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1. Basics on operator theory

Many linear operators, differential operators in particular, are bounded operators be-
tween a pair of Banach spaces. For example, the derivation 𝐿 B d

d𝑥 maps C1( [0, 1])
into C( [0, 1]). This point of view suffices if we just want to apply the operator. But
what if we want to define 𝐿2 + 𝐿, solve an eigenvalue problem 𝐿𝑢 = _𝑢 or even the
abstract evolution equation 𝑢′(𝑡) + 𝐿𝑢(𝑡) = 0? All this requires one common ambient
space to work in. The way out is a simple change of perspective, leading to unbounded
operators. In the example, 𝐿 would be an unbounded operator in 𝑋 B C( [0, 1]) that
is only defined on dom(𝐿) B C1( [0, 1]) ⊆ 𝑋 called domain, on which the usual norm
can now be written as ∥ · ∥C1 ( [0,1]) = ∥ · ∥𝑋 + ∥𝐿 · ∥𝑋 .

In this first lecture, we introduce the necessary tools and notions about unbounded
operators in Banach spaces. We will quickly specialize to Hilbert spaces, which will
be our main playground for most of the time.

Notation 1.1. All spaces in this lecture series will be over the complex numbers.
Throughout this lecture, 𝑋 and 𝑌 will denote Banach spaces and 𝐻 and 𝐾 will denote
Hilbert spaces. In order to focus on the essential quantities in estimates, we will
occasionally write 𝐴 ≲ 𝐵 instead of 𝐴 ≤ 𝐶𝐵 for an insignificant constant 𝐶 > 0, the
dependence of which is clear from the context. Similarly, we will use the symbols ≳
and ≃.

1.1. Closed operators
We start with a generalization of the well-known concept of a linear operator.

Definition 1.2. (a) Every linear subspace 𝑅 ⊆ 𝑋 × 𝑌 is called a linear relation
between 𝑋 and 𝑌 . The subspaces

dom(𝑅) B
{
𝑢 ∈ 𝑋 | ∃𝑣 ∈ 𝑌 : (𝑢, 𝑣) ∈ 𝑅

}
⊆ 𝑋,

ker(𝑅) B
{
𝑢 ∈ 𝑋 | (𝑢, 0) ∈ 𝑅

}
⊆ 𝑋 and

ran(𝑅) B
{
𝑣 ∈ 𝑌 | ∃𝑢 ∈ 𝑋 : (𝑢, 𝑣) ∈ 𝑅

}
⊆ 𝑌

are the domain, kernel, and range of 𝑅, respectively.

(b) If 𝑅 and 𝑆 are linear relations between 𝑋 and 𝑌 with 𝑅 ⊆ 𝑆, then 𝑆 is called an
extension of 𝑅 and 𝑅 is a restriction of 𝑆.
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1. Basics on operator theory

(c) If 𝑅 is a linear relation between 𝑋 and 𝑌 , we denote by

𝑅−1 B
{
(𝑣, 𝑢) ∈ 𝑌 × 𝑋 | (𝑢, 𝑣) ∈ 𝑅

}
the inverse relation of 𝑅.

(d) A linear relation 𝑅 between 𝑋 and 𝑌 is called a linear operator from 𝑋 to 𝑌 if
ker(𝑅−1) = {𝑣 ∈ 𝑌 | (0, 𝑣) ∈ 𝑅} = {0}. If 𝑅 is a linear operator from 𝑋 to 𝑋
itself, we will say that 𝑅 is a linear operator in 𝑋 .

Remark 1.3. (a) We have dom(𝑅−1) = ran(𝑅) and ran(𝑅−1) = dom(𝑅).

(b) If 𝑅 is a linear operator, then for every 𝑢 ∈ dom(𝑅) there is exactly one 𝑣 ∈ 𝑌
with (𝑢, 𝑣) ∈ 𝑅. Indeed, if (𝑢, 𝑣), (𝑢, 𝑤) ∈ 𝑅, then, since 𝑅 is a linear subspace,
also (𝑢, 𝑣) − (𝑢, 𝑤) = (0, 𝑣 − 𝑤) ∈ 𝑅 and Definition 1.2 (d) forces 𝑣 = 𝑤. Thus,
a linear operator 𝑅 is indeed the graph of a function from dom(𝑅) to 𝑌 and
identifying graph and function, for (𝑢, 𝑣) ∈ 𝑅 we write 𝑣 = 𝑅𝑢, as usual. Please
note that dom(𝑅) ⫋ 𝑋 in general.

(c) If 𝑅 and 𝑆 are linear operators, then 𝑅 ⊆ 𝑆 just means that dom(𝑅) ⊆ dom(𝑆)
and 𝑅𝑢 = 𝑆𝑢 for all 𝑢 ∈ dom(𝑅).

Definition 1.4. Let 𝑅 be a linear relation between 𝑋 and 𝑌 .

(a) 𝑅 is called densely defined if dom(𝑅) is dense in 𝑋 .

(b) 𝑅 is closed if 𝑅 is closed as a subspace of 𝑋 × 𝑌 .

As usual, we will write 𝑅 for the closure of 𝑅 in 𝑋 × 𝑌 .

Remark 1.5. Inverting a linear relation just means to flip the entries, which is a
homeomorphism between 𝑋 ×𝑌 and𝑌 × 𝑋 . So, 𝑅 is closed if and only if 𝑅−1 is closed.

Definition 1.6. Let 𝐿 be a linear operator from 𝑋 to 𝑌 .

(a) The operator 𝐿 is bounded if dom(𝐿) = 𝑋 and ∥𝐿𝑢∥𝑌 ≲ ∥𝑢∥𝑋 for all 𝑢 ∈ 𝑋 .

We denote by L(𝑋,𝑌 ) the vector space of all bounded linear operators from 𝑋

to 𝑌 and abbreviate L(𝑋) B L(𝑋, 𝑋).

For 𝐿 ∈ L(𝑋,𝑌 ) the operator norm is given by

∥𝐿∥L(𝑋,𝑌 ) B sup
𝑢∈𝑋,∥𝑢∥𝑋=1

∥𝐿𝑢∥𝑌 .

(b) The graph norm on dom(𝐿) is given by

∥𝑢∥𝐿 B ∥𝑢∥𝑋 + ∥𝐿𝑢∥𝑌 (𝑢 ∈ dom(𝐿)).

(c) If 𝐿 is closed, then a subspace of dom(𝐿) is a core for 𝐿 if it is dense in dom(𝐿)
with respect to the graph norm.
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1.1. Closed operators

It is easy to see that the graph norm is indeed a norm on dom(𝐿) that makes both
the inclusion dom(𝐿) ↩→ 𝑋 and the operator 𝐿 : dom(𝐿) → 𝑌 bounded linear opera-
tors.

If you have seen closed operators before, you might recall a different definition involving
sequences. At this point you should convince yourself that for linear operators this is in
fact the same thing, as stated in the following lemma. In particular, bounded operators
are closed.

Lemma 1.7. Let 𝐿 be a linear operator from 𝑋 to𝑌 . Then the following assertions are
equivalent:

(a) 𝐿 is closed.

(b) Whenever (𝑢 𝑗 ) is a sequence in dom(𝐿) converging in 𝑋 to some 𝑢 ∈ 𝑋 , such
that (𝐿𝑢 𝑗 ) converges in 𝑌 to some 𝑣 ∈ 𝑌 , then 𝑢 ∈ dom(𝐿) and 𝐿𝑢 = 𝑣.

(c) (dom(𝐿), ∥ · ∥𝐿) is complete.

Example 1.8 (Multiplication operators in L2). A particularly important example for
linear operators are multiplication operators in L2(R𝑛). For a measurable function
𝑚 : R𝑛 → C, we set

dom(𝑀𝑚) B
{
𝑢 ∈ L2(R𝑛) | 𝑚𝑢 ∈ L2(R𝑛)

}
and 𝑀𝑚𝑢 B 𝑚𝑢.

For us, ‘measurable’ will be synonymous with ‘Lebesgue measurable’ and we write
|𝐸 | for the Lebesgue measure of 𝐸 ⊆ R𝑛 if the context is clear. Let us show that 𝑀𝑚 is
densely defined and closed.

In order to show that 𝑀𝑚 is densely defined, let 𝑣 ∈ dom(𝑀𝑚)⊥. Since (1+ |𝑚 |2)−1 and
𝑚(1+|𝑚 |2)−1 are bounded functions and 𝑣 ∈ L2(R𝑛), we conclude 1

1+|𝑚 |2 𝑣 ∈ dom(𝑀𝑚).
This implies

0 =

〈
𝑣,

𝑣

1 + |𝑚 |2

〉
L2 (R𝑛)

=

∫
R𝑛

|𝑣 |2
1 + |𝑚 |2

d𝑥,

so 𝑣 = 0 almost everywhere, and we are done.

For the proof that 𝑀𝑚 is closed, let (𝑢 𝑗 ) be a convergent sequence in L2(R𝑛) with limit
𝑢, such that (𝑀𝑚𝑢 𝑗 ) = (𝑚𝑢 𝑗 ) converges in L2(R𝑛) to some function 𝑣. Then there is a
subsequence (𝑢 𝑗𝑘 )𝑘∈N of (𝑢 𝑗 ) that converges pointwise almost everywhere. Thus, the
sequence (𝑚𝑢 𝑗𝑘 )𝑘∈N also converges in the same sense towards𝑚𝑢. Since by hypothesis
the same sequence converges to 𝑣 in the L2-sense, we get 𝑚𝑢 = 𝑣 ∈ L2(R𝑛). This gives
𝑢 ∈ dom(𝑀𝑚) and 𝑀𝑚𝑢 = 𝑚𝑢 = 𝑣. Hence, 𝑀𝑚 is closed.

It is a natural question, for which functions 𝑚 the operator 𝑀𝑚 is bounded. Here is the
answer.
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1. Basics on operator theory

Proposition 1.9. The multiplication operator 𝑀𝑚 from Example 1.8 is bounded if and
only if 𝑚 ∈ L∞(R𝑛) and in this case ∥𝑀𝑚 ∥L(L2 (R𝑛)) = ∥𝑚∥L∞ (R𝑛) .

Proof. If 𝑚 ∈ L∞(R𝑛), then we immediately get

∥𝑀𝑚𝑢∥L2 (R𝑛) = ∥𝑚𝑢∥L2 (R𝑛) ≤ ∥𝑚∥L∞ (R𝑛) ∥𝑢∥L2 (R𝑛) (𝑢 ∈ L2(R𝑛)),

so 𝑀𝑚 is bounded. Conversely, assume that 𝑀𝑚 is bounded with operator norm 𝐶. For
any set 𝐸 of finite measure we have 1𝐸 ∈ L2(R𝑛) and therefore∫

𝐸

( |𝑚 |2 − 𝐶2) d𝑥 = ∥𝑀𝑚1𝐸 ∥2
L2 (R𝑛) − 𝐶

2∥1𝐸 ∥2
L2 (R𝑛) ≤ 0.

Since the Lebesgue measure is 𝜎-finite, the measurable function |𝑚 |2 − 𝐶2 must be
non-positive a.e. on R𝑛 and ∥𝑚∥L∞ (R𝑛) ≤ 𝐶 follows. □

We also recall the following important result from functional analysis.

Proposition 1.10 (Closed graph theorem, [Alt16, Thm. 7.9]). If 𝐿 is a closed operator
from 𝑋 to 𝑌 with dom(𝐿) = 𝑋 , then 𝐿 is bounded.

Working with unbounded linear operators, we always have to pay attention to the
domains. If you have not made this experience before, be aware: This is nothing to get
sloppy about!

Definition 1.11. Let 𝐿1, 𝐿2 be linear operators from 𝑋 to𝑌 , let 𝐿3 be a linear operator
from 𝑌 into another Banach space 𝑍 and let _ ∈ C. Then

dom(_𝐿1) B dom(𝐿1), (_𝐿1)𝑢 B _(𝐿1𝑢),
dom(𝐿1 + 𝐿2) B dom(𝐿1) ∩ dom(𝐿2), (𝐿1 + 𝐿2)𝑢 B 𝐿1𝑢 + 𝐿2𝑢,

dom(𝐿3𝐿1) B
{
𝑢 ∈ dom(𝐿1) | 𝐿1𝑢 ∈ dom(𝐿3)

}
, (𝐿3𝐿1)𝑢 B 𝐿3(𝐿1𝑢).

In the case of the identity operator id𝑋 on 𝑋 , we write _ + 𝐿1 instead of _id𝑋 + 𝐿1.

Be aware that we do not talk about the sum or composition of two linear relations here.
In particular, do not think of the sum of two linear relations or operators as the sum of
the corresponding linear subspaces of 𝑋 × 𝑌 . This is not the same thing!

1.2. Spectral theory
A linear relation 𝑅 always has an inverse relation, cf. Definition 1.2 (c), but even if
𝑅 is an operator, this inverse need not be an operator. We introduce the following
notions.

Definition 1.12. A linear operator 𝐿 between 𝑋 and 𝑌 is called invertible if 𝐿−1 ∈
L(𝑌, 𝑋).
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1.2. Spectral theory

Definition 1.13. Let 𝐿 be a linear operator in 𝑋 . Then

(a) 𝜎(𝐿) B {_ ∈ C | _ − 𝐿 is not invertible} is the spectrum of 𝐿,

(b) 𝜚(𝐿) B C \ 𝜎(𝐿) =
{
_ ∈ C | (_ − 𝐿)−1 ∈ L(𝑋)

}
is the resolvent set of 𝐿,

(c) the map 𝑅(·, 𝐿) : 𝜚(𝐿) → L(𝑋) with 𝑅(_, 𝐿) B (_ − 𝐿)−1 for _ ∈ 𝜚(𝐿) is
called resolvent of 𝐿.

Remark 1.14. It follows from Remark 1.5 that invertible operators are closed. Applying
this to _ − 𝐿 with _ ∈ 𝜚(𝐿), we see that 𝐿 is closed whenever 𝜚(𝐿) ≠ ∅.

Below, we collect some fundamental properties of the resolvent and the resolvent set.
Vector-valued holomorphic functions — defined in complete analogy with the scalar-
valued case from your complex analysis course — appear for the first time. You find
further background in Appendix A.3 but as for now, you merely need to know that
power series are (vector-valued) holomorphic inside their disc of convergence.

Proposition 1.15. Let 𝐿 be a linear operator in 𝑋 . Then:

(a) For all _, ` ∈ 𝜚(𝐿) we have the resolvent identity

𝑅(_, 𝐿) − 𝑅(`, 𝐿) = (` − _)𝑅(_, 𝐿)𝑅(`, 𝐿).

(b) The resolvent set 𝜚(𝐿) is open.

(c) The resolvent is a holomorphic function and for all ` ∈ 𝜚(𝐿) and all _ ∈ C with
|_ − ` | < ∥𝑅(`, 𝐿)∥−1

L(𝑋) we find _ ∈ 𝜚(𝐿) and the power series expansion

𝑅(_, 𝐿) =
∞∑︁
𝑘=0

(` − _)𝑘𝑅(`, 𝐿)𝑘+1.

(d) For all _ ∈ 𝜚(𝐿) and 𝑘 ∈ N we have

d𝑘

d_𝑛
𝑅(_, 𝐿) = (−1)𝑘 𝑘!𝑅(_, 𝐿)𝑘+1.

Proof. In order to prove the resolvent identity, let _, ` ∈ 𝜚(𝐿). For all 𝑢 ∈ 𝑋 we have
𝑅(`, 𝐿)𝑢 ∈ dom(𝐿), so we can calculate

𝑅(_, 𝐿)𝑢 − 𝑅(`, 𝐿)𝑢 = 𝑅(_, 𝐿)
[
𝑢 − _𝑅(`, 𝐿)𝑢 + 𝐿𝑅(`, 𝐿)𝑢

]
= 𝑅(_, 𝐿)

[
𝑢 − _𝑅(`, 𝐿)𝑢 − (` − 𝐿)𝑅(`, 𝐿)𝑢 + `𝑅(`, 𝐿)𝑢

]
= 𝑅(_, 𝐿)

[
`𝑅(`, 𝐿)𝑢 − _𝑅(`, 𝐿)𝑢

]
= (` − _)𝑅(_, 𝐿)𝑅(`, 𝐿)𝑢.
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1. Basics on operator theory

For the proof of the other assertions, let ` ∈ 𝜚(𝐿) and _ ∈ C with |_ − ` | <
∥𝑅(`, 𝐿)∥−1

L(𝑋) . Then

_ − 𝐿 = _ − ` + ` − 𝐿 =
(
(_ − `)𝑅(`, 𝐿) + 1

)
(` − 𝐿)

is invertible if and only if (_ − `)𝑅(`, 𝐿) + 1 is invertible. By the Neumann series
criterion, this is the case if

∥(_ − `)𝑅(`, 𝐿)∥L(𝑋) < 1,

which holds by assumption. Thus, _ ∈ 𝜚(𝐿), which already shows (b). Furthermore,
the Neumann series criterion also gives the formula

𝑅(_, 𝐿) = 𝑅(`, 𝐿)
∞∑︁
𝑘=0

(` − _)𝑘𝑅(`, 𝐿)𝑘 =
∞∑︁
𝑘=0

(` − _)𝑘𝑅(`, 𝐿)𝑘+1.

Now, holomorphy of the resolvent map as well as the formula for the derivatives follow
by this power series representation, compare with Example A.20. □

Example 1.16. We show that the spectrum of our multiplication operator𝑀𝑚 in L2(R𝑛)
is the essential range of 𝑚 given by

essran(𝑚) B
{
_ ∈ C

�� ∀Y > 0 :
��{𝑥 ∈ R𝑛 | |𝑚(𝑥) − _ | < Y}

�� > 0
}
.

(If you have not seen this measure theoretic construction before, think of a continuous
function 𝑚. In this case essran(𝑚) = 𝑚(R𝑛).)

If _ is not in the essential range of 𝑚, then there is an Y > 0 such that {𝑥 ∈ R𝑛 | |𝑚(𝑥) −
_ | < Y} is a nullset. This means that |𝑚 − _ | ≥ Y almost everywhere, which entails
that (_ − 𝑚)−1 ∈ L∞(R𝑛). Thus, by Proposition 1.9 the corresponding multiplication
operator 𝑀(_−𝑚)−1 is bounded and for 𝑢 ∈ L2(R𝑛) we have (_−𝑚)𝑀(_−𝑚)−1𝑢 = 𝑢. This
proves (_ −𝑀𝑚)𝑀(_−𝑚)−1 = idL2 (R𝑛) . In the same way 𝑀(_−𝑚)−1 (_ −𝑀𝑚) = iddom(𝑀𝑚)
follows. Consequently, _ − 𝑀𝑚 is invertible with (_ − 𝑀𝑚)−1 = 𝑀(_−𝑚)−1 and we have
shown that C \ essran(𝑚) ⊆ 𝜚(𝑀𝑚).

It remains to prove essran(𝑚) ⊆ 𝜎(𝑀𝑚). Let _ ∈ essran(𝑚) and Y > 0. Since
_ is in the essential range, the set {𝑥 ∈ R𝑛 | |𝑚(𝑥) − _ | < Y} has strictly positive
measure, so we can choose a subset 𝐴Y with strictly positive and finite measure. Then
𝑢Y B 1𝐴Y ∈ dom(𝑀𝑚) and we have

∥(_ − 𝑀𝑚)𝑢Y∥L2 (R𝑛) = ∥(_ − 𝑚)1𝐴Y ∥L2 (R𝑛) ≤ Y∥1𝐴Y ∥L2 (R𝑛) = Y∥𝑢Y∥L2 (R𝑛) .

This shows that _ − 𝑀𝑚 cannot have a bounded inverse, so _ ∈ 𝜎(𝑀𝑚).
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1.3. Adjoints and self-adjointness
Our next aim is to generalize the notion of an adjoint of a linear operator. The main
problem in the context of closed operators is dealing with the domains. A huge
advantage of using the language of linear relations is that it allows us to define an
adjoint relation without any complications.

For our purposes it will be sufficient (and much easier) to work in Hilbert spaces from
now on.

Definition 1.17. Let 𝑅 be a linear relation between 𝐻 and 𝐾 . Then the adjoint relation
of 𝑅 is the linear relation 𝑅∗ ⊆ 𝐾 × 𝐻 given by

(𝑤, 𝑧) ∈ 𝑅∗ :⇐⇒ ⟨𝑢, 𝑧⟩𝐻 = ⟨𝑣, 𝑤⟩𝐾 for all (𝑢, 𝑣) ∈ 𝑅.

Definition 1.17 will become more concise when both 𝑅 and 𝑅∗ are linear operators. At
the level of relations, it helps to think about adjoints in the following way. On 𝐻 × 𝐾
(and similarly on 𝐾 × 𝐻) we consider the canonical inner product

⟨(𝑢, 𝑣), (𝑧, 𝑤)⟩ B ⟨𝑢, 𝑧⟩𝐻 + ⟨𝑣, 𝑤⟩𝐾

that turns this space itself into a Hilbert space and define the unitary operator

Φ : 𝐻 × 𝐾 → 𝐾 × 𝐻, Φ(𝑢, 𝑣) B (−𝑣, 𝑢). (1.1)

Now, we have again a sharp look at Definition 1.17: It says precisely that

𝑅∗ = (Φ(𝑅))⊥ = Φ(𝑅⊥), (1.2)

where the orthogonal complement has to be taken once in𝐾×𝐻 and once in𝐻×𝐾 .

Caution: In general the adjoint relation of a linear operator is not again a linear operator.
The next result tells us precisely, when this is the case.

Proposition 1.18. Let 𝐿 be a linear operator from 𝐻 to 𝐾 . Then:

(a) 𝐿∗ is closed.

(b) 𝐿∗ is a linear operator if and only if 𝐿 is densely defined. In this case we have

dom(𝐿∗) =
{
𝑤 ∈ 𝐾 | ∃𝑧 ∈ 𝐻 : ⟨𝑢, 𝑧⟩𝐻 = ⟨𝐿𝑢, 𝑤⟩𝐾 for all 𝑢 ∈ dom(𝐿)

}
and

𝐿∗𝑤 = 𝑧.

In particular, we have

⟨𝑢, 𝐿∗𝑤⟩𝐻 = ⟨𝐿𝑢, 𝑤⟩𝐾 (𝑢 ∈ dom(𝐿), 𝑤 ∈ dom(𝐿∗)). (1.3)
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1. Basics on operator theory

(c) If 𝐿 is closed and densely defined, then so is 𝐿∗ and (𝐿∗)∗ = 𝐿.

Proof. (a) By (1.2), 𝐿∗ ⊆ 𝐾 × 𝐻 is the orthogonal complement of a set, and hence
closed.

(b) We have

𝑧 ∈ ker((𝐿∗)−1) ⇐⇒ (0, 𝑧) ∈ 𝐿∗
(1.2)
⇐⇒ 0 = ⟨(0, 𝑧), (−𝑣, 𝑢)⟩ = ⟨𝑧, 𝑢⟩𝐻 for all (𝑢, 𝑣) ∈ 𝐿

⇐⇒ 𝑧 ∈ dom(𝐿)⊥.

That 𝐿∗ is a linear operator means that ker((𝐿∗)−1) is trivial, which now is
equivalent to dom(𝐿) being dense. Since in this case the relations 𝐿 and 𝐿∗ are
linear operators, we can reformulate Definition 1.17 as stated in (b).

(c) Properties (a) and (b) imply that 𝐿∗ is a closed operator. In order to determine
its adjoint, we need the formalism of (1.1) and (1.2) with the roles of 𝐻 and 𝐾
reversed, which amounts to replacing Φ by −Φ−1. Thus, we get

(𝐿∗)∗ = (−Φ−1(𝐿∗))⊥ =
(
−Φ−1(Φ(𝐿⊥))

)⊥
=
(
𝐿⊥

)⊥
= 𝐿 = 𝐿.

In particular, (𝐿∗)∗ is a linear operator, so 𝐿∗ is densely defined thanks to (b). □

Example 1.19. We have seen in Example 1.8 that the multiplication operator 𝑀𝑚 is
densely defined. So, it has an adjoint operator that we want to determine now. Our
experience with bounded operators (or matrices) tells us that we should try to prove
(𝑀𝑚)∗ = 𝑀𝑚. Let’s do it. We simply write ⟨· , ·⟩ for the inner product on L2(R𝑛).

Given 𝑤 ∈ dom(𝑀𝑚), we obtain for all 𝑢 ∈ dom(𝑀𝑚) that

⟨𝑀𝑚𝑢, 𝑤⟩ =
∫
R𝑛
𝑚𝑢 · 𝑤 d𝑥 =

∫
R𝑛
𝑢 · 𝑚𝑤 d𝑥 = ⟨𝑢, 𝑀𝑚𝑤⟩ .

In view of Proposition 1.18 (b) this means 𝑤 ∈ dom((𝑀𝑚)∗) with (𝑀𝑚)∗𝑤 = 𝑀𝑚𝑤.

Conversely, assume 𝑤 ∈ dom((𝑀𝑚)∗) and note carefully that we cannot simply do the
same calculation backwards, because we do not know yet that𝑚𝑤 ∈ L2(R𝑛). We resort
to the trick from Example 1.8: Given any 𝑢 ∈ L2(R𝑛), we have 𝑢

1+|𝑚 |2 ∈ dom(𝑀𝑚),
which allows us to compute〈

𝑢,
(𝑀𝑚)∗𝑤
1 + |𝑚 |2

〉
=

〈
𝑢

1 + |𝑚 |2
, (𝑀𝑚)∗𝑤

〉
=

〈
𝑀𝑚

( 𝑢

1 + |𝑚 |2
)
, 𝑤

〉
=

〈
𝑢,

𝑚𝑤

1 + |𝑚 |2

〉
.

Since 𝑢 ∈ L2(R𝑛) is arbitrary, we conclude (𝑀𝑚)∗𝑤
1+|𝑚 |2 = 𝑚𝑤

1+|𝑚 |2 in L2(R𝑛) and now
𝑤 ∈ dom(𝑀𝑚) with 𝑀𝑚𝑤 = (𝑀𝑚)∗𝑤 follows.
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1.3. Adjoints and self-adjointness

Let us collect some useful computation rules for adjoints.

Proposition 1.20. Let 𝐿, 𝐿1, 𝐿2 be densely defined linear operators from𝐻 to𝐾 . Then:

(a) If 𝐿1 ⊆ 𝐿2, then 𝐿∗2 ⊆ 𝐿∗1.

(b) (𝐿1 + 𝐿2)∗ ⊇ 𝐿∗1 + 𝐿
∗
2 with equality if 𝐿2 is bounded.

(c) If 𝐻 = 𝐾 , then (_ − 𝐿)∗ = _ − 𝐿∗ for all _ ∈ C.

(d) If 𝐿3 is a densely defined linear operator from 𝐾 to some other Hilbert space,
then 𝐿∗1𝐿

∗
3 ⊆ (𝐿3𝐿1)∗ with equality if 𝐿3 is bounded.

(e) (𝐿−1)∗ = (𝐿∗)−1 and in particular, 𝐿∗ is invertible if 𝐿 is invertible.

(f) (𝐿)∗ = 𝐿∗.

(g) ker(𝐿∗) = ran(𝐿)⊥.

(h) If 𝐿 is bounded, then 𝐿∗ is bounded and ∥𝐿∥L(𝐻,𝐾) = ∥𝐿∗∥L(𝐾,𝐻) .

Proof. Parts (a) - (g) are good finger exercises to become acquainted with adjoints,
see Exercise 1.4. We give the proof of (h). To this end, let 𝑤 ∈ 𝐾 and note that
𝜙(𝑢) B ⟨𝐿𝑢, 𝑤⟩𝐾 is a linear functional that satisfies

|𝜙(𝑢) | ≤ ∥𝑤∥𝐾 ∥𝐿∥L(𝐻,𝐾) ∥𝑢∥𝐻 (𝑢 ∈ 𝐻).

The Riesz representation theorem yields a 𝑧 ∈ 𝐻 with ∥𝑧∥𝐻 ≤ ∥𝑤∥𝐾 ∥𝐿∥L(𝐻,𝐾) and
⟨𝑢, 𝑧⟩𝐻 = 𝜙(𝑢) for all 𝑢 ∈ 𝐻. Hence, 𝐿∗𝑤 = 𝑧 and 𝐿∗ is bounded with ∥𝐿∗∥L(𝐾,𝐻) ≤
∥𝐿∥L(𝐻,𝐾) . Applying this to 𝐿∗ in place of 𝐿 yields the reverse estimate thanks to
Proposition 1.18 (c). □

In view of (e) and (c) of Proposition 1.20 one might hope that there is an easy link
between 𝜎(𝐿) and 𝜎(𝐿∗) and this is indeed the case.

Proposition 1.21. Let 𝐿 be a closed and densely defined linear operator in 𝐻. Then

𝜎(𝐿∗) =
{
_ | _ ∈ 𝜎(𝐿)

}
and 𝑅(_, 𝐿∗) = 𝑅(_, 𝐿)∗ for all _ ∈ 𝜚(𝐿).

Proof. Let _ ∈ 𝜚(𝐿). Then _−𝐿 is invertible and by (e), (c) and (h) of Proposition 1.20
also (_ − 𝐿)∗ is invertible with

𝑅(_, 𝐿)∗ =
[
(_ − 𝐿)−1]∗ = [

(_ − 𝐿)∗
]−1

= (_ − 𝐿∗)−1 = 𝑅(_, 𝐿∗).

Thanks to Proposition 1.18 (c) we can apply the same reasoning to 𝐿∗ in place of 𝐿
and get the converse implication that _ ∈ 𝜚(𝐿∗) implies _ ∈ 𝜚((𝐿∗)∗) = 𝜚(𝐿). □
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1. Basics on operator theory

In many fields of mathematics and physics, a particular important class of operators
are the self-adjoint ones, i.e., operators that coincide with their adjoint.

Definition 1.22. (a) A linear operator 𝐿 in 𝐻 is symmetric if

⟨𝐿𝑢, 𝑣⟩𝐻 = ⟨𝑢, 𝐿𝑣⟩𝐻 (𝑢, 𝑣 ∈ dom(𝐿)).

(b) A linear operator 𝐿 in 𝐻 is self-adjoint if 𝐿 = 𝐿∗ holds.

Note that self-adjoint operators are automatically densely defined — this is a conse-
quence of Proposition 1.18 (b).

Lemma 1.23. If 𝐿 is a densely defined operator in 𝐻, then 𝐿 is symmetric if and only
if 𝐿 ⊆ 𝐿∗.

Proof. If 𝐿 is symmetric and 𝑣 ∈ dom(𝐿), then we have for all 𝑢 ∈ dom(𝐿) that
⟨𝑢, 𝐿𝑣⟩𝐻 = ⟨𝐿𝑢, 𝑣⟩𝐻 . Thus, 𝑣 ∈ dom(𝐿∗) and 𝐿∗𝑣 = 𝐿𝑣 by Proposition 1.18 (b).
Conversely, if 𝐿 ⊆ 𝐿∗, then for all 𝑢, 𝑣 ∈ dom(𝐿) we find with the help of Proposi-
tion 1.18 (b) that

⟨𝐿𝑢, 𝑣⟩𝐻 = ⟨𝑢, 𝐿∗𝑣⟩𝐻 = ⟨𝑢, 𝐿𝑣⟩𝐻 ,

so 𝐿 is symmetric. □

Be aware that every self-adjoint operator is necessarily symmetric but that even ‘densely
defined and symmetric’ does not mean ‘self-adjoint’! The point is that for an operator
to be self-adjoint, one not only needs the mapping behavior described by symmetry,
but also that dom(𝐿) = dom(𝐿∗) and this can be a severe constraint.

Example 1.24. For which functions 𝑚 is our multiplication operator 𝑀𝑚 self-adjoint?
In Example 1.19 we have seen that 𝑀∗

𝑚 = 𝑀𝑚, which has the same domain as 𝑀𝑚. So,
it turns out that 𝑀𝑚 is self-adjoint if and only if 𝑚 is real-valued (almost everywhere).

We close this section with a useful criterion for a densely defined, closed and symmetric
operator to be indeed self-adjoint.

Proposition 1.25. Let 𝐿 be a densely defined, closed and symmetric operator in 𝐻.

(a) If 𝜚(𝐿) ∩ R ≠ ∅, then 𝐿 is self-adjoint.

(b) 𝐿 is self-adjoint if and only if 𝜎(𝐿) ⊆ R.

Proof. We only prove (a), the proof of (b) is left as Exercise 1.6. Let _ ∈ 𝜚(𝐿) be a real
number. Then, since 𝐿 is symmetric, also _ − 𝐿 is symmetric and Lemma 1.23 tells
us that _ − 𝐿 ⊆ _ − 𝐿∗. Furthermore, Proposition 1.21 yields _ = _ ∈ 𝜚(𝐿∗) ∩ 𝜚(𝐿).
Now, Exercise 1.2 (b) gives the conclusion. □
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1.4. Exercises

1.4. Exercises
Exercise 1.1 (Why domains matter). Let 𝑆 and 𝑇 be two linear operators from 𝑋 into
itself.

(a) Provide a counterexample to show that in general even if 𝑆 and 𝑇 are closed
operators with the same domain, then 𝑆 + 𝑇 need not be closed.

(b) Suppose that 𝑆 is closed and 𝑇 is bounded. Prove that 𝑆𝑇 is closed and provide
a counterexample that in general 𝑇𝑆 is not.

Exercise 1.2 (Upgrading inclusions to equalities). Let 𝑆, 𝑇 be operators between Ba-
nach spaces 𝑋 and 𝑌 with 𝑆 ⊆ 𝑇 .

(a) Show that if 𝑆 is surjective and 𝑇 is injective, then 𝑆 = 𝑇 .

(b) Conclude that if 𝑋 = 𝑌 , then

𝜚(𝑆) ∩ 𝜚(𝑇) ≠ ∅ =⇒ 𝑆 = 𝑇.

(c) Suppose that 𝑇 is closed and that dom(𝑆) is a core for 𝑇 . Prove that 𝑆 = 𝑇 .

Remark: These criteria are (surprisingly) useful in applications.

Exercise 1.3. Let 𝐿 be a linear operator in a Banach space 𝑋 with −1 ∈ 𝜚(𝐿).

(a) Argue that 𝐿 (1 + 𝐿)−1 is bounded.

(b) Let 𝑗 , 𝑘 ∈ N. Prove that

(𝐿 (1 + 𝐿)−1) 𝑗𝑢 ∈ dom(𝐿𝑘 ) ⇐⇒ 𝑢 ∈ dom(𝐿𝑘 ).

Exercise 1.4. Prove the calculation rules (a) - (g) stated in Proposition 1.20.

Exercise 1.5. Let 𝐿 be a closed operator in a Hilbert space 𝐻. Prove that for all
_ ∈ 𝜚(𝐿) we have

∥(_ − 𝐿)−1∥L(𝐻) ≥
1

dist(_, 𝜎(𝐿)) .

Exercise 1.6. Let 𝐿 be an operator in a Hilbert space 𝐻.

(a) Suppose that ⟨𝐿𝑢, 𝑢⟩ ∈ R holds for all 𝑢 ∈ dom(𝐿). Show that 𝐿 is symmetric.

(b) Let 𝐿 be densely defined, closed, and symmetric. Show that 𝐿 is self-adjoint if
and only if 𝜎(𝐿) ⊆ R.

11





2. Sectorial operators and
sesquilinear forms

In this lecture, we first study sectorial operators in Hilbert spaces. These are closed
operators, whose spectrum is localized in a sector of the complex plane and for which
we have a specific control of the norm of the resolvent. All (or almost all) of the
differential operators that we will encounter in the later parts of the ISem lectures will
then turn out to be of this class.

In the second part, we introduce the form method as a way to construct sectorial
operators from sesquilinear forms.

Notation 2.1. In the whole lecture, 𝐻 is a complex Hilbert space.

2.1. Sectorial operators
We start right away with the central definition.

Definition 2.2. (a) For 𝜑 ∈ (0, 𝜋) the (open) sector of angle 𝜑 is denoted by S𝜑 B
{𝑧 ∈ C \ {0} | | arg(𝑧) | < 𝜑}. Furthermore, we set S0 B (0,∞).

(b) A linear operator 𝐿 in 𝐻 is called sectorial of angle 𝜑 ∈ [0, 𝜋) if 𝜎(𝐿) ⊆ S𝜑 and
we have the following resolvent bounds: for all 𝜓 ∈ (𝜑, 𝜋) there is some 𝐶𝜓 ≥ 0
such that

∥𝑅(_, 𝐿)∥L(𝐻) ≤
𝐶𝜓

|_ | (_ ∈ C \ S𝜓).

(c) If 𝐿 is a sectorial operator, then

𝜑𝐿 B inf
{
𝜑 ∈ [0, 𝜋) | 𝐿 is sectorial of angle 𝜑

}
is called sectoriality angle of 𝐿.

Sectorial operators are closed, because they have a non-empty resolvent set, see Re-
mark 1.14. It is a remarkable feature of these operators that only the knowledge about
the location of the spectrum and the decay rate of the resolvent gives a huge amount of
information about the functional analytic properties of the operator, including density
of its domain. The aim of this section is to elaborate on this connection.
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2. Sectorial operators and sesquilinear forms

Re

Im

𝜓
𝜑𝐿

_

𝜎(𝐿)

Figure 2.1.: The spectrum of a sectorial operator is trapped in a sector symmetric
around the positive real axis. For _ outside of the closure of larger sectors
S𝜓 , a resolvent bound by 𝐶𝜓

|_ | is required.

We need an elementary lemma that shows that closed subspaces of Hilbert spaces are
even closed with respect to weak convergence.

Lemma 2.3. If 𝐾 is a closed subspace of 𝐻 and (𝑢 𝑗 ) is a sequence in 𝐾 that converges
weakly in 𝐻 to some 𝑢 ∈ 𝐻, then 𝑢 ∈ 𝐾 .

Proof. Since 𝐾 is closed, it suffices to prove 𝑢 ∈ (𝐾⊥)⊥ (= 𝐾). Given any 𝑣 ∈ 𝐾⊥,
weak convergence of (𝑢 𝑗 ) yields the claim

⟨𝑢, 𝑣⟩𝐻 = lim
𝑗→∞

〈
𝑢 𝑗 , 𝑣

〉
𝐻

𝑢 𝑗 ∈ 𝐾
= lim

𝑗→∞
0 = 0. □

Proposition 2.4. For a sectorial operator 𝐿 in 𝐻 the following properties hold:

(a) For all 𝑢 ∈ ran(𝐿), we have

(1 + 𝑡𝐿)−1𝑢 → 0 as 𝑡 → ∞.
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2.1. Sectorial operators

(b) We have a topological decomposition

𝐻 = ker(𝐿) ⊕ ran(𝐿).

In particular, 𝐿 is injective if and only if it has dense range.

(c) The operator 𝐿 is densely defined.

(d) For all 𝑢 ∈ 𝐻, we have

(1 + 𝑡𝐿)−1𝑢 → 𝑢 as 𝑡 ↘ 0.

(e) For every 𝑘 ∈ N we have

i) dom(𝐿𝑘 ) = 𝐻,

ii) dom(𝐿𝑘 ) ∩ ran(𝐿𝑘 ) = ran(𝐿),

iii) ran(𝐿𝑘 (1 + 𝐿)−2𝑘 ) = dom(𝐿𝑘 ) ∩ ran(𝐿𝑘 ).

Proof. We will repeatedly use the fact that if (𝑇𝑗 ) ⊆ L(𝐻) is a bounded sequence with
the property that (𝑇𝑗𝑢) converges to zero for all 𝑢 in some set𝑈 ⊆ 𝐻, then the same is
true for all 𝑢 ∈ 𝑈.1

(a) By sectoriality of 𝐿 the operators (1 + 𝑡𝐿)−1 = 𝑡−1(𝑡−1 + 𝐿)−1 are uniformly
bounded for 𝑡 > 0. Hence, it suffices to prove convergence for 𝑢 ∈ ran(𝐿).
Choosing 𝑣 ∈ dom(𝐿) with 𝐿𝑣 = 𝑢, we get

(1 + 𝑡𝐿)−1𝑢 = 𝑡−1(1 + 𝑡𝐿)−1𝑡𝐿𝑣 = 𝑡−1 (𝑣 − (1 + 𝑡𝐿)−1𝑣
)

and thus by sectoriality

∥(1 + 𝑡𝐿)−1𝑢∥𝐻 ≤ 𝑡−1 (∥𝑣∥𝐻 + 𝐶∥𝑣∥𝐻
) 𝑡→∞−→ 0.

(b) First, let 𝑢 ∈ ker(𝐿) ∩ ran(𝐿). Then, using 𝐿𝑢 = 0 and (a), we find

𝑢 = lim
𝑡→∞

(1 + 𝑡𝐿)−1(1 + 𝑡𝐿)𝑢 = lim
𝑡→∞

(1 + 𝑡𝐿)−1𝑢 = 0.

Hence, ker(𝐿) + ran(𝐿) is a direct sum. In order to show that it spans the whole
space 𝐻, let 𝑢 ∈ 𝐻 be given and consider the sequence (𝑢 𝑗 ) B ((1 + 𝑗 𝐿)−1𝑢).
Note that for 𝑢 ∈ ker(𝐿) this sequence is constantly 𝑢 and for 𝑢 ∈ ran(𝐿) it
converges to zero by (a). This means that once we have shown that the sum spans
𝐻, then the limit exists indeed for every 𝑢 ∈ 𝐻,

𝑃𝑢 B lim
𝑗→∞

(1 + 𝑗 𝐿)−1𝑢

1This is a 2Y-argument. Convince yourself!
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2. Sectorial operators and sesquilinear forms

will be the projection onto ker(𝐿) along ran(𝐿), and 𝑃 is bounded by sectoriality
of 𝐿, which by definition means that the decomposition will be topological.
Surprisingly, we can pull ourselves up by our own bootstraps and use (𝑢 𝑗 ) also
to prove that 𝑢 ∈ ker(𝐿) + ran(𝐿) as follows.

By sectoriality of 𝐿 the sequence (𝑢 𝑗 ) is bounded in 𝐻, so we can pick a weakly
convergent subsequence (𝑢 𝑗𝑘 )𝑘∈N and we will call its limit 𝑣. Furthermore,

𝐿𝑢 𝑗 = 𝐿 (1 + 𝑗 𝐿)−1𝑢 = 1
𝑗

(
𝑢 − (1 + 𝑗 𝐿)−1𝑢

)
= 1

𝑗

(
𝑢 − 𝑢 𝑗

)
(2.1)

tends to 0 in the limit as 𝑗 → ∞ because (𝑢 − 𝑢 𝑗 ) is a bounded sequence in 𝐻.
Now, consider the sequence ((𝑢 𝑗𝑘 , 𝐿𝑢 𝑗𝑘 ))𝑘∈N in 𝐿 ⊆ 𝐻 × 𝐻. Since 𝐿 is closed
and ((𝑢 𝑗𝑘 , 𝐿𝑢 𝑗𝑘 ))𝑘∈N converges weakly in 𝐻 × 𝐻 to (𝑣, 0), Lemma 2.3 implies
(𝑣, 0) ∈ 𝐿 and this means that 𝑣 ∈ ker(𝐿).

Moreover, (𝑢 − 𝑢 𝑗𝑘 )𝑘∈N converges weakly in 𝐻 to 𝑢 − 𝑣 and by (2.1) we have
𝑢 − 𝑢 𝑗𝑘 = 𝑗𝑘𝐿𝑢 𝑗𝑘 ∈ ran(𝐿). Applying Lemma 2.3 again, this time in the closed
subspace ran(𝐿), we find that 𝑢−𝑣 ∈ ran(𝐿) and 𝑢 = 𝑣+(𝑢−𝑣) ∈ ker(𝐿)+ran(𝐿)
follows.

(c) By Exercise 2.2, (1 + 𝐿)−1 is an injective sectorial operator. Hence,

𝐻
(𝑏)
= ran

(
(1 + 𝐿)−1) = dom(1 + 𝐿) = dom(𝐿).

(d) Thanks to (c) it suffices to prove convergence for 𝑢 ∈ dom(𝐿). In this case

𝑢 = (1 + 𝑡𝐿)−1(1 + 𝑡𝐿)𝑢 = (1 + 𝑡𝐿)−1𝑢 + 𝑡 (1 + 𝑡𝐿)−1𝐿𝑢

and sectoriality of 𝐿 yields that rightmost term vanishes as 𝑡 ↘ 0.

(e) This proof is left as Exercise 2.3 □

Example 2.5. Consider again our multiplication operator 𝑀𝑚 in L2(R𝑛). By Exam-
ple 1.16 we know that for 𝑀𝑚 being sectorial of angle 𝜑 ∈ [0, 𝜋), it is necessary that
essran(𝑚) = 𝜎(𝑀𝑚) ⊆ S𝜑. We will now show that this is already sufficient.

Suppose that essran(𝑚) ⊆ S𝜑, let 𝜓 ∈ (𝜑, 𝜋) and take _ ∈ C \ S𝜓 . By Example 1.16
and Proposition 1.9 we know that

∥𝑅(_, 𝑀𝑚)∥L(L2 (R𝑛)) = ∥𝑀(_−𝑚)−1 ∥L(L2 (R𝑛)) = ∥(_ − 𝑚)−1∥L∞ (R𝑛) ≤
1

dist(_, S𝜑)
.

Now, consider the compact circle arc 𝐴𝜓 B {ei\ | 𝜓 ≤ |\ | ≤ 𝜋}. Since 𝜓 > 𝜑, we have
dist(𝐴𝜓 , S𝜑) > 0 and since S𝜑 is a cone, we get

dist(_, S𝜑) = |_ |dist
(
_

|_ | , S𝜑
)
≥ |_ |dist(𝐴𝜓 , S𝜑).

Combining the previous two estimates yields the resolvent bounds needed for sectori-
ality.
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2.2. Elliptic forms

2.2. Elliptic forms
In this and the next section we will encounter a general method to construct sectorial
linear operators in the Hilbert space 𝐻 via sesquilinear forms defined on suitable
subspaces of 𝐻. This domain of the form will be denoted by 𝑉 .

Notation 2.6. For the rest of the lecture, 𝑉 will be another Hilbert space that is
continuously and densely embedded into 𝐻.

Definition 2.7. (a) A map 𝑎 : 𝑉 × 𝑉 → C is called a sesquilinear form on 𝑉 if it is
linear in the first argument and anti-linear in the second, i.e., for all 𝑢, 𝑣, 𝑤 ∈ 𝑉
and all _ ∈ C we have

𝑎(𝑢 + _𝑣, 𝑤) = 𝑎(𝑢, 𝑤) + _𝑎(𝑣, 𝑤) and 𝑎(𝑢, 𝑣 + _𝑤) = 𝑎(𝑢, 𝑣) + _𝑎(𝑢, 𝑤).

We denote by 𝑎(𝑢) B 𝑎(𝑢, 𝑢) the corresponding quadratic form on 𝑉 .

(b) A sesquilinear form 𝑎 : 𝑉 ×𝑉 → C is called

i) symmetric if 𝑎(𝑢, 𝑣) = 𝑎(𝑣, 𝑢) holds for all 𝑢, 𝑣 ∈ 𝑉 ,

ii) bounded if there is some 𝐶 ≥ 0 such that

|𝑎(𝑢, 𝑣) | ≤ 𝐶∥𝑢∥𝑉 ∥𝑣∥𝑉 (𝑢, 𝑣 ∈ 𝑉),

iii) accretive if Re
(
𝑎(𝑢)

)
≥ 0 holds for all 𝑢 ∈ 𝑉 ,

iv) coercive if there is some 𝑐 > 0 such that

Re
(
𝑎(𝑢)

)
≥ 𝑐∥𝑢∥2

𝑉 (𝑢 ∈ 𝑉),

v) elliptic if there are 𝜔, ^ > 0 such that

Re
(
𝑎(𝑢)

)
+ 𝜔∥𝑢∥2

𝐻 ≥ ^∥𝑢∥2
𝑉 (𝑢 ∈ 𝑉).

Remark 2.8. (a) The quadratic form that corresponds to a sesquilinear form seems
to contain less information than the whole form, but this is not true. The latter
can be reconstructed from the former via the polarization identity

𝑎(𝑢, 𝑣) = 1
4
(
𝑎(𝑢 + 𝑣) − 𝑎(𝑢 − 𝑣) + i𝑎(𝑢 + i𝑣) − i𝑎(𝑢 − i𝑣)

)
(𝑢, 𝑣 ∈ 𝑉)

that can be verified straightforwardly by expanding the right-hand side.

(b) Likewise, 𝑎 fulfills the parallelogram identity

𝑎(𝑢 + 𝑣) + 𝑎(𝑢 − 𝑣) = 2𝑎(𝑢) + 2𝑎(𝑣) (𝑢, 𝑣 ∈ 𝑉).

17



2. Sectorial operators and sesquilinear forms

Lemma 2.9. A sesquilinear form 𝑎 : 𝑉 × 𝑉 → C is symmetric if and only if 𝑎(𝑢) ∈ R
for all 𝑢 ∈ 𝑉 .

Proof. If 𝑎 is symmetric, then 𝑎(𝑢) = 𝑎(𝑢, 𝑢) = 𝑎(𝑢, 𝑢) = 𝑎(𝑢), so 𝑎(𝑢) ∈ R.
Conversely, suppose 𝑎(𝑢) ∈ R for all 𝑢 ∈ 𝑉 . We introduce a new sesquilinear form 𝑎∗

on 𝑉 by 𝑎∗(𝑢, 𝑣) B 𝑎(𝑣, 𝑢) and need to prove that 𝑎∗ = 𝑎. But this follows from the
polarization identity since the corresponding quadratic forms satisfy 𝑎∗(𝑢) = 𝑎(𝑢) =
𝑎(𝑢) for all 𝑢 ∈ 𝑉 . □

Lemma 2.10 (Schwarz’s inequality). Let 𝑎, 𝑏 : 𝑉 ×𝑉 → C be two symmetric sesquilin-
ear forms and assume that |𝑎(𝑢) | ≤ 𝑏(𝑢) for all 𝑢 ∈ 𝑉 . Then we have��𝑎(𝑢, 𝑣)�� ≤ 𝑏(𝑢)1/2𝑏(𝑣)1/2 (𝑢, 𝑣 ∈ 𝑉).

Proof. Let 𝑢, 𝑣 ∈ 𝑉 and choose 𝛾 ∈ C with |𝛾 | = 1 in such a way that 𝛾𝑎(𝑢, 𝑣) =

𝑎(𝛾𝑢, 𝑣) is a real number. The quadratic form associated with 𝑎 only takes real values,
see Lemma 2.9. Thus, the polarization identity yields

𝛾𝑎(𝑢, 𝑣) = Re
(
𝑎(𝛾𝑢, 𝑣)

)
=

1
4
(
𝑎(𝛾𝑢 + 𝑣) − 𝑎(𝛾𝑢 − 𝑣)

)
.

Taking absolute values on both sides, we can use the triangle inequality, the assumption
and the parallelogram identity in Remark 2.8 (b) to obtain

|𝑎(𝑢, 𝑣) | ≤ 1
4
(
𝑏(𝛾𝑢 + 𝑣) + 𝑏(𝛾𝑢 − 𝑣)

)
=

1
2
(
𝑏(𝛾𝑢) + 𝑏(𝑣)

)
=

1
2
(
𝑏(𝑢) + 𝑏(𝑣)

)
.

Note that in the end we obtain a bound for |𝑎(𝑢, 𝑣) | that does not contain 𝛾 anymore and
is valid for all choices of 𝑢, 𝑣 ∈ 𝑉 . In particular, we can take any numbers 𝑠 > 𝑏(𝑢)1/2

and 𝑡 > 𝑏(𝑣)1/2 and use our bound for ( 1
𝑠
𝑢, 1

𝑡
𝑣) in place of (𝑢, 𝑣) in order to obtain��𝑎(𝑢, 𝑣)�� = 𝑠𝑡���𝑎 (1

𝑠
𝑢,

1
𝑡
𝑣

)��� ≤ 𝑠𝑡

2

[
𝑏

(1
𝑠
𝑢

)
+ 𝑏

(1
𝑡
𝑣

)]
=
𝑠𝑡

2

(𝑏(𝑢)
𝑠2 + 𝑏(𝑣)

𝑡2

)
≤ 𝑠𝑡.

Letting 𝑠 ↘ 𝑏(𝑢)1/2 and 𝑡 ↘ 𝑏(𝑣)1/2 yields the claim. □

We give a name to the sesquilinear form 𝑎∗ that already appeared in the proof of
Lemma 2.9.

Definition 2.11. Let 𝑎 be a sesquilinear form on 𝑉 . Then

𝑎∗(𝑢, 𝑣) B 𝑎(𝑣, 𝑢) (𝑢, 𝑣 ∈ 𝑉)

is called the adjoint form of 𝑎.

Remark 2.12. The adjoint form satisfies |𝑎∗(𝑢, 𝑣) | = |𝑎(𝑣, 𝑢) | and Re(𝑎∗(𝑢)) =

Re(𝑎(𝑢)) for all 𝑢, 𝑣 ∈ 𝑉 . Thus, 𝑎∗ is bounded, accretive, coercive and/or elliptic,
if and only if 𝑎 has the respective property. Furthermore, 𝑎 is symmetric if and only if
𝑎 = 𝑎∗.
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2.3. Sectorial operators from elliptic forms

2.3. Sectorial operators from elliptic forms
Now, we start to construct an associated sectorial operator for a given bounded, elliptic
and accretive sesquilinear form.

Definition 2.13. We say that 𝜙 : 𝑉 → C is anti-linear if for all 𝑢, 𝑣 ∈ 𝑉 and all _ ∈ C
we have

𝜙(𝑢 + _𝑣) = 𝜙(𝑢) + _𝜙(𝑣).
The space

𝑉 ′ B
{
𝜙 : 𝑉 → C | 𝜙 anti-linear and continuous

}
is called anti-dual space of 𝑉 .

For the application of 𝜙 ∈ 𝑉 ′ to 𝑣 ∈ 𝑉 we will write

⟨𝜙, 𝑣⟩𝑉 ′,𝑉 B 𝜙(𝑣).

Remark 2.14. (a) The anti-dual space 𝑉 ′ of 𝑉 is a Banach space when equipped
with the norm

∥𝜙∥𝑉 ′ B sup
𝑣∈𝑉,∥𝑣∥𝑉=1

|𝜙(𝑣) |.

(b) Since 𝑉 is dense in 𝐻, each 𝑢 ∈ 𝐻 is uniquely determined by the associated
anti-linear functional 𝜙𝑢 : 𝑉 ∋ 𝑣 ↦→ ⟨𝑢, 𝑣⟩𝐻 . Since the embedding 𝑉 ↩→ 𝐻 is
continuous, we get��𝜙𝑢 (𝑣)�� = ��⟨𝑢, 𝑣⟩𝐻 �� ≤ ∥𝑢∥𝐻 ∥𝑣∥𝐻 ≲ ∥𝑢∥𝐻 ∥𝑣∥𝑉 .

Hence, 𝜙𝑢 ∈ 𝑉 ′ and identifying 𝑢 with 𝜙𝑢, we find that 𝐻 ↩→ 𝑉 ′. The three
spaces 𝑉 , 𝐻 and 𝑉 ′ together are sometimes called a Gelfand triple.

(c) Let 𝑎 be a bounded sesquilinear form on𝑉 and let 𝑢 ∈ 𝑉 . Then𝑉 ∋ 𝑤 ↦→ 𝑎(𝑢, 𝑤)
is an element of 𝑉 ′ by the boundedness of 𝑎. So, assigning 𝑢 to this functional
gives a linear operator L from 𝑉 to 𝑉 ′ that is bounded once again thanks to the
boundedness of 𝑎:��(L 𝑢) (𝑤)

�� = ��𝑎(𝑢, 𝑤)�� ≤ 𝐶∥𝑢∥𝑉 ∥𝑤∥𝑉 (𝑢, 𝑤 ∈ 𝑉).

Definition 2.15. Let 𝑎 : 𝑉 × 𝑉 → C be a bounded sesquilinear form. The bounded
operator L : 𝑉 → 𝑉 ′ from Remark 2.14 (c) that fulfills

𝑎(𝑢, 𝑤) = ⟨L 𝑢, 𝑤⟩𝑉 ′,𝑉 (𝑢, 𝑤 ∈ 𝑉)

is called the operator associated with 𝑎 on 𝑉 .

The form 𝑎 also provides us with an operator in 𝐻 that is a close relative to L .
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2. Sectorial operators and sesquilinear forms

Definition 2.16. Let 𝑎 : 𝑉 ×𝑉 → C be a bounded sesquilinear form. Then

𝐿 B
{
(𝑢, 𝑣) ∈ 𝐻 × 𝐻 | 𝑢 ∈ 𝑉 and 𝑎(𝑢, 𝑤) = ⟨𝑣, 𝑤⟩𝐻 for all 𝑤 ∈ 𝑉

}
is the operator associated with 𝑎 in 𝐻.

We have to justify that 𝐿 is indeed an operator and we will show that 𝐿 is the maximal
restriction of L to 𝐻.

Proposition 2.17. Let 𝐿 be the relation from Definition 2.16. Then 𝐿 is a linear
operator in 𝐻 with

dom(𝐿) = {𝑢 ∈ 𝑉 | L 𝑢 ∈ 𝐻}, 𝐿𝑢 = L 𝑢 for 𝑢 ∈ dom(𝐿).

Proof. This is a direct consequence of the definition of L and our understanding of
the embedding 𝐻 ↩→ 𝑉 ′, see Remark 2.14 (b):

(𝑢, 𝑣) ∈ 𝐿 ⇐⇒ (𝑢, 𝑣) ∈ 𝑉 × 𝐻 and ⟨L 𝑢, 𝑤⟩𝑉 ′,𝑉 = ⟨𝑣, 𝑤⟩𝑉 ′,𝑉 for all 𝑤 ∈ 𝑉
⇐⇒ (𝑢, 𝑣) ∈ 𝑉 × 𝐻 and L 𝑢 = 𝑣. □

Our next goal will be to show that the operator 𝐿 becomes sectorial under suitable
assumptions on 𝑎.

Lemma 2.18. Let 𝑎 be a bounded sesquilinear form on 𝑉 with associated operators
L on 𝑉 and 𝐿 in 𝐻. Let _ ∈ C and consider the sesquilinear form

𝑎_ : 𝑉 ×𝑉 → C, 𝑎_ (𝑢, 𝑣) = 𝑎(𝑢, 𝑣) + _ ⟨𝑢, 𝑣⟩𝐻 .

Then 𝑎_ is also bounded and the operators associated with 𝑎_ on 𝑉 and in 𝐻 equal
_ + L and _ + 𝐿, respectively.

Proof. We have |_ ⟨𝑢, 𝑣⟩𝐻 | ≤ 𝐶 |_ |∥𝑢∥𝑉 ∥𝑣∥𝑉 for all 𝑢, 𝑣 ∈ 𝑉 since 𝑉 is continuously
embedded into 𝐻. Hence, as the sum of two bounded sesquilinear forms on 𝑉 , 𝑎_ is
itself bounded. Moreover,

𝑎_ (𝑢, 𝑣) = 𝑎(𝑢, 𝑣) + _ ⟨𝑢, 𝑣⟩𝐻 = ⟨L 𝑢, 𝑣⟩𝑉 ′,𝑉 + _ ⟨𝑢, 𝑣⟩𝑉 ′,𝑉 = ⟨(_ + L )𝑢, 𝑣⟩𝑉 ′,𝑉

shows that the operator associated with 𝑎_ on 𝑉 is given by _ + L . The identity maps
𝑉 into 𝐻. Now, Proposition 2.17 yields that the maximal restriction of _ + L to 𝐻 is
at the same time _ + 𝐿 and the operator associated with 𝑎_ in 𝐻. □

The ellipticity condition in 2.7 (b) yields invertibility of some shifted versions of L .
This is a consequence of the famous Lax–Milgram lemma from functional analysis that
we recall for convenience:
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2.3. Sectorial operators from elliptic forms

Proposition 2.19 (Lax–Milgram, [Alt16, Thm. 6.2]). Let 𝑎 : 𝑉 ×𝑉 → C be a bounded
and coercive sesquilinear form. Then the associated operator on 𝑉 is an isomorphism
with ∥L −1∥L(𝑉 ′,𝑉) ≤ 1/𝑐, where 𝑐 is the coercivity constant from Definition 2.7 (b).

Corollary 2.20. Let 𝑎 : 𝑉 × 𝑉 → C be a bounded and elliptic sesquilinear form with
ellipticity constants 𝜔 and ^. Then for all _ ∈ C with Re(_) ≥ 𝜔 the operator _ + L
is an isomorphism with ∥(_ + L )−1∥L(𝑉 ′,𝑉) ≤ 1/^.

Proof. The operator _ +L is associated with the form 𝑎_ by Lemma 2.18 and, thanks
to ellipticity of 𝑎, we have for all 𝑢 ∈ 𝑉 that

Re
(
𝑎_ (𝑢)

)
= Re

(
𝑎(𝑢) +𝜔∥𝑢∥2

𝐻 + (_−𝜔)∥𝑢∥2
𝐻

)
≥ ^∥𝑢∥2

𝑉 +
(
Re(_) −𝜔

)
∥𝑢∥2

𝐻 ≥ ^∥𝑢∥2
𝑉 .

Thus, this form is coercive with coercivity constant ^ and the claim follows from the
Lax–Milgram lemma. □

Now, we can formulate a sufficient condition when a sesquilinear form on 𝑉 gives rise
to a sectorial operator in 𝐻.

Theorem 2.21. If 𝑎 is a bounded, accretive and elliptic sesquilinear form on𝑉 , then the
associated operator 𝐿 in 𝐻 is sectorial of angle 𝜋/2. Moreover, we have the particular
resolvent bound

∥(_ + 𝐿)−1∥L(𝐻) ≤
1

Re(_) (Re(_) > 0).

Proof. Firstly, we note that for all _ ∈ C with Re(_) > 0 and all 𝑢 ∈ dom(𝐿) the
Cauchy–Schwarz inequality and the accretivity of 𝑎 yield

∥(_ + 𝐿)𝑢∥𝐻 ∥𝑢∥𝐻 ≥ Re
(〈
(_ + 𝐿)𝑢, 𝑢

〉
𝐻

)
= Re(_)∥𝑢∥2

𝐻 + Re
(
𝑎(𝑢)

)
≥ Re(_)∥𝑢∥2

𝐻 .

Thus, whenever Re(_) > 0, we have the a priori estimate

∥𝑢∥𝐻 ≤ 1
Re(_) ∥(_ + 𝐿)𝑢∥𝐻 (𝑢 ∈ dom(𝐿)). (2.2)

Let 𝜔 and ^ denote again the ellipticity constants of 𝑎 and let, in a first step, _ ∈ C
with Re(_) ≥ 𝜔 be given. Then, by Corollary 2.20, the operator _ +L : 𝑉 → 𝑉 ′ is an
isomorphism. We want to show that _ + 𝐿 is invertible, too, meaning that −_ ∈ 𝜚(𝐿).
Since _ + 𝐿 is a restriction of _ + L , injectivity follows. To prove surjectivity, let
𝑣 ∈ 𝐻. Interpreting 𝑣 as element of 𝑉 ′, we can set 𝑢 B (_ + L )−1𝑣 ∈ 𝑉 . Then
(_ + L )𝑢 = 𝑣 ∈ 𝐻 and Proposition 2.17 yields 𝑢 ∈ dom(_ + 𝐿) = dom(𝐿) and
(_ + 𝐿)𝑢 = 𝑣. To show that _ + 𝐿 is invertible, it remains to make sure that the inverse
(_ + 𝐿)−1 is bounded. But this follows by setting 𝑢 = (_ + 𝐿)−1𝑣 in (2.2) and we get
the resolvent bound

∥(_ + 𝐿)−1∥L(𝐻) ≤
1

Re(_) (Re(_) ≥ 𝜔). (2.3)
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2. Sectorial operators and sesquilinear forms

Now, consider _ ∈ C with 0 < Re(_) ≤ 𝜔 and set ` B 𝜔 + i Im(_). By our
considerations above, we have −` ∈ 𝜚(𝐿) and

| − _ − (−`) | = Re(`) − Re(_) < Re(`)
(2.3)
≤ 1

∥(−` − 𝐿)−1∥L(𝐻)
.

Proposition 1.15 (c) yields −_ ∈ 𝜚(𝐿) and (2.2) shows that the particular resolvent
bound (2.3) in fact holds for all Re(_) > 0.

To prove sectoriality of 𝐿, let 𝜓 ∈ (𝜋/2, 𝜋) and let ` ∈ C \ S𝜓 be given. Then
−Re(`) ≥ sin(𝜓 − 𝜋/2) · |` | and therefore

∥𝑅(`, 𝐿)∥L(𝐻) = ∥(−` + 𝐿)−1∥L(𝐻) ≤
1

Re(−`) ≤ 1
sin(𝜓 − 𝜋/2) ·

1
|` | ,

which is the desired estimate. □

Sectorial operators of angle 𝜋/2 with the specific bound as in the theorem above have
their own hallmark.

Definition 2.22. An operator 𝐿 in 𝐻 with the particular resolvent bound for Re(_) > 0
from Theorem 2.21 is called m-accretive.

The sectorial operators coming from a form have dense domain in 𝐻 by the abstract
theory of sectorial operators, but more is true.

Proposition 2.23. Let 𝐿 be an operator in𝐻 that is associated with a bounded, accretive
and elliptic sesquilinear form on 𝑉 . Then dom(𝐿) is dense in 𝑉 .

Proof. Let 𝑢 ∈ 𝑉 be orthogonal to dom(𝐿) in 𝑉 , i.e., ⟨𝑢, 𝑣⟩𝑉 = 0 for all 𝑣 ∈ dom(𝐿).
This element 𝑢 defines a bounded anti-linear functional 𝜓𝑢 : 𝑉 → C via 𝜓𝑢 (𝑣) B
⟨𝑢, 𝑣⟩𝑉 . Let 𝜔, ^ denote the ellipticity constants of 𝑎. Then we know from the
hypotheses and Remark 2.12 that the shifted adjoint form 𝑎∗𝜔 is coercive and, by the
Lax–Milgram lemma, there exists some 𝑤 ∈ 𝑉 such that

⟨𝑢, 𝑣⟩𝑉 = 𝜓𝑢 (𝑣) = 𝑎∗𝜔 (𝑤, 𝑣) = 𝑎𝜔 (𝑣, 𝑤) (𝑣 ∈ 𝑉). (2.4)

For 𝑣 ∈ dom(𝐿) we even get

0 = ⟨𝑢, 𝑣⟩𝑉 = 𝑎𝜔 (𝑣, 𝑤) = ⟨(𝜔 + 𝐿)𝑣, 𝑤⟩𝐻 .

Now, −𝜔 ∈ 𝜚(𝐿), so (𝜔 + 𝐿)𝑣 for 𝑣 ∈ dom(𝐿) runs through all of 𝐻. This implies
that ⟨𝑧, 𝑤⟩𝐻 = 0 for all 𝑧 ∈ 𝐻 and thus 𝑤 = 0. Taking a look back to (2.4), this entails
𝑢 = 0 and we have proved that (dom(𝐿))⊥ = {0} in 𝑉 , so dom(𝐿) is dense in 𝑉 . □

Our notion of adjoint form from Definition 2.11 is consistent in the following sense.
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Proposition 2.24. Let 𝑎 be a bounded, elliptic and accretive sesquilinear form on 𝑉
with associated operator 𝐿 in 𝐻. Then the operator associated with 𝑎∗ in 𝐻 coincides
with 𝐿∗. In particular, 𝐿 is self-adjoint if 𝑎 is symmetric.

Proof. Since 𝐿 is sectorial of angle 𝜋/2 by Theorem 2.21, it is densely defined by
Proposition 2.4 (c) and the adjoint operator exists. Furthermore, the form 𝑎∗ is also
bounded, elliptic and accretive by Remark 2.12. Hence, the associated operator, which
we denote by �̃�, is sectorial of angle 𝜋/2, again by Theorem 2.21.

For all 𝑢 ∈ dom(𝐿) and all 𝑣 ∈ dom( �̃�) we have

⟨𝐿𝑢, 𝑣⟩𝐻 = 𝑎(𝑢, 𝑣) = 𝑎∗(𝑣, 𝑢) =
〈
�̃�𝑣, 𝑢

〉
𝐻
=
〈
𝑢, �̃�𝑣

〉
𝐻
.

Hence, by definition of the adjoint operator, 𝑣 ∈ dom(𝐿∗) and 𝐿∗𝑣 = �̃�𝑣, which means
�̃� ⊆ 𝐿∗. Due to Proposition 1.21 we have −1 ∈ 𝜚(𝐿∗) ∩ 𝜚( �̃�), hence the equality
�̃� = 𝐿∗ follows from Exercise 1.2 (b). □

2.4. Sectorial forms
We have seen that accretive forms give rise to sectorial operators of angle 𝜋/2. Accre-
tivity of 𝑎 precisely means that we have 𝑎(𝑢) ∈ S𝜋/2 for all 𝑢 ∈ 𝑉 , so it seems that we
are on to something . . .

Definition 2.25. A sesquilinear form 𝑎 on 𝑉 is sectorial of angle 𝜑 ∈ [0, 𝜋/2) if
𝑎(𝑢) ∈ S𝜑 for all 𝑢 ∈ 𝑉 .

Note that a sectorial form is automatically accretive and that we could have equivalently
defined sectoriality as follows.

Lemma 2.26. A sesquilinear form 𝑎 on 𝑉 is sectorial of angle 𝜑 ∈ [0, 𝜋/2) if and only
if | Im(𝑎(𝑢)) | ≤ tan(𝜑) Re(𝑎(𝑢)) for all 𝑢 ∈ 𝑉 .

In the same manner as we did in Lemma 2.18 for shifts of forms, one proves the
following version for rotated forms.

Lemma 2.27. Let 𝑎 be a bounded sesquilinear form on𝑉 with associated operators L
on 𝑉 and 𝐿 in 𝐻. For every \ ∈ (−𝜋, 𝜋] the sesquilinear form (ei\𝑎) (· , ·) B ei\𝑎(· , ·)
is bounded and the associated operators are ei\L and ei\𝐿, respectively.

Imposing the stronger condition of sectoriality instead of accretivity, we get the follow-
ing enhanced version of Theorem 2.21.

Theorem 2.28. Let 𝑎 be a bounded and elliptic sesquilinear form on𝑉 that is sectorial
of angle 𝜑 ∈ [0, 𝜋/2). Then the associated operator 𝐿 in 𝐻 is also sectorial of angle 𝜑.
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2. Sectorial operators and sesquilinear forms

Proof. Let \ ∈ [0, 𝜋/2 − 𝜑) and let 𝛾 be one of e±i\ . In a first step, we show that the
rotated form 𝛾𝑎 is accretive and elliptic.

Re

Im

𝜑\

^^′

Figure 2.2.: Rotation by an angle \ ∈ (0, 𝜋/2 − 𝜑). The part of S𝜑 in the half plane
defined by Re(𝑧) ≥ ^ is rotated into a new half plane defined by Re(𝑧) ≥ ^′.

By sectoriality of 𝑎 we get for all 𝑣 ∈ 𝑉 that

𝛾𝑎(𝑣) ∈ 𝛾S𝜑 ⊆ S𝜑+\ ⊆ {𝑧 | Re(𝑧) ≥ 0},

meaning that 𝛾𝑎 is accretive. Next, we let 𝜔, ^ > 0 be as in the definition of ellipticity
for 𝑎. Ellipticity and sectoriality imply that for all 𝑣 ∈ 𝑉 with ∥𝑣∥𝑉 = 1 we have

𝑎(𝑣) + 𝜔∥𝑣∥2
𝐻 ∈

{
𝑧 ∈ S𝜑 | Re(𝑧) ≥ ^

}
C 𝑊.

We have again 𝛾𝑊 ⊆ S𝜑+\ . Rotation preserves the distance to the origin, so we also
have dist(0, 𝛾𝑊) = dist(0,𝑊) = ^ and thus 𝛾𝑊 ⊆ {𝑧 ∈ C | Re(𝑧) ≥ ^′} for some
^′ > 0, see also Figure 2.2.

Hence, for every 𝑣 ∈ 𝑉 normalized to ∥𝑣∥𝑉 = 1, we have shown

Re
(
𝛾𝑎(𝑣)

)
+ cos(\)𝜔∥𝑣∥2

𝐻 = Re
(
𝛾
(
𝑎(𝑣) + 𝜔∥𝑣∥2

𝐻

) )
≥ ^′,
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2.5. Exercises

which means that 𝛾𝑎 is elliptic.

Based on this result we can apply Theorem 2.21 to the rotated forms 𝛾𝑎 and obtain
with the help of Lemma 2.27 that the associated operators 𝛾𝐿 in 𝐻 are m-accretive.

Now, let Y > 0 with 𝜑 + 2Y < 𝜋/2. We prove the resolvent estimate required for
sectoriality for _ ∈ C \ S𝜑+2Y. We fix \ B 𝜋/2 − 𝜑 − Y and take the correct sign in the
definition of 𝛾 to make sure that 𝛾_ ∈ C \ S𝜋/2+Y. By m-accretivity of 𝛾𝐿, we get that
_ − 𝐿 = 𝛾−1(𝛾_ − 𝛾𝐿) is invertible with

∥𝑅(_, 𝐿)∥L(𝐻) = ∥(𝛾_ − 𝛾𝐿)−1∥L(𝐻) ≤
1

Re(−𝛾_) ≤ 1
sin(Y) |𝛾_ | =

1
sin(Y) |_ | . □

2.5. Exercises
Exercise 2.1 (Cauchy–Schwarz for sectorial forms). Let 𝑎 : 𝑉 × 𝑉 → C be a sectorial
sesquilinear form. Prove that there exists 𝐶 > 0 such that��𝑎(𝑢, 𝑣)�� ≤ 𝐶 (

Re(𝑎(𝑢))
)1/2 (Re(𝑎(𝑣))

)1/2 (𝑢, 𝑣 ∈ 𝑉).

