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Object of interest

Lu = ∂tu −
d∑

i , j=1
∂xi (aij∂xj u), (t, x) ∈ R× Rd

with coefficients aij(t, x) such that
I each aij is bounded, measurable in all variables, with values in Cm×m,
I some ellipticity (i.e. a lower bound) holds for A = (aij).

Examples
I Heat operator ∂t −∆x , Lamé operator ∂t − µ∆x − µ′∇xdivx ,. . .

This talk will touch upon

I Local regularity of weak solutions
I (Maximal) non-autonomous regularity for

the Cauchy problem
I Functional calculus
I Boundary value problems
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Lions 1957: Lu = f in the weak sense in Ω ⊆ R1+d if

I u, ∇u are in L2
loc(Ω),

I for all test functions φ in a class containing C∞0 (Ω),∫∫
Ω
−u · ∂tφ+ A∇xu · ∇xφ dx dt =

∫∫
Ω

f · φ dx dt.

Parabolic part is not well-balanced:

I u and φ not in the same (Sobolev) space! non-symmetry of
parabolic boundary.

I failure of energy estimates: If φ ∈ C∞0 (Ω), then

Re
∫∫

Ω
φ · ∂tφ dx dt = 1

2

∫∫
R1+d

d
dt |φ|

2 dx dt = 0.

Hence, no Lax-Milgram techniques.

Parabolic scaling |x | ∼ t 1
2 suggest to put 1

2 -derivative in t on u...
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Forcing a symmetric expression – a stupid idea ?

Consider the model case Ω = R1+d . . . after all, L is local.

Split via Fourier transform:

∂t = D1/2
t HtD1/2

t according to − iτ = |τ |1/2(−i sgn(τ))|τ |1/2.

Obtain

Lu = f ⇐⇒

∫∫
−D1/2

t u · HtD1/2
t φ+ A∇u · ∇φ︸ ︷︷ ︸

a(u,φ)

=
∫∫

f · φ.

Ellipticity means

Re a(u, u) = 0 + Re
∫∫

A∇u · ∇u ≥ κ
∫∫
∇u · ∇u = κ‖∇u‖22

because we cannot cheat so easily! (but we actually can...)
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A trick of Stanley Kaplan (1966)

Recall: 1 + L associated with form

〈u, φ〉+ a(u, φ) =
∫∫

u · φ+ A∇u · ∇φ− D1/2
t u · HtD1/2

t φ.

Hidden coercivity: For δ > 0,

Re〈(1− δHt)u, u〉+ Re a((1− δHt)u, u)

= Re
∫∫

u · u − δHtu · u����δHtu · u dx dt + Re
∫∫

A∇u · ∇u − δA∇Htu · ∇u(((((
((

δA∇Htu · ∇u dx dt

+ Re
∫∫
−D1/2

t u · HtD1/2
t u����

���
�

D1/2
t u · HtD1/2

t u + δHtD1/2
t u · HtD1/2

t u dx dt

≥ ‖u‖22 + κδ‖∇u‖22 + δ‖HtD1/2
t u‖22.

=⇒ (1 + L)(1− δHt) ia an isomorphism E→ E∗, where

E =
{

u ∈ L2(R1+d ) : ‖u‖2E = ‖u‖22 + ‖D1/2
t u‖22 + ‖∇u‖22 <∞

}
.

=⇒ Also 1 + L is an isomorphism E→ E∗ !



A trick of Stanley Kaplan (1966)

Recall: 1 + L associated with form

〈u, φ〉+ a(u, φ) =
∫∫

u · φ+ A∇u · ∇φ− D1/2
t u · HtD1/2

t φ.

Hidden coercivity: For δ > 0,

Re〈(1− δHt)u, u〉+ Re a((1− δHt)u, u)

= Re
∫∫

u · u − δHtu · u dx dt + Re
∫∫

A∇u · ∇u − δA∇Htu · ∇u dx dt

+ Re
∫∫
−D1/2

t u · HtD1/2
t u + δHtD1/2

t u · HtD1/2
t u dx dt

≥ ‖u‖22 + κδ‖∇u‖22 + δ‖HtD1/2
t u‖22.

=⇒ (1 + L)(1− δHt) ia an isomorphism E→ E∗, where

E =
{

u ∈ L2(R1+d ) : ‖u‖2E = ‖u‖22 + ‖D1/2
t u‖22 + ‖∇u‖22 <∞

}
.

=⇒ Also 1 + L is an isomorphism E→ E∗ !



