g⊥ into the first one,
take L2-inner products against v ∈ V , and separate the terms containing
g⊥ from those containing f , so to reveal g⊥ ∈ V as a solution of the
divergence-form problem

∫
Ω
A

 g⊥

is∇x g⊥

 ·
 v

is∇x v

 dx

=
∫

Ω


f⊥

0

− A
 0

f‖


 ·

 v

is∇x v

 dx (v ∈ V).

(6.15)

Due to their intrinsic scaling with respect to s, the natural spaces to
study such problems in an Lp-setting are the spaces Xp

s(Ω), 1 < p < ∞,
introduced in Lemma 6.2.4. In view of Hölder’s inequality, for each p an
operator

Tp : Xp
s(Ω)→ Xp′

s (Ω)∗, (Tpu)(v) :=
∫

Ω
A

 u⊥

is∇x u⊥

 ·
 v

is∇x v

 dx

can be defined. Then

‖Tp‖Xps(Ω)→Xp
′
s (Ω)∗ ≤ ‖A‖∞ (1 < p <∞)

and

‖T2u‖X2
s(Ω)∗ ≥ λ‖u‖X2

s(Ω) (u ∈ X2
s(Ω))

thanks to Assumption 6.1.4. In order to extrapolate the latter a priori
bound to the Lp-scale, we aim to apply S̆nĕıberg’s theorem.
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6.2 Semigroup solutions to the first-order system

Fix 1 < p− < 2 < p+ < ∞. For p in the range between p− and
p+, Lemma 6.2.4 allows to replace Xp

s(Ω)-norms by the norms of the cor-
responding interpolation space between Xp−

s (Ω) and Xp+
s (Ω), each time

collecting a constant that depends on the respective value of p but not
on s. In this manner, the quantitative version of S̆nĕıberg’s theorem,
Theorem 1.3.25, yields – independently of s – an interval I ⊆ (p−, p+)
containing 2 with the property that for each p ∈ I the lower bound

‖Tpu‖Xp
′
s (Ω)∗ ≥ cp

λ

5‖u‖Xps(Ω) (u ∈ Xp
s(Ω))

is satisfied for a constant cp depending not on s. Let p0 denote the lower
endpoint of I. Since Ω is bounded, V = X2

s(Ω) ⊆ Xp
s(Ω) for all p ∈ (p0, 2).

So, if p ∈ (p0, 2), then due to the explicit representation for Tpg⊥ in (6.15),

‖g⊥‖Xps(Ω) ≤
5
cpλ
‖Tpg⊥‖Xp

′
s (Ω)∗ ≤

5
cpλ

(
‖f⊥‖pLp(Ω)m + ‖A‖p∞‖f‖‖

p
Lp(Ω)dm

)1/p
.

Since g = A
−1(1 + isDB)−1f by definition,

‖(1 + isDB)−1f‖pLp(Ω)n . ‖g‖
p
Lp(Ω)n

= ‖g⊥‖pLp(Ω)m + ‖f‖ + is∇V g⊥‖pLp(Ω)dm

= ‖g⊥‖pXps(Ω) + ‖f‖‖pLp(Ω)dm

. ‖f‖pLp(Ω)n

with implicit constants independent of s.

Remark 6.2.6. The idea of proving Lp-boundedness of resolvents of DB
by solving an auxiliary divergence-form problem by means of S̆nĕıberg’s
theorem is taken from Auscher-Axelsson [12, Lem. 10.3]. The aux-
iliary problem from the proof of Proposition 6.2.5 already occurred as a
motivating example in Section 2.5.

Complex interpolation of the assertions of Proposition 6.2.3 and 6.2.5
employing the Riesz-Thorin convexity theorem (that is, Theorem 1.3.23
for ω0 = ω1 = 1) yields Lp off-diagonal estimates for the resolvents of DB.
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6 Mixed boundary value problems on cylindrical domains

Corollary 6.2.7 (Lp off-diagonal estimates). Let p ∈ (p0, 2), where p0 is
as in Proposition 6.2.5. For every M ∈ N0 and there exists a constant
AM > 0 such that

‖1F (1 + isDB)−11Eu‖Lp(Ω)n ≤ AM

〈d(E,F )
s

〉−M
‖1Eu‖Lp(Ω)n

holds for all u ∈ L2(Ω)n, all 0 < s ≤ 1, and all Borel sets E,F ⊆ Ω.

6.2.2 The non-tangential maximal function
Since the seminal work of Kenig and Pipher [94] it became manifest that
the natural spaces to study well-posedness of the Neumann and Regularity
problem for elliptic equations are that of functions with Lp-bounded aver-
aged non-tangential maximal function. Naturally, we are led to the ques-
tions whether the semigroup solutions to the first-order system fit into this
framework, that is, whether they are ‘reasonable’ solutions from the point
of view of classical PDE theory. In this section we use a modified non-
tangential maximal function Ñ∗ defined on truncated cylinders (rather
than cones) as it also appeared in the work of Auscher-Axelsson [12].

Definition 6.2.8. Let c0 > 1 and c1 > 0 be fixed throughout this chapter.
For t > 0 and x ∈ Ω the set

W (t, x) = (c−1
0 t, c0t)× (B(x, c1t) ∩ Ω)

is calledWhitney ball around (t, x). For r > 1 the enlarged region rW (t, x)
is defined analogously upon replacing c0 and c1 with rc0 and rc1, respec-
tively.

Definition 6.2.9. The non-tangential maximal function Ñ∗f of a function
f ∈ L2

loc(R+ × Ω)n is defined by

Ñ∗f(x) = sup
t>0

(
−−
∫∫

W (t,x)
|f(s, y)|2 dy ds

)1/2
(x ∈ Ω).

Remark 6.2.10. The particular choices of c0 > 1 and c1 > 0 used to
define Ñ∗ will not be of further importance in this chapter.
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We can directly establish lower L2-estimates for the non-tangential max-
imal function.

Lemma 6.2.11. It holds

‖Ñ∗(f)‖L2(Ω) & sup
t>0

1
t

∫ 2t

t
‖fs‖2

L2(Ω)n ds (f ∈ L2
loc(R+ × Ω)n).

Proof. Put t0 := c−1
1 diam(Ω) and consider the case t ≥ t0 first. Then for

every x ∈ Ω,

1
t

∫ c0t

t
‖fs‖2

2 ds = 1
t

∫ c0t

t

∫
B(x,c1t)∩Ω

|fs(y)|2 dy ds

≤ (c0 − c−1
0 ) |Ω| Ñ∗(f)(x)2

and integration over x yields

1
t

∫ c0t

t
‖fs‖2

2 ds ≤ (c0 − c−1
0 )‖Ñ∗(f)‖2

2.

In order to raise the upper limit for integration to 2t, simply add the
respective estimates for t = t, c0t, . . . , c

N
0 t, whereN ∈ N is minimal subject

to cN0 ≥ 2.
Now consider the case 0 < t < t0. Pull the supremum over t > 0 outside

the integral and bound it from below by a supremum over 0 < t < t0 to
obtain

‖Ñ∗(f)‖2 & sup
0<t<t0

1
t1+d

∫
Ω

∫ c0t

c−1
0 t

∫
B(x,c1t)∩Ω

|f(s, y)|2 dy ds dx,

where implicitly d-Ahlfors regularity of Ω has been used. By Tonelli’s
theorem∫

Ω

∫ c0t

c−1
0 t

∫
B(x,c1t)∩Ω

|f(s, y)|2 dy ds dx

=
∫ c0t

c−1
0 t

∫
Ω

∫
Ω
|f(s, y)|2 1B(y,c1t)∩Ω(x) dx dy ds ' td

∫ c0t

c−1
0 t
‖fs‖2

2 ds

for all 0 < t < t0 and thus

‖Ñ∗(f)‖2 &
1
t

∫ c0t

c−1
0 t
‖fs‖2

2 ds ≥ 1
t

∫ c0t

t
‖fs‖2

2 ds.

As before, the upper limit for integration can be raised to 2t without any
difficulty.
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Remark 6.2.12.

(i) The only assumption on Ω used in the proof of Lemma 6.2.11 is that
it is a bounded d-set.

(ii) A function for which the right-hand side supremum is finite, is usu-
ally said to satisfy a square Dini bound.

Corollary 6.2.13. The non-tangential maximal function of semigroup
solutions is bounded from below by

‖Ñ∗(e−z[DB]h)‖L2(Ω) & ‖h‖L2(Ω)n (h ∈ L2(Ω)n).

Proof. With ft = e−t[DB]h, t > 0, the claim follows from Lemma 6.2.11
and

lim
t→0

1
t

∫ 2t

t
‖fs‖2

2 ds = ‖h‖2
2,

which is due to strong continuity of the [DB]-semigroup.

Upper estimates for the non-tangential maximal function of semigroup
solutions are much more involved. Following a technique previously uti-
lized by Auscher, Axelsson, and Hofmann [13], we approach such
estimates via reverse Hölder type estimates for solutions of the second-
order system and off-diagonal estimates.

Reverse Hölder estimates

For background material on the classical reverse Hölder inequalities for
elliptic partial differential equations the reader may refer to Giaquinta’s
book [64]. In the case of mixed boundary value problems such estimates
have more recently been studied, e.g., by Brown and Ott [128] but –
at least to our knowledge – none of the existing results comprises our
geometric setup beyond Lipschitz domains.
We begin with a variant of the classical Caccioppoli inequality.

Lemma 6.2.14 (Caccioppoli inequality). Let u be a weak solution to the
elliptic system (ES) with lateral boundary conditions (BC) and let t > 0
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and x ∈ Ω. Moreover, let z ∈ Cm be arbitrary if B(x, 2c1t) ∩D = ∅ and
otherwise let z = 0. Then the estimate∫∫

W (t,x)
|t∇t,x u|2 ≤ c

∫∫
2W (t,x)

|u− z|2

holds for a constant c > 0 depending only on A, d, c0, and c1.

Proof. For brevity put W := W (t, x) and V := (c−1
0 t, c0t) × B(x, c1t).

Similarly, let 2V correspond to 2W . Let η be a smooth function with
range in [0, 1], identically 1 on V , support in 2V , and ‖∇η‖∞ ≤ c

t
for a

constant depending only on d, c0, and c1. Note that the restrictions on z
are to guarantee that η(u− z) and η2(u− z) are allowed as test function
in Definition 6.1.9, see also Remarks 6.1.5, as well as in the accretivity
estimate (6.4). Compute∫∫

2W
η2| ∇t,x u|2 =

∫∫
R+×Ω

η2| ∇t,x(u− z)|2

=
∫∫

R+×Ω
| ∇t,x(η(u− z))|2 + | ∇t,x η|2|u− z|2

and apply (6.4) to find∫∫
2W

η2| ∇t,x u|2 ≤
1
λ

Re
∫∫

R+×Ω
A∇t,x(η(u− z)) · ∇t,x (η(u− z))

+ | ∇t,x η|2|u− z|2.
(6.16)

If � : Cm × C1+d → Cm(1+d) denotes the multiplication x� y = (xjyk)j,k,
then by the product rule

A∇t,x(η(u− z)) = A(u− z)�∇t,x η + ηA∇t,x u

and

η∇t,x(η(u− z)) = ∇t,x(η2(u− z))− η(u− z)�∇t,x η.

These identities inserted back on the right-hand side of (6.16) and the
fact that the integral over A∇t,x u · ∇t,x(η2(u− z)) cancels as u is a weak
solution, results in a bound by∫∫

R+×Ω
|A(u− z)|| ∇t,x η|| ∇t,x(η(u− z))|

+
∫∫

R+×Ω
|η(u− z)|| ∇t,x η||A∇t,x u|+ | ∇t,x η|2|u− z|2.
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Finally, invoking the L∞-bounds for A, η, and ∇t,x,

∫∫
2W

η2| ∇t,x u|2 .
∫∫

2W

1
t
η|u− z|| ∇t,x u|+

1
t2
|u− z|2

follows. At this stage the proof can be completed by absorbing η| ∇t,x u|
from the right-hand side into the left-hand side by means of Young’s in-
equality and noting that η is identically 1 on W .

The notion of weak solutions to (ES) – an elliptic system posed on a
domain in R1+d – is built somewhat from the perspective of evolution
equations by separating the variables t ∈ R and x ∈ Rd. On the level of
function spaces, this amounts to identifying

L2(R× Ω) and L2(R; L2(Ω)) via u 7→ u⊗, u⊗(t) = u(t, ·).

