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Preface

The present text is the slightly reworked version of the lecture notes for
the course phase of the “21st International Internet Seminar”, which was
organized in the academic year 2017/2018 by an international team from the
universities of Bordeaux, Kiel, Wuppertal and Salerno.

The topic was “Functional Calculus” and it was my responsability to pro-
vide the necessary text. For about 14 weeks from mid October 2017 until
the beginning of February 2018, I had to provide a “virtual lecture” each
weak, comprising study material and exercises. As a rule, it was one chap-
ter per week, with only one exception (Chapter 6 was distributed over two
weeks). The “supplementary material” was included for more experienced
participants and could be left out on first reading without harm.

The participants, under the supervision of “local coordinators”, read and
discussed the material and worked on exercises. We provided an online forum,
where the participants could communicate with me or among each other. The
present reworking of the original text is to a large extent my reaction on the
comments, remarks and questions posted on that forum.

This brings me straight to the acknowledgments I owe all the people who
in one or the other way helped me to shape the text. In first place, I want
to thank my doctoral students Florian Pannasch and Marco Peruzzetto for
spending so much time in reading the manuscript and checking the exercises,
often under time pressure. You have done a tremendous job!

Next, my warmest thanks go to my colleagues and friends Hendrik Vogt
(Bremen) and Jürgen Voigt (Dresden), who contributed numerous astute
comments based on their meticulous reading of the manuscript. I learn so
much from the discussions with you, and I feel honored that you find it all
worth while!

Then I want to express my gratitude to all the participants who took the
effort to post a question or a comment on the forum, even if it was sometimes
only about a typo or a wrong reference: Zafrar Abderrahim, Pappu Anuragi,
Sahiba Arora, Sebastian Bechtel (who gets special thanks for having been
by far the most devoted commentator), Johannes Becker, Clemens Bombach,
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Arjan Cornelissen, Sonja Cox, Benedikt Diederichs, Moritz Egert, Thomas
Eiter, David Erzmann, Alexander Friedrich, Fabian Gabel, Max Griehl, Sat-
bir Malhi, Gabriel McCracken, Jan Meichsner, Ike Mulder, Ahmed Sani,
Lukas Schröter, Jonas Tibke, Benjamin Waßermann.

Not least, I am indebted to our students from Kiel who contributed much
through their questions and comments and engaged me in stimulating discus-
sions during our weekly meetings: Christopher Babin, Lukas Betz, Alexander
Dobrick, Lukas Hagedorn and Goran Nakerst.

I also would like to acknowledge the support of my institution, the Depart-
ment of Mathematics at Kiel University, in particular my colleagues in the
Analysis group, who enabled me a semester free from other teaching duties.

Finally, I would like to thank Jana, Fenja and Julius for being so loving
and supportive all the time.

Kiel, March 2018 Markus Haase
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Chapter 1

Holomorphic Functions of Bounded
Operators

1.1 Polynomial Functional Calculus

Let X be a Banach space (over C) and A ∈ L(X) a bounded operator on it.
Then for every polynomial

p = a0 + a1z + a2z
2 + · · ·+ anz

n ∈ C[z] (1.1)

we can form the (likewise bounded) operator

p(A) := a0 + a1A+ a2A
2 + · · ·+ anA

n ∈ L(X).

The space of polynomials C[z] is a unital algebra and the mapping

Ψ : C[z]→ L(X), p 7→ Ψ(p) := p(A)

is a (unital) algebra homomorphism. In other words, Ψ is a representation
of the unital algebra C[z] on the vector space X by bounded operators.

Obviously, any representation Ψ of C[z] on X by bounded operators is
of the form above: simply define A := Ψ(z) and find Ψ(p) = p(A) for all
p ∈ C[z].

One may call Ψ a calculus since it reduces calculations with operators
to calculations with other (here: formal) objects. Strictly speaking, however,
this calculus is not (yet) a functional calculus, since a polynomial is not a
function. It can become a function when it is interpreted as one, but this
needs the specification of a domain, say D ⊆ C.

Let us denote, for a polynomial p ∈ C[z], its interpretation as a function on
D by p|D. Then the indeterminate, which we have called “z” here, is mapped
to the function

z|D : D → C, z 7→ z.

Here and in all what follows, we shall denote this function by z. If p has the
form given in (1.1) then

1



2 1 Holomorphic Functions of Bounded Operators

p|D = a0 + a1z + a2z
2 + · · ·+ anzn.

Let us take D = C, which is somehow the most natural choice. Then the
mapping p 7→ p|C is injective. Hence we can take its inverse and compose it
with Ψ from above to obtain a unital algebra homomorphism

Φ : {polynomial functions on C} → L(X), Φ(p|C) = Ψ(p).

Now this is indeed a functional calculus, called the polynomial functional
calculus. Note that

A = Φ(z)

and Φ is uniquely determined by this value.

1.2 Power Series Functional Calculi

So far, the property that A is bounded was not used at all. Everything was
pure algebra. Taking boundedness into account we can extend the polynomial
functional calculus to a functional calculus of entire functions. Namely, each
entire function f ∈ Hol(C) has a unique power series representation

f = a0 + a1z + a2z
2 + · · ·+ anzn · · · =

∞∑
n=0

anzn.

The convergence is absolute and locally uniform, so that in particular

∞∑
n=0

|an| rn <∞ for each r ∈ R+.

Hence, we can define

f(A) := Φ(f) :=

∞∑
n=0

anA
n ∈ L(X),

the series being absolutely convergent in the Banach space L(X). Clearly, if
f is a polynomial (function), this definition of f(A) agrees with the previous.
The so obtained mapping

Φ : Hol(C)→ L(X), f 7→ f(A)

is a homomorphism of unital algebras, because the usual rules of manipulation
with absolutely convergent series are the same in C and in L(X) (actually in
all Banach algebras). Notably, the multiplicativity of Φ follows from the fact
that the Cauchy product formula
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n=0

an

)( ∞∑
n=0

bn

)
=

∞∑
n=0

( n∑
j=0

ajbn−j

)
for absolutely convergent series holds in C as well as in L(X).

The functional calculus for entire functions works for every bounded operator
A. If we take ‖A‖ or even all the norms ‖An‖, n ∈ N, into account, we can
extend the calculus further, for instance as follows:

Fix r > 0 such that M(A, r) := supn≥0 ‖An‖r−n < ∞. (One can take
r = ‖A‖, but in general r < ‖A‖ is possible.) Abbreviate Dr := B(0, r) (and
D = D1), and denote by A1

+(Dr) the set of functions f : Dr → C that can be
represented as a power series

f(z) =

∞∑
n=0

anz
n (|z| ≤ r) (1.2)

such that

‖f‖A1
+

:= ‖f‖A1
+(Dr) :=

∞∑
n=0

|an| rn <∞. (1.3)

Note that each f ∈ A1
+(Dr) is holomorphic on Dr and continuous on

Dr = B[0, r]. In particular, the coefficients an are uniquely determined by
the function f , so ‖f‖A1

+
is well defined. Using the Cauchy product formula,

it is easy to see that A1
+(Dr) is a unital Banach algebra. (Exercise 1.2).

For f ∈ A1
+(Dr) with representation (1.2) we can now define

f(A) := Φ(f) :=

∞∑
n=0

anA
n.

The condition (1.3) ensures that this power series is absolutely convergent
and computations as before show that

Φ : A1
+(Dr)→ L(X), f 7→ f(A)

is a homomorphism of unital algebras. Moreover, one has the norm estimate

‖f(A)‖ ≤M(A, r) ‖f‖A1
+

(f ∈ A1
+(Dr))

as is easily seen.

