Analysis Day on Fluid Dynamics

on the occasion of the retirement of

Professor Reinhard Farwig

Virtual Workshop, TU Darmstadt, via Zoom June 18th, 2021

09h30	Opening	
09h35-10h05	Hideo Kozono, Tokyo Topics on the Navier-Stokes equations – my joint work with Prof. Reinhard Farwig	
10h20-10h50	Jonas Sauer, Delft A Priori Bounds for Quasi-Linear SPDEs in the Full Sub-Critical Regime	
11h05-11h20	Coffee Break	
11h20-11h50	Luigi Berselli, Pisa Natural second-order regularity for parabolic system	
12h05-13h30	Toast & Lunch	Illustrations by Prof. K.H. Hofmann
13h30-14h00	Gregory Seregin, Oxford/St. Petersburg On Liouville-Type Theorems for Steady-State Navier-Stokes Equations Jiří Neustupa, Prague On stability or instability of a steady flow of a viscous liquid past a rotating Obstacle	
14h15-14h45		
15h00-15h15	Coffee Break	
15h15-15h45	Raphaël Danchin, Paris On the use of Lorentz spaces with respect to time in global well-posedness issues for viscous fluids	
16h00	Toast & Closing	

Organizer: Matthias Hieber, TU Darmstadt Contact:driessler@mathematik.tu-darmstadt.de

Abstracts

Luigi Berselli, Pisa Natural second-order regularity for parabolic system

We consider parabolic problems with stress tensor depending only on the deformation tensor. By developing a new approximation method we provide an approach to the regularity which is valid for general stress tensors with (p,delta) structure, for all p>1 and for all delta>0. This allows to prove the ``natural'' second order regularity -- up to the boundary-- in the case of homogeneous Dirichlet boundary conditions. (Joint work with M. Ruzicka)

Raphaël Danchin, Paris On the use of Lorentz spaces with respect to time in global well-posedness issues for viscous fluids

We are concerned with global existence and uniqueness issues for models of nonhomogeneous viscous gases in the case where the initial has no regularity (it is only bounded). Here we look at models of pressureless gases that are used for describing phenomena in astrophysics or collective behavior (joint work with P.B. Mucha and P. Tolksdorf), and at inhomogeneous incompressible viscous fluids (collaboration with S. Wang). In both cases, we obtain global existence results for small variations of density and small velocities in critical Besov space. A maximal regularity estimate involving Lorentz spaces for the time variable plays a key role.

Hideo Kozono, Tokyo Topics on the Navier-Stokes equations - my joint work with Prof. Reinhard Farwig

We consider the following problems on the Navier-Stokes equations.

- 1. strong energy inequality of weak solutions in general unbounded domains
- 2. regularity criterion of weak solutions based on the continuity in time of the energy norm
- 3. Leray's inequality associated with the flux condition in multi-connected domains

4. stability of solutions in exterior domains with moving boundary

These problems have been discussed for longer time in my joint work with Prof. Reinhard Farwig. In the talk, I will give a short survey.

Jiří Neustupa, Prague On stability or instability of a steady flow of a viscous liquid past a rotating obstacle

We discuss the dependence of stability or instability of a steady flow of an incompressible viscous fluid past a rotating obstacle on spectral properties of a certain associated linear operator L. As a result of independent interest, we show that the uniform growth bound of the C_0-semigroup e^{tL} equals the spectral bound of the operator L.

Jonas Sauer, Delft A Priori Bounds for Quasi-Linear SPDEs in the Full Sub-Critical Regime

In my talk I will be concerned with quasi-linear parabolic partial differential equations of the form

(1) u_t -a(u) u_xx = f, where the coefficient field a(u) is sufficiently smooth and uniformly elliptic. In line with the pathwise approach to stochastic analysis of Lyons, the external forcing is deterministic and viewed as a realization of a singular noise which a.s. belongs to the (negative) parabolic Hölder space. For sufficiently irregular regimes the PDE is not expected to be well-posed in the traditional sense and a re-centering will be needed for the non-linear term, which amounts to adjusting the equation (1) with certain counter-terms, known as a renormalization. I will present a framework that applies to all sub-critical regularities in the sense of Hairer and all space dimensions. The input for our theory is a structural assumption on the forcing, which amounts to assuming that various multi-linear functionals of the 'noise' f have already been renormalized in an "off-line" probabilistic step. The output is a local Hölder a priori estimate on solutions to the renormalized version of (1). We emphasize that the renormalization terms are local in the solution and can be constructed explicitly in terms of derivatives of the non-linearity a and partial information on f. The talk is based on ongoing work with Felix Otto, Scott Smith and Hendrik Weber.

Gregory Seregin, Oxford/St. Petersburg

On Liouville-Type Theorems for Steady-State Navier-Stokes Equations

In the expository talk, we shall discuss the state of the art in the theory of the so-called D-solutions to the steady-state Navier-Stokes equations in the whole space.