Since Whitney balls are really objects in R1+d, it is necessary to express
the regularity of weak solutions to the second-order system in terms of a
function space on R1+d. This is the purpose of the next lemma and the
subsequent remark.

Lemma 6.2.15. Let 1 < p < ∞. The map u 7→ u⊗ extends from
C∞R×D(R× Ω) by density to an isometric isomorphism

W1,p
R×D(R× Ω) ∼= W1,p(R; Lp(Ω)) ∩ Lp(R; W1,p

D (Ω)).

We stress that the approximation property required for the space in
dimension 1+d is much stronger at first sight than the one implicit in the
vector-valued space. The main idea of the proof is that Hardy’s inequality
provides an encoding for mixed boundary conditions that is compatible
with Fubini’s theorem.

Proof of Lemma 6.2.15. We abbreviate W1,p(R; Lp(Ω)) = W1,p(Lp(Ω))
and so on. If u ∈ C∞R×D(R × Ω), then u⊗ ∈ C∞c (C∞D (Ω)) and by Fubini’s
theorem

‖u‖W1,p
R×D(R×Ω) = ‖u⊗‖W1,p(Lp(Ω))∩Lp(W1,p

D (Ω)).
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As C∞R×D(R×Ω) is dense in W1,p
R×D(R×Ω) by definition, u 7→ u⊗ provides

an isometry

W1,p
R×D(R× Ω)→W1,p(Lp(Ω)) ∩ Lp(W1,p

D (Ω))

and it remains to prove that its range is dense.
So, fix f ∈ W1,p(Lp(Ω)) ∩ Lp(W1,p

D (Ω)). For the density result we are
after, it is no restriction to assume that f has compact support in R.
By means of a bounded extension operator E : W1,p

D (Ω) → W1,p
D (Rd),

constructed for instance in Theorem 2.2.23, we obtain an extension

Ef ∈W1,p(Lp(Rd)) ∩ Lp(W1,p
D (Rd)), (Ef)(t) = E(f(t)).

Again

u 7→ u⊗ : W1,p(R1+d)→W1,p(Lp(Rd)) ∩ Lp(W1,p(Rd))(6.17)

is an isometry but the upshot is that on the whole space Rd we have at
hand convolution by smooth kernels. Hence, {u⊗; u ∈ C∞c (R1+d)} is dense
in the right-hand space, that is, (6.17) provides an isometric isomorphism
in virtue of which Ef = g⊗ for some g ∈ W1,p(R1+d). Restricting again
to Ω,

f = h⊗, where h = RR×Ωg ∈W1,p(R× Ω).

Note that h has bounded support in R+ × Ω by assumption on f and it
remains to prove h ∈ W1,p

R×D(R × Ω). To this end consider an auxiliary
finite cylinder of the form Ξ = (−2t0, 2t0)× Ω with Dirichlet part

F :=
(
{|t| ≤ t0} ×D

)
∪
(
{t0 ≤ |t| ≤ 2t0} × ∂ Ω

)
∪
(
{|t| = 2t0} × Ω

)
,

where t0 > 0 is chosen large enough to guarantee supph ⊆ (−t0, t0) × Ω
and d((t, x), F ) = d(x,D) for all (t, x) ∈ supph. This allows to bring into
play the Hardy inequality on W1,p

D (Ω), Theorem 2.3.9, as follows:

∫∫
Ξ

∣∣∣∣∣ h(t, x)
dF (t, x)

∣∣∣∣∣
p

dx dt =
∫ ∞
−∞

∫
Ω

∣∣∣∣∣ ft(x)
dD(x)

∣∣∣∣∣
p

dx dt

.
∫ ∞
−∞

∫
Ω
|∇ft(x)| dx dt <∞.

(6.18)
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Recall from Remark 5.0.2 that ∂ Ω is a (d − 1)-set in Rd, just as is D.
Lemmas 5.4.5 and 1.2.24 yield that F is a d-set in R1+d. Moreover, Ξ
satisfies the Lipschitz condition around every (t, x) contained in ∂ Ξ \ F =
(−T, T )× ∂ Ω \D in virtue of the bi-Lipschitz map

(−T, T )× Ux → (−1, 1)1+d, (s, y) 7→ ( s
t0
,Φx(y)),

where Ux and Φx are provided by the Lipschitz condition of Ω around x.
Thus, the pair (Ξ, F ) fits the assumptions of Corollary 2.4.8 and therefore
(6.18) implies h ∈ W1,p

F (Ξ). Since [−t0, t0] ×D is a subset of F and as h
has support in (−t0, t0)× Ω, this already implies h ∈W1,p

R×D(R× Ω).

Remark 6.2.16. If u ∈W1,2
loc(R+; L2(Ω)m)∩ L2

loc(R+;V), for instance if u
is a weak solution to (ES), then Lemma 6.2.15 applies at least restrictively.
In fact, for all η ∈ C∞c (R+) it applies coordinatewise to ηu showing that
u can be approximated by C∞R×D(R × Ω)-functions in the W1,2

loc(R+ × Ω)-
topology.

Now, we are in position to provide a reverse Hölder inequality for weak
solutions to the second-order system.

Theorem 6.2.17 (Reverse Hölder inequality). Let 2∗ < p < 2. There
exist t0 > 0 and r > 1 such that for all 0 < t < t0, all x ∈ Ω, and all weak
solutions u of (ES) it holds

(
−−
∫∫

W (t,x)
|∇t,x u|2

)1/2

.

(
−−
∫∫

rW (t,x)
|∇t,x u|p

)1/p

.(6.19)

Proof. As is typical for this sort of inequalities, the proof relies on lo-
calization and local Caccioppoli-Poincaré estimates. The rough idea is
understood best from Step 1 below. First, let us fix some notation:

(i) For t > 0 and x ∈ Ω abbreviate V (t, x) := (c−1
0 t, c0t) × B(x, c1t).

Consequently, W (t, x) = V (t, x) ∩ (R+ × Ω). Since Ω is a d-set,

|V (t, x)| ' t1+d ' |W (t, x)| (x ∈ Ω, 0 < t ≤ t0),

where t0 > 0 is arbitrary, see Lemma 1.2.23. We shall frequently use
this fact without further mentioning.
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6.2 Semigroup solutions to the first-order system

(ii) According to Assumption 6.1.1 let U1, . . . , UN be a covering of the
compact set ∂ Ω \D by open sets provided by the Lipschitz condition
around ∂ Ω \D, let Φj : Uj → (−1, 1)d be the corresponding bi-
Lipschitz mappings, and let L be the supremum of the Lipschitz
constants of Φ±j .

(iii) Let κ be half the distance of ∂ Ω \D to Rd \ ⋃Nj=1 Uj and define an
open set

UD :=
{
x ∈ Rd; d(x,D) < κ < d(x, ∂ Ω \D)

}
.

Then Ω, UD, U1, . . . , UN is an open covering of Ω.

(iv) Let % be the minimum of the continuous function

1
N + 2(dRd\Ω + dRd\UD +

N∑
j=1

dRd\Uj)

attained on the compact set Ω and note that ρ > 0 owing to (ii).
Such ρ is usually called Lebesgue number of the covering of Ω under
consideration.

We put t0 := %
6c1 . The crucial feature of this choice is that for each x ∈ Ω

and each 0 < t < t0 the ball B(x, 6c1t) is entirely contained in either
Ω, UD, or one of U1, . . . , UN . In the following we treat these three cases
separately.

Step 1: The case B(x, 2c1t) ⊆ Ω

As a warmup example assume that even the smaller ball B(x, 2c1t) is
contained in Ω. Then W (t, x) = V (t, x) and 2W (t, x) = 2V (t, x) are
subsets of R+ × Ω. Since B(x, 2c1t) does not intersect D, Caccioppoli’s
inequality, Lemma 6.2.14, applies with z = u2W (t,x) yielding

1
t1+d

∫∫
W (t,x)

|t∇t,x u|2 .
1
t1+d

∫∫
2W (t,x)

|u− u2W (t,x)|2.(6.20)

In virtue of an affine mapping, 2W (t, x) can be transformed into the ref-
erence domain Ξ := ((2c0)−1, 2c0)×B(0, 2c1). If v corresponds to u under
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6 Mixed boundary value problems on cylindrical domains

this transformation, then by the local Poincaré inequality, Lemma 2.3.6,

1
t1+d

∫∫
2W (t,x)

|u− u2W (t,x)|2 =
∫∫

Ξ
|v − vΞ|2

.

(∫∫
Ξ
| ∇t,x v|p

)2/p

=
(

1
t1+d

∫∫
2W (t,x)

|t∇t,x u|p
)2/p

.

Combining the previous two estimates gives the requested reverse Hölder
estimate (6.19) for r = 2.

Step 2: The non-Dirichlet case B(x, 6c1t) ⊆ Uj

We turn to the case B(x, 6c1t) ⊆ Uj for some 1 ≤ j ≤ N . In this step we
additionally assume that B(x, 2c1t) does not intersect D, so that again we
have at hand (6.20). Via a bi-Lipschitz change of coordinates to the unit
cube and even reflection, u can be extended from 2W (t, x) to 2V (t, x), see
Lemma 5.2.11 for details. For abuse of notation we keep on denoting this
extension by u. Now, starting out with (6.20), an affine transformation
from 2V (t, x) onto the reference domain Ξ – under which u corresponds
to a function v and 2W (t, x) corresponds to an open set S ⊆ Ξ – gives

1
t1+d

∫∫
W (t,x)

|t∇t,x u|2 .
1
t1+d

∫∫
2W (t,x)

|u− u2W (t,x)|2

≤ 1
t1+d

∫∫
2V (t,x)

|u− u2W (t,x)|2

=
∫∫

Ξ
|v − vS|2.

Since |S| = 1
t1+d |2W (t, x)| ' 1, Lemma 2.3.6 yields

1
t1+d

∫∫
W (t,x)

|t∇t,x u|2 .
(∫∫

Ξ
| ∇t,x v|p

)2/p

=
(

1
t1+d

∫∫
2V (t,x)

|t∇t,x u|p
)2/p

.
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6.2 Semigroup solutions to the first-order system

The bi-Lipschitz changes of coordinates increase distances by a factor of
at most L, so∫∫

2V (t,x)\2W (t,x)
| ∇t,x u|p ≤ L2p

∫∫
2L2W (t,x)

| ∇t,x u|p(6.21)

and the requested reverse Hölder estimate follows for the choice r = 2L4.

Step 3: The Dirichlet case B(x, 6c1t) ⊆ Uj

Again we consider the case B(x, 6c1t) ⊆ Uj for some 1 ≤ j ≤ N but this
time we assume that B(x, 2c1t) intersects D, which in turn forces z = 0 in
Caccioppoli’s inequality. We adopt notation from the previous step. As a
substitute for the local Poincaré inequality we claim

∫∫
2Ξ
|v|2 .

(∫∫
2Ξ
| ∇t,x v|p

)2/p

,(6.22)

where 2Ξ = ((4c0)−1, 4c0) × B(0, 4c1) corresponds to 4V (t, x) under the
usual affine transformation. Once (6.22) is established, the argument runs
through as in the previous step and results in the requested reverse Hölder
estimate for r = 4L4.
In order to prove (6.22) we appeal to the Poincaré inequality for func-

tions with partially vanishing traces as stated in Corollary 2.3.3. Clearly
2Ξ satisfies the Lipschitz condition around every of its boundary points
and thus is a W1,p-extension domain, see Section 2.2.4. By assumption
there exists y ∈ B(x, 2c1t) ∩ D. Hence, 4V (t, x) contains a sufficiently
large Dirichlet part

DF := [(2c0)−1t, 2c0t]× (B(y, c1t) ∩D).(6.23)

By Remark 6.2.16 there is a sequence {uj}j ⊆ C∞R+×D(R1+d) converging
to u in the W1,2(4W (t, x))-topology. Since extension by reflection and
affine transformations are continuous with respect to the relevant W1,2-
topologies, {uj}j corresponds to a sequence {vj}j converging to v in the
W1,2(2Ξ)-topology. As each vj vanishes in a neighborhood of the image of
DF under the affine transformation, call it EF say, it follows v ∈W1,2

EF
(2Ξ).