Hint: Write 𝑎 = 𝑎Re + i𝑎Im, with symmetric sesquilinear forms 𝑎Re and 𝑎Im on 𝑉 .

Exercise 2.2. Let 𝐿 be an injective linear operator in a Hilbert space 𝐻 and let −_ ∈
𝜚(𝐿).

(a) Prove that

1 − _(_ + 𝐿)−1 = (1 + _𝐿−1)−1.

(b) Show that if 𝐿 is a sectorial operator, then so is 𝐿−1.

(c) Conclude that if 𝐿 is sectorial and Y > 0, then (Y + 𝐿)−1 is an injective sectorial
operator.

Exercise 2.3. Prove Proposition 2.4 (e).

Hint: You have already seen the proof of i) and ii) — find it!

Exercise 2.4 (Perturbed Dirac operators – I). Let 𝐷 be a self-adjoint operator in a
Hilbert space 𝐻, let 𝐵 ∈ L(𝐻) and assume there exists ^ > 0 such that Re⟨𝐵𝑢, 𝑢⟩𝐻 ≥
^∥𝑢∥2

𝐻
for all 𝑢 ∈ ran(𝐷). By Proposition 1.20 (g) you know that 𝐷 induces the

topological (orthogonal) splitting

𝐻 = ker(𝐷) ⊕ ran(𝐷).

In this exercise, you will learn how this splitting is perturbed through 𝐵.
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2. Sectorial operators and sesquilinear forms

(a) Argue that 𝐵∗𝐷 and 𝐷𝐵 are closed, densely defined, and adjoint to each other.

(b) Prove that ker(𝐷) ⊕ ran(𝐵∗𝐷) is a topological decomposition in 𝐻.

(c) Show that ran(𝐷) ∩ ker(𝐷𝐵) = {0}.

(d) Conclude that topologically

𝐻 = ker(𝐷) ⊕ ran(𝐵∗𝐷) = ran(𝐷𝐵) ⊕ ker(𝐷𝐵).

(e) Prove the following identities for the subspaces appearing in (d):

ker(𝐷) = ker(𝐵∗𝐷), 𝐵∗ ran(𝐷) = ran(𝐵∗𝐷), ran(𝐷𝐵) = ran(𝐷).

Exercise 2.5 (Perturbed Dirac operators – II). We continue the study of the operators 𝐷
and 𝐵 from Exercise 2.4 and prove resolvent estimates for the perturbed Dirac operators
𝐷𝐵 and 𝐵∗𝐷. These operators play a fundamental role in recent solvability theory of
boundary value problems for elliptic systems [AA11]. In the project phase you will
have the possibility to delve into that topic.

Let 𝑡 ∈ R \ {0}.

(a) Show that

∥(i𝑡 − 𝐷𝐵)𝑢∥𝐻 ≥ Y |𝑡 |∥𝑢∥𝐻 , (𝑢 ∈ dom(𝐷𝐵) ∩ ran(𝐷)),

where Y = ^/∥𝐵∥L(𝐻) .

Hint: Find some inspiration from Exercise 1.6.

(b) Show that

∥(i𝑡 − 𝐵∗𝐷)𝑢∥𝐻 ≥ Y |𝑡 |∥𝑢∥𝐻 , (𝑢 ∈ dom(𝐵∗𝐷) ∩ ran(𝐵∗𝐷)),

for some different constant Y > 0 depending on the same parameters.

(c) Conclude that iR \ {0} ⊆ 𝜚(𝐷𝐵) ∩ 𝜚(𝐵∗𝐷) and that there exists 𝐶 > 0 such that
for all 𝑡 ∈ R \ {0} we have

∥𝑡 (i𝑡 − 𝐷𝐵)−1∥L(𝐻) ≤ 𝐶 and ∥𝑡 (i𝑡 − 𝐵∗𝐷)−1∥L(𝐻) ≤ 𝐶.

(d) Conclude that (𝐷𝐵)2 and (𝐵∗𝐷)2 are sectorial.
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3. The form method for elliptic
operators

The objective of this lecture is the Hilbert space treatment of the Dirichlet-Laplace op-
erator and more general elliptic differential operators in divergence form as a particular
example of the form method from Lecture 2. This requires a new scale of spaces, called
Sobolev spaces: They are Hilbert spaces of differentiable functions, where derivatives
will be understood in a new, weaker sense.

Establishing the basic properties of Sobolev spaces will allow us to recapitulate tools
from measure and integration theory that we consider as prerequisites for our lec-
tures: convolution, mollifiers, L𝑝-approximation by smooth functions, integration by
parts. Readers, who are not familiar with these concepts will find proofs and further
background in standard textbooks such as [AE09].

Notation 3.1. Throughout the lecture, Ω ⊆ R𝑛 is an open, non-empty set.

3.1. Test functions and convolutions
We use the usual spaces C∞

c (Ω) of smooth functions with compact support in Ω, some-
times called test functions, and L1

loc(Ω) of measurable functions1 that are integrable
over all compact subsets of Ω. For measurable 𝑢, 𝑣 : R𝑛 → C the convolution is defined
by

(𝑢 ∗ 𝑣) (𝑥) B
∫
R𝑛
𝑢(𝑥 − 𝑦)𝑣(𝑦) d𝑦 (𝑥 ∈ R𝑛),

provided this integral exists for a.e. 𝑥 ∈ R𝑛, e.g., if 𝑢 ∈ C∞
c (R𝑛) and 𝑣 ∈ L1

loc(R
𝑛).

Definition 3.2. Let 𝑢 : R𝑛 → C be measurable. The family (𝑢𝑡)𝑡>0 defined by

𝑢𝑡 (𝑥) B
1
𝑡𝑛
𝑢

(𝑥
𝑡

)
(𝑥 ∈ R𝑛)

is called mollifier associated with 𝑢.
1We will try to be precise when the difference between ‘functions’ and ‘equivalence classes of functions’

matters on a mathematical level, but we do not make a linguistic distinction.
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3. The form method for elliptic operators

We will mainly need the following properties of test functions. Throughout the lectures
we write 𝐵(𝑥, 𝑟) for the Euclidean ball with center 𝑥 and radius 𝑟.

Proposition 3.3 (Toolkit for test functions).

(a) There is a radial \ ∈ C∞
c (R𝑛) such that 1𝐵(0,1) ≤ \ ≤ 1𝐵(0,2) .

(b) If 𝑢 ∈ L1
loc(R

𝑛) and \ ∈ C∞
c (R𝑛), then \ ∗ 𝑢 ∈ C∞(R𝑛) and for every multi-index

𝛼 ∈ N𝑛0 we have

𝜕𝛼 (\ ∗ 𝑢) = (𝜕𝛼\) ∗ 𝑢.

(c) If 1 ≤ 𝑝 ≤ ∞, 𝑢 ∈ L𝑝 (R𝑛) and \ ∈ L1(R𝑛), then

∥\ ∗ 𝑢∥L𝑝 (R𝑛) ≤ ∥\∥L1 (R𝑛) ∥𝑢∥L𝑝 (R𝑛) .

Moreover, if 𝑝 < ∞ and \ is normalized to
∫
R𝑛
\ d𝑥 = 1, then

lim
𝑡↘0

\𝑡 ∗ 𝑢 = 𝑢 (in L𝑝 (R𝑛)).

(d) If 1 ≤ 𝑝 < ∞, then C∞
c (Ω) is dense in L𝑝 (Ω).

3.2. Weak derivatives
Suppose that 𝑢 ∈ C𝑘 (Ω) and that 𝛼 ∈ N𝑛0 is a multi-index with |𝛼 | ≤ 𝑘 . Integration by
parts yields ∫

Ω

𝑢 · 𝜕𝛼𝜙 d𝑥 = (−1) |𝛼 |
∫
Ω

𝜕𝛼𝑢 · 𝜙 d𝑥 (𝜙 ∈ C∞
c (Ω)). (3.1)

The partial derivative 𝜕𝛼𝑢 is the unique element in L1
loc(Ω) with this property, because

of the following principle.

Lemma 3.4 (Fundamental lemma in the calculus of variations). Let 𝑣 ∈ L1
loc(Ω). Then

𝑣 = 0 if and only if ∫
Ω

𝑣 · 𝜙 d𝑥 = 0 (𝜙 ∈ C∞
c (Ω)). (3.2)

Proof. For the interesting direction let us assume that 𝑣 satisfies (3.2). Writing Ω as a
countable union of increasing bounded open sets Ω 𝑗 , 𝑗 = 1, 2, . . ., with Ω 𝑗 ⊆ Ω 𝑗+1, for
example

Ω 𝑗 B
{
𝑥 ∈ Ω | |𝑥 | < 𝑗 and dist(𝑥, 𝜕Ω) ≥ 𝑗−1},
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3.2. Weak derivatives

it suffices to prove 𝑣 = 0 a.e. on Ω 𝑗 for every 𝑗 .

To this end, we set 𝑣 𝑗 B 1Ω 𝑗+1𝑣, which we think of being defined as zero on R𝑛 \Ω 𝑗+1.2

Since Ω 𝑗+1 is a compact subset of Ω, we have 𝑣 𝑗 ∈ L1(R𝑛). Let \ ∈ C∞
c (R𝑛) be

supported in the unit ball and with integral 1. We want to use (3.2) with 𝜙(𝑥) = \𝑡 (𝑦−𝑥).
This choice is admissible for 𝑦 ∈ Ω 𝑗 and 𝑡 < dist(Ω 𝑗 ,R

𝑛 \ Ω 𝑗+1) C Y 𝑗 since in this
case 𝜙 vanishes outside of Ω 𝑗+1 ⊆ Ω. Thus, we get

0 =

∫
Ω

𝑣(𝑥) · \𝑡 (𝑦 − 𝑥) d𝑥 =
∫
R𝑛
𝑣 𝑗 (𝑥) · \𝑡 (𝑦 − 𝑥) d𝑥 = (\𝑡 ∗ 𝑣 𝑗 ) (𝑦) (𝑦 ∈ Ω 𝑗 ),

whenever 𝑡 < Y 𝑗 . In the limit as 𝑡 ↘ 0 we have \𝑡 ∗ 𝑣 𝑗 → 𝑣 𝑗 in L1(R𝑛), see
Proposition 3.3 (c). Thus, \𝑡 ∗ 𝑣 𝑗 → 𝑣 in L1(Ω 𝑗 ) and therefore 𝑣 = 0 a.e. on Ω 𝑗 . □

Now, we change our perspective on (3.1): Instead of assuming that 𝑢 is differentiable,
we assume that there are functions 𝑢𝛼 in place of 𝜕𝛼𝑢, which make the integration by
parts formulæ work.

Definition 3.5. Let 𝑢 ∈ L1
loc(Ω). Given a multi-index 𝛼 ∈ N𝑛0, we say that 𝜕𝛼𝑢 exists

in the weak sense if there is some 𝑢𝛼 ∈ L1
loc(Ω) such that∫

Ω

𝑢 · 𝜕𝛼𝜙 d𝑥 = (−1) |𝛼 |
∫
Ω

𝑢𝛼 · 𝜙 d𝑥 (𝜙 ∈ C∞
c (Ω)).

In this case we write 𝜕𝛼𝑢 B 𝑢𝛼 and call it weak 𝛼-th derivative of 𝑢. If all weak
derivatives of order |𝛼 | = 1 exist, we call ∇𝑢 B (𝜕1𝑢, . . . , 𝜕𝑛𝑢) the weak gradient of 𝑢
and say that 𝑢 is weakly differentiable in Ω.

Remark 3.6. We have seen above that if 𝑢 is continuously differentiable, then 𝑢 is also
differentiable in the weak sense and the two notions of derivatives coincide.

Let us illustrate the concepts with some (non-)examples.

Example 3.7 (The weak derivative of the absolute value). The absolute value function
𝑢 : R → C, 𝑢(𝑥) = |𝑥 | is not differentiable in 𝑥 = 0, but it feels like in some sense its
derivative should still be the sign function

𝑣(𝑥) B
{
−1 if 𝑥 < 0,
1 if 𝑥 ≥ 0.

We claim that 𝑢 is weakly differentiable with weak derivative 𝑢′ = 𝑣. Indeed, 𝑢 and 𝑣
are locally integrable and for any 𝜙 ∈ C∞

c (R) integration by parts yields∫
R
𝑢 · 𝜙′ d𝑥 =

∫ ∞

0
𝑥𝜙′(𝑥) d𝑥 −

∫ 0

−∞
𝑥𝜙′(𝑥) d𝑥

= −
∫ ∞

0
𝜙(𝑥) d𝑥 +

∫ 0

−∞
𝜙(𝑥) d𝑥 = −

∫
R
𝑣 · 𝜙 d𝑥.

2In other words: We will agree on ‘0 · undefined = 0’ in such a situation.
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3. The form method for elliptic operators

Example 3.8 (Weak derivative of the sign function). The sign function 𝑣 from the
previous example is not weakly differentiable. Indeed, suppose to the contrary that
𝑣′ = 𝑤 exists in the weak sense. Then, given 𝜙 ∈ C∞

c (R), we obtain∫
R
𝑤 · 𝜙 d𝑥 = −

∫
R
𝑣 · 𝜙′ d𝑥 = −

∫ ∞

0
𝜙′(𝑥) d𝑥 +

∫ 0

−∞
𝜙′(𝑥) d𝑥 = 2𝜙(0).

Lemma 3.4 applied on R \ {0} yields 𝑤 = 0 a.e. on R \ {0}, but then the left-hand side
is zero even for all 𝜙 ∈ C∞

c (R), which leads to a contradiction if we take a test function
with 𝜙(0) ≠ 0.

Further below we shall see the deeper reason why weak differentiation ‘over a jump on
the real line’, as in the case of the sign function, does not work. However, this is specific
to the one-dimensional setting and in higher dimensions we can even ‘differentiate over
a (suitable) singularity’, see Exercise 3.4 for a particularly naughty example.

To gain further trust in the concept of weak derivatives, we verify that many properties
of classical derivatives remain valid in the weak sense.

Lemma 3.9. Let 𝑘 ∈ N, 𝛼 ∈ N𝑛0 with |𝛼 | ≤ 𝑘 and _ ∈ C. Let 𝑢, 𝑣 ∈ L1
loc(Ω) have all

weak derivatives up to order 𝑘 in the weak sense and let [ ∈ C∞(Ω). Then we have

(a) 𝜕𝛼 (𝑢 + _𝑣) = 𝜕𝛼𝑢 + _𝜕𝛼𝑣,

(b) 𝜕𝛼−𝛽 (𝜕𝛽𝑢) = 𝜕𝛼𝑢 (= 𝜕𝛽 (𝜕𝛼−𝛽𝑢)) provided that 𝛽 ≤ 𝛼,

(c) 𝜕𝛼 ([𝑢) = ∑
0≤𝛽≤𝛼

(𝛼
𝛽

)
𝜕𝛼−𝛽𝑢 · 𝜕𝛽[ (Leibniz’ rule).

Proof. Part (a) follows from the definition of weak derivatives. Next, we let 𝛽 ≤ 𝛼 and
𝜙 ∈ C∞

c (Ω). Since 𝜕𝛼−𝛽𝜙 ∈ C∞
c (Ω), we obtain

(−1) |𝛼−𝛽 |
∫
Ω

𝜕𝛽𝑢 · 𝜕𝛼−𝛽𝜙 d𝑥 = (−1) |𝛼 |
∫
Ω

𝑢 · 𝜕𝛼𝜙 d𝑥 =
∫
Ω

𝜕𝛼𝑢 · 𝜙 d𝑥,

which proves (b). As for (c) it suffices to prove the product rule corresponding to
|𝛼 | = 1 since this implies Leibniz’ rule by induction just as in the case of classical
derivatives. Given 𝛼 with |𝛼 | = 1, we get for all 𝜙 ∈ C∞

c (Ω) that∫
Ω

[𝑢 · 𝜕𝛼𝜙 d𝑥 =
∫
Ω

𝑢 · [𝜕𝛼𝜙 d𝑥 =
∫
Ω

𝑢 ·
(
𝜕𝛼 ([𝜙) − 𝜙𝜕𝛼[

)
d𝑥

= −
∫
Ω

(
𝜕𝛼𝑢 · [𝜙 + 𝑢 · 𝜙𝜕𝛼[

)
d𝑥 = −

∫
Ω

(
[𝜕𝛼𝑢 + 𝑢𝜕𝛼[

)
· 𝜙 d𝑥,

where in the third step we have used [𝜙 ∈ C∞
c (Ω). □

While reading, you might have already wondered if and when we are going to announce
the following result.
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3.2. Weak derivatives

Proposition 3.10. Let Ω be connected and 𝑢 ∈ L1
loc(Ω) be weakly differentiable. Then

∇𝑢 = 0 in the weak sense if and only if there is a constant 𝑐 such that 𝑢 = 𝑐 a.e. in Ω.

For the proof we need a version of Proposition 3.3 (b) for weak derivatives and functions
that are only defined locally. On a first reading the reader should think of Ω = R𝑛 = ΩY

for all Y in the lemma below. Given 𝑢 ∈ L1
loc(Ω) and 𝑉 ⊆ Ω, we always think of 1𝑉𝑢

as being defined as zero on R𝑛 \𝑉 .

Lemma 3.11. Let 𝑢 ∈ L1
loc(Ω), let \ ∈ C∞

c (R𝑛) have support in the unit ball and let
𝛼 ∈ N𝑛0. For Y > 0 define the open sets

ΩY B {𝑥 ∈ Ω | dist(𝑥, 𝜕Ω) > Y}.

If 𝜕𝛼𝑢 exists in the weak sense and 0 < 𝑡 < Y, then within Ω2Y we have

𝜕𝛼 (\𝑡 ∗ (1ΩY𝑢)) = \𝑡 ∗ (1ΩY𝜕𝛼𝑢) (= 𝜕𝛼\𝑡 ∗ (1ΩY𝑢)).

Proof. The function \𝑡 ∗ (1ΩY𝑢) is smooth with 𝜕𝛼 (\𝑡 ∗ (1ΩY𝑢)) = (𝜕𝛼\𝑡) ∗ (1ΩY𝑢),
see Proposition 3.3 (b). Given 𝑥 ∈ Ω2Y and 𝑡 < Y, we set 𝜙(𝑦) B \𝑡 (𝑥 − 𝑦). Since \𝑡
has support in 𝐵(0, 𝑡), we see that 𝜙 has support in Ω2Y−𝑡 ⊆ ΩY. In particular, it is a
test function for the weak derivative 𝜕𝛼𝑢 and we can compute

𝜕𝛼
(
\𝑡 ∗ (1ΩY𝑢)

)
(𝑥) =

∫
R𝑛
(𝜕𝛼\𝑡) (𝑥 − 𝑦) · 1ΩY (𝑦)𝑢(𝑦) d𝑦

=

∫
ΩY

(−1) |𝛼 |𝜕𝛼𝜙(𝑦) · 𝑢(𝑦) d𝑦

=

∫
ΩY

𝜙(𝑦) · 𝜕𝛼𝑢(𝑦) d𝑦

=

∫
R𝑛
\𝑡 (𝑥 − 𝑦) · 1ΩY (𝑦)𝜕𝛼𝑢(𝑦) d𝑦

= \𝑡 ∗ (1ΩY𝜕𝛼𝑢) (𝑥). □

Proof of Proposition 3.10. If 𝑢 = 𝑐 a.e. in Ω, then ∇𝑢 = 0 follows by integration by
parts (or Remark 3.6).

Conversely, suppose ∇𝑢 = 0 in the weak sense. We fix \ ∈ C∞
c (R𝑛) with support in

the unit ball and integral 1 and first work inside an arbitrary ball 𝐵 = 𝐵(𝑥, 𝑟) with
𝐵(𝑥, 3𝑟) ⊆ Ω. Lemma 3.11 applied to 𝑢 ∈ L1

loc(𝐵(𝑥, 3𝑟)) with Y = 𝑟 yields

𝜕𝑗 (\𝑡 ∗ (1𝐵(𝑥,2𝑟)𝑢)) = \𝑡 ∗ (1𝐵(𝑥,2𝑟)𝜕𝑗𝑢) = \𝑡 ∗ 0 = 0 (1 ≤ 𝑗 ≤ 𝑛)

in 𝐵, provided that 𝑡 < 𝑟 . The upshot is that on the left-hand side we are computing a
classical derivative of a smooth function! Hence, \𝑡 ∗ (1𝐵(𝑥,2𝑟)𝑢) is constant in 𝐵. In
the limit as 𝑡 ↘ 0, these functions converge in L1(R𝑛) to 1𝐵(𝑥,2𝑟)𝑢, see Proposition 3.3.
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3. The form method for elliptic operators

Since a convergent sequence in L1 has an a.e. convergent subsequence, we conclude
that 𝑢 = 𝑐(𝐵) a.e. on 𝐵 for some constant 𝑐(𝐵).

Now, we fix any ball 𝐵0 as above and set 𝑐 B 𝑐(𝐵0). We introduce

𝑀 B {𝑥 ∈ Ω | there is a ball 𝐵(𝑥, 𝑟) ⊆ Ω on which 𝑢 = 𝑐 a.e.}

and complete the proof by showing 𝑀 is open and closed in Ω. Indeed, if this is true,
then 𝑀 = Ω by connectedness. Consequently, Ω can be covered by balls on which
𝑢 = 𝑐 a.e. and since every open cover has a countable subcover, we get 𝑢 = 𝑐 a.e. on Ω.

Since balls are open, 𝑀 is open. For closedness, let (𝑥 𝑗 ) ⊆ 𝑀 be a sequence with
limit 𝑥 ∈ Ω. By the first part 𝑢 = 𝐶 is constant on some ball 𝐵(𝑥, 𝑟). Since eventually
𝑥 𝑗 ∈ 𝐵(𝑥, 𝑟), we must have 𝐶 = 𝑐, thereby proving 𝑥 ∈ 𝑀 . □

In one dimension, there is even a fundamental theorem of calculus for weakly differ-
entiable functions.

Theorem 3.12 (Fundamental theorem of calculus). Let (𝑎, 𝑏) be a bounded interval
and let 𝑢 ∈ L1((𝑎, 𝑏)). The following are equivalent:

(a) 𝑢 is weakly differentiable in (𝑎, 𝑏) with 𝑢′ ∈ L1((𝑎, 𝑏)).

(b) There is some 𝑓 ∈ L1((𝑎, 𝑏)) and a constant 𝐶 such that for a.e. 𝑥 ∈ (𝑎, 𝑏) we
have

𝑢(𝑥) = 𝐶 +
∫ 𝑥

𝑎

𝑓 (𝑦) d𝑦. (3.3)

In this case 𝑢′ = 𝑓 and the right-hand side in (3.3) is a (unique) representative of 𝑢 of
class C( [𝑎, 𝑏]).

Proof. First, assume (b) and define 𝑣 by the right-hand side of (3.3). Since 𝑓 is inte-
grable, 𝑣 is continuous on [𝑎, 𝑏] by dominated convergence. For any 𝜙 ∈ C∞

c ((𝑎, 𝑏))
we have∫ 𝑏

𝑎

𝑣(𝑥)𝜙′(𝑥) d𝑥 = 𝐶

∫ 𝑏

𝑎

𝜙′(𝑥) d𝑥 +
∫ 𝑏

𝑎

∫ 𝑥

𝑎

𝑓 (𝑦) d𝑦 𝜙′(𝑥) d𝑥

Fubini
= 0 +

∫ 𝑏

𝑎

𝑓 (𝑦)
∫ 𝑏

𝑦

𝜙′(𝑥) d𝑥 d𝑦 = −
∫ 𝑏

𝑎

𝑓 (𝑦)𝜙(𝑦) d𝑦,

that is, 𝑣′ = 𝑓 in the weak sense.

Conversely, suppose that 𝑢 is weakly differentiable with 𝑢′ ∈ L1((𝑎, 𝑏)) and define
𝑣(𝑥) B

∫ 𝑥
𝑎
𝑢′(𝑦) d𝑦. We have 𝑣′ = 𝑢′ by the first part of the proof and Proposition 3.10

yields a constant 𝐶 such that 𝑢 − 𝑣 = 𝐶 a.e. on (𝑎, 𝑏). □
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3.3. The Sobolev spaces H𝑘 (Ω)

Remark 3.13. Functions 𝑢 of the form (3.3) are called absolutely continuous. Theo-
rem 3.12 is the deeper reason why differentiating the sign function in Example 3.8 had
to go wrong.

As corollary we obtain a first example of an embedding theorem for a space of weakly
differentiable functions, later called Sobolev embedding.

Corollary 3.14. Let (𝑎, 𝑏) be a bounded interval and let 𝑢 ∈ L1((𝑎, 𝑏)) have a weak
derivative 𝑢′ ∈ L1((𝑎, 𝑏)). Then 𝑢 has a unique representative �̃� ∈ C( [𝑎, 𝑏]) and

∥�̃�∥C( [𝑎,𝑏]) ≤ (𝑏 − 𝑎)−1∥𝑢∥L1 ((𝑎,𝑏)) + ∥𝑢′∥L1 ((𝑎,𝑏)) .

Proof. The continuous representative is given by the right-hand side of (3.3) with
𝑓 = 𝑢′. Hence, we have for all 𝑥, 𝑦 ∈ [𝑎, 𝑏] that3

|�̃�(𝑥) | =
�����̃�(𝑦) + ∫ 𝑥

𝑦

𝑢′(𝑠) d𝑠
���� ≤ |�̃�(𝑦) | + ∥𝑢′∥L1 ((𝑎,𝑏)) .

We want to bound �̃�(𝑥) uniformly in 𝑥, so 𝑦 is a free variable that we can get rid of by
averaging (i.e., integrating with respect to d𝑦

𝑏−𝑎 ):

|�̃�(𝑥) | ≤
∫ 𝑏

𝑎

(
|�̃�(𝑦) | + ∥𝑢′∥L1 ((𝑎,𝑏))

) d𝑦
𝑏 − 𝑎 = (𝑏 − 𝑎)−1∥𝑢∥L1 ((𝑎,𝑏)) + ∥𝑢′∥L1 ((𝑎,𝑏)) .

This bound holds for every 𝑥 ∈ [𝑎, 𝑏] and the proof is complete. □

3.3. The Sobolev spaces H𝒌 (𝛀)

We introduce Hilbert spaces of differentiable functions by using weak derivatives that
we measure in L2-norm.

Definition 3.15. Let 𝑘 ∈ N. The 𝑘-th order Sobolev space is defined as

H𝑘 (Ω) B
{
𝑢 ∈ L2(Ω) | 𝜕𝛼𝑢 ∈ L2(Ω) for all 𝛼 ∈ N𝑛0 with |𝛼 | ≤ 𝑘

}
,

equipped with the inner product

⟨𝑢, 𝑣⟩H𝑘 (Ω) B
∑︁
|𝛼 |≤𝑘

⟨𝜕𝛼𝑢, 𝜕𝛼𝑣⟩L2 (Ω) .

Theorem 3.16. H𝑘 (Ω) is a separable Hilbert space for every 𝑘 ∈ N.

3For 𝑥 < 𝑦 we use the convention that
∫ 𝑥
𝑦
B −

∫ 𝑦
𝑥
B −

∫
[𝑥,𝑦 ] .
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3. The form method for elliptic operators

Proof. We see immediately that H𝑘 (Ω) is a pre-Hilbert space (definiteness follows by
looking at the term for 𝛼 = 0).

Let (𝑢 𝑗 ) be a Cauchy sequence in H𝑘 (Ω). For any multi-index with |𝛼 | ≤ 𝑘 we see
by definition of the H𝑘 (Ω)-norm that (𝜕𝛼𝑢 𝑗 ) is a Cauchy sequence in L2(Ω), hence
by completeness it has a limit in L2(Ω) that we call 𝑢𝛼. Let us set 𝑢 B 𝑢0. For any
𝜙 ∈ C∞

c (Ω) we have

⟨𝑢, 𝜕𝛼𝜙⟩L2 (Ω) = lim
𝑗→∞

〈
𝑢 𝑗 , 𝜕

𝛼𝜙
〉

L2 (Ω)

= lim
𝑗→∞

(−1) |𝛼 |
〈
𝜕𝛼𝑢 𝑗 , 𝜙

〉
L2 (Ω) = (−1) |𝛼 | ⟨𝑢𝛼, 𝜙⟩L2 (Ω) .

By definition, this means 𝜕𝛼𝑢 = 𝑢𝛼 in the weak sense and therefore 𝑢 ∈ H𝑘 (Ω) and
𝑢 𝑗 → 𝑢 in H𝑘 (Ω) in the limit as 𝑗 → ∞.

Finally, we consider the isometry

Φ : H𝑘 (Ω) →
ą

|𝛼 |≤𝑘
L2(Ω), 𝑢 ↦→ (𝜕𝛼𝑢) |𝛼 |≤𝑘 .

Since H𝑘 (Ω) is complete, the image of Φ is closed and hence separable as being a
closed subspace of a separable space. Therefore H𝑘 (Ω) is separable, too. □

Warning 3.17. While it is true that every 𝑢 ∈ C𝑘 (Ω) has weak derivatives up to order
𝑘 , this does not mean that C𝑘 (Ω) ⊆ H𝑘 (Ω) — for instance, a non-zero constant function
𝑢 is not contained in H1(R𝑛), because it misses the integrability condition 𝑢 ∈ L2(R𝑛).

Test functions are dense in H𝑘 (R𝑛), but we will learn in the next section that — unlike
for L2-spaces — this property is very specific to working on the whole space.

Proposition 3.18. C∞
c (R𝑛) is dense in H𝑘 (R𝑛) for every 𝑘 ∈ N.

Proof. Let 𝑢 ∈ H𝑘 (R𝑛) and Y > 0. We approximate 𝑢 in two steps.

Step 1: We find 𝑣 ∈ C∞(R𝑛) ∩ H𝑘 (R𝑛) with ∥𝑢 − 𝑣∥H𝑘 (R𝑛) ≤ Y.

We use a mollifier based on \ ∈ C∞
c (R𝑛) with integral 1 and support in the unit ball.

We set 𝑣 B \𝑡 ∗ 𝑢 with 𝑡 > 0 yet to be chosen. Lemma 3.11 yields 𝜕𝛼𝑣 = \𝑡 ∗ 𝜕𝛼𝑢 for
all multi-indices with |𝛼 | ≤ 𝑘 and Proposition 3.3 (c) tells us that 𝑣 has the required
property provided we take 𝑡 > 0 sufficiently small.

Step 2: We find 𝑤 ∈ C∞
c (R𝑛) with ∥𝑣 − 𝑤∥H𝑘 (R𝑛) ≤ Y.

We take [ ∈ C∞
c (R𝑛) with [(0) = 1 and consider the smooth truncations 𝑤(𝑥) B

[(𝑡𝑥)𝑣(𝑥) with 𝑡 > 0 yet to be chosen. For any multi-index with |𝛼 | ≤ 𝑘 we have

𝜕𝛼𝑤(𝑥) = [(𝑡𝑥)𝜕𝛼𝑣(𝑥) +
∑︁

0<𝛽≤𝛼

( (𝛼
𝛽

)
𝑡 |𝛽 | (𝜕𝛽[) (𝑡𝑥)

)
𝜕𝛼−𝛽𝑣(𝑥).
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3.4. The Sobolev space H1
0(Ω)

Let us investigate what happens in L2(R𝑛) when we pass to the limit as 𝑡 → 0. The
first term on the right tends to 𝜕𝛼𝑣 by dominated convergence. In the sum over 𝛽 the
prefactors of 𝜕𝛼−𝛽𝑣(𝑥) are uniformly bounded and come with a positive power of 𝑡.
Hence, the full sum tends to 0 and we are done. □

We end this section with a useful integration by parts formula.

Corollary 3.19. Let 𝑘 ∈ N and 𝑢, 𝑣 ∈ H𝑘 (R𝑛). Then for every multi-index 𝛼 ∈ N𝑛0 with
|𝛼 | ≤ 𝑘 we have ∫

R𝑛
𝜕𝛼𝑢 · 𝑣 d𝑥 = (−1) |𝛼 |

∫
R𝑛
𝑢 · 𝜕𝛼𝑣 d𝑥.

Proof. If 𝑣 ∈ C∞
c (R𝑛), then this holds by definition of the weak derivative 𝜕𝛼𝑢. The

identity extends to 𝑣 ∈ H𝑘 (R𝑛) by density, see Proposition 3.18. □

3.4. The Sobolev space H1
0(𝛀)

Eventually, we want to use Sobolev spaces in order to solve boundary value problems
and in particular, given a Sobolev function 𝑢 ∈ H1(Ω), we want to give a meaning to
the Dirichlet boundary condition ‘𝑢 = 0 on 𝜕Ω’.

In the one-dimensional case we can use Corollary 3.14 and the continuous inclusion
L2((𝑎, 𝑏)) ⊆ L1((𝑎, 𝑏)) on bounded intervals in order to proceed as follows.

Definition 3.20. Let (𝑎, 𝑏) ⊂ R be a bounded interval. Define a bounded trace map

tr : H1((𝑎, 𝑏)) → C2, 𝑢 ↦→ (�̃�(𝑎), �̃�(𝑏)),

where �̃� ∈ C( [𝑎, 𝑏]) is the unique continuous representative of 𝑢.

Functions with trace zero can be characterized as follows. The proof is left as Exer-
cise 3.2.

Theorem 3.21. Let (𝑎, 𝑏) ⊆ R be a bounded interval and 𝑢 ∈ H1((𝑎, 𝑏)). Then
tr(𝑢) = 0 if and only if 𝑢 is contained in the H1((𝑎, 𝑏))-closure of C∞

c ((𝑎, 𝑏)).

There is no obvious way how to define a meaningful trace in higher dimensions and in
fact it is impossible in general, see Exercise 3.4. Characterizing sets with a reasonable
trace operation quickly becomes a hard problem in potential theory [AH96, Chapter 6].
Inspired by Theorem 3.21 we do not define traces in higher dimensions, but we postulate
the subset of functions with zero boundary values.

Definition 3.22. We define H1
0(Ω) as the closure of C∞

c (Ω) in H1(Ω) and equip it with
the H1(Ω)-norm. We say that a function 𝑢 ∈ H1(Ω) vanishes on 𝜕Ω in the H1-sense if
𝑢 ∈ H1

0(Ω).
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3. The form method for elliptic operators

On Ω = R𝑛 we have shown H1(R𝑛) = H1
0(R

𝑛) in Proposition 3.18, which is no surprise
since R𝑛 has empty boundary. However, this is not the only example: In Lecture 10
you will learn that H1(Ω) = H1

0(Ω) for Ω = R𝑛 \ {0} in dimension 𝑛 ≥ 2. The
interpretation is that this set has a boundary that is ‘too small to be seen’ by Sobolev
functions. However, if Ω has finite measure, then the two spaces always fall apart as
the next lemma shows. Its proof is left for you as Exercise 3.3.

Lemma 3.23. If 𝑢 ∈ H1
0(Ω) satisfies ∇𝑢 = 0, then already 𝑢 = 0. In particular, H1

0(Ω)
is a proper subspace of H1(Ω) if Ω has finite measure.

A more quantitative question aiming in a similar direction is whether the norm of ∇𝑢
controls (up to multiplicative constants) the norm of 𝑢. Such an estimate holds for
instance if Ω has the following property.

Definition 3.24. We say that Ω is contained in a strip (of height ℎ) if there exists a
direction 𝑗 and some 𝑎 ∈ R such that 𝑥 𝑗 ∈ [𝑎, 𝑎 + ℎ] for every 𝑥 ∈ Ω.

Proposition 3.25 (Poincaré inequality). If Ω is contained in a strip of height ℎ, then

∥𝑢∥L2 (Ω) ≤
ℎ
√

2
∥∇𝑢∥L2 (Ω) (𝑢 ∈ H1

0(Ω)).

Proof. Since both sides of the inequality depend continuously on 𝑢 ∈ H1
0(Ω), it suffices

to prove the estimate for 𝑢 ∈ C∞
c (Ω). We write points in R𝑛 as 𝑥 = (𝑥1, 𝑥

′), where
𝑥′ ∈ R𝑛−1 and 𝑥′ should be ignored when 𝑛 = 1, and think of 𝑢 being extended by 0
outside of Ω. After translation and relabeling of coordinates we can assume 𝑥1 ∈ [0, ℎ]
for every 𝑥 ∈ Ω. Thanks to 𝑢(0, 𝑥′) = 0, we can use the fundamental theorem of
calculus and the Cauchy–Schwarz inequality to estimate

|𝑢(𝑥1, 𝑥
′) |2 =

���� ∫ 𝑥1

0
𝜕1𝑢(𝑠, 𝑥′) d𝑠

����2 ≤ 𝑥1

∫ ℎ

0
|𝜕1𝑢(𝑠, 𝑥′) |2 d𝑠.

Integrating both sides in (𝑥1, 𝑥
′) gives the result

∥𝑢∥2
L2 (Ω) ≤

( ∫ ℎ

0
𝑥1 d𝑥1

)
∥𝜕1𝑢∥2

L2 (Ω) ≤
ℎ2

2
∥∇𝑢∥2

L2 (Ω) . □

3.5. Elliptic operators in divergence form
In this section we introduce the main actors of the lecture series. Throughout, 𝐴 : Ω →
L(C𝑛) is a measurable, essentially bounded, matrix-valued function and we set

Λ B esssup𝑥∈Ω ∥𝐴(𝑥)∥L(C𝑛) < ∞. (3.4)
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3.5. Elliptic operators in divergence form

The equations and boundary value problems that we are going to consider take the
formal form

− div(𝐴∇𝑢) = 𝑓 in Ω, (3.5)
𝑢 = 0 on 𝜕Ω. (3.6)

If 𝐴(𝑥) = idC𝑛 is the identity matrix for every 𝑥 ∈ Ω, then (3.5) is Poisson’s equation
−Δ𝑢 = 𝑓 . At this point, variable coefficients 𝐴 do not pose any additional complication
for the theory. We will come back to their meaning and use in some of the later
lectures. The Hilbert space approach to the boundary value problem via the form
method from Lecture 2 starts by interpreting the Dirichlet condition (3.6) in the H1-
sense (Definition 3.22). Hence, we naturally work with 𝑢 ∈ H1

0(Ω). We set

𝑉 B H1
0(Ω),

𝐻 B L2(Ω),

and note that 𝑉 ⊆ 𝐻 with dense inclusion since C∞
c (Ω) is dense in L2(Ω). In this

setting it is common to write

𝑉 ′ C H−1(Ω).

We define the sesquilinear form

𝑎 : H1
0(Ω) × H1

0(Ω) → C, 𝑎(𝑢, 𝑣) =
∫
Ω

𝐴∇𝑢 · ∇𝑣 d𝑥 (3.7)

and by assumption (3.4) and the Cauchy–Schwarz inequality we obtain that 𝑎 is
bounded:

|𝑎(𝑢, 𝑣) | ≤ Λ∥∇𝑢∥L2 (Ω) ∥∇𝑣∥L2 (Ω) ≤ Λ∥𝑢∥H1
0 (Ω)

∥𝑣∥H1
0 (Ω)

(𝑢, 𝑣 ∈ H1
0(Ω)). (3.8)

Hence, we can associate with 𝑎 a bounded operator L : H1
0(Ω) → H−1(Ω) and an

unbounded operator 𝐿 in L2(Ω), see Definitions 2.15 and 2.16. By definition, we have
𝐿𝑢 = 𝑓 if and only if 𝑓 ∈ L2(Ω), 𝑢 ∈ H1

0(Ω) and∫
Ω

𝐴∇𝑢 · ∇𝑣 d𝑥 =
∫
Ω

𝑓 · 𝑣 d𝑥 (𝑣 ∈ H1
0(Ω)).

We see that (3.5) is hidden in the equation 𝐿𝑢 = 𝑓 up to undoing one integration
by parts that cannot be justified in general. But if 𝐴∇𝑢 was weakly differentiable
(componentwise), then indeed we would have 𝑓 = − div(𝐴∇𝑢) in the weak sense.

We have seen in the previous lecture that all further theory for 𝐿 rests on some sort of
lower bound assumption for the form 𝑎. In our concrete setting it is most natural to
work with positive definiteness assumptions directly on the coefficients 𝐴.
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3. The form method for elliptic operators

Definition 3.26. The coefficients 𝐴 are called elliptic if there exists _ > 0 such that for
a.e. 𝑥 ∈ Ω we have for all b ∈ C𝑛 that

Re(𝐴(𝑥)b · b) ≥ _ |b |2. (3.9)

In this case we call 𝐿 an elliptic operator in divergence form with Dirichlet boundary
conditions on Ω and we write 𝐿 = − div(𝐴∇ ·) if the context is clear. The opera-
tor associated with 𝐴 = idC𝑛 is the negative Dirichlet Laplacian on Ω, denoted by
(−Δ)H1

0 (Ω)
.

This terminology is consistent with abstract form theory because of the following
lemma.

Lemma 3.27. If 𝐴 is elliptic, then 𝑎 defined in (3.7) is bounded and elliptic. Moreover,
𝑎 is sectorial of angle arctan(Λ/_).

Proof. Let 𝑢 ∈ H1
0(Ω). We have seen boundedness in (3.8). As for ellipticity, (3.9)

yields

Re
(
𝑎(𝑢)

)
=

∫
Ω

Re
(
(𝐴(𝑥)∇𝑢(𝑥) · ∇𝑢(𝑥)

)
d𝑥 ≥

∫
Ω

_ |∇𝑢(𝑥) |2 d𝑥 = _∥∇𝑢∥2
L2 (Ω) .

Thus, we get at once

Re
(
𝑎(𝑢)

)
+ _ ⟨𝑢, 𝑢⟩L2 (Ω) ≥ _∥𝑢∥2

H1
0 (Ω)

and

| Im
(
𝑎(𝑢)

)
| ≤ |𝑎(𝑢) |

(3.4)
≤ Λ∥∇𝑢∥2

L2 (Ω) ≤
Λ

_
Re

(
𝑎(𝑢)

)
. □

Remark 3.28. The angle in Lemma 3.27 can be improved in terms of _ and Λ, see
Exercise 3.6.

In the following theorem we summarize the operator theoretic properties of divergence
form operators that we can prove so far.

Theorem 3.29. An elliptic operator 𝐿 = − div(𝐴∇ ·) in divergence form with Dirichlet
boundary conditions on Ω has the following properties:

(a) It is sectorial of angle 𝜑𝐿 < 𝜋/2.

(b) It is injective.

(c) Its adjoint is 𝐿∗ = − div(𝐴∗∇ ·). In particular, 𝐿 is self-adjoint if 𝐴(𝑥) is
Hermitean for a.e. 𝑥 ∈ Ω.

(d) It is invertible if Ω is contained in a strip.
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3.6. Exercises

Proof. Part (a) is a consequence of Lemma 3.27 and Theorem 2.28 and (c) follows
from Proposition 2.24 since

𝑎∗(𝑢, 𝑣) = 𝑎(𝑣, 𝑢) = ⟨𝐴∇𝑣,∇𝑢⟩L2 (Ω) =

∫
Ω

〈
𝐴(𝑥)∇𝑣(𝑥),∇𝑢(𝑥)

〉
C𝑛

d𝑥

=

∫
Ω

〈
∇𝑣(𝑥), 𝐴(𝑥)∗∇𝑢(𝑥)

〉
C𝑛

d𝑥 = ⟨∇𝑣, 𝐴∗∇𝑢⟩L2 (Ω) = ⟨𝐴∗∇𝑢,∇𝑣⟩L2 (Ω)

holds for all 𝑢, 𝑣 ∈ 𝑉 . The other two assertions are left as Exercise 3.5. □

3.6. Exercises
Exercise 3.1. Let (𝑎, 𝑏) ⊆ R be a bounded interval and let 𝑢 ∈ H1((𝑎, 𝑏)). Prove that
the continuous representative �̃� satisfies the Hölder estimate

|�̃�(𝑥) − �̃�(𝑦) | ≤ |𝑥 − 𝑦 |1/2∥𝑢′∥L2 ((𝑎,𝑏)) (𝑥, 𝑦 ∈ [𝑎, 𝑏]).

Exercise 3.2 (Trace zero functions on a bounded interval). We suggest a proof of
Theorem 3.21 via the following steps.

(a) Convince yourself that 𝑢 ∈ C∞
c ((𝑎, 𝑏)) implies tr(𝑢) = 0.

For the converse, we assume from now on that 𝑢 ∈ H1((𝑎, 𝑏)) satisfies tr(𝑢) = 0.

(b) Let 0 < Y < (𝑏−𝑎)/4. Construct a function [Y ∈ C∞
c ((𝑎, 𝑏)) such that

• [Y = 1 on (𝑎 + 2Y, 𝑏 − 2Y) and [Y = 0 on (𝑎, 𝑏) \ (𝑎 + Y, 𝑏 − Y) ,

• ∥[Y∥L∞ ((𝑎,𝑏)) + Y∥([Y)′∥L∞ ((𝑎,𝑏)) ≤ 𝐶 for a constant 𝐶 independent of Y.

Hint: Start with the indicator function of (𝑎 + 3Y/2, 𝑏 − 3Y/2) and make it smooth.

(c) Prove that [Y𝑢 ∈ H1
0((𝑎, 𝑏)).

(d) Prove that [Y𝑢 → 𝑢 in H1((𝑎, 𝑏)) in the limit as Y → 0. Conclude.

Exercise 3.3. Prove Lemma 3.23.

Hint: Suppose that 𝑢 ∈ H1
0(Ω) satisfies ∇𝑢 = 0 and study its extension to R𝑛 \ Ω by

zero.

Exercise 3.4 (A naughty H1-function). In this exercise we are going to explore how
badly the embedding in Corollary 3.14 fails in higher dimensions. We work on the unit
ball 𝐵 B 𝐵(0, 1) in dimension 𝑛 ≥ 3 and proceed as follows.

(a) Let 𝛼 > 0. On R𝑛 \ {0} define 𝑢(𝑥) B |𝑥 |−𝛼 and let 𝑣1, . . . , 𝑣𝑛 be its classical
partial derivatives. Show that 𝛼 can be chosen such that these (𝑛 + 1) functions
belong to L2(𝐵).
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3. The form method for elliptic operators

(b) Prove ∇𝑢 = (𝑣1, . . . , 𝑣𝑛) in the weak sense on 𝐵.

Hint: Let Y ∈ (0, 1) and apply the Gauß–Green theorem on 𝐵 \ 𝐵(0, Y). Then
pass to the limit as Y → 0.

The example above shows that 𝑢 ∈ H1(𝐵) does not imply esssup𝐵 |𝑢 | < ∞. Let us
make the situation even worse.

(c) Let 𝑞1, 𝑞2, . . . be a countable dense subset of 𝐵 and define 𝑢 𝑗 (𝑥) B 𝑢(𝑥 − 𝑞 𝑗 ),
a.e. on 𝐵. Check that there is a constant 𝐶 such that ∥𝑢 𝑗 ∥H1 (𝐵) ≤ 𝐶 for all 𝑗 .

(d) Use the 𝑢 𝑗 to construct some 𝑤 ∈ H1(𝐵) with the property that esssupΩ |𝑤 | = ∞
holds for every non-empty open set Ω ⊆ 𝐵.

Exercise 3.5. In this exercise you will complete the proof of Theorem 3.29.

(a) Show that

ker(𝐿) = {𝑢 ∈ H1
0(Ω) | ∇𝑢 = 0}.

(b) Conclude that 𝐿 is injective.

(c) Suppose that in addition Ω is contained in a strip. Prove that L and 𝐿 are
invertible.

Exercise 3.6. In the setup of Section 3.5 prove that 𝑎 is sectorial of angle arccos(_/Λ),
which is a better bound than in Lemma 3.27.

Hint: Draw the values of 𝑎(𝑢) for 𝑢 ∈ H1
0(Ω) with ∥∇𝑢∥L2 (Ω) = 1 in the complex plane.
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4. Fourier analysis and the Laplacian

The Fourier transform is the fundamental tool of harmonic analysis. It provides
an isometry on L2(R𝑛) that translates derivatives into multiplication by polynomials
and vice versa, allowing to transform questions about differentiability and differential
operators into algebraic properties. In return, this will open a new perspective on
Sobolev spaces and the negative Laplacian on R𝑛 that will allow us to generalize the
concept of smoothness to non-integer parameters. In particular, we will see

• fractional powers of the negative Laplacian, for example (−Δ)1/4,

• fractional Sobolev spaces, for example H1/2(R𝑛),

and study their relationship. We will also see a first instance of a so-called functional
calculus. Generalizing the emerging concepts to elliptic operators other than the
negative Laplacian will be our guiding principle for the upcoming lectures.

4.1. The Fourier transform
We assume familiarity with the basic properties of the Fourier transform. For conve-
nience and later reference we begin by summarizing the toolkit that will be needed in
our course. For proofs and further background we refer, for instance, to [Gra14] and
the exercises.

Definition 4.1. The Fourier transform of 𝑢 ∈ L1(R𝑛) is defined by

F 𝑢(b) B p𝑢(b) B
∫
R𝑛

e−2𝜋i𝑥·b𝑢(𝑥) d𝑥 (b ∈ R𝑛)

and the inverse Fourier transform by

F −1𝑢(𝑥) B q𝑢(𝑥) B
∫
R𝑛

e2𝜋ib ·𝑥𝑢(b) db (𝑥 ∈ R𝑛).

A particularly useful space when working with the Fourier transform is the Schwartz
space S(R𝑛) of rapidly decaying smooth functions. We recall the multi-index notation
𝑥𝛼 = 𝑥

𝛼1
1 · · · 𝑥𝛼𝑛𝑛 , whenever 𝑥 ∈ R𝑛 and 𝛼 ∈ N𝑛0, and that 𝑢 ∈ S(R𝑛) if and only if

sup𝑥∈R𝑛 |𝑥𝛼𝜕𝛽𝑢(𝑥) | is finite for all 𝛼, 𝛽 ∈ N𝑛0.
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4. Fourier analysis and the Laplacian

Proposition 4.2 (Toolkit for the Fourier transform). Let 𝑢, 𝑣 ∈ S(R𝑛), 𝑦 ∈ R𝑛, 𝛼 ∈ N𝑛0
and 𝑡 > 0.

(a) F and F −1 map the Schwartz space into itself and are inverse of one another.

(b) We have y𝜕𝛼𝑢(b) = (2𝜋ib)𝛼p𝑢(b).

(c) Define the dilation 𝛿𝑡𝑢(𝑥) B 𝑢(𝑡𝑥) and the translation 𝜏𝑦𝑢(𝑥) B 𝑢(𝑥 − 𝑦). Their
Fourier transforms are given by

x𝛿𝑡𝑢(b) = 𝑡−𝑛𝛿𝑡−1 p𝑢(b) = p𝑢𝑡 (b) and x𝜏𝑦𝑢(b) = e−2𝜋i𝑦·b
p𝑢(b),

where we also use the mollifier notation from Definition 3.2.

(d) We have z𝑢 ∗ 𝑣 = p𝑢 · p𝑣.

(e) Parseval’s formula ⟨𝑢, 𝑣⟩L2 (R𝑛) = ⟨p𝑢, p𝑣⟩L2 (R𝑛) holds.

(f) We have Plancherel’s identity ∥𝑢∥L2 (R𝑛) = ∥p𝑢∥L2 (R𝑛) = ∥q𝑢∥L2 (R𝑛) .

Remark 4.3. Rules similar to (b), (c) and (d) also hold for the inverse Fourier transform,
because we have q𝑢(𝑦) = p𝑢(−𝑦) by definition.

Remark 4.4. Since S(R𝑛) is dense in L2(R𝑛) (it already contains C∞
c (R𝑛)), we obtain

from (a) and (f) that F uniquely extends to a bijective isometry on L2(R𝑛). We use
the same symbols for the extension. This observation is usually called Plancherel’s
theorem.

By density, formulas (c), (e), (f) in Proposition 4.2 remain valid for all 𝑢, 𝑣 ∈ L2(R𝑛).
In (d) we can allow 𝑢 ∈ L1(R𝑛), 𝑣 ∈ L2(R𝑛) and we ask you to provide the details in
Exercise 4.1. In order to generalize (b), we have to work with functions that admit
derivatives in L2(R𝑛). This will naturally lead to a different perspective on Sobolev
spaces in the next section.

4.2. The domain of the negative Laplacian on R𝑛

We begin with a Fourier analytic characterization of Sobolev spaces.

Proposition 4.5. For 𝑘 ∈ N we have that

H𝑘 (R𝑛) =
{
𝑢 ∈ L2(R𝑛) | (b ↦→ |b |𝑘p𝑢(b)) ∈ L2(R𝑛)

}
with equivalence of norms

∥𝑢∥H𝑘 (R𝑛) ≃ ∥𝑢∥L2 (R𝑛) +
b ↦→ |b |𝑘p𝑢(b)


L2 (R𝑛) (𝑢 ∈ H𝑘 (R𝑛)).

Moreover, if 𝑢 ∈ H𝑘 (R𝑛) and 𝛼 ∈ N𝑛0 with |𝛼 | ≤ 𝑘 , then y𝜕𝛼𝑢(b) = (2𝜋ib)𝛼p𝑢(b) for
almost every b ∈ R𝑛.
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4.2. The domain of the negative Laplacian on R𝑛

Proof. Given 𝑢 ∈ L2(R𝑛) and 𝛼 ∈ N𝑛0, Parseval’s formula yields for all 𝑣 ∈ S(R𝑛) that

(−1) |𝛼 |
∫
R𝑛
𝑢(𝑥) · 𝜕𝛼𝑣(𝑥) d𝑥 = (−1) |𝛼 |

∫
R𝑛

p𝑢(b) · y𝜕𝛼𝑣(b) db

=

∫
R𝑛
(2𝜋ib)𝛼p𝑢(b) · p𝑣(b) db.

(4.1)

‘⊆’: We assume 𝑢 ∈ H𝑘 (R𝑛).

Let |𝛼 | ≤ 𝑘 . We can integrate by parts on the left-hand side of (4.1), see Corollary 3.19,
and use Parseval’s formula once more, to obtain∫

R𝑛
(2𝜋ib)𝛼p𝑢(b) · p𝑣(b) db =

∫
R𝑛
𝜕𝛼𝑢(𝑥) · 𝑣(𝑥) d𝑥 =

∫
R𝑛

y𝜕𝛼𝑢(b) · p𝑣(b) db.

Given any 𝜑 ∈ C∞
c (R𝑛), we can take 𝑣 = q𝜑, so that p𝑣 = 𝜑. The fundamental lemma in

the calculus of variations (Lemma 3.4) implies y𝜕𝛼𝑢(b) = (2𝜋ib)𝛼p𝑢(b) for a.e. b ∈ R𝑛.
With these Fourier formulæ for the weak derivatives at hand, we obtain

∥𝑢∥2
H𝑘 (R𝑛) =

∑︁
|𝛼 |≤𝑘

∫
R𝑛

��y𝜕𝛼𝑢(b)��2 db =
∫
R𝑛

|p𝑢(b) |2
∑︁
|𝛼 |≤𝑘

| (2𝜋b)𝛼 |2 db. (4.2)

The powers of b can be estimated from below by looking at the terms for 𝛼 = 0 and
𝛼 = 𝑘𝑒 𝑗 , where 𝑒1, . . . , 𝑒𝑛 are the standard unit vectors:∑︁

|𝛼 |≤𝑘
| (2𝜋b)𝛼 |2 ≥ 1 +

𝑛∑︁
𝑗=1

|b 𝑗 |2𝑘 ≥ 1 + 𝑛1−𝑘
( 𝑛∑︁
𝑗=1

|b 𝑗 |2
) 𝑘

≥ 𝑛1−𝑘 (1 + |b |2𝑘 ),

where in the second step we have used Hölder’s inequality (𝐴1+ . . .+𝐴𝑛)𝑘 ≤ 𝑛𝑘−1(𝐴𝑘1 +
. . .+ 𝐴𝑘𝑛) for the non-negative numbers 𝐴 𝑗 = |b 𝑗 |2. In total, we have shown the required
estimate

∥𝑢∥2
L2 (R𝑛) +

b ↦→ |b |𝑘p𝑢(b)
2

L2 (R𝑛) =

∫
R𝑛

(
1 + |b |2𝑘

) ��
p𝑢(b)

��2 db ≤ 𝑛𝑘−1∥𝑢∥2
H𝑘 (R𝑛) .

‘⊇’: We assume (b ↦→ |b |𝑘p𝑢(b)) ∈ L2(R𝑛).

Let again |𝛼 | ≤ 𝑘 . As��(2𝜋ib)𝛼
�� ≤ (2𝜋) |𝛼 | |b | |𝛼 | ≤ (2𝜋) |𝛼 | (1 + |b |𝑘 ) (b ∈ R𝑛), (4.3)

we can define a function 𝑢𝛼 ∈ L2(R𝑛) on the Fourier-side via x𝑢𝛼 (b) B (2𝜋ib)𝛼p𝑢(b).
Applying Parseval’s formula on the right-hand side of (4.1) leads us to∫

R𝑛
𝑢(𝑥) · 𝜕𝛼𝑣(𝑥) d𝑥 = (−1) |𝛼 |

∫
R𝑛
𝑢𝛼 (𝑥) · 𝑣(𝑥) d𝑥

43



4. Fourier analysis and the Laplacian

for any 𝑣 ∈ S(R𝑛). Thus, we have 𝑢𝛼 = 𝜕𝛼𝑢 in the weak sense and, consequently,
𝑢 ∈ H𝑘 (R𝑛). By an estimate similar to (4.3), we obtain from (4.2) the reverse norm
estimate

∥𝑢∥2
H𝑘 (R𝑛) ≤ 𝐶

(
∥𝑢∥2

L2 (R𝑛) +
b ↦→ |b |𝑘p𝑢(b)

2
L2 (R𝑛)

)
. □

We use this proposition to identify the domain of the negative Dirichlet Laplacian onR𝑛
that was introduced in Definition 3.26 via a sesquilinear form on H1

0(R
𝑛). Since R𝑛 has

no boundary and as H1
0(R

𝑛) = H1(R𝑛) by Proposition 3.18, we find it less peculiar to call
this operator ‘negative Laplacian‘ and, for the moment, denote it by (−Δ)H1 (R𝑛) .

Theorem 4.6. Let (−Δ)H1 (R𝑛) be the negative Laplacian on R𝑛. We have

dom((−Δ)H1 (R𝑛)) = H2(R𝑛)

with equivalent norms

∥𝑢∥L2 (R𝑛) + ∥(−Δ)H1 (R𝑛)𝑢∥L2 (R𝑛) ≃ ∥𝑢∥H2 (R𝑛)

and for all 𝑢 ∈ dom((−Δ)H1 (R𝑛)) we have (−Δ)H1 (R𝑛)𝑢 = −Δ𝑢, where the right-hand
side is understood in the H2-sense.

Remark 4.7. (a) Theorem 4.6 is an example of a smoothing property of a differential
operator: The knowledge of 𝑢 ∈ H1(R𝑛) and (−Δ)H1 (R𝑛)𝑢 ∈ L2(R𝑛) is enough
to control all weak derivatives of 𝑢 up to order 2.

(b) The smoothing property is related to the smoothness of the coefficients 𝐴 = idC𝑛 ,
see [Eva10] for further background. For general elliptic operators in divergence
form the smoothing property can fail badly, see Exercise 4.6.

(c) In dimension 𝑛 = 1 a smoothing property for the negative Dirichlet Laplacian
(−Δ)H1

0 (Ω)
can be proved on any non-empty open set Ω, see Exercise 4.3. This

argument breaks down in higher dimensions.

Proof of Theorem 4.6. First, suppose that (𝑢, 𝑣) ∈ (−Δ)H1 (R𝑛) . By definition via the
form method, see Section 3.5, Parseval’s formula and Proposition 4.5, we obtain for all
𝑤 ∈ H1(R𝑛) that∫

R𝑛
p𝑣(b) · p𝑤(b) db =

∫
R𝑛
𝑣(𝑥) · 𝑤(𝑥) d𝑥 =

∫
R𝑛

∇𝑢(𝑥) · ∇𝑤(𝑥) d𝑥

=

∫
R𝑛

4𝜋2 |b |2p𝑢(b) · p𝑤(b) db.
(4.4)

From this we conclude 4𝜋2 |b |2p𝑢(b) = p𝑣(b) by Lemma 3.4 and then 𝑢 ∈ H2(R𝑛) with
−Δ𝑢 = 𝑣 (= (−Δ)H1 (R𝑛)𝑢) by Proposition 4.5. Moreover, the same proposition yields

∥𝑢∥H2 (R𝑛) ≃ ∥𝑢∥L2 (R𝑛) + ∥Δ𝑢∥L2 (R𝑛) = ∥𝑢∥L2 (R𝑛) + ∥(−Δ)H1 (R𝑛)𝑢∥L2 (R𝑛) .
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4.3. A first glimpse at functional calculus

Conversely, given 𝑢 ∈ H2(R𝑛), the calculation (4.4) works for any 𝑤 ∈ H1(R𝑛) and the
choice 𝑣 B −Δ𝑢. By definition, this means (𝑢,−Δ𝑢) ∈ (−Δ)H1 (R𝑛) . □

With Theorem 4.6 at hand, we will simply write −Δ instead of (−Δ)H1 (R𝑛) in the
following. Re-inspecting the above proof reveals the following result.

Corollary 4.8. The negative Laplacian is unitarily equivalent (via the Fourier trans-
form) to the multiplication operator on L2(R𝑛) associated with 𝑚(b) = 4𝜋2 |b |2, that
is,

−Δ = F −1𝑀𝑚F .

This result is of course a special case of the spectral theorem for self-adjoint operators.
It can be visualized by the following commutative diagram:

L2(R𝑛) ⊇ dom(𝑀𝑚) L2(R𝑛)

L2(R𝑛) ⊇ dom(−Δ) L2(R𝑛)

𝑀𝑚

F

−Δ

F

Figure 4.1.: Unitary equivalence of −Δ with a multiplication operator via the Fourier
transform, where 𝑚(b) = 4𝜋2 |b |2.

4.3. A first glimpse at functional calculus
For the unbounded operator 𝐿 = −Δ we know how to define integer powers 𝐿𝑘 and we
can now give a description of their domains.

Proposition 4.9. For all 𝑘 ∈ N we have

dom
(
(−Δ)𝑘

)
= H2𝑘 (R𝑛)

with equivalent (graph) norms.

Proof. In view of Corollary 4.8 the operator (−Δ)𝑘 is equivalent to the multiplica-
tion operator on L2(R𝑛) associated with 𝑚𝑘 (b) = (4𝜋2)𝑘 |b |2𝑘 . Proposition 4.5 and
Plancherel’s theorem yield H2𝑘 (R𝑛) = dom

(
(−Δ)𝑘

)
and

∥𝑢∥H𝑘 (R𝑛) ≃ ∥𝑢∥L2 (R𝑛) +
b ↦→ |b |2𝑘p𝑢(b)


L2 (R𝑛) ≃ ∥𝑢∥L2 (R𝑛) + ∥(−Δ)𝑘𝑢∥L2 (R𝑛)

for all 𝑢 ∈ H2𝑘 (R𝑛). □
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4. Fourier analysis and the Laplacian

It is not so obvious how to define more complicated functions of 𝐿, like
√
𝐿, e−𝐿 or

𝐿
1/4e−

√
𝐿 . Answering this question leads to the concept of a functional calculus, which

will play an important role in our course. At this point we can use Figure 4.1 in order
to proceed for the negative Laplacian, because if 𝑓 is a measurable function defined on
the range of 𝑚, i.e., on [0,∞), then 𝑓 (−Δ) should be equivalent to the multiplication
operator associated with 𝑓 ◦ 𝑚.

Definition 4.10. Let 𝑓 : [0,∞) → C be a measurable function. Define 𝑓 (−Δ) via the
commutative diagram

L2(R𝑛) ⊇ dom(𝑀 𝑓 ◦𝑚) L2(R𝑛)

L2(R𝑛) ⊇ dom( 𝑓 (−Δ)) L2(R𝑛),

𝑀 𝑓 ◦𝑚

F
𝑓 (−Δ)

F

that is, 𝑓 (−Δ) = F −1𝑀 𝑓 ◦𝑚F , where the multiplication operator 𝑀 𝑓 ◦𝑚 is defined with
maximal domain in L2(R𝑛), see Example 1.8.

The map {
measurable functions on [0,∞)

}
→

{
closed operators in L2(R𝑛)

}
𝑓 ↦→ 𝑓 (−Δ)

becomes some sort of algebra homomorphism. This theory will be developed in greater
generality in the upcoming two lectures, see also Exercise 4.4.

A particularly interesting choice of functions 𝑓 is 𝑓 (𝑡) = 𝑡𝛼 for 𝛼 > 0, leading to
the operators (−Δ)𝛼, which we call fractional powers of the negative Laplacian. Their
domains generalize the spaces appearing on the left-hand side in Proposition 4.9 to non-
integer 𝑘 and provide a natural definition for Sobolev spaces of fractional order!

Definition 4.11. Let 𝛼 > 0. The space

H𝛼 (R𝑛) B dom
(
(−Δ)𝛼/2)

equipped with the graph norm is called fractional Sobolev space of order 𝛼.

A particularly attentive reader might have noticed that this definition is troublesome
when 𝛼 is an odd integer, because in this case H𝛼 has been defined before and up to now
we did not check that the two definitions coincide. Fortunately, this is just a repetition
of the proof of Proposition 4.9, replacing 2𝑘 by 𝑘 . The special case 𝛼 = 1 reveals a
connection between fractional powers and the form domain of the negative Laplacian
that we state explicitly.

Proposition 4.12 (Kato property for the negative Laplacian on R𝑛). Let 𝐿 be the
negative Laplacian on R𝑛. Then dom(

√
𝐿) = H1(R𝑛) and

∥
√
𝐿𝑢∥L2 (R𝑛) = ∥∇𝑢∥L2 (R𝑛) (𝑢 ∈ H1(R𝑛)).
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The following proposition shows that the fractional Sobolev spaces H𝛼 (R𝑛), 0 < 𝛼 < 1,
fill the ‘gap’ between L2(R𝑛) and H1(R𝑛) in a way that resembles how Hölder spaces
C𝛼 (R𝑛) fill the gap between continuous and continuously differentiable functions.

Proposition 4.13. Let 0 < 𝛼 < 1. We have 𝑢 ∈ H𝛼 (R𝑛) if and only if 𝑢 ∈ L2(R𝑛) and

[𝑢]𝛼,2 B
(∫
R𝑛

∫
R𝑛

|𝑢(𝑥) − 𝑢(𝑦) |2
|𝑥 − 𝑦 |2𝛼

d𝑥 d𝑦
|𝑥 − 𝑦 |𝑛

)1/2

< ∞.

Moreover
(
∥ · ∥2

L2 (R𝑛) + [ · ]2
𝛼,2

)1/2 defines an equivalent norm on H𝛼 (R𝑛) and there is a
constant 𝐶 > 0 such that

∥(−Δ)𝛼/2𝑢∥L2 (R𝑛) = 𝐶 [𝑢]𝛼,2 (𝑢 ∈ H𝛼 (R𝑛)).

Proof. For 𝑢 ∈ L2(R𝑛) we can compute∫
R𝑛

∫
R𝑛

|𝑢(𝑥) − 𝑢(𝑦) |2
|𝑥 − 𝑦 |2𝛼

d𝑥 d𝑦
|𝑥 − 𝑦 |𝑛

𝑦 = 𝑥 − ℎ
=

∫
R𝑛

∫
R𝑛

|𝑢(𝑥) − 𝑢(𝑥 − ℎ) |2
|ℎ |2𝛼

d𝑥
dℎ
|ℎ |𝑛

Plancherel
=

∫
R𝑛

∫
R𝑛

| (1 − e−2𝜋iℎ·b)p𝑢(b) |2
|ℎ |2𝛼

db
dℎ
|ℎ |𝑛

Tonelli
=

∫
R𝑛

|p𝑢(b) |2
∫
R𝑛

|1 − e−2𝜋iℎ·b |2
|ℎ |2𝛼

dℎ
|ℎ |𝑛 db.

Let us investigate the inner integral more carefully. We introduce

𝐼 : R𝑛 \ {0} → (0,∞), 𝐼 (b) B
∫
R𝑛

|1 − e−2𝜋iℎ·b |2
|2𝜋b |2𝛼 |ℎ |2𝛼

dℎ
|ℎ |𝑛 .

To see that these integrals are finite for fixed b, we use Taylor’s theorem for |ℎ | small
and the boundedness of the complex exponential for |ℎ | large to bound the integrand by
𝐶 (b) min( |ℎ |2−2𝛼, |ℎ |−2𝛼), which is integrable with respect to dℎ

|ℎ |𝑛 . If 𝑂 ∈ R𝑛×𝑛 is an
orthogonal matrix and 𝑟 > 0 is a scalar, then 𝐼 (𝑟𝑂b) = 𝐼 (b) by the change of variable
𝑟𝑂𝑇ℎ = Z . For any b ≠ 0 there is a rotation 𝑂 such that |b |−1𝑂b = 𝑒1 is the first unit
vector. Thus, 𝐼 (b) = 𝐼 (𝑒1) C 𝐶2 is independent of b. Altogether, we have shown∫

R𝑛

∫
R𝑛

|𝑢(𝑥) − 𝑢(𝑦) |2
|𝑥 − 𝑦 |2𝛼

d𝑥 d𝑦
|𝑥 − 𝑦 |𝑛 = 𝐶2

∫
R𝑛

��|2𝜋b |𝛼p𝑢(b)
��2db,

regardless of whether this expression is finite or not. All further assertions follow from
this by definition of the operator (−Δ)𝛼/2. □

Let us explore further the functional calculus of the negative Laplacian via the Fourier
transform. Proposition 1.9 immediately gives a description of those measurable func-
tions 𝑓 that correspond to bounded operators 𝑓 (−Δ). We state it in the following
theorem. In order to avoid measure theoretic technicalities when comparing 𝑓 on
(0,∞) and 𝑓 ◦ 𝑚 on R𝑛 \ {0}, we only consider continuous functions 𝑓 . In this case,
we clearly have that ∥ 𝑓 ∥∞ = ∥ 𝑓 ◦ 𝑚∥L∞ (R𝑛) .
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4. Fourier analysis and the Laplacian

Theorem 4.14. Let 𝑓 : (0,∞) → C be continuous. Then 𝑓 (−Δ) is a bounded operator
if and only if 𝑓 is bounded. In this case we have

∥ 𝑓 (−Δ)∥L(L2 (R𝑛)) = ∥ 𝑓 ∥∞.

We continue with two classical results of Fourier analysis that allow us to reconstruct
a given function 𝑢 ∈ L2(R𝑛) and its norm from the knowledge of the convolutions
\𝑡 ∗𝑢, where \𝑡 is the mollifier associated with a suitable smooth function \ that has the
cancellation property p\ (0) =

∫
R𝑛
\ (𝑥) d𝑥 = 0. We recall that a function \ : R𝑛 → C is

radial if for any orthogonal matrix 𝑂 ∈ R𝑛×𝑛 we have \ (𝑥) = \ (𝑂𝑥) for all 𝑥 ∈ R𝑛. In
this case, we can write \ (𝑥) = 𝜗( |𝑥 |) for some function 𝜗 : [0,∞) → C, for example,
𝜗(𝑟) B \ (𝑟𝑒), where 𝑒 is any fixed unit vector in R𝑛. Moreover, the Fourier transform
of a radial Schwartz function is again of that type, see Exercise 4.2.

Proposition 4.15 (Reproducing formula). Let \ ∈ S(R𝑛) be radial with p\ (0) = 0.
Then in the sense of L2(R𝑛)-valued Bochner integrals we have

𝐶1(\)𝑢 = lim
Y→0
𝑅→∞

∫ 𝑅

Y

\√𝑡 ∗ 𝑢
d𝑡
𝑡

(𝑢 ∈ L2(R𝑛)) (4.5)

with the normalization factor 𝐶1(\) B 2
∫ ∞

0
p\ (𝑠𝑒1) d𝑠

𝑠
.

Proof. Let 𝑢 ∈ L2(R𝑛). In a first step we explain why the various objects in the
statement are well-defined and then we prove the actual reproducing formula.

Step 1: Preliminaries.

We have p\ (0) = 0 by assumption and p\ ∈ S(R𝑛) by Proposition 4.2 (a). Hence there is
a constant 𝐶 > 0 such that |p\ (b) | ≤ 𝐶min( |b |, |b |−1) for all b ∈ R𝑛 and thus we have∫ ∞

0
|p\ (𝑠𝑒1) |

d𝑠
𝑠
< ∞. (4.6)

In particular, the constant 𝐶1(\) is finite.

In order to see that the integrals in (4.5) are defined in the sense of Bochner, it suffices
to check that

𝑓 : (0,∞) → L2(R𝑛), 𝑓 (𝑡) B \√𝑡 ∗ 𝑢 (4.7)

is continuous, see Example A.12. Since the Fourier transform F is an isomorphism
on L2(R𝑛), it suffices in fact to check that F 𝑓 : (0,∞) → L2(R𝑛) is continuous. By
properties (d) and (c) in Proposition 4.2 and radiality of p\, we can write (F 𝑓 ) (𝑡) (b) as

{\√𝑡 ∗ 𝑢(b) = p\ (
√
𝑡b) · p𝑢(b) = p\ (

√
𝑡 |b |𝑒1) · p𝑢(b) (a.e. b ∈ R𝑛). (4.8)

Here, p\ is bounded and continuous and p𝑢 ∈ L2(R𝑛). Thus, continuity of F 𝑓 follows
directly from the dominated convergence theorem.
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4.3. A first glimpse at functional calculus

Step 2: A formula for the integrals on [Y, 𝑅].