A trick of Stanley Kaplan (1966)

Recall: 1 + L associated with form

〈u, φ〉+ a(u, φ) =
∫∫

u · φ+ A∇u · ∇φ− D1/2
t u · HtD1/2

t φ.

Hidden coercivity: For δ > 0,

Re〈(1− δHt)u, u〉+ Re a((1− δHt)u, u)

= Re
∫∫

u · u −����δHtu · u dx dt + Re
∫∫

A∇u · ∇u − δA∇Htu · ∇u dx dt

+ Re
∫∫
−���

���
��

D1/2
t u · HtD1/2

t u + δHtD1/2
t u · HtD1/2

t u dx dt

≥ ‖u‖22 + κδ‖∇u‖22 + δ‖HtD1/2
t u‖22.

=⇒ (1 + L)(1− δHt) ia an isomorphism E→ E∗, where

E =
{

u ∈ L2(R1+d ) : ‖u‖2E = ‖u‖22 + ‖D1/2
t u‖22 + ‖∇u‖22 <∞

}
.

=⇒ Also 1 + L is an isomorphism E→ E∗ !



A trick of Stanley Kaplan (1966)

Recall: 1 + L associated with form

〈u, φ〉+ a(u, φ) =
∫∫

u · φ+ A∇u · ∇φ− D1/2
t u · HtD1/2

t φ.

Hidden coercivity: For δ > 0,

Re〈(1− δHt)u, u〉+ Re a((1− δHt)u, u)

= Re
∫∫

u · u −����δHtu · u dx dt + Re
∫∫

A∇u · ∇u −(((((
((

δA∇Htu · ∇u dx dt

+ Re
∫∫
−���

���
��

D1/2
t u · HtD1/2

t u + δHtD1/2
t u · HtD1/2

t u dx dt

≥ ‖u‖22 + κδ‖∇u‖22 + δ‖HtD1/2
t u‖22.

=⇒ (1 + L)(1− δHt) ia an isomorphism E→ E∗, where

E =
{

u ∈ L2(R1+d ) : ‖u‖2E = ‖u‖22 + ‖D1/2
t u‖22 + ‖∇u‖22 <∞

}
.

=⇒ Also 1 + L is an isomorphism E→ E∗ !



A trick of Stanley Kaplan (1966)

Recall: 1 + L associated with form

〈u, φ〉+ a(u, φ) =
∫∫

u · φ+ A∇u · ∇φ− D1/2
t u · HtD1/2

t φ.

Hidden coercivity: For δ > 0,

Re〈(1− δHt)u, u〉+ Re a((1− δHt)u, u)

= Re
∫∫

u · u −����δHtu · u dx dt + Re
∫∫

A∇u · ∇u −(((((
((

δA∇Htu · ∇u dx dt

+ Re
∫∫
−���

���
��

D1/2
t u · HtD1/2

t u + δHtD1/2
t u · HtD1/2

t u dx dt

≥ ‖u‖22 + κδ‖∇u‖22 + δ‖HtD1/2
t u‖22.

=⇒ (1 + L)(1− δHt) ia an isomorphism E→ E∗, where

E =
{

u ∈ L2(R1+d ) : ‖u‖2E = ‖u‖22 + ‖D1/2
t u‖22 + ‖∇u‖22 <∞

}
.

=⇒ Also 1 + L is an isomorphism E→ E∗ !



A trick of Stanley Kaplan (1966)

Recall: 1 + L associated with form

〈u, φ〉+ a(u, φ) =
∫∫

u · φ+ A∇u · ∇φ− D1/2
t u · HtD1/2

t φ.

Hidden coercivity: For δ > 0,

Re〈(1− δHt)u, u〉+ Re a((1− δHt)u, u)

= Re
∫∫

u · u −����δHtu · u dx dt + Re
∫∫

A∇u · ∇u −(((((
((

δA∇Htu · ∇u dx dt

+ Re
∫∫
−���

���
��

D1/2
t u · HtD1/2

t u + δHtD1/2
t u · HtD1/2

t u dx dt

≥ ‖u‖22 + κδ‖∇u‖22 + δ‖HtD1/2
t u‖22.

=⇒ (1 + L)(1− δHt) ia an isomorphism E→ E∗, where

E =
{

u ∈ L2(R1+d ) : ‖u‖2E = ‖u‖22 + ‖D1/2
t u‖22 + ‖∇u‖22 <∞

}
.

=⇒ Also 1 + L is an isomorphism E→ E∗ !