Remark 1.1. The case r = 1 is particularly important. An operator with
M(A, 1) <∞ is called power bounded. So, power bounded operators have
a (bounded) A1

+(D)-calculus, a fact that will become important later in this
course.
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Note that in the above construction one has A = Φ(z), and by this condi-
tion Φ is uniquely determined as a continuous unital algebra homomorphism
A1

+(Dr)→ L(X).

1.3 The Dunford–Riesz Calculus

The above power series functional calculi for an operator A use only informa-
tion about the asymptotic behaviour of the norms ‖An‖. In this section we
shall construct a holomorphic functional calculus for A that is based purely
on the location of its spectrum.

Review of Elementary Spectral Theory

Recall from an elementary functional analysis course that the spectrum of
A ∈ L(X) is the set

σ(A) := {λ ∈ C | λ−A is not invertible}.

(We write λ − A instead of λI − A.) The complement ρ(A) := C \ σ(A), an
open subset of C, is called the resolvent set of A. The mapping

R(·, A) : ρ(A)→ L(X), R(λ,A) := (λ−A)−1

is the resolvent. It satisfies the resolvent identity

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A) (λ, µ ∈ ρ(A)) (1.4)

and is holomorphic. (See Appendix A.3 for an introduction to vector-valued
holomorphic mappings.)

A number λ 6= 0 belongs to ρ(A) whenever the series
∑∞
n=0 λ

−(n+1)An

converges, in which case this series equals R(λ,A). (This follows from the
Neumann series theorem.) In particular, λ ∈ ρ(A) if |λ| > ‖A‖ and then

‖R(λ,A)‖ ≤ 1

|λ| − ‖A‖
.

Hence, the spectrum is compact and not empty (by Liouville’s theorem),
except in the case X = {0}. The spectral radius

r(A) := sup{|λ| | λ ∈ σ(A)}

satisfies r(A) ≤ ‖A‖.
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Dunford–Riesz Calculus, “Baby” Version

We start with a “baby” version of the Dunford–Riesz calculus and take s >
r(A), i.e., σ(A) ⊆ Ds. For a function f ∈ Hol(Ds) define

Φ(f) :=
1

2πi

∫
γr

f(z)R(z,A) dz (1.5)

where 0 < r < s is such that still σ(A) ⊆ Dr and γr is the contour which
traverses the boundary of Dr once in counterclockwise direction. E.g., γr(t) :=
re2πit, t ∈ [0, 1]. (The integral here is elementary and covered by results
collected in Appendix A.2.) Note that the integral in (1.5) does not depend
on the choice of r ∈ (r(A), s), by Cauchy’s theorem (note Theorem A.6).

Dsγr

σ(A)

Fig. 1.1 The function f(·)R(·, .A) is holomorphic on Ds \ σ(A).

Remark 1.2. The “intuition” behind formula (1.5) is as follows: suppose
that X = C is the one-dimensional space, and A is multiplication with a ∈ C.
Then σ(A) = {a} and hence |a| < r. If f is a polynomial, then f(A) is
multiplication with f(a), so one expects the same behavior for other functions
f . Now, Cauchy’s theorem in an elementary form tells that if f ∈ Hol(Ds)
and |a| < r < s, then

f(a) =
1

2πi

∫
γr

f(z)
1

z − a
dz. (1.6)

Thinking of Φ(f) as f(A) and R(z,A) as 1
z−A and replacing formally a by A

in (1.6) yields (1.5).



6 1 Holomorphic Functions of Bounded Operators

Theorem 1.3. Let A be a bounded operator on a Banach space X and let
s > 0 such that σ(A) ⊆ Ds. Then the mapping

Φ : Hol(Ds)→ L(X)

given by (1.5) is a homomorphism of unital algebras such that Φ(z) = A.
Moreover, it is continuous with respect to local uniform convergence, i.e.: if
(fn)n∈N is a sequence in Hol(Ds) converging to f locally uniformly on Ds,
then Φ(fn)→ Φ(f) in operator norm.

Proof. It is clear from the definition (1.5) that Φ is linear and has the claimed
continuity property. The multiplicativity of Φ is a consequence of the resol-
vent identity, Fubini’s theorem (for continuous functions on rectangles) and
Cauchy’s theorem. To wit, let f, g ∈ Hol(Ds) and choose r(A) < r < r′ < s.
Then

Φ(f)Φ(g) =
1

(2πi)2

∫
γr

∫
γr′

f(z)g(w)R(z,A)R(w,A) dw dz

=
1

(2πi)2

∫
γr

∫
γr′

f(z)g(w)
1

w − z
(
R(z,A)−R(w,A)

)
dw dz

=
1

(2πi)2

∫
γr

f(z)

∫
γr′

g(w)

w − z
dwR(z,A) dz

− 1

(2πi)2

∫
γr′

∫
γr

f(z)

w − z
dz g(w)R(w,A) dw.

By Cauchy’s theorem,

1

2πi

∫
γr′

g(w)

w − z
dw = g(z) for each z ∈ γr([0, 1]),

since r′ > r. For the same reason∫
γr

f(z)

w − z
dz = 0 for each w ∈ γr′([0, 1]).

Hence, we obtain

Φ(f)Φ(g) =
1

2πi

∫
γr

f(z)g(z)R(z,A) dz = Φ(fg),

as desired.

It remains to show that Φ(z) = A and Φ(1) = I. For the former, note that
zR(z,A) = I +AR(z,A) for each z ∈ ρ(A). Hence, by Cauchy’s theorem

Φ(z) =
1

2πi

∫
γr

zR(z,A) dz =
1

2πi

∫
γr

AR(z,A) dz = AΦ(1).
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So it remains to establish the latter. To this end, note that

Φ(1) =
1

2πi

∫
γr

R(z,A) dz =
1

2πi

∫
γr

I

z
+
AR(z,A)

z
dz

= I +
1

2πi

∫
γr

AR(z,A)

z
dz,

and this holds for each r > r(A). Letting r →∞ yields∫
γr

AR(z,A)

z
dz → 0 (r →∞)

by an elementary estimate employing that ‖AR(z,A)‖ = O(|z|−1
) as |z| →

∞. Hence, Φ(1) = I as desired.

The Spectral Radius Formula

After a closer look on Theorem 1.3 we realize that the constructed functional
calculus is still of power series type. Indeed, any holomorphic function f ∈
Hol(Ds) has a (locally uniformly convergent) power series representation

f(z) =

∞∑
n=0

anz
n (|z| < s).

Hence, by Theorem 1.3

Φ(f) =

∞∑
n=0

anΦ(z)n =

∞∑
n=0

anA
n.

However, it was impossible to define Φ by the formula Φ(f) :=
∑∞
n=0 anA

n,
because the convergence of the series could not be guaranteed. The informa-
tion we lacked here was the following famous formula, which now comes as a
corollary.

Corollary 1.4 (Spectral Radius Formula). Let A ∈ L(X) be a bounded
operator on a Banach space X. Then

r(A) = inf
n∈N
‖An‖ 1

n = lim
n→∞

‖An‖ 1
n .

Proof. The second identity is trivial if ‖An‖ = 0 for some n ∈ N. In the
other case, it follows from Fekete’s Lemma 1.5 below with an := log(‖An‖).
Suppose that |λ| > limn→∞ ‖An‖

1
n . Then the power series
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∞∑
n=0

λ−(n+1)An

converges. Hence, as mentioned above, λ ∈ ρ(A). This yields the inequality

r(A) ≤ lim
n→∞

‖An‖ 1
n .

For the converse, take r(A) < r. Then

An = Φ(zn) =
1

2πi

∫
γr

znR(z,A) dz.

Taking norms and estimating crudely yields a constant Cr (independent of
n) such that

‖An‖ ≤ Crrn+1.

Taking n-th roots and letting n→∞ we obtain

lim
n→∞

‖An‖ 1
n ≤ r.

As r > r(A) was arbitrary, we are done.

The following analytical lemma was used in the proof above.