Hence, Corollary 2.3.3 yields
∫∫

2Ξ
|v|2 . 1

H∞d (EF)2/p

(∫∫
2Ξ
| ∇t,x v|p

)2/p
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6 Mixed boundary value problems on cylindrical domains

and in order to deduce (6.22) we only have to bound the d-dimensional
Hausdorff content of EF ⊆ R1+d uniformly from below. For this, first note
that [0, 2c0t0] ×D is a d-thick set R1+d due to Lemmas 1.2.26 and 5.4.5.
Thus, H∞d (DF) ' t1+d and under the usual affine map from 4V (t, x) onto
2Ξ this translates to H∞d (EF) ' 1.

Step 4: The pure Dirichlet case B(x, 6c1t) ⊆ UD

Finally we assume B(x, 6c1t) ⊆ UD. In view of Step 1 we may addi-
tionally assume that B(x, 2c1t) is not entirely contained in Ω. Hence,
B(x, 2c1t) contains a boundary point y ∈ ∂ Ω and in fact y ∈ D by def-
inition of UD. Therefore (6.23) holds. As before we can approximate u
in the W1,2(4W (t, x))-topology by a sequence {uj}j∈N ⊆ C∞R+×D(R1+d).
Concerning Sobolev extension to 4V (t, x), Lipschitz coordinate charts are
not available anymore but due to B(x, 4c1t) ⊆ UD we may simply extend
u and all uj by zero. The exact same reasoning as in Step 3 then leads to
the Poincaré inequality

∫∫
2Ξ
|v|2 .

(∫∫
2Ξ
| ∇t,x v|p

)2/p

,

where v corresponds to the zero extension E0u of u under the affine trans-
formation from 4V (t, x) onto 2Ξ. So, starting out with Caccioppoli’s in-
equality for z = 0, the arguments we have seen several times before yield

1
t1+d

∫∫
W (t,x)

|t∇t,x u|2 .
1
t1+d

∫∫
2W (t,x)

|u|2

≤ 1
t1+d

∫∫
4V (t,x)

|E0u|2

=
∫∫

2Ξ
|v|2

.

(∫∫
2Ξ
| ∇t,x v|p

)2/p

=
(

1
t1+d

∫∫
4V (t,x)

|t∇t,x u|p
)2/p

.

This is the requested reverse Hölder estimate for r = 4 since by construc-
tion ∇t,x u vanishes almost everywhere on 4V (t, x) \ 4W (t, x).
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6.2 Semigroup solutions to the first-order system

As a corollary, a reverse Hölder estimate for the DB-semigroup reveals
itself.

Corollary 6.2.18. Let 2∗ < p < 2. There exist t0 > 0 and r > 1 such
that for all 0 < t < t0, all x ∈ Ω, and all h+ ∈ H+

DB it holds

(
−−
∫∫

W (t,x)
|e−s[DB]h+(y)|2 dy ds

)1/2

.

(
−−
∫∫

rW (t,x)
|e−s[DB]h+(y)|p dy ds

)1/p

.

Proof. Put fs = e−s[DB]h+, s ≥ 0. Then f is a weak solution to the first-
order system according to Proposition 6.2.1. Thanks to Proposition 6.1.16
it is representable as f = A∇t,x u for u a weak solution to (ES). As A is
invertible in L∞(Ω;L(Cn)), the claim follows from Theorem 6.2.17.

Non-tangential estimates and Fatou type results

After a short and rather technical interlude on reverse Hölder inequali-
ties we return to the non-tangential maximal function. The first of the
following two lemmas provides an L2-bound for the non-tangential max-
imal functions of functions ζ(tDB), t ≥ 0, where ζ is regularly decay-
ing at 0 and ∞. Since we secretly aim at same result for the choice
ζ = e−t[z] = (e−t[z] − 1

1+iz ) + 1
1+iz , we need the second lemma to take care

of the correction term.

Lemma 6.2.19. Let T = DB or T = BD and let ζ ∈ H∞0 (Sψ), ω < ψ < π
2 ,

be non-degenerate. Moreover, let r ≥ 1. Then for each h ∈ L2(Ω)n it holds

∫
Ω

sup
0<t≤1

−−
∫∫

rW (t,x)
|ζ(sT )h(y)|2 dy ds dx . ‖h‖2

L2(Ω)n

and for almost every x ∈ Ω there is pointwise convergence

lim
t→0
−−
∫∫

rW (t,x)
|ζ(sT )h(y)|2 dy ds = 0.

Proof. If h ∈ N (T ), then ζ(sT )h = 0 for every s > 0, see Example 3.2.16.
So, for the rest of the proof we may assume h ∈ R(T ). Since Ω is d-Ahlfors
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regular,

−−
∫∫

rW (t,x)
|ζ(sT )h(y)|2 dy ds

.
∫ rc0t

(rc0)−1t

∫
B(x,c1rt)∩Ω

|ζ(sT )h(y)|2 dy ds
t1+d

.
∫ rc0t

(rc0)−1t

∫
Ω

1B(x,c0c1r2s)∩Ω(y) |ζ(sT )h(y)|2 dy ds
s1+d

uniformly for all 0 < t ≤ 1 and all x ∈ Ω. For a later purpose we introduce
an arbitrary 0 < t0 ≤ 1. Integration of the previous estimate with respect
to x gives ∫

Ω
sup

0<t≤t0
−−
∫∫

rW (t,x)
|ζ(sT )h(y)|2 dy ds dx

≤
∫

Ω

∫ rc0t0

0

∫
Ω

1B(x,c0c1r2s)∩Ω(y) |ζ(sT )h(y)|2 dy ds
s1+d dx

.
∫ rc0t0

0

∫
Ω
|ζ(sT )h(y)|2 dy ds

s
.

(6.24)

Theorem 6.1.20 automatically implies quadratic estimates for all non-
degenerate regularly decaying holomorphic functions, see Corollary 3.4.8.
In particular, ∫ ∞

0

∫
Ω
|ζ(sT )h(y)|2 dy ds

s
. ‖h‖2

L2(Ω)n <∞.

So, the first claim follows on choosing t0 = 1 in (6.24) and the almost
everywhere convergence follows on letting t0 → 0.

Lemma 6.2.20. If p ∈ (p0, 2) with p0 as in Proposition 6.2.5 and r ≥ 1,
then for each h ∈ L2(Ω)n it holds∫

Ω
sup

0<t≤(rc0)−1

(
−−
∫∫

rW (t,x)
|(1 + isDB)−1h(y)|p dy ds

)2/p
dx . ‖h‖2

L2(Ω)n .

Proof. Very similar to the proof of Lemma 6.2.19 it all starts with a
rough estimate

−−
∫∫

rW (t,x)
|(1 + isDB)−1h(y)|p dy ds

.
∫ rc0t

(rc0)−1t

∫
Ω

1B(x,c0c1r2s)∩Ω(y)|(1 + isDB)−1h(y)|p dy ds
s1+d
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uniformly for all 0 < t ≤ 1 and all x ∈ Ω. If 0 < t ≤ 1
rc0

, then 0 < s ≤ 1
in the domain of integration and so

sup
0<t≤(rc0)−1

−−
∫∫

W (t,x)
|(1 + isDB)−1h(y)|p dy ds

. sup
0<s≤1

1
sd

∫
Ω

1B(x,c0c1r2s)∩Ω(y)|(1 + isDB)−1h(y)|p dy.
(6.25)

For the moment fix 0 < s < 1 and x ∈ Ω. In order to control the integral
on the right-hand side of (6.25) put Bk := B(x, 2kc0c1r

2s), k ≥ 0, and
split Rd into annuli C0 := B0 and Ck := Bk \Bk−1, k ≥ 1. Corollary 6.2.7
yields for some M ∈ N to be specified below,

‖1B0(1 + isDB)−1f‖Lp(Ω)n ≤
∑
k≥0
‖1C0(1 + isDB)−11Ckf‖Lp(Ω)n

.
∑
k≥0

(
1 + d(C0, Ck)

s

)−M
‖1Ckf‖Lp(Ω)n

≤ ‖1B0f‖Lp(Ω)n

+
∑
k≥1

(1 + (2k−1 − 1)r2c0c1)−M‖1Bkf‖Lp(Ω)n .

The Hardy-Littlewood maximal operator provides the bounds

‖1Bkf‖Lp(Ω)n . 2dk/psd/pM(|1Ωf |p)(x)1/p (k ≥ 0).

We specialize to a fixed M > d/p in order to make the sum over k con-
vergent and discover

‖1B0(1 + isDB)−1f‖Lp(Ω)n . sd/pM(|1Ωf |p)(x)1/p.

This estimate inserted back on the right-hand side of (6.25) leads to

sup
0<t≤(rc0)−1

−−
∫∫

rW (t,x)
|(1 + isDB)−1h(y)|p dy ds .M(|1Ωf |p)(x) (x ∈ Ω).

Thanks to 2
p
> 1, the maximal operator is bounded on L2/p(Rd) by The-

orem 2.5.10. Therefore the claim follows on integrating the 2
p
-th power of

the last estimate with respect to x ∈ Ω.
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Finally, we can confirm that semigroup solutions to the first-order sys-
tem have an L2-bounded non-tangential maximal function.

Theorem 6.2.21. It holds

‖Ñ∗(e−t[DB]h+)‖L2(Ω) ' ‖h+‖L2(Ω)n (h+ ∈ H+
DB).

Proof. The lower estimate for Ñ∗ is due to Lemma 6.2.13. For the upper
bound we shall combine the previous two lemmas with the reverse Hölder
inequality for semigroup solutions.
For brevity we put ft = e−t[DB]h+, t ≥ 0. Next, let us fix p < 2

sufficiently large so that both Corollary 6.2.18 and Lemma 6.2.20 apply
and let 0 < t0 < 1 and r ≥ 1 be such that Corollary 6.2.18 applies. We
may assume t0 ≤ 1

rc0
. We split the non-tangential maximal function as

Ñ∗(f)(x) ≤ sup
0<t<t0

(
−−
∫∫

W (t,x)
|f |2

)1/2

+ sup
t≥t0

(
−−
∫∫

W (t,x)
|f |2

)1/2
(x ∈ Ω)

(6.26)

and estimate both suprema separately in L2(Ω).
For the first one put ζ = e−[z] − (1 + iz)−1. Then

ζ(tDB)h+ = ft − (1 + itDB)−1h+

and in view of Corollary 6.2.18 we obtain the pointwise bound

sup
0<t<t0

(
−−
∫∫

rW (t,x)
|ζ(sDB)h+(y)|p dy ds

)1/p

+ sup
0<t<t0

(
−−
∫∫

rW (t,x)
|(1 + isDB)−1h+(y)|p dy ds

)1/p

for all x ∈ Ω. Concerning the L2(Ω)-norms of these terms with respect
to x, Jensen’s inequality and Lemma 6.2.19 bound the the first one by a
generic multiple of ‖h+‖2 and Lemma 6.2.20 provides the same estimate
for the second supremum.
We tend to the second supremum on the right-hand side of (6.26). Since

Ω is a d-set, there is a uniform lower bound for the measure of all sets

300



6.2 Semigroup solutions to the first-order system

B(x, c1t) ∩ Ω, where x ∈ Ω and t ≥ t0. Hence, the second supremum in
(6.26) is uniformly controlled on Ω by

sup
t≥t0

(1
t

∫ c0t

c−1
0 t

∫
Ω
|fs(y)|2 dy ds

)1/2
= sup

t≥t0

(1
t

∫ c0t

c−1
0 t
‖e−s[DB]h+‖2

2 ds
)1/2

. ‖h+‖2,

the last step following from the fact that {e−t[DB]}t≥0 is a bounded semi-
group on L2(Ω)n. Since Ω is bounded, the required L2-bound follows.

Since the weak (1, 1)-bound for the maximal operatorM can be used to
prove Lebesgue’s differentiation theorem from classical measure theory [67,
Sec. 2.1.3], we may ask whether the L2-bound for the non-tangential
maximal function Ñ∗(e−z[DB]h+) implies almost everywhere convergence
of Whitney averages

lim
t→0
−−
∫∫

W (t,x)
e−s[DB]h+(y) dy ds = h+(x)

toward the data h+ ∈ H+
DB. The next theorem provides the affirmative

answer even for general h ∈ L2(Ω)n.

