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Lions 1957: Lu = f in the weak sense in Q C R1t9 if

u, Vu are in L (),
for all test functions ¢ in a class containing C3°(£2),

//—u 0+ + AV u - Vo dxdt—//f ¢ dxdt.

Parabolic part is not well-balanced:

u and ¢ not in the same (Sobolev) space «~ non-symmetry of

parabolic boundary.
failure of energy estimates: If ¢ € C5°(€2), then

_ 2 _
Re//qb Ot dxdt = 2//1+d dt| ¢|= dxdt = 0.

Hence, no Lax-Milgram techniques.

1
: : 1 1 : : :
Parabolic scaling |x| ~ t2 suggest to put 5-derivative in t on wu...
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Forcing a symmetric expression — a stupid idea 7

Consider the model case Q = R4 ___ after all, L is local.
Split via Fourier transform:
Ot = H, according to  —i7 = (—isgn(7))
Obtain
lu=f < //—D}/Qu.HtD}/2¢+Avu-v—¢ ://f-a.

a(u,0)

Ellipticity means
Re a(u, u) :O+Re//AVu-WZ %//VLPW: K[ Vul)3

because we cannot cheat so easily! (but we actually can...)
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1/2
> ||ull3 + k5| Vull3 + 8| H: D ulf3.

— (1+ L)(1 — §H;) ia an isomorphism E — E*, where
1/2
E={ue PR |ul]2 = [lul3 + D" ul3 + [ Vul}3 < oo}

—> Also 1 + L is an isomorphism E — E* |
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Joint work with P. Auscher, S. Bortz, O. Saari.

Suppose Lu = 0 a weak solution in some open set I x @ C R x RY.
What kind of further regularity can we infer for u?

Some answers

DeGiorgi—Nash—Moser 1957: u € C
coefficients.
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loc if Lu = 0 equation with real

Naumann—Wolf 2000: Same for systems with continuous real
coefficients in d < 2.

Struwe 1984, Necas—Sverdk 1991: higher integrability of Vu, wu.
Lions 1957: u: I — Li (Q) continuous.

Theorem (2017)

In the general case u: | — L{, (Q) is Hélder continuous for some p > 2.
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Localization: Take x € C5°(/ x Q). Then v := ux solves on R an
equation

v+ 0:iv—V-AVv=Ff+V -F with fel? |Flel?.

Suffices to study regularity of v.

“Energy” regularity: from regularity of u and
localization. By the equation 9;v € L*(W~1?). Thus

v e A HYW 12) C H2 (L) = veE
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A simple observation: We know v € H2'%(R; L*(R¢)). Compute
Sobolev index of this vector-valued space:

1 S 1

P H:E_

Nl

=0 = already critical

Need self-improvement v € H%’p(R; LP(RY)) for some p > 2.

Analytic perturbation argument: Put

n 1/2
Ep = {u € LPRY™) : [|ul|2 = [|ull§ + [|D2ull5 + | Vul§ < oo},

sol+ L:E, — (Ey)* bounded since

(140, ¢) = [[ G- D0 HD?o+ AVY - V6

Note (1 + L)v =f € (Ey)* for p close to 2 and E, is complex
interpolation scale.

Snefberg’s lemma = invertibility for |p — 2| small, so v € E,,. []



Remark

D:/Q appeared in this context in the work of Giaquinta—Struwe already
back in 1982. But they used local methods (Caccioppoli & Co.). Maybe
for that reason they did not argue directly on

D2y (1) = — L [ UD = v(s) 4

o0v2r Jr |t — s|3/2

This is clearly non-local.
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Application 2: Maximal regularity
Joint work with P. Auscher.
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Application 2: Maximal regularity
Joint work with P. Auscher.

Suppose V < H < V* Hilbert spaces, a; : V x V — C bdd. coercive
sesquilinear forms inducing A; : V = V*. If f € L2(O, T;V*), then

(1) + Aeu(t) = £(£), u(0) =0

has a unique solution u € L?(0, T; V) N HY(0, T;V*). (Due to Lions)

Maximal regularity: f € L2(0, T;H) = wueHY 0, T;H)?

Some answers

Holder continuity threshold: Yes if t — A; is C® with o > %
(Ouhabaz—Spina 2010), Counterexamples if a < 3 (Fackler 2016).

W%’z—regularity for A = =V - A(t, x)Vx (Achache-Ouhabaz 2017).
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Setup: H = L*(RY), V = WH2(R9). (In fact, this works on Q C RY . ..)

Theorem (2016)
If Dg/zA(t,x) € BMO(0, T) uniformly in x, then maximal regularity.

Localization: Extend f € L(0, T;H) by 0 to L?(R; H). Suffices to
find one solution v € L*(R; V) to

v/(t) + v(t) + Aev(t) = e If,

that satisfies v & Hl(R; H). Indeed, u = e'v will solve Cauchy
problem on [0, T] and is in Lions’ uniqueness class.

Construction of v: Put g = e tf, so g € L*(R; H) C E* and we can
define

v:i=(1+L)"tcE

Simple observation: Have D,:_Ll/2v € L?(R; H). Thus v € HY(R; H) will
follow from D.:,_Ll/zv c E.
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Equation for Dg/zv: We have
v(t) + v/(t) + Arv(t) = g € L*(R; H),
hence

Di?v(t)+(Dyv) (t) + A Dy Pv(t) = Dy%g — [Di?, A v(t)
—— -~~~

~

cE~ —L2(R;V*) €L?(R;V)
Calculate: The commutator

[DY?, A = DY,V - A(t, x)V] = V - [D/?, A(t, x)]V

and
(D2, A(t, x)] : L2(H) — L2(H)

precisely if Dg/zA(t,x) € BMO(R) uniformly in x (Murray 1985).

(1+L)D}?veE* = DM?ve(l+L)E"=E u
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Some functional calculus . ..

Joint work with P. Auscher and K. Nystrom.

Different perspective: L = 0y — V- A(t, x)Vx unbounded op. in
L2(R*9) with

D(L) = {u € E: Lue L*(R1*T9)}
associated to a closed, densely defined sesquilinear form a: E x E — C.

Know Re(Lu,u) >0 and 1+ L : E — L*(R'*9) onto.

Means L is maximal accretive, hence has bdd. H>"-calculus, square
root,. . .

Theorem (Parabolic Kato square root problem, 2016)
D(vL) = E = D(a) with equivalence ||[v/Lul|» = ||Vul|> + | D¥*u|>.

MR asks for best possible regularity for D(L) and implies Kato.
But Kato holds in full generality: A only measurable in (t, x)!
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O — (02 + Vi - A(t,x)Vx)u =0, u(t,x,0)=f(t,x) € L°.
Rewrite as “Cauchy problem” transversal to boundary
—2u(N) + Lu(N\) =0, w(0)=f

so u(\) = e~ VLf. Kato translates into Rellich identity:

-~

lOsulr=ollz = IVLFl2 2 [IVsfll2 + |0 *Fll2 = |I(Vi, Dy *t)ulr=oll2

transversal gradient tangential gradient

One way to obtain well-posedness of BVPs by perturbing from heat
equation (in the spirit of Jerison—Kenig 1981).



Thank you for listening!
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