Lemma 1.5 (Fekete). Let (an)n∈N be a sequence of real numbers such that

an+m ≤ an + am.

Then lim
n→∞

an
n

= inf
n∈N

an
n

in R ∪ {−∞}.

Proof. Let c := infn∈N
an
n and take c < d. Then there is m ∈ N such that

am < md. Let C := max1≤l≤m al. Each n ∈ N can be written as n = km+ l,
with k ∈ N0 and 1 ≤ l ≤ m. With this choice,

an = akm+l ≤ kam + al ≤ (n−l)am
m

+ C ≤ nam
m

+ C + |am| .

Hence, ann ≤
am
m + C+|am|

n < d for all sufficiently large n ∈ N, and this proves
the claim.

Dunford–Riesz Calculus, Full Version

The baby version of the Dunford–Riesz calculus has the disadvantage that the
domain of the considered functions is just a disc. A partition of the spectrum
in disjoint parts, for instance, cannot be “seen” by these functions, and hence
neither by the functional calculus.
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More advanced versions of the Dunford–Riesz calculus remedy this. They
differ from the baby version precisely in the domain of the functions and the
corresponding contours used in the Cauchy integrals. We are going to state
the “full” version, which is the most general. It simply assumes that U is an
open subset of C containing σ(A) and the functions f are holomorphic on U .

To handle such generality, one needs a sophisticated version of the Cauchy
integral theorem, the so-called “global” version. However, in many concrete
cases simpler domains with simpler contours will do. So if the following is
too far away from what you know from your complex variables courses, just
think of the set U as being a union of finitely many disjoint discs and the
cycles Γ as a disjoint union of circular arcs within these discs.

We recall some notions of complex analysis, see for example [3, Chapter 10]
about the “global Cauchy theorem”. A cycle is a formal Z-combination

Γ = n1γ1 ⊕ n2γ2 ⊕ · · · ⊕ nkγk, (1.7)

where the γk are closed paths (parametrized over [0, 1], say) in the plane. An
integral over Γ is defined as∫

Γ

f(z) dz =

k∑
j=1

nj

∫
γj

f(z) dz.

The trace of a cycle Γ as in (1.7) is

Γ ∗ :=
⋃
{γ∗j | nj 6= 0},

where γ∗j is just the image of γj as a mapping from [0, 1] to C. We say that
Γ is a cycle in a subset O ⊆ C if Γ ∗ ⊆ O. The index of a ∈ C \ Γ ∗ is

χΓ (a) :=
1

2πi

∫
Γ

1

z − a
dz.

It is an integer number (since all γj are closed). The interior of a cycle Γ is

Int(Γ ) = {a ∈ C \ Γ ∗ | χΓ (a) 6= 0}.

A cycle Γ is positively oriented1 if

χΓ (a) ∈ {0, 1} for all a ∈ C \ Γ ∗.

We need the following “global” version of Cauchy’s theorem.

1 This is Conway’s terminology from [1].
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Theorem 1.6. Let X be a Banach space, O ⊆ C open, f ∈ Hol(O;X) and
Γ a cycle in O such that2 Int(Γ ) ⊆ O. Then

χΓ (a)f(a) =
1

2πi

∫
Γ

f(z)

z − a
dz for all a ∈ O \ Γ ∗

and ∫
Γ

f(z) dz = 0.

For the proof of the case X = C see [3, Thm. 10.35]. The Banach space
version follows from the scalar version by applying linear functionals, see
Appendix A.3.

In addition, we need the following result about the existence of positively
oriented cycles.

Theorem 1.7. Let O ⊆ C be an open subset of the plane and K ⊆ O a
compact subset. Then there is a positively oriented cycle Γ in O\K such that
K ⊆ Int(Γ ) ⊆ O.

The proof can be found in [3, Thm. 13.5]. Note that for the cycle Γ guar-
anteed by Theorem 1.7 one has Cauchy’s formula

f(a) =
1

2πi

∫
Γ

f(z)

z − a
dz for all a ∈ K

by Theorem 1.6.

Now back to functional calculus. Let A ∈ L(X) be a bounded operator on a
Banach space X, and let U ⊆ C be open such that σ(A) ⊆ U . Choose (by
Theorem 1.7) a positively oriented cycle Γ in U \ σ(A) such that σ(A) ⊆
Int(Γ ) ⊆ U .

Then define, for f ∈ Hol(U),

Φ(f) :=
1

2πi

∫
Γ

f(z)R(z,A) dz. (1.8)

This definition does not depend on the choice of Γ . Indeed, if Λ is another
cycle meeting the requirements, then the cycle Γ ⊕−Λ satisfies

Int(Γ ⊕−Λ) ⊆ U \ σ(A).

Theorem 1.6 with O := U \ σ(A) hence yields

0 =

∫
Γ⊕−Λ

f(z)R(z,A) dz =

∫
Γ

f(z)R(z,A) dz −
∫
Λ

f(z)R(z,A) dz.

2 The condition Int(Γ ) ⊆ O is sometimes rephrased by saying that “Γ is nullhomologous

in O”.
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γ1

σ(A)

γ2

γ3
σ(A)

Fig. 1.2 The region U is dotted. The cycle Γ = γ1 ⊕ γ2 ⊕ γ3 is positively oriented, lies
entirely in U \ σ(A) and has σ(A) in its interior.

As a consequence (how precisely?) we obtain that Φ, called the (full)
Dunford–Riesz calculus for A on U , is an extension of the “baby”
Dunford–Riesz calculus considered above.

Now we obtain the analogue of Theorem 1.3, with an analogous proof.

Theorem 1.8. Let A be a bounded operator on a Banach space X and let
U ⊆ C be open such that σ(A) ⊆ U . Then the mapping

Φ : Hol(U)→ L(X)

given by (1.8) is a homomorphism of unital algebras such that Φ(z) = A.
Moreover, it is continuous with respect to locally uniform convergence.

Proof. Linearity and the continuity property are clear, again. Since Φ ex-
tends the “baby” Dunford–Riesz calculus, Φ(1) = I and Φ(z) = A. The
multiplicativity Φ(fg) = Φ(f)Φ(g) is proved almost literally as before. One
only needs to choose the cycle for computing Φ(g), say Λ, in O \ (σ(A)∪Γ ∗)
such that

σ(A) ∪ Γ ∗ ⊆ Int(Λ) ⊆ U.

Since Γ ∗ is compact, this is possible.

Remark 1.9. The Dunford–Riesz calculus as a homomorphism of unital al-
gebras Hol(U) → L(X), continuous with respect to locally uniform conver-
gence, is uniquely determined by the requirement that Φ(z) = A. This can
be seen as follows: If U = C then one is in the power series case, and the
claim is clear. If U 6= C, then for λ ∈ C \ U one has Φ((λ− z)−1) = R(λ,A)
(why?). Hence, Φ is determined on rational functions with poles outside of
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U . By a consequence of Runge’s theorem, each f ∈ Hol(U) can be approxi-
mated locally uniformly by a sequence of such rational functions, see [1, Cor.
VIII.1.14]. Hence, Φ is determined on f , too.

1.4 From Bounded to Unbounded Operators

So far, we have only considered functional calculi of bounded operators. Also,
the range of the functional calculus consisted also of bounded operators only.
However, restricting oneself entirely to bounded operators is quite unnatural,
for two reasons. Firstly, many interesting and highly relevant operators for
which functional calculi can be defined are not bounded. Secondly, quite some
natural operations of “functional calculus type” leave the class of bounded
operators.

Suppose, for instance, that A is a bounded operator (still) on a Banach
space X. If A is injective one can form the operator A−1, defined on the range
ran(A) of A. The operator A−1 can (and should) be regarded as the result
of inserting A into the scalar function z 7→ 1

z . However, only in special cases
will A−1 be again bounded.