Let 0 < Y < 𝑅 < ∞. We shall prove∫ 𝑅

Y

F 𝑓 (𝑡) d𝑡
𝑡
= 𝐼Y,𝑅 · p𝑢, (4.9)

where

𝐼Y,𝑅 (b) B
∫ √

𝑅 |b |

√
Y |b |

2p\ (𝑠𝑒1)
d𝑠
𝑠

(b ∈ R𝑛).

In (4.9), both sides depend continuously on p𝑢 ∈ L2(R𝑛) — for the term on the left we
use (4.8) and dominated convergence, whereas on the right we note that the functions
𝐼Y,𝑅 are bounded by twice the value of the integral in (4.6). Thus, by density, we can
assume that p𝑢 is continuous with compact support 𝐾 B supp(𝑢). Calling 𝑋 ↩→ L2(R𝑛)
the Banach space of continuous functions on R𝑛 that vanish outside of 𝐾 , we obtain
from (4.8) that F 𝑓 : [Y, 𝑅] → 𝑋 is continuous. Now, the consistency properties of the
Bochner integral (Proposition A.13 and Corollary A.15) allow us to compute( ∫ 𝑅

Y

F 𝑓 (𝑡) d𝑡
𝑡

)
(b) =

∫ 𝑅

Y

p\ (
√
𝑡 |b |𝑒1) · p𝑢(b) d𝑡

𝑡

𝑠 =
√
𝑡 | b |
= 𝐼Y,𝑅 (b) · p𝑢(b).

Step 3: Proof of the reproducing formula.

Since 𝐼Y,𝑅 (b) tends to 𝐶1(\) in the limit as Y → 0, 𝑅 → ∞ for every b ≠ 0, dominated
convergence yields

lim
Y→0
𝑅→∞

∫ 𝑅

Y

F 𝑓 (𝑡) d𝑡
𝑡
= 𝐶1(\)p𝑢 (in L2(R𝑛)).

The claim follows by applying F −1 on both sides and using its continuity on L2(R𝑛) to
interchange it first with the limit and then with the integral (Proposition A.13). □

Proposition 4.16 (Square function norm). Let \ ∈ S(R𝑛) be radially symmetric with
p\ (0) = 0. Then

𝐶2(\)∥𝑢∥2
L2 (R𝑛) =

∫ ∞

0
∥\√𝑡 ∗ 𝑢∥

2
L2 (R𝑛)

d𝑡
𝑡

(𝑢 ∈ L2(R𝑛))

with the normalization factor 𝐶2(\) B 2
∫ ∞

0 |p\ (𝑠𝑒1) |2 d𝑠
𝑠

.
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4. Fourier analysis and the Laplacian

Proof. Using (4.8), we compute∫ ∞

0
∥\√𝑡 ∗ 𝑢∥

2
L2 (R𝑛)

d𝑡
𝑡

Plancherel
=

∫ ∞

0

∫
R𝑛

|p\ (
√
𝑡 |b |𝑒1) |2 |p𝑢(b) |2 db

d𝑡
𝑡

Tonelli
=

∫
R𝑛

∫ ∞

0
|p\ (

√
𝑡 |b |𝑒1) |2 |p𝑢(b) |2

d𝑡
𝑡

db

𝑠 =
√
𝑡 | b |
=

∫
R𝑛

∫ ∞

0
2|p\ (𝑠𝑒1) |2 |p𝑢(b) |2

d𝑠
𝑠

db

= 𝐶2(\)
∫
R𝑛

|p𝑢(b) |2 db

Plancherel
= 𝐶2(\)∥𝑢∥2

L2 (R𝑛) . □

Parts of Fourier analysis can be understood as properties of the functional calculus for
the negative Laplacian and vice versa. We will illustrate the principle by reformulating
the previous two results. Later on, in Lecture 8, we will benefit from this point of view
in order to develop ‘Fourier analysis’ for more general m-accretive operators and in
particular for elliptic operators in divergence form.

To do so, we slightly change our perspective and start with a Schwartz function 𝑓 ∈
S(R) on the real line with 𝑓 (0) = 0. To 𝑓 we associate a function 𝜙 on R𝑛 by setting
𝜙(b) B 𝑓 (4𝜋2 |b |2). We see that 𝜙 is a Schwartz function (Exercise 4.2) that is radial
and satisfies 𝜙(0) = 0. Hence, \ B p𝜙 satisfies the assumptions of the previous two
propositions and we have

p\ (
√
𝑡b) = 𝑓 (4𝜋2𝑡 |b |2) (b ∈ R𝑛, 𝑡 > 0).

Now, (4.8) yields

\√𝑡 ∗ 𝑢 = 𝑓 (−𝑡Δ)𝑢 (𝑢 ∈ L2(R𝑛), 𝑡 > 0),

where the right-hand side is defined by plugging −Δ into the function 𝑓 (𝑡 ·), see
Theorem 4.14. In this setting, Propositions 4.15 and 4.16 take the following form.

Corollary 4.17. Let 𝑓 ∈ S(R) be such that 𝑓 (0) = 0. Define the normalizing factors
𝐶1( 𝑓 ) B

∫ ∞
0 𝑓 (𝑠) d𝑠

𝑠
and 𝐶2( 𝑓 ) B

∫ ∞
0 | 𝑓 (𝑠) |2 d𝑠

𝑠
. Then for all 𝑢 ∈ L2(R𝑛) we have

𝐶1( 𝑓 )𝑢 = lim
Y→0
𝑅→∞

∫ 𝑅

Y

𝑓 (−𝑡Δ)𝑢 d𝑡
𝑡

(4.10)

as a limit in L2(R𝑛) and

𝐶2( 𝑓 )∥𝑢∥2
L2 (R𝑛) =

∫ ∞

0
∥ 𝑓 (−𝑡Δ)𝑢∥2

L2 (R𝑛)
d𝑡
𝑡
. (4.11)
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4.4. Exercises
Exercise 4.1. Extend Proposition 4.2 (d) to 𝑢 ∈ L1(R𝑛), 𝑣 ∈ L2(R𝑛). To this end,
recall (or quickly prove) that

• the Fourier transform F : L1(R𝑛) → Cb(R𝑛) is bounded, where Cb(R𝑛) is the
Banach space of bounded and continuous functions on R𝑛,

• the bilinear map

L1(R𝑛) × L2(R𝑛) → L2(R𝑛), (𝑢, 𝑣) ↦→ 𝑢 ∗ 𝑣

is well-defined and bounded.

In which space does the identity of Proposition 4.2 (d) eventually hold?

Exercise 4.2 (Radial functions and the Fourier transform).

(a) Show that the Fourier transform of a radial function 𝑓 ∈ S(R𝑛) is again radial.

(b) Let 𝑓 ∈ S(R) and define 𝜙 on R𝑛 by 𝜙(𝑥) B 𝑓 ( |𝑥 |2). Prove that 𝜙 ∈ S(R𝑛).

Exercise 4.3 (The smoothing property in dimension 𝑛 = 1). Let Ω ⊆ R be an open set.
Prove that

dom((−Δ)H1
0 (Ω)

) = H2(Ω) ∩ H1
0(Ω).

Why does the same proof not work in higher dimensions?

Exercise 4.4. Prove that the map

Cb((0,∞)) → L(L2(R𝑛)), 𝑓 ↦→ 𝑓 (−Δ)

is a contractive homomorphism of algebras.

Exercise 4.5 (The Dirichlet problem via functional calculus). In this exercise we
propose a way of solving in a weak sense the following Dirichlet problem in the upper
half-space (0,∞) × R𝑛:

−(𝜕2
𝑡 + 𝜕2

𝑥1 + . . . + 𝜕
2
𝑥𝑛
)𝑢 = 0 in (0,∞) × R𝑛, (4.12)

lim
𝑡→0

𝑢(𝑡, ·) = 𝑓 in L2(R𝑛), (4.13)

where 𝑓 ∈ L2(R𝑛) is given and 𝜕2
𝑡 +𝜕2

𝑥1 + . . .+𝜕
2
𝑥𝑛

= 𝜕2
𝑡 +Δ is the Laplacian in dimension

(𝑛 + 1), whereas Δ is the Laplacian in dimension 𝑛 as in the lecture. To this end, we
define

𝑢(𝑡, 𝑥) B (e−𝑡
√
−Δ 𝑓 ) (𝑥) ((𝑡, 𝑥) ∈ (0,∞) × R𝑛),

where the right-hand side is understood in virtue of Theorem 4.14.
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4. Fourier analysis and the Laplacian

(a) Make a formal calculation to convince yourself that 𝑢 should solve (4.12) and
(4.13).

(b) Prove that 𝑢 can be understood as a continuous function on (0,∞) × R𝑛.

Hint: You will be able to use the Fourier transform on L1(R𝑛).

(c) Verify that 𝑢 satisfies the boundary condition (4.13).

(d) Prove that in the weak sense we have

Δ𝑢 = (Δe−𝑡
√
−Δ) 𝑓 .

(e) Let 𝜙 ∈ C∞
c ((0,∞) × R𝑛). Show that

𝜕𝑡
[
{𝜙(𝑡, ·)

]
= {𝜕𝑡𝜙(𝑡, ·),

where the Fourier transform is the one on R𝑛 and the derivative is in the classical
sense.

(f) Prove that in the weak sense we have

𝜕𝑡𝑢 =
(
−
√
−Δe−𝑡

√
−Δ) 𝑓 and 𝜕2

𝑡 𝑢 =
(
−Δe−𝑡

√
−Δ) 𝑓 .

(g) Conclude that 𝑢 solves (4.12) with derivatives understood in the weak sense.

(h) Prove that all first-order weak derivatives of 𝑢 are in L2((0,∞) ×R𝑛) if and only
if 𝑓 ∈ H1/2(R𝑛).

Part (h) shows that fractional Sobolev spaces are connected to boundary values of
functions with weak gradient in L2((0,∞) × R𝑛) and in fact H1/2(R𝑛) can also be
characterized in such way, see, e.g., [DNPV12, Prop. 4.5] for further background.

Exercise 4.6 (A divergence form operator with strange domain). The goal of this
exercise is to construct in L2((0, 1)) an elliptic operator in divergence form 𝐿 =

− div(𝐴∇ ·) with Dirichlet boundary conditions such that the smoothing property from
Remark 4.7 fails as hard as it possibly can, namely

dom(𝐿) ∩ H2((0, 1)) = {0}. (4.14)

You may proceed as follows.

(a) Prove that for any 𝐿 as above we have

dom(𝐿) =
{
𝑢 ∈ H1

0((0, 1)) | 𝐴𝑢
′ ∈ H1((0, 1))

}
.

The construction of the bad 𝐿 is based on a well-distributed measurable set 𝐸 ⊆ [0, 1],
that is, a measurable set with the property that for any non-empty open interval 𝐼 ⊆
[0, 1] we have 0 < |𝐸 ∩ 𝐼 | < |𝐼 |.
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(b) Define 𝐴(𝑥) = 1 + 1𝐸 (𝑥). Prove that the corresponding operator 𝐿 has indeed
the property (4.14).

For the interested readers we propose as a supplementary exercise one possible con-
struction of 𝐸 following an idea of Rudin [Rud83]. We define inductively

𝐶0 B [0, 1]
𝐶1 B [0, 3

8 ] ∪ [ 5
8 , 1]

𝐶2 B [0, 5
32 ] ∪ [ 7

32 ,
3
8 ] ∪ [ 5

8 ,
25
32 ] ∪ [ 27

32 , 1]
...

...

that is, 𝐶 𝑗−1 is the union of 2 𝑗−1 intervals and we remove an open interval of length 4− 𝑗
from the middle of each to obtain 𝐶 𝑗 . The set 𝐶 B

⋂∞
𝑗=0𝐶 𝑗 is called fat Cantor set.

(c) Prove that 𝐶 ⊆ [0, 1] is closed, has empty interior and measure 1/2.

In the following, closed intervals with positive measure are called segments and a closed
subset of a set 𝐼 that has empty interior and positive measure is called bad subset of 𝐼.
Hence, 𝐶 is a bad subset of [0, 1]. By scaling and translation, every segment has a bad
subset.

(d) We let 𝐼0, 𝐼1, . . . be an enumeration of all segments in [0, 1] with rational end-
points. Justify that the following algorithm produces sequences 𝐸0, 𝐸1, . . . and
𝐹0, 𝐹1, . . . of bad subsets 𝐸 𝑗 , 𝐹𝑗 ⊆ 𝐼 𝑗 :

Start with disjoint bad subsets 𝐸0 and 𝐹0 of 𝐼0.

Once 𝐸0, 𝐹0, . . . 𝐸 𝑗−1, 𝐹𝑗−1 are chosen, let 𝐺 be their union.

Pick a segment 𝐽 ⊆ 𝐼 𝑗 \ 𝐺.

Choose a pair of disjoint bad subsets 𝐸 𝑗 , 𝐹𝑗 ⊆ 𝐽.

(e) Prove that 𝐸 B
⋃∞
𝑗=0 𝐸 𝑗 is well-distributed.
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5. Functional calculus for sectorial
operators

In the previous lecture, we have developed a functional calculus for the negative
Laplacian on L2(R𝑛): Making essential use of its unitary equivalence to a multiplication
operator (the spectral theorem), we have created a map

𝑓 ↦→ 𝑓 (−Δ)

that ‘plugs’ this operator into certain admissible functions, the measurable functions on
[0,∞) in this case. In this lecture, we are going to develop this idea in more generality,
focusing on sectorial operators. We follow Markus Haase’s book [Haa06] from which
three of us virtual lecturers have learned about functional calculus for the first time.
The substitute for the spectral theorem comes from the work of Dunford and Riesz
(see [DS58, Sect. VII.11] for a historical account). It is inspired by the reproducing
structure

𝑓 (_) = 1
2𝜋i

∫
𝛾

𝑓 (𝑧) (𝑧 − _)−1 d𝑧

of the Cauchy integral formula for holomorphic functions. Replacing formally _ by an
operator 𝐿, all it takes is to interpret the right-hand side in terms of resolvents in order
to define

𝑓 (𝐿) = 1
2𝜋i

∫
𝛾

𝑓 (𝑧) (𝑧 − 𝐿)−1 d𝑧. (5.1)

At this point this is only a formal calculation. Convergence of the integral, choice of
the path 𝛾 and existence of the resolvent remains nebulous, to say the least, but we are
going to get there soon . . .

Notation 5.1. Throughout the entire lecture, 𝐿 denotes a sectorial operator in a Hilbert
space 𝐻 and 𝜑𝐿 ∈ [0, 𝜋) its sectoriality angle, see Definition 2.2. In the complex plane
we will write from now on 1 and z for the functions 𝑧 ↦→ 1 and 𝑧 ↦→ 𝑧, respectively.

5.1. Elementary functional calculus
We will work with the following classes of holomorphic functions.
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5. Functional calculus for sectorial operators

Definition 5.2. Let 𝜑 ∈ (0, 𝜋) and consider the following spaces of holomorphic
functions 𝑓 : S𝜑 → C endowed with the supremum norm

∥ 𝑓 ∥∞,𝜑 B sup
𝑧∈S𝜑

| 𝑓 (𝑧) |.

(a) The bounded holomorphic functions H∞(S𝜑).

(b) The subspace of functions with regular decay as |𝑧 | → 0 and |𝑧 | → ∞:

H∞
0 (S𝜑) B

{
𝑓 ∈ H∞(S𝜑) | ∃𝐶, 𝑠 > 0∀𝑧 ∈ S𝜑 : | 𝑓 (𝑧) | ≤ 𝐶min( |𝑧 |𝑠, |𝑧 |−𝑠)

}
.

(c) The subspace spanned by H∞
0 (S𝜑), the rational function (1+z)−1 and the constant

function 1, called Dunford–Riesz class

E(S𝜑) B H∞
0 (S𝜑) ⊕ ⟨(1 + z)−1⟩ ⊕ ⟨1⟩.

Remark 5.3. (a) An important element of H∞
0 (S𝜑) is z(1 + z)−2. The class E(S𝜑)

contains all ‘resolvent functions’ (_ − z)−1 with 𝜋 ≥ | arg_ | > 𝜑, because

1
_ − z

=
(1 + _−1)z

(_ − z) (1 + z) +
_−1

1 + z
+ 0.

If 𝜑 < 𝜋/2, then it also contains the exponential functions e−𝑡z, where 𝑡 > 0 is
fixed, because

e−𝑡z =
(
e−𝑡z − 1

1 + z

)
+ 1

1 + z
+ 0.

(b) All three spaces are even algebras, i.e., they are closed under pointwise multipli-
cation of functions. For the Dunford–Riesz class this observation relies on the
identity

1
(1 + z)2 =

−z
(1 + z)2 + 1

1 + z
+ 0.

(c) The Dunford–Riesz class can be characterized as a subalgebra of H∞(S𝜑) through
the existence of certain limits as |𝑧 | → 0 and |𝑧 | → ∞. This characterization then
also ensures that the three subspaces in its definition are linearly independent,
see Exercise 5.3.

For functions in H∞
0 (S𝜑) we get a Cauchy integral formula for sector-shaped infinite

paths that even touch 𝑧 = 0 lying at the boundary of their domain.
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5.1. Elementary functional calculus

Lemma 5.4. Let 0 < 𝜓 < 𝜑 < 𝜋, 𝑓 ∈ H∞
0 (S𝜑), 𝑎 ∈ C \ 𝜕S𝜓 , and consider the path

𝛾𝜓 (𝑡) B
{
−𝑡ei𝜓 , 𝑡 ∈ (−∞, 0],
𝑡e−i𝜓 , 𝑡 ∈ [0,∞).

Then
1

2𝜋i

∫
𝛾𝜓

𝑓 (𝑧)
𝑧 − 𝑎 d𝑧 =

{
𝑓 (𝑎), if 𝑎 ∈ S𝜓 ,
0, if 𝑎 ∉ S𝜓 .

Proof. For 0 < Y < |𝑎 |/2 < 2|𝑎 | < 𝑅 we consider the closed path 𝛾𝜓,Y,𝑅 that emerges
as the boundary of S𝜓 ∩ (𝐵(0, 𝑅) \ 𝐵(0, Y)), see Figure 5.1. Thanks to the estimate on
𝑓 , we find���� ∫ 𝜓

−𝜓

𝑓 (𝑅ei𝑡)
𝑅ei𝑡 − 𝑎

i𝑅ei𝑡 d𝑡
���� ≤ 𝑅

∫ 𝜓

−𝜓

| 𝑓 (𝑅ei𝑡) |
|𝑅ei𝑡 − 𝑎 |

d𝑡 ≤ 𝑅

∫ 𝜓

−𝜓

𝐶𝑅−𝑠

𝑅
2

d𝑡 = 4𝐶𝜓𝑅−𝑠

and similarly ���� ∫ 𝜓

−𝜓

𝑓 (Yei𝑡)
Yei𝑡 − 𝑎

iYei𝑡 d𝑡
���� ≤ 4𝐶𝜓

|𝑎 | Y
1+𝑠 .

Hence, the contribution of the closing arcs tends to zero as Y → 0 and 𝑅 → ∞. Since
the decay of 𝑓 also entails that the integral over 𝛾𝜓 in question is absolutely convergent,
this means that

1
2𝜋i

∫
𝛾𝜓

𝑓 (𝑧)
𝑧 − 𝑎 d𝑧 = lim

Y→0
𝑅→∞

1
2𝜋i

∫
𝛾𝜓,Y,𝑅

𝑓 (𝑧)
𝑧 − 𝑎 d𝑧.

For all Y, 𝑅 this final integral has the asserted value by the classical Cauchy integral
formula. □

As a first step towards a functional calculus, we check that the integral in (5.1) is
absolutely convergent in L(𝐻) whenever 𝑓 ∈ H∞

0 (S𝜑) and 𝛾 = 𝛾𝜓 is the path from
Lemma 5.4. Of course, the angles should satisfy 𝜑𝐿 < 𝜓 < 𝜑 < 𝜋, so that we are
integrating in counterclockwise direction around the spectrum of 𝐿, see Figure 5.1.
Since 𝐿 is sectorial, we have a resolvent estimate ∥(𝑧 − 𝐿)−1∥L(𝐻) ≲ |𝑧 |−1 for all
𝑧 ∈ 𝛾𝜓 , see Definition 2.2. Therefore,∫

R
∥𝛾′𝜓 (𝑡) 𝑓 (𝛾𝜓 (𝑡)) (𝛾𝜓 (𝑡) − 𝐿)−1∥L(𝐻) d𝑡 ≲

∫ ∞

0
| 𝑓 (𝑡ei𝜓) | + | 𝑓 (𝑡e−i𝜓) | d𝑡

𝑡
,

where the decay of 𝑓 at the origin and infinity is just enough to make the integral on
the right convergent. In fact, this is the reason why we work with the class H∞

0 (S𝜑).
Thus, the integral ∫

𝛾𝜓

𝑓 (𝑧) (𝑧 − 𝐿)−1 d𝑧
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5. Functional calculus for sectorial operators

Re

Im

𝜓
𝜑𝐿

𝜑

𝛾𝜓

𝛾𝜓,Y,𝑅

𝜎(𝐿)

Y 𝑅

Figure 5.1.: The path 𝛾𝜓 around the spectrum of 𝐿, including the dashed circle arcs
that are used to form the path 𝛾𝜓,Y,𝑅 in the proof of Lemma 5.4.

is absolutely convergent in L(𝐻) and the so-defined operator is itself in L(𝐻). Again
by Cauchy’s integral formula, the value of this integral does not depend on the angle
𝜓, see Exercise 5.1. This justifies the following definition.

Definition 5.5. Let 𝜑 ∈ (𝜑𝐿 , 𝜋) and choose 𝜓 ∈ (𝜑𝐿 , 𝜑). For 𝑓 ∈ H∞
0 (S𝜑) set

𝑓 (𝐿) B 1
2𝜋i

∫
𝛾𝜓

𝑓 (𝑧) (𝑧 − 𝐿)−1 d𝑧 with 𝛾𝜓 (𝑡) =
{
−𝑡ei𝜓 , 𝑡 ∈ (−∞, 0],
𝑡e−i𝜓 , 𝑡 ∈ [0,∞).

The functions (1 + z)−1 and 1 are not contained in H∞
0 (S𝜑), but we have a very precise

idea what (1 + z)−1(𝐿) and 1(𝐿) should be. It is for this reason that we use the
Dunford–Riesz class and extend the former definition as follows.

Definition 5.6. Let 𝜑 ∈ (𝜑𝐿 , 𝜋). For 𝑓 = ℎ + 𝑐(1 + z)−1 + 𝑑 ∈ E(S𝜑) with ℎ ∈ H∞
0 (S𝜑)

and 𝑐, 𝑑 ∈ C, set

𝑓 (𝐿) B ℎ(𝐿) + 𝑐(1 + 𝐿)−1 + 𝑑.

The map Φ𝐿 : E(S𝜑) ∋ 𝑓 ↦→ 𝑓 (𝐿) ∈ L(𝐻) is called elementary (sectorial) functional
calculus of 𝐿.
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5.1. Elementary functional calculus

Warning 5.7. The notation 𝑓 (𝐿) is intuitive and convenient, as it describes perfectly
that 𝐿 is somehow plugged into the function 𝑓 . Nevertheless, 𝐿 does not act as
something like a variable here. In fact, it is exactly the other way round. One should
always think of 𝑓 (𝐿) as the image of 𝑓 under Φ𝐿 . So, 𝐿 is fixed and 𝑓 varies!

Example 5.8. Let 𝐿 = −Δ be the negative Laplacian on R𝑛 from Lecture 4. Theo-
rem 2.28 yields that 𝐿 is sectorial with 𝜑𝐿 = 0. Let 𝑓 ∈ E(S𝜑), where 𝜑 ∈ (0, 𝜋). We
check that the constructions of 𝑓 (−Δ) in Definitions 5.6 and 4.10 coincide.

We know from Corollary 4.8 that (through the Fourier transform) 𝐿 is equivalent to
a multiplication operator 𝑀𝑚. Both definitions agree on that 1(𝐿) = idL2 (R𝑛) . For
_ ∈ 𝜚(𝐿) we have

(_ − 𝑀𝑚)−1 = 𝑀(_−𝑚)−1 ,

see Example 1.16. Hence, both definitions also agree on that (1 + z)−1(𝐿) = (1 +
𝐿)−1. Finally, let ℎ ∈ H∞

0 (S𝜑) and ℎ(𝐿) be as in Definition 5.5. Given 𝑢 ∈ S(R𝑛)
with p𝑢 ∈ C∞

c (R𝑛), we pull bounded linear operators into the Bochner integral, see
Proposition A.13, to get

F (ℎ(𝐿)𝑢) = 1
2𝜋i

∫
𝛾𝜓

ℎ(𝑧)𝑀(𝑧−𝑚)−1 p𝑢 d𝑧.

Due to the compact support of p𝑢, the Bochner integral can be understood in the space
of continuous functions that vanish outside 𝐾 B supp(p𝑢). The argument presented
below (4.9) yields for a.e. b ∈ R𝑛 that

(F ℎ(𝐿)𝑢) (b) = 1
2𝜋i

∫
𝛾𝜓

ℎ(𝑧) (𝑧 − 𝑚(b))−1
p𝑢(b) d𝑧 = ℎ(𝑚(b))p𝑢(b),

where we have used Lemma 5.4 in the final step. By density, this identity remains true
for all 𝑢 ∈ L2(R𝑛). Consequently, ℎ(𝐿) is equivalent to the multiplication operator
𝑀ℎ◦𝑚 through the Fourier transform and this is precisely how it was defined in Lecture 4.

Let us prove that the algebraic structure of the Dunford–Riesz class is preserved by the
elementary functional calculus.

Proposition 5.9. Let 𝜑 ∈ (𝜑𝐿 , 𝜋). Then Φ𝐿 is an algebra homomorphism, i.e., for all
𝑓 , 𝑔 ∈ E(S𝜑) and all _ ∈ C we have

(_ 𝑓 + 𝑔) (𝐿) = _ 𝑓 (𝐿) + 𝑔(𝐿) and ( 𝑓 𝑔) (𝐿) = 𝑓 (𝐿)𝑔(𝐿)

and in particular 𝑓 (𝐿)𝑔(𝐿) = 𝑔(𝐿) 𝑓 (𝐿). Moreover, we have z(1 + z)−2(𝐿) = 𝐿 (1 +
𝐿)−2.

Proof. Linearity follows immediately from the definition of Φ𝐿 and linearity of the
Bochner integral. Because of linearity and symmetry, it suffices to check multiplica-
tivity separately in the following three cases:
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5. Functional calculus for sectorial operators

(a) 𝑓 , 𝑔 ∈ H∞
0 (S𝜑),

(b) 𝑓 = (1 + z)−1 and 𝑔 ∈ H∞
0 (S𝜑),

(c) 𝑓 = 𝑔 = (1 + z)−1.

Once we have multiplicativity, commutativity of 𝑓 (𝐿) and 𝑔(𝐿) follows easily as E(S𝜑)
is a commutative algebra:

𝑓 (𝐿)𝑔(𝐿) = ( 𝑓 𝑔) (𝐿) = (𝑔 𝑓 ) (𝐿) = 𝑔(𝐿) 𝑓 (𝐿).

Proof of (a). We choose 𝜑𝐿 < 𝜓 < a < 𝜑. By the resolvent identity and Fubini’s
theorem, we find

𝑓 (𝐿)𝑔(𝐿) = 1
(2𝜋i)2

∫
𝛾𝜓

∫
𝛾a

𝑓 (𝑧)𝑔(𝑤) (𝑧 − 𝐿)−1(𝑤 − 𝐿)−1 d𝑤 d𝑧

=
1

(2𝜋i)2

∫
𝛾𝜓

∫
𝛾a

𝑓 (𝑧)𝑔(𝑤)
𝑤 − 𝑧

(
(𝑧 − 𝐿)−1 − (𝑤 − 𝐿)−1) d𝑤 d𝑧

=
1

2𝜋i

∫
𝛾𝜓

𝑓 (𝑧)
(

1
2𝜋i

∫
𝛾a

𝑔(𝑤)
𝑤 − 𝑧 d𝑤

)
(𝑧 − 𝐿)−1 d𝑧

− 1
2𝜋i

∫
𝛾a

𝑔(𝑤)
(

1
2𝜋i

∫
𝛾𝜓

𝑓 (𝑧)
𝑤 − 𝑧 d𝑧

)
(𝑤 − 𝐿)−1 d𝑤.

The inner integrals can be evaluated by means of Lemma 5.4 unless 𝑧 = 0 or 𝑤 = 0, of
course, see also Figure 5.2. The result is

=
1

2𝜋i

∫
𝛾𝜓

𝑓 (𝑧)𝑔(𝑧) (𝑧 − 𝐿)−1 d𝑧 − 0

and we find by the definition of the functional calculus

= ( 𝑓 𝑔) (𝐿).

Proof of (b).

By definition and the resolvent identity we have

𝑓 (𝐿)𝑔(𝐿) = 1
2𝜋i

∫
𝛾𝜓

𝑔(𝑧) (1 + 𝐿)−1(𝑧 − 𝐿)−1 d𝑧

=
1

2𝜋i

∫
𝛾𝜓

𝑔(𝑧)
1 + 𝑧

(
(1 + 𝐿)−1 + (𝑧 − 𝐿)−1

)
d𝑧

= (1 + 𝐿)−1 1
2𝜋i

∫
𝛾𝜓

𝑔(𝑧)
1 + 𝑧 d𝑧 + 1

2𝜋i

∫
𝛾𝜓

𝑔(𝑧)
1 + 𝑧 (𝑧 − 𝐿)

−1 d𝑧.
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5.2. Regularization

Now, we use Lemma 5.4 with 𝑎 = −1 for the first integral and recall the definition of 𝑓
when looking at the second one, to conclude

= 0 + ( 𝑓 𝑔) (𝐿).

Proof of (c). By definition we have 𝑓 (𝐿)𝑔(𝐿) = (1 + 𝐿)−2. On the other hand,
𝑓 𝑔 = −ℎ + (1 + z)−1 with ℎ = z(1 + z)−2 ∈ H∞

0 (S𝜑). Hence,

( 𝑓 𝑔) (𝐿) − 𝑓 (𝐿)𝑔(𝐿) = −ℎ(𝐿) + (1 + 𝐿)−1 − (1 + 𝐿)−2 = 𝐿 (1 + 𝐿)−2 − ℎ(𝐿),

and it remains to prove the additional claim in Proposition 5.9, namely that ℎ(𝐿) =

𝐿 (1 + 𝐿)−2.

To this end, we consider for 0 < Y < 1 < 𝑅 < ∞ the closed path �̃�𝜓,Y,𝑅 that emerges as
the boundary of (C \ S𝜓) ∩ (𝐵(0, 𝑅) \ 𝐵(0, Y)). Note that this is exactly the opposite
(‘Obelix-sized’) cake-piece of the one we considered in the proof of Lemma 5.4, see
Figure 5.2. However, using an analogous reasoning as back then, we find

ℎ(𝐿) = 1
2𝜋i

∫
𝛾𝜓

𝑧

(1 + 𝑧)2 (𝑧 − 𝐿)
−1 d𝑧 = lim

Y→0
𝑅→∞

1
2𝜋i

∫
�̃�𝜓,Y,𝑅

𝑧

(1 + 𝑧)2 (𝑧 − 𝐿)
−1 d𝑧.

This integral can now be evaluated by the (L(𝐻)-valued) Cauchy integral formula for
the derivative proved in the appendix, see Example A.23, and is independent of Y, 𝑅.
Proposition 1.15 gives us(

z(z − 𝐿)−1)′ = (z − 𝐿)−1 − z(z − 𝐿)−2

= (z − 𝐿)−1 − (z − 𝐿) (z − 𝐿)−2 − 𝐿 (z − 𝐿)−2 = −𝐿 (z − 𝐿)−2,

so, noting that �̃�𝜓,Y,𝑅 surrounds −1 clockwisely, we finally establish

ℎ(𝐿) = −
(
z(z − 𝐿)−1)′(−1) = 𝐿 (1 + 𝐿)−2. □

5.2. Regularization
There are many important functions 𝑓 , for which we know intuitively what 𝑓 (𝐿) should
be, but which are not contained in E(S𝜑). The easiest example is the following: Do we
have z(𝐿) = 𝐿? We already see that enlarging the class of functions for the functional
calculus to suitable unbounded functions, will, in general, make us leave the comfort
zone of bounded operators and we have to include closed unbounded operators in our
calculus.
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5. Functional calculus for sectorial operators

Re

Im

𝜓
𝜑𝐿

𝜑

𝛾𝜓

𝛾a

�̃�𝜓,Y,𝑅

𝜎(𝐿)

Figure 5.2.: The Obelix-sized cake-piece �̃�𝜓,Y,𝑅 in the proof of Proposition 5.9 and the
two paths 𝛾𝜓 and 𝛾a with 𝜑𝐿 < 𝜓 < a < 𝜑.

Definition 5.10. Let 𝜑 ∈ (𝜑𝐿 , 𝜋).

(a) The elements of the set

Reg𝐿 (S𝜑) B
{
𝑒 ∈ E(S𝜑) | 𝑒(𝐿) is injective

}
are called regularizers.

(b) Let M(S𝜑) denote the set of all meromorphic functions on S𝜑 and consider

M𝐿 (S𝜑) B
{
𝑓 ∈ M(S𝜑) | ∃𝑒 ∈ Reg𝐿 (S𝜑) : 𝑒 𝑓 ∈ E(S𝜑)

}
.

The elements of M𝐿 (S𝜑) are called regularizable and for 𝑓 ∈ M𝐿 (S𝜑) and a
regularizer 𝑒 with 𝑒 𝑓 ∈ E(S𝜑) we say that 𝑒 regularizes 𝑓 .

Remark 5.11. (a) The set Reg𝐿 (S𝜑) contains at least 1 and the non-trivial regular-
izer (1 + z)−1. If 𝐿 is injective, then also z(1 + z)−2 is a regularizer thanks to
Proposition 5.9.

(b) Since E(S𝜑) is an algebra and the composition of two injective operators is
injective, the product of two regularizers is again a regularizer.
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5.2. Regularization

Regularizers are precious objects, since they allow us to extend our functional calculus
in the following way. For 𝑓 ∈ M𝐿 (S𝜑) pick some regularizer 𝑒. Then the elementary
functional calculus provides us with bounded operators (𝑒 𝑓 ) (𝐿) and 𝑒(𝐿) and we know
that 𝑒(𝐿) is injective. Thus, 𝑒(𝐿)−1 is a closed operator that heuristically corresponds
to ‘𝑒−1(𝐿)’. It is then rather natural to try the definition

𝑓 (𝐿) B 𝑒(𝐿)−1 (𝑒 𝑓 ) (𝐿)
dom( 𝑓 (𝐿)) B

{
𝑢 ∈ 𝐻 | (𝑒 𝑓 ) (𝐿)𝑢 ∈ ran(𝑒(𝐿))

} (5.2)

in order to extend the functional calculus to M𝐿 (S𝜑).

We check that this idea gives rise to something well-defined.

Lemma 5.12. The definition of 𝑓 (𝐿) in (5.2) gives a closed operator that is indepen-
dent of the particular choice of the regularizer 𝑒 and consistent with the elementary
functional calculus.

Proof. Let 𝑓 ∈ M𝐿 (S𝜑) and let 𝑒1 and 𝑒2 both regularize 𝑓 . By Remark 5.11 their
product 𝑒1𝑒2 is again a regularizer, and by Proposition 5.9 it holds that

(𝑒1𝑒2) (𝐿)−1 (𝑒1𝑒2 𝑓 ) (𝐿) = 𝑒2(𝐿)−1 𝑒1(𝐿)−1 𝑒1(𝐿) (𝑒2 𝑓 ) (𝐿) = 𝑒2(𝐿)−1 (𝑒2 𝑓 ) (𝐿).

Since 𝑒1𝑒2 = 𝑒2𝑒1, we analogously get (𝑒1𝑒2) (𝐿)−1 (𝑒1𝑒2 𝑓 ) (𝐿) = 𝑒1(𝐿)−1 (𝑒1 𝑓 ) (𝐿),
so the two operators that are obtained with different regularizers are the same.

Finally, 𝑓 (𝐿) is closed by Exercise 1.1 and consistency with the elementary functional
calculus follows since for 𝑓 ∈ E(S𝜑) we can take 𝑒 = 1. □

Definition 5.13. Let 𝜑 ∈ (𝜑𝐿 , 𝜋). For 𝑓 ∈ M𝐿 (S𝜑) define 𝑓 (𝐿) as in (5.2). The
emerging functional calculus M𝐿 (S𝜑) ∋ 𝑓 ↦→ 𝑓 (𝐿) ∈ {closed operators in 𝐻} will
(with a slight abuse of notation) again be denoted by Φ𝐿 .

The following consistency considerations based on Example 5.8 are left as Exer-
cise 5.6.

Example 5.14. The functional calculus for the negative Laplacian from Chapter 4 also
coincides with the extended functional calculus on M−Δ(S𝜑) for any 𝜑 ∈ (0, 𝜋).

If the extended calculus should be useful in any way, we need to have something like
an algebra homomorphism. Now the closed operators do not provide this algebraic
structure (Exercise 1.1), so we have to be a little more modest in the next theorem, but
we still get a powerful result.

Theorem 5.15. Let 𝜑 ∈ (𝜑𝐿 , 𝜋). The set M𝐿 (S𝜑) forms an algebra and for all
𝑓 , 𝑔 ∈ M𝐿 (S𝜑) and _ ∈ C we have

_ 𝑓 (𝐿) + 𝑔(𝐿) ⊆ (_ 𝑓 + 𝑔) (𝐿) and 𝑓 (𝐿)𝑔(𝐿) ⊆ ( 𝑓 𝑔) (𝐿).
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5. Functional calculus for sectorial operators

Furthermore, if 𝑔(𝐿) is bounded, then there is equality in both inclusions and in the
general case we have dom( 𝑓 (𝐿)𝑔(𝐿)) = dom(( 𝑓 𝑔) (𝐿)) ∩ dom(𝑔(𝐿)).

Proof. Let 𝑓 , 𝑔 ∈ M𝐿 (S𝜑) and choose regularizers 𝑒 𝑓 and 𝑒𝑔 for 𝑓 and 𝑔, respectively.
Then, by Remark 5.11, also 𝑒 B 𝑒 𝑓 𝑒𝑔 is a regularizer. Furthermore, since 𝑒 𝑓 , _𝑒𝑔,
𝑒 𝑓 𝑓 and 𝑒𝑔𝑔 are all in E(S𝜑), we find

𝑒(_ 𝑓 + 𝑔) = (_𝑒𝑔) (𝑒 𝑓 𝑓 ) + 𝑒 𝑓 (𝑒𝑔𝑔) ∈ E(S𝜑)

and
𝑒( 𝑓 𝑔) = (𝑒 𝑓 𝑓 ) (𝑒𝑔𝑔) ∈ E(S𝜑).

This means that 𝑒 regularizes _ 𝑓 + 𝑔 and 𝑓 𝑔, so these two functions are in M𝐿 (S𝜑)
and we can plug 𝐿 into them via (5.2). Doing so, we find by the properties of the
elementary functional calculus

_ 𝑓 (𝐿) + 𝑔(𝐿) = _𝑒(𝐿)−1(𝑒 𝑓 ) (𝐿) + 𝑒(𝐿)−1(𝑒𝑔) (𝐿)
⊆ 𝑒(𝐿)−1 (_(𝑒 𝑓 ) (𝐿) + (𝑒𝑔) (𝐿)

)
= 𝑒(𝐿)−1 (𝑒(_ 𝑓 + 𝑔)) (𝐿) = (_ 𝑓 + 𝑔) (𝐿).

(5.3)

In the same manner we find

𝑓 (𝐿)𝑔(𝐿) = 𝑒 𝑓 (𝐿)−1 (𝑒 𝑓 𝑓 ) (𝐿) 𝑒𝑔 (𝐿)−1 (𝑒𝑔𝑔) (𝐿)
= 𝑒 𝑓 (𝐿)−1 [𝑒𝑔 (𝐿)−1𝑒𝑔 (𝐿) (𝑒 𝑓 𝑓 ) (𝐿)

]
𝑒𝑔 (𝐿)−1 (𝑒𝑔𝑔) (𝐿)

= 𝑒 𝑓 (𝐿)−1 𝑒𝑔 (𝐿)−1 (𝑒 𝑓 𝑓 ) (𝐿)
[
𝑒𝑔 (𝐿) 𝑒𝑔 (𝐿)−1] (𝑒𝑔𝑔) (𝐿)

⊆ 𝑒(𝐿)−1 (𝑒 𝑓 𝑔) (𝐿) = ( 𝑓 𝑔) (𝐿).

(5.4)

We take a closer look at the domains. The inclusion in (5.3) shows that

dom( 𝑓 (𝐿)) ∩ dom(𝑔(𝐿)) = dom
(
_ 𝑓 (𝐿) + 𝑔(𝐿)

)
⊆ dom

(
(_ 𝑓 + 𝑔) (𝐿)

)
and

dom
(
(_ 𝑓 + 𝑔) (𝐿)

)
∩ dom(𝑔(𝐿)) = dom

(
(_ 𝑓 + 𝑔) (𝐿) − 𝑔(𝐿)

)
⊆ dom

(
_ 𝑓 + 𝑔 − 𝑔) (𝐿)

)
= dom( 𝑓 (𝐿)).

If we suppose that 𝑔(𝐿) is bounded, then dom(𝑔(𝐿)) = 𝐻 and these two inclusions can
be combined to

dom( 𝑓 (𝐿)) = dom
(
_ 𝑓 (𝐿) + 𝑔(𝐿)

)
⊆ dom

(
(_ 𝑓 + 𝑔) (𝐿)

)
⊆ dom( 𝑓 (𝐿)),

so all four sets must be equal.

For the domain of the product it suffices to prove the general assertion

dom
(
𝑓 (𝐿)𝑔(𝐿)

)
= dom

(
( 𝑓 𝑔) (𝐿)

)
∩ dom(𝑔(𝐿)). (5.5)
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5.2. Regularization

Then, if dom(𝑔(𝐿)) = 𝐻, we immediately get the asserted equality for the domains.

The inclusion in (5.4) yields dom( 𝑓 (𝐿)𝑔(𝐿)) ⊆ dom(( 𝑓 𝑔) (𝐿)) and we always have
dom( 𝑓 (𝐿)𝑔(𝐿)) ⊆ dom(𝑔(𝐿)), so we have already proved ‘⊆’ in (5.5).

For the reverse inclusion let 𝑢 ∈ dom
(
( 𝑓 𝑔) (𝐿)

)
∩ dom(𝑔(𝐿)) be given. We have to

show that

𝑣 B 𝑔(𝐿)𝑢 ∈ dom( 𝑓 (𝐿)) =
{
𝑤 ∈ 𝐻 | (𝑒 𝑓 𝑓 ) (𝐿)𝑤 ∈ ran(𝑒 𝑓 (𝐿))

}
.

Using the definition of 𝑔(𝐿) as well as 𝑢 ∈ dom(( 𝑓 𝑔) (𝐿)), we find

𝑒𝑔 (𝐿) (𝑒 𝑓 𝑓 ) (𝐿)𝑣 = (𝑒 𝑓 𝑓 ) (𝐿) 𝑒𝑔 (𝐿) 𝑔(𝐿)𝑢 = (𝑒 𝑓 𝑓 ) (𝐿) (𝑒𝑔𝑔) (𝐿)𝑢
= (𝑒𝑔𝑒 𝑓 𝑓 𝑔) (𝐿)𝑢 = 𝑒𝑔 (𝐿) 𝑒 𝑓 (𝐿) ( 𝑓 𝑔) (𝐿)𝑢.

Since 𝑒𝑔 (𝐿) is injective, we conclude

(𝑒 𝑓 𝑓 ) (𝐿)𝑣 = 𝑒 𝑓 (𝐿) ( 𝑓 𝑔) (𝐿)𝑢 ∈ ran(𝑒 𝑓 (𝐿))

and we are done. □

As a first example of the extended functional calculus, we can answer the initial question
about 𝑓 = z.

Corollary 5.16. We have (_ + z) (𝐿) = _ + 𝐿 for every _ ∈ C.

Proof. Let _ ∈ C and 𝑓 = 1 + z. Then 𝑒 = (1 + z)−1 regularizes 𝑓 and by construction
of the elementary functional calculus we get that

𝑓 (𝐿) = 𝑒(𝐿)−1(𝑒 𝑓 ) (𝐿) = 𝑒(𝐿)−11(𝐿) = ((1 + 𝐿)−1)−1 = 1 + 𝐿.

Since 1(𝐿) = id𝐻 is bounded, Theorem 5.15 yields

(_ + z) (𝐿) = ( 𝑓 + (_ − 1)1) (𝐿) = 𝑓 (𝐿) + (_ − 1) = _ + 𝐿. □

As a second example, we show a commutation property.

Corollary 5.17. Let 𝜑 ∈ (𝜑𝐿 , 𝜋) and 𝑓 ∈ M𝐿 (S𝜑) be such that 𝑓 (𝐿) ∈ L(𝐻). Then
𝑓 (𝐿)𝐿 ⊆ 𝐿 𝑓 (𝐿) and in particular, dom(𝐿) is invariant under 𝑓 (𝐿).

Proof. We use z(𝐿) = 𝐿 from Corollary 5.16 and apply Theorem 5.15 twice:

𝑓 (𝐿)𝐿 = 𝑓 (𝐿) z(𝐿) ⊆ ( 𝑓 z) (𝐿) = (z 𝑓 ) (𝐿) = z(𝐿) 𝑓 (𝐿) = 𝐿 𝑓 (𝐿).

Note that in the second application of Theorem 5.15 we indeed get equality since 𝑓 (𝐿)
is bounded. The ‘in particular’ statement follows by the above inclusion and since
dom(𝐿) = dom( 𝑓 (𝐿)𝐿). □
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5. Functional calculus for sectorial operators

Up to now we do not know how many new functions we actually get from extending
the elementary functional calculus. Fortunately, already the regularizers known to us
from Remark 5.11 reveal that M𝐿 (S𝜑) is rather big.

Proposition 5.18. Let 𝜑 ∈ (𝜑𝐿 , 𝜋) and 𝑓 : S𝜑 → C be holomorphic. The following
growth conditions guarantee that 𝑓 ∈ M𝐿 (S𝜑).

(a) Polynomial limit at zero and polynomial control at infinity: There exist 𝑐 ∈ C
and exponents 𝑠 > 0 and 𝑡 ∈ R such that

sup
𝑧∈S𝜑 , |𝑧 |≤1

| 𝑓 (𝑧) − 𝑐 |
|𝑧 |𝑠 < ∞ and sup

𝑧∈S𝜑 , |𝑧 |≥1

| 𝑓 (𝑧) |
|𝑧 |𝑡 < ∞.

(b) Polynomial control at zero and infinity: 𝐿 is injective and there exist exponents
𝑠, 𝑡 ∈ R such that

sup
𝑧∈S𝜑 , |𝑧 |≤1

|𝑧 |𝑠 | 𝑓 (𝑧) | < ∞ and sup
𝑧∈S𝜑 , |𝑧 |≥1

| 𝑓 (𝑧) |
|𝑧 |𝑡 < ∞.

Proof. In case (b) we know from Remark 5.11 that 𝑒 B (z(1 + z)−2)𝑘 is a regularizer
for any 𝑘 ∈ N and if 𝑘 > max(𝑠, 𝑡), then 𝑒 𝑓 ∈ H∞

0 (S𝜑), meaning that 𝑒 regularizes 𝑓 .
Likewise, in case (a) we take 𝑒 B (1 + z)−𝑘 with 𝑘 ∈ N such that 𝑘 > 𝑡 and write

𝑒 𝑓 = (1 + z)−𝑘 ( 𝑓 − 𝑐) + 𝑐(1 + z)−𝑘 .

The first function on the right belongs to H∞
0 (S𝜑) thanks to the assumption on 𝑓 ,

whereas the second one is in the algebra E(S𝜑). □

Example 5.19. An example for (a) is 𝑓 = z𝛼 with Re𝛼 > 0. In (b) we can take any
𝑓 ∈ H∞(S𝜑). These functions will play a key role in the next lectures.

We close the lecture with a property for pairs of mutually inverse functions.

Proposition 5.20. Let 𝜑 ∈ (𝜑𝐿 , 𝜋) and 𝑓 ∈ M𝐿 (S𝜑), 𝑔 ∈ M(S𝜑) be such that 𝑓 𝑔 = 1 on
S𝜑. Then 𝑔 ∈ M𝐿 (S𝜑) if and only if 𝑓 (𝐿) is injective and in this case 𝑔(𝐿) = 𝑓 (𝐿)−1.

Proof. ‘=⇒’: We assume that 𝑔 ∈ M𝐿 (S𝜑).

Theorem 5.15 implies

𝑔(𝐿) 𝑓 (𝐿) ⊆ (𝑔 𝑓 ) (𝐿) = 1(𝐿) = id𝐻
with

dom
(
𝑔(𝐿) 𝑓 (𝐿)

)
= dom(id𝐻) ∩ dom( 𝑓 (𝐿)) = dom( 𝑓 (𝐿)).

This means that 𝑓 (𝐿) is injective and that 𝑓 (𝐿)−1 ⊆ 𝑔(𝐿). Analogously, we also have

𝑓 (𝐿) 𝑔(𝐿) ⊆ id𝐻 with dom
(
𝑓 (𝐿) 𝑔(𝐿)

)
= dom(𝑔(𝐿)),

from which we conclude 𝑔(𝐿) ⊆ 𝑓 (𝐿)−1.
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‘⇐=’: We assume that 𝑓 (𝐿) is injective.

Let 𝑒 regularize 𝑓 . Then, thanks to Theorem 5.15 and since 𝑒(𝐿) is bounded, we get
(𝑒 𝑓 ) (𝐿) = ( 𝑓 𝑒) (𝐿) = 𝑓 (𝐿) 𝑒(𝐿) and as a product of two injective operators, this is an
injective operator. This shows that 𝑒 𝑓 is again a regularizer and it even regularizes 𝑔,
since 𝑒 𝑓 𝑔 = 𝑒 ∈ E(S𝜑). □

Example 5.21. Let 𝜑 ∈ (𝜑𝐿 , 𝜋) and _ ∈ 𝜚(𝐿). We define 𝑓 , 𝑔 ∈ M(S𝜑) by 𝑓 B _ − z
and 𝑔 B (_ − z)−1, where 𝑔 could have its pole inside of S𝜑. We have 𝑓 ∈ M𝐿 (S𝜑) by
Proposition 5.18. According to Corollary 5.16, we have 𝑓 (𝐿) = _− 𝐿 and this operator
is injective, since _ ∈ 𝜚(𝐿). Thus, Proposition 5.20 applies and we find 𝑔 ∈ M𝐿 (S𝜑)
and, as expected,

(_ − z)−1(𝐿) =
(
_ − z(𝐿)

)−1
= (_ − 𝐿)−1.

If _ ∈ C \ S𝜑, then 𝑔 ∈ E(S𝜑) and the above can also be proved directly from the
definition of the elementary functional calculus, see Exercise 5.2.

5.3. Exercises
Exercise 5.1. Modify the proof of Lemma 5.4 in order to show that the definition of
𝑓 (𝐿) in Definition 5.5 does not depend on the particular choice of 𝜓.

Exercise 5.2. Let 𝜑 ∈ (𝜑𝐿 , 𝜋) and _ ∈ C \ S𝜑. Prove directly from Definition 5.6 and
without resorting to the extended functional calculus that (_ − z)−1(𝐿) = (_ − 𝐿)−1.

Exercise 5.3 (A characterization of the Dunford–Riesz class). Let 𝜑 ∈ (0, 𝜋) and let
𝑓 : S𝜑 → C be holomorphic. We say that 𝑓 has polynomial limits at zero and infinity
if there are 𝑐, 𝑑 ∈ C and exponents 𝑠, 𝑡 > 0 such that

sup
𝑧∈S𝜑 , |𝑧 |≤1

| 𝑓 (𝑧) − 𝑐 |
|𝑧 |𝑠 < ∞ and sup

𝑧∈S𝜑 , |𝑧 |≥1
|𝑧 |𝑡 | 𝑓 (𝑧) − 𝑑 | < ∞,

compare with Proposition 5.18.

(a) Prove that 𝑓 ∈ E(S𝜑) if and only if 𝑓 has polynomial limits at zero and infinity.

(b) Conclude that the three subspaces that build up the Dunford–Riesz class are
linearly independent.

Exercise 5.4 (Commuting operators in the functional calculus). Let 𝜑 ∈ (𝜑𝐿 , 𝜋) and
suppose that 𝑇 ∈ L(𝐻) commutes with 𝐿, i.e., 𝑇𝐿 ⊆ 𝐿𝑇 .

(a) Prove 𝑓 (𝐿)𝑇 = 𝑇 𝑓 (𝐿) for all 𝑓 ∈ E(S𝜑).

(b) Conclude that 𝑇 𝑓 (𝐿) ⊆ 𝑓 (𝐿)𝑇 holds for every 𝑓 ∈ M𝐿 (S𝜑).
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5. Functional calculus for sectorial operators

Exercise 5.5. In this exercise we investigate the functional calculus on the Hilbert
space ker(𝐿), where 𝐿 acts as the (sectorial, though not particularly interesting) zero
operator. Let 𝜑 ∈ (𝜑𝐿 , 𝜋) and suppose that the holomorphic function 𝑓 : S𝜑 → C has
a polynomial limit 𝑐 at zero and polynomial control at infinity.

(a) Make a guess, what 𝑓 (𝐿)𝑢 should be whenever 𝑢 ∈ ker(𝐿) and don’t read further.

(b) Prove your guess.1

Exercise 5.6. Prove consistency of the extended functional calculus for the negative
Laplacian on R𝑛 as stated in Example 5.14.

1That is, prove 𝑓 (𝐿)𝑢 = 𝑐𝑢 for 𝑢 ∈ ker(𝐿).
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6. First applications of functional
calculus

In this lecture we will study concrete examples of operators that emerge from the
functional calculus in Definition 5.13. In particular, we will see fractional powers of
sectorial operators and we will confirm that through the functional calculus (and with
a little care) we can ‘manipulate operators as if they were functions in the complex
plane’. The general setup is the same as in Lecture 5.

Notation 6.1. Throughout the entire lecture, 𝐿 denotes a sectorial operator in a Hilbert
space 𝐻 with inner product ⟨· , ·⟩ and norm ∥ · ∥.

6.1. Fractional powers
We fix the principal branch of the complex logarithm. Then, for all 𝛼 ∈ C with
Re𝛼 > 0, the fractional power function z𝛼 = e𝛼 log(z) has a polynomial limit at zero
and polynomial control at infinity in the sense of Proposition 5.18 (a) on S𝜑 for any
𝜑 ∈ (0, 𝜋). More precisely, we can take 𝑐 = 0 and 𝑠 = 𝑡 = Re𝛼 in Proposition 5.18 (a).
Hence, (1 + z)−𝑛 regularizes z𝛼 provided that 𝑛 > Re𝛼.

Definition 6.2. For 𝛼 ∈ C with Re𝛼 > 0 define 𝐿𝛼 B z𝛼 (𝐿), called fractional powers
of 𝐿.

According to Example 5.14 (see also Exercise 5.6), this definition agrees with our earlier
one for the negative Laplacian on R𝑛 (Definition 4.10) and according to Corollary 5.16,
there is no ambiguity in the definition when 𝛼 = 1.

Proposition 6.3. Let 𝛼, 𝛽 ∈ C with Re𝛼,Re 𝛽 > 0. The fractional powers have the
following properties:

(a) 𝐿𝛼𝐿𝛽 = 𝐿𝛼+𝛽 (= 𝐿𝛽𝐿𝛼).

(b) If 𝑘 ∈ N is such that 𝑘 > Re𝛼, then dom(𝐿𝑘 ) is a core for dom(𝐿𝛼). If, in
addition, 𝐿 is injective, then also dom(𝐿𝑘 ) ∩ ran(𝐿𝑘 ) is a core.

Proof. We begin with (a). The general properties of the functional calculus in Theo-
rem 5.15 yield 𝐿𝛼𝐿𝛽 ⊆ 𝐿𝛼+𝛽 with dom(𝐿𝛼𝐿𝛽) = dom(𝐿𝛼+𝛽)∩dom(𝐿𝛽) and it remains
to show that dom(𝐿𝛼+𝛽) ⊆ dom(𝐿𝛽).

69



6. First applications of functional calculus

To this end, we fix an integer 𝑘 > max(Re𝛼,Re 𝛽) and use (1 + z)−𝑘 as a regularizer
for z𝛼 and z𝛽, noting that (1 + z)−2𝑘 regularizes z𝛼+𝛽. Now, let 𝑢 ∈ dom(𝐿𝛼+𝛽). By
construction, 𝑢 ∈ dom(𝐿𝛽) is equivalent to

𝑣 B (z𝛽 (1 + z)−𝑘 ) (𝐿)𝑢 ∈ ran((1 + 𝐿)−𝑘 ) = dom(𝐿𝑘 ) (6.1)

and it is this property that we are going to check. In order to bring z𝛼+𝛽 into play, we
‘regularize’ 𝑣 as follows, using Proposition 5.9 in the first three steps:

(𝐿 (1 + 𝐿)−1)𝑘 (1 + 𝐿)−𝑘𝑣 =
(

z𝑘

(1 + z)2𝑘

)
(𝐿)𝑣

=

(
z𝛽+𝑘

(1 + z)3𝑘

)
(𝐿)𝑢

=

(
z𝑘−𝛼

(1 + z)𝑘

)
(𝐿)

(
z𝛼+𝛽

(1 + z)2𝑘

)
(𝐿)𝑢

C

(
z𝑘−𝛼

(1 + z)𝑘

)
(𝐿)𝑤,

where, similar to (6.1), we have 𝑤 ∈ dom(𝐿2𝑘 ) by assumption on 𝑢. Applying
Corollary 5.17 repeatedly, we conclude that the whole expression above is contained
in dom(𝐿2𝑘 ). Now, we have to remove the ‘regularization’ of 𝑣: Exercise 1.3 yields
(1 + 𝐿)−𝑘𝑣 ∈ dom(𝐿2𝑘 ) and (6.1) follows.

Assertion (b) is an example of a more general property of the functional calculus that
we state and prove next. □

Lemma 6.4. Let 𝜑 ∈ (𝜑𝐿 , 𝜋) and 𝑓 ∈ M𝐿 (S𝜑). The following spaces are cores for
𝑓 (𝐿).

(a) dom(𝐿𝑘 ) with 𝑘 ∈ N provided that (1 + z)−𝑘 regularizes 𝑓 .

(b) dom(𝐿𝑘 ) ∩ ran(𝐿𝑘 ) with 𝑘 ∈ N provided that 𝐿 is injective and (z(1 + z)−2)𝑘
regularizes 𝑓 .

In particular, in these cases 𝑓 (𝐿) is densely defined.

Proof. In order to prove (a), we first show dom(𝐿𝑘 ) ⊆ dom( 𝑓 (𝐿)). We use the
regularizer 𝑒 B (1 + z)−𝑘 for 𝑓 . The first observation is that dom(𝐿𝑘 ) = ran(𝑒(𝐿)) is
the range of this particular regularizer. Taking 𝑢 = 𝑒(𝐿)𝑤 in this set, we obtain

(𝑒 𝑓 ) (𝐿)𝑢 = (𝑒 𝑓 ) (𝐿)𝑒(𝐿)𝑤 = 𝑒(𝐿) (𝑒 𝑓 ) (𝐿)𝑤 ∈ ran(𝑒(𝐿)),

so 𝑢 ∈ dom( 𝑓 (𝐿)).

For the claim that dom(𝐿𝑘 ) is a core for dom( 𝑓 (𝐿)), we use the functions 𝑒𝑡 B (1+𝑡z)−𝑘
with 𝑡 > 0. Under the functional calculus (Example 5.21) they correspond to the
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approximate identities 𝑒𝑡 (𝐿) = (1 + 𝑡𝐿)−𝑘 that already appeared in Proposition 2.4 (d).
Now, take 𝑢 ∈ dom( 𝑓 (𝐿)). We have 𝑒𝑡 (𝐿)𝑢 ∈ dom(𝐿𝑘 ) ⊆ dom( 𝑓 (𝐿)) and 𝑒𝑡 (𝐿)𝑢 →
𝑢 in 𝐻 in the limit as 𝑡 ↘ 0. In the same manner, using Theorem 5.15, we get

𝑓 (𝐿)𝑒𝑡 (𝐿)𝑢 = ( 𝑓 𝑒𝑡) (𝐿)𝑢 = (𝑒𝑡 𝑓 ) (𝐿)𝑢 = 𝑒𝑡 (𝐿) 𝑓 (𝐿)𝑢 → 𝑓 (𝐿)𝑢

in 𝐻. This means that 𝑒𝑡 (𝐿)𝑢 tends to 𝑢 in dom( 𝑓 (𝐿)).

The proof of (b) is the same upon using 𝑒 = (z(1 + z)−2)𝑘 and

𝑒𝑡 B (1 + 𝑡z)−𝑘
(
𝑡−1z(1 + 𝑡−1z)−1) 𝑘 = (1 + 𝑡z)−𝑘

(
1 − (1 + 𝑡−1z)−1) 𝑘 ,

once we have noticed that ran(𝑒(𝐿)) = dom(𝐿𝑘 ) ∩ ran(𝐿𝑘 ) by Proposition 2.4 (e) and
that ran(𝑒𝑡 (𝐿)) = ran(𝑒(𝐿)).

Finally, 𝑓 (𝐿) is densely defined since the respective cores are dense in 𝐻, see again
Proposition 2.4 (e). □

It follows from Proposition 6.3 (a) that 𝐿𝑛 is unambiguously defined when 𝑛 ∈ N. We
do not know anything very specific about fractional power domains at this point, but
Proposition 6.3 (b) provides some link with the domains of integer powers of 𝐿. We
will give more explicit formulæ to compute fractional powers later in this lecture.

Remark 6.5. If 𝐿 is injective, then z𝛼 ∈ M𝐿 (S𝜑) even for any 𝛼 ∈ C, because these
functions have polynomial control at zero and infinity, see Proposition 5.18. This gives
rise to fractional powers 𝐿𝛼 B z𝛼 (𝐿) for 𝛼 ∈ C. Proposition 5.20 yields that all these
operators are injective and that (𝐿𝛼)−1 = 𝐿−𝛼 holds as expected.

6.2. The exponential function and semigroups
In your lectures on ordinary differential equations you have learned that the matrix
exponential function can be used to solve the initial value problem for linear systems
with constant coefficients. In retrospect, this was probably your first encounter with a
functional calculus!

If 𝜑𝐿 < 𝜋/2, then also for 𝐿 we can define an exponential function

e−𝑡𝐿 B e−𝑡z(𝐿) (𝑡 > 0)

via the elementary functional calculus, compare with Remark 5.3 (a), and, given
𝑢0 ∈ 𝐻, the function 𝑢(𝑡) B e−𝑡𝐿𝑢0 should be a solution to{

𝑢′(𝑡) + 𝐿𝑢(𝑡) = 0 (𝑡 > 0),
𝑢(0) = 𝑢0.

(6.2)
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If, for instance, 𝐿 = (−Δ)H1
0 (Ω)

is the negative Dirichlet Laplacian on an open set
Ω, then (6.2) formally corresponds to the initial/boundary value problem for the heat
equation, 

𝜕𝑡𝑢(𝑡, 𝑥) − Δ𝑢(𝑡, 𝑥) = 0 (𝑥 ∈ Ω, 𝑡 > 0),
𝑢(𝑡, 𝑥) = 0 (𝑥 ∈ 𝜕Ω, 𝑡 > 0),
𝑢(0, 𝑥) = 𝑢0(𝑥) (𝑥 ∈ Ω).

(6.3)

Approaching partial differential equations such as (6.3) via an abstract Cauchy problem
such as (6.2) works surprisingly well and quickly leads to the concept of maximal L𝑝
regularity that connects operator theory, harmonic analysis and the geometry of Banach
spaces. You will have the chance to learn more about it in the second and third phase
of the Internet Seminar. Here, we confine ourselves to showing that we can indeed
solve (6.2) using functional calculus and suggest the proof of the following result as
Exercise 6.3.

Proposition 6.6. Suppose that 𝜑𝐿 < 𝜋/2. Define the family (e−𝑡𝐿)𝑡>0, called holomor-
phic semigroup generated by −𝐿,1 as above and let 𝑢0 ∈ 𝐻. The following properties
hold.

(a) Semigroup property: e−𝑠𝐿e−𝑡𝐿 = e−(𝑠+𝑡)𝐿 for all 𝑠, 𝑡 > 0.

(b) Strong continuity at 0: lim
𝑡→0

e−𝑡𝐿𝑢0 = 𝑢0.

(c) Long-time behavior: lim
𝑡→∞

e−𝑡𝐿𝑢0 = 𝑃𝑢0, where 𝑃 is the projection onto ker(𝐿)

along ran(𝐿).

(d) Solution to the abstract Cauchy problem: e− ·𝐿 : (0,∞) → L(𝐻) is continuously
differentiable and d

d𝑡 e
−𝑡𝐿 = −𝐿e−𝑡𝐿 .

It may well be that semigroups and their relation to PDEs now ring a bell: In fact,
you have seen a different example when solving the Dirichlet problem on the upper
half-space in Exercise 4.5.

6.3. The adjoint calculus
The class of sectorial operators is stable under taking adjoints in the following sense.

Lemma 6.7. 𝐿∗ is sectorial of angle 𝜑𝐿∗ = 𝜑𝐿 and if 𝐿 is injective, then so is 𝐿∗.

Proof. Since sectors are invariant under complex conjugation, it follows from Proposi-
tions 1.21 and 1.20 (h) that 𝐿∗ is sectorial with angle 𝜑𝐿∗ ≤ 𝜑𝐿 and that the resolvents

1In order to understand this terminology, you will also have to solve Exercise 6.4.
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are related by the formula

(_ − 𝐿∗)−1 = ((_ − 𝐿)−1)∗. (6.4)

Applying this result to 𝐿∗ with adjoint 𝐿 gives 𝜑𝐿 ≤ 𝜑𝐿∗ . Since ran(𝐿) = ker(𝐿∗)⊥,
see Proposition 1.20, we obtain from Proposition 2.4 (b) that 𝐿∗ is injective provided
that 𝐿 is injective. □

In terms of functional calculus, (6.4) can be seen as an example of a rule

𝑓 ∗(𝐿∗) = 𝑓 (𝐿)∗ (6.5)

lurking somewhere in the background.

Definition 6.8. Let 𝜑 ∈ (0, 𝜋) and 𝑓 : S𝜑 → C be holomorphic. The function 𝑓 ∗ : S𝜑 →
C, 𝑧 ↦→ 𝑓 (𝑧) is called holomorphic conjugate of 𝑓 .

The holomorphic conjugate is again holomorphic and the mapping 𝑓 ↦→ 𝑓 ∗ preserves
the Dunford–Riesz class E(S𝜑) and, more generally, the classes of holomorphic func-
tions with polynomial limits/control considered in Proposition 5.18. If there is any
justice, also (6.5) will continue to hold.

First, we put all subtle domain considerations aside and look at the elementary func-
tional calculus.

Lemma 6.9. Let 𝜑 ∈ (𝜑𝐿 , 𝜋). Then (6.5) holds for all 𝑓 ∈ E(S𝜑).

Proof. For 𝑓 = 1 there is nothing to prove and above we have already dealt with
𝑓 = (1 + z)−1. It remains to treat the case 𝑓 ∈ H∞

0 (S𝜑).

We fix 𝜓 ∈ (𝜑𝐿 , 𝜑) and represent 𝑓 (𝐿) as in Definition 5.5. According to Proposi-
tion 1.20, the map L(𝐻) ∋ 𝐾 ↦→ 𝐾∗ ∈ L(𝐻) is bounded and anti-linear. We first use
Proposition A.13 to get

𝑓 (𝐿)∗ =
(

1
2𝜋i

∫
R
𝑓 (𝛾𝜓 (𝑡)) · 𝛾′𝜓 (𝑡) · (𝛾𝜓 (𝑡) − 𝐿)−1 d𝑡

)∗
=

−1
2𝜋i

∫
R

(
𝑓 (𝛾𝜓 (𝑡)) · 𝛾′𝜓 (𝑡) · (𝛾𝜓 (𝑡) − 𝐿)−1

)∗
d𝑡.

Now, anti-linearity lets us continue by

=
−1
2𝜋i

∫
R
𝑓 (𝛾𝜓 (𝑡)) · 𝛾𝜓′(𝑡) · (𝛾𝜓 (𝑡) − 𝐿∗)−1 d𝑡

=
−1
2𝜋i

∫
R
𝑓 ∗(𝛾𝜓 (𝑡)) · 𝛾𝜓′(𝑡) · (𝛾𝜓 (𝑡) − 𝐿∗)−1 d𝑡

= 𝑓 ∗(𝐿∗),

where we have used 𝛾𝜓 (𝑡) = 𝛾𝜓 (−𝑡) in the final step. □
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Our general result is as follows. It will become apparent from the proof that the
extension of (6.5) does not work by purely algebraic means and hence, we only treat
the subclasses of M𝐿 (S𝜑) that have been described in Proposition 5.18.

Proposition 6.10. Let 𝜑 ∈ (𝜑𝐿 , 𝜋) and 𝑓 : S𝜑 → C be holomorphic. The rule (6.5) is
valid in the following cases.

(a) 𝑓 has a polynomial limit at zero and polynomial control at infinity.

(b) 𝐿 is injective and 𝑓 has polynomial control at zero and infinity.

Proof. Let 𝑒 be a suitable regularizer for 𝑓 in the calculus for 𝐿: 𝑒 B (1 + z)−𝑘
in case (a) and 𝑒 B (z(1 + z)−2)𝑘 in case (b), both with 𝑘 sufficiently large, see
Proposition 5.18. Then 𝑒 also regularizes 𝑓 in the calculus for 𝐿∗, using Lemma 6.7 in
case (b). We treat both cases simultaneously.

Starting from the definition of 𝑓 (𝐿), we obtain from Lemma 6.9 and 𝑒∗ = 𝑒 that

𝑓 ∗(𝐿∗) = 𝑒(𝐿∗)−1(𝑒 𝑓 ∗) (𝐿∗) = (𝑒(𝐿)∗)−1(𝑒 𝑓 ) (𝐿)∗.

The calculation rules (e) and (d) in Proposition 1.20 yield

= (𝑒(𝐿)−1)∗(𝑒 𝑓 ) (𝐿)∗ =
(
(𝑒 𝑓 ) (𝐿)𝑒(𝐿)−1)∗. (6.6)

Comparing the outcome with the definition of 𝑓 (𝐿), we see that 𝑒(𝐿)−1 is on the wrong
side of (𝑒 𝑓 ) (𝐿) and this is precisely what Lemma 6.4 will correct for us.

Indeed, (𝑒 𝑓 ) (𝐿) = 𝑓 (𝐿)𝑒(𝐿) holds by Theorem 5.15 and therefore (𝑒 𝑓 ) (𝐿)𝑒(𝐿)−1𝑢 =

𝑓 (𝐿)𝑢 for 𝑢 ∈ ran(𝑒(𝐿)) = dom((𝑒 𝑓 ) (𝐿)𝑒(𝐿)−1). However, the lemma says that the
latter is a core for 𝑓 (𝐿), hence (𝑒 𝑓 ) (𝐿)𝑒(𝐿)−1 = 𝑓 (𝐿) by Exercise 1.2 (c). Going
back to (6.6), we can now use calculation rule (f) from Proposition 1.20 to derive the
desired identity

𝑓 ∗(𝐿∗) =
(
(𝑒 𝑓 ) (𝐿)𝑒(𝐿)−1)∗ = 𝑓 (𝐿)∗. □

Corollary 6.11. If 𝛼 > 0, then (𝐿𝛼)∗ = (𝐿∗)𝛼.

Proof. Simply note that z𝛼 is its own holomorphic conjugate. □

6.4. Kato’s second representation theorem
In this short section we prove a remarkable theorem due to Kato. As in Lecture 2 we let
𝑉 be another Hilbert space that is continuously and densely embedded into 𝐻.

If 𝐿 is the self-adjoint operator associated with a bounded, accretive, elliptic and
symmetric sesquilinear form on 𝑉 , then we can determine the domain of

√
𝐿 and this
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operator appears naturally in order to represent the form on 𝑉 via the inner product on
𝐻, hence the name. Here is the result.

Theorem 6.12 (Kato’s second representation theorem). Let 𝑎 be a bounded, accretive,
elliptic and symmetric sesquilinear form on 𝑉 and let 𝐿 be the associated self-adjoint
operator in 𝐻. Then dom(

√
𝐿) = 𝑉 and

𝑎(𝑢, 𝑣) = ⟨
√
𝐿𝑢,

√
𝐿𝑣⟩ (𝑢, 𝑣 ∈ 𝑉).

Proof. First, we let 𝑢, 𝑣 ∈ dom(𝐿). By definition of 𝐿, Proposition 6.3 and Corol-
lary 6.11 we get

𝑎(𝑢, 𝑣) = ⟨𝐿𝑢, 𝑣⟩ = ⟨
√
𝐿
√
𝐿𝑢, 𝑣⟩ = ⟨

√
𝐿𝑢,

√
𝐿𝑣⟩. (6.7)

Since 𝑎 is bounded and elliptic, we conclude

∥
√
𝐿𝑢∥2 + ∥𝑢∥2 = 𝑎(𝑢) + ∥𝑢∥2 ≲ ∥𝑢∥2

𝑉 ≲ Re
(
𝑎(𝑢)

)
+ ∥𝑢∥2 = ∥

√
𝐿𝑢∥2 + ∥𝑢∥2,

which means that the Hilbert space norms on 𝑉 and dom(
√
𝐿) are equivalent on

the common subspace dom(𝐿). The latter is dense in both 𝑉 and dom(
√
𝐿), see

Propositions 2.23 and 6.3. Thus, 𝑉 = dom(
√
𝐿) and (6.7) extends to all 𝑢, 𝑣 ∈ 𝑉 by

density. □

This provides us with a far-reaching generalization of the Kato property from Propo-
sition 4.12 for elliptic operators in divergence form. Recall from Lecture 3 that such
operators are self-adjoint if the coefficients are Hermitean and that 𝑎(𝑢, 𝑢) ≃ ∥∇𝑢∥2

L2 (Ω)
for all 𝑢 ∈ H1

0(Ω) since the coefficients are bounded and elliptic.