Theorem 6.2.22. Let T = DB or T = BD. For every h ∈ L2(Ω)n there
is almost everywhere convergence

lim
t→0
−−
∫∫

W (t,x)
|e−s[T ]h(y)− h(x)|2 dy ds = 0 (a.e. x ∈ Ω),

and in particular

lim
t→0
−−
∫∫

W (t,x)
e−s[T ]h(y) dy ds = h(x) (a.e. x ∈ Ω).

For the proof of Theorem 6.2.22 we need one more auxiliary estimate.

Lemma 6.2.23 (Local coercivity estimate). There exists a constant c > 0
such that for every x ∈ Ω, every r > 0 such that B(x, 2r) ⊆ Ω, and every
u ∈ D(D) it holds

∫
B(x,r)

|Du|2 ≤ c
( ∫

B(x,2r)
|BDu|2 + 1

r2

∫
B(x,2r)

|u|2
)
.

301



6 Mixed boundary value problems on cylindrical domains

Proof. Let η be a smooth function with range in [0, 1], identically 1 on
B(x, r), support in B(x, 2r), and |∇x η| ≤ cd

r
for a constant cd depending

only on d. Corollary 6.1.23 together with the accretivity of the multipli-
cation operator B on R(D), see Lemma 6.1.8, yields
1
2

∫
B(x,r)

|Du|2 ≤ 1
2

∫
Ω
|ηDu|2

≤
∫

Ω
|[η,D]u|2 + |D(ηu)|2

≤
∫

Ω
|[η,D]u|2 + λ−2‖A‖4

∞ |BD(ηu)|2

≤
∫

Ω
|[η,D]u|2 + λ−2‖A‖4

∞ |ηBDu|2 + λ−2‖A‖4
∞ |B[η,D]u|2

with a commutator bound |[η,D](y)| ≤ cd
r
1B(x,2r)(y) for a.e. y ∈ Ω. Since

B is induced by an L∞-function, the conclusion follows.

Proof of Theorem 6.2.22. Throughout the proof we keep a represen-
tative for h fixed. For resolvents of T we use the shorthand notation
RT
s := (1 + isT )−1. The argument is subdivided into four consecutive

steps.

Step 1: Preliminaries for the case T = BD

Given x ∈ Ω, choose tx ∈ (0, 1] small enough to guarantee B(x, tx) ⊆ Ω.
Let η be a smooth function with range in [0, 1] and support in Ω that is
identically 1 on B(x, tx). As ηx : y 7→ h(x)η(y) is Cn-valued and smooth
with compact support in Ω, it belongs to D(D) = D(BD) according to
Remark 6.1.3. If t ≤ tx

c1
, then ηx = h(x) on B(x, c1t) and so

−−
∫∫

W (t,x)
|e−s[T ]h(y)− h(x)|2 dy ds

is bounded from above by

−−
∫∫

W (t,x)
|(e−s[T ] −RT

s )h(y)|2 + |RT
s (h− ηx)(y)|2

+ |RT
s ηx(y)− ηx(y)|2 dy ds.

(6.27)

We shall prove that each of these three terms vanishes in the limit t→ 0
for almost every x ∈ Ω. For the first term this is just the assertion of
Lemma 6.2.19 applied with ζ = e−[z] − (1 + iz)−1. The other two terms
require a closer inspection.
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6.2 Semigroup solutions to the first-order system

Step 2: Second term estimate

In the following estimates we may assume t < 1. Let Bk = B(x, 2kc1t),
k ≥ 0, and split Rd into annuli C0 := B0 and Ck := Bk \Bk−1, k ≥ 1. By
means of Proposition 6.2.3 on L2 off-diagonal decay for the resolvents of
T we can infer an estimate

‖1B0R
T
s (h− ηx)‖L2(Ω)n .

∑
k≥0

(
1 + d(Ck, C0)

s

)−d−1

‖1Ck(h− ηx)‖L2(Ω)n

for all s > 0, so that in the range s ∈ [c−1
0 t, c0t], in which s is comparable

to t,

‖1B0R
T
s (h− ηx)‖L2(Ω)n

.
∑
k≥0

2−dk−k‖1Ck(h− ηx)‖L2(Ω)n

≤
(∑
k≥0

2−dk−k
)1/2(∑

k≥0
2−dk−k‖1Ck(h− ηx)‖2

L2(Ω)n

)1/2
.

Integrating the square of this estimate with respect to s ∈ [c−1
0 t, c0t] gives

−−
∫∫

W (t,x)
|RT

s (h− ηx)(y)|2 dy ds

.
∫ c0t

c−1
0 t

∑
k≥0

2−dk−k
∫
Ck

|1Ωh(y)− ηx(y)|2 dy ds
t1+d

and since the integrand on the right-hand side is independent of s, even-
tually

−−
∫∫

W (t,x)
|RT

s (h− ηx)(y)|2 dy ds

.
∑
k≥0

2−k−
∫
Bk

|1Ωh(y)− ηx(y)|2 dy.
(6.28)

We break the sum over k at k0 characterized by 2−k0−1 ≤
√
t < 2−k0 and

use the Hardy-Littlewood maximal operator to control the integrals on
the large balls with k ≥ k0. In this manner, we see that the right-hand
side of (6.28) is bounded by

k0−1∑
k=0

2−k−
∫
Bk

|1Ωh(y)− ηx(y)|2 dy +
∞∑

k=k0

2−kM(|1Ωh− ηx|2)(x).
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6 Mixed boundary value problems on cylindrical domains

For the first sum we note that all occurring balls are of radius less than
2k0c1t ≤ c1

√
t. Hence, for c1

√
t < tx, which will happen in the limit for

t anyway, we have ηx ≡ 1Ωh(x) on each ball. For the second sum we
utilize the global estimate |ηx| ≤ |h(x)| and that ∑∞k=k0 2−k ≤ 4

√
t holds.

Altogether, the right-hand side of (6.28) is controlled by

sup
τ≤c1

√
t

−
∫
B(x,τ)

|1Ωh(y)− 1Ωh(x)|2 +
√
tM(|1Ωh|2)(x) +

√
t |h(x)|2 ,(6.29)

provided t > 0 is sufficiently small.
In the limit t → 0 the first term in (6.29) vanishes for every Lebesgue

point of 1Ωh ∈ L2(Rd)n, that is, for almost every x ∈ Ω. The middle
term vanishes providedM(|1Ωh|2)(x) is finite, which by the weak (1, 1)-
type estimate in Theorem 2.5.10 again applies for almost every x ∈ Ω.
Finally, the third term vanishes for every x ∈ Ω as t→ 0. Note carefully
that in the end the exceptional sets for x did not depend on tx and ηx
(and thus not on x itself) although they had been involved in some of the
calculations.

Step 3: Third term estimate

The crucial observation for the third term in (6.27) is that ηx ∈ C∞c (Ω)n is
constant on B(x, tx) and therefore we can actually compute in the classical
sense

Tηx(y) = (BDηx)(y) = B(y)

 divx(ηx)‖(y)

−∇x(ηx)⊥(y)

 = 0 (y ∈ B(x, tx)).

We refer to Remark 6.1.3 for this matter of fact. In particular, if t ≤ tx
2c1 ,

then

1
s

d
(
B(x, c1t), supp(Tηx)

)
≥ tx − c1t

s
≥ tx

2c0t
(c−1

0 t ≤ s ≤ c0t).

On writing (RT
s − 1)ηx = −isRT

s Tηx, the L2 off-diagonal estimates for RT
s

with M = d− 1 yield

‖1B(x,c1t)(RT
s − 1)ηx‖L2(Ω)n . std−1‖Tηx‖L2(Ω)n (c−1

0 t ≤ s ≤ c0t)
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6.2 Semigroup solutions to the first-order system

with implicit constants depending also on tx. However, integrating the
square of the previous estimate with respect to s, as before, reveals

−−
∫∫

W (t,x)
|RT

s ηx − ηx|2 dy ds . t−1−dt2d‖Tηx‖2
L2(Ω)n ,

which in the limit t→ 0 tends to 0 for every x ∈ Ω anyway.

Step 4: The case T = DB

Similar to the case T = BD we can bound the average integrals over
W (t, x) by the sum

−−
∫∫

W (t,x)
|(e−s[DB] −RDB

s )h(y)|2 + |(RDB
s − 1)h(y)|2

+ |h(y)− h(x)|2 dy ds.
(6.30)

Two of the three terms are easy to handle: Lemma 6.2.19 takes care of
the first term vanishing in the limit t → 0 for almost every x ∈ Ω. The
third term, which is independent of the perpendicular variable s, can be
bounded by

−−
∫∫

W (t,x)
|h(y)− h(x)|2 dy ds = −

∫
B(x,c1t)∩Ω

|h(y)− h(x)|2 dy

. −
∫
B(x,c1t)

|1Ωh(y)− 1Ωh(x)|2 dy

for t ≤ 1. So, in the limit t→ 0 it vanishes for every Lebesgue point x of
1Ωh ∈ L2(Rd)n. It remains to consider the middle term in (6.30). Here,
we cannot perform a localization argument as we did for BD since now D
is applied after B. However, a direct calculation lets us discover

RDB
s − 1 = −isDBRDB

s = −isDRBD
s B (s > 0)

so that it suffices to prove almost everywhere convergence

lim
t→0
−−
∫∫

W (t,x)
|isDRBD

s Bh(y)|2 dy ds = 0 (a.e. x ∈ Ω).(6.31)

To this end, let x ∈ Ω be given and let tx and η be as in Step 1.
We abbreviate ĥ := Bh and, as before, we associate with it a smooth
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6 Mixed boundary value problems on cylindrical domains

function η̂x : y 7→ ĥ(x)η(y). Then η̂x = ĥx on B(x, tx) and Dη̂x = 0
almost everywhere on B(x, tx) as in Step 3. Now, if t < tx

2c1 , then the local
coercivity estimate from Lemma 6.2.23 applies on the ball B(x, c1t) with
u = isRBD

s ĥ− isη̂x as follows:∫ c0t

c−1
0 t

∫
B(x,c1t)

|isDRBD
s η̂x|2 dy ds

.
∫ c0t

c−1
0 t

∫
B(x,2c1t)

|isBDRBD
s ĥ|2 + |RBD

s ĥ− η̂x|2 dy ds

=
∫ c0t

c−1
0 t

∫
B(x,2c1t)

|ĥ−RBD
s ĥ|2 + |RBD

s ĥ− η̂x|2 dy ds.

Adding and subtracting RBD
s η̂x − η̂x in both terms on the right-hand

side, we can infer that the Whitney average −−
∫∫
W (t,x) |isDRBD

s η̂x|2 dy ds
is bounded from above by

−−
∫∫

Ŵ (t,x)
|RBD

s (ĥ− η̂x)|2 + |RBD
s η̂x − η̂x|2 dy ds

+ −
∫
B(x,2c1t)

|1Ωĥ(y)− 1Ωĥ(x)|2 dy,

where Ŵ (t, x) := 2W (t, x). The upshot is that – upon replacing all ‘hat-
ted’ variables by their ‘unhatted’ counterparts – almost everywhere conver-
gence of the first two terms in the limit t→ 0 is precisely the statement of
Steps 2 and 3, whereas the third term vanishes for every Lebesgue point x
of 1Ωĥ. Thereby, we have established (6.31) and the proof is complete.

Remark 6.2.24. The organization of the proof of Theorem 6.2.22 is in-
spired by an argument of Auscher and Stahlhut [23, Sec. 9.1]. How-
ever, our setup bears the significant difficulty that D is not defined on
constant functions on Ω – at least when the Dirichlet part D is non-empty.
Surprisingly, the additional localization argument involving ηx provides a
slick way out.

6.3 The Auscher-Axelsson representation
theorems

In their seminal work [12] Auscher and Axelsson have developed a
strategy to prove the following:

306



6.3 The Auscher-Axelsson representation theorems

In the case Ω = Rd every weak solution to the first-order system
satisfying appropriate bounds is in fact a semigroup solution.

These results become particularly interesting as they provide representa-
tion formulas for weak solutions, existence of limits at t = 0 and t = ∞,
and holomorphy in the perpendicular variable, prior to solving any of
the boundary value problems (Dir-A), (Neu-A), and (Reg-A) in the first
place. The main goal in this section is to adapt their theory to our setup
of elliptic systems on R+×Ω and to prove similar representation theorems.