Let us look at an example. The Volterra operator V on Lp(0, 1) is given
by

V f(t) :=

∫ t

0

f(s) ds (f ∈ Lp(0, 1)).

It is bounded and injective. Its inverse, defined on ran(V ) is the first deriva-
tive. It follows from elementary theory of Sobolev spaces in one dimension3

that
W1,p(0, 1) = ran(V )⊕ C1

where 1 denotes the function which is equal to 1 everywhere. And V −1 = d
ds

(the weak derivative), defined on

ran(V ) = {u ∈W1,p(0, 1) | u(0) = 0}.

Note that V −1 is not bounded with respect to the Lp-norm.
Now, from a functional calculus point of view, the bounded operator V

and the unbounded operator V −1 are pretty much the same thing, because
each definition of f(V ) for some complex function f yields a definition of
g(V −1) for g = f(z−1). Of course the same works in the converse direction,
so the functional calculus theories of V and of V −1 are equivalent.

These few remarks should convince you that it is advised to have a good
basic knowledge about unbounded operators before delving deeper into func-
tional calculus theory. And this is what we are going to do in the next chapter.

3 If you are not familiar with this theory, don’t feel pushed to catch up now. Eventually,

there will be an appendix on that. If you can’t wait, look into [2, Chap.10] for the L2-case.
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1.5 Supplement: Functional Calculus for Matrices

In this supplement we present, for the case of a finite-dimensional space X =
Cd, an alternative, completely algebraic way of constructing the Dunford–
Riesz calculus.

Let A ∈ Cd×d be a complex square matrix of dimension d ∈ N. The natural
polynomial functional calculus

Ψ : C[z]→ Cd×d, p 7→ p(A)

has a non-trivial kernel (for reasons of dimension), which must be an ideal of
the ring C[z]. As every ideal in C[z] is a principal ideal (due to the presence
of division with remainder and the Euclidean algorithm), there is a monic
polynomial mA, the so-called minimal polynomial, with the property that

p(A) = 0 ⇐⇒ mA | p in C[z]

for each p ∈ C[z]. In symbols:

ker(Ψ) = (mA) := {mAp | p ∈ C[z]},

the principal ideal generated bymA. By standard algebra, the homomorphism
Ψ induces a homomorphism

Ψ̂ : C[z]/(mA)→ Cd×d.

Let U ⊆ C be open with σ(A) ⊆ U . We shall construct a unital algebra
homomorphism

Φ : Hol(U)→ Cd×d

such that Φ(z) = A.

We are done if we can show that the natural homomorphism

η : C[z]/(mA)→ Hol(U)/mA·Hol(U), η(p+ (mA)) := p|U +mA·Hol(U)

which arises from interpreting a polynomial p as a holomorphic function p|U
on U , is an isomorphism. Indeed, we then can take its inverse η−1 and let Φ
be defined as the composition of the maps

Φ : Hol(U) Hol(U)/mA·Hol(U) C[z]/(mA) Cd×d,s η−1
Ψ̂

where s is the canonical surjection. In order to achieve our goal, we need to
delve a little deeper into the structure of the polynomial mA.

By the fundamental theorem of algebra, mA factorizes into linear factors
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mA =

k∏
j=1

(z − λj)ej

for certain pairwise different λj ∈ C and numbers ej ∈ N. Linear algebra
shows that the λj are precisely the eigenvalues of A:

σ(A) = σp(A) = {λ1, . . . , λk}.

In particular, U contains all the zeroes of mA, and that implies the injectivity
of η, as follows. Suppose that p is a polynomial such that there is f ∈ Hol(U)
with p|U = mA|U f in Hol(U). Then for each j = 1, . . . , k the holomorphic
(polynomial) function p|U must have a zero of order ej at z = λj . By the
uniqueness of power series representation, this implies that the polynomial
mj := (z − λj)

ej divides p even in C[z] (and not just in Hol(U)). Since
the polynomials mj are mutually prime, mA divides p in C[z], i.e. p = 0 in
C[z]/(mA).

The proof of the surjectivity of η requires a little more work. It is partic-
ularly interesting since it will yield an algorithm for the functional calculus
Φ. Observe that the polynomials

rl :=
mA

ml
=
∏
j 6=l

mj (l = 1, . . . , k)

satisfy
gcd
(
r1, . . . , rk

)
= 1.

Hence, again by a consequence of the Euclidean algorithm, there are polyno-
mials qj ∈ C[z] such that

1 =

k∑
j=1

qjrj .

Now suppose that f ∈ Hol(U) is given. We want to find a polynomial p
such that mA | f − p in Hol(U). (Note that eventually Φ(f) := p(A).) As a
holomorphic function on U , f has a power series representation

f(z) =

∞∑
n=0

ajn(z − λj)n

around λj , for each j = 1, . . . , k. (Recall that ajn =
fn(λj)
n! .) Let

pj :=

ej−1∑
n=0

ajn(z − λj)n (j = 1, . . . , k)

and
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p :=

k∑
j=1

pj qj rj .

By construction, f − pj has a zero of order ej at λj and hence mj | f − pj in
Hol(U). Consequently,

f − p =

k∑
j=1

(f − pj) qj rj = mA

k∑
j=1

f − pj
mj

qj ∈ mA·Hol(U)

as desired. Let us summarize our findings.

Theorem 1.10. Let A ∈ Cd×d and let U be an open subset of C containing
σ(A). Then there is a unique unital algebra homomorphism

Φ : Hol(U)→ Cd×d

such that Φ(z) = A.

Proof. Existence has been shown above. For uniqueness, note that the re-
quirements on Φ determine Φ on all polynomial functions. In particular,
Φ(mA) = 0, where as above mA is the minimal polynomial of A. Hence,
if f ∈ Hol(U) and p ∈ C[z] is such that mA | f − p in Hol(U) then
0 = Φ(f − p) = Φ(f) − Φ(p). Since we know already that such a polyno-
mial p can always be found, Φ is indeed uniquely determined.

The (unique) unital algebra homomorphism Φ : Hol(U) → Cd×d with
Φ(z) = A is called the matrix functional calculus for the matrix A. With
the notation from above,

Φ(f) = p(A) =

k∑
j=1

ej−1∑
n=0

f(n)(λj)
n! (A− λj)nqj(A)rj(A). (1.9)

The matrices (A − λj)nqj(A)rj(A) for j = 1, . . . , k and n = 0, . . . , ej−1 do
not depend on f , and this is advantageous from a computational point of
view.

Corollary 1.11. Let A ∈ Cd×d, let U be an open subset of C containing σ(A)
and let Φ : Hol(U) → Cd×d be the matrix functional calculus for A. Then Φ
is continuous with respect to locally uniform convergence.

Proof. Let (fm)m be a sequence in Hol(U) such that fm → 0 locally uni-

formly. Then, by a standard result of complex function theory, f
(n)
m → 0

locally uniformly for all n ∈ N0. Hence, the claim follows from the explicit
formula (1.9).

By uniqueness, the matrix functional calculus must coincide with the
Dunford–Riesz calculus.
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Exercises

1.1 (Spectral Mapping Theorem (Polynomials)). Let A be a bounded
operator on a Banach space X and let p ∈ C[z]. Show that

σ(p(A)) = p(σ(A)) := {p(λ) | λ ∈ σ(A)}.

1.2. Fix r > 0, define Dr := {z ∈ C | |z| < r} and let A1
+(Dr) be the set of

functions f : Dr → C that can be represented as a power series

f(z) =

∞∑
n=0

anz
n (z ∈ C, |z| ≤ r)

such that

‖f‖Ar+ :=

∞∑
n=0

|an| rn <∞.

Show that A1
+(Dr) is a Banach algebra.

1.3. Consider, for Reα > 0 the function

fα(z) := (1− z)α (z ∈ D).