Corollary 6.13 (Kato property for self-adjoint elliptic operators). Let 𝐿 = − div(𝐴∇ ·)
be an elliptic operator in divergence form with Dirichlet boundary conditions on an
open set Ω. In addition, suppose that 𝐴(𝑥) is Hermitean for a.e. 𝑥 ∈ Ω. Then
dom(

√
𝐿) = H1

0(Ω) and

∥
√
𝐿𝑢∥L2 (Ω) ≃ ∥∇𝑢∥L2 (Ω) (𝑢 ∈ H1

0(Ω)).

The question whether the condition 𝐴 = 𝐴∗ can be dropped in Corollary 6.13 became
known as the ‘Kato conjecture’. Pascal Auscher remarks at the beginning of his
beautiful essay on the mathematical œuvre of Yves Meyer [Aus23]:

“Tosio Kato’s square root conjecture is one example of a question arising
from one field, formulated in a second one and finding its solution in a third
one. Namely, the question arising in the sixties from the work of T. Kato,
motivated by partial differential equations in inhomogeneous media, was
set using a functional analysis framework and it was finally methods from
real harmonic analysis that put a final end to the problem as posed.”
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In fact, while studying wave propagation in inhomogeneous media (the conductivity of
which is related to the real and self-adjoint matrices 𝐴(𝑥)), Kato wanted to understand
the stability of (12.1) with respect to small L∞-perturbations of 𝐴 on R𝑛: Could it be
true that

∥
√︁
𝐿0𝑢 −

√︁
𝐿1𝑢∥L2 (R𝑛) ≲ ∥𝐴0 − 𝐴1∥L∞ (R𝑛) ∥∇𝑢∥L2 (R𝑛) , (6.8)

provided that ∥𝐴0−𝐴1∥L∞ (R𝑛) is sufficiently small? It was known that proving (12.1) for
all complex, elliptic coefficients, using only L∞-information on 𝐴, would automatically
give holomorphic dependence in a suitable sense, and hence (6.8).

It took almost 40 years until eventually Auscher–Hofmann–Lacey–McIntosh–Tchamit-
chian [AHL+02] confirmed the Kato conjecture . . . but remarkable mathematical devel-
opments paved the way: The one-dimensional case turned out to be essentially equiva-
lent to the L2-boundedness of the Cauchy integral on a Lipschitz curve due to Coifman–
McIntosh–Meyer [CMM82] and led to the study of anti-symmetric singular integrals
and the famous 𝑇 (1)- and 𝑇 (𝑏)-theorems of David–Journé–Semmes [DJ84, DJS85] in
real harmonic analysis. In our personal story, we will need five more lectures until we
have the necessary tools at hand and can present the proof of the Kato conjecture.

Functional calculus, as an ‘algebraic’ framework for Kato’s conjecture, evolved at the
same time. Most notably, the development of H∞-calculus and its close relation to
harmonic analysis is one of Alan McIntosh’s mathematical legacies. We will touch
upon these topics in the next two lectures.

6.5. The Calderón reproducing formula
As a first showcase how functional calculus can be seen as an 𝐿-adapted Fourier
analysis, we extend the Calderón reproducing formula in its formulation (4.10) to
general sectorial operators. The class of functions 𝑓 changes as an artefact of using
two very different methods of proof: In Lecture 4 we have used S(R𝑛), which is well-
adapted to the Fourier transform, whereas here and in the upcoming lectures we will
use H∞

0 (S𝜑) related to functional calculus.

We begin with a simple lemma that shows that the reproducing formula somehow deals
with a singular integral, that is, a uniformly bounded function on (0,∞) integrated
against the measure d𝑡/𝑡.

Lemma 6.14. If 𝜑 ∈ (𝜑𝐿 , 𝜋) and 𝑓 ∈ E(S𝜑), then the map

(0,∞) → L(𝐻), 𝑡 ↦→ 𝑓 (𝑡𝐿)

is continuous and (uniformly) bounded.
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Proof. There is nothing to do for 𝑓 = 1. For 𝑓 = (1 + z)−1 or more generally,
𝑓 = (_ − z)−1 with _ ∈ C \ S𝜑𝐿 , we have

(_ − 𝑡z)−1(𝐿) = (_ − 𝑡𝐿)−1. (6.9)

Continuity in 𝑡 follows by holomorphy of the resolvent and uniform boundedness by
sectoriality of 𝐿.

Finally, if 𝑓 ∈ H∞
0 (S𝜑), then also 𝑓 ◦ 𝑡z ∈ H∞

0 (S𝜑) and thanks to the bounds on 𝑓 and
the sectoriality of 𝐿, we control the Cauchy integral defining 𝑓 (𝑡𝐿) uniformly by

∥ 𝑓 (𝑡𝐿)∥L(𝐻) ≤
∫ ∞

0
𝐶min( |𝑡𝜏 |𝑠, |𝑡𝜏 |−𝑠) d𝜏

𝜏

𝑡 𝜏 = 𝜌

=

∫ ∞

0
𝐶min( |𝜌 |𝑠, |𝜌 |−𝑠) d𝜌

𝜌
< ∞,

where𝐶, 𝑠 > 0 are independent of 𝑡. Continuity in 𝑡 follows by dominated convergence,
using the bound | 𝑓 (𝑡𝑧) | ≤ 𝐶max(𝑡𝑠, 𝑡−𝑠) min( |𝑧 |𝑠, |𝑧 |−𝑠). □

Remark 6.15. Above, we have intuitively understood 𝑓 (𝑡𝐿) B ( 𝑓 ◦ 𝑡z) (𝐿) through
the calculus for 𝐿. The identity (6.9) implies that 𝐿𝑡 B 𝑡𝐿 is sectorial with the same
angle as 𝐿 and it is just as natural to understand 𝑓 (𝑡𝐿) B 𝑓 (𝐿𝑡) through the calculus
for 𝐿𝑡 . Fortunately, both interpretations give the same operator: For 𝑓 = 1 this is by
definition, for 𝑓 = (1 + z)−1 it follows directly from (6.9) and for 𝑓 ∈ H∞

0 (S𝜑) we
use the same identity and change variables in the Cauchy integral that defines 𝑓 (𝐿𝑡).
This is a very simple example of a composition rule for functional calculi. We refer to
[Haa06, Sect. 1.3.2] for more.

We are ready for the main result in this section.

Theorem 6.16 (Calderón reproducing formula). Let 𝜑 ∈ (𝜑𝐿 , 𝜋) and let 𝑓 ∈ H∞
0 (S𝜑)

be normalized to ∫ ∞

0
𝑓 (𝑡) d𝑡

𝑡
= 1. (6.10)

Then we have for all 𝑢 ∈ ran(𝐿) that∫ ∞

0
𝑓 (𝑡𝐿)𝑢 d𝑡

𝑡
= 𝑢

as an improper integral2 in 𝐻. In particular, if 𝐿 is injective, then the statement is valid
for all 𝑢 ∈ 𝐻.

Proof. The ‘in particular’ statement on injective operators follows from Proposi-
tion 2.4 (b). Throughout the proof we fix 𝐶, 𝑠 > 0 such that | 𝑓 (𝑧) | ≤ 𝐶min( |𝑧 |𝑠, |𝑧 |−𝑠)

2In other words, ‘
∫ ∞

0 ’ should be read ‘lim Y→0
𝑅→∞

∫ 𝑅
Y

’ as in Proposition 4.15.
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for all 𝑧 ∈ S𝜑. First of all, we define for 0 < 𝑎 < 𝑏 the function

𝐹𝑎,𝑏 : S𝜑 → C, 𝑧 ↦→
∫ 𝑏

𝑎

𝑓 (𝑡𝑧) d𝑡
𝑡
.

There are many ways to see that it is holomorphic – one is to use Morera’s theorem and
change the order of integration. The rest of the argument comes in three steps.

Step 1: Elementary properties of 𝐹𝑎,𝑏.

For any 0 < 𝑎 < 𝑏 the estimate

|𝐹𝑎,𝑏 (𝑧) | ≤
∫ 𝑏

𝑎

| 𝑓 (𝑡𝑧) | d𝑡
𝑡
≤ 𝐶

∫ 𝑏

𝑎

min( |𝑡𝑧 |𝑠, |𝑡𝑧 |−𝑠) d𝑡
𝑡

shows that 𝐹𝑎,𝑏 ∈ H∞
0 (S𝜑). Moreover, the substitution 𝜏 = |𝑧 |𝑡 gives

|𝐹𝑎,𝑏 (𝑧) | ≤ 𝐶
∫ ∞

0
min(𝜏𝑠, 𝜏−𝑠) d𝜏

𝜏

and, consequently, (𝐹𝑎,𝑏)0<𝑎<𝑏 is a bounded family in H∞(S𝜑). By dominated conver-
gence, the limit

𝐹 (𝑧) B
∫ ∞

0
𝑓 (𝑡𝑧) d𝑡

𝑡
= lim

𝑎→0
𝑏→∞

𝐹𝑎,𝑏 (𝑧)

exists uniformly for 𝑧 in compact subsets of S𝜑. In particular, 𝐹 is holomorphic. For
𝑧 ∈ (0,∞) we can change again variables 𝜏 = 𝑡𝑧 to see that 𝐹 (𝑧) = 1 and the identity
theorem implies the same for all 𝑧 ∈ S𝜑.

Step 2: Identification of 𝐹𝑎,𝑏 (𝐿).

We represent 𝐹𝑎,𝑏 (𝐿) for some 𝜓 ∈ (𝜑𝐿 , 𝜑) via a Cauchy integral and use Fubini’s
theorem to conclude that

𝐹𝑎,𝑏 (𝐿) =
1

2𝜋i

∫ 𝑏

𝑎

∫
𝛾𝜓

𝑓 (𝑡𝑧) (𝑧 − 𝐿)−1 d𝑧
d𝑡
𝑡
=

∫ 𝑏

𝑎

𝑓 (𝑡𝐿) d𝑡
𝑡
.

Step 3: Convergence on dom(𝐿) ∩ ran(𝐿).

Let 𝑢 ∈ dom(𝐿) ∩ ran(𝐿) and use Proposition 2.4 (e) to write 𝑢 = 𝑒(𝐿)𝑣 for some
𝑣 ∈ 𝐻, where 𝑒 B z(1 + z)−2. Step 2 and the elementary properties of the functional
calculus imply∫ 𝑏

𝑎

𝑓 (𝑡𝐿)𝑢 d𝑡
𝑡
= 𝐹𝑎,𝑏 (𝐿)𝑒(𝐿)𝑣 = (𝐹𝑎,𝑏𝑒) (𝐿)𝑣 =

1
2𝜋i

∫
𝛾𝜓

𝐹𝑎,𝑏 (𝑧)𝑒(𝑧) (𝑧 − 𝐿)−1𝑣 d𝑧.
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6.5. The Calderón reproducing formula

The functions 𝐹𝑎,𝑏 are uniformly bounded with respect to 𝑎, 𝑏 and tend to 1 in the limit
as 𝑎 → 0, 𝑏 → ∞, see Step 1. Thanks to the additional decay of the function 𝑒, we can
use dominated convergence to get, as desired,

lim
𝑎→0
𝑏→∞

∫ 𝑏

𝑎

𝑓 (𝑡𝐿)𝑢 d𝑡
𝑡
=

1
2𝜋i

∫
𝛾𝜓

𝑒(𝑧) (𝑧 − 𝐿)−1𝑣 d𝑧 = 𝑒(𝐿)𝑣 = 𝑢.

Step 4: Convergence on ran(𝐿).

We recall from Proposition 2.4 (e) that ran(𝐿) = dom(𝐿) ∩ ran(𝐿). Hence, and thanks
to Step 2, it suffices to show that the family (𝐹𝑎,𝑏 (𝐿))0<𝑎<𝑏 is bounded in L(𝐻).3 For
this purpose, we write

𝐹𝑎,𝑏 (𝑧) =
∫ 1

0
𝑓 (𝑡𝑏𝑧) d𝑡

𝑡
−
∫ 1

0
𝑓 (𝑡𝑎𝑧) d𝑡

𝑡
C 𝐺 (𝑏𝑧) − 𝐺 (𝑎𝑧).

We have

|𝐺 (𝑧) | ≤
∫ 1

0
𝐶 |𝑡𝑧 |𝑠 d𝑡

𝑡
=
𝐶

𝑠
|𝑧 |𝑠,

but due to Step 1, we can also bound

|𝐺 (𝑧) − 1| =
���� ∫ ∞

1
𝑓 (𝑡𝑧) d𝑡

𝑡

���� ≤ ∫ ∞

1
𝐶 |𝑡𝑧 |−𝑠 d𝑡

𝑡
=
𝐶

𝑠
|𝑧 |−𝑠 .

This proves that 𝐺 has polynomial limits at zero and infinity in the sense of Exer-
cise 5.3 and thus that 𝐺 ∈ E(S𝜑). Uniform boundedness of (𝐹𝑎,𝑏 (𝐿))0<𝑎<𝑏 is now a
consequence of Lemma 6.14 and the proof is complete. □

A typical application for the Calderón reproducing formula will be as follows. We
are given some 𝑔 ∈ H∞

0 (S𝜑) \ {0} and we know, for whatever reason, something good
about 𝑔(𝑡𝐿). Then we pick an ℎ ∈ H∞

0 (S𝜑) with∫ ∞

0
ℎ(𝑡)𝑔(𝑡) d𝑡

𝑡
= 1, (6.11)

that is, 𝑓 B 𝑔ℎ satisfies the assumption of Theorem 6.16, and we get the approximation
of the identity that involves our favorable function 𝑔:

𝑢 =

∫ ∞

0
ℎ(𝑡𝐿)𝑔(𝑡𝐿)𝑢 d𝑡

𝑡
(𝑢 ∈ ran(𝐿)).

One possible choice is ℎ(𝑧) = 𝑐−1𝑔∗(𝑧) with 𝑐 =
∫ ∞

0 |𝑔(𝑡) |2 d𝑡
𝑡
> 0. It is convenient to

give such functions a name.
3This is the same 2Y-argument as in the proof of Proposition 2.4. We hope that you have convinced

yourself in the meantime ;-)
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6. First applications of functional calculus

Definition 6.17. Let 𝜑 ∈ (0, 𝜋) and 𝑔 ∈ H∞
0 (S𝜑). A function ℎ ∈ H∞

0 (S𝜑) that satisfies
(6.11) is called Calderón sibling of 𝑔.

Theorem 6.16 can also be used to derive many classical representation formulæ, for ex-
ample for fractional powers, with optimal domain of convergence. Here is an example,
dating back to the work of Balakrishnan [Bal60] at the beginning of the 1960s.

Proposition 6.18 (Balakrishnan representation). Let 0 < Re𝛼 < 1. Then we have for
all 𝑢 ∈ dom(𝐿𝛼) that

𝐿𝛼𝑢 =
sin𝛼𝜋
𝜋

∫ ∞

0
𝑡𝛼−1𝐿 (𝑡 + 𝐿)−1𝑢 d𝑡, (6.12)

where the right-hand side is an improper integral in 𝐻.

Proof. Let us first give the proof when, in addition, 𝐿 is injective. Let 𝑢 ∈ dom(𝐿𝛼).
A classical formula4 says that ∫ ∞

0

𝜏1−𝛼

1 + 𝜏
d𝜏
𝜏

=
𝜋

sin𝛼𝜋
.

Thus, 𝑓 B sin𝛼𝜋
𝜋

z1−𝛼 (1 + z)−1 satisfies the assumption of Theorem 6.16 and we obtain
as an improper integral,

𝐿𝛼𝑢 =

∫ ∞

0
𝑓 (𝜏𝐿)𝐿𝛼𝑢 d𝜏

𝜏

5.15
=

sin𝛼𝜋
𝜋

∫ ∞

0
(𝜏𝐿)1−𝛼𝐿𝛼 (1 + 𝜏𝐿)−1𝑢

d𝜏
𝜏

6.3
=

sin𝛼𝜋
𝜋

∫ ∞

0
𝜏1−𝛼𝐿 (1 + 𝜏𝐿)−1𝑢

d𝜏
𝜏

𝜏 = 𝑡−1

=
sin𝛼𝜋
𝜋

∫ ∞

0
𝑡𝛼−1𝐿 (𝑡 + 𝐿)−1𝑢 d𝑡.

If 𝐿 is not injective, then we have to be more careful when applying the Calderón
reproducing formula. Namely, we need to check beforehand that 𝐿𝛼𝑢 ∈ ran(𝐿). To
this end, we recall from Proposition 2.4 (b) and its proof that we have a topological
decomposition 𝐻 = ker(𝐿) ⊕ ran(𝐿) in which the projection 𝑃 : 𝐻 → ker(𝐿) is given
by 𝑃𝑣 = lim 𝑗→∞(1 + 𝑗 𝐿)−1𝑣. Now, we have

𝑃(𝐿𝛼𝑢) 5.15
= lim

𝑗→∞
𝑗−𝛼

[
( 𝑗 𝐿)𝛼 (1 + 𝑗 𝐿)−1𝑢

]
,

where the sequence in square brackets is uniformly bounded by Lemma 6.14. Thus,
we get 𝑃(𝐿𝛼𝑢) = 0 and, consequently, 𝐿𝛼𝑢 ∈ ran(𝐿). □

4You may know this one from your complex analysis course. A direct proof is to substitute 𝜏 = 1
𝑠
− 1

and recognize the Beta/Gamma functions 𝐵(𝛼, 1 − 𝛼) = Γ(𝛼)Γ(1 − 𝛼) = 𝜋
sin 𝜋𝛼 . In any case, the

precise constant will not matter in this course and you may simply write 𝐶 (𝛼).
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6.6. Exercises

6.6. Exercises
Exercise 6.1. Suppose that 𝐿 is bounded. Prove that for any 𝛼 ∈ C with Re𝛼 > 0 also
𝐿𝛼 is bounded.

Exercise 6.2 (Moment inequality). Let 𝛼, 𝛽, 𝛾 ∈ C with 0 < Re𝛼 < Re 𝛽 < Re 𝛾.
Prove that there is a constant 𝐶 such that the moment inequality holds:

∥𝐿𝛽𝑢∥ ≤ 𝐶∥𝐿𝛼𝑢∥1−\ ∥𝐿𝛾𝑢∥\ (𝑢 ∈ dom(𝐿𝛾)),

where the interpolation parameter \ is determined by Re 𝛽 = (1 − \) Re𝛼 + \ Re 𝛾.

Hint: Start out with a representation 𝐿𝛽𝑢 =
∫ ∞

0 𝑓 (𝜏𝐿)𝐿𝛽𝑢 d𝜏
𝜏

, where during the further
course of the proof you will see how much decay of 𝑓 you need. Split the integral at
height 𝜏 = 𝑅 to be chosen wisely and estimate both parts differently.

Exercise 6.3. In this exercise you are going to prove Proposition 6.6. You may proceed
as follows.

(a) Indicate, where the semigroup property in Proposition 6.6 (a) comes from.

(b) Prove parts (b) and (c) of Proposition 6.6 for 𝑢0 ∈ ker(𝐿).

(c) Argue that in order to complete the proofs of Proposition 6.6 (b) and Proposi-
tion 6.6 (c), it suffices to treat the case 𝑢0 ∈ dom(𝐿) ∩ ran(𝐿).

(d) Complete the proofs of parts (b) and (c) of Proposition 6.6.

(e) Prove Proposition 6.6 (d) by differentiation under the integral sign.

Exercise 6.4 (An extension of Proposition 5.18). We suppose again 𝜑𝐿 < 𝜋/2 and let
𝜑 ∈ (𝜑𝐿 , 𝜋/2).

(a) Construct a holomorphic extension of 𝑡 ↦→ e−𝑡𝐿 to a suitable sector S\ . Which
relation between \ and 𝜑𝐿 is required?

(b) Prove that e−𝑡𝐿 is injective for every 𝑡 > 0.

(c) Conclude that M𝐿 (S𝜑) contains more functions than those in Proposition 5.18.

(d) Could something similar be done for sectorial operators of angle 𝜑𝐿 ≥ 𝜋/2?

Exercise 6.5 (Scaling properties of fractional powers). Let 𝜑 ∈ (𝜑𝐿 , 𝜋) and 𝛼 > 0 be
such that 𝛼𝜑 < 𝜋. We are going to show that 𝐿𝛼 is sectorial of angle 𝛼𝜑 by proceeding
as follows.

(a) Let _ ∈ C \ S𝛼𝜑. Argue that

𝑓𝛼,_ B
_

_ − z𝛼
− |_ |1/𝛼

|_ |1/𝛼 + z
is a function in H∞

0 (S𝜑).
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6. First applications of functional calculus

(b) Prove _ ∈ 𝜚(𝐿𝛼) and give a formula for 𝑅(_, 𝐿𝛼) via the functional calculus
for 𝐿.

(c) Conclude.
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7. H∞-calculus

In many situations it can be decisive to know whether, for some given sectorial operator
𝐿 and some holomorphic function 𝑓 , the operator 𝑓 (𝐿) is bounded. For the negative
Laplacian on R𝑛, Theorem 4.14 provides us with a complete picture: 𝑓 (𝐿) is bounded
precisely when 𝑓 is bounded and the latter’s supremum norm controls the former’s
operator norm.

In this section we investigate such type of bounds for more general sectorial operators
𝐿 and ask for given 𝜑 ∈ (𝜑𝐿 , 𝜋):

Is 𝑓 (𝐿) ∈ L(𝐻) for all 𝑓 ∈ H∞(S𝜑)?

In order to define 𝑓 (𝐿) in the first place, we are led to assuming that 𝐿 is injective,
because only then we can use the universal regularizer 𝑒 = z(1 + z)−2 for 𝑓 , compare
with Remark 5.11. This assumption, however, is no particular restriction as long as
we are not limited to one specific Hilbert space. More precisely, you will learn in
Exercise 7.5 that every sectorial operator becomes injective and sectorial on the closed
subspace ran(𝐿) ⊆ 𝐻. Sadly — or should we say fortunately? — the answer to
the question above will be ‘no’ in general and such operators get their own quality
label. But we shall see that elliptic operators in divergence form, and, more generally,
m-accretive operators, do have this beautiful property.

Notation 7.1. In the whole lecture, 𝐻 is a Hilbert space with inner product ⟨· , ·⟩ and
norm ∥ · ∥. We denote by 𝑒 B z(1 + z)−2 the universal regularizer for bounded,
holomorphic functions.

7.1. The notion of a bounded H∞-calculus
To distinguish operators for which the answer to the question above is ‘yes’, we introduce
the following notion.

Definition 7.2. Let 𝐿 be an injective sectorial operator in 𝐻. We say that 𝐿 has a
bounded H∞-calculus of angle 𝜑 ∈ (𝜑𝐿 , 𝜋) if there is a constant 𝐶 such that for all
𝑓 ∈ H∞(S𝜑) we have 𝑓 (𝐿) ∈ L(𝐻) with norm bound

∥ 𝑓 (𝐿)∥L(𝐻) ≤ 𝐶∥ 𝑓 ∥∞,𝜑. (7.1)

The infimum over all such 𝜑 is denoted by 𝜑∞
𝐿

and called H∞-angle of 𝐿.
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7. H∞-calculus

Remark 7.3. (a) If 𝐿 has a bounded H∞-calculus of angle 𝜑, then

H∞(S𝜑) → L(𝐻), 𝑓 ↦→ 𝑓 (𝐿)

is a bounded algebra homomorphism by Theorem 5.15.

(b) The bound 𝐶 is useful, because it links the ‘size’ of the operator 𝑓 (𝐿) with the
‘size’ of the function 𝑓 . However, the sole property that 𝑓 (𝐿) ∈ L(𝐻) for every
𝑓 ∈ H∞(S𝜑) furnishes some 𝐶 by abstract nonsense, see Exercise 7.4.

(c) The notion of ‘having a bounded H∞-calculus’ dates back to Alan McIntosh’s
seminal treatise [McI86], even though we actually require that ‘the H∞(S𝜑)-
calculus’ that we have constructed in Lecture 5 is bounded. For more on these
uniqueness issues we refer interested readers to [Haa06, Sect. 5.3].

Usually, it is much harder to check 𝑓 (𝐿) ∈ L(𝐻) for a genuine bounded holomorphic
function than to prove the bound (7.1) for nice 𝑓 . This is why McIntosh’s convergence
lemma below is so useful.

Lemma 7.4 (Convergence lemma). Let 𝐿 be an injective sectorial operator in 𝐻. Let
𝜑 ∈ (𝜑𝐿 , 𝜋) and ( 𝑓 𝑗 ) ⊆ H∞(S𝜑) be a bounded sequence that converges uniformly on
compact subsets of S𝜑. Then the limit 𝑓 is again in H∞(S𝜑) and

𝑓 𝑗 (𝐿)𝑢 → 𝑓 (𝐿)𝑢 as 𝑗 → ∞ for all 𝑢 ∈ dom(𝐿) ∩ ran(𝐿).

Moreover, we have:

(a) If 𝑓 𝑗 (𝐿) ∈ L(𝐻) for all 𝑗 and if there exists 𝑇 ∈ L(𝐻) such that 𝑓 𝑗 (𝐿) → 𝑇

strongly as 𝑗 → ∞, then 𝑓 (𝐿) = 𝑇 .

(b) If sup 𝑗 ∥ 𝑓 𝑗 (𝐿)∥L(𝐻) < ∞, then 𝑓 (𝐿) ∈ L(𝐻) and 𝑓 𝑗 (𝐿) → 𝑓 (𝐿) strongly as
𝑗 → ∞.

Before we come to the proof, we state explicitly the application we have in mind.

Corollary 7.5. If (7.1) holds for all 𝑓 ∈ H∞
0 (S𝜑), then it also holds for all 𝑓 ∈ H∞(S𝜑)

and hence, 𝐿 has a bounded H∞-calculus of angle 𝜑.

Proof. Given 𝑓 ∈ H∞(S𝜑), we construct an approximation of 𝑓 by

𝑓 𝑗 B 𝑒
1/𝑗 𝑓 . (7.2)

In order to see that 𝑓 𝑗 is holomorphic, it suffices to note that 𝑒 maps S𝜑 ⊆ C \ (−∞, 0]
into itself.1 Moreover, we have 𝑓 𝑗 ∈ H∞

0 (S𝜑) with ∥ 𝑓 𝑗 ∥∞,𝜑 ≤ ∥ 𝑓 ∥∞,𝜑∥𝑒∥1/ 𝑗
∞,𝜑 and

1Without loss of generality, consider the case 0 < arg(𝑧) < 𝜑. Then 0 < arg(1 + 𝑧) < arg(𝑧), which
implies arg(𝑒(𝑧)) = arg(𝑧) − 2 arg(1 + 𝑧) ∈ (− arg(𝑧), arg(𝑧)), and therefore 𝑒(𝑧) ∈ S𝜑 .
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7.2. Examples

𝑓 𝑗 → 𝑓 in the limit as 𝑗 → ∞ uniformly on compact subsets of S𝜑. Our assumption
lets us apply Lemma 7.4 (b) to this sequence. Thus, we get for every 𝑢 ∈ 𝐻 that

∥ 𝑓 (𝐿)𝑢∥ = lim
𝑗→∞

∥ 𝑓 𝑗 (𝐿)𝑢∥
(7.1)
≤ 𝐶 lim inf

𝑗→∞
∥ 𝑓 ∥∞,𝜑∥𝑒∥

1/𝑗
∞,𝜑∥𝑢∥ = 𝐶∥ 𝑓 ∥∞,𝜑∥𝑢∥. □

Proof of Lemma 7.4. The uniform convergence on compact subsets of S𝜑 together
with the uniform boundedness of ( 𝑓 𝑗 ) implies that 𝑓 ∈ H∞(S𝜑). First, we let 𝑢 ∈
dom(𝐿) ∩ ran(𝐿) and we recall from Proposition 2.4 (e) that this means 𝑢 = 𝑒(𝐿)𝑣
for some 𝑣 ∈ 𝐻. We also recall from Lemma 6.4 that 𝑢 belongs to dom( 𝑓 (𝐿)) and
dom( 𝑓 𝑗 (𝐿)) for every 𝑗 . By construction, we have

𝑓 𝑗 (𝐿)𝑢 = 𝑒(𝐿)−1(𝑒 𝑓 𝑗 ) (𝐿)𝑢 = (𝑒 𝑓 𝑗 ) (𝐿)𝑣,
𝑓 (𝐿)𝑢 = 𝑒(𝐿)−1(𝑒 𝑓 ) (𝐿)𝑢 = (𝑒 𝑓 ) (𝐿)𝑣,

and it remains to pass to the limit on the right-hand sides, using the pointwise bound
|𝑒 𝑓 𝑗 | ≤ (sup 𝑗 ∥ 𝑓 𝑗 ∥∞,𝜑) |𝑒 | on S𝜑 and the dominated convergence theorem:

lim
𝑗→∞

(𝑒 𝑓 𝑗 ) (𝐿)𝑣 = lim
𝑗→∞

1
2𝜋i

∫
𝛾𝜓

𝑒(𝑧) 𝑓 𝑗 (𝑧) (𝑧 − 𝐿)−1𝑣 d𝑧

=
1

2𝜋i

∫
𝛾𝜓

𝑒(𝑧) 𝑓 (𝑧) (𝑧 − 𝐿)−1𝑣 d𝑧 = (𝑒 𝑓 ) (𝐿)𝑣.

This proves the general claim on strong convergence on dom(𝐿) ∩ ran(𝐿).

Under the additional assumption in (a), we know that{
(𝑢, 𝑇𝑢) | 𝑢 ∈ dom(𝐿) ∩ ran(𝐿)

}
⊆ 𝑓 (𝐿).

Here, dom(𝐿) ∩ ran(𝐿) is dense in 𝐻 because 𝐿 is injective, see Proposition 2.4 (e)
and (b). Thus, the closure of the left-hand side is 𝑇 . As 𝑓 (𝐿) is closed, we first obtain
𝑇 ⊆ 𝑓 (𝐿) and then 𝑇 = 𝑓 (𝐿) since dom(𝑇) = 𝐻.

Finally, in the situation of (b) the sequence of bounded operators ( 𝑓 𝑗 (𝐿)) is bounded
and converges strongly on a dense subset of𝐻. Hence, it converges strongly everywhere
on 𝐻 to some operator 𝑇 ∈ L(𝐻) and according to (a) we must have 𝑇 = 𝑓 (𝐿). □

7.2. Examples
Let us consider three examples of operators in the light of Definition 7.2.

Example 7.6 (The negative Laplacian onR𝑛). This operator has a bounded H∞-calculus
of any angle 𝜑 ∈ (0, 𝜋) and we have the explicit norm bound

∥ 𝑓 (−Δ)∥L(L2 (R𝑛)) ≤ ∥ 𝑓 ∥∞,𝜑 ( 𝑓 ∈ H∞(S𝜑))
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7. H∞-calculus

that has already appeared in Theorem 4.14. (We checked later on in Example 5.14 that
the multiplier calculus from Lecture 4 is consistent with our general theory.)

Example 7.7 (Multiplication operators). Let 𝑀𝑚 be our usual multiplication operator
in L2(R𝑛). In Exercise 7.3 you will be asked to provide all details for the following
discussion. The conditions𝑚 ≠ 0 almost everywhere and essran(𝑚) ⊆ Sa are necessary
and sufficient for 𝑀𝑚 being injective and sectorial of angle a ∈ (0, 𝜋). In this case, if
𝜑 ∈ (a, 𝜋) and 𝑓 ∈ H∞

0 (S𝜑), then similarly to Example 5.8 we obtain 𝑓 (𝑀𝑚) = 𝑀 𝑓 ◦𝑚
and thus

∥ 𝑓 (𝑀𝑚)∥L(L2 (R𝑛)) ≤ ∥ 𝑓 ◦ 𝑚∥L∞ (R𝑛) = ∥ 𝑓 ∥∞,𝜑 ( 𝑓 ∈ H∞
0 (S𝜑)).

It follows from Corollary 7.5 that 𝑀𝑚 has a bounded H∞-calculus of angle 𝜑 and in
particular, we have 𝜑∞

𝑀𝑚
= 𝜑𝑀𝑚 .

Example 7.8 (Bounded operators). A bounded and invertible sectorial operator 𝐿 in 𝐻
has a bounded H∞-calculus and 𝜑∞

𝐿
= 𝜑𝐿 . To this end, let 𝜑 ∈ (𝜑𝐿 , 𝜋) and 𝑓 ∈ H∞

0 (S𝜑).
Using the decay of 𝑓 , we find

𝑓 (𝐿) = lim
Y→0
𝑅→∞

1
2𝜋i

∫
𝛾𝜓,Y,𝑅

𝑓 (𝑧) (𝑧 − 𝐿)−1 d𝑧, (7.3)

where the paths 𝛾𝜓,Y,𝑅 with 0 < Y < 1 < 𝑅 are as in the proof of Lemma 5.4. Now,
keep an eye on Figure 7.1. Since 𝐿 is bounded, the spectrum of 𝐿 is compact. Since
𝐿 is invertible, it does not contain 0. Hence, we can fix Y, 𝑅 such that 𝜎(𝐿) lies in the
interior of 𝛾𝜓,Y,𝑅. Since 𝑧 ↦→ 𝑓 (𝑧) (𝑧 − 𝐿)−1 is holomorphic in S𝜑 \ 𝜎(𝐿), the Cauchy
integral formula tells us that

1
2𝜋i

∫
𝛾𝜓,Y,𝑅

𝑓 (𝑧) (𝑧 − 𝐿)−1 d𝑧 =
1

2𝜋i

∫
𝛾𝜓,Y′ ,𝑅′

𝑓 (𝑧) (𝑧 − 𝐿)−1 d𝑧,

whenever 0 < Y′ < Y and 𝑅′ > 𝑅. Thus, we can omit the limit in (7.3) and write

𝑓 (𝐿) = 1
2𝜋i

∫
𝛾𝜓,Y,𝑅

𝑓 (𝑧) (𝑧 − 𝐿)−1 d𝑧.

Since the length ℓ(𝛾𝜓,Y,𝑅) of 𝛾𝜓,Y,𝑅 is finite, we do no longer need the decay of 𝑓 to
control the integral on the right. This was the key point! Now, we obtain

∥ 𝑓 (𝐿)∥L(𝐻) ≤
(ℓ(𝛾𝜓,Y,𝑅)

2𝜋
sup

𝑧∈𝛾𝜓,Y,𝑅
∥(𝑧 − 𝐿)−1∥L(𝐻)

)
∥ 𝑓 ∥∞,𝜑 C 𝐶∥ 𝑓 ∥∞,𝜑,

where 𝐶 depends on 𝐿 and 𝜑 but not on 𝑓 . This calculation was for 𝑓 ∈ H∞
0 (S𝜑) and

the claim follows again from Corollary 7.5.

All classes considered above are stable under taking adjoints. Still, it is worth pointing
out the following general duality principle.
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Re

Im

𝜓
𝜑𝐿

𝜑

𝛾𝜓

𝛾𝜓,Y,𝑅

𝛾𝜓,Y′,𝑅′
𝜎(𝐿)

Figure 7.1.: The configuration of paths 𝛾𝜓,Y,𝑅 and 𝛾𝜓,Y′,𝑅′ as in Example 7.8.

Lemma 7.9. Let 𝐿 be an injective sectorial operator in 𝐻 and let 𝜑 ∈ (𝜑𝐿 , 𝜋). Then 𝐿
has a bounded H∞-calculus of angle 𝜑 if and only if 𝐿∗ does. In particular, 𝜑∞

𝐿
= 𝜑∞

𝐿∗ .

Proof. This is a straightforward application of the adjoint calculus. Indeed, if 𝐿 has a
bounded H∞-calculus of angle 𝜑 ∈ (𝜑𝐿 , 𝜋) with bound 𝐶, then

∥ 𝑓 (𝐿∗)∥L(𝐻)
6.10
= ∥ 𝑓 ∗(𝐿)∗∥L(𝐻)

1.20 (h)
= ∥ 𝑓 ∗(𝐿)∥L(𝐻) ≤ 𝐶∥ 𝑓 ∗∥∞,𝜑 = 𝐶∥ 𝑓 ∥∞,𝜑.

Applying the same reasoning to 𝐿∗ with adjoint (𝐿∗)∗ = 𝐿, yields the claim. □

We have seen examples of sectorial operators with a bounded H∞-calculus and ex-
perience tells us since many years that most sectorial operators that we encounter, in
particular those arising from partial differential equations, have this property. However,
it does not come for free:

Warning 7.10. There is a Hilbert space 𝐻 and an invertible sectorial operator 𝐿 in 𝐻
that does not have a bounded H∞-calculus of any angle. One of the first such examples
due to McIntosh and Yagi [MY90] is an intricate tensor product of matrices on larger and
larger finite dimensional spaces. A general method for constructing counterexamples
by means of conditional Schauder bases is presented in [Haa06, Ch. 9]. All known
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7. H∞-calculus

counterexamples look somewhat pathological at first sight and if you know a simpler
one, please let us know!

The examples above also had in common that in the end

𝜑∞𝐿 = 𝜑𝐿

is the best possible angle. Here, there is no caveat but precise results and proofs have
to wait until the next lecture.

7.3. The H∞-calculus for m-accretive operators
We come to a significantly more involved example of sectorial operators that have a
bounded H∞-calculus: m-accretive operators. Their last appearance on the show dates
back to Episode 2 and we recall from Definition 2.22 that 𝐿 is m-accretive if it satisfies
the particular resolvent estimate

∥(_ + 𝐿)−1∥L(𝐻) ≤
1

Re(_) (Re(_) > 0), (7.4)

which implies sectoriality of angle 𝜋/2. We have seen in Theorem 2.21 that the operators
associated with bounded, elliptic and accretive sesquilinear forms are of this type.
The following lemma provides an equivalent characterization of m-accretivity that
is typically easier to verify for concrete examples. We leave the proof for you as
Exercise 7.1.

Lemma 7.11. For a linear operator 𝐿 in 𝐻 the following are equivalent:

(a) 𝐿 is m-accretive.

(b) Re ⟨𝐿𝑢, 𝑢⟩ ≥ 0 for all 𝑢 ∈ dom(𝐿) and there exists some _ > 0 such that
ran(_ + 𝐿) = 𝐻.

Moreover, the range condition in (b) can be dropped if 𝐿 is bounded.

Here is the main result in this second part of the lecture:

Theorem 7.12 (Von Neumann’s inequality). Let 𝐿 be an m-accretive operator in 𝐻
and let 𝜑 ∈ (𝜋/2, 𝜋). Then

∥ 𝑓 (𝐿)∥L(𝐻) ≤ ∥ 𝑓 ∥∞,𝜋/2 ( 𝑓 ∈ E(S𝜑)). (7.5)

If 𝐿 is injective, then (7.5) continues to hold for all 𝑓 ∈ H∞(S𝜑) and 𝐿 has a bounded
H∞-calculus of angle 𝜑.

Let us discuss the theorem in more detail before delving into the proof. Ours is not
the original formulation due to von Neumann [vN51], which dates back long before
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7.3. The H∞-calculus for m-accretive operators

H∞-calculus, but a very close relative of it [Haa06, Rem. 7.1.9]. The statement can
be turned into an equivalence: Namely, if 𝐿 is merely sectorial of angle 𝜋/2, then it is
m-accretive if and only if (7.5) holds. For the converse direction, it suffices to note
that (7.5) for 𝑓_ B (_ + z)−1 with Re(_) > 0 yields (7.4).

For the proof of von Neumann’s inequality we will use an approximation of 𝐿 by
bounded m-accretive operators with additional spectral properties. This is the content
of the following lemma.

Lemma 7.13. Let 𝐿 be an m-accretive operator in 𝐻. For Y ∈ (0, 1) define

𝐿Y B (Y + 𝐿) (1 + Y𝐿)−1.

The following properties hold:

(a) 𝐿Y is bounded and 𝐿Y − Y is m-accretive. In particular, 𝐿Y is m-accretive.

(b) 𝜑𝐿Y < 𝜋/2.

(c) For all 𝑧 ∈ C with Re(𝑧) < 0 and all 𝑢 ∈ 𝐻 we have

(𝑧 − 𝐿Y)−1𝑢 → (𝑧 − 𝐿)−1𝑢 as Y ↘ 0.

(d) Let 𝜑 ∈ (𝜋/2, 𝜋). For all 𝑓 ∈ E(S𝜑) and all 𝑢 ∈ 𝐻 we have

𝑓 (𝐿Y)𝑢 → 𝑓 (𝐿)𝑢 as Y ↘ 0.

Proof. (a) Boundedness follows on writing

𝐿Y =
(
Y−1 + 𝐿 − Y−1 + Y

) (
Y−1(Y−1 + 𝐿)−1)

= Y−1 − (Y−2 − 1) (Y−1 + 𝐿)−1.

Using the Cauchy–Schwarz inequality and m-accretivity of 𝐿, we obtain for every
𝑢 ∈ 𝐻 that

Re⟨𝐿Y𝑢, 𝑢⟩ ≥ Y−1∥𝑢∥2 − (Y−2 − 1)∥(Y−1 + 𝐿)−1𝑢∥∥𝑢∥
≥ Y−1∥𝑢∥2 − (Y−2 − 1)Y∥𝑢∥2 = Y∥𝑢∥2.

Lemma 7.11 yields that 𝐿Y − Y (and 𝐿Y) are m-accretive.

(b) Let us collect some spectral information on 𝐿Y in Figure 7.2. According to (a),
𝐿Y is bounded and 𝐿Y −Y is m-accretive. Hence, the spectrum of 𝐿Y is a compact
subset of the right half-plane {𝑧 ∈ C | Re(𝑧) ≥ Y} and therefore contained in Sa
for some angle a ∈ (0, 𝜋/2) depending on Y.

In order to show the resolvent estimate required for sectoriality of angle a, we fix
𝜓 ∈ (a, 𝜋) and set 𝑅Y B ∥𝐿Y∥L(𝐻) . On the compact set {𝑧 ∈ C | 𝑧 ∉ S𝜓 and |𝑧 | ≤
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7. H∞-calculus

2𝑅Y} the resolvent 𝑅(· , 𝐿Y) is even uniformly bounded by holomorphy, whereas
for |𝑧 | > 2𝑅Y we can use a Neumann series to bound𝑅(𝑧, 𝐿Y)L(𝐻) =

𝑧−1(1 − 𝑧−1𝐿Y)−1
L(𝐻)

=

𝑧−1
∞∑︁
𝑘=0

(𝑧−1𝐿Y)𝑘

L(𝐻)

≤ 2|𝑧 |−1.

Re

Im

a

𝜑

𝜓

𝛾𝜋/2

Y

𝜎(𝐿Y)

Figure 7.2.: The spectrum of the bounded operator 𝐿Y is a compact subset of the half-
plane {𝑧 ∈ C | Re(𝑧) ≥ Y}, hence contained in the closure of some
sector Sa with a < 𝜋/2. The resolvent bound ∥𝑅(𝑧, 𝐿Y)∥L(𝐻) ≤ 2|𝑧 |−1 for
|𝑧 | > 2∥𝐿Y∥L(𝐻) , coming from a Neumann series, yields sectoriality of 𝐿Y
with angle a. In Theorem 7.12 the function 𝑓 is holomorphic on S𝜑.

(c) We set 𝑣 B (𝑧 − 𝐿)−1𝑢 ∈ dom(𝐿) and write the difference of resolvents as

(𝑧 − 𝐿)−1𝑢 − (𝑧 − 𝐿Y)−1𝑢 = (𝑧 − 𝐿Y)−1(𝐿 − 𝐿Y) (𝑧 − 𝐿)−1𝑢

= (𝑧 − 𝐿Y)−1 (𝐿 − (Y + 𝐿) (1 + Y𝐿)−1)𝑣
= (𝑧 − 𝐿Y)−1 (𝐿𝑣 − (1 + Y𝐿)−1𝐿𝑣 − Y(1 + Y𝐿)−1𝑣

)
.
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7.3. The H∞-calculus for m-accretive operators

Since 𝐿Y is m-accretive, we can bound its resolvent independently of Y to obtain(𝑧 − 𝐿)−1𝑢 − (𝑧 − 𝐿Y)−1𝑢


≤ 1
| Re(𝑧) |

(𝐿𝑣 − (1 + Y𝐿)−1𝐿𝑣
 + Y(1 + Y𝐿)−1𝑣

) .
In the limit as Y → 0, both norms on the right tend to zero in virtue of Proposi-
tion 2.4 (d).

(d) There is nothing to do for 𝑓 = 1 and in (c) we have already dealt with 𝑓 = (1+z)−1.
Let now 𝑓 ∈ H∞

0 (S𝜑). We fix 𝜓 ∈ (𝜋/2, 𝜑) in order to write

𝑓 (𝐿)𝑢 − 𝑓 (𝐿Y)𝑢 =
1

2𝜋i

∫
𝛾𝜓

𝑓 (𝑧)
(
(𝑧 − 𝐿)−1𝑢 − (𝑧 − 𝐿Y)−1𝑢

)
d𝑧.

Since both 𝐿 and 𝐿Y are m-accretive, we obtain an integrable majorant for the
integrands on the right by estimating 𝑓 (𝑧) ((𝑧 − 𝐿)−1𝑢 − (𝑧 − 𝐿Y)−1𝑢

) ≤ 2| 𝑓 (𝑧) |
|𝑧 | sin(𝜓 − 𝜋/2) ∥𝑢∥ (𝑧 ∈ 𝛾𝜓).

The claim follows by dominated convergence and (c). □

We are ready to prove von Neumann’s inequality.

Proof of Theorem 7.12. Let us first prove the theorem for 𝐿Y in place of 𝐿.

We begin by deriving a particular formula for 𝑓 (𝐿Y) when 𝑓 ∈ H∞
0 (S𝜑). Since 𝐿Y is

sectorial of angle smaller than 𝜋/2, we can calculate

𝑓 (𝐿Y) =
1

2𝜋i

∫
𝛾𝜋/2

𝑓 (𝑧) (𝑧 − 𝐿Y)−1 d𝑧

via a Cauchy integral along the imaginary axis, see also Figure 7.2. The possibility
to choose this path is crucial for the argument and in general it is not permitted for
the operator 𝐿 itself. Keeping Figure 7.2 and Proposition 1.21 in mind, we see that
(z + 𝐿∗Y)−1 is holomorphic on the right half-plane {𝑧 ∈ C : Re(𝑧) > −Y} and bounded
by 𝐶/|z|. Hence, we can use Cauchy’s integral formula to compute

0 =

∫
𝛾𝜋/2

𝑓 (𝑧) (𝑧 + 𝐿∗Y)−1 d𝑧.

The two preceding identities yield

𝑓 (𝐿Y) =
1

2𝜋i

∫
𝛾𝜋/2

𝑓 (𝑧)
(
(𝑧 − 𝐿Y)−1 − (𝑧 + 𝐿∗Y)−1) d𝑧

=
1

2𝜋i

∫
𝛾𝜋/2

𝑓 (𝑧) (𝑧 + 𝐿∗Y)−1(𝐿Y + 𝐿∗Y) (𝑧 − 𝐿Y)−1 d𝑧.
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Now, we use the symmetry property 𝑧 = −𝑧, which holds precisely when 𝑧 ∈ 𝛾𝜋/2, in
order to obtain for any 𝑢, 𝑣 ∈ 𝐻 that

⟨ 𝑓 (𝐿Y)𝑢, 𝑣⟩ =
1

2𝜋i

∫
𝛾𝜋/2

𝑓 (𝑧)
〈
(𝐿Y + 𝐿∗Y) (𝑧 − 𝐿Y)−1𝑢, (𝑧 + 𝐿Y)−1𝑣

〉
d𝑧

= − 1
2𝜋i

∫
𝛾𝜋/2

𝑓 (𝑧)
〈
(𝐿Y + 𝐿∗Y) (𝑧 − 𝐿Y)−1𝑢, (𝑧 − 𝐿Y)−1𝑣

〉
d𝑧.

(7.6)

At this point, we introduce the bounded auxiliary operator

𝑇 B 𝐿Y + 𝐿∗Y .

Clearly, 𝑇 is self-adjoint and since 𝐿Y is m-accretive, we obtain from Lemma 7.11 that

Re⟨𝑇𝑢, 𝑢⟩ = Re
(
⟨𝐿Y𝑢, 𝑢⟩ + ⟨𝑢, 𝐿Y𝑢⟩

)
= 2 Re⟨𝐿Y𝑢, 𝑢⟩ ≥ 0 (𝑢 ∈ 𝐻)

and hence that 𝑇 is m-accretive. The key point is that the square root
√
𝑇 is self-

adjoint (Corollary 6.11) and bounded (Exercise 6.1). Going back to (7.6), we obtain
the representation

⟨ 𝑓 (𝐿Y)𝑢, 𝑣⟩ = − 1
2𝜋i

∫
𝛾𝜋/2

𝑓 (𝑧)
〈√
𝑇 (𝑧 − 𝐿Y)−1𝑢,

√
𝑇 (𝑧 − 𝐿Y)−1𝑣

〉
d𝑧

=
1

2𝜋

∫ ∞

−∞
𝑓 (i𝑡)

〈√
𝑇 (i𝑡 − 𝐿Y)−1𝑢,

√
𝑇 (i𝑡 − 𝐿Y)−1𝑣

〉
d𝑡,

(7.7)

where in the last step we have kept in mind that 𝛾𝜋/2 runs from i · ∞ to −i · ∞.

We claim that this formula is in fact valid for all 𝑓 ∈ H∞(S𝜑), because, similarly
to Example 7.8, the decay of 𝑓 is no longer needed to make sense of the integral
on the right-hand side. Indeed, let 𝑓 ∈ H∞(S𝜑) and consider a bounded sequence
( 𝑓 𝑗 ) ∈ H∞

0 (S𝜑) that converges to 𝑓 uniformly on compact subsets of S𝜑.2 Then (7.7)
yields

⟨ 𝑓 𝑗 (𝐿Y)𝑢, 𝑣⟩ =
1

2𝜋

∫ ∞

−∞
𝑓 𝑗 (i𝑡)

〈√
𝑇 (i𝑡 − 𝐿Y)−1𝑢,

√
𝑇 (i𝑡 − 𝐿Y)−1𝑣

〉
d𝑡

and we want to pass to the limit as 𝑗 → ∞. On the left, the convergence lemma
yields 𝑓 𝑗 (𝐿Y)𝑢 → 𝑓 (𝐿Y)𝑢 since we have dom(𝐿Y) = 𝐻 = ran(𝐿Y). On the right, the
integrand is continuous and for 𝑡 large it is bounded by 𝐶𝑡−2∥

√
𝑇 ∥2

L(𝐻) ∥𝑢∥∥𝑣∥ due to
the resolvent bounds for 𝐿Y, see again Figure 7.2, where 𝐶 that does not depend on
𝑗 and 𝑡. Thus, dominated convergence applies. Altogether, we have shown (7.7) for
𝑓 ∈ H∞(S𝜑). In particular, taking 𝑓 = 1 and 𝑢 = 𝑣, gives a formula for the norm:

∥𝑢∥2 =
1

2𝜋

∫
R

√𝑇 (i𝑡 − 𝐿Y)−1𝑢
2 d𝑡 (𝑢 ∈ 𝐻). (7.8)

2One example is 𝑓 𝑗 = (z(1 + z)−2)1/𝑗 𝑓 , see the proof of Corollary 7.5.
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Now, we let 𝑓 ∈ H∞(S𝜑), use the Cauchy–Schwarz inequality in (7.7) and then
apply (7.8) in order to remove

√
𝑇 entirely from the game:

��⟨ 𝑓 (𝐿Y)𝑢, 𝑣⟩�� ≤ ∥ 𝑓 ∥∞,𝜋/2

2𝜋

( ∫
R

√𝑇 (i𝑡 − 𝐿Y)−1𝑢
2 d𝑡

)1/2 ( ∫
R

√𝑇 (i𝑡 − 𝐿Y)−1𝑣
2 d𝑡

)1/2

= ∥ 𝑓 ∥∞,𝜋/2∥𝑢∥∥𝑣∥.

The choice 𝑣 = 𝑓 (𝐿Y)𝑢 yields

∥ 𝑓 (𝐿Y)∥L(𝐻) ≤ ∥ 𝑓 ∥∞,𝜋/2 ( 𝑓 ∈ H∞(S𝜑)), (7.9)

which is von Neumann’s inequality for 𝐿Y.

We complete the proof by approximating 𝐿 by 𝐿Y. For 𝑓 ∈ E(S𝜑) we know by virtue
of Lemma 7.13 (d) and (7.9) that

∥ 𝑓 (𝐿)𝑢∥ = lim
Y→0

∥ 𝑓 (𝐿Y)𝑢∥ ≤ ∥ 𝑓 ∥∞,𝜋/2∥𝑢∥ (𝑢 ∈ 𝐻),

which establishes (7.5). If, in addition, 𝐿 is injective, then (7.5) follows for all 𝑓 ∈
H∞(S𝜑) by Corollary 7.5 — or, more precisely, its proof, since we want to pass to the
limit with the norm on S𝜋/2 rather than S𝜑. □

7.4. Exercises
Exercise 7.1 (Characterizations of m-accretivity). Provide a proof of Lemma 7.11.

Hint: You will find inspiration from the proof of Theorem 2.21 . . .

Exercise 7.2 (m-accretive fractional powers). Let 𝐿 be an m-accretive operator in 𝐻
and let 𝛼 ∈ (0, 1). Prove that 𝐿𝛼 is m-accretive.

Exercise 7.3. Fill in the details left out in the discussion of the H∞-calculus for
multiplication operators in Example 7.7.

Hint: Compute ⟨ 𝑓 (𝑀𝑚)𝑢, 𝑣⟩L2 (R𝑛) for 𝑢, 𝑣 ∈ L2(R𝑛) instead of trying to pull the
variable 𝑥 directly into the Bochner integral as in Example 5.8.

Exercise 7.4 (An automatic bound for the H∞-calculus). Let 𝐿 be an injective sectorial
operator in 𝐻. Let 𝜑 ∈ (𝜑𝐿 , 𝜋) and suppose that we have 𝑓 (𝐿) ∈ L(𝐻) for every
𝑓 ∈ H∞(S𝜑). Prove that there is a constant 𝐶 ≥ 0 such that

∥ 𝑓 (𝐿)∥L(𝐻) ≤ 𝐶∥ 𝑓 ∥∞,𝜑

holds for every such 𝑓 .
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Exercise 7.5 (The injective part). In this exercise we describe a possibility to define an
H∞-calculus for a non-injective sectorial operator 𝐿 in 𝐻, using the maximal restriction
of 𝐿 to an operator in the closed subspace ran(𝐿) of 𝐻:

𝐿 |ran(𝐿) B 𝐿 ∩
(
ran(𝐿) × ran(𝐿)

)
.

(a) Let _ ∈ 𝜚(𝐿). Prove that (_ − 𝐿)−1 maps ran(𝐿) into itself.

(b) Conclude that 𝐿 |ran(𝐿) is a sectorial operator in ran(𝐿) and that 𝜑𝐿 |ran(𝐿)
= 𝜑𝐿 .

(c) Prove that 𝐿 |ran(𝐿) is injective.

Let 𝜑 ∈ (𝜑𝐿 , 𝜋). Given 𝑓 ∈ H∞(S𝜑), the properties above allow us to define 𝑓 (𝐿) as a
closed operator in ran(𝐿) via

𝑓 (𝐿) B 𝑓 (𝐿 |ran(𝐿)).

Of course, this definition is only meaningful, if it is compatible with 𝑓 (𝐿) whenever
𝑓 ∈ M𝐿 (S𝜑). In order to see that this is indeed the case, we proceed as follows:

(d) Let 𝑓 ∈ E(S𝜑). Prove that 𝑓 (𝐿)𝑢 = 𝑓 (𝐿 |ran(𝐿))𝑢 for all 𝑢 ∈ ran(𝐿).

Hint: Exercise 5.5.

(e) Let 𝑓 ∈ M𝐿 (S𝜑). Conclude that 𝑓 (𝐿 |ran(𝐿)) is the maximal restriction of 𝑓 (𝐿)
to an operator in ran(𝐿).
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8. Quadratic estimates vs.
functional calculus

In Corollary 4.17 we have used the Fourier transform to prove a fundamental inequality
that compares the L2(R𝑛)-norm with a quadratic integral involving functional calculus
for the negative Laplacian:∫ ∞

0
∥ 𝑓 (−𝑡Δ)𝑢∥2

L2 (R𝑛)
d𝑡
𝑡
≃ ∥𝑢∥2

L2 (R𝑛) , (8.1)

where 𝑓 was a suitable non-zero function on (0,∞). This is the most basic example of a
continuous Littlewood–Paley inequality. In our writing of (8.1) the specific properties
of the Fourier transform seem to have disappeared and it makes sense to ask whether the
same type of estimates hold for a general sectorial operator 𝐿 in place of −Δ. In return,
if this works out, it should provide us with some sort of ‘Fourier analysis adapted to
the operator 𝐿’ and we could try to generalize other special properties of the negative
Laplacian from Lecture 4. In this lecture, we will explore these ideas further and we
will learn that ‘𝐿-adapted Fourier analysis’ is closely related to ‘𝐿 having a bounded
H∞-calculus’.

Notation 8.1. As in the previous lecture, 𝐿 denotes an injective sectorial operator in a
Hilbert space 𝐻 with inner product ⟨· , ·⟩ and norm ∥ · ∥.

8.1. McIntosh’s theorem
We begin by modelling a notion of quadratic estimates based on (8.1) that can hold for
the given sectorial operator 𝐿 and a given non-zero function 𝑓 — or not.

Definition 8.2. Let 𝑓 ∈ H∞
0 (S𝜑) \ {0} for some 𝜑 ∈ (𝜑𝐿 , 𝜋). We say that 𝐿 satisfies

quadratic estimates (with auxiliary function 𝑓 ) if there is 𝐶 > 0 such that

𝐶−1∥𝑢∥2 ≤
∫ ∞

0
∥ 𝑓 (𝑡𝐿)𝑢∥2 d𝑡

𝑡
≤ 𝐶∥𝑢∥2 (𝑢 ∈ 𝐻).

It satisfies lower (upper) quadratic estimates if only the first (the second) estimate holds.

We find it instructive to showcase that quadratic estimates always hold when 𝐿 is self-
adjoint and where the specific argument breaks down if it is not. This also gives a
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8. Quadratic estimates vs. functional calculus

non-Fourier related proof for the negative Laplacian (using a different class of auxiliary
functions).

Lemma 8.3. Let 𝑓 ∈ H∞
0 (S𝜑) \ {0} for some 𝜑 ∈ (𝜑𝐿 , 𝜋) and suppose that 𝐿 is

self-adjoint. Set 𝑐 B
∫ ∞

0 | 𝑓 (𝑡) |2 d𝑡
𝑡

. Then 𝐿 satisfies the quadratic ‘estimates’∫ ∞

0
∥ 𝑓 (𝑡𝐿)𝑢∥2 d𝑡

𝑡
= 𝑐∥𝑢∥2 (𝑢 ∈ 𝐻).

Proof. Let 𝑢 ∈ 𝐻. The key observation is that we have 𝑓 (𝑡𝐿)∗ = 𝑓 ∗(𝑡𝐿) for all 𝑡 > 0,
see Lemma 6.9. Using the monotone convergence theorem, we can write∫ ∞

0
∥ 𝑓 (𝑡𝐿)𝑢∥2 d𝑡

𝑡
= lim
𝑅→∞

∫ 𝑅

1/𝑅
⟨ 𝑓 (𝑡𝐿)𝑢, 𝑓 (𝑡𝐿)𝑢⟩ d𝑡

𝑡
=

〈
lim
𝑅→∞

∫ 𝑅

1/𝑅
( 𝑓 ∗ 𝑓 ) (𝑡𝐿)𝑢 d𝑡

𝑡
, 𝑢

〉
.

In other words: Self-adjointness of 𝐿 allows us to write the quadratic integral as a
sesquilinear quantity amenable to ‘cancellation properties’ of 𝑓 , because there are
no absolute values anymore. Since 𝑐 =

∫ ∞
0 𝑓 ∗(𝑡) 𝑓 (𝑡) d𝑡

𝑡
, the Calderón reproducing

formula (Theorem 6.16) implies that the limit on the right-hand side equals 𝑐𝑢 and the
claim follows. □

The principal result in this section, due to McIntosh [McI86], shows that quadratic
estimates are independent of the auxiliary function and characterize the boundedness
of the H∞-calculus. In particular, and most certainly surprisingly, the H∞-angle in
Hilbert spaces is automatically the best possible one: We have 𝜑∞

𝐿
= 𝜑𝐿!

Theorem 8.4 (McIntosh). The following statements are equivalent.

(a) 𝐿 satisfies quadratic estimates for some auxiliary function 𝑓 ∈ H∞
0 (S𝜑) \ {0},

where 𝜑 ∈ (𝜑𝐿 , 𝜋) is some angle.

(b) 𝐿 satisfies quadratic estimates for all auxiliary functions 𝑓 ∈ H∞
0 (S𝜑) \ {0},

where 𝜑 ∈ (𝜑𝐿 , 𝜋) is any angle.

(c) 𝐿 has a bounded H∞-calculus of some angle 𝜑 ∈ (𝜑𝐿 , 𝜋).

(d) 𝐿 has a bounded H∞-calculus of any angle 𝜑 ∈ (𝜑𝐿 , 𝜋).

We prepare the proof of Theorem 8.4 by a succession of four short lemmas.

Lemma 8.5. Let 𝜑 ∈ (𝜑𝐿 , 𝜋). For any two 𝑓 , 𝑔 ∈ H∞
0 (S𝜑) there exists a function

Z ∈ L1((0,∞); d𝑡
𝑡
) such that

∥ 𝑓 (𝑟𝐿)𝑔(𝑠𝐿)∥L(𝐻) ≤ Z (𝑟𝑠−1) (𝑟, 𝑠 > 0).
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Proof. Fix 𝜓 ∈ (𝜑𝐿 , 𝜑). By sectoriality of 𝐿 and the decay of 𝑓 , 𝑔, we can bound the
Cauchy integral defining 𝑓 (𝑟𝐿)𝑔(𝑠𝐿) by

∥ 𝑓 (𝑟𝐿)𝑔(𝑠𝐿)∥L(𝐻) =

 1
2𝜋i

∫
𝛾𝜓

𝑓 (𝑟𝑧)𝑔(𝑠𝑧) (𝑧 − 𝐿)−1 d𝑧

L(𝐻)

≤ 𝐶
∫ ∞

0
min

(
(𝑟𝑡)𝑠 𝑓 , (𝑟𝑡)−𝑠 𝑓

)
min

(
(𝑠𝑡)𝑠𝑔 , (𝑠𝑡)−𝑠𝑔

) d𝑡
𝑡

(8.2)

for some constants 𝐶, 𝑠 𝑓 , 𝑠𝑔 > 0. We substitute 𝜏 B 𝑠𝑡 and obtain

∥ 𝑓 (𝑟𝐿)𝑔(𝑠𝐿)∥L(𝐻) ≤ 𝐶
∫ ∞

0
min

(
(𝑟𝑠−1𝜏)𝑠 𝑓 , (𝑟𝑠−1𝜏)−𝑠 𝑓

)
min

(
𝜏𝑠𝑔 , 𝜏−𝑠𝑔

) d𝜏
𝜏

C Z (𝑟𝑠−1)

and, by Tonelli’s theorem and the substitution 𝜌 B 𝑡𝜏, we obtain as required∫ ∞

0
Z (𝑡) d𝑡

𝑡
= 𝐶

∫ ∞

0
min

(
𝜏𝑠𝑔 , 𝜏−𝑠𝑔

) ∫ ∞

0
min

(
(𝑡𝜏)𝑠 𝑓 , (𝑡𝜏)−𝑠 𝑓

) d𝑡
𝑡

d𝜏
𝜏

= 𝐶

( ∫ ∞

0
min

(
𝜌𝑠 𝑓 , 𝜌−𝑠 𝑓

) d𝜌
𝜌

) ( ∫ ∞

0
min

(
𝜏𝑠𝑔 , 𝜏−𝑠𝑔

) d𝜏
𝜏

)
< ∞. □

Remark 8.6. The lemma can be generalized to the following ‘regularized H∞-bound’:
For all ℎ ∈ H∞

0 (S𝜑) we have

∥ 𝑓 (𝑟𝐿)ℎ(𝐿)𝑔(𝑠𝐿)∥L(𝐻) ≤ Z (𝑟𝑠−1)∥ℎ∥∞,𝜑 (𝑟, 𝑠 > 0).

Indeed, it suffices to estimate ℎ by its supremum norm in the second line of (8.2). This
version will be important when proving ‘(𝑏) =⇒ (𝑑)’ in Theorem 8.4.

The second lemma shows that different (non identically zero) auxiliary functions 𝑓

yield equivalent quadratic norms.

Lemma 8.7. Let 𝜑 ∈ (𝜑𝐿 , 𝜋). Given 𝑓 , 𝑔 ∈ H∞
0 (S𝜑) with 𝑔 not identically zero, there

is a constant 𝐶 such that∫ ∞

0
∥ 𝑓 (𝑠𝐿)𝑢∥2 d𝑠

𝑠
≤ 𝐶

∫ ∞

0
∥𝑔(𝑡𝐿)𝑢∥2 d𝑡

𝑡
(𝑢 ∈ 𝐻).

Proof. We begin by fixing a Calderón sibling 𝑔♯ ∈ H∞
0 (S𝜑) of 𝑔 as in Definition 6.17.

Let 𝑠 > 0. From the Calderón reproducing formula and since 𝑓 (𝑠𝐿) is bounded, we
obtain

𝑓 (𝑠𝐿)𝑢 =

∫ ∞

0
𝑓 (𝑠𝐿)𝑔♯ (𝑡𝐿)𝑔(𝑡𝐿)𝑢 d𝑡

𝑡
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as an improper integral. Thus, we have∫ ∞

0
∥ 𝑓 (𝑠𝐿)𝑢∥2 d𝑠

𝑠
≤
∫ ∞

0

( ∫ ∞

0

 𝑓 (𝑠𝐿)𝑔♯ (𝑡𝐿)𝑔(𝑡𝐿)𝑢 d𝑡
𝑡

)2 d𝑠
𝑠
.

Now, we use Lemma 8.5 with the functions 𝑓 , 𝑔♯ and the Cauchy–Schwarz inequality
to perform what is often called a ‘Schur type bound’ in reminiscence of the Schur test
for integral operators (Exercise 8.1):∫ ∞

0
∥ 𝑓 (𝑠𝐿)𝑢∥2 d𝑠

𝑠
≤

∫ ∞

0

( ∫ ∞

0
Z (𝑠𝑡−1)∥𝑔(𝑡𝐿)𝑢∥ d𝑡

𝑡

)2 d𝑠
𝑠

≤
∫ ∞

0

( ∫ ∞

0
Z (𝑠𝑡−1) d𝑡

𝑡

) ( ∫ ∞

0
Z (𝑠𝑡−1)∥𝑔(𝑡𝐿)𝑢∥2 d𝑡

𝑡

)
d𝑠
𝑠

𝑡 = 𝑠𝜏−1

=

( ∫ ∞

0
Z (𝜏) d𝜏

𝜏

) ( ∫ ∞

0

∫ ∞

0
Z (𝑠𝑡−1)∥𝑔(𝑡𝐿)𝑢∥2 d𝑠

𝑠

d𝑡
𝑡

)
𝑠 = 𝑡 𝜏
=

( ∫ ∞

0
Z (𝜏) d𝜏

𝜏

)2 ( ∫ ∞

0
∥𝑔(𝑡𝐿)𝑢∥2 d𝑡

𝑡

)
. □

The third ingredient is a duality principle that links upper quadratic estimates with
lower quadratic estimates for the adjoint operator. Recall from Lemma 6.7 that the
adjoint of an injective sectorial operator is of the same type and that 𝜑𝐿 = 𝜑𝐿∗ .

Lemma 8.8. Let 𝜑 ∈ (𝜑𝐿 , 𝜋). If 𝐿 satisfies upper quadratic estimates for all 𝑓 ∈
H∞

0 (S𝜑) \ {0}, then 𝐿∗ satisfies lower quadratic estimates for all such 𝑓 .

Proof. We fix 𝑓 ∈ H∞
0 (S𝜑) \ {0} and let 𝑓 ♯ be a Calderón sibling, allowing us to write

any given 𝑢 ∈ 𝐻 via the reproducing formula

𝑢 =

∫ ∞

0
𝑓 ♯ (𝑡𝐿∗) 𝑓 (𝑡𝐿∗)𝑢 d𝑡

𝑡
.

Testing this equation with 𝑢 yields

∥𝑢∥2 =

∫ ∞

0

〈
𝑓 ♯ (𝑡𝐿∗) 𝑓 (𝑡𝐿∗)𝑢, 𝑢

〉 d𝑡
𝑡
,

where we control the right-hand side using the Cauchy–Schwarz inequality and upper
quadratic estimates for 𝐿 with auxiliary function ( 𝑓 ♯)∗: Indeed, taking the duality
relation in Lemma 6.9 into account, we get

=

∫ ∞

0

〈
𝑓 (𝑡𝐿∗)𝑢, ( 𝑓 ♯)∗(𝑡𝐿)𝑢

〉 d𝑡
𝑡

≤
( ∫ ∞

0

 𝑓 (𝑡𝐿∗)𝑢2 d𝑡
𝑡

)1/2 ( ∫ ∞

0

( 𝑓 ♯)∗(𝑡𝐿)𝑢2 d𝑡
𝑡

)1/2
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≲

( ∫ ∞

0
∥ 𝑓 (𝑡𝐿∗)𝑢∥2 d𝑡

𝑡

)1/2

∥𝑢∥.

It remains to divide both sides by ∥𝑢∥ and then take squares. □

While these three lemmas will help us proving boundedness of the H∞-calculus from
quadratic estimates, the converse will rely on the so-called ‘unconditionality lemma’.
The name stems from the orthogonality estimates that are typically used in bringing
this lemma into play. (Stay patient for a moment, please.)

Lemma 8.9 (Unconditionality lemma). Suppose that the H∞(S𝜑)-calculus for 𝐿 is
bounded with bound 𝐶𝐿 . Given 𝑓 ∈ H∞

0 (S𝜑), there exists a constant 𝐶 𝑓 ,𝜑 that depends
only on 𝑓 and 𝜑, such that∑︁

𝑗∈Z
𝑎 𝑗 𝑓 (𝑡2 𝑗𝐿)


L(𝐻)

≤ 𝐶𝐿𝐶 𝑓 ,𝜑∥𝑎∥ℓ∞ (Z)

for all 𝑡 > 0 and all sequences (𝑎 𝑗 ) ∈ ℓ∞(Z) with only finitely many non-zero elements.

Proof. We pick 𝐶, 𝑠 > 0 such that | 𝑓 (𝑧) | ≤ 𝐶min( |𝑧 |𝑠, |𝑧 |−𝑠) for all 𝑧 ∈ S𝜑 and obtain∑︁
𝑗∈Z

𝑎 𝑗 𝑓 (𝑡2 𝑗𝐿)

L(𝐻)

≤ 𝐶𝐿
∑︁
𝑗∈Z

𝑎 𝑗 𝑓 (𝑡2 𝑗 ·)

∞,𝜑

≤ 𝐶𝐿𝐶∥𝑎∥ℓ∞ (Z) sup
𝑧∈S𝜑

∑︁
𝑗∈Z

min
(
|2 𝑗 𝑡𝑧 |𝑠, |2 𝑗 𝑡𝑧 |−𝑠

)
.

For fixed 𝑧 ∈ S𝜑, we let 𝑗 (𝑧) be the unique integer that satisfies 1 ≤ |2 𝑗 (𝑧)𝑡𝑧 | < 2. Since
2 𝑗− 𝑗 (𝑧) ≤ |2 𝑗 𝑡𝑧 | < 2 𝑗− 𝑗 (𝑧)+1, we can complete the proof noting that∑︁

𝑗∈Z
min( |2 𝑗 𝑡𝑧 |𝑠, |2 𝑗 𝑡𝑧 |−𝑠) ≤

∑︁
𝑗< 𝑗 (𝑧)

2𝑠( 𝑗− 𝑗 (𝑧)+1) +
∑︁
𝑗≥ 𝑗 (𝑧)

2−𝑠( 𝑗− 𝑗 (𝑧)) =
2

1 − 2−𝑠
. □

We come to the proof of McIntosh’s theorem.

Proof of Theorem 8.4. We have ‘(𝑎) ⇐⇒ (𝑏)’ by Lemma 8.7 — if 𝑓 , 𝑔 are defined on
sectors of different angle, then we apply the lemma on the smaller one. Since clearly
‘(𝑑) =⇒ (𝑐)’, we complete the proof by showing ‘(𝑏) =⇒ (𝑑)’ and ‘(𝑐) =⇒ (𝑎)’.