6.3.1 A Duhamel formula for the first-order system
The difficult part toward adapting the Auscher-Axelsson representa-
tion theorems is to prove the following Duhamel formula for our notion of
weak solutions to the first-order system (FO).

Lemma 6.3.1. If f is a weak solution to (FO) in the sense of Defini-
tion 6.1.14, then

∫ t

0
∂sη+(s)e−(t−s)[DB]P+

DBfs ds = 0 =
∫ ∞
t

∂sη−(s)e−(s−t)[DB]P−DBfs ds

for all t > 0 and all Lipschitz functions η± : R+ → R such that η+ is
compactly supported in (0, t) and η− is compactly supported in (t,∞).

Proof of Lemma 6.3.1. By density it suffices to consider smooth func-
tions η± sharing the respective support properties. We concentrate on the
identity on (0, t). The (t,∞)-integral formula is established in exactly the
same way. The complete proof is carried out in the Hilbert space H.
Dualizing against fixed elements from H and switching inner products

and integral signs, it in fact suffices to prove

∫ t

0

(
∂sη+(s)e−(t−s)[DB]P+

DBfs
∣∣∣ h) ds = 0 (h ∈ H)

or, equivalently, by taking adjoints in H, using stability of the functional
calculus under restrictions, and recalling the notion Λ = DB|H,

∫ t

0

(
fs

∣∣∣ ∂sη+(s)(e−(t−s)[Λ]P+
DB)∗h

)
ds = 0 (h ∈ H).(6.32)
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6 Mixed boundary value problems on cylindrical domains

This suggests to use gs := η+(s)(e−(t−s)[Λ]P+
DB)∗h as a test function in (6.6).

This choice is admissible since by stability of the functional calculus under
restrictions and adjoints

(0,∞)→ H, s 7→ (e−s[Λ]P+
DB)∗h = (1C+e−s[z])(Λ)∗h

is an orbit of the holomorphic semigroup generated by Λ∗|1C+ (Λ∗)H on
1C+(Λ∗)H and as such, it is holomorphic with values in D(Λ∗) ⊆ D(D),
see Corollary 6.1.19. Due to

d
ds(e−(t−s)[Λ]P+

DB)∗h = Λ∗(e−(t−s)[Λ]P+
DB)∗h (0 < s < t),

for this special choice of g equation (6.6) becomes∫ t

0

(
fs

∣∣∣ ∂sη+(s)(e−(t−s)[Λ]P+
DB)∗h

)
ds

+
∫ t

0

(
fs

∣∣∣ η+(s)Λ∗(e−(t−s)[Λ]P+
DB)∗h

)
ds

=
∫ t

0

(
Bfs

∣∣∣ η+(s)D(e−(t−s)[Λ]P+
DB)∗h

)
ds.

If u ∈ H and v ∈ D(D), then (Bu | Dv) = (u | PB∗Dv) for P ∈ L(L2(Ω)n)
the orthogonal projection onto H. Now, f is H-valued and Λ∗ = PB∗D|H
holds by Corollary 6.1.19, so that the right-hand side above cancels with
the second term on the left-hand side and the result is (6.32).

Remark 6.3.2. Taking limits η+ → 1(0,t) and η− → 1(t,∞), in which the
derivatives approach certain differences of Dirac δ-distributions, formally
transforms the Duhamel formulas into

P+
DBft − e−t[DB]P+

DBf0 = 0 = −P−DBft (t > 0),

that is, ft = e−t[DB]f0 with f0 ∈ H+
DB. The formal limiting process can

be performed rigorously whenever f admits a square Dini bound as in
Lemma 6.2.11 or a certain square function estimate. This is the statement
of the proofs of Theorem 8.2 and Theorem 9.2 in [12]. In fact, once
the Duhamel formula is established, the argument given by Auscher-
Axelsson [12] is purely on the level of semigroup theory and functional
calculus (even the notation is the same) and we may freely cite it for our
setup throughout.
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6.3 The Auscher-Axelsson representation theorems

6.3.2 The Neumann and regularity problems
For the Neumann and regularity problems (Neu-A) and (Reg-A) it is nat-
ural to aim for a characterization of the conormal gradient ∇A u rather
than the potential u itself. In view of Proposition 6.1.16 this amounts to
characterizing weak solutions to the first-order system.

Theorem 6.3.3 (First representation theorem for (FO)). A function
f ∈ L2

loc(R+;H) is a weak solution to (FO) satisfying the non-tangential
maximal bound ∫

Ω
|Ñ∗(f)(x)|2 dx <∞

if and only if there exists h+ ∈ H+
DB such that ft = e−t[DB]h+ for almost

every t > 0. Moreover, the following hold true:

(i) There are estimates

‖h+‖L2(Ω)n ' sup
t>0
‖ft‖L2(Ω)n ' ‖Ñ∗(f)‖L2(Ω)

'
(∫ ∞

0
‖t∂tft‖2

L2(Ω)n
dt
t

)1/2

.

(ii) A trace on {0} × Ω is attained in the L2(Ω)n-sense limt→0 ft = h+

as well as in the sense of almost everywhere convergence of Whitney
averages

lim
t→0
−−
∫∫

W (t,x)
|fs(y)− h+(x)|2 dy ds = 0 (a.e. x ∈ Ω).

(iii) A posteriori, f has regularity C([0,∞); L2(Ω)n)∩C∞((0,∞); L2(Ω)n)
and asymptotics limt→∞ ft = 0 in the L2(Ω)n-sense.

Proof. As outlined in Remark 6.3.2, necessity follows from [12, Thm. 8.2].
In this argument the non-tangential maximal function is only used to dom-
inate the square Dini norm in the sense of Lemma 6.2.11. The sufficiency
as well as (i) and (iii) follow from Proposition 6.2.1 and Theorem 6.2.21.
Finally, (ii) is proved in Theorem 6.2.22.
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6 Mixed boundary value problems on cylindrical domains

6.3.3 The Dirichlet problem
For the Dirichlet problem we have to find a representation for the potential
u itself. Such will drop off from our second representation theorem.

Theorem 6.3.4 (Second representation thm. for (FO)). Let 0 < α ≤ 1.
A function f ∈ L2

loc(R+;H) is a weak solution to (FO) with estimates∫ ∞
0
‖tαft‖2

L2(Ω)n
dt
t
<∞

if and only if there exists h+ ∈ H+
DB such that ft = [DB]αe−t[DB]h+ for

almost every t > 0. In this case∫ ∞
0
‖tαft‖2

L2(Ω)n
dt
t
' ‖h+‖L2(Ω)n .

Proof. Necessity follows from [12, Thm. 8.2]. Note that therein only
the case α = 1 is considered. However, this restriction is only used to
obtain a square function representation for elements in R([Λ]α), which up
to the obvious modification is true for general 0 < α ≤ 1, see also [134].
Sufficiency follows from Remark 6.2.2 and quadratic estimates for DB with
the regularly decaying holomorphic function [z]αe−[z].

Restricting to the special case α = 1 in Theorem 6.3.4 yields a repre-
sentation formula for the potential u itself under the assumption of Lusin
area bounds. A second extremely interesting case is α = 1

2 but this has to
wait until Section 6.5.

Corollary 6.3.5. A function u ∈ W1,2
loc(R+; L2(Ω)m) ∩ L2

loc(R+;V) is a
weak solution to (ES) with Lusin area bound∫ ∞

0

∫
Ω
|t∇t,x u(t, x)|2 dx dt

t
<∞

if and only if there exists h+ ∈ H+
DB and a constant c ∈ Cm, which in

the case D 6= ∅ is zero, such that ut = c− (Be−t[DB]h+)⊥ for almost every
t > 0. Moreover, the following hold true:

(i) There are estimates

‖(Bh+)⊥‖L2(Ω)m . sup
t>0
‖ut − c‖L2(Ω)m

.

(∫ ∞
0
‖t∇t,x ut‖2

L2(Ω)n
dt
t

)1/2

' ‖Bh+‖2
L2(Ω)n .
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(ii) A trace on {0} × Ω is attained in the L2(Ω)m-sense limt→0 ut =
c− (Bh+)⊥ as well as in the sense of almost everywhere convergence
of Whitney averages

lim
t→0
−−
∫∫

W (t,x)
|us(y)− (c− (Bh+)⊥(x))|2 dy ds = 0 (a.e. x ∈ Ω).

(iii) A posteriori, u ∈ C([0,∞); L2(Ω)m)∩C∞((0,∞); L2(Ω)m) with limit
limt→∞ ut = c in the L2(Ω)m-sense.

Proof. Combining Proposition 6.1.16 and Theorem 6.3.4 we find that u is
a weak solution to (ES) with Lusin area bound if and only if its conormal
gradient satisfies ∇A u = DBe−t[DB]h+ for some h+ ∈ H+

DB. In this case

∫ ∞
0
‖t∇A ut‖2

L2(Ω)n
dt
t
' ‖h+‖L2(Ω)n ' ‖Bh+‖L2(Ω)n ,(6.33)

where thanks to invertibility of A in L∞(Ω;L(Cn)) we may freely replace
∇A with ∇t,x.
In order to recover the potentials u from their conormal gradients, first

let h+ ∈ H+
DB and put ut := −(Be−t[DB]h+)⊥, t ≥ 0. The straightforward

computation

∇A u = A∇t,x u = A

 (BDBe−t[DB]h+)⊥

−∇V(Be−t[DB]h+)⊥



= A

(A−1DBe−t[DB]h+)⊥

(DBe−t[DB]h+)‖

 = DBe−t[DB]h+

(6.34)

confirms that u is a weak solution with Lusin area bound. Conversely, let
u be any such solution. Then ∇A u = DBe−t[DB]h+ for some h+ ∈ H+

DB.
Let vt = −(Be−t[DB]h+)⊥, t ≥ 0. By the same calculation as before,
∇A v = ∇A u. Thus, v − u is a constant function in L2(R+ × Ω)m and if
D 6= ∅, then the Poincaré inequality on V yields v = u.
Finally, the additional properties (i) - (iii) follow from (6.33) and the

boundedness of the [DB]-semigroup.
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Remark 6.3.6. Suppose D = ∅. For functions u satisfying (6.5), the
Lusin area bound implies∫ ∞

0
|(∇A ut | w)L2(Ω)n |2t dt <∞ (w ∈ L2(Ω)n),

which, in view of Lemma 6.1.12 already implies the no-flux condition.

6.4 Well-posedness
Eventually, in this section we come back to the three boundary value
problems for the second-order elliptic system with mixed homogeneous
Dirichlet/Neumann conditions on the lateral boundary, that is, we study

Lu(t, x) = 0 (in R+ × Ω)(ES)
u = 0 (on R+ ×D)

ν · A∇t,x u = 0 (on R+ × (∂ Ω \D))
(BC)

subject to one of the following inhomogeneous conditions on the cylinder
base

u(0, ·) = ϕ ∈ L2(Ω)m(Dir-A)
(∇A u)⊥(0, ·) = ϕ ∈ L2(Ω)m(Neu-A)
∇x u(0, ·) = ϕ ∈ L2(Ω)dm.(Reg-A)

We aim for well-posedness of these problems within the following natu-
ral classes of solutions. Here, natural is also meant with respect to the
method.

Definition 6.4.1 (Well-posedness for non-empty lateral Dirichlet part).
Consider the elliptic system (ES) complemented with lateral boundary
conditions (BC) and assume that the lateral Dirichlet partD is non-empty.

(i) The boundary value problem (Dir-A) is well-posed provided for every
ϕ ∈ L2(Ω)m there exists a unique weak solution u to (ES) with Lusin
area bound ∫ ∞

0

∫
Ω
|t∇t,x u(t, x)|2 dx dt

t
<∞,
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such that limt→0 ut = ϕ in the L2(Ω)m-sense and/or in the sense of
almost everywhere convergence on Ω of Whitney averages.

(ii) The boundary value problem (Neu-A) is well-posed provided for
every ϕ ∈ L2(Ω)m there exists a unique weak solution u to (ES)
with non-tangential maximal bound∫

Ω
|Ñ∗(∇t,x u)(x)|2 dx <∞,

such that limt→0(∇A u(t, ·))⊥ = ϕ in the L2(Ω)m-sense and/or in the
sense of almost everywhere convergence on Ω of Whitney averages.