(We use the principal branch of the logarithm to define the fractional power.)

a) Determine the power series representation of fα and show that ‖fα‖A1
+

=

2 for 0 < α < 1. [Hint: Look at the signs of the Taylor coefficients.]

b) Show that fα ∈ A1
+(D) for all Reα > 0. [Hint: Reduce first to the case

0 < Reα < 1; then estimate by comparing with the case 0 < α < 1.
May be a little tricky.]

1.4. Let A be a power-bounded operator on a Banach space X. Describe, in
what respect the A1

+(D)-calculus differs from the Dunford–Riesz calculus for
A.

1.5. Provide an alternative proof of the inequality limn→∞ ‖An‖
1
n ≤ r(A) (in

the proof of Corollary 1.4) by using the following consequence of Theorem
1.3: If

∑∞
n=0 anz

n is a power series with a radius of convergence r > r(A),
then

∑∞
n=0 anA

n converges in L(X).

1.6. Prove the following continuous version of Fekete’s Lemma: Let f :
(0,∞)→ R be a function, bounded on compact subintervals and satisfying

f(x+ y) ≤ f(x) + f(y) (x, y > 0).

Then limx→∞
f(x)
x = infx>0

f(x)
x .
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1.7. Let X and Y be Banach spaces and A and B bounded operators on X
and Y , respectively. Show that the following assertions are equivalent for an
operator T ∈ L(X;Y ):

(i) TA = BT .

(ii) Tf(A) = f(B)T for each f ∈ Hol(U) and open set U ⊇ σ(A) ∪ σ(B).

1.8. Let A be a bounded operator on a Banach space X and suppose that
the spectrum σ(A) of A can be written as the union

σ(A) = K1 ∪K2, K1 ∩K2 = ∅

of disjoint compact sets K1 and K2. Show that there exists P ∈ L(X) with
P 2 = P and such that the following holds:

1) X1 := ran(P ) and X2 := ker(P ) are A-invariant.

2) σ(A|X1) = K1 and σ(A|X2) = K2.

1.9 (Spectral Mapping Theorem). Let A be a bounded operator on a
Banach space X, let U ⊇ σ(A) open, and let f ∈ Hol(U). Show that

f(σ(A)) = σ(f(A)).
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Chapter 2

Unbounded Operators and Abstract
Functional Calculus

2.1 Unbounded Operators

We start with an introduction to unbounded operators and their spectral
theory. This will be brief and cursory so that we can quickly pass on to more
substantial material. For a more detailed account the reader is referred to
Appendix A.4.

By an (unbounded) operator from a Banach space X to a Banach space Y we
mean a linear mapping A : dom(A)→ X where dom(A) is a linear subspace
of X. An operator is closed if one has the implication

dom(A) 3 xn → x ∈ X, Axn → y ∈ Y ⇒ x ∈ dom(A), Ax = y.

Equivalently, A is closed if dom(A) endowed with the graph norm

‖x‖A := ‖x‖X + ‖Ax‖Y (x ∈ dom(A))

is a Banach space. The set of all closed operators is denoted by

C(X;Y ) (and C(X) := C(X;X)).

We reserve the term bounded operator for the elements of L(X;Y ). By
the closed graph theorem, an operator A is bounded if and only if it is closed
and satisfies dom(A) = X (i.e., it is fully defined).

Operators A can be identified with their graph

graph(A) = {(x, y) ∈ X ⊕ Y | x ∈ dom(A), Ax = y},

which is a linear subspace of X ⊕ Y (a so-called linear relation). The op-
erator is closed if and only if its graph is closed in X ⊕ Y . Set theory purists
would claim that an operator actually is the same as its graph. So we are
justified to identify these concepts, and will do so henceforth. We use the

19
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notation “Ax = y” synonymously with (x, y) ∈ A, so that “x ∈ dom(A)” is
tacit here.

Identifying operators with (certain) linear relations gives immediate mean-
ing to the inclusion statement “A ⊆ B”. Equivalently, this can be expressed
through the implication

Ax = y ⇒ Bx = y (x ∈ X, y ∈ Y )

or through:
dom(A) ⊆ dom(B) and B|dom(A) = A.

An operator A is closable if there is a closed operator B such that A ⊆ B. In
this case, there is a smallest closed operator containing A, named the closure
of A and denoted by A. (This is consistent with the interpretation as linear
subspaces of X⊕Y .) A subspace D ⊆ dom(A) is a core for a closed operator
A, if A is the closure of A|D.

Algebra for (unbounded) operators is more complicated than for bounded
ones due to domain issues. For example, the sum A+B of two operators is
defined by

dom(A+B) := dom(A) ∩ dom(B), (A+B)x := Ax+Bx.

The composition AB of two operators (when meaningful) is defined by

ABx = z
def.⇐⇒ ∃ y : Bx = y ∧ Ay = z.

Sum and product are (trivially) associative, but distributivity fails in general.
The most important fact to remember about products is: If A is closed and
B is bounded, then AB is closed. (See Exercise 2.2.)

For an operator A, its inverse A−1 is the linear relation defined by

(y, x) ∈ A−1 def.⇐⇒ Ax = y.

The inverse A−1 is an operator if and only if A is injective. Obviously, A−1

is closed if and only if A is closed. An operator A is invertible if A−1 is a
bounded operator.

Spectral Theory. The notions of spectrum and resolvent (set) for gen-
eral operators A on a Banach space X are exactly the same as for bounded
operators. The resolvent set is

ρ(A) := {λ ∈ C | λ−A is invertible},

where λ−A := λI−A. The resolvent is the mapping

R(·, A) : ρ(A)→ L(X), R(λ,A) := (λ−A)−1.
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The spectrum is σ(A) := C \ ρ(A), but it is sometimes helpful to think of
∞ as a spectral value of an operator which is not bounded. (Actually, for
spectral theory it is much more convenient to work not just with operators
but with general linear relations, see Appendix A.4.)

As for bounded operators, the resolvent set is open and the resolvent
is holomorphic and satisfies the resolvent identity. Differentiating yields
d
dzR(z,A) = −R(z,A)2 and the usual power series representation obtains
(see Corollary A.15).

Eigenvalues and approximate eigenvalues and the corresponding no-
tions of point spectrum σp(A) and approximate point spectrum σa(A)
are defined as for bounded operators, see Lemma A.17 and A.18.

2.2 Multiplication Operators

Let Ω = (Ω,Σ, µ) be any measure space. For an essentially measurable func-
tion a : Ω → C we define the corresponding multiplication operator Ma

on Lp(Ω), 1 ≤ p ≤ ∞, by

Maf := af for f ∈ dom(Ma) := {g ∈ Lp(Ω) | ag ∈ Lp(Ω)}.

The next theorem collects the relevant properties. We restrict to semi-finite
measure spaces for convenience (see Appendix A.1).

Theorem 2.1. Let Ω = (Ω,Σ, µ) be a semi-finite measure space. Then for
a measurable function a : Ω → C the multiplication operator Ma on Lp(Ω),
1 ≤ p <∞, has the following properties:

a) Ma is a closed operator.

b) Ma is injective if and only if µ[ a = 0 ] = 0. In this case, M−1
a = Ma−1 .1

c) Ma is densely defined.

d) Ma is bounded if and only if a ∈ L∞(Ω). In this case ‖Ma‖ = ‖a‖L∞ .

e) If b : Ω → C is measurable, then MaMb ⊆ Mab and Ma +Mb ⊆ Ma+b.
Moreover,

dom(MaMb) = dom(Mb) ∩ dom(Mab).

f) If b ∈ L∞(Ω) then

MaMb = Mab and Ma +Mb = Ma+b.

g) σ(Ma) = σa(Ma) = essran(a), the essential range of a.

h) λ ∈ ρ(Ma) =⇒ R(λ,Ma) = M 1
λ−a

.