‘(𝑏) =⇒ (𝑑)’:

We fix any angle 𝜑 ∈ (𝜑𝐿 , 𝜋). Due to Corollary 7.5, it suffices to prove for all
ℎ ∈ H∞

0 (S𝜑) the norm bound ∥ℎ(𝐿)∥L(𝐻) ≤ 𝑐∥ℎ∥∞,𝜑 with 𝑐 independent of ℎ. We fix
any auxiliary function 𝑓 ∈ H∞

0 (S𝜑) \ {0}. The quadratic estimates for 𝐿 yield

∥ℎ(𝐿)𝑢∥2 ≤ 𝐶
∫ ∞

0
∥ 𝑓 (𝑠𝐿)ℎ(𝐿)𝑢∥2 d𝑠

𝑠
(𝑢 ∈ 𝐻).
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In order to bound the right-hand side, we repeat word-by-word the proof of Lemma 8.7
with 𝑔 = 𝑓 except that we bound 𝑓 (𝑠𝐿)ℎ(𝐿) 𝑓 ♯ (𝑡𝐿) 𝑓 (𝑡𝐿)𝑢 in norm via Remark 8.6
instead of Lemma 8.5. This procedure gives us∫ ∞

0
∥ 𝑓 (𝑠𝐿)ℎ(𝐿)𝑢∥2 d𝑠

𝑠
≤ ∥ℎ∥2

∞,𝜑∥Z ∥2
L1 ((0,∞);d𝑡/𝑡)

( ∫ ∞

0
∥ 𝑓 (𝑡𝐿)𝑢∥2 d𝑡

𝑡

)
.

On the right-hand side, we can use the quadratic estimates again. Putting it all together,
we have shown the desired bound

∥ℎ(𝐿)𝑢∥2 ≤ 𝐶2∥ℎ∥2
∞,𝜑∥Z ∥2

L1 ((0,∞);d𝑡/𝑡) ∥𝑢∥
2.

‘(𝑐) =⇒ (𝑎)’:

We assume that 𝐿 has a bounded H∞-calculus of angle 𝜑 ∈ (𝜑𝐿 , 𝜋) with bound 𝐶𝐿 and
take any 𝑓 ∈ H∞

0 (S𝜑) \ {0}. Given 𝑢 ∈ 𝐻, we break the quadratic integral into dyadic
pieces and perform a change of variables to obtain∫ ∞

0
∥ 𝑓 (𝑡𝐿)𝑢∥2 d𝑡

𝑡
= lim
𝑁→∞

𝑁∑︁
𝑗=−𝑁

∫ 2 𝑗+1

2 𝑗
∥ 𝑓 (𝑡𝐿)𝑢∥2 d𝑡

𝑡

= lim
𝑁→∞

∫ 2

1

𝑁∑︁
𝑗=−𝑁

∥ 𝑓 (𝑡2 𝑗𝐿)𝑢∥2 d𝑡
𝑡
.

(8.3)

For fixed 𝑗 and 𝑡, we expand the norm of the integrand as follows, using the orthonormal
system 𝑒 𝑗 B 𝜋−1/2ei 𝑗 ·, 𝑗 ∈ Z, of L2(0, 𝜋) and the unconditionality lemma:

𝑁∑︁
𝑗=−𝑁

∥ 𝑓 (𝑡2 𝑗𝐿)𝑢∥2 =

𝑁∑︁
𝑗 ,𝑘=−𝑁

∫ 𝜋

0
𝑒 𝑗 (𝑠)𝑒𝑘 (𝑠)⟨ 𝑓 (𝑡2 𝑗𝐿)𝑢, 𝑓 (𝑡2𝑘𝐿)𝑢⟩ d𝑠

=

∫ 𝜋

0

 𝑁∑︁
𝑗=−𝑁

𝑒 𝑗 (𝑠) 𝑓 (𝑡2 𝑗𝐿)𝑢
2

d𝑠

≤
∫ 𝜋

0

(
𝐶𝐿𝐶 𝑓 ,𝜑𝜋

−1/2∥𝑢∥
)2 d𝑠 = (𝐶𝐿𝐶 𝑓 ,𝜑)2∥𝑢∥2.

(8.4)

Together, (8.3) and (8.4) yield upper quadratic estimates for 𝐿 with auxiliary function
𝑓 . The same is true for 𝐿∗ since this operator has a bounded H∞-calculus with the same
bound and angle according to Lemma 7.9. Now, lower quadratic estimates for 𝐿 = (𝐿∗)∗
with auxiliary function 𝑓 follow from Lemma 8.8 and the proof is complete. □

Combining Theorem 8.4 with Theorem 7.12 yields the following:

Corollary 8.10. Injective 𝑚-accretive operators 𝐿 in 𝐻 satisfy quadratic estimates
and have a bounded H∞-calculus with 𝜑∞

𝐿
= 𝜑𝐿 . In particular, elliptic operators in

divergence form with Dirichlet boundary conditions have these properties.
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8.2. Kato’s theorem on subcritical fractional powers

As far as the H∞-calculus is concerned, we have now improved the angle from 𝜑∞
𝐿
≤ 𝜋/2

in Theorem 7.12 to the best possible 𝜑∞
𝐿
= 𝜑𝐿 , at the expense of losing the universal

constant 1 in the corresponding estimate. It is instructive to recapitulate how we got
there by a two-step procedure: First, we have used algebraic identities for the resolvent
on the imaginary axis to prove von Neumann’s inequality for holomorphic functions on
large sectors. Through the equivalence with the Fourier-inspired quadratic estimates,
we have then removed the assumption on the angle so that in the end our holomorphic
functions need not even be defined on the imaginary axis.

Remark 8.11. Occasionally, it is useful to know how the equivalence constant for
quadratic estimates depends on the operator and its bounded H∞-calculus and vice
versa. As an exercise, we advise the reader to go through the proof and work out this
dependence qualitatively, see Exercise 8.2.

8.2. Kato’s theorem on subcritical fractional powers
As in Lecture 2, let 𝑉 be another Hilbert space that is continuously and densely
embedded into 𝐻. At the beginning of the 1960s, Kato investigated the abstract,
non-autonomous evolution equation

d
d𝑡
𝑢(𝑡) + 𝐿 (𝑡)𝑢(𝑡) = 𝑓 (𝑡), (0 ≤ 𝑡 < 𝑇),

in which the unknown is 𝑢 = 𝑢(𝑡) and each ‘coefficient’ 𝐿 (𝑡) is an m-accretive operator
associated with a sesquilinear form 𝑎(𝑡) on 𝑉 . In the exercises to Lecture 4 we have
seen that the domain of 𝐿 (𝑡) can, potentially, undergo drastic changes. In order to
obtain a unique solution for given initial data 𝑢(0) in a suitable sense, Kato was lead
to making the stability assumption that for some 𝛼 = 1/𝑚, 𝑚 ∈ N, the domains of
fractional powers 𝐿 (𝑡)𝛼 are independent of 𝑡. Subsequently, in 1961, he proved the
remarkable result [Kat61] that for 𝛼 ∈ (0, 1/2) said independence is a mere consequence
of comparability of the quadratic forms in the following sense.

Theorem 8.12 (Kato). Let 𝑎1, 𝑎2 : 𝑉 × 𝑉 → C be bounded, elliptic and sectorial
sesquilinear forms and let 𝛼 ∈ (0, 1/2). Suppose that

Re 𝑎2(𝑢) ≲ Re 𝑎1(𝑢) (𝑢 ∈ 𝑉). (8.5)

If 𝐿1, 𝐿2 are the associated operators in 𝐻, then dom(𝐿𝛼1 ) ⊆ dom(𝐿𝛼2 ) and

∥𝐿𝛼2𝑢∥ ≲ ∥𝐿𝛼1𝑢∥ (𝑢 ∈ dom(𝐿𝛼1 )).

Remark 8.13. Reversing the roles of 𝑎1 and 𝑎2, we see that the two-sided estimate
Re 𝑎1(𝑢) ≃ Re 𝑎2(𝑢) for all 𝑢 ∈ 𝑉 implies dom(𝐿𝛼1 ) = dom(𝐿𝛼2 ) with a two-sided
estimate for fractional powers. This always happens for 𝑎2 = 𝑎∗1, corresponding
to 𝐿2 = 𝐿∗1 by Proposition 2.24, and we obtain for any operator 𝐿1 as above that
dom(𝐿𝛼1 ) = dom((𝐿∗1)

𝛼), whenever 𝛼 ∈ (0, 1/2).
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Our formulation of Theorem 8.12 slightly differes from Kato’s original work and for
the proof we follow the idea of Carbonaro and Dragičević [CD23] to use quadratic
estimates, which back in 1961 were pure science-fiction. Assumption (8.5) will be
brought into play through the following elementary lemma.

Lemma 8.14. Let 𝑎1, 𝑎2 : 𝑉 ×𝑉 → C be bounded sesquilinear forms that satisfy (8.5)
and suppose that 𝑎2 is sectorial. Then for all 𝑤 ∈ dom(𝐿1) and 𝑧 ∈ dom(𝐿2) the
associated operators satisfy

|⟨𝑤, 𝐿2𝑧⟩| ≲ ∥𝐿1𝑤∥1/2∥𝑤∥1/2∥𝐿2𝑧∥1/2∥𝑧∥1/2.

Proof. The definition of 𝐿2 and the Cauchy–Schwarz inequality for sectorial forms
(Exercise 2.1) yield

|⟨𝑤, 𝐿2𝑧⟩| = |𝑎2(𝑧, 𝑤) | ≲
(
Re(𝑎2(𝑤))

)1/2 (Re(𝑎2(𝑧))
)1/2
.

On the right-hand side, (8.5) allows us to replace 𝑎2(𝑤) by 𝑎1(𝑤). Thus, rewriting
everything in terms of operators, we complete the estimate by

|⟨𝑤, 𝐿2𝑧⟩| ≲ |⟨𝐿1𝑤, 𝑤⟩|1/2 |⟨𝐿2𝑧, 𝑧⟩|1/2 ≤ ∥𝐿1𝑤∥1/2∥𝑤∥1/2∥𝐿2𝑧∥1/2∥𝑧∥1/2. □

Proof of Theorem 8.12. For starters, we recall that 𝐿1, 𝐿2 are m-accretive (Theo-
rem 2.21) and so are their adjoints that are associated with the adjoint sesquilinear
forms 𝑎∗1, 𝑎

∗
2 (Proposition 2.24).

We present the proof in the case that 𝐿1 and 𝐿2 are both injective. Then also their
adjoints are injective (Lemma 6.7). In Exercise 8.3 you will learn how to eliminate
this additional assumption by a minor refinement of our reasoning below. The proof
comes in four steps. Throughout, we work with arbitrary elements 𝑢 ∈ dom(𝐿𝛼1 ),
𝑣 ∈ dom((𝐿∗2)

𝛼) and implicit constants are independent of 𝑢, 𝑣.

Step 1: It suffices to show the ‘bilinear’ estimate |⟨𝑢, (𝐿∗2)
𝛼𝑣⟩| ≲ ∥𝐿𝛼1𝑢∥∥𝑣∥.

Admitting this ‘bilinear’ estimate, 𝑣 ↦→ ⟨𝑢, (𝐿∗2)
𝛼𝑣⟩ can be extended by density to an

anti-linear functional on 𝐻 since (𝐿∗2)
𝛼 is densely defined by Lemma 6.4. The Riesz

representation theorem presents us with some 𝑤 ∈ 𝐻 of norm ∥𝑤∥ ≲ ∥𝐿𝛼1𝑢∥ such that
⟨𝑢, (𝐿∗2)

𝛼𝑣⟩ = ⟨𝑤, 𝑣⟩ for all 𝑣 ∈ dom((𝐿∗2)
𝛼). This means (𝑢, 𝑤) ∈ ((𝐿∗2)

𝛼)∗ and since
we have ((𝐿∗2)

𝛼)∗ = 𝐿𝛼2 by Corollary 6.11, we find ∥𝐿𝛼2𝑢∥ = ∥𝑤∥ ≲ ∥𝐿𝛼1𝑢∥ as required.

Step 2: A reproducing formula for the bilinear term.

Our goal is to bound ⟨𝑢, (𝐿∗2)
𝛼𝑣⟩ by an integral that allows us to use quadratic estimates

for 𝐿1 on 𝑢 and for 𝐿∗2 on 𝑣. To this end, we introduce the function

Ψ : (0,∞) → C, 𝑡 ↦→
〈
(1 + 𝑡𝐿1)−1𝑢, (1 + 𝑡𝐿∗2)

−1(𝐿∗2)
𝛼𝑣

〉
.
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According to Proposition 1.15, it is continuously differentiable with

Ψ′(𝑡) = −
〈
𝐿1(1 + 𝑡𝐿1)−2𝑢, (1 + 𝑡𝐿∗2)

−1(𝐿∗2)
𝛼𝑣

〉
−
〈
(1 + 𝑡𝐿1)−1𝑢, 𝐿∗2(1 + 𝑡𝐿∗2)

−2(𝐿∗2)
𝛼𝑣

〉
and thanks to the sectoriality of 𝐿1 and 𝐿2 and Proposition 2.4 it is bounded with limits

lim
𝑡→0

Ψ(𝑡) = ⟨𝑢, (𝐿∗2)
𝛼𝑣⟩ and lim

𝑡→∞
Ψ(𝑡) = 0.

By the fundamental theorem of calculus, we get

|⟨𝑢, (𝐿∗2)
𝛼𝑣⟩| =

���∫ ∞

0
Ψ′(𝑡) d𝑡

��� ≤ ∫ ∞

0
|Ψ′(𝑡) | d𝑡 ≤ I + II,

where

I B
∫ ∞

0

��〈𝐿1(1 + 𝑡𝐿1)−2𝑢, (1 + 𝑡𝐿∗2)
−1(𝐿∗2)

𝛼𝑣
〉�� d𝑡,

II B
∫ ∞

0

��〈(1 + 𝑡𝐿1)−1𝑢, 𝐿∗2(1 + 𝑡𝐿∗2)
−2(𝐿∗2)

𝛼𝑣
〉�� d𝑡.

Our goal is to gain control by ∥𝐿𝛼1𝑢∥∥𝑣∥ on both terms.

Step 3: Estimate of the first term.

This one is easier, because there are auxiliary functions 𝑓 , 𝑔 of class H∞
0 (S𝜑) on any

sector for which it takes the form

I =
∫ ∞

0

��〈 𝑓 (𝑡𝐿1)𝐿𝛼1𝑢, 𝑔(𝑡𝐿
∗
2)𝑣

〉�� d𝑡
𝑡
.

Indeed, we take 𝑓 B z1−𝛼 (1 + z)−2, 𝑔 B z𝛼 (1 + z)−1 and sort out the powers of 𝑡.
Thus, we can use the Cauchy–Schwarz inequality in order to bring quadratic estimates
for injective m-accretive operators (Corollary 8.10) into play and conclude that

I ≤
( ∫ ∞

0
∥ 𝑓 (𝑡𝐿1)𝐿𝛼1𝑢∥

2 d𝑡
𝑡

)1/2 ( ∫ ∞

0
∥𝑔(𝑡𝐿∗2)𝑣∥

2 d𝑡
𝑡

)1/2

≲ ∥𝐿𝛼1𝑢∥∥𝑣∥.

Step 4: Estimate of the second term.

The same strategy does not apply directly to II, because we are missing powers of 𝐿1
on the left. In order to fix this, we use another reproducing formula, keeping 𝑡 > 0
fixed and introducing

Υ : (0,∞) → C, 𝑠 ↦→
〈
(1 + 𝑠𝐿1)−1𝑢, 𝐿∗2(1 + 𝑡𝐿∗2)

−2(𝐿∗2)
𝛼𝑣

〉
.
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By the same argument as in Step 2, this function vanishes in the limit as 𝑠 → ∞ and is
differentiable with

Υ′(𝑠) = −
〈
𝐿1(1 + 𝑠𝐿1)−2𝑢, 𝐿∗2(1 + 𝑡𝐿∗2)

−2(𝐿∗2)
𝛼𝑣

〉
.

By means of the regularly decaying holomorphic functions 𝑓 = z1−𝛼 (1 + z)−2 and
ℎ = z𝛼 (1 + z)−2 we can write

Υ′(𝑠) = −𝑠𝛼−1𝑡−𝛼
〈
𝑓 (𝑠𝐿1)𝐿𝛼1𝑢, 𝐿

∗
2ℎ(𝑡𝐿

∗
2)𝑣

〉
,

and it will be useful to keep in mind that 𝑓 (𝑠𝐿1)𝐿𝛼1𝑢 belongs to the domain of 𝐿1:
This is due to Theorem 5.15, because z 𝑓 = z2−𝛼 (1 + z)−2 is regularly decaying and
thus 𝑠𝐿1 𝑓 (𝑠𝐿1) = (z 𝑓 ) (𝑠𝐿1) is bounded. Using the fundamental theorem of calculus
again, we obtain

II =

∫ ∞

0

��Υ(𝑡)
�� d𝑡 =

∫ ∞

0

���� ∫ ∞

𝑡

Υ′(𝑠) d𝑠
���� d𝑡

≤
∫ ∞

0

∫ ∞

𝑡

( 𝑠
𝑡

)𝛼��〈 𝑓 (𝑠𝐿1)𝐿𝛼1𝑢, 𝐿
∗
2ℎ(𝑡𝐿

∗
2)𝑣

〉�� d𝑠
𝑠

d𝑡

𝑠 = 𝑡𝑟
=

∫ ∞

1
𝑟𝛼

∫ ∞

0

��〈 𝑓 (𝑟𝑡𝐿1)𝐿𝛼1𝑢, 𝐿
∗
2ℎ(𝑡𝐿

∗
2)𝑣

〉�� d𝑡
d𝑟
𝑟
.

(8.6)

For the moment, let us focus on the inner integral. It is tempting to simply write it as∫ ∞

0

��〈 𝑓 (𝑟𝑡𝐿1)𝐿𝛼1𝑢, (zℎ) (𝑡𝐿
∗
2)𝑣

〉�� d𝑡
𝑡
,

apply the Cauchy–Schwarz inequality and then quadratic estimates as in Step 3, but
this would give a uniform bound with respect to 𝑟 leading nowhere, since we still have
to integrate with respect to 𝑟 in (8.6). It is at this point that the assumption (8.5) will
allow us to produce additional decay in 𝑟. Indeed, Lemma 8.14 applied to the bounded,
sectorial forms 𝑎1 and 𝑎∗2 lets us gain control of the 𝑡-integral by∫ ∞

0

��〈 𝑓 (𝑟𝑡𝐿1)𝐿𝛼1𝑢, 𝐿
∗
2ℎ(𝑡𝐿

∗
2)𝑣

〉�� d𝑡

≲

∫ ∞

0

𝐿1 𝑓 (𝑟𝑡𝐿1)𝐿𝛼1𝑢
1/2 𝑓 (𝑟𝑡𝐿1)𝐿𝛼1𝑢

1/2𝐿∗2ℎ(𝑡𝐿∗2)𝑣1/2ℎ(𝑡𝐿∗2)𝑣1/2 d𝑡

≤ 𝑟−1/2

∫ ∞

0

(z 𝑓 ) (𝑟𝑡𝐿1)𝐿𝛼1𝑢
1/2 𝑓 (𝑟𝑡𝐿1)𝐿𝛼1𝑢

1/2(zℎ) (𝑡𝐿∗2)𝑣1/2ℎ(𝑡𝐿∗2)𝑣1/2 d𝑡
𝑡

≤ 𝑟−1/2

(∫ ∞

0

(z 𝑓 ) (𝑟𝑡𝐿1)𝐿𝛼1𝑢
2 d𝑡

𝑡

)1/4 (∫ ∞

0

 𝑓 (𝑟𝑡𝐿1)𝐿𝛼1𝑢
2 d𝑡

𝑡

)1/4

·
(∫ ∞

0

(zℎ) (𝑡𝐿∗2)𝑣2 d𝑡
𝑡

)1/4 (∫ ∞

0

ℎ(𝑡𝐿∗2)𝑣2 d𝑡
𝑡

)1/4

≲ 𝑟−
1/2∥𝐿𝛼1𝑢∥∥𝑣∥,
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where we have used quadratic estimates (and the change of variables 𝑟𝑡 = 𝑠) in the final
step. Using this bound back in (8.6), we find

II ≲
∫ ∞

1
𝑟𝛼−

1/2∥𝐿𝛼1𝑢∥∥𝑣∥
d𝑟
𝑟

=
1

1/2 − 𝛼 ∥𝐿
𝛼
1𝑢∥∥𝑣∥ (8.7)

precisely because of the assumption 𝛼 < 1/2, which is used for the one and only time
here, whereas all other steps would have worked for 𝛼 ∈ (0, 1). □

Let us discover some consequences of Theorem 8.12 when applied to elliptic operators
in divergence form subject to Dirichlet boundary conditions on a non-empty open set
Ω ⊆ R𝑛 as in Lecture 3. Let 𝐿1 = (−Δ)H1

0 (Ω)
be the negative Dirichlet Laplacian and let

𝐿2 = 𝐿 = − div(𝐴∇ ·) be any such operator. The common domain for the sesquilinear
forms 𝑎1, 𝑎2 is 𝑉 = H1

0(Ω) and, by ellipticity, we have for all 𝑢, 𝑣 ∈ 𝑉 that

_Re 𝑎1(𝑢) = _
∫
Ω

|∇𝑢 |2 d𝑥 ≤ Re 𝑎2(𝑢) ≤ Λ

∫
Ω

|∇𝑢 |2 d𝑥 = ΛRe 𝑎1(𝑢).

Hence, Theorem 8.12 applies and yields the following:

Corollary 8.15. Let Ω ⊆ R𝑛 be a non-empty open set, 𝐿 = − div(𝐴∇ ·) be an elliptic
operator in divergence form with Dirichlet boundary conditions on Ω. Then for all
𝛼 ∈ (0, 1/2) we have dom(𝐿𝛼) = dom((−Δ)𝛼

H1
0 (Ω)

) along with the homogeneous estimate

∥𝐿𝛼𝑢∥L2 (Ω) ≃ ∥(−Δ)𝛼H1
0 (Ω)

𝑢∥L2 (Ω) (𝑢 ∈ dom(𝐿𝛼)).

In particular, dom(𝐿𝛼) is independent of 𝐴.

The corollary is all the more surprising since dom(𝐿) heavily depends on 𝐴 and is
in general different from dom((−Δ)H1

0 (Ω)
), see Exercises 4.6 and 4.3. A point left

open is if (and how) we can actually determine the domains of fractional powers of
the negative Dirichlet Laplacian from the ‘data’ H1

0(Ω) and 𝛼. On a general open set
Ω, this question can be answered through the theory of complex interpolation spaces
that you will encounter in the project phase: Vaguely speaking, dom((−Δ)𝛼

H1
0 (Ω)

) sits in
between L2(Ω) and dom((−Δ)1/2

H1
0 (Ω)

) and, by Theorem 6.12, the latter coincides with
H1

0(Ω).

In the special case Ω = R𝑛 we have determined dom((−Δ)𝛼) C H2𝛼 (R𝑛) in Proposi-
tion 4.13. The mathematical technology that we developed for 𝐿 over the last lectures
has enabled us to generalize this result to general elliptic operators:

Corollary 8.16. Let 𝐿 = − div(𝐴∇ ·) be an elliptic operator in divergence form on R𝑛
and let 𝛼 ∈ (0, 1/2). Then dom(𝐿𝛼) = H2𝛼 (R𝑛) along with the homogeneous estimate

∥𝐿𝛼𝑢∥2
L2 (R𝑛) ≃

∫
R𝑛

∫
R𝑛

|𝑢(𝑥) − 𝑢(𝑦) |2
|𝑥 − 𝑦 |4𝛼

d𝑥 d𝑦
|𝑥 − 𝑦 |𝑛 (𝑢 ∈ dom(𝐿𝛼)).
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You have seen that for 𝛼 = 1/2, related to the Kato property discussed in Section 6.4, the
technique of proof breaks down brutally in the very final estimate (8.7). There can be no
way of saving Theorem 8.12 for 𝛼 = 1/2 in this generality, because McIntosh [McI72]
constructed an operator 𝐿1 for which dom(

√
𝐿1) ≠ dom(

√︁
𝐿∗1). Concerning the Kato

property we have gone as far as we possibly can with functional calculus alone and
now, methods from real harmonic analysis have to enter the game . . .

8.3. Exercises
Exercise 8.1 (Schur test). For a fair comparison with the proof of Lemma 8.5, we
present the classical Schur test for integral operators. Let (𝑋, `), (𝑌, a) be 𝜎-finite
measure spaces and let 𝐾 : 𝑋 × 𝑌 → C be a measurable kernel for which there exist
measurable functions 𝑝 : 𝑋 → (0,∞), 𝑞 : 𝑌 → (0,∞) and constants 𝛼, 𝛽 ≥ 0 such that∫

𝑌

|𝐾 (𝑥, 𝑦) |𝑞(𝑦) da(𝑦) ≤ 𝛼𝑝(𝑥) (a.e. 𝑥 ∈ 𝑋),∫
𝑋

|𝐾 (𝑥, 𝑦) |𝑝(𝑥) d`(𝑥) ≤ 𝛽𝑞(𝑦) (a.e. 𝑦 ∈ 𝑌 ).

Prove that the operator defined by

𝑇 𝑓 (𝑥) =
∫
𝑌

𝐾 (𝑥, 𝑦) 𝑓 (𝑦) da(𝑦)

is bounded L2(𝑌, a) → L2(𝑋, `) with norm not exceeding
√
𝛼𝛽.

Exercise 8.2 (Quantitative McIntosh theorem). Let 𝐿 be an injective sectorial operator
in a Hilbert space 𝐻 and let 𝜑 ∈ (𝜑𝐿 , 𝜋).

(a) Suppose that 𝐿 satisfies for some constant 𝐶 ≥ 1 the quadratic estimate

𝐶−1∥𝑢∥2 ≤
∫ ∞

0
∥𝑡𝐿 (1 + 𝑡𝐿)−2𝑢∥2 d𝑡

𝑡
≤ 𝐶∥𝑢∥2 (𝑢 ∈ 𝐻).

Which further ‘data’ of 𝐿 do you need to give a bound for its H∞-calculus of
angle 𝜑? Write down such a bound explicitly.

(b) Conversely, suppose that 𝐿 has a bounded H∞-calculus of angle 𝜑 with bound
𝐶𝐿 . Can you determine a constant𝐶 such that the quadratic estimate in (a) holds?

Exercise 8.3 (The general version of Theorem 8.12). So far, we have only proved
Theorem 8.12 in the case that 𝐿1 and 𝐿2 are both injective. In this exercise you will
refine the proof in order to cover the general case.

(a) Carefully go through the proof of Theorem 8.12 in the injective case and single
out the four spots where this assumptions has been used. Don’t read further until
you found them.
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(b) Eliminate the use of Proposition 2.4 when determining the limit lim𝑡→∞ Ψ(𝑡) in
Step 2.

Hint: Make use of 𝐿𝛼2 on the right-hand side.

(c) Use Exercise 7.5 to get the upper quadratic estimates in Steps 3 and 4 in the
general case.

(d) Prove that ker(𝐿1) ⊆ ker(𝐿2).

(e) Conclude that also lim𝑠→∞Υ(𝑠) = 0 in Step 4 continues to hold.

Exercise 8.4 (Kato’s definition of the square root). Let 𝐿 be an operator in 𝐻. A linear
operator 𝑅 in 𝐻 with 𝑅2 = 𝐿 is called a square root of 𝐿. In general, just as for numbers
and matrices, there can be many meaningful square roots.

In this exercise we are going to prove that an m-accretive operator has a unique square
root in the class of m-accretive operators. This brings us back to Kato’s original
definition of the square root [Kat95, Ch. V.3.11]. From now on, let 𝐿 be m-accretive.
We proceed as follows.

(a) Recall that
√
𝐿 defined by our functional calculus is m-accretive and even sectorial

of angle 𝜋/4.

For uniqueness, we let 𝑅 be an m-accretive square root of 𝐿. The subtlety in the
statement we are trying to prove is that we cannot compute

√
𝑅2 in the functional

calculus for 𝑅, because
√

z2 is not holomorphic on sectors of angle larger than 𝜋/2.

(b) Argue that dom(𝐿2) = dom(𝑅4) is a core for both 𝐿 and 𝑅.

(c) Conclude that it suffices to prove
√
𝐿𝑢 = 𝑅𝑢 for 𝑢 ∈ dom(𝐿2).

(d) Prove that
√
𝐿𝑅𝑢 = 𝑅

√
𝐿𝑢.

Hint: Use Exercise 5.4 with 𝑇 = (1 + 𝑅)−1.

(e) Conclude that
(√
𝐿 + 𝑅

) (√
𝐿 − 𝑅

)
𝑢 = 0.

For 𝑢 fixed as above, we introduce 𝑣 B (
√
𝐿 − 𝑅)𝑢 and our goal is to show 𝑣 = 0.

(f) Argue that Re
(〈√

𝐿𝑣, 𝑣
〉)

= 0.

(g) Use this information to prove that for every 𝑡 > 0 we have

Re
(
⟨𝑣 − (1 + 𝑡𝐿)−1𝑣, 𝑣⟩

)
= 0.

(h) Complete the proof under the additional assumption that 𝐿 is injective.

In order to also complete the proof for non-injective 𝐿, we split 𝑢 = 𝑢ker+𝑢ran according
to the topological splitting 𝐻 = ker(𝐿) ⊕ ran(𝐿) in Proposition 2.4 (b).
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8. Quadratic estimates vs. functional calculus

(i) Carefully check that the argument above can be used to prove
√
𝐿𝑢ran = 𝑅𝑢ran.

(j) Prove that ker(𝐿) ⊆ ker(
√
𝐿) ∩ ker(𝑅).

(k) Conclude.
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9. The Hardy–Littlewood maximal
operator

Within the realm of harmonic analysis, a fundamental principle asserts that the study
of functions can be effectively pursued by examining their averages on multiple scales.
Approximation by convolution is just one incarnation of the general principle. One
operator lies at the heart of the theory — the Hardy–Littlewood maximal operator.
In this lecture, we study its boundedness, which in return has a variety of further
consequences of which we can only present some showcases: Lebesgue differentiation,
almost everywhere differentiability of Sobolev functions on the real line and Carleson’s
lemma, establishing a link between averaging operators and quadratic estimates.

Notation 9.1. For an integrable function 𝑢 on a set 𝐸 of positive measure, we denote
the average on 𝐸 by

(𝑢)𝐸 B
⨏
𝐸

𝑢 d𝑦 B
1
|𝐸 |

∫
𝐸

𝑢 d𝑦.

Balls are always open and given a ball 𝐵 and a number 𝑐 > 0, we write 𝑐𝐵 for the
concentric ball with 𝑐-times the radius. For convenience, we let 𝜔𝑛 B |𝐵(0, 1) | be the
Lebesgue measure of the 𝑛-dimensional unit ball. Finally, R𝑛+1

+ B R𝑛 × (0,∞) is the
upper half space in dimension (𝑛 + 1).

9.1. Averages and the maximal operator
Let 𝑢 : R𝑛 → C be any locally integrable function. Replacing 𝑢 by its averages at scale
𝑡 > 0 gives a slightly better behaved function

𝑥 ↦→
⨏
𝐵(𝑥,𝑡)

𝑢(𝑦) d𝑦

that is continuous as a consequence of the dominated convergence theorem. However,
sending 𝑡 → 0, we do not yet know whether averages stay bounded for fixed 𝑥, let alone
if they converge to 𝑢(𝑥), unless 𝑢 is continuous itself. We sometimes call these ‘rough
averages’, because they can be written as⨏

𝐵(𝑥,𝑡)
𝑢(𝑦) d𝑦 =

1
𝜔𝑛𝑡

𝑛

∫
R𝑛

1𝐵(0,1)
(𝑥 − 𝑦

𝑡

)
𝑢(𝑦) d𝑦 = (𝜒𝑡 ∗ 𝑢) (𝑥)
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9. The Hardy–Littlewood maximal operator

by means of the discontinuous function 𝜒 B 𝜔−1
𝑛 1𝐵(0,1) and its associated mollifier.

‘Smooth averages’ (\𝑡 ∗ 𝑢) (𝑥), using a function \ ∈ C∞
c (𝐵(0, 1)) with

∫
R𝑛
\ d𝑦 = 1,

have even better properties at fixed scale, see Proposition 3.3 (b), but the same questions
arise when trying to pass to the limit. Both types of averages are controlled by the
following maximal function.

Definition 9.2. Let 𝑢 ∈ L1
loc(R

𝑛). We define the maximal function of 𝑢 by

(M𝑢) (𝑥) B sup
𝐵∋𝑥

⨏
𝐵

|𝑢 | d𝑦 (𝑥 ∈ R𝑛),

where the possibly infinite supremum is taken over all balls 𝐵 that contain 𝑥, and call
M the Hardy–Littlewood maximal operator.

The maximal operator is sublinear, i.e., for 𝑢, 𝑣 ∈ L1
loc(R

𝑛) and _ ∈ C we have

|M(𝑢 + 𝑣) | ≤ |M𝑢 | + |M𝑣 | and |M(_𝑢) | = |_ | |M𝑢 |

everywhere on R𝑛. You might have expected that we only consider balls centered in 𝑥.
Since every ball containing 𝑥 is contained in a ball of doubled radius centered in 𝑥, this
would have led to a comparable operator. Our uncentered version sometimes allows
for simpler arguments, for example in the following lemma.

Lemma 9.3. If 𝑢 ∈ L1
loc(R

𝑛), then the maximal function M𝑢 : R𝑛 → [0,∞] is lower
semicontinuous. In particular, it is measurable.

Proof. Lower semi-continuity means that for all _ ≥ 0 the superlevel sets

𝑂_ B
{
𝑥 ∈ R𝑛 | (M𝑢) (𝑥) > _

}
are open. But if 𝑥 ∈ 𝑂_, then 𝑥 is contained in a ball 𝐵 with

⨏
𝐵
|𝑢 | d𝑦 > _ and, again

by definition of the maximal operator, we conclude 𝐵 ⊆ 𝑂_. □

When it comes to bounding the Hardy–Littlewood maximal operator on Lebesgue
spaces, one case is particularly easy: Since averages of functions are always bounded
by their essential supremum, we obtain for all 𝑢 ∈ L∞(R𝑛) that

∥M𝑢∥L∞ (R𝑛) ≤ ∥𝑢∥L∞ (R𝑛) . (9.1)

The situation is dramatically different on the other side of the Lebesgue scale.

Lemma 9.4. If 𝑢 ∈ L1
loc(R

𝑛) and M𝑢 ∈ L1(R𝑛), then already 𝑢 = 0.

Proof. We fix 𝑟 > 0 and show |𝑢 | = 0 almost everywhere on 𝐵(0, 𝑟). To this end, we
bound the maximal function for |𝑥 | ≥ 𝑟 from below by

(M𝑢) (𝑥) ≥
⨏
𝐵(0,2|𝑥 |)

|𝑢 | d𝑦 ≥ 1
𝜔𝑛 (2|𝑥 |)𝑛

∫
𝐵(0,𝑟)

|𝑢 | d𝑦.
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9.1. Averages and the maximal operator

Since
∫
R𝑛\𝐵(0,𝑟)

1
|𝑥 |𝑛 d𝑥 = ∞, the left-hand side can only be integrable if we have |𝑢 | = 0

almost everywhere on 𝐵(0, 𝑟). □

The proof of the lemma suggests that global integrability is the main issue, but in
fact M𝑢 for 𝑢 ∈ L1(R𝑛) does not even have to be locally integrable. For an explicit
counterexample, we refer to Exercise 9.2. It turns out, however, that a weaker type of
L1-bound does hold true for the maximal operator.

Theorem 9.5 (Hardy–Littlewood I). If 𝑢 ∈ L1(R𝑛), then for every _ > 0 we have the
weak-type bound ��{𝑥 ∈ R𝑛 | (M𝑢) (𝑥) > _

}�� ≤ 3𝑛

_
∥𝑢∥L1 (R𝑛) .

In particular, M𝑢 is finite almost everywhere.

The terminology ‘weak-type bound’ is justified by Markov’s inequality: If 𝑣 ∈ L1(R𝑛)
is an integrable function and _ > 0, then

_
��{𝑥 ∈ R𝑛 | |𝑣(𝑥) | > _}�� ≤ ∥𝑣∥L1 (R𝑛) . (9.2)

Theorem 9.5 and the considerations above show that the left-hand side above can be
bounded uniformly with respect to _ > 0 even if 𝑣 is not integrable.

We need two lemmas to prepare the proof of Theorem 9.5 and the subsequent re-
sults.

Lemma 9.6 (Layer cake formula). If 𝑝 ∈ (0,∞) and 𝑢 is a measurable function on a
𝜎-finite measure space (𝑋, `), then∫

𝑋

|𝑢(𝑥) |𝑝 d`(𝑥) =
∫ ∞

0
𝑝_𝑝−1`

({
𝑥 ∈ 𝑋 : |𝑢(𝑥) | > _

})
d_.

Proof. Simply apply Tonelli’s theorem after having written∫
𝑋

|𝑢(𝑥) |𝑝 d`(𝑥) =
∫
𝑋

∫ |𝑢(𝑥) |

0
𝑝_𝑝−1 d_ d`(𝑥). □

Lemma 9.7 (Vitali covering lemma). Every finite collection B of balls in R𝑛 admits a
sub-collection B′ of pairwise disjoint balls such that⋃

𝐵∈B
𝐵 ⊆

⋃
𝐵′∈B′

3𝐵′.

Proof. Since B is a finite collection, we can write it in decreasing order of radius as
𝐵1, . . . , 𝐵𝑁 . We select the balls for B′ by a simple greedy algorithm:
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9. The Hardy–Littlewood maximal operator

Select 𝐵1.

For each 𝑗 = 2, . . . , 𝑁:

Select 𝐵 𝑗 if it is disjoint to all previously selected balls.

Otherwise discard it.

By construction, the algorithm returns a collection B′ of pairwise disjoint balls. In
order to check the ‘3-covering property’, let 𝑥 ∈ 𝐵 𝑗 for some 𝑗 . There is nothing more
to do if 𝐵 𝑗 ∈ B′, so assume 𝐵 𝑗 has been discarded by the algorithm. This means that
there was some index 𝑘 < 𝑗 such that 𝐵𝑘 ∈ B′ and 𝐵 𝑗 ∩ 𝐵𝑘 contains some element 𝑦.
Writing 𝐵 𝑗 = 𝐵(𝑥 𝑗 , 𝑟 𝑗 ) and 𝐵𝑘 = 𝐵(𝑥𝑘 , 𝑟𝑘 ), we obtain

|𝑥 − 𝑥𝑘 | ≤ |𝑥 − 𝑥 𝑗 | + |𝑥 𝑗 − 𝑦 | + |𝑦 − 𝑥𝑘 | < 𝑟 𝑗 + 𝑟 𝑗 + 𝑟𝑘 ≤ 3𝑟𝑘 ,

where in the final step we have used that 𝑟 𝑗 ≤ 𝑟𝑘 by the ordering of the balls in B.
Thus, we have 𝑥 ∈ 3𝐵𝑘 and the proof is complete. □

We are ready to give the proof of the weak-type bound for the maximal operator.

Proof of Theorem 9.5. We set 𝑂_ B {𝑥 ∈ R𝑛 | (M𝑢) (𝑥) > _}. By inner regularity of
the Lebesgue measure, it is enough to prove

|𝐾 | ≤ 3𝑛

_
∥𝑢∥L1 (R𝑛)

for every compact 𝐾 ⊆ 𝑂_. Let us fix 𝐾 . We can cover 𝐾 by balls 𝐵 with the property⨏
𝐵

|𝑢 | d𝑦 > _, (9.3)

because the definition of the maximal function implies that every 𝑥 ∈ 𝑂_ is contained in
such a ball. By compactness and the Vitali covering lemma, there is a finite collection
B of balls with property (9.3) and a pairwise-disjoint sub-collection B′ such that

𝐾 ⊆
⋃
𝐵∈B

𝐵 ⊆
⋃
𝐵′∈B′

3𝐵′.

Thus, we have

|𝐾 | ≤
∑︁
𝐵′∈B′

|3𝐵′| =
∑︁
𝐵′∈B′

3𝑛 |𝐵′|
(9.3)
≤ 3𝑛

_

∑︁
𝐵′∈B′

∫
𝐵′
|𝑢 | d𝑦 ≤ 3𝑛

_

∫
R𝑛
|𝑢 | d𝑦 =

3𝑛

_
∥𝑢∥L1 (R𝑛) ,

where in the final estimate we have used that the balls 𝐵′ are pairwise disjoint. □

The norm bound (9.1) on L∞(R𝑛) and the weak-type bound on L1(R𝑛) can be combined
to cover all other Lebesgue exponents in between. The strategy of proof is not limited
to the maximal operator and you will learn about the underlying interpolation principle
in Exercise 9.5.
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9.2. Lebesgue differentiation

Theorem 9.8 (Hardy–Littlewood II). Let 1 < 𝑝 < ∞. If 𝑢 ∈ L𝑝 (R𝑛), then M𝑢 ∈
L𝑝 (R𝑛) and

∥M𝑢∥L𝑝 (R𝑑) ≤ 𝐶∥𝑢∥L𝑝 (R𝑑) , where 𝐶 B 2 ·
( 𝑝3𝑛

𝑝 − 1

)1/𝑝
.

Proof. We start with the layer cake formula

∥M𝑢∥𝑝L𝑝 (R𝑛) =
∫ ∞

0
𝑝_𝑝−1��{𝑥 ∈ R𝑛 | (M𝑢) (𝑥) > _

}�� d_. (9.4)

The trick is to estimate the superlevel set of the maximal function by splitting 𝑢

according to its own superlevel sets𝑈_ B {𝑥 ∈ R𝑛 | |𝑢(𝑥) | > _} at comparable height:

𝑢 = 1𝑈_/2𝑢 + 1R𝑛\𝑈_/2𝑢 C 𝑢1,_/2 + 𝑢∞,_/2.

Since 𝑢∞,_/2 is essentially bounded by _/2, we find M𝑢 ≤ M𝑢1,_/2 + _/2 by sublinearity.
This leads us to{

𝑥 ∈ R𝑛 | (M𝑢) (𝑥) > _
}
⊆
{
𝑥 ∈ R𝑛 | (M𝑢1,_/2) (𝑥) >

_

2

}
,

whereupon Theorem 9.5 yields���{𝑥 ∈ R𝑛 | (M𝑢) (𝑥) > _
}��� ≤ 3𝑛

(_
2

)−1
∥𝑢1,_/2∥L1 (R𝑛) .

(We could show that ∥𝑢1,_/2∥L1 (R𝑛) is finite but of course the estimate continues to hold
if it is infinite.) Now, we put all information back into (9.4) and are left with

∥M𝑢∥𝑝L𝑝 (R𝑛) ≤ 3𝑛
∫ ∞

0
2𝑝_𝑝−2∥𝑢1,_/2∥L1 (R𝑛) d_

= 3𝑛
∫ ∞

0
2𝑝_𝑝−2

∫
𝑈_/2

|𝑢(𝑦) | d𝑦 d_

Tonelli
= 3𝑛

∫
R𝑛

|𝑢(𝑦) |
∫ 2|𝑢(𝑦) |

0
2𝑝_𝑝−2 d_ d𝑦

= 3𝑛
∫
R𝑛

|𝑢(𝑦) |2𝑝(2|𝑢(𝑦) |)
𝑝−1

𝑝 − 1
d𝑦

=

(
𝑝2𝑝3𝑛

𝑝 − 1

)
∥𝑢∥𝑝L𝑝 (R𝑛) . □

9.2. Lebesgue differentiation
We come back to the initial question about almost everywhere convergence of averages.
For locally integrable 𝑢 : R𝑛 → C, 𝑥 ∈ R𝑛 and 𝑡 > 0 we can bound����⨏

𝐵(𝑥,𝑡)
𝑢(𝑦) d𝑦 − 𝑢(𝑥)

���� = ����⨏
𝐵(𝑥,𝑡)

(
𝑢(𝑦) − 𝑢(𝑥)

)
d𝑦

���� ≤ ⨏
𝐵(𝑥,𝑡)

|𝑢(𝑦) − 𝑢(𝑥) | d𝑦,
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9. The Hardy–Littlewood maximal operator

and if 𝑢 is continuous at 𝑥, then the right-hand side can be further controlled by
sup|𝑦−𝑥 |<𝑡 |𝑢(𝑦) − 𝑢(𝑥) |, which tends to 0 in the limit as 𝑡 → 0. Since C∞

c (R𝑛) is dense
in L1(R𝑛) by Proposition 3.3 (d), there is hope to extend pointwise convergence of
averages to locally integrable functions 𝑢. Of course, we can only hope for convergence
almost everywhere — averages do not change upon altering 𝑢 on a nullset. The weak-
type bound for the Hardy–Littlewood maximal operator is precisely what is needed to
master the appearing two-parameter limits, as the proof of the following theorem will
show.

Theorem 9.9 (Lebesgue differentiation theorem). If 𝑢 : R𝑛 → C is locally integrable,
then for a.e. 𝑥 ∈ R𝑛 we have

lim
𝑡→0

⨏
𝐵(𝑥,𝑡)

|𝑢(𝑦) − 𝑢(𝑥) | d𝑦 = 0. (9.5)

Proof. The claim is local in the sense that it suffices to prove it for 𝑢 replaced by 1𝐵(0,𝑘)𝑢
for all 𝑘 ∈ N. Hence, we will assume without loss of generality that 𝑢 is integrable.
Now, we set

𝑢∗(𝑥) B lim sup
𝑡→0

⨏
𝐵(𝑥,𝑡)

|𝑢(𝑦) − 𝑢(𝑥) | d𝑦 (𝑥 ∈ R𝑛) (9.6)

and 𝑂_ B {𝑥 ∈ R𝑛 | 𝑢∗(𝑥) > _}. Our task is to prove |𝑂_ | = 0 for every _ > 0.
Indeed, this would imply that for a.e. 𝑥 ∈ R𝑛 we have 𝑢∗(𝑥) = 0 and thus also (9.5).

To this end, we fix _ > 0 and let Y > 0. Proposition 3.3 (d) lets us pick 𝑣 ∈ C∞
c (R𝑛)

with ∥𝑢 − 𝑣∥L1 (R𝑛) ≤ Y. For 𝑥 ∈ R𝑛 we have

𝑢∗(𝑥) ≤ lim sup
𝑡→0

⨏
𝐵(𝑥,𝑡)

(
|𝑢(𝑦) − 𝑣(𝑦) | + |𝑣(𝑦) − 𝑣(𝑥) | + |𝑢(𝑥) − 𝑣(𝑥) |

)
d𝑦

and hence, the definition of the maximal operator and continuity of 𝑣 lead us to

𝑢∗(𝑥) ≤ (M(𝑢 − 𝑣)) (𝑥) + |𝑢(𝑥) − 𝑣(𝑥) |. (9.7)

If the left-hand side exceeds _, then at least one of the terms on the right has to exceed
_/2. This means that

𝑂_ ⊆
{
𝑥 ∈ R𝑛 | (M(𝑢 − 𝑣)) (𝑥) > _

2

}
∪
{
𝑥 ∈ R𝑛 | | (𝑢 − 𝑣) (𝑥) | > _

2

}
.

The measure of the first set on the right is under control thanks to Theorem 9.5, whereas
for the second one we can simply use Markov’s inequality from (9.2). Thereby, we
obtain

|𝑂_ | ≤
3𝑛
_/2

∥𝑢 − 𝑣∥L1 (R𝑛) +
1
_/2

∥𝑢 − 𝑣∥L1 (R𝑛) ≤
2(3𝑛 + 1)

_
Y

and since Y > 0 was arbitrary, |𝑂_ | = 0 follows. □
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9.2. Lebesgue differentiation

Remark 9.10. (a) Points 𝑥 at which (9.5) holds, are called Lebesgue points of 𝑢.

(b) One instructive interpretation of the proof of Lebesgue’s differentiation theorem
is that 𝑢∗ in (9.6) is an auxiliary maximal function that is modeled after the
particular claim of the theorem. The argument hinges on the bound by the
genuine maximal operator and the property 𝑣∗ = 0 for 𝑣 ∈ C∞

c (R𝑛), see (9.7).

Corollary 9.11 (Pointwise convergence of smooth averages). Let \ ∈ C∞
c (R𝑛) be such

that
∫
R𝑛
\ d𝑦 = 1. If 𝑢 : R𝑛 → C is locally integrable, then for a.e. 𝑥 ∈ R𝑛 we have

lim
𝑡→0

(\𝑡 ∗ 𝑢) (𝑥) = 𝑢(𝑥).

Proof. With 𝐵(0, 𝑅) containing the support of \, it suffices to note that the functions
\𝑡 have integral 1 because this allows us to bound

| (\𝑡 ∗ 𝑢) (𝑥) − 𝑢(𝑥) | =
����∫
R𝑛
\𝑡 (𝑥 − 𝑦) (𝑢(𝑦) − 𝑢(𝑥)) d𝑦

����
≤ ∥\∥∞

𝑡𝑛

∫
𝐵(𝑥,𝑅𝑡)

|𝑢(𝑦) − 𝑢(𝑥) | d𝑦

= 𝜔𝑛𝑅
𝑛∥\∥∞

⨏
𝐵(𝑥,𝑅𝑡)

|𝑢(𝑦) − 𝑢(𝑥) | d𝑦.

Now, Theorem 9.9 applies. □

In dimension 𝑛 = 1 we can also study one-sided averages 1
ℎ

∫ 𝑥+ℎ
𝑥

𝑢 d𝑦, where ℎ can be
negative and the integral is oriented as in Theorem 3.12.

Corollary 9.12 (One-sided averages). If 𝑢 : R → C is locally integrable, then for a.e.
𝑥 ∈ R we have

lim
ℎ→0

1
ℎ

∫ 𝑥+ℎ

𝑥

𝑢(𝑦) d𝑦 = 𝑢(𝑥).

Proof. We can directly apply Theorem 9.9, upon noting that����1ℎ ∫ 𝑥+ℎ

𝑥

𝑢(𝑦) d𝑦 − 𝑢(𝑥)
���� ≤ 2

⨏
𝐵(𝑥,|ℎ |)

|𝑢(𝑦) − 𝑢(𝑥) | d𝑦. □

In conjunction with Theorem 3.12, convergence of one-sided averages has implications
on classical differentiability of H1-functions on the real line. More precisely, if 𝑢 ∈
L1((𝑎, 𝑏)) is weakly differentiable with 𝑢′ ∈ L1((𝑎, 𝑏)) on a bounded interval (𝑎, 𝑏),
then, according to said theorem, 𝑢 has a continuous representative given by

𝑢(𝑥) = 𝐶 +
∫ 𝑥

𝑎

𝑢′(𝑦) d𝑦 (𝑥 ∈ [𝑎, 𝑏]).

Corollary 9.12 applies to (the extension by 0 toR𝑛 of) 𝑢′ and yields the following.

115



9. The Hardy–Littlewood maximal operator

Corollary 9.13 (Absolutely continuous functions). Let (𝑎, 𝑏) be a bounded interval and
let 𝑢 ∈ L1((𝑎, 𝑏)) be weakly differentiable with 𝑢′ ∈ L1((𝑎, 𝑏)). Then the continuous
representative of 𝑢 is differentiable a.e. on (𝑎, 𝑏) with

lim
ℎ→0

𝑢(𝑥 + ℎ) − 𝑢(𝑥)
ℎ

= 𝑢′(𝑥).

9.3. Quadratic estimates and Carleson’s lemma
Once again, let us come back to the quadratic estimates of Proposition 4.16. Given a
radial function \ ∈ S(R𝑛), we write out the norm on L2(R𝑛) and change variables (

√
𝑡

to 𝑡) in order to bring them into the form∬
R𝑛+1
+

| (\𝑡 ∗ 𝑢) (𝑥) |2
d𝑥 d𝑡
𝑡

≤ 𝐶∥𝑢∥2
L2 (R𝑛) (𝑢 ∈ L2(R𝑛)). (9.8)

Upon initial examination, this may appear to be connected to the smooth averages of
𝑢 — however, it is, in fact, nearly the opposite since our assumption on \ was the
cancellation property

∫
R𝑛
\ d𝑥 = 0 rather than the averaging property

∫
R𝑛
\ d𝑥 = 1. In

the latter case we have

∥\𝑡 ∗ 𝑢∥L2 (R𝑛) ≥
1
2
∥𝑢∥L2 (R𝑛)

for sufficiently small 𝑡 > 0 by Proposition 3.3 (c) and, consequently, the left-hand side
in (9.8) cannot be integrable with respect to the measure d𝑡

𝑡
unless 𝑢 = 0. The question

that we want to raise here is the following:

Can one replace d𝑥 d𝑡
𝑡

in (9.8) by integration with respect to some other
Borel measure da(𝑥, 𝑡), such that the estimate holds for averaging opera-
tors?

The answer will lead us to the Carleson measures that have been introduced by Lennart
Carleson in his famous solution of the corona problem in complex analysis [Car62].
It will be simpler, and also more convenient for the later lectures, to study Carleson
measures in a dyadic setting rather than a continuous one. This means that the average
scales will be 𝑡 = 2 𝑗 for 𝑗 ∈ Z and instead of arbitrary balls we use a fixed grid of
dyadic cubes that we introduce next.

Definition 9.14. (a) We denote by □ B ⋃
𝑗∈Z□2 𝑗 the collection of (half-open)

dyadic cubes, where

□2 𝑗 B
{
2 𝑗𝑥 + [0, 2 𝑗 )𝑛 | 𝑥 ∈ Z𝑛

}
are called dyadic cubes of generation 2 𝑗 . By construction, the sidelength of each
𝑄 ∈ □2 𝑗 is ℓ(𝑄) = 2 𝑗 .
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9.3. Quadratic estimates and Carleson’s lemma

(b) If 𝑡 > 0, then we set □𝑡 B □2 𝑗 for the unique integer with 2 𝑗−1 < 𝑡 ≤ 2 𝑗 and
call the cubes in□𝑡 dyadic cubes of generation 𝑡.

For each 𝑡 > 0 the dyadic cubes of generation 𝑡 form a partition of R𝑛. Hence, the
following definition makes sense.

Definition 9.15. Let 𝑢 ∈ L1
loc(R

𝑛) and 𝑥 ∈ R𝑛.

(a) For 𝑡 > 0 we write

(A𝑡𝑢) (𝑥) B
⨏
𝑄

𝑢(𝑦) d𝑦,

where 𝑄 ∈ □𝑡 is the unique dyadic cube of generation 𝑡 that contains 𝑥. The
operator A𝑡 is called dyadic averaging operator at scale 𝑡.

(b) The dyadic maximal function of 𝑢 is given by

(A𝑢) (𝑥) B sup
𝑡>0

(A𝑡 |𝑢 |) (𝑥)

and A is called dyadic maximal operator.

The dyadic maximal operator is pointwisely controlled by the Hardy–Littlewood max-
imal operator and many further properties follow from the previous section as we shall
see next.

Proposition 9.16. For all 𝑢 ∈ L1
loc(R

𝑛) and all 𝑥 ∈ R𝑛 we have

(A𝑢) (𝑥) ≤ 𝜔𝑛𝑛𝑛/2(M𝑢) (𝑥).

Moreover, we have (A𝑡𝑢) (𝑥) → 𝑢(𝑥) for a.e. 𝑥 ∈ R𝑛 in the limit as 𝑡 → 0.

Proof. Let 𝑥 ∈ R𝑛 and 𝑡 > 0. For the unique cube𝑄 used in the definition of (A𝑡 |𝑢 |) (𝑥)
we have 𝑄 ⊆ 𝐵(𝑥,

√
𝑛ℓ(𝑄)) and consequently

(A𝑡 |𝑢 |) (𝑥) ≤
⨏
𝑄

|𝑢(𝑦) | d𝑦 ≤ 𝜔𝑛𝑛𝑛/2

⨏
𝐵(𝑥,

√
𝑛ℓ(𝑄))

|𝑢(𝑦) | d𝑦 ≤ 𝜔𝑛𝑛𝑛/2(M𝑢) (𝑥).

Taking the supremum in 𝑡 gives the required bound. Likewise, for the almost everywhere
convergence we bound

| (A𝑡𝑢) (𝑥) − 𝑢(𝑥) | ≤
⨏
𝑄

|𝑢(𝑦) − 𝑢(𝑥) | d𝑦 ≤ 𝜔𝑛𝑛𝑛/2

⨏
𝐵(𝑥,

√
𝑛ℓ(𝑄))

|𝑢(𝑦) − 𝑢(𝑥) | d𝑦

and apply Lebesgue’s differentiation theorem. □
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9. The Hardy–Littlewood maximal operator

𝑥 ∈ R𝑛

𝑡 > 0

Figure 9.1.: Schematic representation of the decomposition of R𝑛+1
+ into the Whitney

boxes (not cubes!) 𝑄 × (2 𝑗−1, 2 𝑗 ] with 𝑄 ∈ □2 𝑗 , 𝑗 ∈ Z.

Let us come back to our motivational question, but in the dyadic setting, and suppose that
a was a Borel measure on R𝑛+1

+ such that for some constant𝐶 we had the estimate∬
R𝑛+1
+

|A𝑡𝑢(𝑥) |2 da(𝑥, 𝑡) ≤ 𝐶∥𝑢∥2
L2 (R𝑛) (𝑢 ∈ L2(R𝑛)). (9.9)

Along the way, let us note that (𝑥, 𝑡) ↦→ A𝑡𝑢(𝑥) is constant on a partition of R𝑛+1
+ into

so-called Whitney boxes, see Figure 9.1. In particular, it is a-measurable. Given an
arbitrary dyadic cube𝑄 ∈ □2 𝑗 , we test the hypothetical estimate (9.9) with 𝑢 = 1𝑄 and
claim

(A𝑡1𝑄) (𝑥) = 1 for all (𝑥, 𝑡) ∈ 𝑄 × (0, ℓ(𝑄)] . (9.10)

Indeed, let 𝑥 ∈ 𝑄, 𝑡 ≤ ℓ(𝑄) C 2 𝑗 and 𝑄′ be the unique dyadic cube of generation 𝑡
that contains 𝑥. Since 𝑡 ≤ 2 𝑗 , we have 𝑄′ ⊆ 𝑄 and thus (A𝑡1𝑄) (𝑥) =

⨏
𝑄′ 1𝑄 d𝑦 = 1 as

claimed. Using (9.10) in (9.9) yields

a
(
𝑄 × (0, ℓ(𝑄)]

)
≤ 𝐶 |𝑄 |.

This means that (9.9) can only hold for a in the following class of Borel measures.

Definition 9.17. A Borel measure a on R𝑛+1
+ is called Carleson measure if it satisfies

∥a∥C B sup
𝑄∈□

a
(
𝑄 × (0, ℓ(𝑄)]

)
|𝑄 | < ∞.

For 𝑄 ∈ □, the set 𝑄 × (0, ℓ(𝑄)] is called Carleson box over 𝑄.
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9.3. Quadratic estimates and Carleson’s lemma

Example 9.18. We consider the cone Γ B {(𝑥, 𝑡) ∈ R𝑛+1
+ | |𝑥 | < 𝑡} in R𝑛+1

+ with tip at
the origin in R𝑛. Then da(𝑥, 𝑡) B 1Γ (𝑥, 𝑡) d𝑥 d𝑡

𝑡
defines a Carleson measure. To get a

feel for the notation, we leave the calculation for you as Exercise 9.1.

It turns out that the Carleson condition is not only necessary but also sufficient for (9.9).
We learned the following dyadic proof from Andrew Morris [Mor12].

Theorem 9.19 (Dyadic Carleson’s lemma). There is a constant 𝐶 depending only on
dimension such that if a is a Carleson measure, then∬

R𝑛+1
+

|A𝑡𝑢(𝑥) |2 da(𝑥, 𝑡) ≤ 𝐶∥a∥C ∥𝑢∥2
L2 (R𝑛) (𝑢 ∈ L2(R𝑛)).

Proof. For 𝑗 ∈ Z we let □2 𝑗 = (𝑄𝑘
𝑗
)𝑘 be an enumeration of the dyadic cubes of

generation 2 𝑗 and writeR𝑛+1
+ as the union of the pairwise disjoint boxes𝑄𝑘

𝑗
× (2 𝑗−1, 2 𝑗 ],

see Figure 9.1. Note that for all (𝑥, 𝑡) ∈ 𝑄𝑘
𝑗
× (2 𝑗−1, 2 𝑗 ] the unique dyadic cube used to

define A𝑡𝑢(𝑥) is precisely 𝑄𝑘
𝑗
. This allows us to write∬

R𝑛+1
+

|A𝑡𝑢(𝑥) |2 da(𝑥, 𝑡) =
∞∑︁

𝑗=−∞

∑︁
𝑘

����⨏
𝑄𝑘
𝑗

𝑢 d𝑦
����2a (𝑄𝑘

𝑗 × (2 𝑗−1, 2 𝑗 ]
)

C
∞∑︁

𝑗=−∞

∑︁
𝑘

|𝑢𝑘𝑗 |2a𝑘𝑗 ,
(9.11)

where we have introduced the numbers

a𝑘𝑗 B a
(
𝑄𝑘
𝑗 × (2 𝑗−1, 2 𝑗 ]

)
and 𝑢𝑘𝑗 B

⨏
𝑄𝑘
𝑗

𝑢 d𝑦.

Before we can use the Carleson condition on awithout creating too much uncontrollable
overlap in the cubes 𝑄𝑘

𝑗
, we need to arrange the boxes 𝑄𝑘

𝑗
× (2 𝑗−1, 2 𝑗 ] in groups that

cover suitable Carleson boxes. We shall do this according to the size of |𝑢𝑘
𝑗
| as follows.

Given a fixed threshold _ > 0, it may or may not happen that |𝑢𝑘
𝑗
| > _. If it happens,

then by definition of the dyadic maximal function and Proposition 9.16 we have

𝑄𝑘
𝑗 ⊆

{
𝑥 ∈ R𝑛 | (A𝑢) (𝑥) > _

}
⊆
{
𝑥 ∈ R𝑛 | (M𝑢) (𝑥) > _

𝐶

}
, (9.12)

where 𝐶 = 𝜔𝑛𝑛
𝑛/2. Now, 𝑢 ∈ L2(R𝑛) implies M𝑢 ∈ L2(R𝑛) by Theorem 9.8 and hence

the set on the right-hand side has finite measure (by Markov’s inequality applied to
(M𝑢)2). Consequently, there is an upper bound on the generation 2 𝑗 of cubes with
|𝑢𝑘
𝑗
| > _. It follows, that each such cube 𝑄𝑘

𝑗
is contained in a maximal dyadic cube

with said property, where ‘maximal’ means ‘maximal sidelength’. We let (𝑄𝑚 (_))𝑚
be an enumeration of the maximal dyadic cubes with the property |𝑢𝑘

𝑗
| > _. Maximal
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9. The Hardy–Littlewood maximal operator

dyadic cubes are pairwise disjoint because any two dyadic cubes are either disjoint or
one contains the other.

Now, we go back to (9.11) and, similar to the proof of the layer cake formula, we write∬
R𝑛+1
+

|A𝑡𝑢(𝑥) |2 da(𝑥, 𝑡) =
∞∑︁

𝑗=−∞

∑︁
𝑘

|𝑢𝑘𝑗 |2a𝑘𝑗

=

∞∑︁
𝑗=−∞

∑︁
𝑘

∫ |𝑢𝑘
𝑗
|

0
2_a𝑘𝑗 d_

=

∫ ∞

0
2_

∞∑︁
𝑗=−∞

∑︁
𝑘

1(0,|𝑢𝑘
𝑗
|) (_)a𝑘𝑗 d_,

where the last step follows by monotone convergence. For fixed _ we are summing over
all dyadic cubes 𝑄𝑘

𝑗
with |𝑢𝑘

𝑗
| > _. We rearrange the sum according to the maximal

cube to which 𝑄𝑘
𝑗

belongs and recall a𝑘
𝑗
= a(𝑄𝑘

𝑗
× (ℓ(𝑄𝑘𝑗 )/2, ℓ(𝑄𝑘

𝑗
)]) in order to obtain

≤
∫ ∞

0
2_

∑︁
𝑚

∑︁
𝑄⊆𝑄𝑚 (_)

a

(
𝑄 × (ℓ(𝑄)/2, ℓ(𝑄)]

)
d_.

We have been generous by putting in fact every dyadic sub-cube 𝑄 of 𝑄𝑚 (_) into the
sum. For fixed 𝑄𝑚 (_), the boxes 𝑄 × (ℓ(𝑄)/2, ℓ(𝑄)] with 𝑄 ⊆ 𝑄𝑚 (_) form a partition
of the Carleson box 𝑄𝑚 (_) × (0, ℓ(𝑄𝑚 (_))], compare with Figure 9.1. Thus, we get

=

∫ ∞

0
2_

∑︁
𝑚

a

(
𝑄𝑚 (_) × (0, ℓ(𝑄𝑚 (_))]

)
d_.

At this point, we use that a is a Carleson measure and that the maximal cubes are
pairwise disjoint and contained in a superlevel set of the dyadic maximal function, see
(9.12), to conclude

≤ ∥a∥C
∫ ∞

0
2_

∑︁
𝑚

|𝑄𝑚 (_) | d_

≤ ∥a∥C
∫ ∞

0
2_

��{𝑥 ∈ R𝑛 | (A𝑢) (𝑥) > _}�� d_

= ∥a∥C ∥A𝑢∥2
L2 (R𝑛) ,

where we have used the layer cake formula in the final step. The dyadic maximal
operator is bounded on L2(R𝑛) by Proposition 9.16 and Theorem 9.8, which completes
the proof (taking 𝐶 = 8𝜔2

𝑛 (3𝑛)𝑛). □
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9.4. Exercises
Exercise 9.1 (Example of a Carleson measure). Check that the measure defined in
Example 9.18 is indeed a Carleson measure.

Exercise 9.2 (Local integrability of the maximal function). In dimension 𝑛 = 1 consider
the function 𝑢(𝑥) =

1(0,1/2) (𝑥)
𝑥 log(𝑥)2 . Verify that 𝑢 ∈ L1(R) while M𝑢 is not even locally

integrable.

Exercise 9.3 (Kolmogorov’s inequality). The following inequality gives a local bound
for the maximal function in Lebesgue spaces with exponent 𝑝 ∈ (0, 1). Let 𝑝 ∈ (0, 1)
and 𝐸 ⊆ R𝑛 be measurable with finite measure. Show that there exists a constant𝐶 > 0
that depends only on 𝑝 and 𝑛 such that∫

𝐸

|M𝑢(𝑥) |𝑝 d𝑥 ≤ 𝐶 |𝐸 |1−𝑝 ∥𝑢∥𝑝L1 (R𝑛) (𝑢 ∈ L1(R𝑛)).

Exercise 9.4 (Rectangular maximal operator). In dimension 𝑛 ≥ 2 we define a rectan-
gular maximal function of 𝑢 ∈ L1

loc(R
𝑛) by

(R𝑢) (𝑥) := sup
𝑅∋𝑥

⨏
𝑅

|𝑢(𝑦) | d𝑦,

where, instead of balls, the supremum is taken over all rectangles 𝑅 ⊆ R𝑛 with sides
parallel to the coordinate axes that contain 𝑥.

(a) Prove that R does not satisfy a weak type estimate as in Theorem 9.5.

Hint: Work in dimension 𝑛 = 2 first and estimate the size of R𝑢 for 𝑢 = 1[−1,1]2 .

(b) Prove that R is still bounded on L𝑝 (R𝑛) for every 𝑝 ∈ (1,∞].

Exercise 9.5 (An interpolation theorem). The following theorem renders more clearly
the interpolation idea in the proof of Theorem 9.8.

Theorem 9.20 (Marcinkiewicz interpolation theorem). Let (𝑋, `), (𝑌, a) be 𝜎-finite
measure spaces, let 1 ≤ 𝑝0 < 𝑝1 < ∞ and let 𝑇 be a sublinear operator that is defined
on all simple functions on 𝑋 . Suppose that there are constants 𝐶 𝑗 , 𝑗 = 0, 1, such that
we have for all simple functions 𝑢 on 𝑋 and all _ > 0 that

a
({
𝑦 ∈ 𝑌 | | (𝑇𝑢) (𝑦) | > _

})1/𝑝 𝑗 ≤ 𝐶 𝑗
∥𝑢∥L𝑝 𝑗 (𝑋)

_
. (9.13)

Let \ ∈ (0, 1) and define 𝑝 ∈ (𝑝0, 𝑝1) by 1/𝑝 = 1−\/𝑝0 + \/𝑝1. Then there is a constant
𝐶, depending on 𝑝0, 𝑝1, \, such that we have for all 𝑢 as above the strong-type bound

∥𝑇𝑢∥L𝑝 (𝑌 ) ≤ 𝐶 · 𝐶1−\
0 𝐶\1 ∥𝑢∥L𝑝 (𝑋) .
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(a) Convince yourself that the strong-type assumption

∥𝑇𝑢∥L𝑝 𝑗 (𝑌 ) ≤ 𝐶 𝑗 ∥𝑢∥L𝑝 𝑗 (𝑋) (9.14)

implies (9.13). This explains the name.

(b) Prove Theorem 9.20!

Hint: Proceed as in the proof of Theorem 9.8 but split 𝑢 at height 𝛿_, where 𝛿 is
an additional degree of freedom that has to be chosen appropriately at the end.
In the proof of Theorem 9.8 we have simply picked 𝛿 = 1/2.
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10. Sobolev embeddings

In Lecture 3 you have learned that an H1-function on the real line is 1/2-Hölder continu-
ous, whereas H1-functions on R𝑛 with 𝑛 ≥ 3 do not even have to be locally bounded. In
this lecture, we are going to investigate said phenomenon further and prove that in every
dimension there are natural spaces of Lebesgue- and Hölder-type into which H1(R𝑛)
embeds continuously. The general principle to keep in mind is the following relation
between the size of the gradient of a weakly differentiable function 𝑢 ∈ L1

loc(R
𝑛) and

properties of 𝑢 itself:

∇𝑢 ∈ L𝑝 (R𝑛)

𝑝 < 𝑛: higher integrability for 𝑢

𝑝 = 𝑛: critical case

𝑝 > 𝑛: Hölder continuity for 𝑢

Figure 10.1.: A rule of thumb for Sobolev functions. For further background we refer
to [Eva10, Ch. 5].

We will not go into full details during this first encounter of such Sobolev embeddings,
but stick to our Sobolev spaces H1(R𝑛). They already cover all three cases nonetheless:
Hölder continuity when 𝑛 = 1, criticality (a notion, to be explained in the lecture) when
𝑛 = 2, and higher integrability when 𝑛 ≥ 3.

Notation 10.1. Given 𝑝 ∈ [1,∞], its Hölder conjugate exponent 𝑝′ ∈ [1,∞] is defined
by 1/𝑝 + 1/𝑝′ = 1. Integration with respect to the surface measure on the unit sphere in
R𝑛 will be denoted by d𝜎 and 𝜎𝑛−1 is the surface measure of the unit sphere.

10.1. Riesz potentials
Let us start by recalling that on the real line you have proved the following result in
Exercise 3.1:
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Lemma 10.2 (Sobolev embedding, 𝑛 = 1). Every 𝑢 ∈ H1(R) has a Hölder continuous
representative that satisfies

sup
𝑥≠𝑦

|𝑢(𝑥) − 𝑢(𝑦) |
|𝑥 − 𝑦 |1/2

≤ ∥𝑢′∥L2 (R) .

The embedding was an immediate consequence of the fundamental theorem of calculus
— or to be more precise — a representation of 𝑢 as an integral of its derivative. Unlike
the fundamental theorem itself, representations of this type are also available in higher
dimensions:

Lemma 10.3. Let 𝑛 ≥ 2. For all 𝑢 ∈ C∞
c (R𝑛) we have

𝑢(𝑥) = 1
𝜎𝑛−1

∫
R𝑛

∇𝑢(𝑦) · 𝑥 − 𝑦
|𝑥 − 𝑦 |𝑛 d𝑦 (𝑥 ∈ R𝑛).

Proof. For 𝑥 ∈ R𝑛 and 𝑒 ∈ 𝜕𝐵(0, 1) we write

𝑢(𝑥) = −
∫ ∞

0

d
d𝑡
𝑢(𝑥 + 𝑡𝑒) d𝑡 = −

∫ ∞

0
(∇𝑢) (𝑥 + 𝑡𝑒) · 𝑒 d𝑡. (10.1)

We average over 𝑒 ∈ 𝜕𝐵(0, 1) to obtain

𝑢(𝑥) = − 1
𝜎𝑛−1

∫
𝜕𝐵(0,1)

∫ ∞

0
(∇𝑢) (𝑥 + 𝑡𝑒) · 𝑒 d𝑡 d𝜎(𝑒)

Fubini
= − 1

𝜎𝑛−1

∫ ∞

0

∫
𝜕𝐵(0,1)

(∇𝑢) (𝑥 + 𝑡𝑒) · 𝑡𝑒
𝑡𝑛
𝑡𝑛−1d𝜎(𝑒) d𝑡

and changing from polar to Cartesian coordinates via 𝑧 = 𝑡𝑒 yields the claim

= − 1
𝜎𝑛−1

∫
R𝑛
(∇𝑢) (𝑥 + 𝑧) · 𝑧

|𝑧 |𝑛 d𝑧

y = x + z
=

1
𝜎𝑛−1

∫
R𝑛

∇𝑢(𝑦) · 𝑥 − 𝑦
|𝑥 − 𝑦 |𝑛 d𝑦. □

For 𝑢 ∈ C∞
c (R𝑛) the previous lemma gives a pointwise bound

|𝑢(𝑥) | ≤ 1
𝜎𝑛−1

∫
R𝑛

|∇𝑢(𝑦) |
|𝑥 − 𝑦 |𝑛−1 d𝑦 (𝑥 ∈ R𝑛). (10.2)

We interpret this bound as saying that 𝑢 is controlled by an integral operator I acting
on |∇𝑢 | and, consequently, Sobolev embeddings follow from mapping properties of I
in Lebesgue spaces.
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10.1. Riesz potentials

Definition 10.4. For measurable 𝑓 : R𝑛 → C we define the Riesz potential

(I 𝑓 ) (𝑥) B
∫
R𝑛

𝑓 (𝑦)
|𝑥 − 𝑦 |𝑛−1 d𝑦

at all 𝑥 ∈ R𝑛 for which the integral exists.