A trick of Stanley Kaplan (1966)

Recall: 1 + L associated with form

〈u, φ〉+ a(u, φ) =
∫∫

u · φ+ A∇u · ∇φ− D1/2
t u · HtD1/2

t φ.

Hidden coercivity: For δ > 0,

Re〈(1− δHt)u, u〉+ Re a((1− δHt)u, u)

= Re
∫∫

u · u −����δHtu · u dx dt + Re
∫∫

A∇u · ∇u −(((((
((

δA∇Htu · ∇u dx dt

+ Re
∫∫
−���

���
��

D1/2
t u · HtD1/2

t u + δHtD1/2
t u · HtD1/2

t u dx dt

≥ ‖u‖22 + κδ‖∇u‖22 + δ‖HtD1/2
t u‖22.

=⇒ (1 + L)(1− δHt) ia an isomorphism E→ E∗, where

E =
{

u ∈ L2(R1+d ) : ‖u‖2E = ‖u‖22 + ‖D1/2
t u‖22 + ‖∇u‖22 <∞

}
.

=⇒ Also 1 + L is an isomorphism E→ E∗ !



Application 1: Local regularity of weak solutions

Joint work with P. Auscher, S. Bortz, O. Saari.

Suppose Lu = 0 a weak solution in some open set I×Q ⊆ R×Rd .
What kind of further regularity can we infer for u?

Some answers
I DeGiorgi–Nash–Moser 1957: u ∈ Cα,α/2

loc if Lu = 0 equation with real
coefficients.

I Naumann–Wolf 2000: Same for systems with continuous real
coefficients in d ≤ 2.

I Struwe 1984, Nečas–Šverák 1991: higher integrability of ∇u, u.
I Lions 1957: u : I → L2

loc(Q) continuous.

Theorem (2017)

In the general case u : I → Lp
loc(Q) is Hölder continuous for some p > 2.
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Sketch of proof in 4 steps

1 Localization: Take χ ∈ C∞0 (I × Q). Then v := uχ solves on R1+d an
equation

v + ∂tv −∇ · A∇v = f +∇ · F with f ∈ L2
c , |F | ∈ L2∗

c .

Suffices to study regularity of v .

2 “Energy” regularity: v , |∇v | ∈ L2(L2) from regularity of u and
localization.

By the equation ∂tv ∈ L2(W−1,2). Thus

v ∈ L2(W1,2) ∩ H1(W−1,2) ⊆ H
1
2 (L2)

=⇒ v ∈ E.
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3 A simple observation: We know v ∈ H
1
2 ,2(R; L2(Rd )). Compute

Sobolev index of this vector-valued space:

1
p −

s
n = 1

2 −
1
2
1 = 0 =⇒ already critical

Need self-improvement v ∈ H
1
2 ,p(R; Lp(Rd )) for some p > 2.

4 Analytic perturbation argument: Put
Ep :=

{
u ∈ Lp(R1+n) : ‖u‖pEp

= ‖u‖pp + ‖D1/2
t u‖pp + ‖∇u‖pp <∞

}
,

so 1 + L : Ep → (Ep′)∗ bounded since

〈(1 + L)ψ, φ〉 =
∫∫

ψ · φ− D1/2
t ψ · HtD1/2

t φ+ A∇ψ · ∇φ.

Note (1 + L)v = f ∈ (Ep′)∗ for p close to 2 and Ep is complex
interpolation scale.

Šnĕıberg’s lemma =⇒ invertibility for |p − 2| small, so v ∈ Ep. �
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t φ+ A∇ψ · ∇φ.

Note (1 + L)v = f ∈ (Ep′)∗ for p close to 2 and Ep is complex
interpolation scale.

Šnĕıberg’s lemma =⇒ invertibility for |p − 2| small, so v ∈ Ep. �
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1
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Remark
D1/2

t appeared in this context in the work of Giaquinta–Struwe already
back in 1982. But they used local methods (Caccioppoli & Co.). Maybe
for that reason they did not argue directly on

D1/2
t v(t) = − 1

2
√
2π

∫
R

v(t)− v(s)
|t − s|3/2 ds.

This is clearly non-local.



Application 2: Maximal regularity

Joint work with P. Auscher.