1 Here as in most cases, a−1 is synonymous with 1
a

.
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i) Up to equality µ-almost everywhere, a is uniquely determined by Ma.

Proof. a) Suppose that (fn, afn) → (f, g) in Lp ⊕ Lp. Passing to a subse-
quence if necessary we may suppose that fn → f almost everywhere. But
then af = g. Hence f ∈ dom(Ma) and g = Maf .

b) Ma is not injective precisely when there is 0 6= f ∈ Lp such that af = 0,
i.e. [ f 6= 0 ] ⊆ [ a = 0 ]. Since the measure is semi-finite, such a function f can
be found precisely when µ[ a = 0 ] > 0.

If µ[ a = 0 ] = 0 then a−1 is an essentially measurable C-valued function
and af = g µ-almost everywhere if and only if f = a−1g µ-almost everywhere.
Hence M−1

a = Ma−1 as claimed.

c) Let f ∈ Lp(Ω), define An := [ |a| ≤ n ] and let fn = 1Anf . Then fn ∈ Lp

and fn → f in Lp. Moreover, |afn| ≤ n |f |, hence fn ∈ dom(Ma).

d) It is easy to see that a ∈ L∞ implies that Ma is bounded and ‖Ma‖ ≤
‖a‖L∞ . For the converse, suppose that Ma is bounded and fix c > 0 such that
µ[ |a| ≥ c ] > 0. Then by the semi-finiteness of the measure space Ω there is a
set A ⊆ [ |a| ≥ c ] of strictly positive but finite measure. Applying Ma to 1A
yields

µ(A)cp ≤
∫

Ω

|a1A|p = ‖Ma1A‖pp ≤ ‖Ma‖pµ(A).

It follows that c ≤ ‖Ma‖, and the claim is proved.

e) and f) are straightforward.

g) Passing to λ− a if necessary we only need to show that

0 ∈ σ(Ma) =⇒ 0 ∈ essran(a) =⇒ 0 ∈ σa(Ma).

If 0 /∈ essran(a) then there is ε > 0 such that µ[ |a| ≤ ε ] = 0. Hence Ma

is injective, and M−1
a = M1/a. But ‖a−1‖L∞ ≤ 1

ε < ∞ and hence M−1
a is

bounded. It follows that 0 ∈ ρ(Ma).
Suppose that 0 ∈ essran(a). Then for each n ∈ N one has µ

[
|a| ≤ 1

n

]
> 0.

By the semi-finiteness we can find a set An ⊆
[
|a| ≤ 1

n

]
of finite and strictly

positive measure. Let cn = ‖1An‖−1
p and fn := cn1An . Then ‖fn‖p = 1 and

fn ∈ dom(Ma) and |Mafn| = |afn| ≤ 1
n |fn| → 0 in Lp(Ω). Hence, (fn)n is

an approximate eigenvector for 0, and 0 ∈ σa(Ma) as claimed.

h) is clear.

i) Suppose that a and b are measurable functions on Ω such that Ma = Mb

as operators on Lp(Ω). For n ∈ N and f ∈ Lp define fn := f1[ |a|+|b|≤n ]. Then
fn ∈ dom(Ma) ∩ dom(Mb) and hence

a1[ |a|+|b|≤n ]f = Mafn = Mbfn = b1[ |a|+|b|≤n ]f.

It follows that a1[ |a|+|b|≤n ] = b1[ |a|+|b|≤n ] almost everywhere for each n ∈ N
and hence a = b almost everywhere.
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Multiplication operators can be considered on other function spaces, for
instance on the space Cb(Ω), where Ω is a metric space (Exercise 2.5), or on
the space C0(Ω), whereΩ is a locally compact space. (Here, the multiplicators
a are continuous functions.)

2.3 Functional Calculus for Multiplication Operators

From now on we fix a (semi-finite) measure space Ω = (Ω,Σ, µ), a µ-
essentially measurable function a : Ω → C and a number 1 ≤ p < ∞ and
consider the operator A := Ma on X := Lp(Ω). Moreover, let us write

K := essran(a) = σ(A) ⊆ C,

which is a closed subset of C. It is easy to see (Exercise 2.6) that

a ∈ K µ-almost everywhere.

Equivalently, the Borel measure ν := a∗µ is supported on K:

K = essran(a) = supp(a∗µ) = supp(ν).

Hence, if f : K → C is ν-almost everywhere measurable, then f ◦a is µ-almost
everywhere measurable, and we can form the closed(!) operator

Φ(f) := Mf◦a

on X = Lp(Ω). The set L0(K, ν) of ν-almost everywhere measurable functions
(modulo ν-a.e. null functions) on K is an algebra. The emerging mapping

Φ : L0(K, ν)→ C(X)

is called the functional calculus for the operator A = Ma. Here is a listing
of some essential properties.

Theorem 2.2. Let Ω = (Ω,Σ, µ) be a semi-finite measure space, let a ∈
L0(Ω) and 1 ≤ p < ∞, K := essran(a) and ν := a∗µ as above. Let, further-
more,

Φ : L0(K, ν)→ {operators on Lp(Ω)}, Φ(f) = Mf◦a

be the associated functional calculus. Then for all f, g ∈ L0(K, ν) and λ ∈ C
the following statements hold:

a) The operator Φ(f) is closed.

b) Φ(1) = I.

c) λΦ(f) ⊆ Φ(λf) and Φ(f) + Φ(g) ⊆ Φ(f + g).
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d) Φ(f)Φ(g) ⊆ Φ(fg) with

dom(Φ(f)Φ(g)) = dom(Φ(g)) ∩ dom(Φ(fg)).

e) Φ(f) is injective if and only if ν [ f = 0 ] = 0, and in this case Φ(f)−1 =
Φ( 1

f ).

f) Φ(f) is a bounded operator if and only if f ∈ L∞(K, ν).

g) If (fn)n is a bounded sequence in L∞(K, ν) with fn → f ν-almost ev-
erywhere, then Φ(fn)→ Φ(f) strongly on Lp(Ω).

Proof. a) Since Φ(f) = Mf◦a, this follows from Theorem 2.1.a).

b) This is obvious.

c) and d) follow from Theorem 2.1.e).

e) follows from Theorem 2.1.b).

f) follows from Theorem 2.1.d).

g) It follows from the hypotheses that fn ◦ a → f ◦ a µ-almost everyhere. If
x ∈ X = Lp(Ω) is arbitrary, then

Φ(fn)x = (fn ◦ a)x→ (f ◦ a)x = Φ(f)x

by Lebesgue’s theorem.

In the following we shall base an abstract definition of “functional calculus”
on some of the just listed properties. Before, let us note an interesting fact:
the functional calculus Φ for Ma is determined by its restriction to those
f ∈ L0(K, ν) that yield bounded operators. In fact, for f ∈ L0(K, ν) let

h :=
1

1 + |f |2
and g :=

f

1 + |f |2
.

Then h, g ∈ L∞(K, ν). Moreover, f = g
h and Φ(h) is injective, hence

Φ(h)−1Φ(g) = Φ( 1
h )Φ(g) = Φ( gh ) = Φ(f),

by Theorem 2.2.d) and since Φ(g) is a bounded operator.

2.4 Abstract Functional Calculus (I) — Definition

With the concrete model of multiplication operators at hand, we now turn
to a more axiomatic treatment of functional calculi.

Let F be an algebra with a unit element 1 and let X be a Banach space.
A mapping

Φ : F → C(X)
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from F to the set of closed operators on X is called a proto-calculus (or: F-
proto-calculus) on X if the following axioms are satisfied (f, g ∈ F , λ ∈ C):

(FC1) Φ(1) = I.

(FC2) λΦ(f) ⊆ Φ(λf) and Φ(f) + Φ(g) ⊆ Φ(f + g).