Although we are only interested in embeddings for H1(R𝑛), it will turn out advanta-
geous to examine I on Lebesgue spaces other than L2(R𝑛). A uniform bound of the
form

∥I 𝑓 ∥L𝑞 (R𝑛) ≲ ∥ 𝑓 ∥L𝑝 (R𝑛) ( 𝑓 ∈ L𝑝 (R𝑛)) (10.3)

can only be true for specific pairs of exponents 𝑝, 𝑞 ∈ [1,∞]. Indeed, pick any non-
negative 𝜙 ∈ C∞

c (R𝑛) \ {0} and consider the dilations 𝛿𝑡𝜙 B 𝜙(𝑡 ·) for 𝑡 > 0. By the
transformation rule we can check that I(𝛿𝑡𝜙) = 𝑡−1𝛿𝑡 (I𝜙) and hence the hypothetical
bound (10.3) yields

𝑡−1−𝑛/𝑞∥I𝜙∥L𝑞 (R𝑛) = ∥I(𝛿𝑡𝜙)∥L𝑞 (R𝑛) ≲ ∥𝛿𝑡𝜙∥L𝑝 (R𝑛) = 𝑡
−𝑛/𝑝∥𝜙∥L𝑝 (R𝑛) .

This bound can only hold for every 𝑡 > 0 if the power of 𝑡 on the left and right is the
same, that is, if 1/𝑞 = 1/𝑝 − 1/𝑛 and hence also 1 ≤ 𝑝 ≤ 𝑛. We give a name to the
exponent 𝑞 related to 𝑝 in these considerations.

Definition 10.5. If 𝑝 ∈ [1, 𝑛), we call the number

𝑝∗ B
𝑛𝑝

𝑛 − 𝑝 satisfying
1
𝑝∗

=
1
𝑝
− 1
𝑛

the Sobolev conjugate of 𝑝. In the critical case 𝑝 = 𝑛 we set 𝑝∗ B ∞.

In controlling I 𝑓 , we will distinguish between the singular (or ‘diagonal’) part for 𝑦
close to 𝑥 and the remaining regular (or ‘off-diagonal’) part. The maximal operator
helps us controlling the diagonal part as follows.

Lemma 10.6. Let 𝑓 ∈ L1
loc(R

𝑛). For any 𝑥 ∈ R𝑛 and 𝑟 > 0 we have∫
𝐵(𝑥,𝑟)

| 𝑓 (𝑦) |
|𝑥 − 𝑦 |𝑛−1 d𝑦 ≤ 2𝑛𝜔𝑛𝑟 (M 𝑓 ) (𝑥).

Proof. We split 𝐵(𝑥, 𝑟) \ {0} =
⋃∞
𝑗=0 𝐵 𝑗 \ 𝐵 𝑗+1, where 𝐵 𝑗 B 𝐵(𝑥, 2− 𝑗𝑟), and use

|𝑥 − 𝑦 | ≥ 2− 𝑗𝑟/2 for 𝑦 ∈ 𝐵 𝑗 \ 𝐵 𝑗+1 to estimate∫
𝐵(𝑥,𝑟)

| 𝑓 (𝑦) |
|𝑥 − 𝑦 |𝑛−1 d𝑦 =

∞∑︁
𝑗=0

∫
𝐵 𝑗\𝐵 𝑗+1

| 𝑓 (𝑦) |
|𝑥 − 𝑦 |𝑛−1 d𝑦

≤
∞∑︁
𝑗=0

2𝑛−1

(2− 𝑗𝑟)𝑛−1

∫
𝐵 𝑗\𝐵 𝑗+1

| 𝑓 (𝑦) | d𝑦

≤ 2𝑛−1𝜔𝑛𝑟

∞∑︁
𝑗=0

2− 𝑗
⨏
𝐵 𝑗

| 𝑓 (𝑦) | d𝑦.
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Since each of the average integrals can be estimated by (M 𝑓 ) (𝑥), we obtain the claim

≤ 2𝑛−1𝜔𝑛𝑟

∞∑︁
𝑗=0

2− 𝑗 (M 𝑓 ) (𝑥)

= 2𝑛𝜔𝑛𝑟 (M 𝑓 ) (𝑥). □

Lemma 10.6 is the key ingredient for the following theorem that confirms that the
mapping properties forI suggested below (10.3) are indeed true, except for the endpoint
cases 𝑝 = 1, 𝑛, in which the bound fails in dimension 𝑛 ≥ 2, see Exercise 10.3.

Theorem 10.7 (Hardy–Littlewood–Sobolev inequality). Let 𝑝 ∈ (1, 𝑛) and 𝑓 ∈
L𝑝 (R𝑛). The integral (I 𝑓 ) (𝑥) converges absolutely for a.e. 𝑥 ∈ R𝑛 and there is a
constant 𝐶 = 𝐶 (𝑛, 𝑝) such that

∥I 𝑓 ∥L𝑝∗ (R𝑛) ≤ 𝐶∥ 𝑓 ∥L𝑝 (R𝑛) .

Proof. Since |I( 𝑓 ) | ≤ I| 𝑓 |, it suffices to prove the estimate when 𝑓 is a non-negative
function. Moreover, there is nothing to prove if 𝑓 = 0. Henceforth, we assume 𝑓 > 0
on a set of positive measure and note for later that this implies (M 𝑓 ) (𝑥) > 0 for every
𝑥 ∈ R𝑛.

We begin by splitting off the diagonal part that is under control by Lemma 10.6:

(I 𝑓 ) (𝑥) ≤ 2𝑛𝜔𝑛𝑟 (M 𝑓 ) (𝑥) +
∫
R𝑛\𝐵(𝑥,𝑟)

| 𝑓 (𝑦) |
|𝑥 − 𝑦 |𝑛−1 d𝑦, (10.4)

where the parameter 𝑟 > 0 needs to be chosen wisely in the following. For the
off-diagonal part we use Hölder’s inequality and calculate∫
R𝑛\𝐵(𝑥,𝑟)

| 𝑓 (𝑦) |
|𝑥 − 𝑦 |𝑛−1 d𝑦 ≤

( ∫
R𝑛\𝐵(𝑥,𝑟)

| 𝑓 (𝑦) |𝑝 d𝑦
)1/𝑝 ( ∫

R𝑛\𝐵(𝑥,𝑟)
|𝑥 − 𝑦 |−(𝑛−1)𝑝′ d𝑦

)1/𝑝′

≤ ∥ 𝑓 ∥L𝑝 (R𝑛)

(
𝜎𝑛−1

∫ ∞

𝑟

𝑡𝑛−(𝑛−1)𝑝/(𝑝−1) d𝑡
𝑡

) (𝑝−1)/𝑝
,

where due to 𝑛 − (𝑛 − 1) 𝑝

𝑝−1 =
𝑝−𝑛
𝑝−1 < 0 the integral in 𝑡 is equal to 𝑝−1

𝑛−𝑝𝑟
𝑝−𝑛
𝑝−1 . Going

back to (10.4), we have shown the bound

(I 𝑓 ) (𝑥) ≲ 𝑟 (M 𝑓 ) (𝑥) + 𝑟1−𝑛/𝑝∥ 𝑓 ∥L𝑝 (R𝑛) . (10.5)

In order to turn the additive bound into a multiplicative one, we pick 𝑟 such that the
two terms on the right coincide, that is, 𝑟 = ∥ 𝑓 ∥ 𝑝/𝑛L𝑝 (R𝑛) (M 𝑓 ) (𝑥)−𝑝/𝑛. With this choice
(10.5) becomes

(I 𝑓 ) (𝑥) ≲ ∥ 𝑓 ∥ 𝑝/𝑛L𝑝 (R𝑛) (M 𝑓 ) (𝑥)1−𝑝/𝑛 = ∥ 𝑓 ∥ 𝑝/𝑛L𝑝 (R𝑛) (M 𝑓 ) (𝑥) 𝑝/𝑝∗
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10.1. Riesz potentials

and integrating the 𝑝∗-th powers of both sides with respect to 𝑥 leads to the desired
bound ( ∫

R𝑛
| (I 𝑓 ) (𝑥) |𝑝∗ d𝑥

)1/𝑝∗

≲ ∥ 𝑓 ∥ 𝑝/𝑛L𝑝 (R𝑛)

( ∫
R𝑛
| (M 𝑓 ) (𝑥) |𝑝 d𝑥

) (𝑛−𝑝)/𝑛𝑝

Thm. 9.8
≲ ∥ 𝑓 ∥ 𝑝/𝑛L𝑝 (R𝑛) ∥ 𝑓 ∥

1−𝑝/𝑛
L𝑝 (R𝑛) = ∥ 𝑓 ∥L𝑝 (R𝑛) . □

As a corollary, we can extend the potential type representation in Lemma 10.3 to general
functions in H1(R𝑛).

Corollary 10.8. Let 𝑛 ≥ 3 and 𝑢 ∈ H1(R𝑛). For a.e. 𝑥 ∈ R𝑛 we have

𝑢(𝑥) = 1
𝜎𝑛−1

∫
R𝑛

∇𝑢(𝑦) · 𝑥 − 𝑦
|𝑥 − 𝑦 |𝑛 d𝑦.

Proof. By Lemma 10.3 the representation holds for 𝑢 ∈ C∞
c (R𝑛) and C∞

c (R𝑛) is
dense in H1(R𝑛) by Proposition 3.18. In order to see that the representation persists
through approximation in H1(R𝑛), it suffices to note two things: First, and thanks
to the Hardy–Littlewood–Sobolev inequality for 𝑛 ≥ 3, the right-hand side above
is an absolutely convergent integral for a.e. 𝑥 ∈ R𝑛 that defines a bounded linear
operator H1(R𝑛) → L2∗ (R𝑛) and second, convergence in Lebesgue spaces implies
almost everywhere convergence of a subsequence. □

Taking absolute values in the previous corollary immediately gives the following:

Corollary 10.9. Let 𝑛 ≥ 3 and 𝑢 ∈ H1(R𝑛). For a.e. 𝑥 ∈ R𝑛 we have

|𝑢(𝑥) | ≤ 1
𝜎𝑛−1

(I|∇𝑢 |) (𝑥).

The connection between the function 𝑢 and the Riesz potential of its gradient from the
previous corollary, combined with the Hardy–Littlewood–Sobolev inequality, culmi-
nates in the following Sobolev embedding.

Corollary 10.10 (Sobolev embedding, 𝑛 ≥ 3). Let 𝑛 ≥ 3. There exists a constant 𝐶
such that

∥𝑢∥L2∗ (R𝑛) ≤ 𝐶∥∇𝑢∥L2 (R𝑛) (𝑢 ∈ H1(R𝑛)).

So far, the case 𝑛 = 2 is left open, because the Hardy–Littlewood–Sobolev inequality
fails for 𝑝 = 𝑛 corresponding to 𝑝∗ = ∞. There cannot be a different strategy since a
smooth function on R2 \ {0} that coincides with log(log(1 + 1/|𝑥 |)) for |𝑥 | ≤ 1/2 serves
as a counterexample to the embedding H1(R2) ⊆ L∞(R2) by calculations that are
entirely analogous to Exercise 3.4. However, all Lebesgue spaces ‘in between’ work
and the proof of the following ‘subcritical’ Sobolev embeddings will be developed in
Exercise 10.4.
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10. Sobolev embeddings

Theorem 10.11. If 𝑛 ≥ 2 and 2 ≤ 𝑞 < 2∗, then there is a constant 𝐶 = 𝐶 (𝑛, 𝑞) such
that

∥𝑢∥L𝑞 (R𝑛) ≤ 𝐶∥𝑢∥
1+ 𝑛

𝑞
− 𝑛2

L2 (R𝑛) ∥∇𝑢∥
𝑛
2 −

𝑛
𝑞

L2 (R𝑛) (𝑢 ∈ H1(R𝑛)).

If 𝑛 = 1, then the inequality holds for 2 ≤ 𝑞 ≤ ∞. In particular, H1(R𝑛) ⊆ L𝑞 (R𝑛) for
all admissible 𝑞.

10.2. Sobolev–Poincaré inequalities
The proof of Lemma 10.3 suggests that potential-type representations, relating 𝑢 and its
gradient, should hold locally for smooth functions defined on an open set Ω, but we still
need a corresponding density result to treat more general functions by approximation.
Here it is:

Theorem 10.12 (Meyers–Serrin). Let Ω ⊆ R𝑛 be non-empty and open and 𝑘 ∈ N.
Then C∞(Ω) ∩ H𝑘 (Ω) is dense in H𝑘 (Ω).

Proof. We write Ω as the union of open sets (𝑉 𝑗 ) such that𝑉 𝑗 ⊆ Ω for 𝑗 ∈ N and every
compact subset of Ω intersects only finitely many of the sets 𝑉 𝑗 . Then we let ([ 𝑗 ) be a
partition of unity subordinate to (𝑉 𝑗 ), that is,

[ 𝑗 ∈ C∞
c (𝑉 𝑗 ), 0 ≤ [ 𝑗 ≤ 1 and

∞∑︁
𝑗=1
[ 𝑗 = 1 in Ω.

For convenience, we give one possible construction. As in the proof of Lemma 3.4, it
starts from the increasingly ordered sets

Ω 𝑗 B
{
𝑥 ∈ Ω | |𝑥 | < 𝑗 and dist(𝑥, 𝜕Ω) > 𝑗−1}.

We define the overlapping annuli 𝑉1 B Ω5 and 𝑉 𝑗 B Ω 𝑗+4 \ Ω 𝑗+1 for 𝑗 ≥ 2. Then we
pick 𝜙1 ∈ C∞

c (𝑉1) with 𝜙1 = 1 on Ω4 and for 𝑗 ≥ 2 we take 𝜙 𝑗 ∈ C∞
c (𝑉 𝑗 ) with 𝜙 𝑗 = 1

on Ω 𝑗+3 \Ω 𝑗+2, so that [ 𝑗 B 𝜙 𝑗 (
∑∞
𝑘=1 𝜙𝑘 )−1 does the job.

The properties of [ 𝑗 together with Lemma 3.9 ensure that [ 𝑗𝑢 ∈ H𝑘 (Ω) and that [ 𝑗𝑢
vanishes outside of a compact subset of 𝑉 𝑗 ⊆ Ω. Hence, we may identify it with its
extension to R𝑛 by zero and this will allow us to smooth out [ 𝑗𝑢 by mollification.

To this end, let \ ∈ C∞
c (R𝑛) be supported in the unit ball and normalized to

∫
R𝑛
\ d𝑥 = 1.

For 𝑡 > 0, let \𝑡 denote the mollifier associated to \. Proposition 3.3, the smoothness of \
and the above-mentioned properties of the supports guarantee that ([ 𝑗𝑢) ∗\𝑡 𝑗 ∈ C∞

c (𝑉 𝑗 )
whenever 𝑡 𝑗 > 0 is small enough. Given Y > 0, Lemma 3.11 and yet another application
of Proposition 3.3 allow us to choose 𝑡 𝑗 even smaller such that([ 𝑗𝑢) ∗ \𝑡 𝑗 − [ 𝑗𝑢H𝑘 (Ω) ≤

∑︁
|𝛼 |≤𝑘

[𝜕𝛼 ([ 𝑗𝑢)] ∗ \𝑡 𝑗 − 𝜕𝛼 ([ 𝑗𝑢)L2 (Ω) < 2− 𝑗Y.
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Finally, we define

𝑢Y B
∞∑︁
𝑗=1

([ 𝑗𝑢) ∗ \𝑡 𝑗 ∈ C∞(Ω) ∩ H𝑘 (Ω),

where on every compact subset of Ω all but finitely many functions are identically zero,
and estimate

∥𝑢Y − 𝑢∥H𝑘 (Ω) =
 ∞∑︁
𝑗=1

(
([ 𝑗𝑢) ∗ \𝑡 𝑗 − [ 𝑗𝑢

)
H𝑘 (Ω)

≤
∞∑︁
𝑗=1

2− 𝑗Y = Y. □

The potential type estimate in (10.2) has made crucial use of the fact that on every line
in R𝑛 the compactly supported function 𝑢 vanishes somewhere, see (10.1). Of course,
this is no longer true when we work with general smooth functions on an open subset Ω
and we need a geometric condition that helps us controlling the ‘anchor points’ when
representing 𝑢(𝑥) via the fundamental theorem of calculus on line segments passing
through 𝑥.

Definition 10.13. A set Ω ⊆ R𝑛 is called star-shaped with respect to a non-empty
subset 𝐸 ⊆ Ω if for all 𝑦 ∈ 𝐸 and 𝑥 ∈ Ω the segment connecting 𝑥 and 𝑦 is contained
in Ω.

Example 10.14. Non-empty convex sets are star-shaped with respect to every non-
empty subset. Hungry Pac-Man1 is not convex but star-shaped with respect to a ball.

For our potential-type estimates on domains we recall the notation (𝑢)𝐸 for averages,
see Notation 9.1.

Lemma 10.15. Let 𝑛 ≥ 2, let Ω ⊆ R𝑛 be open, bounded and star-shaped with respect
to a measurable subset 𝐸 ⊆ Ω with |𝐸 | > 0, and let 𝑢 ∈ H1(Ω). Then for a.e. 𝑥 ∈ Ω,

|𝑢(𝑥) − (𝑢)𝐸 | ≤
diam(Ω)𝑛
𝑛|𝐸 |

∫
Ω

|∇𝑢(𝑦) |
|𝑥 − 𝑦 |𝑛−1 d𝑦.

Proof. We proceed in two steps.

Step 1: We assume 𝑢 ∈ C∞(Ω).

For 𝑥 ∈ Ω and 𝑦 ∈ 𝐸 we can use the fundamental theorem of calculus along the
connecting line segment to write

𝑢(𝑥) − 𝑢(𝑦) = −
∫ |𝑥−𝑦 |

0

d
d𝑡
𝑢(𝑥 + 𝑡𝜔𝑥,𝑦) d𝑡 = −

∫ |𝑥−𝑦 |

0
(∇𝑢) (𝑥 + 𝑡𝜔𝑥,𝑦) · 𝜔𝑥,𝑦 d𝑡,

1https://de.wikipedia.org/wiki/Pac-Man
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where 𝜔𝑥,𝑦 B 𝑦−𝑥
|𝑦−𝑥 | is a unit vector. We integrate both sides with respect to 𝑦 ∈ 𝐸 in

order to obtain

|𝐸 | |𝑢(𝑥) − (𝑢)𝐸 | ≤
∫
R𝑛

1𝐸 (𝑦)
∫ |𝑥−𝑦 |

0

��(∇𝑢) (𝑥 + 𝑡𝜔𝑥,𝑦)�� d𝑡 d𝑦.

Changing to polar coordinates 𝑦 = 𝑥 + 𝑟a yields

=

∫ ∞

0

∫
𝜕𝐵(0,1)

∫ 𝑟

0
1𝐸 (𝑥 + 𝑟a)

��(∇𝑢) (𝑥 + 𝑡a)��𝑟𝑛−1 d𝑡 d𝜎(a) d𝑟

=

∫ ∞

0

∫
𝜕𝐵(0,1)

��(∇𝑢) (𝑥 + 𝑡a)��( ∫ ∞

𝑡

𝑟𝑛−11𝐸 (𝑥 + 𝑟a) d𝑟
)

d𝜎(a) d𝑡.

The result will follow by regarding 𝑡 as the radial variable for the polar coordinates
instead of 𝑟. For this purpose, we observe that 1𝐸 (𝑥 + 𝑟a) = 0 whenever 𝑟 > diam(Ω)
and that for all 0 < 𝑡 < 𝑟 we have 𝑥 + 𝑟a ∈ 𝐸 ⇒ 𝑥 + 𝑡a ∈ Ω, since Ω is star-shaped with
respect to 𝐸 . Thus, 1𝐸 (𝑥 + 𝑟a) = 1𝐸 (𝑥 + 𝑟a)1Ω(𝑥 + 𝑡a) and we can continue by

≤
∫ ∞

0

∫
𝜕𝐵(0,1)

��(1Ω∇𝑢) (𝑥 + 𝑡a)��( ∫ diam(Ω)

0
𝑟𝑛−1 d𝑟

)
d𝜎(a) d𝑡.

Returning to Cartesian coordinates via 𝑦 = 𝑥 + 𝑡a, we are left with the required estimate

=
diam(Ω)𝑛

𝑛

∫
Ω

|∇𝑢(𝑦) |
|𝑥 − 𝑦 |𝑛−1 d𝑦.

Step 2: Extension by density.

Since C∞(Ω) ∩ H1(Ω) is dense in H1(Ω) by Theorem 10.12 and as Ω is bounded,
the general case can be obtained by approximation as in the proof of Corollary 10.8,
even when 𝑛 = 2. Indeed, since on the bounded set Ω we have a continuous inclusion
L2(Ω) ⊆ L𝑝 (Ω) for any 𝑝 ∈ (1, 2), the integral operator I(1Ω ·) is bounded H1(Ω) →
L𝑝∗ (R𝑛) thanks to Theorem 10.7. □

Remark 10.16. Of course 𝑝 = 2 works in the final step if we are in dimension 𝑛 ≥ 3
but the result in dimension 𝑛 = 2 has to use the Hardy–Littlewood–Sobolev inequality
with 𝑝 ≠ 2.

We use the potential-type representation from the previous lemma to prove the following
inequality.

Theorem 10.17 (Sobolev–Poincaré inequality). Let 𝑛 ≥ 1 and Ω ⊆ R𝑛 be non-empty,
open, bounded and star-shaped with respect to some measurable subset 𝐸 ⊆ Ω with
|𝐸 | > 0. Furthermore, let

• 1 ≤ 𝑞 ≤ 2∗ if 𝑛 ≥ 3,
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10.2. Sobolev–Poincaré inequalities

• 1 ≤ 𝑞 < ∞ if 𝑛 = 2,

• 1 ≤ 𝑞 ≤ ∞ if 𝑛 = 1.

Then there exists 𝐶 = 𝐶 (𝑛, 𝑞) > 0 such that for all 𝑢 ∈ H1(Ω) we have

∥𝑢 − (𝑢)𝐸 ∥L𝑞 (Ω) ≤ 𝐶
diam(Ω)𝑛

|𝐸 | |Ω|1/𝑞−(1/2−1/𝑛) ∥∇𝑢∥L2 (Ω) .

Proof. Observe that once we have the claim for some 𝑞0, then we get the claim for all
𝑞 ∈ [1, 𝑞0) from Hölder’s inequality:

∥𝑢 − (𝑢)𝐸 ∥L𝑞 (Ω) ≤ |Ω|1/𝑞−1/𝑞0 ∥𝑢 − (𝑢)𝐸 ∥L𝑞0 (Ω) ≲
diam(Ω)𝑛

|𝐸 | |Ω|1/𝑞−(1/2−1/𝑛) ∥∇𝑢∥L2 (Ω) .

Moreover, by definition of the Riesz potential, Lemma 10.15 can be read as

|𝑢(𝑥) − (𝑢)𝐸 | ≤
diam(Ω)𝑛
𝑛|𝐸 |

(
I(1Ω |∇𝑢 |)

)
(𝑥) (a.e. 𝑥 ∈ Ω). (10.6)

Case 1: We assume 𝑛 ≥ 3 and 𝑞 = 2∗.

Using (10.6) together with Theorem 10.7, we find

∥𝑢 − (𝑢)𝐸 ∥L𝑞 (Ω) ≤
diam(Ω)𝑛
𝑛|𝐸 | ∥I(1Ω |∇𝑢 |) ∥L𝑞 (Ω) ≲

diam(Ω)𝑛
|𝐸 | ∥∇𝑢∥L2 (Ω) .

Case 2: We assume 𝑛 = 2 and 𝑞 > 2.

We define 𝑞∗ B 2𝑞/(2+𝑞) and note that 𝑞∗ ∈ (1, 2) as well as (𝑞∗)∗ = 𝑞. Moreover, we
have 1Ω |∇𝑢 | ∈ L𝑞∗ (R𝑛) since Ω is bounded. Thus, another application of (10.6) and
Theorem 10.7, followed by Hölder’s inequality, gives

∥𝑢 − (𝑢)𝐸 ∥L𝑞 (Ω) ≤
diam(Ω)𝑛
𝑛|𝐸 | ∥I(1Ω |∇𝑢 |) ∥L𝑞 (Ω)

≲
diam(Ω)𝑛

|𝐸 | ∥∇𝑢∥L𝑞∗ (Ω)

≤ diam(Ω)𝑛
|𝐸 | |Ω|1/𝑞∗−1/2∥∇𝑢∥L2 (Ω) .

The claim follows since 1/𝑞∗ − 1/2 = 1/𝑞.

Case 3: We assume 𝑛 = 1 and 𝑞 = ∞.
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10. Sobolev embeddings

In this case we can use the fundamental theorem of calculus directly and none of the
material from this section is actually needed. We leave the (hopefully instructive)
comparison of methods as Exercise 10.2. □

Example 10.18. A typical example for Theorem 10.17 is when Ω = 𝐵(𝑥, 𝑟) is a ball
and |𝐸 | ≥ 𝛾 |𝐵(𝑥, 𝑟) | for some 𝛾 ∈ (0, 1). For instance, 𝐸 could be a ball with radius
comparable to that of 𝐵(𝑥, 𝑟). In that case, the Sobolev–Poincaré inequality becomes

∥𝑢 − (𝑢)𝐸 ∥L𝑞 (𝐵(𝑥,𝑟)) ≤ 𝐶𝑟1+𝑛( 1
𝑞
− 1

2 ) ∥∇𝑢∥L2 (𝐵(𝑥,𝑟)) .

Eventually, the Sobolev–Poincaré inequality implies a Sobolev embedding on suitable
open subsets of R𝑛.

Corollary 10.19. In the setting of Theorem 10.17 there exists a constant 𝐶 ≥ 0 such
that

∥𝑢∥L𝑞 (Ω) ≤ 𝐶
(
∥∇𝑢∥L2 (Ω) + ∥𝑢∥L1 (𝐸)

)
(𝑢 ∈ H1(Ω)).

Proof. Write 𝑢 = (𝑢 − (𝑢)𝐸 ) + (𝑢)𝐸 and use that ∥(𝑢)𝐸 ∥L𝑞 (Ω) ≤ |Ω|1/𝑞
|𝐸 | ∥𝑢∥L1 (𝐸) . □

10.3. Further applications of the Meyers–Serrin
theorem

The Meyers–Serrin theorem opens the door to proving further, more involved properties
of weak derivatives by approximation. To showcase the general strategy, we prove a
version of the chain rule. It will be somewhat more convenient to only work with
real-valued functions.

Theorem 10.20 (Chain rule for H1). Let Ω ⊆ R𝑛 be a non-empty open set and let
𝑢 ∈ H1(Ω) be real-valued. Suppose that 𝜙 : R→ R is continuously differentiable with
bounded derivative and 𝜙(0) = 0. Then 𝜙 ◦ 𝑢 ∈ H1(Ω) and in the weak sense

∇(𝜙 ◦ 𝑢) (𝑥) = 𝜙′(𝑢(𝑥))∇𝑢(𝑥) (a.e. 𝑥 ∈ Ω).

Proof. We set 𝐶 B ∥𝜙′∥L∞ (R) so that |𝜙(𝑡) | ≤ 𝐶 |𝑡 | by the mean value theorem. Given
a real-valued 𝑢 ∈ H1(Ω), the bounds on 𝜙 imply

∥𝜙 ◦ 𝑢∥L2 (Ω) ≤ 𝐶∥𝑢∥L2 (Ω) and ∥(𝜙′ ◦ 𝑢)∇𝑢∥L2 (Ω) ≤ 𝐶∥∇𝑢∥L2 (Ω) . (10.7)

Now, we take an approximating sequence (𝑢 𝑗 ) ⊆ C∞(Ω) ∩ H1(Ω) as in the Meyers–
Serrin theorem. Up to switching to a subsequence, we can assume that (𝑢 𝑗 ) tends
to 𝑢 a.e. and by construction we can take the 𝑢 𝑗 real-valued. Since the chain rule
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holds for the continuously differentiable functions 𝜙 ◦ 𝑢 𝑗 , we conclude from (10.7) that
𝜙 ◦ 𝑢 𝑗 ∈ H1(Ω). The mean value theorem once again yields

∥𝜙 ◦ 𝑢 𝑗 − 𝜙 ◦ 𝑢∥L2 (Ω) ≤ 𝐶∥𝑢 𝑗 − 𝑢∥L2 (Ω) ,

which shows 𝜙 ◦ 𝑢 𝑗 → 𝜙 ◦ 𝑢 in L2(Ω) in the limit as 𝑗 → ∞. Furthermore, we have∇(𝜙 ◦ 𝑢 𝑗 ) − (𝜙′ ◦ 𝑢)∇𝑢


L2 (Ω)

≤
(𝜙′ ◦ 𝑢 𝑗 ) (∇𝑢 𝑗 − ∇𝑢)


L2 (Ω) +

(𝜙′ ◦ 𝑢 𝑗 − 𝜙′ ◦ 𝑢)∇𝑢L2 (Ω)

≤ 𝐶
∇𝑢 𝑗 − ∇𝑢


L2 (Ω) +

(𝜙′ ◦ 𝑢 𝑗 − 𝜙′ ◦ 𝑢)∇𝑢L2 (Ω) ,

where the first term on the right tends to zero. By dominated convergence, so does the
second term since 𝜙′ is bounded and continuous and (𝑢 𝑗 ) tends to 𝑢 a.e. on Ω. In total,
we have also shown ∇(𝜙 ◦ 𝑢 𝑗 ) → (𝜙′ ◦ 𝑢)∇𝑢 in L2(Ω). Hence, 𝜙 ◦ 𝑢 𝑗 converges in
H1(Ω) and the weak gradient of its limit 𝜙 ◦ 𝑢 can be computed by the chain rule. □

10.4. Exercises
Exercise 10.1 (An integral on the real line). Let 𝑢 ∈ C∞

c (R) and 𝑥 ∈ R. Show that2

𝑢(𝑥) = 1
2

∫
R
𝑢′(𝑦) sgn(𝑥 − 𝑦) d𝑦.

Then compare with Lemma 10.3.

Exercise 10.2 (Sobolev–Poincaré inequality in R). Use the fundamental theorem of
calculus to prove Theorem 10.17 in dimension 𝑛 = 1.

Exercise 10.3 (Riesz potentials at the endpoints). Prove that in dimension 𝑛 ≥ 2 the
boundedness of the Riesz potential I : L𝑝 (R𝑛) → L𝑝∗ (R𝑛) fails at the endpoints 𝑝 = 1
and 𝑝 = 𝑛. What happens in dimension 𝑛 = 1?

Hint: Remember ‘les intégrales de Bertrand’
∫ 1/e

0
1

𝑟 | log(𝑟) |𝛼 d𝑟 . . .

Exercise 10.4 (Gagliardo–Nirenberg inequality). In this exercise, you are going to
establish the Gagliardo–Nirenberg inequality stated in Theorem 10.11:

∥𝑢∥L𝑞 (R𝑛) ≤ 𝐶∥𝑢∥1+𝑛/𝑞−𝑛/2

L2 (R𝑛) ∥∇𝑢∥
𝑛
2 −𝑛/𝑞
L2 (R𝑛) (𝑢 ∈ H1(R𝑛)), (10.8)

whenever 𝑞 satisfies

• 2 ≤ 𝑞 ≤ 2∗ if 𝑛 ≥ 3,

• 2 ≤ 𝑞 < ∞ if 𝑛 = 2,
2As usual, sgn B 1(0,∞) − 1(−∞,0) is the sign function.
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10. Sobolev embeddings

• 2 ≤ 𝑞 ≤ ∞ if 𝑛 = 1.

We start with the case 𝑛 ≥ 3.

(a) Establish (10.8) as follows: Use Hölder’s inequality to control ∥𝑢∥L𝑞 (R𝑛) by
∥𝑢∥L2 (R𝑛) and ∥𝑢∥L2∗ (R𝑛) and apply the Sobolev embedding afterwards.

We proceed with the critical case 𝑛 = 2. Let 2 ≤ 𝑞 < ∞.

(b) Why does the same reasoning as in part (a) not apply when 𝑛 = 2 with 2∗ = ∞,
even though it would lead exactly to the required estimate?

(c) Let 𝑢 ∈ C∞
c (R2). Use Lemma 10.15 for Ω = 𝐸 = 𝐵(𝑥, 𝑟) and Lemma 10.6 to

establish for any 𝑟 ∈ (0,∞) and \ ∈ (0, 1) the bound

|𝑢(𝑥) | ≤ 𝐶
(
𝑟−

2\/𝑞∥𝑢∥\L𝑞 (R𝑛) (M𝑢) (𝑥)1−\ + 𝑟 (M∇𝑢) (𝑥)
)
.

(d) Minimize the inequality derived in (c) with respect to 𝑟 > 0 to establish a
multiplicative counterpart of this inequality.

(e) Take the L𝑞-norm of the inequality derived in (d) and apply Hölder’s inequality
with exponents 𝑝 and 𝑝′ on the right-hand side, where also 𝑝 ∈ (1,∞) needs to
be chosen yet.

(f) Get rid of the maximal operator and find unique choices for \ and 𝑝 from the
requirement that ∥∇𝑢∥1−2/𝑞

L2 (R𝑛) should appear on the right-hand side in (10.8).

(g) Complete the proof of (10.8).

Finally, we study the case 𝑛 = 1.

(f) Use Corollary 3.14 to prove for any 𝑟 > 0 that

|𝑢(𝑥) | ≤ (2𝑟)−1/2∥𝑢∥L2 (R) + (2𝑟)1/2∥𝑢′∥L2 (R) (𝑥 ∈ R).

(g) Establish (10.8) in the case 𝑞 = ∞ by minimizing with respect to 𝑟.

(h) Conclude (10.8) for 2 ≤ 𝑞 < ∞.

Exercise 10.5 (Truncation of Sobolev functions). Let Ω ⊆ R𝑛 be a non-empty open
set. Prove that H1(Ω) ∩ L∞(Ω) is dense in H1(Ω).

Exercise 10.6 (Dirichlet conditions and the punctured space). In this exercise we come
back to a claim from Lecture 3, namely that in dimension 𝑛 ≥ 2 one point is ‘too
small to be seen’ by Sobolev functions. More precisely, we ask you to prove that on
Ω B R𝑛 \ {0} we have H1(Ω) = H1

0(Ω).

Hint: Take 𝑢 ∈ H1(Ω) ∩ L∞(Ω) and construct a sequence (𝑢 𝑗 ) ⊆ C∞
c (Ω) that is

bounded in H1(Ω) and converges to 𝑢 in L2(Ω). Then, use functional analysis.
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In this lecture, we come back to elliptic operators 𝐿 in divergence form. To streamline
the presentation, we shall put boundary conditions aside and only work in R𝑛. So far,
we have regarded 𝐿 as an example for various, more general concepts in Hilbert space
theory: sesquilinear forms, functional calculus and quadratic estimates. As a matter of
fact, all estimates involving 𝐿 have been of a global nature, taking the norm on L2(R𝑛),
and rarely have we used that we work on a space of functions that may have special
properties on certain subregions 𝐸, 𝐹 ⊆ R𝑛. In this lecture we are interested in finer
mapping properties of the resolvent (1 + 𝐿)−1 relative to given 𝐸, 𝐹:

If 𝑢 is supported in 𝐸 , what can be said about the size of (1 + 𝐿)−1𝑢 on 𝐹
— in particular, if 𝐸 and 𝐹 are far away from each other?

Once again, the negative Laplacian −Δ on R𝑛 will be our guiding example but, com-
pared to Lecture 4, we work in the ‘state variable’ 𝑥 rather than the ‘frequency vari-
able’ b.

Notation 11.1. Throughout the lecture, 𝐿 = − div(𝐴∇ ·) denotes an elliptic operator in
divergence form on R𝑛 and _,Λ are the lower and upper bound for its coefficients, see
(3.9) and (3.4). We write dist(𝐸, 𝐹) for the (Euclidean) distance of sets 𝐸, 𝐹 ⊆ R𝑛.

11.1. The Bessel kernel and the negative Laplacian
For starters, we consider 𝐿 = −Δ the negative Laplacian on R𝑛. In this case, explicit
computations can be made. It all relies on the following representation of the resolvent
as a convolution operator.

Lemma 11.2. Let 𝐺 : R𝑛 → (0,∞) be given by

𝐺 (𝑥) B 1
4𝜋

∫ ∞

0
e−𝜋 |𝑥 |

2/𝑠e−𝑠/(4𝜋 )𝑠−𝑛/2 d𝑠.

Then ∥𝐺∥L1 (R𝑛) = 1 and for every 𝑢 ∈ L2(R𝑛) we have that (1 − Δ)−1𝑢 = 𝐺 ∗ 𝑢.
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Proof. First, we compute the norm of 𝐺 as∫
R𝑛
𝐺 (𝑥) d𝑥 Tonelli

=
1

4𝜋

∫ ∞

0
e−𝑠/4𝜋

(
𝑠−

𝑛/2

∫
R𝑛

e−𝜋 |𝑥 |
2/𝑠 d𝑥

)
d𝑠

𝑥 =
√
𝑠𝑦

=
1

4𝜋

∫ ∞

0
e−𝑠/4𝜋 · 1 d𝑠 = 1.

To show the identity for the resolvent, we introduce 𝑚 = 4𝜋2 | · |2 as in Lecture 4 and
recall from Corollary 4.8 and Example 1.16 that (1−Δ)−1𝑢 = F −1((1+𝑚)−1

p𝑢). Since
the Fourier transform turns convolutions into multiplications, we have𝐺∗𝑢 = F −1( p𝐺p𝑢)
in L2(R𝑛) and our task is to prove p𝐺 = (1 + 𝑚)−1. To this end, we let 𝑣 ∈ C∞

c (R𝑛) and
compute∫
R𝑛

p𝐺 (b) · 𝑣(b) db Plancherel
=

∫
R𝑛
𝐺 (𝑥) · q𝑣(𝑥) d𝑥

Tonelli
=

1
4𝜋

∫
R𝑛

∫ ∞

0

∫
R𝑛

e−2𝜋i𝑥·be−𝜋 |𝑥 |
2/𝑠 d𝑥 e−𝑠/4𝜋𝑠−

𝑛/2 d𝑠 𝑣(b) db.

The integral in 𝑥 is the Fourier transform of e−𝜋 | · |
2/𝑠 at b. Since e−𝜋 | · |2 is a fixed point of

the Fourier transform1, the integral in 𝑥 is equal to 𝑠𝑛/2e−𝜋𝑠 |b |2 , see Proposition 4.2 (c).
Now, we can continue by

=
1

4𝜋

∫
R𝑛

∫ ∞

0
e−𝑠(1/4𝜋+𝜋 |b |2) d𝑠 𝑣(b) db

=

∫
R𝑛

1
1 + 4𝜋2 |b |2

· 𝑣(b) db.

The fundamental lemma in the calculus of variations implies p𝐺 = (1 + 𝑚)−1 and the
proof is complete. □

The radially symmetric kernel𝐺 in the previous lemma is usually called Bessel kernel.
It enjoys the following exponential estimate.

Lemma 11.3. There exists 𝐶 > 0 such that

𝐺 (𝑥) ≤ 𝐶e− |𝑥 |/2 ( |𝑥 | ≥ 1).

Proof. We bound the integrand in the definition of 𝐺 by

e−𝜋 |𝑥 |
2/𝑠e−𝑠/4𝜋 = e−(𝜋 |𝑥 |

2/2𝑠+𝑠/8𝜋) ·
(
e−𝜋 |𝑥 |

2/2𝑠e−𝑠/8𝜋 ) ≤ e− |𝑥 |/2 (e−𝜋/2𝑠e−𝑠/8𝜋 ) ,
1Most likely, you have seen this in your calculus classes. Here is a recap of the argument. When 𝑛 = 1,

the functions 𝑦 B e−𝜋 | · |2 and p𝑦 both solve the same initial value problem 𝑧′ (𝑥) = −2𝜋𝑥𝑧(𝑥) with
𝑧(0) = 1. In higher dimensions, write e−2𝜋i𝑥 ·b e−𝜋 |𝑥 |2 = e−2𝜋i𝑥1 b1 e−𝜋𝑥2

1 · . . . · e−2𝜋i𝑥𝑛 b𝑛e−𝜋𝑥2
𝑛 and

use Fubini’s theorem.
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where we have used the inequality between arithmetic and geometric mean 𝑎+𝑏/2 ≥
√
𝑎𝑏

in the exponent of the first factor and the assumption |𝑥 | ≥ 1 for the second one. The
claim follows by integrating with respect to 𝑠 ∈ (0,∞). □

In case of the negative Laplacian, our initial question can now easily be answered.

Proposition 11.4 (L2-off-diagonal estimates for the negative Laplacian). We can find
constants 𝐶, 𝑐 > 0 such that for all measurable sets 𝐸, 𝐹 ⊆ R𝑛 and all 𝑢 ∈ L2(R𝑛)
with supp(𝑢) ⊆ 𝐸 we have

∥(1 − Δ)−1𝑢∥L2 (𝐹) ≤ 𝐶e−𝑐dist(𝐸,𝐹) ∥𝑢∥L2 (𝐸) .

Proof. Let 𝑢 ∈ L2(R𝑛) with supp(𝑢) ⊆ 𝐸 . We distinguish two cases.

Case 1: dist(𝐸, 𝐹) ≤ 1.

In this case we are not claiming any decay and simply use the global resolvent bound,
coming from m-accretivity of −Δ:

∥(1 − Δ)−1𝑢∥L2 (𝐹) ≤ ∥(1 − Δ)−1𝑢∥L2 (R𝑛) ≤ ∥𝑢∥L2 (R𝑛) ≤ e · e−dist(𝐸,𝐹) ∥𝑢∥L2 (𝐸) .

Case 2: dist(𝐸, 𝐹) > 1.

We use the formula in Lemma 11.2. Since ∥𝐺∥L1 (R𝑛) = 1 and 𝑢 is supported in 𝐸 , the
Cauchy–Schwarz inequality yields�� ((1 − Δ)−1𝑢

)
(𝑥)

��2 =

����∫
𝐸

𝐺 (𝑥 − 𝑦)𝑢(𝑦) d𝑦
����2

≤
(∫

𝐸

𝐺 (𝑥 − 𝑦)1/2𝐺 (𝑥 − 𝑦)1/2 |𝑢(𝑦) | d𝑦
)2

≤
∫
𝐸

𝐺 (𝑥 − 𝑦) |𝑢(𝑦) |2 d𝑦.

We integrate over 𝑥 ∈ 𝐹, use Tonelli’s theorem and switch to polar coordinates, in
order to find∫

𝐹

| (1 − Δ)−1𝑢 |2 d𝑥 ≤
∫
𝐸

∫
𝐹

𝐺 (𝑥 − 𝑦) d𝑥 |𝑢(𝑦) |2 d𝑦

≤ 𝜎𝑛−1

∫
𝐸

∫ ∞

dist(𝐸,𝐹)
𝑟𝑛−1𝐺 (𝑟𝑒1) d𝑟 |𝑢(𝑦) |2 d𝑦,

(11.1)

where 𝑒1 is the first unit vector inR𝑛. For 𝑟 ≥ 1 we have𝐺 (𝑟𝑒1) ≲ e−𝑟/2 by Lemma 11.3.
Hence, 𝑟𝑛−1𝐺 (𝑟𝑒1) ≲ 𝑟𝑛−1e−𝑟/4e−𝑟/4 ≲ e−𝑟/4 and by a computation of the d𝑟-integral in
(11.1) we derive the required estimate∫

𝐹

| (1 − Δ)−1𝑢 |2 d𝑥 ≲ e−
dist(𝐸,𝐹 )

4

∫
𝐸

|𝑢(𝑦) |2 d𝑦. □

137



11. Off-diagonal behavior

The resolvent decay with respect to dist(𝐸, 𝐹) in Proposition 11.4 has been a conse-
quence of the pointwise bound for the resolvent kernel (𝑥, 𝑦) ↦→ 𝐺 (𝑥 − 𝑦) away from
the ‘diagonal’ {(𝑥, 𝑦) ∈ R𝑛×R𝑛 : 𝑥 = 𝑦}, hence the name off-diagonal estimates. There
might be other reasons why such a bound is true and we turn the outcome of Proposi-
tion 11.4 into a definition. The concept, though for semigroups rather than resolvents,
dates back to Gaffney’s results for the heat equation on Riemannian manifolds [Gaf59]
and was popularized by Davies in the context of general elliptic operators [Dav95].
Their fundamental contributions are reflected in the terminology: L2-off-diagonal es-
timates are also known as Davies–Gaffney estimates.

Definition 11.5. A family (𝑇𝑡)𝑡>0 ⊆ L(L2(R𝑛)) satisfies L2-off-diagonal estimates if
there exist 𝐶, 𝑐 > 0 such that for all measurable sets 𝐸, 𝐹 ⊆ R𝑛 and all 𝑢 ∈ L2(R𝑛)
with supp(𝑢) ⊆ 𝐸 we have

∥𝑇𝑡𝑢∥L2 (𝐹) ≤ 𝐶e−𝑐
dist(𝐸,𝐹 )

𝑡 ∥𝑢∥L2 (𝐸) .

The same terminology is used for families of linear operators acting between tuples of
L2(R𝑛)-functions.

Remark 11.6. At this point the scaling parameter 𝑡 does not play an essential role and
readers should consider 𝑡 = 1 and a single operator 𝑇 = 𝑇1 on a first reading. In fact, for
the families we are going to be interested in, the dependence of the right-hand side with
respect to 𝑡 can also be obtained by an a posteriori scaling argument, see Exercise 11.5.

11.2. Off-diagonal estimates for elliptic operators
When we replace −Δ by 𝐿, there is no reason to believe that the resolvent is still
given by an integrable kernel in any reasonable sense. (We will support that claim
of ours by some further evidence later during this lecture.) However, L2-off-diagonal
estimates remains valid as we shall see next. Of course, the strategy of proof has to be
dramatically different.

We start with uniform bounds with respect to the scaling parameter 𝑡, which in any
case is necessary since we may take 𝐸 = 𝐹 = R𝑛 in Definition 11.5. In the following,
it will be convenient to use second order scaling and work with (1 + 𝑡2𝐿)−1 instead of
the usual (1 + 𝑡𝐿)−1 for 𝑡 > 0.

Lemma 11.7. For all 𝑢 ∈ L2(R𝑛) and all 𝑡 > 0 we have the following uniform bounds:

(a) ∥(1 + 𝑡2𝐿)−1𝑢∥L2 (R𝑛) ≤ ∥𝑢∥L2 (R𝑛) ,

(b) ∥𝑡∇(1 + 𝑡2𝐿)−1𝑢∥L2 (R𝑛) ≤
√︁

2/_∥𝑢∥L2 (R𝑛) .
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11.2. Off-diagonal estimates for elliptic operators

Proof. Part (a) is a direct consequence of m-accretivity (Theorem 2.21). As for (b),
we set 𝑤 B (1 + 𝑡2𝐿)−1𝑢 and use ellipticity and the definition of 𝐿 to bound

_∥𝑡∇𝑤∥2
L2 (R𝑛) ≤ 𝑡

2 Re
(
𝑎(𝑤)

)
= 𝑡2 Re

(
⟨𝐿𝑤, 𝑤⟩L2 (R𝑛)

)
≤ ∥𝑡2𝐿𝑤∥L2 (R𝑛) ∥𝑤∥L2 (R𝑛) .

Now, 𝑡2𝐿𝑤 = 𝑢 − 𝑤, so that according to (a) the right-hand side is bounded by
2∥𝑢∥2

L2 (R𝑛) . This proves (b). □

Theorem 11.8 (L2-off-diagonal estimates for 𝐿). The following families of operators
satisfy L2-off-diagonal estimates:

(a)
(
(1 + 𝑡2𝐿)−1)

𝑡>0,

(b)
(
𝑡∇(1 + 𝑡2𝐿)−1)

𝑡>0.

The implicit constants 𝑐 and 𝐶 as in Definition 11.5 depend only on 𝑛, _ and Λ.

Proof. We fix measurable sets 𝐸, 𝐹 ⊆ R𝑛, a function 𝑢 ∈ L2(R𝑛) with support in 𝐸
and a scaling parameter 𝑡 > 0. We abbreviate 𝑤 B (1 + 𝑡2𝐿)−1𝑢 and 𝑑 B dist(𝐸, 𝐹).

Off-diagonal estimates only provide additional information (as compared to uniform
boundedness) when 𝑑/𝑡 is large and similar to the proof for the negative Laplacian in
Proposition 11.4 we distinguish two cases. However, it will be advantageous to keep
the threshold 𝛼 > 0 variable, depending on 𝑛, _ and Λ.

Case 1: 𝑑 ≤ 𝛼𝑡.

Lemma 11.7 directly yields the required bound

∥𝑤∥L2 (𝐹) + ∥𝑡∇𝑤∥L2 (𝐹) ≤ ∥𝑤∥L2 (R𝑛) + ∥𝑡∇𝑤∥L2 (R𝑛) ≤ (1 +
√︁

2/_)∥𝑢∥L2 (𝐸)

≤ (1 +
√︁

2/_)e𝛼 · e−
𝑑
𝑡 ∥𝑢∥L2 (𝐸) .

Case 2: 𝑑 > 𝛼𝑡.

We fix a real-valued, bounded function 𝜌 ∈ C∞(R𝑛) with 𝜌 = 1 on 𝐹, 𝜌 = 0 on 𝐸 and

𝑑∥∇𝜌∥L∞ (R𝑛) ≤ 𝐶 (11.2)

for some constant 𝐶 that only depends on 𝑛.2 The principal idea of the proof is to test
the elliptic equation (1 + 𝑡2𝐿)𝑤 = 𝑢 with the following function:

𝑣 B 𝑤[2, where [ B e
𝑑
𝛼𝑡
𝜌 − 1.

2Here is one construction. Take 𝜙 ∈ C∞
c (𝐵(0, 1)) with integral 1 and smooth out the characteristic

function of Ω𝐹 B {𝑥 ∈ R𝑛 | dist(𝑥, 𝐹) ≤ 𝑑/3} — the function 𝜌 B 1Ω𝐹
∗ 𝜙𝑑/3 does the job.
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11. Off-diagonal behavior

We note that 𝑣 ∈ H1(R𝑛) since [ is smooth and bounded with bounded derivative
(Lemma 3.9) and in addition we have

[ = 0 (on 𝐸),

[ = e
𝑑
𝛼𝑡 − 1 ≥ 1

2e
𝑑
𝛼𝑡 (on 𝐹),

|∇[ | = | 𝑑
𝛼𝑡
∇𝜌 · e

𝑑
𝛼𝑡
𝜌 | ≤ 𝐶

𝛼𝑡
|[ + 1|,

(11.3)

where we have used 𝑑 > 𝛼𝑡 and the inequality e𝑠 ≥ 2 for 𝑠 ≥ 1 to derive the exponential
lower bound on 𝐹.

Since 𝑢 = (1 + 𝑡2𝐿)𝑤, we find by definition of 𝐿 that

⟨𝑢, 𝑣⟩L2 (R𝑛) = ⟨𝑤, 𝑣⟩L2 (R𝑛) + 𝑡2𝑎(𝑤, 𝑣)

=

∫
R𝑛
|𝑤 |2[2 d𝑥 + 𝑡2

∫
R𝑛
𝐴∇𝑤 · ∇(𝑤[2) d𝑥

=

∫
R𝑛
|𝑤 |2[2 d𝑥 + 𝑡2

∫
R𝑛
𝐴∇𝑤 · [2∇𝑤 + 𝐴∇𝑤 · 2[𝑤∇[ d𝑥.

As 𝑣 = 𝑤[2 = 0 on 𝐸 ⊇ supp(𝑢), the left-hand side vanishes and we get∫
R𝑛
|𝑤 |2[2 d𝑥 + 𝑡2

∫
R𝑛
(𝐴∇𝑤 · ∇𝑤)[2 d𝑥 = −𝑡2

∫
R𝑛
𝐴[∇𝑤 · 2𝑤∇[ d𝑥.

We control the real part of the left-hand side from below by ellipticity of 𝐴 and the
absolute value of the right-hand side from above by boundedness of 𝐴. Consequently,∫
R𝑛
|𝑤 |2[2 d𝑥 + _𝑡2

∫
R𝑛
|∇𝑤 |2[2 d𝑥 ≤ 𝑡2

∫
R𝑛
|[∇𝑤 | · 2Λ|𝑤∇[ | d𝑥

and the ‘Peter–Paul inequality’3 𝑎𝑏 ≤ Y𝑎2/2 + 𝑏2/2Y for positive numbers yields

≤ _𝑡2

2

∫
R𝑛
|∇𝑤 |2[2 d𝑥 + 2Λ2𝑡2

_

∫
R𝑛
|𝑤 |2 |∇[ |2 d𝑥.

We have chosen the prefactor for the first term on the right in such a way that it can be
absorbed back into the left-hand side, resulting in the bound∫

R𝑛
|𝑤 |2[2 d𝑥 + _𝑡

2

2

∫
R𝑛
|∇𝑤 |2[2 d𝑥 ≤ 2Λ2𝑡2

_

∫
R𝑛
|𝑤 |2 |∇[ |2 d𝑥.

Since terms with [ are potentially very large, see (11.3), we need to move all [-
dependency to the left. To this end, the algebraic properties of [ come in handy.
Indeed, we have |∇[ |2 ≤ 2𝐶2

𝛼2𝑡2
([2 + 1) by (11.3) and therefore∫

R𝑛
|𝑤 |2[2 d𝑥 + _𝑡

2

2

∫
R𝑛
|∇𝑤 |2[2 d𝑥 ≤ 4Λ2𝐶2

_𝛼2

∫
R𝑛
|𝑤 |2([2 + 1) d𝑥,

3One must ‘rob Peter to pay Paul’.
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11.2. Off-diagonal estimates for elliptic operators

so that fixing the threshold 𝛼 B
√︁

8/_Λ𝐶 indeed leads us to

1
2

∫
R𝑛
|𝑤 |2[2 d𝑥 + _𝑡

2

2

∫
R𝑛
|∇𝑤 |2[2 d𝑥 ≤ 1

2

∫
R𝑛
|𝑤 |2 d𝑥.

Lemma 11.7 allows us to estimate the L2-norm of 𝑤 on the right by the one of 𝑢 and
on the left we can use the exponential lower bound for [ on 𝐹 in (11.3) to conclude

1
8

e
2𝑑
𝛼𝑡

∫
𝐹

|𝑤 |2 d𝑥 + _
8

e
2𝑑
𝛼𝑡

∫
𝐹

|𝑡∇𝑤 |2 d𝑥 ≤ 1
2

∫
𝐸

|𝑢 |2 d𝑥.

By definition of 𝑤, this is the required off-diagonal estimate. □

There is a straightforward duality principle for off-diagonal estimates.

Lemma 11.9. If (𝑇𝑡)𝑡>0 ⊆ L(L2(R𝑛)) satisfies L2-off-diagonal estimates, then so does
the adjoint family (𝑇∗

𝑡 )𝑡>0 and the implicit constants 𝐶, 𝑐 > 0 can be taken the same.

Proof. Fix 𝑡 > 0, measurable sets 𝐸, 𝐹 ⊆ R𝑛 and a function 𝑢 ∈ L2(R𝑛) with support
in 𝐸 . For any 𝑣 ∈ L2(R𝑛) with support in 𝐹 we have

|⟨𝑇∗
𝑡 𝑢, 𝑣⟩L2 (R𝑛) | = |⟨𝑢, 𝑇𝑡𝑣⟩L2 (R𝑛) | ≤ ∥𝑢∥L2 (𝐸) ∥𝑇𝑡𝑣∥L2 (𝐸)

≤ ∥𝑢∥L2 (𝐸)𝐶e−𝑐
dist(𝐹,𝐸 )

𝑡 ∥𝑣∥L2 (𝐹) ,

and taking 𝑣 = 1𝐹𝑇∗
𝑡 𝑢 yields the claim. □

Applying the duality principle to the resolvent family leads us to the resolvents of
the adjoint operator 𝐿∗ = − div(𝐴∗∇ ·), which is an operator of the same type as 𝐿,
compare with Lemma 6.7 and Theorem 3.29 (c). Things are different for the gradient
of the resolvent, whose adjoint will play an important role in the upcoming lectures.
To describe this family properly, we need the very weak divergence operator

div : L2(R𝑛)𝑛 → H−1(R𝑛), ⟨div𝑈, 𝑣⟩H−1 (R𝑛),H1 (R𝑛) = −
∫
R𝑛
𝑈 · ∇𝑣 d𝑥. (11.4)

It is clearly bounded and its name stems from the fact that if 𝑈 = (𝑈1, . . . ,𝑈𝑛) ∈
H1(R𝑛)𝑛, then integration by parts via Corollary 3.19 reveals that div𝑈 =

∑𝑛
𝑗=1 𝜕𝑗𝑈 𝑗

is the divergence taken in the sense of weak derivatives. Implicitly, this definition has
always been around. Namely, the definition of

L : H1(R𝑛) → H−1(R𝑛), ⟨L 𝑢, 𝑣⟩H−1 (R𝑛),H1 (R𝑛) =

∫
R𝑛
𝐴∇𝑢 · ∇𝑣 d𝑥

says precisely that L = − div(𝐴∇ ·) can be understood as a three-fold composition of
operators: weak gradient, multiplication by 𝐴, negative very weak divergence.
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11. Off-diagonal behavior

Lemma 11.10. Let 𝑡 > 0. The adjoint of ∇(1 + 𝑡2𝐿∗)−1 ⊆ L2(R𝑛) × L2(R𝑛)𝑛 is given
by −(1 + 𝑡2L )−1 div.

Proof. Since ∇(1 + 𝑡2𝐿∗)−1 is bounded (Lemma 11.7), so is its adjoint (Proposi-
tion 1.20 (h)). The operator −(1 + 𝑡2L )−1 div ⊆ L2(R𝑛)𝑛 × L2(R𝑛) is also bounded
as a composition of bounded operators (Corollary 2.20). Given 𝑈 ∈ H1(R𝑛)𝑛 and
𝑣 ∈ L2(R𝑛), integration by parts and duality for resolvents as above yield〈

𝑈,∇(1 + 𝑡2𝐿∗)−1𝑣
〉

L2 (R𝑛)𝑛 =
〈
− div𝑈, (1 + 𝑡2𝐿∗)−1𝑣

〉
L2 (R𝑛)

=
〈
−(1 + 𝑡2𝐿)−1 div𝑈, 𝑣

〉
L2 (R𝑛)

=
〈
−(1 + 𝑡2L )−1 div𝑈, 𝑣

〉
L2 (R𝑛) ,

where in the last step we have used that (1 + 𝑡2𝐿)−1 is the restriction of (1 + 𝑡2L )−1

to L2(R𝑛), see (the proof of) Theorem 2.21. By density, this identity extends to all
𝑈 ∈ L2(R𝑛)𝑛 and the claim follows. □

In view of the preceding two lemmas, we can add the following result to Theorem 11.8
(applied to 𝐿∗).

Corollary 11.11. The family (𝑡 (1+ 𝑡2L )−1 div)𝑡>0 satisfies L2-off-diagonal estimates.
Implicit constants 𝑐 and 𝐶 as in Definition 11.5 depend only on 𝑛, _ and Λ.

11.3. Consequences of off-diagonal estimates
Consider again the negative Laplacian. By Lemma 11.2, its resolvent is given by

(1 − Δ)−1𝑢 = 𝐺 ∗ 𝑢,

where 𝐺 is the Bessel kernel. Since 𝐺 is integrable, the right-hand side makes sense
for all bounded functions and this provides a way to define (1−Δ)−1𝑏 for 𝑏 ∈ L∞(R𝑛).
This extension can also be recovered from the L2-theory by approximation as follows.
We fix any ball 𝐵 ⊆ R𝑛 and consider the L2-functions 12𝑘𝐵𝑏. Then for almost every
𝑥 ∈ R𝑛 we have by dominated convergence that(

(1 − Δ)−1𝑏
)
(𝑥) B

∫
R𝑛
𝐺 (𝑥 − 𝑦)𝑏(𝑦) d𝑦 = lim

𝑘→∞

∫
R𝑛
𝐺 (𝑥 − 𝑦)12𝑘𝐵𝑏(𝑦) d𝑦

= lim
𝑘→∞

(
(1 − Δ)−112𝑘𝐵𝑏

)
(𝑥).

Using off-diagonal estimates, the same construction can be made in much greater
generality.
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11.3. Consequences of off-diagonal estimates

Proposition 11.12. Let (𝑇𝑡)𝑡>0 ⊆ L(L2(R𝑛)) satisfy L2-off-diagonal estimates and let
𝑏 ∈ L∞(R𝑛). For any ball 𝐵 ⊆ R𝑛 the limit

lim
𝑘→∞

𝑇𝑡 (12𝑘𝐵𝑏)

exists in L2(𝐾) for any compact subset 𝐾 ⊆ R𝑛 and is independent of the choice of 𝐵.
Moreover, we obtain the same limit if 𝐵 is a cube with sides parallel to the coordinate
axes (that is, a ball with respect to the ℓ∞-norm on R𝑛).

In the proof we will see for the first time how off-diagonal estimates interact nicely
with annular decompositions of R𝑛.

Definition 11.13. Given a ball 𝐵 ⊆ R𝑛, we introduce the annuli

𝐶1(𝐵) B 4𝐵 and 𝐶ℓ (𝐵) B 2ℓ+1𝐵 \ 2ℓ𝐵 (ℓ ≥ 2).

We use the same notation if 𝐵 is a cube with sides parallel to the coordinate axes.

Proof of Proposition 11.12. Let𝐾 ⊆ R𝑛 be compact and ℓ0 ∈ N be such that𝐾 ⊆ 2ℓ0𝐵.
Let 𝑟 be the radius of 𝐵. If ℓ ∈ N is such that ℓ > ℓ0, then

dist(𝐾,𝐶ℓ (𝐵)) ≥ 2ℓ𝑟 − 2ℓ0𝑟 ≥ 2ℓ−1𝑟.

For 𝑘 > 𝑗 > ℓ0 we write

12𝑘𝐵𝑏 − 12 𝑗𝐵𝑏 =

𝑘−1∑︁
ℓ= 𝑗

1𝐶ℓ (𝐵)𝑏

and note that ∥1𝐶ℓ (𝐵)𝑏∥L2 (R𝑛) ≤ (2ℓ+1𝑟)𝑛/2𝜔
1/2
𝑛 ∥𝑏∥L∞ (R𝑛) . Off-diagonal estimates yield

∥𝑇𝑡 (12𝑘𝐵𝑏) − 𝑇𝑡 (12 𝑗𝐵𝑏)∥L2 (𝐾) ≤
𝑘−1∑︁
ℓ= 𝑗

∥𝑇𝑡 (1𝐶ℓ (𝐵)𝑏)∥L2 (𝐾)

≤
𝑘−1∑︁
ℓ= 𝑗

𝐶e−𝑐
2ℓ−1𝑟
𝑡 (2ℓ+1𝑟)𝑛/2𝜔

1/2
𝑛 ∥𝑏∥L∞ (R𝑛) ,

where the right-hand side is a piece of a convergent series. This proves that (𝑇𝑡 (12𝑘𝐵𝑏))𝑘
is as Cauchy sequence in L2(𝐾) and hence convergent. 𝐵-independence of the limit as
well as that 𝐵 could be replaced by a cube follows by an analogous pattern and is left
as Exercise 11.2. □

Definition 11.14 (L∞-extension of off-diagonal families). In the setting of Proposi-
tion 11.12 we define 𝑇𝑡𝑏 B lim𝑘→∞ 𝑇𝑡 (12𝑘𝐵𝑏).
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11. Off-diagonal behavior

Since the Bessel potential 𝐺 is positive and has integral 1, the (extended) resolvent of
−Δ has the conservation property

(1 − Δ)−11R𝑛 = 1R𝑛 .

Extending the conservation property to general elliptic operators in divergence form
is one of the many applications for off-diagonal estimates. We are sure that you will
enjoy figuring out the surprisingly simple proof on your own and have prepared a
guided exercise (Exercise 11.3).

Theorem 11.15 (Conservation property). For any 𝑡 > 0 we have (1+ 𝑡2𝐿)−11R𝑛 = 1R𝑛 .

Besides the possibility of merely defining (1−Δ)−1𝑢 for broader classes of functions 𝑢,
the representation via the Bessel kernel also provides additional estimates in L𝑝 (R𝑛).
In fact, by the convolution inequality in Proposition 3.3 (c) we have

∥(1 − Δ)−1𝑢∥L𝑝 (R𝑛) = ∥𝐺 ∗ 𝑢∥L𝑝 (R𝑛) ≤ 𝐶∥𝑢∥L𝑝 (R𝑛)

for any 𝑢 ∈ L𝑝 (R𝑛) ∩ L2(R𝑛), where 1 ≤ 𝑝 ≤ ∞ and 𝐶 = ∥𝐺∥L1 (R𝑛) = 1. Once again,
we may ask for the same type of estimate when −Δ is replaced by a general elliptic
operator in divergence form . . .

The surprising answer is that the range of admissible exponents 𝑝 depends on the
operator. When the coefficients 𝐴 are real, all exponents 𝑝 ∈ [1,∞] are admissible but
for complex coefficients in dimension 𝑛 ≥ 3 the range can be different. In particular,
there exist elliptic operators in divergence form whose resolvents are not given by
kernels that behave similarly to 𝐺. As of now, we refer to [AE23, Sec. 1.3] for a
historical account and hope to learn more about it during the project phase. However,
when 𝑝 ∈ (1,∞) is such that ��� 1

𝑝
− 1

2

��� < 1
𝑛
, (11.5)

then L𝑝-extrapolation of resolvents always works.

Theorem 11.16 (L𝑝-extrapolation of resolvents). If 𝑝 ∈ (1,∞) satisfies (11.5), then
there exists 𝐶 > 0 such that for all 𝑡 > 0 and all 𝑢 ∈ L𝑝 (R𝑛) ∩ L2(R𝑛) we have

∥(1 + 𝑡2𝐿)−1𝑢∥L𝑝 (R𝑛) ≤ 𝐶∥𝑢∥L𝑝 (R𝑛) .

The proof relies on Sobolev embeddings and a beautiful application of off-diagonal
estimates. It follows a general pattern that can be applied to a variety of other operators
on L2(R𝑛) that have a smoothing property in the Sobolev scale and a decay property in
L2(R𝑛).

Proof of Theorem 11.16. We present the argument in dimension 𝑛 ≥ 3 and refer to
Exercise 11.6 for the modifications in dimensions 1 and 2.
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11.3. Consequences of off-diagonal estimates

The proof is divided into four steps. Since 𝑛 ≥ 3, we can introduce 𝑞 B 2∗ ∈ (2,∞)
as in Definition 10.5 and the range for 𝑝 in (11.5) is precisely 𝑞′ < 𝑝 < 𝑞. In the first
three steps we assume 2 < 𝑝 < 𝑞 and in the final step we treat the remaining exponents
by duality. Throughout the proof, we write 𝑅𝑡 B (1 + 𝑡2𝐿)−1. Implicit constants will
only depend on 𝑛, _, Λ and 𝑝.

Step 1: We prove an L2 -- L𝑞-estimate.

Let 𝑡 > 0 and 𝑢 ∈ L2(R𝑛). We simply join the Sobolev embedding in Corollary 10.10
with Lemma 11.7:

∥𝑅𝑡𝑢∥L𝑞 (R𝑛) ≲ ∥∇𝑅𝑡𝑢∥L2 (R𝑛) ≲ 𝑡
−1∥𝑢∥L2 (R𝑛) .

Step 2: We interpolate to get an L2 -- L𝑝-estimate with decay.

We fix 𝑝 ∈ (2, 𝑞) and define \ ∈ (0, 1) via 1/𝑝 = (1−\)/2 + \/𝑞. By definition of 𝑞, we
also have 1/𝑝 = 1/2 − \/𝑛.

Let 𝐸, 𝐹 ⊆ R𝑛 be measurable, 𝑢 ∈ L2(R𝑛) be supported in 𝐸 and 𝑡 > 0. We use
Hölder’s inequality

∥𝑅𝑡𝑢∥L𝑝 (𝐹) ≤
|𝑅𝑡𝑢 |1−\L2/(1−\ ) (𝐹)

|𝑅𝑡𝑢 |\L𝑞/\ (𝐹) = ∥𝑅𝑡𝑢∥1−\
L2 (𝐹) ∥𝑅𝑡𝑢∥

\
L𝑞 (𝐹)

and then apply off-diagonal estimates (Theorem 11.8) to the first and the L2 -- L𝑞-bound
from Step 1 to the second term to find

∥𝑅𝑡𝑢∥L𝑝 (𝐹) ≲ 𝑡
−\e−𝑐(1−\)

dist(𝐸,𝐹 )
𝑡 ∥𝑢∥L2 (𝐸) . (11.6)

The power of 𝑡 is tied to the dimension via \ = 𝑛/2 − 𝑛/𝑝 > 0. Such an estimate is also
called an L2 -- L𝑝-off-diagonal estimate. In the following, we will write 2𝑐 instead of
𝑐(1 − \) for the positive factor in the exponential function, the precise value of which
does not matter in our proof.

Step 3: We use off-diagonal decay to deduce the L𝑝-estimate.

We fix 𝑡 > 0 and 𝑢 ∈ L𝑝 (R𝑛) ∩ L2(R𝑛). We split R𝑛 =
⋃
𝑘 𝑄𝑘 into the union of

the pairwise disjoint, half-open cubes of sidelength 𝑡 given by 𝑄𝑘 B 𝑡𝑘 + [0, 𝑡)𝑛 with
𝑘 ∈ Z𝑛, and accordingly, we split

∥𝑅𝑡𝑢∥𝑝L𝑝 (R𝑛) =
∑︁
𝑘

∥𝑅𝑡𝑢∥𝑝L𝑝 (𝑄𝑘) .

For fixed 𝑘 , we write 𝑅𝑡𝑢 =
∑∞
ℓ=1 𝑅𝑡 (1𝐶ℓ (𝑄𝑘)𝑢). This sum converges in L𝑝 (R𝑛), because

𝑅𝑡 : L2(R𝑛) → L𝑝 (R𝑛) is bounded by (11.6) with 𝐸 = 𝐹 = R𝑛 and 𝑢 =
∑∞
ℓ=1 1𝐶ℓ (𝑄𝑘)𝑢

in L2(R𝑛). Hence, we can continue by

≤
∑︁
𝑘

( ∞∑︁
ℓ=1

∥𝑅𝑡 (1𝐶ℓ (𝑄𝑘)𝑢)∥L𝑝 (𝑄𝑘)

) 𝑝
.
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11. Off-diagonal behavior

At this point we can use (11.6) with the sets 𝐸 = 𝐶ℓ (𝑄𝑘 ) and 𝐹 = 𝑄𝑘 . We have
dist(𝐸, 𝐹) = (2ℓ − 1) 𝑡2 if ℓ ≥ 2 and dist(𝐸, 𝐹) = 0 for ℓ = 1. Hence, we have
dist(𝐸, 𝐹) ≥ (2ℓ − 2) 𝑡2 in any case, which leads us to

≲
∑︁
𝑘

( ∞∑︁
ℓ=1

𝑡
𝑛/𝑝−𝑛/2e−𝑐(2

ℓ−2) ∥𝑢∥L2 (𝐶ℓ (𝑄𝑘))

) 𝑝
.

This is still an L2 -- L𝑝-estimate, but on the sets 𝐶ℓ (𝑄𝑘 ) ⊆ 2ℓ+1𝑄𝑘 of measure bounded
by (2ℓ+1𝑡)𝑛. We can use Hölder’s inequality in order to get L𝑝-norms and cancel all
factors of 𝑡:

≤
∑︁
𝑘

( ∞∑︁
ℓ=1

𝑡
𝑛/𝑝−𝑛/2e−𝑐(2

ℓ−2) (2ℓ+1𝑡)𝑛/2−𝑛/𝑝∥𝑢∥L𝑝 (2ℓ+1𝑄𝑘)

) 𝑝
≃
∑︁
𝑘

( ∞∑︁
ℓ=1

2ℓ(𝑛/2−𝑛/𝑝)e−𝑐2
ℓ ∥𝑢∥L𝑝 (2ℓ+1𝑄𝑘)

) 𝑝
.

In order to pull the 𝑝-th power into the inner sum, we split e−𝑐2ℓ = e−
𝑐
𝑝′ 2ℓe−

𝑐
𝑝

2ℓ and use
Hölder’s inequality for the summation in ℓ. One factor is just a convergent (numerical)
series in ℓ and the remaining one is

≲
∑︁
𝑘

∞∑︁
ℓ=1

e−𝑐2
ℓ ∥𝑢∥𝑝L𝑝 (2ℓ+1𝑄𝑘)

=

∞∑︁
ℓ=1

e−𝑐2
ℓ

∫
R𝑛

(∑︁
𝑘

12ℓ+1𝑄𝑘

)
|𝑢 |𝑝 d𝑥,

where we have used Tonelli’s theorem and monotone convergence in the second step.
By a simple counting argument (Exercise 11.4), every 𝑥 ∈ R𝑛 is contained in exactly
(2ℓ+1)𝑛 of the enlarged cubes 2ℓ+1𝑄𝑘 . Hence, we can conclude

=

∞∑︁
ℓ=1

(2ℓ+1)𝑛e−𝑐2ℓ
∫
R𝑛

|𝑢 |𝑝 d𝑥 C 𝐶∥𝑢∥𝑝L𝑝 (R𝑛)

and the value 𝐶 of the numerical series is finite. This is the required L𝑝-estimate.