(iii) The boundary value problem (Reg-A) is well-posed provided for ev-
ery ϕ ∈ ∇x V there exists a unique weak solution u to (ES) with non-
tangential maximal bound as in (ii), such that limt→0∇x u(t, ·) = ϕ

in the L2(Ω)dm-sense and/or in the sense of almost everywhere con-
vergence on Ω of Whitney averages.

Similar to the equivalence theorem for the first- and second-order sys-
tems, Proposition 6.1.16, the pure lateral Neumann case D = ∅ requires
special attention.

Definition 6.4.2 (Well-posedness for empty lateral Dirichlet part). Con-
sider the elliptic system (ES) complemented with lateral boundary condi-
tions (BC) and assume that the lateral Dirichlet part D is empty.

(i) The boundary value problem (Dir-A) is well-posed provided for every
ϕ ∈ L2(Ω)m there exists a unique weak solution u to (ES) with Lusin
area bound ∫ ∞

0

∫
Ω
|t∇t,x u(t, x)|2 dx dt

t
<∞,

such that limt→0 ut = ϕ in the L2(Ω)m-sense and/or in the sense of
almost everywhere convergence on Ω of Whitney averages.

(ii) The boundary value problem (Neu-A) is well-posed provided for
every ϕ ∈ L2(Ω)m with

∫
Ω ϕ = 0 there exists a weak solution u

to (ES) unique up to constants with non-tangential maximal bound∫
Ω
|Ñ∗(∇t,x u)(x)|2 dx <∞,
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such that limt→0(∇A u(t, ·))⊥ = ϕ in the L2(Ω)m-sense and/or in the
sense of almost everywhere convergence on Ω of Whitney averages.

(iii) The boundary value problem (Reg-A) is well-posed provided for ev-
ery ϕ ∈ ∇x V there exists a weak solution u to (ES) unique up to
constants with non-tangential maximal bound as in (ii), such that
limt→0∇x u(t, ·) = ϕ in the L2(Ω)dm-sense and/or in the sense of
almost everywhere convergence on Ω of Whitney averages.

Remark 6.4.3.

(i) In view of Theorem 6.2.22 and the representation theorems from
Section 6.3, the notions of L2- and Whitney average convergence
toward the boundary data are a priori equivalent. The former is
most natural from the semigroup point of view, whereas the latter
is more in the spirit of classical PDE theory.

(ii) If u is a weak solution to (ES) complemented with lateral boundary
conditions (BC), then ut ∈ V for almost every t > 0. Hence, if
∇x ut has a trace ϕ at t = 0 in the L2-sense, then automatically
ϕ ∈ R(∇V) = ∇x V , see Remark 6.1.3. This shows that ϕ ∈ ∇x V is
a natural compatibility condition for data for the regularity problem.
Similarly, if D = ∅ and u is a weak solution to (ES), then the flux
satisfies

∫
Ω(∇A u(t, x))⊥ dx = 0 and thus

∫
Ω ϕ = 0 is again a natural

compatibility condition.

The ingenious insight of Auscher, Axelsson, and McIntosh in [15]
is that – in virtue of a priori semigroup representations for weak solu-
tions – well-posedness of boundary value problems translates to abstract
Hilbert space results on bounded projections. This point of view is made
precise in the following lemma. For a clearer arrangement we introduce
the orthogonal projections

N−f :=

f⊥
0

 and N+f :=

 0

f‖


and the reflection N := N+ −N− in L2(Ω)n.

Lemma 6.4.4.
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6.4 Well-posedness

(i) The problems (Neu-A) and (Reg-A) are well-posed if and only if

N− : H+
DB → N−H, and N+ : H+

DB → N+H

are isomorphisms, respectively.

(ii) If D 6= ∅, then (Dir-A) is well-posed if and only if

N− : BH+
DB → N−H

is an isomorphism.

(iii) If D = ∅, then (Dir-A) is well-posed if and only if

N− : BH+
DB ⊕ {[c, 0]>; c ∈ Cm} → L2(Ω)m

is an isomorphism.

Proof. (i) These are direct consequences of Proposition 6.1.16 and
Theorem 6.3.3.

(ii) The map under consideration is well-defined since N−H = L2(Ω)m.
In view of the a priori representation given in Corollary 6.3.5, the
Dirichlet problem is well-posed provided N− : BH+

DB → N−H is an
isomorphism.
Conversely, assume (Dir-A) is well-posed. Again by Corollary 6.3.5
the map N− : BH+

DB → N−H is onto. Suppose N−Bh+ = 0 for
some h+ ∈ H+

DB. We have to deduce that the full vector Bh+ is
zero. Define ut = −Be−t[DB]h+, t ≥ 0. Corollary 6.3.5 reveals u⊥
as a solution of the Dirichlet problem with Lusin area bound and
data −N−Bh+ = 0. By well-posedness, u⊥ = 0. Now, (6.34) yields
ut ∈ N (D) and the direct decomposition N (D)⊕BH from Proposi-
tion 6.1.17 forces ut = 0 for all t > 0. By strong continuity Bh+ = 0
follows.

(iii) First suppose that N− : BH+
DB ⊕ {[c, 0]>; c ∈ Cm} → L2(Ω)m is an

isomorphism. Given g ∈ L2(Ω)m, there are h+ ∈ H+
DB and c ∈ Cm

such that N−(−Bh+ + [c, 0]>) = g. So, ut := (−Be−t[DB]h+)⊥ +
c, t > 0, is a solution with data g according to Corollary 6.3.5.
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Suppose u is a solution with data 0. Again by Corollary 6.3.5 there
are h+ ∈ H+

DB and c ∈ Cm such that ut = c − (Be−t[DB]h+)⊥ and
therefore N−(−Bh+ + [c, 0]>) = 0. This forces −Bh+ + [c, 0]> = 0
by assumption and thanks to the direct decomposition N (D)⊕BH
and the accretivity of B we obtain h+ = 0 and c = 0. Hence u = 0
and we have proved that (Dir-A) is well-posed.
Conversely, assume that (Dir-A) is well-posed. Corollary 6.3.5 yields
that N− : BH+

DB ⊕ {[c, 0]>; c ∈ Cm} → L2(Ω)m is onto. Now,
suppose N−(−Bh+ + [c, 0]>) = 0 for appropriate h+ and c. As in
(ii), define ut = −Be−t[DB]h+, t ≥ 0. Corollary 6.3.5 reveals u⊥ + c

as a solution of the Dirichlet problem with Lusin area bound and
data 0. By well-posedness, (ut)⊥ = −c for all t > 0. Now, (6.34)
yields ut ∈ N (D) and again the direct decomposition N (D) ⊕ BH
forces ut = 0 for all t > 0. By strong continuity Bh+ = 0 follows
and hence 0 = N−[c, 0]> = c as well. Altogether, we have proved
that the map under consideration is an isomorphism.

6.4.1 Small perturbations
In this section we establish stability of well-posedness under small pertur-
bations of the coefficient tensor A with respect to the L∞-topology.

Definition 6.4.5. A closed operator T in a Hilbert space K is called semi
Fredholm if it has closed range and if at least one of N (T ) and K/R(T )
is finite dimensional. In this case i := dimN (T )−dim(K/R(T )) is called
index of T .

The following lemma is partly implicit in [15, Sec. 4].

Lemma 6.4.6. Let δ > 0. Let Pt, −δ ≤ t ≤ δ be bounded projections on
a Hilbert space K that depend continuously on t in the L(K)-topology. Let
S : K → J be a bounded operator into a Hilbert space J . If S : P0K → J
is an isomorphism, then there exists 0 < ε < δ, such that S : PtK → J is
an isomorphism when |t| < ε. If all maps S : PtK → J are semi-Fredholm
with respective Fredholm indices it, then it = i0 for all t ∈ [−δ, δ].

Proof. For the first claim consider the operators SPt : P0K → J between
fixed spaces. Since P0 is a projection, we have invertibility for t = 0 and
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6.4 Well-posedness

hence, by continuous dependence, also if |t| is sufficiently small. So, the
claim follows provided that Pt : P0K → PtK is invertible. Indeed, if |t|
is sufficiently small, then bounded operators PtK → P0K can be defined
by (Id−P0(P0 − Pt))−1P0 and P0(Id−Pt(Pt − P0))−1, respectively, via a
convergent Neumann series. Due to

(Id−P0(P0 − Pt))P0 = P0PtP0 and PtP0 = Pt(Id−Pt(Pt − P0))

these turn out to be left- and right inverses for Pt : P0K → PtK.
For the second claim note in the chain

P0K
Pt−−−→ PtK

S−−−→ J

the latter map is semi-Fredholm with index it by assumption and the
former is an isomorphism provided t is sufficiently close to 0 as we have
seen above. For such t the map SPt : P0K → J between fixed spaces then
is semi-Fredholm with index 0 + it = it and by continuous dependence of
the index in fact it = i0, see, e.g., [50, Sec. I.3]. The same argument applies
to any Pt0 , t0 ∈ [−δ, δ], in place of P0 and the conclusion follows.

The following is our first stability result.

Proposition 6.4.7. The sets

{A : A satisfies Assumption 6.1.4 and (BVP-A) is well-posed}

are open in L∞(Ω;L(Cn)), where (BVP-A) can stand for either (Neu-A)
or (Reg-A).

Proof. If A satisfies Assumption 6.1.4 with respective constant λ > 0 and
M ∈ L∞(Ω;L(Cn)) is any matrix, then for z ∈ C in a sufficiently small
neighborhood U of z = 1, the matrices Az := (1−z)M+zA, z ∈ U , satisfy
Assumption 6.1.4 with respective constant λ

2 . As usual, let Bz = AzAz
−1.

Then Proposition 6.1.25 and Lemma 6.1.8 yield holomorphy of

U → L(H), z 7→ P+
DBz .

In view of the characterizations for well-posedness given in Lemma 6.4.4,
openness of the sets of well-posedness for (Neu-A) and (Reg-A) follows
from Lemma 6.4.6.
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The inhomogeneity of considering N− on BH+
DB for the Dirichlet prob-

lem can be circumvented by a so-called Dirichlet-regularity duality to the
effect that (Dir-A) is well-posed if and only if the regularity problem (Reg-
A∗) for the adjoint matrix A∗ is well-posed. This principle is well-known
in the setting Ω = Rd, see, e.g., [13,15]. As the adaption to our framework
bears some subtle difficulties, we include a simple and completely abstract
proof building on the following two lemmas.

Lemma 6.4.8. Let P be the orthogonal projection in L2(Ω)n onto H.
There are similarities of operators

DB|R(DB) = R−1(BDR(BD))R and BDR(BD) = S−1(PBD|R(DB))S.

The isomorphisms R, S−1 : R(DB) → R(BD) are given by R = B|R(DB)

and S = P |R(BD). Moreover, S−1 is the restriction to R(DB) of the pro-
jection Q onto R(BD) along the splitting L2(Ω)n = N (D)⊕R(BD).

Proof. Once it is shown that R and S are isomorphisms, the similarity
relations are routine calculations.
For R, recall from Proposition 6.1.17 that R(DB) = H = R(D) and
R(BD) = BH. By accretivity of B the equivalence ‖Bu‖ ' ‖u‖ holds for
every u ∈ R(DB). Hence, R = B|R(DB) has closed range and provides an
isomorphism from R(DB) onto its range BH = R(BD). For S, recall the
topological splitting L2 = N (D)⊕R(BD) from Proposition 6.1.17. Now,
a direct calculation reveals Q|R(DB) and P |R(BD) as inverses to each other:
If x ∈ R(DB) = H, then x − Qx ∈ N (D), so P (x − Qx) = 0, showing
x = Px = PQx. Conversely, if x ∈ R(BD), then x − Px ∈ N (D), so
x = Qx = QPx.

Lemma 6.4.9. Assume that N± and E± are two pairs of complemen-
tary bounded projections on a Hilbert space K, i.e., (N±)2 = N± and
N+ + N− = Id, and similarly for E±. Then the adjoint operators (N±)∗
and (E±)∗ are also two pairs of complementary projections on K and the
restricted projection N+ : E+K → N+K is an isomorphism if and only if
the restricted adjoint projection (N−)∗ : (E−)∗K → (N−)∗K is an isomor-
phism.
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Proof. The proof follows the lines of [13, p. 37]. Clearly (N±)∗ and (E±)∗
are pairs of complementary projections on K as well. We first claim

N+ : E+K → N+K is an isomorphism
=⇒ (E+)∗ : (N+)∗K → (E+)∗K is an isomorphism.