Suppose V ↪→ H ↪→ V∗ Hilbert spaces, at : V × V→ C bdd. coercive
sesquilinear forms inducing At : V→ V∗. If f ∈ L2(0,T ; V∗), then

u′(t) +Atu(t) = f (t), u(0) = 0

has a unique solution u ∈ L2(0,T ; V) ∩ H1(0,T ; V∗). (Due to Lions)

Maximal regularity: f ∈ L2(0,T ; H) =⇒ u ∈ H1(0,T ; H) ?

Some answers

I Hölder continuity threshold: Yes if t 7→ At is Cα with α > 1
2

(Ouhabaz–Spina 2010), Counterexamples if α ≤ 1
2 (Fackler 2016).

I W
1
2 ,2-regularity for At = −∇x · A(t, x)∇x (Achache–Ouhabaz 2017).
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Setup: H = L2(Rd ), V = W1,2(Rd ). (In fact, this works on Ω ⊆ Rd . . . )

Theorem (2016)

If D1/2
t A(t, x) ∈ BMO(0,T ) uniformly in x, then maximal regularity.

1 Localization: Extend f ∈ L2(0,T ; H) by 0 to L2(R; H). Suffices to
find one solution v ∈ L2(R; V) to

v ′(t) + v(t) +Atv(t) = e−t f ,

that satisfies v ∈ H1(R; H). Indeed, u = etv will solve Cauchy
problem on [0,T ] and is in Lions’ uniqueness class.

2 Construction of v : Put g = e−t f , so g ∈ L2(R; H) ⊆ E∗ and we can
define

v := (1 + L)−1 ∈ E.

3 Simple observation: Have D1/2
t v ∈ L2(R; H). Thus v ∈ H1(R; H) will

follow from D1/2
t v ∈ E.
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4 Equation for D1/2
t v : We have

v(t) + v ′(t) +Atv(t) = g ∈ L2(R; H),

hence

D1/2
t v(t) + (D1/2

t v)′(t) +AtD1/2
t v(t) =

D1/2
t g︸ ︷︷ ︸
∈E∗

− [D1/2
t ,At ]︸ ︷︷ ︸

→L2(R;V∗)

v(t)︸︷︷︸
∈L2(R;V)

.

Calculate: The commutator

[D1/2
t ,At ] = [D1/2

t ,∇ · A(t, x)∇] = ∇ · [D1/2
t ,A(t, x)]∇

and
[D1/2

t ,A(t, x)] : L2(H)→ L2(H)

precisely if D1/2
t A(t, x) ∈ BMO(R) uniformly in x (Murray 1985).

(1 + L)D1/2
t v ∈ E∗ =⇒ D1/2

t v ∈ (1 + L)−1E∗ = E �
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Some functional calculus . . .

Joint work with P. Auscher and K. Nyström.

Different perspective: L = ∂t −∇x · A(t, x)∇x unbounded op. in
L2(R1+d ) with

D(L) = {u ∈ E : Lu ∈ L2(R1+d )}

associated to a closed, densely defined sesquilinear form a : E× E→ C.

I Know Re〈Lu, u〉 ≥ 0 and 1 + L : E→ L2(R1+d ) onto.

I Means L is maximal accretive, hence has bdd. H∞-calculus, square
root,. . .

Theorem (Parabolic Kato square root problem, 2016)

D(
√

L) = E = D(a) with equivalence ‖
√

Lu‖2 ≈ ‖∇u‖2 + ‖D1/2
t u‖2.

I MR asks for best possible regularity for D(L) and implies Kato.
I But Kato holds in full generality: A only measurable in (t, x)!
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. . . with applications to BVPs

(Technology behind) parabolic Kato gives access to parabolic boundary
value problems (BVPs) with measurable t-dependence.

Mock example: On Rd+2
+ = {(t, x , λ) : λ > 0, (t, x) ∈ R1+d} the BVP

∂tu − (∂2
λ +∇x · A(t, x)∇x )u = 0, u(t, x , 0) = f (t, x) ∈ L2.

Rewrite as “Cauchy problem” transversal to boundary

−∂2
λu(λ) + Lu(λ) = 0, u(0) = f

so u(λ) = e−λ
√

Lf . Kato translates into Rellich identity:

‖∂λu|λ=0‖2︸ ︷︷ ︸
transversal gradient

= ‖
√

Lf ‖2 ≈ ‖∇x f ‖2 + ‖D1/2
t f ‖2 = ‖(∇x ,D1/2

t u)u|λ=0‖2︸ ︷︷ ︸
tangential gradient

One way to obtain well-posedness of BVPs by perturbing from heat
equation (in the spirit of Jerison–Kenig 1981).
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Thank you for listening!