Step 4: We treat 𝑝 < 2 by duality.

Finally, we let 𝑝 ∈ (𝑞′, 2) and 𝑢 ∈ L𝑝 (R𝑛) ∩L2(R𝑛). Step 3 applied to 𝐿∗ in place of 𝐿
on L𝑝′ (R𝑛), duality for the resolvents and Hölder’s inequality yield for all 𝑣 ∈ C∞

𝑐 (R𝑛)
with ∥𝑣∥L𝑝′ (R𝑛) ≤ 1 the bound��⟨𝑅𝑡𝑢, 𝑣⟩L2 (R𝑛)

�� = ��⟨𝑢, (1 + 𝑡2𝐿∗)−1𝑣⟩L2 (R𝑛)
��

≤ ∥𝑢∥L𝑝 (R𝑛) ∥(1 + 𝑡2𝐿∗)−1𝑣∥L𝑝′ (R𝑛) ≲ ∥𝑢∥L𝑝 (R𝑛) .

The L𝑝-estimate on 𝑅𝑡𝑢 follows by taking the supremum over all such 𝑣. □
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11.4. Exercises

11.4. Exercises
Exercise 11.1. Let 𝑢 ∈ L2(R𝑛) satisfy 𝑢 ≥ 0 a.e. and 𝑢 > 0 on a set of strictly positive
measure. Prove that (1 − Δ)−1𝑢 > 0 a.e. on R𝑛.

Exercise 11.2. Prove that the limit in Proposition 11.12 is independent of the chosen
ball. Then argue that we obtain the same limit when 𝐵 is a cube with sides parallel to
the coordinate axes.

Hint: Given two balls 𝐵, 𝐵′ ⊆ R𝑛, start by picking 𝑘 ∈ N such that 𝐵′ ⊆ 2𝑘𝐵.

Exercise 11.3 (Proof of the conservation property). In this exercise you are going to
prove Theorem 11.15 by proceeding as follows.

(a) We set 𝑢 B (1 + 𝑡2𝐿)−11R𝑛 . Make a formal computation that supports the claim
that 𝑢 = 1R𝑛 .

For a rigorous proof, we fix a function 𝜙 ∈ C∞
𝑐 (𝐵(0, 2)) with 𝜙 = 1 on 𝐵(0, 1) and set

𝜙𝑘 B 𝜙(2−𝑘 ·) for 𝑘 ∈ N.

(b) Show that for every compact set 𝐾 ⊆ R𝑛 we have

𝑢 = lim
𝑘→∞

(1 + 𝑡2𝐿)−1𝜙𝑘 (in L2(𝐾)).

This is a smoothed version of Proposition 11.12.

(c) Prove that

𝜙𝑘 − (1 + 𝑡2𝐿)−1𝜙𝑘 = −𝑡2
(
(1 + 𝑡2L )−1 div

)
(𝐴∇𝜙𝑘 ).

(d) Use off-diagonal estimates to prove that in the limit as 𝑘 → ∞ the left-hand side
in (c) tends to 0 in a suitable sense.

(e) Conclude.

Exercise 11.4 (Counting cubes . . . ). For 𝑡 > 0, consider the partition of R𝑛 into the
pairwise disjoint, half-open cubes 𝑄𝑘 B 𝑡𝑘 + [0, 𝑡)𝑛 with 𝑘 ∈ Z𝑛. Given ℓ ∈ N, prove
that each point 𝑥 ∈ R𝑛 is contained in exactly (2ℓ)𝑛 of the cubes 2ℓ𝑄𝑘 .

Exercise 11.5 (Rescaling of the coefficients). For 𝑡 > 0 we consider the dilation operator
𝛿𝑡𝑢(𝑥) = 𝑢(𝑡𝑥) acting on measurable functions. We set 𝐴𝑡 B 𝛿𝑡𝐴 and introduce the
elliptic operators in divergence form 𝐿𝑡 B − div(𝐴𝑡∇ ·).

(a) Quickly recall that the coefficients 𝐴𝑡 are elliptic and bounded with the same
parameters _, Λ.

(b) Prove that 𝐿𝑡 = 𝑡2𝛿𝑡𝐿𝛿𝑡−1 .

(c) Conclude that (1 + 𝐿𝑡)−1 = 𝛿𝑡 (1 + 𝑡2𝐿)−1𝛿𝑡−1 .
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11. Off-diagonal behavior

The similarity relations in (b) and (c) allow us to restrict ourselves to resolvent parameter
𝑡 = 1 in certain estimates, as long as implied constants depend on 𝐿 only through 𝑛, _
and Λ. Here is an example, which brings us back to Remark 11.6.

(d) Suppose we had only shown the off-diagonal bound

∥(1 + 𝐿)−1𝑢∥L2 (𝐹) ≤ 𝐶e−𝑐dist(𝐸,𝐹) ∥𝑢∥L2 (𝐸)

for all elliptic operators 𝐿 in divergence form, all measurable sets 𝐸, 𝐹 ⊆ R𝑛
and all 𝑢 ∈ L2(𝐸), but with constants 𝐶, 𝑐 > 0 that only depend on 𝑛, _ and Λ.
Prove that ((1 + 𝑡2𝐿)−1)𝑡>0 satisfies L2-off-diagonal estimates without resorting
to Theorem 11.8.

Exercise 11.6 (L𝑝-extrapolation in low dimensions). In this exercise you are going to
complete the proof of Theorem 11.16 by treating the case of dimension 𝑛 ≤ 2.

(a) Carefully go through the proof of Theorem 11.16 once again and convince
yourself that the only open task in dimension 𝑛 ≤ 2 is to prove the L2 -- L𝑞-
estimate in Step 1 for all 𝑞 ∈ (2,∞).

(b) Find a substitute for the Sobolev embedding to complete Step 1 for an arbitrary
𝑞 ∈ (2,∞).
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12. Square roots of elliptic operators

The Kato property for square roots has appeared in three of the previous episodes:
First, in Lecture 4 for the negative Laplacian on R𝑛, next for self-adjoint operators as
part of Kato’s second representation theorem in Lecture 6, and then in Lecture 8, where
we have also learned that relying exclusively on functional calculus is inadequate for
determining whether or not, for a given operator 𝐿 associated with a bounded, elliptic
and sectorial sesquilinear form 𝑎, the domains of

√
𝐿 and 𝑎 are the same. In the

remaining three lectures, we shall provide an affirmative answer to this question for
elliptic operators in divergence form on R𝑛 through the following theorem.

Theorem 12.1 (The solution of the Kato conjecture). Let 𝐿 = − div(𝐴∇ ·) be an elliptic
operator in divergence form on R𝑛. Then dom(

√
𝐿) = H1(R𝑛) and

∥
√
𝐿𝑢∥L2 (R𝑛) ≃ ∥∇𝑢∥L2 (R𝑛) (𝑢 ∈ H1(R𝑛)). (12.1)

1961 1982 1994 2002 2006 2011 2015 2020

Kato’s work on wave
propagation [Kat61]

[CMM82]
Solution in 𝑛 = 1

Connection to boundary
value problems (BVPs) [Ken94]

L∞-perturbations of
Hermitian coefficients [AHLT01]

Theorem 12.1 [AHL+02]

Functional calculus for
perturbed Dirac operators [AKM06]

First-order approach
to elliptic BVPs [AA11]

Maximal regularity
in W−1,𝑝 [ABHR15]

The Dirichlet problem with
non-symmetric coefficients [HKMP15]

Kato property for
parabolic operators [AEN20]

Latest results for Kato
property on domains [BEH20]

L2-boundedness of
layer potentials [Ros13]

Figure 12.1.: The timeline towards the solution of the Kato conjecture by Auscher–
Hofmann–Lacey–McIntosh–Tchamitchian in 2002 and a personal selec-
tion of implications and follow-ups related to the material of these lecture
notes.
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12. Square roots of elliptic operators

This fundamental theorem, proved by Auscher–Hofmann–Lacey–McIntosh–Tchamit-
chian in the early 2000s [AHL+02], represents the pinnacle of nearly four decades of
research. Acknowledging all individuals who have contributed to the solution is as
unfeasible as enumerating all the breakthrough results that have ensued. Nonetheless,
we have tried to present a personal timeline in Figure 12.1 with an emphasis on results
that are closely connected to the lecture notes and might be studied in more detail
during the project phase.

In this lecture, we shall discuss in which sense Theorem 12.1 is the critical regularity
result for elliptic operators with L∞-coefficients and how its proof can be reduced to a
very classical concept in harmonic analysis — a square function estimate.

12.1. Why square roots are critical
Let 𝐿 = − div(𝐴∇ ·) be an elliptic operator in divergence form. Since 𝐿 is a differential
operator of second order, we would naively expect that its domain consists of functions
with second-order derivatives in L2(R𝑛). While this is true for the negative Laplacian
(Theorem 4.6), we have seen in Exercise 4.6 that it is plain false in general.1 Just
as naive it seems to ‘interpolate’ regularity and ask for dom(𝐿𝛼) = H2𝛼 (R𝑛) when
𝛼 ∈ (0, 1), but we have seen at several occasions that this actually works. Figure 12.2
summarizes what we know so far on Sobolev regularity for fractional powers of 𝐿,
including the following new statement.

𝛼

dom(
√
𝐿) = H1(R𝑛) for

𝐴 Hermitian (Corollary 6.13)

dom(𝐿) ∩ H2(R𝑛) = {0}
possible (Exercise 4.6)

dom(𝐿𝛼) = H2𝛼 (R𝑛)
(Corollary 8.16)

possibly no improvement
(Proposition 12.2)

1

0

1
2

Figure 12.2.: Schematic representation of Sobolev regularity for the domains of the
fractional powers 𝐿𝛼. The exponent𝛼 = 1/2 is critical: There is an optimal
result for 𝛼 < 1/2 and Proposition 12.2 provides an operator for which
even dom(𝐿) ⊆ H2𝛼 (R𝑛) fails simultaneously for every 𝛼 ∈ (1/2, 1).

1This example was for an operator with Dirichlet boundary conditions on Ω = (0, 1), but it could also
be adapted to Ω = R by extending the coefficients 1-periodically.
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12.1. Why square roots are critical

Proposition 12.2. There exists an elliptic operator 𝐿 in divergence form on R and a
function 𝑢 ∈ dom(𝐿) such that 𝑢 ∉ H1+Y (R) for every Y > 0. In particular, we have
dom(𝐿𝛼) ⊈ H2𝛼 (R) for every 𝛼 ∈ (1/2, 1).

Remark 12.3. We mostly work in dimension 𝑛 = 1 for simplicity but once the strategy
of proof is in place, the example can be adapted to higher dimensions, see Exercise 12.3.
Different, somewhat more complicated examples in dimension 𝑛 ≥ 2 can be found in
[AT98, Sec. 2.3].

Proposition 12.2 justifies, in retrospective, why we called 𝐿𝛼 with 𝛼 ∈ (0, 1/2) a ‘sub-
critical fractional power’ in Section 8.2 and why square roots are ‘critical’: It is the exact
moment on the fractional power scale where regularity gain in the Sobolev scale breaks
down for general 𝐿. For the proof, we need two lemmas on fractional Sobolev spaces.
Readers may want to recall Definition 4.11 and Proposition 4.13 beforehand. Fractional
spaces and norms for the gradient should be interpreted componentwise.

Lemma 12.4 (Lifting property). For all Y ∈ (0, 1) we have

H1+Y (R𝑛) = {𝑢 ∈ H1(R𝑛) | ∇𝑢 ∈ HY (R𝑛)𝑛}

and
(
∥ · ∥2

H1 (R𝑛) + [∇ · ]2
Y,2
)1/2 defines an equivalent norm on H1+Y (R𝑛).

Proof. Let 𝑢 ∈ L2(R𝑛). Then p𝑢 ∈ L2(R𝑛) and all given additional properties are (or
can be) characterized via the Fourier transform, see Definition 4.11 and Proposition 4.5:

𝑢 ∈ H1+Y (R𝑛) ⇐⇒ | · |1+Yp𝑢 ∈ L2(R𝑛),
𝑢 ∈ H1(R𝑛) ⇐⇒ | · |p𝑢 ∈ L2(R𝑛),

∇𝑢 ∈ HY (R𝑛)𝑛 ⇐⇒ | · |Y | · p𝑢 | ∈ L2(R𝑛).

Hence, the inclusion ‘⊇’ is immediate and for ‘⊆’ we use in addition that |b | ≤ 1+ |b |1+Y
for all b ∈ R𝑛. In passing, we have also proved that an equivalent norm on H1+Y (R𝑛)
is given by

(
∥ · ∥2

H1 (R𝑛) + ∥∇ · ∥2
HY (R𝑛)

)1/2 and, taking into account Proposition 4.13, we
can replace ∥∇ · ∥2

HY (R𝑛) by ∥ · ∥2
L2 (R𝑛) + [∇ · ]2

Y,2. □

The key step is to produce wildly oscillating coefficients. Similar to Exercise 4.6, we
will achieve this by adding 1 to the characteristic function of a particularly nasty subset
of [0, 1].

Lemma 12.5. There exists an open subset 𝐸 ⊆ [0, 1] such that for every Y ∈ (0, 1) we
have ∫ 1

0

∫ 1

0

|1𝐸 (𝑥) − 1𝐸 (𝑦) |2
|𝑥 − 𝑦 |2Y

d𝑥 d𝑦
|𝑥 − 𝑦 | = ∞. (12.2)

In particular, 1𝐸 is not contained in any fractional Sobolev space HY (R) with Y ∈ (0, 1).
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12. Square roots of elliptic operators

Proof. For a bounded open set 𝐸 we have 1𝐸 ∈ L2(R) and therefore the first statement
implies the second one by Proposition 4.13.

For the construction of 𝐸 , we let (𝑎 𝑗 ) be a decreasing sequence of positive numbers
with

∑∞
𝑗=1 𝑎 𝑗 = 1. We divide [0, 1] into intervals according to the partial sums

𝑠𝑘 B
∑𝑘
𝑗=1 𝑎 𝑗 , 𝑘 ∈ N0, and define 𝐸 by selecting every second interval:

𝐸 B
∞⋃
𝑘=0

(𝑠2𝑘 , 𝑠2𝑘+1),

see Figure 12.3 for a visualization. In order to achieve (12.2), the case of large Y is

𝑥

𝑠0 = 0 𝑠1 𝑠2 𝑠3 . . . 1

Figure 12.3.: An up-to-scale visualization of the set 𝐸 (purple color) in Lemma 12.5.

easy and would actually work by simply taking 𝐸 = (0, 𝑠1).

Case 1: Y ≥ 1/2.

We simply estimate∫ 1

0

∫ 1

0

|1𝐸 (𝑥) − 1𝐸 (𝑦) |2
|𝑥 − 𝑦 |2Y

d𝑥 d𝑦
|𝑥 − 𝑦 | ≥

∫ 𝑠1

0

∫ 𝑠2

𝑠1

1
(𝑥 − 𝑦)1+2Y d𝑥 d𝑦

=
1

2Y

(∫ 𝑠1

0

1
(𝑠1 − 𝑦)2Y d𝑦 −

∫ 𝑠1

0

1
(𝑠2 − 𝑦)2Y d𝑦

)
.

Since 𝑠2 > 𝑠1, the second integral is finite but the first one is infinite by the assumption
2Y ≥ 1.

When Y < 1/2, we need to take into account all intervals forming 𝐸 and make a rather
particular choice of (𝑎 𝑗 ).

Case 2: Y < 1/2.

We split both integrals in (12.2) into the union of the intervals (𝑠𝑘 , 𝑠𝑘+1) and discard all
interactions but the ones coming from 𝑦 ∈ (𝑠2𝑘 , 𝑠2𝑘+1) ⊆ 𝐸 and 𝑥 ∈ (𝑠2𝑘+1, 𝑠2𝑘+2) ⊆
[0, 1] \ 𝐸 :∫ 1

0

∫ 1

0

|1𝐸 (𝑥) − 1𝐸 (𝑦) |2
|𝑥 − 𝑦 |2Y

d𝑥 d𝑦
|𝑥 − 𝑦 | ≥

∞∑︁
𝑘=0

∫ 𝑠2𝑘+1

𝑠2𝑘

∫ 𝑠2𝑘+2

𝑠2𝑘+1

1
|𝑥 − 𝑦 |1+2Y d𝑥 d𝑦

≥
∞∑︁
𝑘=0

∫ 𝑠2𝑘+1

𝑠2𝑘+1−𝑎2𝑘+2

∫ 𝑠2𝑘+1+𝑎2𝑘+2

𝑠2𝑘+1

1
|𝑥 − 𝑦 |1+2Y d𝑥 d𝑦,
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12.1. Why square roots are critical

where in the second step we have used that the sequence (𝑎 𝑗 ) is decreasing. Now,
|𝑥 − 𝑦 | ≤ 2𝑎2𝑘+2 on the domain of integration for fixed 𝑘 , so that we obtain the lower
bound

≥
∞∑︁
𝑘=0

(𝑎2𝑘+2)2

(2𝑎2𝑘+2)1+2Y

= 2−1−2Y
∞∑︁
𝑘=0

(𝑎2𝑘+2)1−2Y .

As Y ∈ (0, 1/2), we have 1 − 2Y ∈ (0, 1), and all we have to do for (12.2) is to
name one decreasing sequence (𝑎 𝑗 ) of positive numbers for which

∑∞
𝑗=1 𝑎 𝑗 = 1, while∑∞

𝑘=0(𝑎2𝑘+2)𝛼 = ∞ for every 𝛼 ∈ (0, 1). To this end, we let

𝐶 B
∞∑︁
𝑗=1

1
( 𝑗 + e) log2( 𝑗 + e)

be the value of a convergent Bertrand series. Then 𝑎 𝑗 B
1

𝐶 ( 𝑗+e) log2 ( 𝑗+e) does the
job. □

Remark 12.6. In the language of geometric measure theory, Lemma 12.5 provides an
example of a set 𝐸 that has infinite Y-fractional perimeter inR for every Y > 0, compare
with [CRS10], where this notion has been introduced.

We are ready for the

Proof of Proposition 12.2. The fractional Sobolev spaces are decreasingly ordered in
Y. This follows, for instance, from the general properties of fractional powers in
Proposition 6.3 (a). Hence, we only have to consider an arbitrary Y ∈ (0, 1). Likewise,
we have dom(𝐿) ⊆ dom(𝐿𝛼) for all 𝛼 ∈ (1/2, 1) and the first part of the claim implies
the second one by taking Y = 2𝛼 − 1.

For the construction of 𝐿, we let 𝐸 ⊆ [0, 1] be as in Lemma 12.5 and consider the
elliptic operator

𝐿 = − d
d𝑥

(
𝐴

d
d𝑥

·

)
, where 𝐴 B 1 + 1𝐸 .

Since 1 ≤ 𝐴 ≤ 2, this operator is elliptic. We define a continuous function by

𝑣 : R→ R, 𝑣(𝑥) =
∫ 𝑥

0
𝐴−1(𝑦) d𝑦

and note that by Theorem 3.12 we have 𝑣′ = 𝐴−1 on R in the weak sense. Next, we
pick a function [ ∈ C∞

c (R) with [ = 1 on [0, 1] and define 𝑢 B [𝑣. By construction,
𝑢 is continuous and satisfies

𝑢′ = [′𝑣 + [𝐴−1 (12.3)
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12. Square roots of elliptic operators

in the weak sense, see Lemma 3.9 (c). Since 𝑣 is continuous and 𝐴−1 is bounded, both
𝑢 and 𝑢′ are bounded with compact support, so that in particular we have 𝑢 ∈ H1(R).

Next, we claim 𝑢 ∈ dom(𝐿), which by definition is the same as saying 𝐴𝑢′ ∈ H1(R),
see also Exercise 4.6. We have taken [ = 1 on [0, 1] ⊇ 𝐸 in order to guarantee 𝐴[′ = [′.
Consequently, (12.3) implies 𝐴𝑢′ = [′𝑣 + [, which is again weakly differentiable with
derivative

(𝐴𝑢′)′ = [′′𝑣 + [′𝑣′ + [′ ∈ L2(R).

On the other hand, we have 𝑢′ = 𝐴−1 = 1 − 1
21𝐸 on [0, 1] and therefore∫ 1

0

∫ 1

0

|𝑢′(𝑥) − 𝑢′(𝑦) |2
|𝑥 − 𝑦 |2Y

d𝑥 d𝑦
|𝑥 − 𝑦 | =

1
4

∫ 1

0

∫ 1

0

|1𝐸 (𝑥) − 1𝐸 (𝑦) |2
|𝑥 − 𝑦 |2Y

d𝑥 d𝑦
|𝑥 − 𝑦 | = ∞

by the defining property of 𝐸 . According to Proposition 4.13, this means 𝑢′ ∉ HY (R)
and by Lemma 12.4 we conclude 𝑢 ∉ H1+Y (R) as required. □

12.2. The Kato property and square functions
The first step in the proof of Theorem 12.1 will be a connection between the Kato
property and a certain square function estimate. This works not only for operators
in divergence form but in full generality for injective sectorial operators as in Sec-
tion 2.2.

We let 𝐻 be a Hilbert space with inner product ⟨· , ·⟩ and norm ∥ · ∥, 𝑉 be a second
Hilbert space that is continuously and densely embedded into 𝐻, and 𝑎 : 𝑉 × 𝑉 → C
be a bounded, elliptic and accretive sesquilinear form. As usual, 𝐿 is the m-accretive
operator associated with 𝑎 in 𝐻. In addition, we assume for simplicity that 𝐿 is
injective. Let us recall from Corollary 8.10 that 𝐿 satisfies quadratic estimates, which
in second order scaling, changing variables 𝑠 = 𝑡2 so that d𝑠

𝑠
= 2d𝑡

𝑡
, means that for every

𝑓 ∈ H∞
0 (S𝜑) \ {0} on a sector of angle 𝜑 > 𝜋/2 we have∫ ∞

0
∥ 𝑓 (𝑡2𝐿)𝑢∥2 d𝑡

𝑡
≃ ∥𝑢∥2 (𝑢 ∈ 𝐻). (12.4)

Moreover, we recall from Proposition 2.24 and Lemma 6.7 that 𝐿∗ is an operator of the
same type as 𝐿.

Proposition 12.7. In the setting above, the following are equivalent:

(a) 𝑉 ⊆ dom(
√
𝐿) and ∥

√
𝐿𝑢∥2 ≲ Re

(
𝑎(𝑢)

)
for all 𝑢 ∈ 𝑉 .
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12.2. The Kato property and square functions

(b) The square function estimate∫ ∞

0
∥𝑡𝐿 (1 + 𝑡2𝐿)−1𝑢∥2 d𝑡

𝑡
≲ Re

(
𝑎(𝑢)

)
holds for all 𝑢 ∈ 𝑉 .

Moreover, if 𝐿 and 𝐿∗ both satisfy (b), then dom(
√
𝐿) = 𝑉 = dom(

√
𝐿∗) with

∥
√
𝐿𝑢∥2 ≃ Re

(
𝑎(𝑢)

)
≃ ∥

√
𝐿∗𝑢∥2 (𝑢 ∈ 𝑉).

Proof. We divide the proof into the three (obvious) steps.

Step 1: ‘(𝑎) =⇒ (𝑏)’:

Let 𝑢 ∈ 𝑉 . Since we have 𝑢 ∈ dom(
√
𝐿) by assumption, we can write

𝑡𝐿 (1 + 𝑡2𝐿)−1𝑢 = 𝑡
√
𝐿 (1 + 𝑡2𝐿)−1√𝐿𝑢 = 𝑓 (𝑡2𝐿) (

√
𝐿𝑢),

where 𝑓 B
√

z(1 + z)−1 is of class H∞
0 (S𝜑) on any sector. Now, (12.4) yields∫ ∞

0
∥𝑡𝐿 (1 + 𝑡2𝐿)−1𝑢∥2 d𝑡

𝑡
≃ ∥

√
𝐿𝑢∥2 (12.5)

and by assumption, the right-hand side is controlled by Re
(
𝑎(𝑢)

)
. In passing, we remark

that we have obtained (12.5) for all 𝑢 ∈ dom(
√
𝐿), independently of the assumption

(a).

Step 2: ‘(𝑏) =⇒ (𝑎)’:

Let us first prove

∥
√
𝐿𝑢∥2 ≲ Re

(
𝑎(𝑢)

)
(𝑢 ∈ dom(𝐿)) (12.6)

with an implicit constant that does not depend on the additional assumption that
𝑢 ∈ dom(𝐿). In this case we have 𝑢 ∈ dom(

√
𝐿) by Proposition 6.3. Consequently,

(12.5) is applicable and yields

∥
√
𝐿𝑢∥2 ≃

∫ ∞

0
∥𝑡𝐿 (1 + 𝑡2𝐿)−1𝑢∥2 d𝑡

𝑡
.

But as we also have 𝑢 ∈ 𝑉 , the assumption controls the right-hand side by Re
(
𝑎(𝑢)

)
and (12.6) follows.

It remains to remove the a priori assumption 𝑢 ∈ dom(𝐿). To this end, we let 𝑢 ∈ 𝑉
and, according to Proposition 2.23, we pick a sequence (𝑢 𝑗 ) ⊆ dom(𝐿) with 𝑢 𝑗 → 𝑢

in 𝑉 in the limit as 𝑗 → ∞. In particular, 𝑢 𝑗 → 𝑢 in 𝐻 and (12.6) implies that (
√
𝐿𝑢 𝑗 )

is a Cauchy sequence in 𝐻. Since
√
𝐿 is closed, 𝑢 ∈ dom(

√
𝐿) with the same estimate

as in (12.6) follows. This proves (a).
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12. Square roots of elliptic operators

Step 3: We suppose (b) (and hence also (a)) for 𝐿 and 𝐿∗.

By symmetry of the assumption, we only have to prove dom(
√
𝐿) ⊆ 𝑉 with the bound

Re
(
𝑎(𝑢)

)
≲ ∥

√
𝐿𝑢∥2 for all 𝑢 ∈ dom(

√
𝐿).

If in addition we have 𝑢 ∈ dom(𝐿), then we can use the definition of 𝐿, duality for
fractional powers (Corollary 6.11) and — since 𝑢 ∈ 𝑉 — also (a) for 𝐿∗ to find

Re
(
𝑎(𝑢)

)
= Re

〈
𝐿𝑢, 𝑢

〉
= Re

〈√
𝐿𝑢,

√
𝐿∗𝑢

〉
≤ ∥

√
𝐿𝑢∥∥

√
𝐿∗𝑢∥ ≲ ∥

√
𝐿𝑢∥ Re

(
𝑎(𝑢)

)1/2
,

which implies indeed that

Re
(
𝑎(𝑢)

)
≲ ∥

√
𝐿𝑢∥2. (12.7)

Now, we argue as in the proof of Theorem 6.12: Since 𝑎 is elliptic, we also have

∥𝑢∥2
𝑉 ≲ Re

(
𝑎(𝑢)

)
+ ∥𝑢∥2 ≲ ∥

√
𝐿𝑢∥2 + ∥𝑢∥2

for all 𝑢 ∈ dom(𝐿), and as the latter is a core for
√
𝐿, we conclude dom(

√
𝐿) ⊆ 𝑉 and

that (12.7) extends to all 𝑢 ∈ dom(
√
𝐿) by density. □

Remark 12.8. In Proposition 12.7 (b) we have chosen the specific square function that
we are actually going to bound in order to prove Theorem 12.1, but apart from that, we
could have been much more general. We will leave the task of formulating a broader
statement as Exercise 12.2.

Elliptic operators in divergence form on R𝑛 are injective (Theorem 3.29 (b)) and this
class is invariant under taking adjoints. Consequently, we have the following corollary,
which will be our starting point in proving Theorem 12.1 in the next lecture.

Corollary 12.9 (Reduction to a square function estimate). In order to establish Theo-
rem 12.1, it is necessary and sufficient to prove the square function estimate∫ ∞

0
∥𝑡𝐿 (1 + 𝑡2𝐿)−1𝑢∥2

L2 (R𝑛)
d𝑡
𝑡
≲ ∥∇𝑢∥2

L2 (R𝑛) (𝑢 ∈ H1(R𝑛))

for every elliptic operator in divergence form on L2(R𝑛).

We close the lecture by pointing out that the Kato property

∥
√
𝐿𝑢∥2 ≃ Re

(
𝑎(𝑢)

)
(𝑢 ∈ dom(𝐿)) (12.8)

for operators 𝐿 as above with sectoriality angle 𝜑𝐿 < 𝜋/2, not necessarily in divergence
form, directly implies quadratic estimates (and hence boundedness of the H∞-calculus)
for 𝐿. Of course, this is somewhat pointless from a logical standpoint because we
already know the latter property and still struggle to prove the former one, even when
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𝐿 is a divergence form operator on R𝑛. We believe that the argument can give some
more intuition on why the Kato conjecture is a hard problem, nonetheless.

We use the holomorphic semigroup generated by −𝐿 and its properties from Proposi-
tion 6.6. Given 𝑢 ∈ 𝐻, we compute

− d
d𝑡
∥e−𝑡𝐿𝑢∥2 6.6 (d)

= 2 Re
〈
𝐿e−𝑡𝐿𝑢, e−𝑡𝐿𝑢

〉
= 2 Re

(
𝑎(e−𝑡𝐿𝑢)

)
(12.8)≃ ∥

√
𝐿e−𝑡𝐿𝑢∥2.

We integrate both sides with respect to 𝑡 ∈ (0,∞). By Proposition 6.6 (b) and (c), the
integral of the left-hand side is equal to ∥𝑢∥2 and consequently, we find

∥𝑢∥2 ≃
∫ ∞

0
∥
√
𝑡𝐿e−𝑡𝐿𝑢∥2 d𝑡

𝑡
,

which is indeed a quadratic estimate for 𝐿 with auxiliary function
√

ze−z.

12.3. Exercises
Exercise 12.1 (Weak quadratic estimates). Let 𝑉 ⊆ 𝐻 be two Hilbert spaces with
continuous and dense embedding, let 𝑎 : 𝑉 × 𝑉 → C be a bounded, elliptic and
sectorial sesquilinear form and let 𝐿 be the operator associated with 𝑎 in 𝐻. Prove that∫ ∞

0
|⟨𝑡𝐿e−𝑡𝐿𝑢, 𝑣⟩| d𝑡

𝑡
≲ ∥𝑢∥∥𝑣∥ (𝑢, 𝑣 ∈ ran(𝐿)). (12.9)

Remark: This is sometimes called a weak quadratic estimate. Using specific properties
of the function ze−z, Cowling–Doust–McIntosh–Yagi [CDMY96, Thm. 4.6] proved
that if an injective sectorial operator 𝐿 in 𝐻 of angle 𝜑𝐿 < 𝜋/2 satisfies (12.9), then 𝐿
has a bounded H∞-calculus of any angle 𝜑 > 𝜋/2. This approach avoids von Neumann’s
inequality.

Exercise 12.2. In the setting of Proposition 12.7, suggest a general form of square
function estimates that follow from (a) by the same proof. Then show that each of them
is actually equivalent to (a).

Exercise 12.3 (Failure of H1+Y-regularity in higher dimensions). Prove that counterex-
amples as in Proposition 12.2 exist in any dimension 𝑛 ≥ 1.

Hint: You can built your construction on an easy(!) extension of the one-dimensional
example.
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Exercise 12.4 (Perturbed Dirac Operators in a concrete setting). In this exercise, we
come back to the perturbed Dirac operators from Exercises 2.4 and 2.5 but eventually
we choose 𝐷 and 𝐵 concretely and related to elliptic operators in divergence form.
This construction is the starting point for the first order approach to elliptic boundary
value problems in [AA11].

In the following, we consider the weak gradient ∇ as an unbounded operator from
L2(R𝑛) to L2(R𝑛)𝑛 with domain dom(∇) B H1(R𝑛).

(a) Convince yourself that ∇ is closed.

(b) Recall the definition of the very weak divergence operator div from (11.4). Then
prove that ∇∗ coincides with the maximal restriction of − div to an operator from
L2(R𝑛)𝑛 to L2(R𝑛).

(c) Show that

𝐷 B

(
0 ∇∗

∇ 0

)
with domain dom(𝐷) B dom(∇)×dom(∇∗) is a self-adjoint operator in L2(R𝑛)×
L2(R𝑛)𝑛.

(d) Let 𝐴 : R𝑛 → L(C𝑛) be measurable, essentially bounded and elliptic. Define
a bounded linear operator 𝐵 in L2(R𝑛) × L2(R𝑛)𝑛 by multiplication with the
matrix-valued function (

1 0
0 𝐴

)
.

Use Exercise 2.5 to prove that (𝐷𝐵)2 is sectorial.

(e) Show that

(𝐷𝐵)2 =

(
𝐿 0
0 𝐾

)
for some operator 𝐾 and 𝐿 = − div(𝐴∇ ·) and conclude again that 𝐿 is sectorial.

Remark: This gives an alternative proof for the sectoriality of 𝐿 that does not use the
Lax–Milgram lemma and sesquilinear forms.

Exercise 12.5 (Multiplicative perturbations of elliptic operators). Let 𝑎 ∈ L∞(R𝑛) be
accretive, that is, there exists ^ > 0 such that Re 𝑎 ≥ ^ almost everywhere. As usual,
𝑀𝑎 is the associated multiplication operator.

(a) Use Exercise 12.4 to prove that if 𝐿 is an elliptic operator in divergence form on
R𝑛, then 𝑀𝑎𝐿 is sectorial.

(b) Provide an example in which the angle of sectoriality is larger than 𝜋/2.
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13. The solution of the Kato
conjecture: Part I

We have previously seen in Corollary 12.9 that the Kato conjecture is equivalent to
proving the square function estimate∫ ∞

0
∥𝑡𝐿 (1 + 𝑡2𝐿)−1𝑢∥2

L2 (R𝑛)
d𝑡
𝑡
≲ ∥∇𝑢∥2

L2 (R𝑛)𝑛 (𝑢 ∈ H1(R𝑛)) (13.1)

for every elliptic operator 𝐿 in divergence form on R𝑛. In this lecture, we are gearing
up to explore further this particular strategy.

Notation 13.1. Throughout the lecture, 𝐿 = − div(𝐴∇ ·) is an elliptic operator in
divergence form on R𝑛. The symbols 𝐶, 𝑐 are reserved for positive constants that
depend only on 𝑛, _ and Λ. We abbreviate ∥ · ∥L2 (R𝑛) by ∥ · ∥2 and use the same notation
for the norm of 𝑁-tupels of functions 𝐹 = (𝐹𝑗 )𝑁𝑗=1 ∈ L2(R𝑛)𝑁 .

In (13.1) we seek control of a square function by the norm of 𝐹 B ∇𝑢, so it seems wise
to write the left-hand side in terms of the same variable as

𝑡𝐿 (1 + 𝑡2𝐿)−1𝑢 = 𝑡 (1 + 𝑡2L )−1L 𝑢 C Θ𝑡 (∇𝑢), (13.2)

using the following family of operators.

Definition 13.2. For 𝑡 > 0 define bounded operators Θ𝑡 : L2(R𝑛)𝑛 → L2(R𝑛) by

Θ𝑡𝐹 B −𝑡 (1 + 𝑡2L )−1 div(𝐴𝐹),

where div is the very weak divergence operator.

Remark 13.3. Since multiplication by the bounded, matrix-valued function 𝐴 does not
enlarge the support of functions, the family (Θ𝑡)𝑡>0 satisfies L2-off-diagonal estimates
by Corollary 11.11.

Naturally, this leads us to working with tuples of functions in the Hilbert spaces
L2(R𝑛)𝑁 and we agree on applying bounded operators on L2(R𝑛) componentwise in
this ‘vector-valued’ setting.
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13.1. About square functions and Carleson measures
It all begins with an idea that was implicit in the ‘𝑇 (1) and 𝑇 (𝑏) theorems for square
functions’ due to Christ–Journé [CJ87] and Semmes [Sem90]. The terminology will
become clearer during the final Lecture 14. As of now, it suffices to know that these
are criteria to prove estimates of the form∫ ∞

0
∥Θ𝑡𝐹∥2

2
d𝑡
𝑡
≲ ∥𝐹∥2

2, (13.3)

where, rather than in our setting above, 𝐹 is scalar-valued and Θ𝑡 are integral operators
with kernels that have reasonably good pointwise bounds and some regularity. The
function 𝛾𝑡 B Θ𝑡1R𝑛 , called principal part of Θ𝑡 , plays a decisive role in their analysis.
Namely, it turns out that in this setting the estimate∫ ∞

0
∥Θ𝑡𝐹 − 𝛾𝑡 · A𝑡𝐹∥2

2
d𝑡
𝑡
≲ ∥𝐹∥2

2 (13.4)

always holds. Here, A𝑡 is the dyadic averaging operator at scale 𝑡 from Lecture 9.
Put differently, on each scale 𝑡 > 0, they find a sound approximation for Θ𝑡𝐹 by a
multiplication operator acting on the dyadic averages of 𝐹. By virtue of the principal
part approximation (13.4), the square function estimate (13.3) is equivalent to∫ ∞

0

∫
R𝑛

| (A𝑡𝐹) (𝑥) |2 |𝛾𝑡 (𝑥) |2
d𝑥 d𝑡
𝑡
≲ ∥𝐹∥2

2, (13.5)

which brings us back to familiar ground. We have seen in Theorem 9.19 and the
discussion preceding it that (13.5) holds if and only if the principal part gives rise to a
Carleson measure da(𝑥, 𝑡) = |𝛾𝑡 (𝑥) |2 d𝑥 d𝑡

𝑡
. This is the criterion used by Christ–Journé

and Semmes.

Most of the outline above does not apply to the operators Θ𝑡 from Definition 13.2
‘off-the-shelf’, existence of good integral kernels being the most severe obstruction.
Nonetheless, following ideas that first appeared in the work of Auscher–Tchamitchian
[AT98], the same reduction to a Carleson measure estimate of a principal part works
in case of the square function bound (13.1), which is our goal for this lecture. Demon-
strating the Carleson measure estimate will remain for the grande finale.

13.2. The principal part
Since the operators Θ𝑡 in Definition 13.2 act on 𝑛-tuples of functions, we need one
principal part in each coordinate direction. Off-diagonal estimates allow us to define
Θ𝑡𝑏 for each 𝑏 ∈ L∞(R𝑛)𝑛 as in Definition 11.14 and in particular, the following
definition is meaningful.
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13.2. The principal part

Definition 13.4 (Principal part ofΘ𝑡). Identify the standard unit vectors 𝑒1, . . . , 𝑒𝑛 ∈ C𝑛
with the respective constant functions on R𝑛. For 𝑡 > 0 define

𝛾𝑡 B
(
Θ𝑡 (𝑒 𝑗 )

)𝑛
𝑗=1 ∈ L2

loc(R
𝑛)𝑛.

In order to become more acquainted with the construction, let us prove that the potential
approximants 𝛾𝑡 · A𝑡𝐹 for a principal part approximation are uniformly bounded in
L2(R𝑛) with respect to 𝑡 > 0. Here, 𝐹 ∈ L2(R𝑛)𝑛 and, according to our general
agreement, the dyadic averaging operators act componentwise on 𝐹. A convenient way
to compute 𝛾𝑡 · A𝑡𝐹 is as follows. On each fixed dyadic cube 𝑄 ∈ □𝑡 we have

𝛾𝑡 · A𝑡𝐹 =

𝑛∑︁
𝑗=1

Θ𝑡 (𝑒 𝑗 ) (𝐹𝑗 )𝑄 = Θ𝑡

( 𝑛∑︁
𝑗=1
𝑒 𝑗 (𝐹𝑗 )𝑄

)
= Θ𝑡

(
1R𝑛 (𝐹)𝑄

)
by construction. Taking 𝑄 itself as the reference region 𝐵 in Definition 11.14, we
obtain with convergence in L2(𝑄) that

𝛾𝑡 · A𝑡𝐹 = lim
𝑘→∞

Θ𝑡
(
12𝑘𝑄 (𝐹)𝑄

)
= lim
𝑘→∞

𝑘−1∑︁
ℓ=1

Θ𝑡
(
1𝐶ℓ (𝑄) (𝐹)𝑄

)
=

∞∑︁
ℓ=1

Θ𝑡
(
1𝐶ℓ (𝑄) (𝐹)𝑄

)
.

(13.6)

We will primarily approach the analysis of the right-hand side using off-diagonal
estimates. In this context, readers should keep in mind the inequality

dist(𝐶ℓ (𝑄), 𝑄)
𝑡

≥
(2ℓ − 2) 𝑡2

𝑡
=

2ℓ − 2
2

,

given that the sidelength of 𝑄 is at least 𝑡.

Lemma 13.5. For all 𝑡 > 0 we have

∥𝛾𝑡 · A𝑡𝐹∥2 ≤ 𝐶∥𝐹∥2 (𝐹 ∈ L2(R𝑛)𝑛).

Proof. It suffices to prove

∥𝛾𝑡 · A𝑡𝐹∥L2 (𝑄) ≤ 𝐶∥𝐹∥L2 (𝑄) (13.7)

for all cubes 𝑄 ∈ □𝑡 . Then the claim follows by summing the squares of both sides
with respect to 𝑄. As for (13.7), we start from (13.6) and apply off-diagonal estimates
for Θ𝑡 in order to obtain

∥𝛾𝑡 · A𝑡𝐹∥L2 (𝑄) ≤
∞∑︁
ℓ=1

Θ𝑡 (1𝐶ℓ (𝑄) (𝐹)𝑄 )L2 (𝑄)

≤
∞∑︁
ℓ=1

𝐶e−𝑐2
ℓ ∥(𝐹)𝑄 ∥L2 (𝐶ℓ (𝑄)) .

(13.8)
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By Hölder’s inequality, we have

∥(𝐹)𝑄 ∥L2 (𝐶ℓ (𝑄)) =
|𝐶ℓ (𝑄) |1/2

|𝑄 |

����∫
𝑄

𝐹 d𝑦
����

≤ |𝐶ℓ (𝑄) |1/2

|𝑄 |1/2
∥𝐹∥L2 (𝑄)

≤ 2(ℓ+1)𝑛/2∥𝐹∥L2 (𝑄) ,

which, substituted back into (13.8), yields (13.7). □

We continue with a first comparison between Θ𝑡 and its principal part.

Lemma 13.6. For all 𝑡 > 0 we have

∥(Θ𝑡 − 𝛾𝑡 · A𝑡)𝐹∥2 ≤ 𝐶𝑡∥∇𝐹∥2 (𝐹 ∈ H1(R𝑛)𝑛).

Proof. We argue in two steps: First we work on a fixed dyadic cube, then we handle
the summation over a partition of R𝑛 into cubes.

Step 1: Estimate on a fixed cube 𝑄 ∈ □𝑡 .

Since Θ𝑡 is a bounded operator on L2(R𝑛)𝑛, we have

Θ𝑡𝐹 =

∞∑︁
ℓ=1

Θ𝑡
(
1𝐶ℓ (𝑄)𝐹

)
.

Taking the difference with (13.6) on the same cube and applying off-diagonal estimates
as usual, we find

∥(Θ𝑡 − 𝛾𝑡 · A𝑡)𝐹∥L2 (𝑄) ≤
∞∑︁
ℓ=1

Θ𝑡 (1𝐶ℓ (𝑄) (𝐹 − (𝐹)𝑄)
)

L2 (𝑄)

≲
∞∑︁
ℓ=1

e−𝑐2
ℓ𝐹 − (𝐹)𝑄


L2 (2ℓ+1𝑄) .

We have generously enlarged the domain of integration from the annulus 𝐶ℓ (𝑄) to the
cube 2ℓ+1𝑄, enabling us to apply the Sobolev–Poincaré inequality from Theorem 10.17
componentwise with 𝑞 = 2 on the interior of 2ℓ+1𝑄: There is a constant 𝐶, depending
only on 𝑛, such that

∥𝐹 − (𝐹)𝑄


L2 (2ℓ+1𝑄) ≤ 𝐶
(
diam(2ℓ+1𝑄)𝑛

|𝑄 | · |2ℓ+1𝑄 |1/𝑛
)
∥∇𝐹∥L2 (2ℓ+1𝑄)

≤ 𝐶
(
(2ℓ+1√𝑛)𝑛 · 2ℓ+2𝑡

)
∥∇𝐹∥L2 (2ℓ+1𝑄) .

(13.9)
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This was the key step, leading us to

∥(Θ𝑡 − 𝛾𝑡 · A𝑡)𝐹∥L2 (𝑄) ≲ 𝑡
∞∑︁
ℓ=1

2ℓ(𝑛+1)e−𝑐2
ℓ ∥∇𝐹∥L2 (2ℓ+1𝑄) . (13.10)

Step 2: Summing up in 𝑄.

Since the bound in Step 1 comes with rapid decay with respect to ℓ, we can complete
the proof by the same argument that already appeared in Step 3 of the proof of Theo-
rem 11.16. Let us recapitulate the strategy. First, we sum the square of (13.10) over all
𝑄, then we use the Cauchy–Schwarz inequality for the summation in ℓ and finally, we
bound the overlap of the enlarged cubes via Exercise 11.4 in order to conclude

∥(Θ𝑡 − 𝛾𝑡 · A𝑡)𝐹∥2
2 ≲ 𝑡

2
∑︁
𝑄∈□𝑡

( ∞∑︁
ℓ=1

2ℓ(𝑛+1)e−𝑐2
ℓ ∥∇𝐹∥L2 (2ℓ+1𝑄)

)2

≲ 𝑡2
∑︁
𝑄∈□𝑡

∞∑︁
ℓ=1

e−𝑐2
ℓ ∥∇𝐹∥2

L2 (2ℓ+1𝑄)

= 𝑡2
∞∑︁
ℓ=1

e−𝑐2
ℓ

∫
R𝑛

( ∑︁
𝑄∈□𝑡

12ℓ+1𝑄

)
|∇𝐹 |2 d𝑥

= 𝑡2
∞∑︁
ℓ=1

(2ℓ+1)𝑛e−𝑐2ℓ
∫
R𝑛

|∇𝐹 |2 d𝑥

C 𝐶𝑡2∥∇𝐹∥2
2

with a finite value 𝐶 for the numerical series. □

Lemma 13.6 is still insufficient for a square function estimate like (13.4). First, we only
get decay in 𝑡 when 𝑡 is small, which is natural given that the method of proof was to
compare 𝐹 with its averages at scale 𝑡. Second, we already have the gradient on 𝐹 on
the right-hand side even though eventually we want to use 𝐹 = ∇𝑢. The way out here
is to apply Lemma 13.5 not directly to 𝐹 = ∇𝑢 but to a smoothed version 𝑃𝑡∇𝑢 that is
conducive for square function estimates.

Definition 13.7. For 𝑡 > 0 define bounded operators for the respective L2-norms by

𝑃𝑡 B (1 − 𝑡2Δ)−1 and 𝑄𝑡 B 𝑡∇(1 − 𝑡2Δ)−1.

Remark 13.8. Letting 𝑃𝑡 act componentwise on tuples of functions, the commutation
property 𝑡𝑃𝑡∇𝑢 = 𝑄𝑡𝑢 for all 𝑢 ∈ H1(R𝑛) follows immediately by taking the Fourier
transform — both sides are equivalent to multiplication by b ↦→ 2𝜋i𝑡b (1 + 𝑡2𝑚(b))−1,
where 𝑚(b) = 4𝜋2 |b |2 is as in Lecture 4.
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We will need the following three properties.

Lemma 13.9. For all 𝐹 ∈ L2(R𝑛)𝑛 and 𝑢 ∈ H1(R𝑛), the operators 𝑄𝑡 give rise to:

(a) The square function estimate∫ ∞

0
∥𝑄𝑡𝐹∥2

2
d𝑡
𝑡
≲ ∥𝐹∥2

2.

(b) The adjoint square function estimate∫ ∞

0
∥𝑄∗

𝑡∇𝑢∥2
2

d𝑡
𝑡
≲ ∥∇𝑢∥2

2.

(c) The reproducing formula ∫ ∞

0
2𝑄𝑡𝑄∗

𝑡∇𝑢
d𝑡
𝑡
= ∇𝑢.

Proof. (a) We use the Kato property for −Δ (Proposition 4.12) componentwise to
write 𝑄𝑡𝐹2

2 =
𝑡∇(1 − 𝑡2Δ)−1𝐹

2
2 =

√︁−𝑡2Δ(1 − 𝑡2Δ)−1𝐹
2

2,

whereupon the claim follows from quadratic estimates for self-adjoint operators
(Lemma 8.3) with auxiliary function

√
z(1 + z)−1.

(b) According to Lemma 11.10, we have 𝑄∗
𝑡 = −(1 − 𝑡2Δ)−1𝑡 div, where we slightly

abuse notation and do not distinguish between the unbounded operator in L2(R𝑛)
and the bounded operator on H1(R𝑛) in case of the negative Laplacian. Hence,

𝑄∗
𝑡∇𝑢 = (1 − 𝑡2Δ)−1(−𝑡Δ)𝑢

= (−𝑡Δ) (1 − 𝑡2Δ)−1𝑢.
(13.11)

The negative Laplacian has the Kato property (Proposition 4.12) and the claim
follows on using ‘(a) =⇒ (b)’ in Proposition 12.7.

(c) Applying 𝑄𝑡 to (13.11) yields

𝑄𝑡𝑄
∗
𝑡∇𝑢 = (−𝑡2Δ) (1 − 𝑡2Δ)−2∇𝑢;

this is probably best seen by commuting the corresponding bounded multiplica-
tion operators in Fourier space as in Remark 13.8. Hence, the claim is nothing
but the Calderón reproducing formula for the injective sectorial operator −Δ with
auxiliary function 𝑓 = z(1 + z)−2, but in second order scaling, using 𝑓 (−𝑡2Δ).
The different scaling results in a factor 2 on the left-hand side and the proof is
complete. □
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13.3. Principal part approximation

We assemble the bounds that we have obtained so far in the following smoothed
principal part approximation. This only uses the square function estimate in part (a) of
Lemma 13.9 and hence works for general 𝑛-tuples 𝐹 of functions.

Proposition 13.10 (Smoothed principal part approximation). We have the square func-
tion estimate∫ ∞

0
∥(Θ𝑡 − 𝛾𝑡 · A𝑡)𝑃𝑡𝐹∥2

2
d𝑡
𝑡
≤ 𝐶∥𝐹∥2

2 (𝐹 ∈ L2(R𝑛)𝑛).

Proof. According to Lemma 13.6, we can bound

∥(Θ𝑡 − 𝛾𝑡 · A𝑡)𝑃𝑡𝐹∥2 ≲ 𝑡∥∇𝑃𝑡𝐹∥2 = ∥𝑄𝑡𝐹∥2

and we conclude by Lemma 13.9 (a). □

13.3. Principal part approximation
To establish a principal part approximation similar to (13.4), we need yet to remove the
smoothing operators 𝑃𝑡 in Proposition 13.10. To this end, we split

Θ𝑡 − 𝛾𝑡 · A𝑡 = (Θ𝑡 − 𝛾𝑡 · A𝑡)𝑃𝑡 + Θ𝑡 (1 − 𝑃𝑡) − 𝛾𝑡 · A𝑡 (1 − 𝑃𝑡). (13.12)

Each term is a bounded operator acting on functions 𝐹 ∈ L2(R𝑛)𝑛, but eventually we
only need to consider 𝐹 = ∇𝑢 with 𝑢 ∈ H1(R𝑛).

The first term is the one, whose square function is already under control by Proposi-
tion 13.10.

The second term in (13.12) is notably easy to handle. In fact, the subsequent proposition
relies solely on two ingredients: m-accretivity of 𝐿 and square function estimates
for 𝑄∗

𝑡 .

Proposition 13.11. We have the square function estimate∫ ∞

0
∥Θ𝑡 (1 − 𝑃𝑡)∇𝑢∥2

2
d𝑡
𝑡
≤ 𝐶∥∇𝑢∥2

2 (𝑢 ∈ H1(R𝑛)).

Proof. We compute

Θ𝑡 (1 − 𝑃𝑡)∇𝑢
Rem. 13.8
= (Θ𝑡∇)(1 − 𝑃𝑡)𝑢

(13.2)
=

(
𝑡𝐿 (1 + 𝑡2𝐿)−1) (−𝑡2Δ(1 − 𝑡2Δ)−1𝑢

)
=

(
1 − (1 + 𝑡2𝐿)−1) (−𝑡Δ(1 − 𝑡2Δ)−1𝑢

)
(13.11)
=

(
1 − (1 + 𝑡2𝐿)−1)𝑄∗

𝑡∇𝑢.
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Since 𝐿 is m-accretive, we conclude

∥Θ𝑡 (1 − 𝑃𝑡)∇𝑢∥2 ≤ 2∥𝑄∗
𝑡∇𝑢∥2

and Lemma 13.9 (b) yields the claim. □

The third term in (13.12) is more complicated. However, similar to the second term,
we shall rely on rather general harmonic analysis that has almost nothing to do with
the principal part 𝛾𝑡 itself. To get to the gist of the matter, we start with the simple
observation that A2

𝑡 𝐹 = A𝑡𝐹 for every 𝐹 ∈ L2(R𝑛)𝑛 — once a function is constant on
each dyadic cube of generation 𝑡, further averaging on the same cubes does not change
anything anymore. Consequently, we can write

𝛾𝑡 · A𝑡 (1 − 𝑃𝑡) = 𝛾𝑡 · A𝑡 (A𝑡 (1 − 𝑃𝑡)). (13.13)

As far as the principal part is concerned, we are going to simply use the uniform bound
for 𝛾𝑡 · A𝑡 in Lemma 13.5 in order to discard it and concentrate on A𝑡 (1 − 𝑃𝑡).

We will need the following auxiliary result to control dyadic averages of gradient
fields.

Lemma 13.12. There is a constant 𝐶 > 0 such that for all dyadic cubes 𝑄 ∈ □ and
all 𝑢 ∈ H1(R𝑛) we have����⨏

𝑄

∇𝑢 d𝑥
����2 ≤ 𝐶

ℓ(𝑄)

(⨏
𝑄

|𝑢 |2 d𝑥
)1/2 (⨏

𝑄

|∇𝑢 |2 d𝑥
)1/2

.

Proof. We work with a threshold 𝛼 ∈ (0, 1) that will be chosen as the proof unfolds
further and pick a function [ ∈ C∞

c (𝑄) such that [ = 1 on (1 − 𝛼)𝑄 and

∥1 − [∥L∞ (R𝑛) + 𝛼ℓ(𝑄)∥∇[∥L∞ (R𝑛) ≤ 𝐶 (13.14)

for some constant𝐶 that only depends on 𝑛.1 Let us also write the inequality in question
as

|𝑋 |2 ≤ 𝐶

ℓ(𝑄)𝑌
1/2𝑍

1/2, (13.15)

where 𝑋 , 𝑌 and 𝑍 correspond to the averages of ∇𝑢, |𝑢 |2 and |∇𝑢 |2 on 𝑄, respectively.
We can assume 𝑍 > 0 since otherwise we have ∇𝑢 = 0 a.e. on 𝑄 and there is nothing
more to prove.

We begin by splitting ∇𝑢 = [∇𝑢 + (1 − [)∇𝑢 and integrate the first term by parts to
obtain ⨏

𝑄

∇𝑢 d𝑥 = −
⨏
𝑄

(∇[)𝑢 d𝑥 +
⨏
𝑄

(1 − [)∇𝑢 d𝑥,

1This can be achieved by the usual construction: Take 𝜙 ∈ C∞
c (𝐵(0, 1)) with integral 1 and set

[ B 1(1−𝛼)𝑄 ∗ 𝜙Y for Y B 𝛼ℓ (𝑄)/4.
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13.3. Principal part approximation

where both integrands on the right take non-zero values only on 𝐸 B 𝑄 \ (1 − 𝛼)𝑄.
Thus, the uniform bounds (13.14) followed by Hölder’s inequality yield

|𝑋 | ≤ 𝐶

𝛼ℓ(𝑄)

⨏
𝑄

1𝐸 |𝑢 | d𝑥 + 𝐶
⨏
𝑄

1𝐸 |∇𝑢 |

≤ 𝐶

𝛼ℓ(𝑄)

(
|𝐸 |
|𝑄 |

)1/2

𝑌
1/2 + 𝐶

(
|𝐸 |
|𝑄 |

)1/2

𝑍
1/2.

We square both sides and estimate |𝐸 |
|𝑄 | = (1− (1−𝛼)𝑛) ≤ 𝛼𝑛 by Bernoulli’s inequality,

to arrive at

|𝑋 |2 ≤ 2𝐶2𝑛

(
𝑌

𝛼ℓ(𝑄)2 + 𝛼𝑍
)
.

At this stage we want to pick the threshold 𝛼 such that on the right-hand side both terms
in brackets coincide, that is, we fix 𝛼 B 𝑌

1/2𝑍−1/2ℓ(𝑄)−1, leading us directly to (13.15).

In case you did not notice, there is one caveat with this argument: We cannot be
sure that our preferred choice of 𝛼 is smaller than 1! However, in case it is not, we
have 𝑍 1/2 ≤ 𝑌

1/2ℓ(𝑄)−1 and since |𝑋 |2 ≤ 𝑍 = 𝑍
1/2𝑍

1/2 by a direct application of the
Cauchy–Schwarz inequality, the claim (13.15) follows once again. □

We are in a position to control the final term in (13.12) via the strategy outlined around
(13.13).

Proposition 13.13. We have the square function estimate∫ ∞

0
∥A𝑡 (1 − 𝑃𝑡)∇𝑢∥2

2
d𝑡
𝑡
≤ 𝐶∥∇𝑢∥2

2 (𝑢 ∈ H1(R𝑛)).

In particular, we have the same bound for the square function of 𝛾𝑡 · A𝑡 (1 − 𝑃𝑡)∇𝑢.

Proof. The argument comes in two steps.

Step 1: Reduction via a Schur-type bound.

In Step 2 we shall show the bound

∥A𝑠 (1 − 𝑃𝑠)𝑄𝑡𝐹∥2 ≤ 𝐶min
( 𝑠
𝑡
,
𝑡

𝑠
+ 𝑡

1/2

𝑠1/2

)
∥𝐹∥2 (13.16)

for all 𝐹 ∈ L2(R𝑛)𝑛 and all 𝑠, 𝑡 > 0. Let us first see, how this implies the claim by a
Schur-type bound.

It starts with the reproducing formula

∇𝑢 = 2
∫ ∞

0
𝑄𝑡𝑄

∗
𝑡∇𝑢

d𝑡
𝑡
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from Lemma 13.9 (c). The operators A𝑠 (1 − 𝑃𝑠) are (uniformly) bounded on L2(R𝑛):
this is clear for (1 − 𝑃𝑠) and for A𝑠 we can use, for instance, the pointwise bound by
the Hardy–Littlewood maximal operator in Proposition 9.16, see also Exercise 13.1.
Hence,

A𝑠 (1 − 𝑃𝑠)∇𝑢 = 2
∫ ∞

0
A𝑠 (1 − 𝑃𝑠)𝑄𝑡𝑄∗

𝑡∇𝑢
d𝑡
𝑡

and, defining Z ∈ L1((0,∞); d𝜏
𝜏
) by Z (𝜏) B min(𝜏, 𝜏−1 + 𝜏−1/2), we conclude∫ ∞

0
∥A𝑠 (1 − 𝑃𝑠)∇𝑢∥2

2
d𝑠
𝑠

≤ 4
∫ ∞

0

(∫ ∞

0
∥A𝑠 (1 − 𝑃𝑠)𝑄𝑡𝑄∗

𝑡∇𝑢∥2
d𝑡
𝑡

)2 d𝑠
𝑠

(13.16)
≤ 4𝐶2

∫ ∞

0

(∫ ∞

0
Z (𝑠𝑡−1)∥𝑄∗

𝑡∇𝑢∥2
d𝑡
𝑡

)2 d𝑠
𝑠

(♥)
≤ 4𝐶2

( ∫ ∞

0
Z (𝜏) d𝜏

𝜏

)2 (∫ ∞

0
∥𝑄∗

𝑡∇𝑢∥2
2

d𝑡
𝑡

)
Lem. 13.9 (b)
≲ ∥∇𝑢∥2

2.

Here, (♥) refers to the combination of the Cauchy–Schwarz inequality and Tonelli’s
theorem from the proof of Lemma 8.7.2

Step 2: Proof of (13.16).

Let 𝐹 ∈ L2(R𝑛)𝑛 and 𝑠, 𝑡 > 0. Just as A𝑡 , also the operators 𝑃𝑡 and 𝑄𝑡 are uniformly
bounded on L2(R𝑛)𝑛 with respect to 𝑡 > 0, see Lemma 11.7. Via the Fourier transform,
we have the following unitary equivalences (�) of bounded operators to multiplication
operators by functions of the Fourier variable b ∈ R𝑛, where we write 𝑚(b) = 4𝜋2 |b |2
as usual:

𝑃𝑠𝑄𝑡 � 2𝜋i𝑡b
1

1 + 𝑡2𝑚(b)
1

1 + 𝑠2𝑚(b)
,

(1 − 𝑃𝑠)𝑄𝑡 � 2𝜋i𝑡𝑠2𝑚(b)b 1
1 + 𝑡2𝑚(b)

1
1 + 𝑠2𝑚(b)

,

from which we can read off the transformation rules

𝑃𝑠𝑄𝑡 =
𝑡

𝑠
𝑃𝑡𝑄𝑠 and (1 − 𝑃𝑠)𝑄𝑡 =

𝑠

𝑡
(1 − 𝑃𝑡)𝑄𝑠 .

When 𝑠 ≤ 𝑡, we can obtain (13.16) by the following simple use of uniform L2-bounds:
∥A𝑠 (1 − 𝑃𝑠)𝑄𝑡𝐹∥2 ≲ ∥(1 − 𝑃𝑠)𝑄𝑡𝐹∥2

=
𝑠

𝑡
∥(1 − 𝑃𝑡)𝑄𝑠𝐹∥2

≲
𝑠

𝑡
∥𝐹∥2.

2Or, in case you are familiar with it, Young’s convolution inequality on the multiplicative group (0,∞).
#DiscussionForum

168



13.3. Principal part approximation

When 𝑡 ≤ 𝑠, we can at least bound

∥A𝑠 (1 − 𝑃𝑠)𝑄𝑡𝐹∥2 ≲ ∥A𝑠𝑄𝑡𝐹∥2 + ∥𝑃𝑠𝑄𝑡𝐹∥2

= ∥A𝑠𝑄𝑡𝐹∥2 +
𝑡

𝑠
∥𝑃𝑡𝑄𝑠𝐹∥2

≲ ∥A𝑠𝑄𝑡𝐹∥2 +
𝑡

𝑠
∥𝐹∥2.

(13.17)

To estimate ∥A𝑠𝑄𝑡𝐹∥2, we recall that by definition of the dyadic averaging operator,
the function A𝑠𝑄𝑡𝐹 is constant on each cube𝑄 ∈ □𝑠. Hence, we can write (the square
of) its L2(R𝑛)-norm as

∥A𝑠𝑄𝑡𝐹∥2
2 =

∑︁
𝑄∈□𝑠

|𝑄 |
����⨏
𝑄

𝑄𝑡𝐹 d𝑥
����2

=
∑︁
𝑄∈□𝑠

|𝑄 |
����⨏
𝑄

𝑡∇𝑃𝑡𝐹 d𝑥
����2

and Lemma 13.12 controls the averages of gradients by

≲
∑︁
𝑄∈□𝑠

|𝑄 |1
𝑠

(⨏
𝑄

|𝑡𝑃𝑡𝐹 |2 d𝑥
)1/2 (⨏

𝑄

|𝑡∇𝑃𝑡𝐹 |2 d𝑥
)1/2

=
∑︁
𝑄∈□𝑠

𝑡

𝑠
∥𝑃𝑡𝐹∥L2 (𝑄) ∥𝑄𝑡𝐹∥L2 (𝑄) .

Now, it suffices to apply the Cauchy–Schwarz inequality to the summation in𝑄 in order
to get control by

≤ 𝑡

𝑠

( ∑︁
𝑄∈□𝑠

∥𝑃𝑡𝐹∥2
L2 (𝑄)

)1/2 ( ∑︁
𝑄∈□𝑠

∥𝑄𝑡𝐹∥2
L2 (𝑄)

)1/2

=
𝑡

𝑠
∥𝑃𝑡𝐹∥2∥𝑄𝑡𝐹∥2

≲
𝑡

𝑠
∥𝐹∥2

2.

Together with (13.17), this completes the proof of (13.16) also in the case 𝑡 ≤ 𝑠. □

Remark 13.14. Since A𝑡 (1−𝑃𝑡) = A𝑡 (A𝑡 −𝑃𝑡), we could go one step further and ask
for square function bounds involving onlyA𝑡−𝑃𝑡 . While this is true, more classical, and
even renders much more clearly the idea that the third term in (13.12) is about comparing
different types of averages, its proof nevertheless seems to require harder arguments
and explicit kernel computations, compare with [AT98, App. C]. We have learned the
trick to stick with A𝑡 (1 − 𝑃𝑡) from Axelsson(Rosén)–Keith–McIntosh [AKM06].
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13. The solution of the Kato conjecture: Part I

Combining Proposition 13.10, 13.11 and 13.13, we control square functions of all three
terms in (13.12) applied to ∇𝑢. The result is the following principal part approxima-
tion.

Proposition 13.15 (Principal part approximation). We have the square function esti-
mate ∫ ∞

0
∥(Θ𝑡 − 𝛾𝑡 · A𝑡)∇𝑢∥2

2
d𝑡
𝑡
≤ 𝐶∥∇𝑢∥2

2 (𝑢 ∈ H1(R𝑛)).

This should be considered as half the way toward the proof of the Kato conjecture and
here is what remains to be done.

Corollary 13.16 (Reduction to a Carleson measure estimate). In order to prove Theo-
rem 12.1, it is necessary and sufficient to prove that |𝛾𝑡 (𝑥) |2 d𝑥 d𝑡

𝑡
is a Carleson measure

for every elliptic operator in divergence form on L2(R𝑛).

Proof. Thanks to the principal approximation, the square function bound (13.1) at the
beginning of the lecture is now equivalent to proving for all 𝑢 ∈ H1(R𝑛) that∫ ∞

0

∫
R𝑛

|𝛾𝑡 (𝑥) · (A𝑡∇𝑢) (𝑥) |2
d𝑥 d𝑡
𝑡
≲ ∥∇𝑢∥2

2.

The Cauchy–Schwarz inequality yields |𝛾𝑡 (𝑥) · (A𝑡∇𝑢) (𝑥) |2 ≤ |(A𝑡∇𝑢) (𝑥) |2 |𝛾𝑡 (𝑥) |2,
so sufficiency follows from Carleson’s lemma (applied componentwise).

Proving necessity is left to you as Exercise 13.3, as for the Kato conjecture, it functions
more as a (nice) gimmick. □

To be continued . . .

13.4. Exercises
Exercise 13.1 (L2-bounds for the dyadic averaging operators). Let 𝐹 ∈ L2(R𝑛)𝑛 and
𝑡 > 0. Prove the inequality

∥A𝑡𝐹∥2 ≤ ∥𝐹∥2.

Does that mean that the dyadic maximal operator A does not increase L2-norms?

Exercise 13.2 (Smooth vs. rough averages). We denote the rough averages at scale
𝑡 > 0 of a given function 𝐹 ∈ L2(R𝑛)𝑛 by

(M𝑡𝐹) (𝑥) B
⨏
𝐵(𝑥,𝑡)

𝐹 d𝑦,
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13.4. Exercises

compare with Lecture 9. Square functions involving M𝑡 , as opposed to A𝑡 , are easier
to investigate thanks to the convolution structure of M𝑡 . In this exercise, we ask you to
prove the bound∫ ∞

0
∥(M𝑡 − 𝑃𝑡)𝐹∥2

2
d𝑡
𝑡
≲ ∥𝐹∥2

2 (𝐹 ∈ L2(R𝑛)𝑛),

compare with Remark 13.14.

Hint: Carefully investigate the Fourier transform of the characteristic function of the
unit ball.

Exercise 13.3 (Necessity of the Carleson estimate). Prove necessity of the Carleson
condition as stated in Corollary 13.16.

Hint: Read again the paragraph preceding Theorem 9.19 before you start.

Exercise 13.4 (Dyadically bootstrapping Poincaré). Let𝑄 ⊆ R𝑛 be a cube of sidelength
𝑡, let ℓ ∈ N and 𝑢 ∈ H1(R𝑛). In (13.9) we have seen, using a slightly different
nomenclature, the Poincaré inequality

∥𝑢 − (𝑢)𝑄


L2 (2ℓ𝑄) ≤ 𝐶Φ(ℓ)𝑡∥∇𝑢∥L2 (2ℓ𝑄) ,

where 𝐶 depends only on 𝑛 and Φ(ℓ) = 2ℓ(𝑛+1) .

While this was sufficient for our purpose, the dependence on ℓ can be improved:

Φ(ℓ) =


2ℓ𝑛/2 if 𝑛 ≥ 3,
ℓ2ℓ if 𝑛 = 2,
2ℓ if 𝑛 = 1.

Prove it!

Exercise 13.5 (Endpoint extrapolation in dimension 𝑛 = 1). In this exercise, we work
in dimension 𝑛 = 1. In Theorem 11.16 and Exercise 11.6 you have seen an L𝑝-
extrapolation for the resolvents: For every 𝑝 ∈ (1,∞) there is a constant 𝐶 such
that

∥(1 + 𝑡2𝐿)−1𝑢∥L𝑝 (R) ≤ 𝐶∥𝑢∥L𝑝 (R) (13.18)

for all 𝑡 > 0 and all 𝑢 ∈ L𝑝 (R) ∩ L2(R). The goal of this exercise is to refine the
strategy of proof in order to extend the result to the endpoints 𝑝 = 1 and 𝑝 = ∞.

We proceed as follows. The constants 𝐶, 𝑐 are only allowed to depend on _ and Λ.

(a) For 𝑡 > 0 and 𝑢 ∈ L2(R) prove the L2 -- L∞-bound

∥(1 + 𝑡2𝐿)−1𝑢∥L∞ (R) ≤ 𝐶𝑡−1/2∥𝑢∥L2 (R) .
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13. The solution of the Kato conjecture: Part I

(b) Let 𝑡 > 0 and 𝐸, 𝐹 ⊆ R be measurable and set 𝑑 B dist(𝐸, 𝐹). Upgrade part (a)
to the L2 -- L∞-off-diagonal estimate

∥(1 + 𝑡2𝐿)−1𝑢∥L∞ (𝐹) ≤ 𝐶𝑡−1/2e−𝑐
𝑑
𝑡 ∥𝑢∥L2 (𝐸)

for 𝑢 ∈ L2(R) with supp(𝑢) ⊆ 𝐸 .

Hint: In the case 𝑑/𝑡 ≥ 1, try to use a bounded function 𝜌 ∈ C∞(R𝑛) with
dist(𝐸, supp(𝜌)) ≥ 𝑑/2. Of course, you also have to construct it ;-)

(c) Mimic a familiar argument to prove (13.18) for 𝑝 = ∞.

(d) Complete the proof by treating the case 𝑝 = 1.
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14. The solution of the Kato
conjecture: Part II

As the grande finale of our course, we are going to complete the proof of the Kato
conjecture. Notation is as before and we shall make the following conventions.

Notation 14.1. The symbols 𝐶, 𝑐 are reserved for positive constants that depend only
on 𝑛, _ and Λ. The Carleson box over a dyadic cube 𝑄 ∈ □ is denoted by 𝑅(𝑄) B
𝑄 × (0, ℓ(𝑄)].

In Corollary 13.16 of the foregoing lecture, we have reduced the Kato conjecture to
proving that |𝛾𝑡 (𝑥) |2 d𝑥 d𝑡

𝑡
is a Carleson measure. Let us draw a parallel with the theory

of singular integral operators, while simultaneously explaining the terminology ‘𝑇 (1)
and 𝑇 (𝑏) theorem’ in Section 13.1. The reduction step in Corollary 13.16 was on the
square function estimate ∫ ∞

0
∥Θ𝑡∇𝑢∥2

2
d𝑡
𝑡
≲ ∥∇𝑢∥2

2,

which, from Lecture 12, was already known to be equivalent to the Kato conjecture.
Instead of bounding the left-hand side for all 𝐹 = ∇𝑢, we have therefore reduced
the matter to investigating Θ𝑡𝐹 for very specific functions, namely 𝐹 = 𝑒1, . . . , 𝑒𝑛
corresponding to 𝛾𝑡 = (Θ𝑡𝑒 𝑗 )𝑛𝑗=1 and, in particular, 𝐹 = 1 in dimension 𝑛 = 1.
Reducing the L2-boundedness of an operator 𝑇 to a property of 𝑇 (1), the suitably
defined application of 𝑇 to the constant-1-function, is called a ‘𝑇 (1) theorem’ ever
since the famous result of David–Journé [DJ84] for singular integral operators. We
refer to [AGP18] for a historical account. However, calculating 𝑇 (1) might just be
impossible. This is what happens with our Θ𝑡 .

The idea behind a ‘𝑇 (𝑏) theorem’ is to replace the constant-1-function by other, tailor-
suited test functions 𝑏 for 𝑇 . For singular integral operators, such criteria first appeared
in the work of David–Journé–Semmes [DJS85]. In our case, and in analogy with
the ‘𝑇 (𝑏) theorem for square functions’ in [Sem90], we shall design test functions 𝑏
allowing us to verify the ‘𝑇 (1) condition’ for Θ𝑡 , namely that |𝛾𝑡 (𝑥) |2 d𝑥 d𝑡

𝑡
is a Carleson

measure.