(6.35)

To see this, first let (E+)∗(N+)∗x = 0 for some x ∈ K. Since N+ is
a projection, ((N+)∗x | N+E+y) = 0 for all y ∈ K. By assumption
this orthogonality remains valid if E+ is canceled on the right-hand side.
Hence, ((N+)∗)2x = (N+)∗x = 0, showing that the map under considera-
tion is one-to-one. To see that it is onto, let T be the bounded inverse of
N+ : E+K → N+K. Given x ∈ (E+)∗K define y ∈ K via

(y | z) = (x | TN+z) (z ∈ K).

Then by a direct calculation (E+)∗(N+)∗y = x.
Interchanging E± with N∓ gives

E− : N−K → E−K is an isomorphism
=⇒ (N−)∗ : (E−)∗K → (N−)∗K is an isomorphism.

and thus, in order to prove the first implication of the lemma, it suffices
to show

N+ : E+K → N+K is an isomorphism
=⇒ E− : N−K → E−K is an isomorphism.

(6.36)

To this end, let x ∈ E+K and y ∈ N−K. First note

‖x‖ ' ‖N+x‖ = ‖N+(x+ y)‖ . ‖x+ y‖,

which yields the a priori estimate ‖x‖ + ‖y‖ ' ‖x + y‖. On choosing
x = −E+y, in particular ‖E−y‖ & ‖y‖ holds. Hence, E− : N−K → E−K
is one-to-one with closed range. In order to prove that it is onto, let
x ∈ E−K be given and use the assumption to choose y ∈ E+K such that
N+y = N+x. Then,

E−N−(x− y) = E−(x− y)− E−N+(x− y) = E−(x− y) = E−x = x.

Altogether, this proves (6.36). The reverse implication is obtained by
replacing N± and E± with (N∓)∗ and (E∓)∗, respectively.
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Proposition 6.4.10 (Dirichlet duality). Suppose A ∈ L∞(Ω;L(Cn)) sat-
isfies Assumption 6.1.4. Then (Dir-A) is well-posed if and only if (Reg-A∗)
is well-posed.

Proof. Recall that the Hardy spaces associated with DB are defined as
H±DB = P±DBH with complementary bounded projections P±DB = 1C±(DB)
and that on H the function A∗ satisfies the same accretivity condition as
A. Moreover, replacing A with A∗ amounts to replacing B = AA

−1 with
BF = NB∗N and DB with DBF = −NDB∗N , respectively. Here, we
write N = N+ −N− as before.

Step 1: Rephrasing well-posedness of the Dirichlet problem

We begin with establishing a more useful representation for the space
BP+

DBH closely connected with well-posedness of the Dirichlet problem.
The similarity relations from Lemma 6.4.8 are inherited to the functional
calculus, see Proposition 3.2.10 for details. So, adopting the notation from
Lemma 6.4.8, it follows P+

DB = R−1S−11C+(PBD|H)SR. Here, SR is an
automorphism of H and BR−1 = Id on BH. Hence,

BP+
DBH = S−11C+(PBD|H)H.(6.37)

By Corollary 6.1.19 with the roles of B and B∗ interchanged,

PBD|H = (DB∗|H)∗ = (−NDBFN |H)∗

= −N(DBF|H)∗N |H = −N−1(DBF|H)∗N |H,

where all adjoints are taken within H. Taking into account the identity
1C+(z) = 1C−(−z), z ∈ C, this relation carries over to 1C+(PBD|H) =
N−11C−(DBF)∗N |H as before. So, from (6.37) we obtain the representa-
tion

BP+
DBH = S−1N(P−DBF)∗H.(6.38)

Step 2: The claim for non-empty lateral Dirichlet part

First, we consider the case D 6= ∅. By Lemma 6.4.4 and (6.38), well-
posedness of (Dir-A) is equivalent to N− : S−1N(P−DBF)∗H → N−H being
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an isomorphism. From Lemma 6.4.8 recall that S−1 agrees with the pro-
jection Q onto BH which annihilates N (D). Since the first map in the
chain

(P−DBF)∗H S−1N−−−→ S−1N(P−DBF)∗H N−−−−→ N−H(6.39)

is an isomorphism, well-posedness of the Dirichlet problem is equivalent
to the composite map being an isomorphism. From the identity

N−S−1Nh = N−Nh−N−(1−Q)Nh
= −N−h−N−(1−Q)Nh (h ∈ H)

(6.40)

and the fact that N−N (D) = {0} by injectivity of ∇V , we see that the
composite map in (6.39) acts as N− : (P−DBF)∗H → N−H. Hence, well-
posedness of the Dirichlet problem is equivalent to this map being an
isomorphism. Lemmas 6.4.9 and 6.4.4 yield equivalence to well-posedness
of (Reg-A∗).

Step 3: The claim for empty lateral Dirichlet part

Finally, we consider the case D = ∅. First assume that (Reg-A∗) is well-
posed. In view of Lemmas 6.4.9 and 6.4.4 and (6.38) we have at hand that
N− : (P−DBF)∗H → N−H is an isomorphism and have to show that so is

N− : S−1N(P−DBF)∗H⊕ {[c, 0]>; c ∈ Cm} → L2(Ω)m.(6.41)

Suppose h ∈ (P−DBF)∗H and c ∈ Cm satisfy N−(S−1Nh+ [c, 0]>) = 0. By
(6.40),

−N−h−N−(1−Q)Nh+ c = 0,

where the first term has zero average on Ω and the second and third
terms are constant on Ω. This forces N−h = 0 and N−(1 − Q)Nh = c.
By assumption h = 0 and therefore c = 0, proving that the map in
question is one-to-one. As for ontoness, let g ∈ L2(Ω)m be given and
define gΩ := −

∫
Ω g. By assumption there exists h ∈ (P−DBF)∗H such that

−N−h = g − gΩ. Putting c = gΩ + N−(1 − Q)Nh, it follows once again
from (6.40) that

N−(S−1Nh+ [c, 0]>) = −N−h−N−(1−Q)Nh+ c = g − gΩ + gΩ = g.
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This proves that the map in (6.41) is an isomorphism.
Conversely, we assume that (6.41) provides an isomorphism. In order

to prove that N− : (P−DBF)∗H → N−H is an isomorphism as well, first let
h ∈ (P−DBF)∗H satisfy N−h = 0. With c := −N−(1 − Q)Nh we obtain
from (6.40) that N−S−1Nh = N−([c, 0]>), whence S−1Nh = [c, 0]>. The
topological decomposition N (D) ⊕ BH yields S−1Nh = 0 and therefore
h = 0. Also, given g ∈ N−H, by assumption there exist h ∈ (P−DBF)∗H
and c ∈ Cm such that

g = N−(S−1Nh+ [c, 0]>) = −N−h−N−(1−Q)Nh+ c.

Since g and −N−h have zero average on Ω and as the other two terms
are constant, g = −N−h follows. Altogether, N− : (P−DBF)∗H → N−H is
an isomorphism and well-posedness of (Reg-A∗) follows again from Lem-
mas 6.4.9 and 6.4.4.

Remark 6.4.11. In a nutshell, Step 3 of the proof of Proposition 6.4.10
amounts to modding out constants on both sides of (6.41). This is a result
very similar to [22, Lem. 17.7].

In combination with Proposition 6.4.7 we obtain stability of well-posed-
ness for the Dirichlet problem.

Corollary 6.4.12. The set

{A : A satisfies Assumption 6.1.4 and (Dir-A) is well-posed}

is open in L∞(Ω;L(Cn)).

6.4.2 Well-posedness for block and Hermitean matrices
We prove well-posedness of the three boundary value problems (Dir-A),
(Neu-A), and (Reg-A) for two special classes of matrices. Let us remark
that the isomorphism property required in Lemma 6.4.4 is in general a
hard problem and to date even on the whole space Ω = Rd it has only
been solved for the classes of block and Hermitean matrices [15] and –
with some restrictions – for block-triangular matrices [20]. The proofs of
the following two results mainly follow the lines of [15, Sec. 4].
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Proposition 6.4.13. If A ∈ L∞(Ω;L(Cn)) satisfies Assumption 6.1.4
and is of block-form

A =

A⊥⊥ 0

0 A‖‖

 ,
then each of the problems (Dir-A), (Neu-A), and (Reg-A) is well-posed.

Proof. Thanks to Proposition 6.4.10 and since A 7→ A∗ preserves block
structure, it suffices to consider (Neu-A) and (Reg-A). Since B is a block
matrix as well, N−1BN = B. Just as in the proof of Proposition 6.4.10
this similarity translates to

N sgn(DB) = N sgn(−N−1DBN) = sgn(−DB)N = − sgn(DB)N.

This allows us to construct inverses of the Neumann map N− : H+
DB →

N−H and the regularity map N+ : H+
DB → N+H as 2P+

DB : N−H → H+
DB

and 2P+
DB : N+H → H+

DB, respectively. For instance, in order to check
N−(2P+

DBu) = u for u ∈ N−H, we calculate

N−(2P+
DBu) = N−(1 + sgn(DB))u

= u+N− sgn(DB)u

= u+ 1
2(1−N) sgn(DB)u

= u+ 1
2(− sgn(DB)Nu−N sgn(DB)u) = u.

Hence, well-posedness follows from Lemma 6.4.4.

Proposition 6.4.14. If A ∈ L∞(Ω;L(Cn)) satisfies Assumption 6.1.4
and is Hermitean, that is A = A∗, then each of the problems (Dir-A),
(Neu-A), and (Reg-A) is well-posed.

Proof. Again it suffices to consider the Neumann and the regularity prob-
lem. Let h+ ∈ H+

DB and put ft = e−t[DB]h+, t > 0. Then ∂tft = −DBft
and f has limits limt→0 ft = h+ and limt→∞ ft = 0 in the L2(Ω)n-sense.
Consequently,(

Nh+
∣∣∣ Bh+

)
= −

∫ ∞
0

∂t
(
Nft

∣∣∣ Bft
)

dt

=
∫ ∞

0

(
NDBft

∣∣∣ Bft
)

+
(
Nft

∣∣∣ BDBft
)

dt.
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The condition A∗ = A translates to B = NB∗N and NDB = −DB∗N ,
compare with the proof of Proposition 6.4.10, and so (Nh+ | Bh+) = 0.
This implies the crucial Rellich identity

(N+h+ | N+Bh+) = (N−h+ | N−Bh+) (h+ ∈ H+
DB).

Now, for h+ ∈ H+
DB the short calculation

‖h+‖2 . |(h+ | Bh+)| = |(N+h+ | N+Bh+)|+ |(N−h+ | N−Bh+)|
≤ 2|(N±h+ | N±Bh+)|
. ‖N±h+‖‖h+‖

reveals that the Neumann and regularity operators N± : H+
DB → N±H

are injective with closed range. In particular, they are semi-Fredholm and
it remains to prove that their index is 0. To this end, note that the same
argument applies to the operators N± : H+

DBt → N±H, 0 ≤ t ≤ 1, where
Bt is associated with the Hermitean matrix At = (1− t) Id +tA. By con-
tinuous dependence of the Hardy projections on t (Proposition 6.1.25) and
Lemma 6.4.6, the index of these operators is independent of t. However,
A0 = Id is a block matrix and so it follows from well-posedness for block
matrices that all indices are 0.

We summarize the results concerning well-posedness in the following
theorem.

Theorem 6.4.15. Let A satisfy Assumption 6.1.4. Each of the problems
(Dir-A), (Neu-A), and (Reg-A) is well-posed if the coefficient matrix A is
either of block form or is Hermitean. Moreover, well-posedness is stable
under small perturbations of A in the sense that the sets

{A : A satisfies Assumption 6.1.4 and (BVP-A) is well-posed}

are open in L∞(Ω;L(Cn)), where (BVP-A) can stand for any of the three
boundary value problems considered in this chapter.
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6.5 Variational solutions revisited
In the final part we come full circle and revisit the energy solution u ∈ E
of the Neumann problem

− divt,x A∇t,x u = 0 (in R+ × Ω)
u = 0 (on R+ ×D)

ν · A∇t,x u = 0 (on R+ × (∂ Ω \D))
(A∇t,x u)⊥ = ϕ (on {0} × Ω).