(FC3) Φ(f)Φ(g) ⊆ Φ(fg) and

dom(Φ(f)Φ(g)) = dom(Φ(g)) ∩ dom(Φ(fg)).

An element f ∈ F is called Φ-bounded if Φ(f) ∈ L(X). The set of Φ-
bounded elements is denoted by

FΦ := {f ∈ F | Φ(f) ∈ L(X)} = Φ−1(L(X)).

For each f ∈ F the set of its Φ-regularizers is

RegΦ(f) := {e ∈ FΦ | ef ∈ FΦ}.

The definition of a regularizer here differs from and is more general
than the one given in our earlier work [1]. It has been noticed in [2]
(eventually published as [3]) that such a relaxation of terminology is
useful.

The following theorem summarizes basic properties of a proto-calculus.

Theorem 2.3. Let Φ : F → C(X) be a proto-calculus on a Banach space X.
Then the following assertions hold (f, g ∈ F , λ ∈ C):

a) If λ 6= 0 or Φ(f) ∈ L(X) then Φ(λf) = λΦ(f).

b) If Φ(g) ∈ L(X) then

Φ(f) + Φ(g) = Φ(f + g) and Φ(f)Φ(g) = Φ(fg).

c) If fg = 1 then Φ(g) is injective and Φ(g)−1 ⊆ Φ(f). If, in addition
fg = gf , then Φ(g)−1 = Φ(f).

d) The set FΦ of Φ-bounded elements is a unital subalgebra of F and

Φ : FΦ → L(X)

is an algebra homomorphism.

e) The set RegΦ(f) of Φ-regularizers of f is a left ideal in FΦ.

Proof. a) One has

Φ(f) = Φ(λ−1λf) ⊇ λ−1Φ(λf) ⊇ λ−1λΦ(f) = Φ(f).
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Hence, all inclusions are equalities, and the assertion follows.

b) By Axiom (FC2) and a)

Φ(f) = Φ(f + g − g) ⊇ Φ(f + g) + Φ(−g) = Φ(f + g)− Φ(g)

⊇ Φ(f) + Φ(g)− Φ(g)
!
= Φ(f).

Hence, all inclusions are equalities and the first assertion in b) follows. For
the second, note that by Axiom (FC3) Φ(f)Φ(g) ⊆ Φ(fg) with

dom(Φ(f)Φ(g)) = dom(Φ(g)) ∩ dom(Φ(fg)) = dom(Φ(fg)),

hence we are done.

c) By (FC3), if fg = 1 then Φ(f)Φ(g) ⊆ Φ(fg) = Φ(1) = I. Hence, Φ(g) is
injective and Φ(f) ⊇ Φ(g)−1. If fg = gf then, by symmetry, Φ(f) is injective
too, and Φ(g) ⊇ Φ(f)−1. This yields Φ(f) = Φ(g)−1 as desired.

d) and e) follow directly from b).

Determination. Let Φ : F → C(X) be a proto-calculus on X and e, f ∈ F .
Then, by Axiom (FC3),

Φ(e)Φ(f) ⊆ Φ(ef). (2.1)

If in addition Φ(e), Φ(ef) ∈ L(X), i.e., if e is a Φ-regularizer of f , then (2.1)
simply means that

∀x, y ∈ X : Φ(f)x = y ⇒ Φ(ef)x = Φ(e)y.

In very special situations, e.g. if e has a left inverse in F , the converse im-
plication holds (Exercise 2.7). In that case, we say that e is Φ-determining
for f .

More generally, a subset M ⊆ RegΦ(f) is said to be Φ-determining for
f ∈ F if one has

Φ(f)x = y ⇐⇒ ∀e ∈M : Φ(ef)x = Φ(e)y (2.2)

for all x, y ∈ X. (As explained, only the implication “⇐” is interesting here.)

Lemma 2.4. Let Φ be an F-proto-calculus on a Banach space X, let f ∈ F
and let M⊆ RegΦ(f) be Φ-determining for f . Then the following assertions
hold:

a)
⋂
e∈M ker(Φ(e)) = {0}.

b) Each set M′ with M⊆M′ ⊆ RegΦ(f) is also determining for f .

c) If T ∈ L(X) commutes with all operators Φ(e) and Φ(ef) for e ∈ M,
then T commutes with Φ(f).

Recall that the last statement simply means TΦ(f) ⊆ Φ(f)T .
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Proof. a) follows since Φ(f) is an operator and not just a linear relation.

b) is clear.

c) Suppose that Φ(f)x = y. Then, for each e ∈M,

Φ(ef)Tx = TΦ(ef)x = TΦ(e)y = Φ(e)Ty.

Since M is Φ-determining for f , Φ(f)Tx = Ty. But this just means that
TΦ(f) ⊆ Φ(f)T .

A proto-calculus Φ : F → C(X) is called a calculus (or: F-calculus) if in
addition to (FC1)–(FC3) the following fourth axiom is satisfied:

(FC4) For each f ∈ F the set RegΦ(f) is Φ-determining for f .

The “Determination Axiom” (FC4) ensures that an F-proto-calculus
Φ is determined in an algebraic way by its restriction to the set of Φ-
bounded elements. If Φ(F) ⊆ L(X), i.e., if every f ∈ F is Φ-bounded,
then (FC4) is trivially satisfied (why?).

Remarks 2.5. 1) The restriction of a proto-calculus Φ : F → C(X) to
a unital subalgebra F ′ of F is again a proto-calculus, sloppily called
a subcalculus. Even if the original proto-calculus satisfies (FC4), this
need not be the case for the subcalculus. (It does if the subcalculus has
the same set of Φ-bounded elements.) Similarly, the subcalculus may
satisfy (FC4) while the original one does not.

2) Given a proto-calculus Φ : F → C(X), the set FΦ of Φ-bounded elements
is a unital subalgebra and the restriction of Φ to FΦ a homomorphism of
unital algebras. Let us call this the bounded subcalculus. As already
mentioned, it trivially satisfies (FC4).

3) A proto-calculus Φ : F → C(X) such that Φ(F) ⊆ L(X) (equivalently:
F = FΦ) is nothing else then a representation of the unital algebra F
by bounded operators.
So with our definition of a (proto-)calculus we generalize representation
theory towards unbounded operators. However, Axiom (FC4) (if satis-
fied) guarantees that the whole calculus is determined by the bounded
subcalculus and we are confronted only with a “tame” kind of unbound-
edness.

4) If the algebra F is not an algebra of functions, an F-calculus is—strictly
speaking—not a functional calculus. However, although we shall try to
be consistent with this distinction, a little sloppyness should be allowed
here. After all, many commutative algebras are isomorphic to function
algebras.
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Example 2.6. Let Ω = (Ω,Σ, µ) be a semi-finite measure space and a : Ω →
C a µ-essentially measurable function. Then, with ν = a∗µ, K := essran(a)
and X = Lp(Ω), the mapping

Φ : L0(K, ν)→ C(X), Φ(f) := Mf◦a

is an L0(K, ν)-calculus on X. The set of Φ-bounded elements is L0(K, ν)Φ =
L∞(K, ν). For f ∈ L0(K, ν) each function

(1 + |f |2)−α, α ≥ 1
2 ,

is a Φ-determining Φ-regularizer for f .

2.5 Abstract Functional Calculus (II) — Generators

The definition of a (proto-)calculus given so far is, admittedly, very general.
In many cases, the algebra F is actually a subalgebra of functions (or of
equivalence classes of functions) on some subset D ⊆ C of the complex plane
and contains the special function z := (z 7→ z). (E.g., in our multiplicator
example, D = K = essran(a) and F = L0(K, ν).) In that case, the operator
A := Φ(z) is a distinguished closed operator on X, and the F-calculus Φ can
be called a functional calculus for A and A is called the generator of the
functional calculus Φ. Moreover, the notation

f(A) := Φ(f)

is employed.