173



14. The solution of the Kato conjecture: Part II

14.1. A 𝑻(𝒃) strategy for the Kato conjecture
Let us explain a common strategy employed in a 𝑇 (𝑏) argument through the proof of
the Carleson measure estimate in dimension 𝑛 = 1.

Proposition 14.2. In dimension 𝑛 = 1, we have the Carleson measure estimate∬
𝑅(𝑄)

|𝛾𝑡 (𝑥) |2
d𝑥 d𝑡
𝑡

≤ 𝐶 |𝑄 | (𝑄 ∈ □).

We need a simple, yet important observation that is already specific to the one-
dimensional setting. We leave the proof for you as Exercise 14.1.

Lemma 14.3. In dimension 𝑛 = 1, the principal part approximation in Proposi-
tion 13.15 remains valid for all 𝐹 ∈ L2(R) rather than 𝐹 = ∇𝑢 with 𝑢 ∈ H1(R).

Proof of Proposition 14.2. We fix 𝑄 ∈ □ and a cut-off function [𝑄 ∈ C∞
c (2𝑄) with

the usual requirements that [ = 1 on 𝑄 and ∥[𝑄 ∥∞ + ℓ(𝑄)∥∇[𝑄 ∥∞ ≤ 𝐶.1 Keeping in
mind that in dimension 𝑛 = 1 the coefficients 𝐴 are a function 𝐴 : R→ C with |𝐴| ≤ Λ

and Re(𝐴) ≥ _ almost everywhere, we define the ‘𝑇 (𝑏)-type test function’

𝑏𝑄 B 𝐴−1[𝑄 . (14.1)

The rest of the proof comes in five steps.

Step 1: Accretivity estimate for the test function.

We claim the fundamental estimate

Re
(
(A𝑡𝑏𝑄) (𝑥)

)
≥ _

Λ2 ((𝑥, 𝑡) ∈ 𝑅𝑄). (14.2)

To this end, let 𝑄′ ∈ □𝑡 be the unique dyadic cube of generation 𝑡 that contains 𝑥.
Now, (𝑥, 𝑡) ∈ 𝑅𝑄 precisely means that 𝑡 ≤ ℓ(𝑄) and 𝑥 ∈ 𝑄. Consequently, we have
𝑄′ ⊆ 𝑄 and

Re(𝑏𝑄) = Re(𝐴−1) = Re(𝐴)
|𝐴|2

≥ _

Λ2 ,

almost everywhere on 𝑄′. Averaging both sides over 𝑄′ yields (14.2).

Step 2: Back to the dyadic averaging operator.

1If you are not yet familiar with the construction, flip back to the proof of Theorem 11.8.
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14.1. A 𝑇 (𝑏) strategy for the Kato conjecture

We make use of (14.2) by bounding

_2

Λ4

∬
𝑅(𝑄)

|𝛾𝑡 (𝑥) |2
d𝑥 d𝑡
𝑡

≤
∬

𝑅(𝑄)
|𝛾𝑡 (𝑥) · (A𝑡𝑏𝑄) (𝑥) |2

d𝑥 d𝑡
𝑡

. (14.3)

Now that we have re-introduced the dyadic averaging operator, we use the principal
part approximation, backwards in a way, and write

𝛾𝑡 · A𝑡 = (𝛾𝑡 · A𝑡 − Θ𝑡) + Θ𝑡 .

Generously enlarging the domain of integration on the right-hand side of (14.3), we
find ourselves left with

_2

2Λ4

∬
𝑅(𝑄)

|𝛾𝑡 (𝑥) |2
d𝑥 d𝑡
𝑡

≤
∫ ℓ(𝑄)

0
∥(𝛾𝑡 · A𝑡 − Θ𝑡)𝑏𝑄 ∥2

2 + ∥Θ𝑡𝑏𝑄 ∥2
2

d𝑡
𝑡

≤ 𝐶∥𝑏𝑄 ∥2
2 +

∫ ℓ(𝑄)

0
∥Θ𝑡𝑏𝑄 ∥2

2
d𝑡
𝑡
,

(14.4)

where in the second step we have used the principal part approximation with 𝐹 = 𝑏𝑄
in its extended version stated in Lemma 14.3.

Step 3: L2-bound for the test function.

The first term on the right in (14.4) is easy to control: By definition of 𝑏𝑄 we have

∥𝑏𝑄 ∥2
2 ≤ ∥𝐴−1∥2

∞∥[𝑄 ∥2
∞ |2𝑄 | ≤ 2𝐶2

_2 |𝑄 |. (14.5)

Step 4: Truncated square function bound for the test function.

The whole argument hinges on the possibility to manually bound the (truncated) square
function for the special function 𝑏𝑄 on the right of (14.4). To this end, we write out
the definition of Θ𝑡 (see Definition 13.2) and 𝑏𝑄 to find

Θ𝑡𝑏𝑄 = −𝑡 (1 + 𝑡2L )−1 div(𝐴𝑏𝑄)
= −𝑡 (1 + 𝑡2𝐿)−1(div [𝑄).

We have incorporated 𝐴−1 in the definition of 𝑏𝑄 so that the coefficients cancel in this
computation. Here, div [𝑄 = ([𝑄)′ is a smooth function that is bounded by 𝐶/ℓ(𝑄) and
has support in 2𝑄. Controlling the resolvents of 𝐿 simply by m-accretivity, we obtain

∥Θ𝑡𝑏𝑄 ∥2
2 ≤ ∥𝑡 div [𝑄 ∥2

2 ≤ 𝑡2 2𝐶2

ℓ(𝑄)2 |𝑄 |,

which is still enough to conclude the desired estimate∫ ℓ(𝑄)

0
∥Θ𝑡𝑏𝑄 ∥2

2
d𝑡
𝑡
≤
∫ ℓ(𝑄)

0
𝑡

2𝐶2

ℓ(𝑄)2 |𝑄 | d𝑡 = 𝐶2 |𝑄 |. (14.6)
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14. The solution of the Kato conjecture: Part II

Step 5: Conclusion.

We assemble (14.4), (14.5) and (14.6) to give the Carleson measure estimate∬
𝑅(𝑄)

|𝛾𝑡 (𝑥) |2
d𝑥 d𝑡
𝑡

≤ 𝐶 |𝑄 |,

with a possibly different constant 𝐶. □

Together, Proposition 14.2 and Corollary 13.16 solve the Kato conjecture in dimension
𝑛 = 1! This is due to Coifman–McIntosh–Meyer [CMM82] by a different, yet closely
related argument. The proof provided above also foreshadows a potential strategy in
all dimensions and, at the same time, it underscores the major difficulties that make the
Kato conjecture so much harder in higher dimension. To this end, let us wrap up the
essential features of the ‘𝑇 (𝑏)-type test functions’ 𝑏𝑄 associated with 𝑄 ∈ □:

(a) Uniform L2-bounds in (14.5).

(b) Pointwise control of |𝛾𝑡 | by |𝛾𝑡 · A𝑡𝑏𝑄 | on 𝑅(𝑄) in (14.3).

(c) Manual control over the truncated square function withΘ𝑡𝑏𝑄 in (14.6) by adapting
𝑏𝑄 to 𝐿, and using the principal part approximation for 𝐹 = 𝑏𝑄 in (14.4).

In higher dimensions, (c) would necessitate constructing 𝑏𝑄 in the form of a gradient,
but the pointwise control in (b) represents the most significant obstacle. Indeed, given
(𝑥, 𝑡) ∈ 𝑅(𝑄), the C𝑛-vectors 𝑤 B 𝛾𝑡 (𝑥) and b B (A𝑡𝑏𝑄) (𝑥) should satisfy

𝑐 |𝑤 | ≤ |𝑤 · b |. (14.7)

In dimension 𝑛 = 1, there is no orthogonality and (14.7) is the same as saying |b | ≥ 𝑐,
which in turn followed from the pointwise bound Re(𝑏𝑄) ≥ 𝑐 on 𝑄. However, in
higher dimensions, (14.7) indicates that b must roughly align with the direction of 𝑤,
about which we have limited information. In fact, we are trying to use a 𝑇 (𝑏) argument
precisely because we seem unable to compute 𝛾𝑡 (𝑥) accurately.

14.2. The sectorial decomposition of C𝒏

A key idea in the resolution of the Kato conjecture in arbitrary dimensions was to use a
sectorial decomposition of C𝑛 to enforce the principal part on 𝑅(𝑄) to lie within small
cones with central axis 𝑤 = b and then construct test functions on 𝑄 that are close to b
in average.

Definition 14.4. Let Y > 0. For b ∈ C𝑛 with |b | = 1, define the open cone with central
axis b by

ΓYb B
{
𝑤 ∈ C𝑛 \ {0} |

�� 𝑤
|𝑤 | − b

�� ≤ Y}.
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14.2. The sectorial decomposition of C𝑛

Re

Im

1

1

b

Y

ΓY
b

Figure 14.1.: Schematic representation of a cone ΓY
b
⊆ C𝑛 \ {0} in dimension 𝑛 = 1.

Our goal is then to prove the following Carleson measure estimate, where we restrict
the values of the principal part to a cone ΓY

b
.

Proposition 14.5 (Key estimate). There is a choice of Y > 0, depending only on 𝑛, _
and Λ, such that for every unit vector b ∈ C𝑛 we have the Carleson measure estimate∬

𝑅(𝑄)
|𝛾𝑡 (𝑥) 1ΓY

b
(𝛾𝑡 (𝑥)) |2

d𝑥 d𝑡
𝑡

≤ 𝐶 |𝑄 | (𝑄 ∈ □).

The key estimate implies that |𝛾𝑡 (𝑥) |2 d𝑥 d𝑡
𝑡

is a Carleson measure and hence concludes
the proof of the Kato conjecture by virtue of Corollary 13.16!

Indeed, by compactness of the unit sphere, we can cover C𝑛 \ {0} by a finite number of
cones ΓY

b1
, . . . , ΓY

b𝑁
, where 𝑁 depends only on 𝑛 and Y, and we obtain∬

𝑅(𝑄)
|𝛾𝑡 (𝑥) |2

d𝑥 d𝑡
𝑡

≤
∬

𝑅(𝑄)

𝑁∑︁
𝑗=1

|𝛾𝑡 (𝑥) 1ΓY
b𝑗
(𝛾𝑡 (𝑥)) |2

d𝑥 d𝑡
𝑡

≤ 𝐶𝑁 |𝑄 |

for every cube 𝑄 ∈ □ as required.

Hence, all that remains is to prove the key estimate. From now on, the unit vector b
is fixed and we write ΓY B ΓY

b
. We shall establish the claim of Proposition 14.5 by

refining the strategy outlined in Section 14.1.
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14. The solution of the Kato conjecture: Part II

14.3. Construction of 𝑻(𝒃)-type test functions
We will use the freedom of being able to pick Y small twice in order to steer the
values of our test functions 𝑏𝑄 into the direction b. The following proposition contains
the construction of 𝑏𝑄 and adjusts the direction in average on the ‘parent cube’ 𝑄
itself.

Proposition 14.6. There is a constant Y0 ∈ (0, 1] such that if Y ≤ Y0, then for each cube
𝑄 ∈ □ we can construct a ‘𝑇 (𝑏)-type test function’ 𝑏Y

𝑄
with the following properties:

(a) ∥𝑏Y
𝑄
∥2 ≤ 𝐶 |𝑄 |1/2,

(b) Re
(
b ·

⨏
𝑄

𝑏Y𝑄 d𝑥
)
≥ 1,

(c)
∬

𝑅(𝑄)
|𝛾𝑡 (𝑥) · (A𝑡𝑏

Y
𝑄) (𝑥) |

2 d𝑥 d𝑡
𝑡

≤ 𝐶

Y2 |𝑄 |.

Note that (a), (b) and (c) in Proposition 14.6 roughly align with their counterparts in
Section 14.1, which share analogous labels. Notably, in (c) above, we refrain from
explicitly stating the square function bound; however, we will leverage the manual
control over Θ𝑡𝑏Y𝑄 in the proof.

We need the following elementary lemma on a family associated with 𝐿 that appears
for the first time.

Lemma 14.7. For all 𝐹 ∈ L2(R𝑛)𝑛 and all 𝑡 > 0 we have the uniform bound

∥𝑡2∇(1 + 𝑡2L )−1 div 𝐹∥2 ≤ 1
_
∥𝐹∥2.

Proof. The proof is similar to the one of Lemma 11.7. We set 𝑤 B (1 + 𝑡2L )−1 div 𝐹
and note that by ellipticity of 𝐴 we have

_𝑡2∥∇𝑤∥2
2 ≤ 𝑡2 Re

(〈
L 𝑤, 𝑤

〉)
≤ Re

(〈
(1 + 𝑡2L )𝑤, 𝑤

〉)
= Re

(〈
div 𝐹, 𝑤

〉)
,

where the angular brackets denote the H−1(R𝑛) -- H1(R𝑛)-duality. By definition of the
very weak divergence operator and the Cauchy–Schwarz inequality, we conclude

_𝑡2∥∇𝑤∥2
2 ≤ ∥𝐹∥2∥∇𝑤∥2

and the claim follows. □

Proof of Proposition 14.6. We fix 𝑄 ∈ □ and abbreviate ℓ B ℓ(𝑄). Similarly, we
simplify notation by omitting Y and 𝑄 when constructing the test function 𝑏 = 𝑏Y

𝑄
.
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14.3. Construction of 𝑇 (𝑏)-type test functions

We start by fixing [ ∈ C∞
c (2𝑄) such that [ = 1 on𝑄 and ∥[∥∞ + ℓ∥∇[∥∞ ≤ 𝐶 as in the

proof of Proposition 14.2. With 𝑥𝑄 the center of 𝑄, we introduce a smooth function
with compact support, whose gradient is equal to b on 𝑄 by

Φ(𝑥) B [(𝑥) (𝑥 − 𝑥𝑄) · b, (14.8)

and finally define

𝑏 B 2∇(1 + Y2ℓ2𝐿)−1Φ. (14.9)

Then, we have
1
2
𝑏 − ∇Φ = ∇

(
(1 + Y2ℓ2𝐿)−1 − 1

)
Φ

= ∇
(
−(1 + Y2ℓ2L )−1Y2ℓ2L

)
Φ

= Y2ℓ2∇(1 + Y2ℓ2L )−1 div(𝐴∇Φ),

(14.10)

which conveys the idea that 𝑏 is a gradient function adapted to 𝐿 that has a chance of
pointing in direction b on 𝑄, compare with (b) and (c) in Section 14.1. Let us prove
that we can pick Y small enough such that 𝑏 has the stated properties.

(a) We begin by calculating

|∇Φ(𝑥) | ≤ |∇[(𝑥) (𝑥 − 𝑥𝑄) · b | + |[(𝑥)b |

≤
(
𝐶

ℓ

√
𝑛ℓ

2
+ 𝐶

)
12𝑄 (𝑥).

Hence, we obtain with a different constant 𝐶 that

∥∇Φ∥2
2 ≤ 𝐶 |𝑄 |. (14.11)

Combining (14.10) and Lemma 14.7, we find

∥𝑏 − 2∇Φ∥2
2 ≤ 1

_2 ∥2𝐴∇Φ∥2
2 ≤ 4𝐶Λ2

_2 |𝑄 |

and together, these two norm estimates imply (a).

(b) As ∇Φ = b on 𝑄, we can write⨏
𝑄

𝑏 − 2b d𝑥 =
⨏
𝑄

𝑏 − 2∇Φ d𝑥 C 2Y2ℓ2
⨏
𝑄

∇𝑢 d𝑥, (14.12)

where in the second step we have used (14.10) and 𝑢 B (1+Y2ℓ2L )−1 div(𝐴∇Φ).
The uniform L2-bounds in Lemmas 11.72 and 14.7 in combination with (14.11)
yield

∥𝑢∥2 ≤ 𝐶

Yℓ
|𝑄 |1/2 and ∥∇𝑢∥2 ≤ 𝐶

Y2ℓ2 |𝑄 |1/2,

2To be precise, the dual estimate to Lemma 11.7 (b), compare with Lemma 11.10.
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14. The solution of the Kato conjecture: Part II

so that estimating the average on the right-hand side of (14.12) by means of
Lemma 13.12 leads us to����⨏

𝑄

𝑏 − 2b d𝑥
����2 ≤ 𝐶Y4ℓ4

ℓ |𝑄 | ∥𝑢∥2∥∇𝑢∥2 ≤ 𝐶Y,

where 𝐶 varies from step to step. Since b ∈ C𝑛 is a unit vector, we conclude that

Re
(
b ·

⨏
𝑄

𝑏 d𝑥
)
= 2 + Re

(
b ·

⨏
𝑄

𝑏 − 2b d𝑥
)
≥ 2 −

√
𝐶Y.

Now, (b) follows upon taking Y ≤ 𝐶−1.

(c) As in Step 2 in the proof of Proposition 14.2, we use the principal part approxi-
mation from Proposition 13.15 with 𝐹 = 𝑏 backwards and bound

1
2

∬
𝑅(𝑄)

|𝛾𝑡 (𝑥)·(A𝑡𝑏) (𝑥) |2
d𝑥 d𝑡
𝑡

≤
∫ ℓ

0
∥(𝛾𝑡 · A𝑡 − Θ𝑡)𝑏∥2

2 + ∥Θ𝑡𝑏∥2
2

d𝑡
𝑡

≤ 𝐶∥𝑏∥2
2 +

∫ ℓ

0
∥Θ𝑡𝑏∥2

2
d𝑡
𝑡

(a)
≤ 𝐶 |𝑄 | +

∫ ℓ

0
∥Θ𝑡𝑏∥2

2
d𝑡
𝑡
.

(14.13)

Recall from (14.9) that 𝑏 is indeed the gradient of a function in H1(R𝑛) and hence
applying Proposition 13.15 was legitimate. Once again, all hinges on being able
to compute Θ𝑡𝑏. By definition, we have

Θ𝑡𝑏 = −2𝑡 (1 + 𝑡2L )−1 div
(
𝐴∇(1 + Y2ℓ2𝐿)−1Φ

)
= 2𝑡 (1 + 𝑡2L )−1L (1 + Y2ℓ2L )−1Φ

= −𝑡
(
(1 + 𝑡2𝐿)−1) ((1 + Y2ℓ2L )−1 div

)
2𝐴∇Φ.

Compared to Step 4 in the proof of Proposition 14.2, the coefficients 𝐴 did not
cancel but could be used to recombine the full operator L in the second line. It
suffices to use uniform L2-bounds (as in the proof of (b)) and (14.11) in order to
control

∥Θ𝑡𝑏∥2
2 ≤ 2𝑡2

_Y2ℓ2 ∥2𝐴∇Φ∥2
2 ≤ 8𝐶Λ2𝑡2

_Y2ℓ2 |𝑄 |.

Integration in 𝑡 yields ∫ ℓ

0
∥Θ𝑡𝑏∥2

2
d𝑡
𝑡
≤ 4𝐶Λ2

_Y2 |𝑄 |,

which we use back in (14.13) to conclude provided we take Y ≤ 1. □
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14.4. Conclusion by a stopping time construction

14.4. Conclusion by a stopping time construction
The directional estimate in Proposition 14.6 (b) is not yet enough to implement the
strategy outlined in Section 14.1, because we would need (A𝑡𝑏

Y
𝑄
) (𝑥) to point roughly

in direction b for 𝑥 ∈ 𝑄 and all 𝑡 ≤ ℓ(𝑄). However, if 𝑡 ≤ ℓ(𝑄)/2, then we have

(A𝑡𝑏
Y
𝑄) (𝑥) =

⨏
𝑄′
𝑏Y𝑄 d𝑦

for a dyadic child𝑄′ of𝑄, that is, a proper dyadic subcube of𝑄. In dimension 𝑛 = 1, all
came automatically, since we had a pointwise lower bound for 𝑏𝑄 on the entire parent
cube 𝑄. Now, we only control the direction of the average on the parent cube. The
next lemma asserts that a substantial number of dyadic children inherit this property,
provided we choose Y to be even smaller.

It is at this point that we make essential use of the dyadic cube structure — the good
children will be selected by maximality, or equivalently, a stopping time. The constant
Y0 below is the one from Proposition 14.6.

Lemma 14.8. There is a choice of Y ≤ Y0, depending only on 𝑛, _ and Λ, such that
each dyadic cube 𝑄 ∈ □ has pairwise disjoint dyadic children 𝑄 𝑗 for which the sets

𝐸 (𝑄) B 𝑄 \
⋃
𝑗

𝑄 𝑗 and 𝐸∗(𝑄) B 𝑅(𝑄) \
⋃
𝑗

𝑅(𝑄 𝑗 ) (14.14)

have the following properties:

(a)
��𝐸 (𝑄)�� ≥ [ |𝑄 |, for some [ > 0 depending only on 𝑛, _ and Λ.

(b)
��𝑤 · (A𝑡𝑏

Y
𝑄) (𝑥)

�� ≥ 1
2
|𝑤 |, whenever (𝑥, 𝑡) ∈ 𝐸∗(𝑄) and 𝑤 ∈ ΓY.

Proof. Let 0 < Y ≤ Y0. Given 𝑄, we let (𝑄 𝑗 ) 𝑗 be the family of maximal dyadic cubes
𝑄′ ⊆ 𝑄 for which at least one of the following properties fails:⨏

𝑄′
|𝑏Y𝑄 | d𝑦 ≤ 1

4Y
, (14.15)

Re
(
b ·

⨏
𝑄′
𝑏Y𝑄 d𝑦

)
≥ 3

4
. (14.16)

The 𝑄 𝑗 are pairwise disjoint by maximality. Let us check that they have the desired
properties.

(b) Let (𝑥, 𝑡) ∈ 𝐸∗(𝑄) and𝑤 ∈ ΓY. For brevity, we set 𝑣 B (A𝑡𝑏
Y
𝑄
) (𝑥) =

⨏
𝑄′ 𝑏

Y
𝑄

d𝑦,
where by definition 𝑄′ is the unique dyadic cube of generation 𝑡 that contains 𝑥.

We claim that 𝑄′ satisfies both (14.15) and (14.16). Suppose to the contrary
that it does not. Then, by maximality, we would have 𝑄′ ⊆ 𝑄 𝑗 for some 𝑗 .
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14. The solution of the Kato conjecture: Part II

Consequently, 𝑥 ∈ 𝑄 𝑗 and 𝑡 ≤ ℓ(𝑄′) ≤ ℓ(𝑄 𝑗 ), but this would imply (𝑥, 𝑡) ∈
𝑅(𝑄 𝑗 ) in contradiction with the definition of 𝐸∗(𝑄).

From (14.15) and (14.16) we obtain |𝑣 | ≤ 1/(4Y) and Re(b · 𝑣) ≥ 3/4. Since b is
the central axis of ΓY, we conclude���� 𝑤|𝑤 | · 𝑣���� ≥ |b · 𝑣 | −

���� 𝑤|𝑤 | − b����|𝑣 | ≥ 3
4
− Y 1

4Y
=

1
2
,

that is, |𝑤 · 𝑣 | ≥ |𝑤 |/2.

(a) We will use the bounds for 𝑏Y
𝑄

on the parent cube in Proposition 14.6 to keep
the measure of the cubes 𝑄 𝑗 under control. Since eventually (a) will hold with
[ > 0, we automatically see that the parent cube is not one of the 𝑄 𝑗 .

To this end, let (𝑄 𝑗 ) 𝑗∈𝐽1 and (𝑄 𝑗 ) 𝑗∈𝐽2 be the collections of those cubes 𝑄 𝑗 , for
which (14.15) and (14.16) fail, respectively. Let 𝐹1(𝑄) and 𝐹2(𝑄) denote their
unions. Then 𝐸 (𝑄) = 𝑄 \ (𝐹1(𝑄) ∪ 𝐹2(𝑄)) and, consequently, it suffices to
prove the bound

|𝐹1(𝑄) | + |𝐹2(𝑄) | ≤ (1 − [) |𝑄 | (14.17)

for a suitable [ > 0, using the choice of Y of course.

Since (14.15) fails for every cube in (𝑄 𝑗 ) 𝑗∈𝐽1 , we obtain

|𝐹1(𝑄) | =
∑︁
𝑗∈𝐽1

|𝑄 𝑗 | ≤
∑︁
𝑗∈𝐽1

4Y
∫
𝑄 𝑗

|𝑏Y𝑄 | d𝑥 ≤ 4Y
∫
𝑄

|𝑏Y𝑄 | d𝑥.

By Hölder’s inequality and Proposition 14.6 (a), we can now conclude that

|𝐹1(𝑄) | ≤ 4𝐶Y |𝑄 |. (14.18)

The other collection is slightly more complicated. We first use Proposition 14.6 (b)
to bound

1 ≤ Re
(
b ·

⨏
𝑄

𝑏Y𝑄 d𝑥
)

=
1
|𝑄 |

∫
𝑄\𝐹2 (𝑄)

Re
(
b · 𝑏Y𝑄

)
d𝑥 + 1

|𝑄 |
∑︁
𝑗∈𝐽2

∫
𝑄 𝑗

Re
(
b · 𝑏Y𝑄

)
d𝑥.

For the integrals on 𝑄 𝑗 , we can bring the failure of (14.16) into play and to the
integral on 𝑄 \ 𝐹2(𝑄) we simply apply Hölder’s inequality. The result is

≤ |𝑄 \ 𝐹2(𝑄) |1/2

|𝑄 | ∥𝑏Y𝑄 ∥2 +
1
|𝑄 |

∑︁
𝑗∈𝐽2

3
4
|𝑄 𝑗 |

≤ 𝐶 |𝑄 \ 𝐹2(𝑄) |1/2

|𝑄 |1/2
+ 3

4
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𝑥 ∈ R𝑛

𝑡 > 0

𝑄

ℓ(𝑄)

Figure 14.2.: A dyadic ‘sawtooth’ region created by removing from 𝑅(𝑄) the purple
Carleson boxes. They correspond to the dyadic children 𝑄 𝑗 of 𝑄 in the
scenario of Lemma 14.8. The remaining white region is called 𝐸∗(𝑄).

and we rearrange terms to find

𝑐 |𝑄 | B 1
(4𝐶)2 |𝑄 | ≤ |𝑄 \ 𝐹2(𝑄) | = |𝑄 | − |𝐹2(𝑄) | (14.19)

with some constant 𝑐 ∈ (0, 1).

Eventually, we combine (14.18) and (14.19) to give

|𝐹1(𝑄) | + |𝐹2(𝑄) | ≤
(
4𝐶Y + 1 − 𝑐

)
|𝑄 |,

whereupon the claim (14.17) follows with [ B 𝑐 − 4𝐶Y, provided we take Y
small enough to make this a positive quantity. □

Remark 14.9. Rather than relying on maximality, the same cubes 𝑄 𝑗 can be selected
through the use of a stopping time. This involves dyadically subdividing 𝑄 and halting
the process each time either condition (14.15) or (14.16) fails. Hence, these 𝑄 𝑗 are
also referred to as stopping time cubes.

We have reached the stage of the proof where we fix Y as in Lemma 14.8 and henceforth
drop Y from our notation by writing Γ and 𝑏𝑄 instead of ΓY and 𝑏Y

𝑄
, resprectively.
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Combining Lemma 14.8 (b) and Proposition 14.6 (c), we see that for every dyadic cube
𝑄 we get∬

𝐸∗ (𝑄)
|𝛾𝑡 (𝑥)1Γ (𝛾𝑡 (𝑥)) |2

d𝑥 d𝑡
𝑡

≤ 4
∬

𝐸∗ (𝑄)
|𝛾𝑡 (𝑥) · (A𝑡𝑏𝑄) (𝑥) |2

d𝑥 d𝑡
𝑡

≤ 4𝐶
Y2 |𝑄 |.

(14.20)

The trade-off made thus far is that we get the Carleson measure estimate required for
Proposition 14.5 not across the entire Carleson box, but only on its ample portion 𝐸∗(𝑄)
defined in Lemma 14.8. However, since all of this works on every cube, with uniform
estimates, we can rely on the following, essential self-improvement principle.

Lemma 14.10 (John–Nirenberg lemma for Carleson measures). Let a be a Borel
measure on R𝑛+1

+ and suppose that there exist constants ^, [ > 0 with the following
properties. Every dyadic cube 𝑄 ∈ □ has pairwise disjoint dyadic children 𝑄 𝑗 such
that the sets 𝐸 (𝑄) and 𝐸∗(𝑄) defined in (14.14) satisfy

(a)
��𝐸 (𝑄)�� ≥ [ |𝑄 |,

(b) a
(
𝐸∗(𝑄)

)
≤ ^ |𝑄 |.

Then a is a Carleson measure with ∥a∥C ≤ ^[−1.

Proof. Let us fix a dyadic cube 𝑄 ∈ □, set 𝑄 C 𝑄𝛼0 and call 𝑄 the cube at ‘stage 0’.
We enumerate the dyadic children from the assumption by indices 𝛼1. The pairwise
disjoint children𝑄𝛼1 have sidelength ℓ(𝑄𝛼1) ≤ 2−1ℓ(𝑄) and leave out an ample portion
of 𝑄 in the sense that by (a) we have∑

𝛼1 |𝑄𝛼1 |
|𝑄 | =

|𝑄 \ 𝐸 (𝑄) |
|𝑄 | = 1 − |𝐸 (𝑄) |

|𝑄 | ≤ (1 − [).

They are called cubes of ‘stage 1’. The assumption re-applies simultaneously to each
cube𝑄𝛼1 , leading to the cubes𝑄𝛼2 of ‘stage 2’ labeled by indices 𝛼2. This process can
be iterated. On the 𝑘-th stage we have cubes 𝑄𝛼𝑘 of sidelength at most 2−𝑘ℓ(𝑄). Since
with every selection we keep at most the (1 − [)-th fraction of each cube for the next
stage, they also satisfy∑

𝛼𝑘
|𝑄𝛼𝑘 |
|𝑄 | ≤

∑
𝛼𝑘−1 (1 − [) |𝑄𝛼𝑘−1 |

|𝑄 | ≤ . . . ≤ (1 − [)𝑘 . (14.21)

We make the important observation that for every point (𝑥, 𝑡) ∈ 𝑅(𝑄) there is a stage
𝑘 in the iteration scheme at which (𝑥, 𝑡) does no longer belong to a Carleson box of a
cube of stage 𝑘 . Indeed, (𝑥, 𝑡) ∈ 𝑅(𝑄𝛼𝑘 ) means that 0 < 𝑡 ≤ ℓ(𝑄𝛼𝑘 ) ≤ 2−𝑘ℓ(𝑄).
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With this observation at hand, we can proceed to iteratively decompose

𝑅(𝑄) =

(
𝐸∗(𝑄𝛼0)

)
∪
(⋃
𝛼1

𝑅(𝑄𝛼1)
)

= . . .

=

( 𝑚⋃
𝑘=0

⋃
𝛼𝑘

𝐸∗(𝑄𝛼𝑘 )
)
∪
(⋃
𝛼𝑚+1

𝑅(𝑄𝛼𝑚+1)
)

= . . .

=

∞⋃
𝑘=0

⋃
𝛼𝑘

𝐸∗(𝑄𝛼𝑘 )

and conclude the desirable Carleson measure estimate

a
(
𝑅(𝑄)

)
≤

∞∑︁
𝑘=0

∑︁
𝛼𝑘

a
(
𝐸∗(𝑄𝛼𝑘 )

)
(b)
≤

∞∑︁
𝑘=0

∑︁
𝛼𝑘

^ |𝑄𝛼𝑘 |

(14.21)
≤

∞∑︁
𝑘=0

^(1 − [)𝑘 |𝑄 |

=
^

[
|𝑄 |. □

As far as the Kato conjecture is concerned, there is not much left to do.

Proof of Proposition 14.5. Apply the John–Nirenberg lemma to the measure given by
da(𝑥, 𝑡) = |𝛾𝑡 (𝑥)1Γ (𝛾𝑡 (𝑥)) |2 d𝑥 d𝑡

𝑡
— the assumptions have been verified beforehand in

Lemma 14.8 (a) and (14.20). □

In Section 14.2 we have already seen that Proposition 14.5 implies the solution of the
Kato conjecture.

The end. For now.

14.5. Exercises
Exercise 14.1 (The principal part approximation for 𝑛 = 1).

(a) Prove that {∇𝑢 | 𝑢 ∈ H1(R𝑛)} is dense in L2(R𝑛)𝑛 if and only if 𝑛 = 1.
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(b) Conclude that in dimension 𝑛 = 1 the principal part approximation can be
extended as stated in Lemma 14.3

Exercise 14.2 (Operator-adapted Hodge decomposition). We consider the bounded
operators ∇ : H1(R𝑛) → L2(R𝑛)𝑛 and div(𝐴 ·) : L2(R𝑛)𝑛 → H−1(R𝑛). The goal in
this exercise is to prove that they induce the 𝐿-adapted topological Hodge decomposition

L2(R𝑛)𝑛 = ker(div(𝐴 ·)) ⊕ ran(∇). (14.22)

When 𝐿 = −Δ is the negative Laplacian, this is the Leray–Helmholtz decomposition
of L2(R𝑛)𝑛 into divergence free vector fields and gradient fields.

You may proceed as follows.

(a) Check that ker(div(𝐴 ·)) ∩ ran(∇) = {0}.

(b) Prove that

𝑃 B −∇L −1 div(𝐴 ·)

is a bounded projection on L2(R𝑛)𝑛.

(c) Show that ran(∇) ⊆ ran(𝑃) and that ker(div(𝐴 ·)) ⊆ ran(1 − 𝑃).

(d) Deduce that (14.22) is indeed a topological decomposition.

Exercise 14.3 (An application of the Hodge decomposition). The 𝐿-adapted Hodge
decomposition offers a method for extending the quadratic estimate from the initial
stage of the proof in Lecture 13 as follows.

(a) Prove that for all 𝐹 ∈ L2(R𝑛)𝑛 we have∫ ∞

0
∥Θ𝑡𝐹∥2

2
d𝑡
𝑡
≲ ∥𝐹∥2

2.

(b) Does the principal part approximation in Proposition 13.15 also extend in a
similar manner a posteriori?

Exercise 14.4 (The bounded H∞-calculus on H1(R𝑛)). Let 𝜑 ∈ (𝜑𝐿 , 𝜋). Prove the
estimate

∥∇ 𝑓 (𝐿)𝑢∥2 ≲ ∥ 𝑓 ∥∞,𝜑∥∇𝑢∥2 ( 𝑓 ∈ H∞(S𝜑), 𝑢 ∈ H1(R𝑛)).

186



A. Vector-valued integration

From Lecture 4 onwards, we will occasionally need integrals of vector-valued functions
defined on R𝑛. This self-contained appendix provides you with the essentials of the
construction and we refer to [HvNVW16, ABHN01] for further background.

Notation A.1. In the following, 𝑋 and 𝑌 will be Banach spaces (over the complex
numbers).

A.1. Measurable functions
We begin by introducing simple functions and a first concept of measurability for
functions valued in 𝑋 .

Definition A.2. A function 𝑓 : R𝑛 → 𝑋 is called simple if there exist finitely many
disjoint Lebesgue measurable sets 𝐸𝑘 ⊆ R𝑛 with finite Lebesgue measure and vectors
𝑢𝑘 ∈ 𝑋 such that

𝑓 =
∑︁
𝑘

𝑢𝑘 · 1𝐸𝑘 .

Definition A.3. A function 𝑓 : R𝑛 → 𝑋 is called strongly measurable if there exists a
sequence of simple functions that converges to 𝑓 almost everywhere.

Example A.4. (a) Continuous functions can be approximated by simple functions
uniformly on compact subsets of R𝑛, hence are strongly measurable.

(b) If 𝑔 : R𝑛 → C is measurable and𝑢 ∈ 𝑋 , then 𝑓 ≔ 𝑢·𝑔 is strongly measurable since
𝑔 can be approximated by scalar-valued simple functions almost everywhere.

(c) If a sequence of strongly measurable functions converges almost everywhere,
then (by diagonalization) the limit function is strongly measurable.

(d) If 𝑓 : R𝑛 → 𝑋 is strongly measurable and 𝜙 : 𝑋 → 𝑌 is continuous, then 𝜙 ◦ 𝑓
is strongly measurable. Indeed, if a sequence of simple functions ( 𝑓 𝑗 ) tends
to 𝑓 almost everywhere, then (𝜙 ◦ 𝑓 𝑗 ) is a sequence of simple functions that
tends to 𝜙 ◦ 𝑓 almost everywhere. In particular, ∥ 𝑓 ∥𝑋 : R𝑛 → R is (Lebesgue)
measurable.
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A. Vector-valued integration

In the scalar case 𝑋 = C, strong measurability coincides with Lebesgue measurability.
You may still wonder: Why not using the equivalent definition via pre-images of Borel
sets? The reason is that contrarily to the separable space C, a general Banach space and
its associated Borel 𝜎-algebra can be ‘too large’. The following observation hopefully
gives a feeling for the general issue and we refer to [HvNVW16, Sect. 1.1] for an
extensive discussion.

Suppose that 𝑓 is strongly measurable and fix an approximating sequence ( 𝑓 𝑗 ) of simple
functions that tends to 𝑓 outside of a null set 𝑁 . Then

𝑓 (R𝑛 \ 𝑁) ⊆ span{ 𝑓 𝑗 (R𝑛) | 𝑗 ∈ N} C 𝑌,

where 𝑌 is separable. In other words: 𝑓 almost everywhere takes values in a po-
tentially small subspace of 𝑋 if the latter is not separable itself. An example of a
non-separable space that we will frequently encounter is 𝑋 = L(𝐻), where 𝐻 is any
infinite-dimensional Hilbert space. So, this property is a necessary condition for a
function to be strongly measurable and we give it a name.

Definition A.5. A function 𝑓 : R𝑛 → 𝑋 is called almost separably-valued if there exists
a null set 𝑁 ⊆ R𝑛 such that 𝑓 (R𝑛 \ 𝑁) is contained in a separable closed subspace of
𝑋 .

By Example A.4 (d), strongly measurable functions also have the following prop-
erty.

Definition A.6. A function 𝑓 : R𝑛 → 𝑋 is called weakly measurable if for any fixed
𝜙 ∈ 𝑋′ the function ⟨𝜙, 𝑓 ⟩𝑋 ′,𝑋 : R𝑛 → C is Lebesgue measurable.

Through the use of functionals on 𝑋 , we can resort to the theory of scalar measurable
functions. The following theorem nicely ties together these lines of thought. It will not
be needed for the lectures and hence we only cite it without proof.

Theorem A.7 (Pettis, [ABHN01, Thm. 1.1.1]). A function 𝑓 : R → 𝑋 is strongly
measurable if and only if it is weakly measurable and almost separably-valued. In
particular, strong and weak measurability are equivalent in separable Banach spaces.

A.2. The Bochner integral
With the ‘correct’ notion of measurability being set up, we can now follow the con-
struction of the scalar Lebesgue integral. For a simple function 𝑓 =

∑
𝑘 𝑢𝑘 · 1𝐸𝑘 on R𝑛

the Bochner integral is defined as∫
R𝑛
𝑓 d𝑡 B

∑︁
𝑘

𝑢𝑘 · |𝐸𝑘 |.
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It is routine to check that for simple functions 𝑓 , 𝑔 : R → 𝑋 and scalars 𝛼 ∈ C we
have ∫

R𝑛

(
𝛼 𝑓 + 𝑔

)
d𝑡 = 𝛼

∫
R𝑛
𝑓 d𝑡 +

∫
R𝑛
𝑔 d𝑡.

Moreover, the triangle inequality implies ∫
R𝑛
𝑓 d𝑡


𝑋

≤
∫
R𝑛

∥ 𝑓 ∥𝑋 d𝑡. (A.1)

Definition A.8. A strongly measurable function 𝑓 : R𝑛 → 𝑋 is Bochner integrable if
there exists a sequence of simple functions ( 𝑓 𝑗 ) such that

lim
𝑗→∞

∫
R𝑛

∥ 𝑓 𝑗 − 𝑓 ∥𝑋 d𝑡 = 0.

First of all, this definition makes sense because the functions ∥ 𝑓 − 𝑓 𝑗 ∥𝑋 are strongly
measurable by Example A.4 (d). Moreover, we see from ∫

R𝑛
𝑓 𝑗 d𝑡 −

∫
R𝑛
𝑓𝑘 d𝑡


𝑋

≤
∫
R𝑛

∥ 𝑓 𝑗 − 𝑓𝑘 ∥𝑋 d𝑡

≤
∫
R𝑛

∥ 𝑓 𝑗 − 𝑓 ∥𝑋 d𝑡 +
∫
R𝑛

∥ 𝑓 − 𝑓𝑘 ∥𝑋 d𝑡
(A.2)

that the integrals
∫
R𝑛
𝑓 𝑗 d𝑡, 𝑗 ∈ N, form a Cauchy sequence in 𝑋 . By completeness this

sequence has a limit in 𝑋 . With a calculation similar to (A.2) we also see that the limit
is independent of the approximating sequence.

Definition A.9. In the situation of Definition A.8, the Bochner integral is defined as∫
R𝑛
𝑓 d𝑡 B lim

𝑗→∞

∫
R𝑛
𝑓 𝑗 d𝑡.

As in the case of strong measurability, there is a particularly useful criterion for Bochner
integrability that fully reduces the matter to scalar-valued Lebesgue integration.

Theorem A.10 (Bochner). A strongly measurable function 𝑓 : R𝑛 → 𝑋 is Bochner
integrable if and only if ∥ 𝑓 ∥𝑋 : R𝑛 → R is (Lebesgue) integrable and in this case we
have ∫

R𝑛
𝑓 d𝑡


𝑋

≤
∫
R𝑛

∥ 𝑓 ∥𝑋 d𝑡.
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Proof. If 𝑓 is Bochner integrable and ( 𝑓 𝑗 ) is a sequence as in Definition A.8, then for
any fixed 𝑗 we have∫

R𝑛
∥ 𝑓 ∥𝑋 d𝑡 ≤

∫
R𝑛

∥ 𝑓 − 𝑓 𝑗 ∥𝑋 d𝑡 +
∫
R𝑛

∥ 𝑓 𝑗 ∥𝑋 d𝑡 < ∞.

Conversely, suppose that ∥ 𝑓 ∥𝑋 is integrable. Since 𝑓 is strongly measurable, there
exists a sequence of simple functions ( 𝑓 𝑗 ) that converges to 𝑓 almost everywhere. The
simple functions

𝑔 𝑗 (𝑡) B
{
𝑓 𝑗 (𝑡), if ∥ 𝑓 𝑗 (𝑡)∥𝑋 ≤ 2∥ 𝑓 (𝑡)∥𝑋 ,
0, else,

have the same properties but additionally they satisfy ∥𝑔 𝑗− 𝑓 ∥𝑋 ≤ 3∥ 𝑓 ∥𝑋 . The (scalar!)
dominated convergence theorem yields

lim
𝑗→∞

∫
R𝑛

∥𝑔 𝑗 − 𝑓 ∥ d𝑡 = 0,

which means that 𝑓 is Bochner integrable. Finally, the triangle inequality follows from
(A.1) for the simple functions 𝑓 𝑗 and passing to the limit as 𝑗 → ∞. □

In many situations one does not integrate over all of R𝑛 but only over a measurable
subset. In this case measurability and integrability are defined through the respective
properties of the extension by zero.

Definition A.11. Let 𝐸 ⊆ R𝑛 be measurable and 𝑓 : 𝐸 → 𝑋 . Let �̃� : R𝑛 → 𝑋 be the
extension of 𝑓 by zero. We say that

(a) 𝑓 is strongly measurable if �̃� is strongly measurable,

(b) 𝑓 is Bochner integrable on 𝐸 if �̃� is Bochner integrable and in this case we define∫
𝐸

𝑓 d𝑡 B
∫
R𝑛
�̃� d𝑡.

Example A.12. A continuous function 𝑓 : 𝐼 → 𝑋 on a compact interval 𝐼 is Bochner
integrable. This is a consequence of Bochner’s theorem, since 𝑓 is strongly measurable
by Example A.4 (a) and ∥ 𝑓 ∥𝑋 is bounded, hence integrable on 𝐼.

One of the most fundamental properties of the Bochner integral concerns its interaction
with bounded linear operators.

Proposition A.13. Let 𝐸 ⊆ R𝑛 be measurable and 𝑓 : 𝐸 → 𝑋 be Bochner integrable.
If 𝑇 is a bounded linear (or anti-linear) operator from 𝑋 into 𝑌 , then 𝑇 𝑓 : 𝐸 → 𝑌 is
Bochner integrable and

𝑇

∫
𝐸

𝑓 (𝑡) d𝑡 =
∫
𝐸

𝑇 𝑓 (𝑡) d𝑡.
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Proof. Without loss of generality we can let 𝐸 = R𝑛. If ( 𝑓 𝑗 ) is as in Definition A.3
on strong measurability of 𝑓 , then (𝑇 𝑓 𝑗 ) has the same properties with regard to 𝑇 𝑓 .
Hence, 𝑇 𝑓 is strongly measurable. Likewise, if ( 𝑓 𝑗 ) is as in Definition A.8 on Bochner
integrability of 𝑓 , then (𝑇 𝑓 𝑗 ) has the same properties with regard to 𝑇 𝑓 and the claim
follows by Definition A.9 of the Bochner integral. □

A situation that we shall encounter every now and then during the lectures is that 𝑋 is
a space of functions depending on a variable 𝑥. Hence, also the Bochner integral is a
function of 𝑥 and we would like to pull the ‘exterior variable’ 𝑥 into the integral. Here
is an example, where this works without any difficulty.

Corollary A.14. Let𝐸 ⊆ R𝑛 be measurable and 𝑓 : R𝑛 → C(𝐾) be Bochner integrable,
where 𝐾 ⊆ R𝑚 is compact. Then 𝑡 ↦→ 𝑓 (𝑡) (𝑥) is integrable for every 𝑥 ∈ 𝐾 and we
have ( ∫

𝐸

𝑓 (𝑡) d𝑡
)
(𝑥) =

∫
𝐸

𝑓 (𝑡) (𝑥) d𝑡. (A.3)

Proof. Simply apply Proposition A.13 to the point evaluations ev𝑥 : C(𝐾) → C,
ev𝑥 𝑢 B 𝑢(𝑥). □

For Bochner integrable functions 𝑓 : 𝐸 → L2(𝐾) it is still reasonable to expect a rule
like (A.3) for a.e. 𝑥, but the argument cannot be the same since point evaluation is
not even well-defined on 𝑋 . In this case already measurability of the scalar-valued
functions 𝑓 (𝑡) (𝑥) can become an issue and we refer to [HvNVW16, Prop. 1.2.25] for
a careful discussion of these points.

In the lectures we will be able to circumvent the problem completely by working only
with strongly measurable functions 𝑓 : 𝐸 → L2(𝐾) that take their values in the smaller
space C(𝐾) and are Bochner integrable with respect to the finer topology. In this case
we can decide in which space we consider the Bochner integral and in particular we
can chose 𝑋 = C(𝐾) so that (A.3) holds.

Corollary A.15. Let 𝐸 ⊆ R𝑛 be measurable and let 𝑓 : 𝐸 → 𝑋 be Bochner integrable.
Suppose that 𝑋 ⊆ 𝑌 with continuous inclusion. Then 𝑓 is also Bochner integrable as
a function valued in 𝑌 and the Bochner integrals in 𝑋 and 𝑌 are the same.

Proof. This is Proposition A.13 applied to the inclusion map 𝑋 ↩→ 𝑌 . □

A very similar property for integrals of operator-valued functions reads as follows.

Corollary A.16. Let 𝐸 ⊆ R𝑛 be measurable and 𝐿 : 𝐸 → L(𝑋,𝑌 ) be Bochner
integrable. Then 𝑡 ↦→ 𝐿 (𝑡)𝑥 is Bochner integrable for every 𝑥 ∈ 𝑋 and( ∫

𝐸

𝐿 (𝑡) d𝑡
)
𝑥 =

∫
𝐸

𝐿 (𝑡)𝑥 d𝑡.
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Proof. This is Proposition A.13 applied to the evaluation map ev𝑥 : L(𝑋,𝑌 ) → 𝑌 ,
ev𝑥 𝐿 = 𝐿𝑥. □

Many properties of the scalar Lebesgue integral that do not rely on order properties
such as non-negativity or monotonicity have their counterparts for Bochner integrals.
Below, we present the two most important examples for our course.

Theorem A.17 (Dominated convergence). Let 𝐸 ⊆ R𝑛 be measurable and 𝑓 𝑗 : 𝐸 → 𝑋 ,
𝑗 ∈ N, be Bochner integrable functions. If there exists a function 𝑓 : 𝐸 → 𝑋 and a
non-negative integrable function 𝑔 : 𝐸 → R such that almost everywhere we have
lim 𝑗→∞ 𝑓 𝑗 = 𝑓 and ∥ 𝑓 𝑗 ∥𝑋 ≤ 𝑔 for every 𝑗 ∈ N, then 𝑓 is Bochner integrable and

lim
𝑗→∞

∫
𝐸

∥ 𝑓 − 𝑓 𝑗 ∥𝑋 d𝑡 = 0.

In particular, we have

lim
𝑗→∞

∫
𝐸

𝑓 𝑗 d𝑡 =
∫
𝐸

𝑓 d𝑡.

Proof. Measurability of 𝑓 follows by Example A.4 (c) and as we have ∥ 𝑓 ∥𝑋 ≤ 𝑔

almost everywhere, 𝑓 is Bochner integrable thanks to Theorem A.10. As we have
∥ 𝑓 𝑗− 𝑓 ∥𝑋 ≤ 2𝑔 almost everywhere, the claim follows from the scalar-valued dominated
convergence theorem. □

Theorem A.18 (Fubini). Let 𝑓 : R𝑚 × R𝑛 → 𝑋 be Bochner integrable. Then:

(a) For almost every 𝑠 ∈ R𝑚 the function 𝑓 (𝑠, ·) is Bochner integrable.

(b) For almost every 𝑡 ∈ R𝑛 the function 𝑓 (·, 𝑡) is Bochner integrable.

(c) The functions
∫
R𝑛
𝑓 (·, 𝑡) d𝑡 and

∫
R𝑚

𝑓 (𝑠, ·) d𝑠 are Bochner integrable and∫
R𝑚

(∫
R𝑛
𝑓 (𝑠, 𝑡) d𝑡

)
d𝑠 =

∫
R𝑚×R𝑛

𝑓 (𝑠, 𝑡) d(𝑠, 𝑡) =
∫
R𝑛

(∫
R𝑚

𝑓 (𝑠, 𝑡) d𝑠
)

d𝑡.

Proof. The key observation is that the scalar-valued version of Fubini’s theorem to-
gether with Example A.4 (b) already yields the claim in the special case that 𝑓 = 𝑢 · 1𝐸
with 𝑢 ∈ 𝑋 and 𝐸 ⊆ R𝑚 ×R𝑛 a set with finite Lebesgue measure. The claim for simple
functions 𝑓 then follows by linearity.

In the general case let ( 𝑓 𝑗 ) be a sequence of simple functions such that ∥ 𝑓 𝑗 ∥𝑋 ≤ 2∥ 𝑓 ∥𝑋
everywhere and 𝑓 𝑗 → 𝑓 in the limit as 𝑗 → ∞ a.e. on R𝑚 × R𝑛. (Such a sequence was
constructed in the proof of Bochner’s theorem). Hence, almost every 𝑠 ∈ R𝑚 has the
property that

• all functions 𝑓 𝑗 (𝑠, ·) are measurable,
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• we have 𝑓 𝑗 (𝑠, ·) → 𝑓 (𝑠, ·) a.e. on R𝑛

• and ∥ 𝑓 𝑗 (𝑠, ·)∥𝑋 ≤ 2∥ 𝑓 (𝑠, ·)∥𝑋 a.e. on R𝑛, where, taking into account the scalar-
valued Fubini’s theorem, ∥ 𝑓 (𝑠, ·)∥𝑋 is integrable.

For 𝑠 as above we conclude from Example A.4 (c) that 𝑓 (𝑠, ·) is measurable and
Bochner integrability follows from Bochner’s theorem. This proves (a). Moreover, we
find by dominated convergence that

lim
𝑗→∞

∫
R𝑚

𝑓 𝑗 (𝑠, 𝑡) d𝑡 =
∫
R𝑚

𝑓 (𝑠, 𝑡) d𝑡.

Since this happens for almost every 𝑠, we conclude that
∫
R𝑚

𝑓 (·, 𝑡) d𝑡 is measurable.
This function is also bounded by 2

∫
R𝑛

∥ 𝑓 (·, 𝑡)∥𝑋 d𝑡, which is integrable once again by
the scalar-valued Fubini’s theorem. Dominated convergence now yields that∫

R𝑚

(∫
R𝑛
𝑓 (𝑠, 𝑡) d𝑡

)
d𝑠 = lim

𝑗→∞

∫
R𝑚

(∫
R𝑛
𝑓 𝑗 (𝑠, 𝑡) d𝑡

)
d𝑠

= lim
𝑗→∞

∫
R𝑚×R𝑛

𝑓 𝑗 (𝑠, 𝑡) d(𝑠, 𝑡) =
∫
R𝑚×R𝑛

𝑓 (𝑠, 𝑡) d(𝑠, 𝑡).

We have proved the first half of (c). The second half and (b) follow by switching the
roles of 𝑠 and 𝑡. □

A.3. Vector-valued holomorphic functions
Holomorphic functions are often considered as the most beautiful of all functions.
To the long list of their remarkable properties we shall add in this section that their
vector-valued theory is almost as easy as the scalar one.

Definition A.19. Let Ω ⊆ C be a non-empty, open set. A function 𝑓 : Ω → 𝑋 is

(a) holomorphic if

𝑓 ′(𝑧0) B lim
𝑧→𝑧0

𝑓 (𝑧) − 𝑓 (𝑧0)
𝑧 − 𝑧0

(A.4)

exists for all 𝑧0 ∈ Ω.

(b) weakly holomorphic if ⟨𝜙, 𝑓 ⟩𝑋 ′,𝑋 : Ω → C is holomorphic for every 𝜙 ∈ 𝑋′.

Example A.20. Given 𝑧0 ∈ C and (𝑢𝑘 ) ⊆ 𝑋 , consider the power series

𝑓 (𝑧) B
∞∑︁
𝑘=0

(𝑧 − 𝑧0)𝑘𝑢𝑘
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with radius of convergence 𝜌 B (lim sup𝑘→∞
𝑘
√︁
∥𝑢𝑘 ∥𝑋)−1. Exactly as in the scalar-

valued setting we obtain that 𝑓 is holomorphic in 𝐵(𝑧0, 𝜌) and that 𝑓 ′ can be computed
term-by-term, leading to the formulæ 𝑓 (𝑘) (𝑧0) = 𝑘!𝑢𝑘 for the iterated complex deriva-
tives.

Holomorphic functions are continuous, hence in particular bounded on compact subsets
of Ω, and weakly holomorphic. In contrast to measurability, no subtleties concern-
ing separability need to be taken into account when comparing the two notions of
holomorphy.

Theorem A.21. Let Ω ⊆ C be a non-empty, open set and 𝑓 : Ω → 𝑋 a function. Then
𝑓 is holomorphic if and only if it is weakly holomorphic.

Proof. Above, we already discussed the direct part. Now, we assume that 𝑓 is weakly
holomorphic and fix 𝑧0 ∈ Ω. Since Ω is open, we can also fix a radius 𝑟 > 0 with
𝐵(𝑧0, 2𝑟) ⊆ Ω and since weakly bounded sets are bounded, 𝐶 B sup|𝑧−𝑧0 |≤𝑟 ∥ 𝑓 (𝑧)∥𝑋
is finite. For 𝑧, 𝑧′ ∈ 𝐵(𝑧0, 𝑟) \ {𝑧0} we set

𝐹 (𝑧, 𝑧′) B 𝑓 (𝑧) − 𝑓 (𝑧0)
𝑧 − 𝑧0

− 𝑓 (𝑧′) − 𝑓 (𝑧0)
𝑧′ − 𝑧0

.

We are going to prove the bound

∥𝐹 (𝑧, 𝑧′)∥𝑋 ≤ 𝐶 |𝑧 − 𝑧′|
𝑟2 , (A.5)

which, by the Cauchy criterion, implies that the limit in (A.4) exists. To this end, take
any 𝜙 ∈ 𝑋′ normalized to ∥𝜙∥𝑋 ′ = 1. By means of the scalar-valued Cauchy integral
formula we can write

⟨𝜙, 𝐹 (𝑧, 𝑧′)⟩𝑋 ′,𝑋

=
1

𝑧 − 𝑧0
· 1

2𝜋i

∫
|_−𝑧0 |=2𝑟

⟨𝜙, 𝑓 (_)⟩𝑋 ′,𝑋

(
1

_ − 𝑧 −
1

_ − 𝑧0

)
d_

− 1
𝑧′ − 𝑧0

· 1
2𝜋i

∫
|_−𝑧0 |=2𝑟

⟨𝜙, 𝑓 (_)⟩𝑋 ′,𝑋

(
1

_ − 𝑧′ −
1

_ − 𝑧0

)
d_

=
1

2𝜋i

∫
|_−𝑧0 |=2𝑟

⟨𝜙, 𝑓 (_)⟩𝑋 ′,𝑋

(
1

(_ − 𝑧) (_ − 𝑧0)
− 1

(_ − 𝑧′) (_ − 𝑧0)

)
d_

=
1

2𝜋i

∫
|_−𝑧0 |=2𝑟

⟨𝜙, 𝑓 (_)⟩𝑋 ′,𝑋

(
𝑧 − 𝑧′

(_ − 𝑧) (_ − 𝑧′) (_ − 𝑧0)

)
d_.

Since 𝑧, 𝑧′ ∈ 𝐵(𝑧0, 𝑟), the integrand is bounded in norm by 𝐶 |𝑧−𝑧′ |/2𝑟3 and we obtain

| ⟨𝜙, 𝐹 (𝑧, 𝑧′)⟩𝑋 ′,𝑋 | ≤ 𝐶 |𝑧 − 𝑧′|
𝑟2 .

By virtue of the Hahn–Banach theorem, this bound implies (A.5) and the proof is
complete. □
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A.3. Vector-valued holomorphic functions

Suppose that 𝑓 : Ω → 𝑋 is holomorphic and 𝛾 : 𝐼 → Ω is a continuously differentiable
function on a compact interval 𝐼, henceforth called compact C1-path in Ω. We define
the path integral ∫

𝛾

𝑓 d𝑧 B
∫
𝐼

𝑓 (𝛾(𝑡)) · 𝛾′(𝑡) d𝑡,

now as a Bochner integral in 𝑋 , keeping in mind that by Example A.12 a continuous
function on a compact interval is Bochner integrable. The Hahn–Banach theorem
allows to transfer identities for path integrals from the scalar- to the vector-valued
setting. You should keep that strategy in mind. Here are two examples — more will
pop up during the lectures.

Example A.22 (Cauchy integral theorem). Suppose that Ω ⊆ C is non-empty and
open and 𝛾 is a compact C1-path in Ω. Pick your favourite geometric assumption that
guarantees a Cauchy integral theorem of the form∫

𝛾

𝑓 (𝑧) d𝑧 = 0

for all scalar-valued holomorphic functions 𝑓 onΩ. Then the same is true in the vector-
valued setting. Indeed, if 𝑓 : Ω → 𝑋 is holomorphic and 𝜙 ∈ 𝑋′ is any functional, then
the scalar-valued theory yields

0 =

∫
𝛾

⟨𝜙, 𝑓 (𝑧)⟩𝑋 ′,𝑋 d𝑧 A.13
=

〈
𝜙,

∫
𝛾

𝑓 (𝑧) d𝑧
〉
𝑋 ′,𝑋

and hence
∫
𝛾
𝑓 (𝑧) d𝑧 = 0 by the Hahn–Banach theorem.

Example A.23 (Cauchy integral formula). Exactly as in the previous example you
can also pick your favourite geometric assumption that guarantees a Cauchy integral
formula of the form

𝑓 (𝑘) (𝑧0) =
𝑘!

2𝜋i

∫
𝛾

𝑓 (𝑧)
(𝑧 − 𝑧0)𝑘+1 d𝑧

for a fixed 𝑧0 ∈ Ω and all scalar-valued holomorphic functions 𝑓 on Ω and conclude
that the same is true in the vector-valued setting.
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Index

(𝑢)𝐸 (average of 𝑢), 109
𝐶ℓ (𝐵) (annuli), 143
𝑃𝑡 , 𝑄𝑡 (proof the Kato conjecture), 163
Θ𝑡 (proof the Kato conjecture), 159
ℓ(𝑄) (sidelength), 116⨏

(average integral), 109
𝛾𝑡 (principal part of Θ𝑡), 161
≲, ≳,≃ (inequalities up to multiplica-

tive constant), 1
| · | (Lebesgue measure), 3
𝜔𝑛 (measure of the unit ball), 109
R𝑛+1
+ (upper half space), 109
𝜎𝑛−1 (measure of the unit sphere), 123
□2 𝑗 (dyadic cubes), 116
𝑓 ∗ (holomorphic conjugate), 73
𝑝′ (Hölder conjugate), 123
𝑝∗ (Sobolev conjugate), 125

a priori estimate, 21
absolutely continuous, 33, 115
abstract Cauchy problem, 72
accretive sesquilinear form, 17
adjoint

operator, 7
relation, 7
sesquilinear form, 18
spectrum of, 9

almost separably-valued, 188
angle

sectoriality, 13
annuli (𝐶ℓ (𝐵)), 143
anti-dual space, 19
anti-linear functional, 19
associated operator

in 𝐻, 20
on 𝑉 , 19

average, 109
averaging operator

dyadic, 117

𝐵(𝑥, 𝑟) (Euclidean ball), 28
Balakrishnan representation, 80
Bessel kernel, 136
Bochner integrable, 189, 190
Bochner integral, 189, 190

of simple functions, 188
Bochner theorem, 189
boundary condition

Dirichlet, 35
Dirichlet in the H1-sense, 35

bounded H∞-calculus, 83
bounded operator, 2
bounded sesquilinear form, 17
box

Carleson, 118, 173
Whitney, 118

𝐶ℓ (𝐵), 143
C∞

c , 27
calculus of variations

fundamental lemma, 28
Calderón reproducing formula, 77
Calderón sibling, 80
Cantor set, fat, 53
Carleson

box, 118, 173
John–Nirenberg lemma, 184
lemma, 119
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Index

measure, 118
Cauchy integral formula, 195

vector-valued, 195
Cauchy integral theorem, 195

vector-valued, 195
Cauchy problem, abstract, 72
Cauchy–Schwarz inequality

for sectorial forms, 25
child

dyadic, 181
closed graph theorem, 4
closed linear relation, 2
coefficients

elliptic, 38
coercive sesquilinear form, 17
compact path

C1, 195
composition rule

for functional calculi, 77
conjugate

Hölder, 123
Sobolev, 125

conjugate, holomorphic, 73
conservation property

for 𝐿, 144
for the Laplacian, 144

convergence lemma, 84
convolution (of functions), 27
core, 2

dist(𝐸, 𝐹) (distance), 135
Davies–Gaffney estimates, 138
decomposition

𝐿-adapted Hodge, 186
Leray–Helmholtz, 186
topological, 16

densely defined linear relation, 2
derivative

weak, 29
differentiable

weakly, 29
dilation

of a function, 42

Dirichlet boundary condition, 35
Dirichlet Laplacian, 38
Dirichlet problem, 51
distance of sets, 135
divergence operator

very weak, 141
domain

of linear relation, 1
dominated convergence theorem, 192
duality

for off-diagonal estimates, 141
Dunford–Riesz class, 56

characterization of, 67
dyadic

averaging operator, 117
child, 181
cubes, 116
maximal function, 117
maximal operator, 117

Dyadic Carleson’s lemma, 119

elementary functional calculus, 58
elliptic coefficients, 38
elliptic operator

in divergence form, 38
Kato property, 75
without smoothing property, 52

elliptic sesquilinear form, 17
embedding

Sobolev, 33
essential range, 6
estimate

L2 -- L𝑞, 145
a priori, 21
Davies–Gaffney, 138
off-diagonal, 138
quadratic, 95

extrapolation
L𝑝, 144

𝑓 ∗ (holomorphic conjugate), 73
fat Cantor set, 53
form, sesquilinear, 17
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Index

accretive, 17
adjoint, 18
associated operator

in 𝐻, 20
on 𝑉 , 19

bounded, 17
coercive, 17
corresponding quadratic form, 17
elliptic, 17
sectorial, 23
symmetric, 17

formula
Cauchy integral, 195
layer cake, 111
Parseval’s, 42

Fourier transform, 41
inverse, 41

fractional perimeter, 153
fractional powers

of −Δ, 46
of a sectorial operator, 69

fractional Sobolev space, 46
Fubini’s theorem, 192
function

absolutely continuous, 33, 115
almost separably-valued, 188
dyadic maximal, 117
holomorphic, 193
holomorphic (weakly), 193
holomorphic with regular decay, 56
maximal, 110
radial, 48
regularizable, 62
Schwartz, 41
sign, 29
simple, 187
strongly measurable, 187, 190
test, 27
weakly measurable, 188

functional
anti-linear, 19

functional calculus, 63
composition rule, 77

elementary, 58
sectorial, 63

fundamental lemma
in the calculus of variations, 28

fundamental theorem of calculus, 32

Gagliardo–Nirenberg inequality, 133
Gelfand triple, 19
gradient

weak, 29
graph norm, 2

H1
0, 35

H𝛼, 46
H∞-calculus

and quadratic estimates, 96
H𝑘 , 33
H∞(S𝜑), 56
H∞

0 (S𝜑), 56
H−1, 37
Hölder conjugate, 123
Hardy–Littlewood

maximal operator, 110
theorem, L𝑝, 113
theorem, weak-type, 111

Hardy–Littlewood–Sobolev inequality,
126

H∞-calculus
angle, 83
bound, 84
bounded, 83
for m-accretive operators, 88

H∞-angle, 83
Hodge decomposition (𝐿-adapted), 186
holomorphic conjugate ( 𝑓 ∗), 73
holomorphic function, 193

with regular decay, 56
weakly, 193
with polynomial limit/control, 66,

67
holomorphic semigroup, 72

𝐼𝛼, 125
identity
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Index

Plancherel’s, 42
polarization, 17
resolvent, 5

inequality
Gagliardo–Nirenberg, 133
Hardy–Littlewood–Sobolev, 126
Kolmogorov’s, 121
Littlewood–Paley, 95
Markov, 111
moment, 81
Peter Paul, 140
Poincaré, 36
Schwarz, 18
Sobolev–Poincaré, 130
von Neumann, 88

injective part
of a sectorial operator, 94

intégrales de Bertrand, 133
integrable

Bochner, 189, 190
integral

Bochner, 189, 190
path, 195

integral theorem
Cauchy, 195

inverse
of linear relation, 2

inverse Fourier transform, 41
invertible

operator, 4

John–Nirenberg lemma (for Carleson mea-
sures), 184

Kato
second representation theorem, 75

Kato conjecture
solution, 149

Kato property
abstract, 156
and square functions, 154
elliptic operators on R𝑛, 149
for negative Laplacian on R𝑛, 46

for self-adjoint elliptic operators, 75
kernel

Bessel, 136
of linear relation, 1

Kolmogorov’s inequality, 121

L1
loc, 27

Laplace operator
fractional powers, 46
Kato property on R𝑛, 46

Laplacian
off-diagonal estimates, 137

Lax–Milgram lemma, 20
layer cake formula, 111
Lebesgue differentiation theorem, 114
Lebesgue point, 115
Leibniz’ rule for weak derivatives, 30
lemma

(Dyadic) Carleson’s, 119
convergence, 84
fundamental in the calculus of vari-

ations, 28
John–Nirenberg (for Carleson mea-

sures), 184
Lax–Milgram, 20
unconditionality, 99
Vitali covering, 111

Leray–Helmholtz decomposition, 186
lifting property, 151
linear operator, 2

invertible, 4
linear relation, 1

adjoint of, 7
closed, 2
densely defined, 2
domain of, 1
inverse of, 2
kernel of, 1
range of, 1

Littlewood–Paley inequality, 95
L𝑝-extrapolation, 144

M(S𝜑), 62
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M𝐿 (S𝜑), 62
M, 110
m-accretive operator, 22, 88
Marcinkiewicz interpolation theorem, 121
Markov’s inequality, 111
maximal function, 110

dyadic, 117
maximal operator, 110

dyadic, 117
rectangular, 121

McIntosh’s theorem, 96
measurable function, 3

strongly, 187, 190
weakly, 188

measure
Carleson, 118

Meyers–Serrin theorem, 128
mollifier (associated with a function),

27
Moment inequality, 81
multiplication operator, 3, 4, 6, 8, 10,

16, 86

norm
graph, 2
operator, 2

Off-diagonal estimates, 138
L2 -- L𝑝, 145

off-diagonal estimates
L2, 138
duality, 141
extension to L∞, 143
for 𝐿, 139
for the negative Laplacian, 137

open set
contained in a strip, 36

operator, 2
adjoint of, 7
associated with form in 𝐻, 20
associated with form on 𝑉 , 19
bounded, 2
closed, 2

densely defined, 2
dyadic averaging, 117
dyadic maximal, 117
elliptic, in divergence form, 38
Hardy–Littlewood, 110
invertible, 4
m-accretive, 22, 88
maximal, 110
multiplication, 3, 4, 6, 8, 10, 16, 86
norm, 2
resolvent set, 5
sectorial, 13
self-adjoint, 10
spectrum, 5
sublinear, 110
symmetric, 10
very weak divergence, 141

parallelogram identity, 17
Parseval’s formula, 42
path

C1, compact, 195
integral, 195

perimeter
fractional, 153

Peter Paul inequality, 140
Pettis’ theorem, 188
Plancherel’s identity, 42
Plancherel’s theorem, 42
Poincaré inequality, 36
polarization identity, 17
polynomial limits/control

of a holomorphic function, 66, 67
potential

Riesz, 125
principal part, 160

of Θ𝑡 , 161
principal part approximation

for Θ𝑡 , 170
for integral operators, 160
smoothed for Θ𝑡 , 165

problem
Dirichlet, 51
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Index

quadratic estimates, 95
and H∞-calculus, 96
lower, upper, 95
weak, 157

quadratic form, 17

𝑅(𝑄) (Carleson box), 173
Reg𝐿 (S𝜑), 62
radial function, 48
range

condition, 88
of linear relation, 1

rectangular maximal operator, 121
regular decay

of a holomorphic function, 56
regularizable function, 62
regularizer, 62
relation, linear, 1

adjoint of, 7
closed, 2
densely defined, 2
domain of, 1
inverse of, 2
kernel of, 1
range of, 1

representation
Balakrishnan, 80

representation theorem
for symmetric sectorial forms, 75

reproducing formula
Calderón (for a sectorial operator),

77
resolvent, 5
resolvent function (_ − z)−1, 56
resolvent identity, 5
resolvent set, 5
Riesz potential, 125

scaling
second order, 138

Schur test, 106
Schwartz

function, 41

space, 41
Schwarz’s inequality, 18
second order scaling, 138
sector, 13
sectorial

functional calculus, 58, 63
operator, 13

fractional powers, 69
sesquilinear form, 23

sectoriality angle, 13
self-adjoint operator, 10
semigroup, holomorphic, 72
sesquilinear form, 17

accretive, 17
adjoint, 18
bounded, 17
coercive, 17
corresponding quadratic form, 17
elliptic, 17
sectorial, 23
symmetric, 17

set
fractional perimeter, 153
well-distributed, 52

Sibling, Calderón, 80
Sign function, 29
simple function, 187
smooth truncation, 34
smoothing property, 44
Sobolev conjugate, 125
Sobolev embedding, 33

𝑛 = 1, 123
𝑛 ≥ 3, 127
subcritical, 127

Sobolev space
H1

0, 35
H𝑘 , 33
H−1, 37
fractional, 46

Sobolev–Poincaré inequality, 130
space

E(S𝜑), 56
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H∞(S𝜑), 56
H∞

0 (S𝜑), 56
M(S𝜑), 62
M𝐿 (S𝜑), 62
regularizers (Reg𝐿 (S𝜑)), 62
anti-dual, 19
bounded and continuous functions

(Cb), 51
fractional Sobolev (H𝛼), 46
locally integrable functions (L1

loc),
27

Schwartz, 41
Sobolev

fractional, 46
Sobolev (H1

0), 35
Sobolev (H𝑘 ), 33
Sobolev (H−1), 37
test functions (C∞

c ), 27
spectrum, 5

of adjoint, 9
square functions

and Kato property, 154
subset, 129
stopping time cubes, 183
strongly measurable function, 187, 190
sublinear operator, 110
symmetric

operator, 10
sesquilinear form, 17

𝑇 (1)-argument, 173
𝑇 (𝑏)-argument, 173
test function, 27
theorem

𝑇 (1), 173
𝑇 (𝑏), 173
Bochner, 189
Cauchy integral, 195
closed graph, 4
dominated convergence, 192
Fubini, 192
Hardy–Littlewood, L𝑝, 113
Hardy–Littlewood, weak type, 111

Lebesgue differentiation, 114
Marcinkiewicz interpolation, 121
McIntosh, 96
Meyers–Serrin, 128
Pettis, 188
Plancherel, 42

topological decomposition, 16
trace

for H1((𝑎, 𝑏)), 35
transform, Fourier-, 41

inverse, 41
translation

of a function, 42
triangle inequality

for Bochner integrals, 189
truncation,smooth, 34

unconditionality lemma, 99
upper half space, 109

vector-valued
Cauchy integral formula, 195
Cauchy integral theorem, 195

very weak divergence operator, 141
Vitali covering lemma, 111
Von Neumann

inequality, 88

weak derivative, 29
weak gradient, 29
weak-type bound, 111
weakly differentiable, 29
weakly holomorphic function, 193
weakly measurable function, 188
Whitney box, 118
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