As in the introduction we assume that the lateral Dirichlet part D is
non-empty. To be on the safe side, let us remark that Assumption 6.0.1
in the introduction was weaker than our standing Assumption 6.1.4. In
Proposition 6.0.9 we had constructed a continuous semigroup flow

(∇A u)⊥|t=s = T (s)ϕ (s ≥ 0)

in the space T ∗ but we were unable to show that the semigroup orbit
T (s)ϕ is a representative for (∇A u)⊥ ∈ L2(R+; L2(Ω)m), compare with
Remark 6.0.10. The purpose of this section is to resolve this ambiguity.
In order to comprehend the general idea, consider the conormal gradient

f := ∇A u, which by Proposition 6.1.16 is a weak solution to the first-order
system. Since A is invertible in L∞(Ω;L(Cn)), there is a global bound

∫ ∞
0
‖
√
tft‖2

L2(Ω)n
dt
t
.
∫ ∞

0
‖∇t,x u‖2

L2(Ω)n dt ≤ ‖u‖E <∞.

Hence, Theorem 6.3.4 yields some h+ ∈ H+
DB such that within the space

L2(R+; L2(Ω)n) the representation

∇A u(t, x) =
√

[DB]e−t[DB]h+(x) (t > 0, x ∈ Ω)(6.42)

for the full conormal gradient holds and we have to link this representation
to the previous one obtained in C([0,∞); T ∗). To do so, we will construct
a ‘universe’ in which (6.42) can be written as a proper semigroup formula
∇A u = e−t[DB]

√
[DB]h+ even if h+ is not in the domain of

√
[DB].
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6.5.1 Interlude on extrapolation spaces
Consider the injective bisectorial operator Λ := DB|H and its unperturbed
counterpart Λ0 := D|H. Then [Λ] and [Λ0] are injective sectorial operators
on H, see Section 3.3.4. Semigroup theory provides an abstract construc-
tion of a so-called first extrapolation space H−1 associated with [Λ] such
that there is a hierarchy of Banach spaces

D([Λ]) ∩R([Λ]) H H−1

and an isometric isomorphism T : H → H−1 that commutes with [Λ].
In this way [Λ] extends to a closed operator [Λ]−1 = T [Λ]T−1 in H−1
and similarly, the functional calculus for [Λ] extends to the functional
calculus for [Λ]−1. Since the part of [Λ]−1 in H coincides with [Λ], we do
not distinguish between operators in H and their counterparts in H−1.
For instance, within H−1 the representation (6.42) rewrites as the proper
semigroup formula

∇A ut =
√

[DB]e−t[DB]h+ = e−t[DB]
√

[DB]h+ (t > 0)

where the right-hand side is the orbit of a bounded strongly continuous
holomorphic semigroup on H−1. The reader may refer to the textbooks
of Haase [73, Sec. 6.3] or Engel-Nagel [56, Sec. II.5] and the work of
Auscher, McIntosh, and Nahmod [21] for further background on this
theory. Within H−1 the homogeneous range

H−1
DB :=

{
completion of R([Λ]) with norm ‖u‖H−1

DB
:= ‖[Λ]−1 · ‖H

}
can be defined and again there is consistency H−1

DB ∩H = R([Λ]). It turns
out that H−1

DB coincides with the similarly defined space H−1
D .

Lemma 6.5.1. Up to equivalent norms, both H−1
DB and H−1

D coincide with
the completion of the vector space R(Λ0) with norm ‖Λ−1

0 · ‖H in H−1.

Proof. Since Λ and Λ0 have a bounded H∞-calculus, D([Λ]) = D(Λ) and
similarly for Λ0, see Proposition 3.3.15. Moreover, [Λ] and Λ share the
same range since

[Λ] = Λ(P+
DB − P−DB) and Λ = [Λ](P+

DB − P−DB).
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6.5 Variational solutions revisited

Hence, it suffices to show that the homogeneous ranges of the bisectorial
operators Λ and Λ0 coincide up to equivalent norms.
Proposition 6.1.17 yields R(DB) = R(D) as well as topological ker-

nel/range decompositions that entails R(Λ) = R(Λ0). Given u ∈ R(Λ0),
let v ∈ D(Λ0) be its unique pre-image. Let Q be the projection onto
R(BD) = BH along the splitting L2(Ω)n = N (D) ⊕ R(BD). Then
Qv = Bw for some w ∈ H and consequently Λw = DBw = Dv = u. As
the restriction of Q to H is an isomorphism onto BH, see Lemma 6.4.8, it
follows

‖u‖H−1
DB

= ‖w‖ ' ‖Bw‖ = ‖Qv‖ ' ‖v‖ = ‖u‖H−1
D

and the proof is complete.

Suppose v ∈ H−1
D and let {vn}n be a sequence in D(Λ0) such that

{Λ0vn}n approximates v in the H−1
D -topology. Passing to the limit n→∞

on both side of

Λ0vn = Λ0

(vn)⊥

0

+ Λ0

 0

(vn)‖


yields a decomposition v = u + w with ‖u‖H−1

D
+ ‖w‖H−1

D
≤ ‖v‖H−1

D
. In

view of these considerations we may write u = v⊥ and w = v‖ and call
them perpendicular and parallel parts of v. The next lemma characterizes
the perpendicular part of H−1

D as the dual space of V realized via the chain
of dense embeddings

V ⊆ L2(Ω)m ∼= (L2(Ω)m)∗ ⊆ V∗.

Lemma 6.5.2. There is equivalence of norms ‖[v⊥, 0]>‖H−1
D
' ‖v⊥‖V∗ for

all v ∈ R(Λ0). In particular, (H−1
D )⊥ = V∗ up to equivalent norms.

Proof. First, we prove the norm equivalence for v ∈ R(Λ0). By definition
of Λ0 = D|H, the perpendicular part has a representation v⊥ = divV u for
some u ∈ H‖ = R(∇V). In view of the Poincaré inequality on V we may
equivalently norm V by the homogeneous norm ‖∇V ·‖2. Hence,

‖v⊥‖V∗ = sup
w∈V

‖∇V w‖2=1

|(divV u | w)2| = sup
w∈V

‖∇V w‖2=1

|(u | −∇V w)2| = ‖u‖2,

327



6 Mixed boundary value problems on cylindrical domains

where the last step is due to the Cauchy-Schwarz inequality and the fact
that u itself is of the form −∇V w for some w ∈ V . The conclusion follows
since [0, u]> ∈ D(Λ0) satisfies Λ0[0, u]> = D[0, u]> = [v⊥, 0]>.
In order to conclude (H−1

D )⊥ = V∗, we only have to check that R(Λ0)⊥
is dense in both of these spaces. By construction it is dense in (H−1

D )⊥.
Above we have also seen R(Λ0)⊥ = R(−∆V). The operator −∆V is sec-
torial in L2(Ω)m and injective due to the global Poincaré inequality on V .
So, R(−∆V) is dense in L2(Ω)m and hence in V∗, see Proposition 3.2.2.

Now, we are able to place the space T ∗ of the Lax-Milgram semigroup
within the new context of extrapolation spaces.

Proposition 6.5.3. The dual T ∗ of the trace space T coincides with the
perpendicular component of (H,H−1

DB)1/2,2 up to equivalent norms.

Proof. Thanks to Lemma 6.5.1 we may replace H−1
DB with H−1

D without
changing the interpolation space under consideration. SinceH⊥ = L2(Ω)m
and (H−1

D )⊥ = V∗ by Lemma 6.5.2, interpolation for complemented sub-
spaces and duality for the real interpolation method yield

((
H,H−1

DB

)
1/2,2

)
⊥

=
(
(L2(Ω)m)∗,V∗

)
1/2,2

=
(
L2(Ω)m,V

)∗
1/2,2

= T ∗,

see Corollary 1.3.6 and Proposition 1.3.12. Here, we had identified L2(Ω)m
with its dual so to make it compatible with V∗.

We close this interlude on extrapolation spaces with the following main
theorem of homogeneous interpolation. For a proof see [21, Prop. 5.1] or
[73, Prop. 6.4.1/5].

Proposition 6.5.4 (Homogeneous interpolation). Let T be an injective
sectorial operator in a Hilbert space K and suppose that T satisfies quadra-
tic estimates. Let 0 < θ < 1, let K−1 be the first extrapolation space asso-
ciated with T , and let K−1

T be its homogeneous range. Then the extension
of T θ to K−1 provides an isomorphism from K onto the real interpolation
space (K,K−1

T )θ,2.
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6.5.2 Identification of the Lax-Milgram semigroup
We come back to the semigroup representation of ∇A u ∈ L2(R+; L2(Ω)n)
via the DB semigroup, see (6.42). Combining Propositions 6.5.3 and 6.5.4
it follows that in the equality of L2(R+; L2(Ω)m)-functions

(∇A ut)⊥ = (
√

[DB]e−t[DB]h+)⊥ (t > 0)

the right-hand is smooth when viewed as T ∗-valued function. Below, we
prove that this right-hand side is the orbit T (s)ϕ of the Lax-Milgram
semigroup, which then in turn must be a representative of (∇A u)⊥ in the
sense of L2(R+; L2(Ω)m).

Theorem 6.5.5. For each s > 0 it holds T (s)ϕ = (
√

[DB]e−s[DB]h+)⊥ as
an equality in T ∗, where T (s) is the Lax-Milgram semigroup constructed
in Proposition 6.0.9.

Proof. Fix s > 0 and v0 ∈ T . Let v ∈ E be an extension of v0 and put
fs =

√
[DB]e−s[DB]h+ for brevity. Due to

A∇t,x u =

(A∇t,x u)⊥

(A∇t,x u)‖

 =

 (∇A u)⊥

(B∇A u)‖

 =

 f⊥

(Bf)‖



the claim 〈T (s) | v0〉T ∗,T = 〈(fs)⊥ | v0〉T ∗,T rewrites as

∫ ∞
0

(
(ft+s)⊥

∣∣∣ ∂tvt)L2(Ω)m
+
(
(Bft+s)‖

∣∣∣ ∇V vt)L2(Ω)dm
dt

=
〈
fs

∣∣∣ v|t=0
〉
T ∗,T

.
(6.43)

It suffices to establish this equality for v ∈ C∞(R+;V) with bounded
support since a general v ∈ E can be approximated within E by convolution
with smooth kernels and multiplication by suitable cutoff functions. If v
is of that quality, then the first term on the left-hand side equals

∫ ∞
0

〈
(ft+s)⊥

∣∣∣ ∂tv〉T ∗,T .
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Since ft+s is a smooth T ∗-valued function of s, integration by parts is
justified without any doubt and the left-hand side of (6.43) becomes

〈
(fs)⊥

∣∣∣ v|t=0
〉
−
∫ ∞

0

〈
(DBft+s)⊥

∣∣∣ vt〉T ∗,T
+
(
(Bft+s)‖

∣∣∣ ∇V vt)L2(Ω)m
dt.

Introducing gt = [vt, 0]⊥ ∈ D(D), t ≥ 0, this is the same as

〈
(fs)⊥

∣∣∣ v|t=0
〉
−
∫ ∞

0

(
DBft+s

∣∣∣ gt)L2(Ω)n
−
(
Bft+s

∣∣∣ Dgt)L2(Ω)n
dt.

By self-adjointness of D the right-most terms cancel and the result is just
the right-hand side of (6.43).

Remark 6.5.6. Theorem 6.5.5 is a perfect synthesis of the classical Lax-
Milgram approach to elliptic boundary value problems and the recent
DB formalism. In fact, the former yields well-posedness almost for free
but in order to obtain a meaningful interpretation for the Lax-Milgram
semigroup even on the highly non-smooth domain R+ × Ω, much more
elaborated techniques need to be applied.

Remark 6.5.7. As Theorem 6.5.5 gives a rather explicit description of
the Lax-Milgram semigroup associated with (6.1), it is natural to ask for
a description of the underlying space T ∗ as well. In fact, we have already
proved

T = H1/2(Ω)m ∩ L2(Ω, dx
dD(x))

m

in Proposition 5.4.9.

Remark 6.5.8. Let ϕ ∈ T ∗. The Neumann-to-Regularity operator NtR
maps the normal gradient (∇Au)⊥|t=0 = ϕ of the associated energy solu-
tion u ∈ E to the tangential gradient ∇x u|t=0. In view of Theorem 6.5.5
this map is characterized by the condition [ϕ,NtR(ϕ)]> ∈

√
[DB]H+

DB.
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