Corollary 2.7. Let A be the generator of an F-proto-calculus on a Banach
space X, where F is an algebra of functions on some subset D ⊆ C. Let λ ∈ C
such that 1

λ−z ∈ F . Then λ− A is injective and the following assertions are
equivalent:

(i) λ ∈ ρ(A);

(ii) ( 1
λ−z )(A) ∈ L(X).

In this case, R(λ,A) = ( 1
λ−z )(A).

Proof. Let the given F-calculus be called Φ. Note that Φ(λ1) = λΦ(1) =
λI ∈ L(X) and hence

Φ(λ− z) = λI−A.

Since 1 = (λ − z) 1
λ−z = 1

λ−z (λ − z), by Theorem 2.3 the operator λ − A is

injective and (λ−A)−1 = Φ( 1
λ−z ). So λ ∈ ρ(A) if and only if this operator is

bounded.
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Example 2.8. Let Φ be the L0(K, ν)-calculus for some multiplication oper-
ator Ma as before. Then A = Φ(z) = Ma, so our terminology is consistent.
For f ∈ L0(K, ν) one then has (by definition)

f(Ma) = Mf◦a.

E.g., since A is multiplication by a, eA is multiplication by ea. Note that here
K = essran(a) = σ(A) and λ − A is injective precisely when (λ − z)−1 ∈
L0(K, ν). (Why?)

Corollary 2.7 hints at situations when one can identify a generator of a
functional calculus Φ even in the case when the coordinate function z itself is
not contained in F , but some functions of the form 1

λ−z are. This is treated
in the following supplement.

Supplement: Linear Relations as Generators

Let Φ : F → C(X) be an F-calculus, where F is an algebra of functions
defined on some set D ⊆ C. We suppose in addition that the set

ΛΦ := {λ ∈ C | (λ− z)−1 ∈ F}

is not empty. Then the following result yields a unique linear relation A on
X such that

Φ
(
(λ− z)−1

)
= (λ−A)−1 for all λ ∈ ΛΦ.

Theorem 2.9. Let Φ : F → C(X) be an F-calculus, where F is an algebra
of functions on some set D ⊆ C. Then the linear relation

λ− Φ
( 1

λ− z

)−1

is independent of λ ∈ ΛΦ.

Proof. Let λ, µ ∈ ΛΦ and define rλ(z) := 1
λ−z and rµ(z) := 1

µ−z . Then the
resolvent identity

(µ− λ)rλrµ = rλ − rµ
holds. Now fix eµ ∈ RegΦ(rµ) and eλ ∈ RegΦ(rλ). Then e := eµeλ is a
regularizer for both rλ and rµ. Let, furthermore, x, y ∈ X. Note that

(x, y) ∈ λ− Φ(rλ)−1 ⇐⇒ Φ(rλ)(λx− y) = x

and likewise for µ instead of λ. We shall show that

Φ(rλ)(λx− y) = x =⇒ Φ(rµ)(µx− y) = x.
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By symmetry, this will suffice for establishing the claim.

So abbreviate u := λx − y and suppose that Φ(rλ)u = x. Then Φ(eλrλ)u =
Φ(eλ)x and hence

Φ(eλ)Φ(eµrµ)(µx− y) = Φ(erµ)((µ− λ)x+ u)

= (µ− λ)Φ(eµrµ)Φ(eλ)x+ Φ(erµ)u

= (µ− λ)Φ(eµrµ)Φ(eλrλ)u+ Φ(erµ)u

= Φ(e(µ− λ)rµrλ + erµ)u

= Φ(erλ)u = Φ(eµ)Φ(eλrλ)u = Φ(eµ)Φ(eλ)x

= Φ(eλ)Φ(eµ)x.

Since eλ ranges over all of RegΦ(rλ),

Φ(eµrµ)(µx− y) = Φ(eµ)x.

But this holds for all eµ ∈ RegΦ(rµ), hence by Axiom (FC4) it follows that

Φ(rµ)(µx− y) = x.

Suppose that Φ is an F-calculus as above, and such that ΛΦ 6= ∅. Then we
call the linear relation

AΦ := λ− Φ((λ− z)−1)−1 (λ ∈ ΛΦ)

the generator of the calculus Φ.

Exercises

2.1. Let X and Y be Banach spaces and let A : X ⊇ dom(A) → Y be a
linear operator.

a) Prove that the following assertions are equivalent:

(i) A is closed.

(ii) Whenever dom(A) 3 xn → x ∈ X and Axn → y ∈ Y then x ∈
dom(A) and Ax = y.

(iii) The space (dom(A), ‖ · ‖A) is a Banach space.

b) Prove that each two of the following three assertions together imply the
third one:

(i) A is continuous for the norm of X, i.e., there is c ≥ 0 such that
‖Ax‖ ≤ c‖x‖ for all x ∈ dom(A).

(ii) A is closed.
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(iii) dom(A) is a closed subspace of X.

[Hint: closed graph theorem.]

2.2. Let A, B, C be linear operators on a Banach space X.

a) (A+B)C = AC +BC.

b) C(A+B) ⊇ CA+CB, with equality if, for instance, ran(A) ⊆ dom(C).

c) If A is closed and B is bounded, then AB is closed.

d) If B is closed and A is invertible, then AB is closed.

2.3. Let A and B be linear operators on a Banach space X, T ∈ L(X) and
λ ∈ ρ(A) ∩ ρ(B). Show that the following assertions are equivalent:

(i) For all x, y ∈ X, if Ax = y then BTx = Ty;

(ii) TA ⊆ BT ;

(iii) TR(λ,A) = R(λ,B)T for one/all λ ∈ ρ(A) ∩ ρ(B).

2.4 (Spectral Mapping Theorem for the Inverse). Let A be linear
relation on X and let λ ∈ K \ {0}. Show that(

1
λ −A

−1
)−1

= λ− λ2(λ−A)−1.

Conclude that

ρ(A) \ {0} → ρ(A−1) \ {0}, λ 7→ 1
λ

is a bijection.

2.5 (Multiplication Operator on Continuous Functions). Let (Ω, d)
be a metric space. For a continuous function a ∈ C(Ω) let Ma be the multi-
plication operator defined on Cb(Ω) by

Maf := af for f ∈ dom(Ma) := {f ∈ Cb(Ω) | af ∈ Cb(Ω)}.

a) Show that Ma is a closed operator but need not be densely defined.

b) Show that Ma is bounded if and only if a is bounded, and ‖Ma‖ = ‖a‖∞
in this case.

c) Show the analogue of e) and f) from Theorem 2.1.

d) Show that σ(Ma) = σa(Ma) = a(Ω).

e) Formulate and prove analogues of h) and i) of Theorem 2.1.

2.6. Let Ω = (Ω,Σ, µ) be a measure space and a : Ω → C measurable. Show
that a ∈ essran(a) µ-almost everywhere.
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2.7. Let Φ be an F-proto-calculus on a Banach space X, let e, f ∈ F such
that Φ(e), Φ(ef) ∈ L(X). Suppose that e has a left inverse e′ in F , i.e.,
e′e = 1. Show that Φ(f) = Φ(e)−1Φ(ef) and

Φ(f)x = y ⇐⇒ Φ(ef)x = Φ(e)y

for x, y ∈ X.

2.8. Let Φ be the L0(K, ν)-calculus on X = Lp(Ω) for some multiplication
operator Ma, a : Ω → C. Examine, under which assumptions this calculus
has a nontrivial universal regularizer. [A characterization is possible, but not
straightforward.]

2.9. Let, as in Exercise 2.5, Ω be a metric space and a ∈ C(Ω). Let D :=
a(Ω) ⊆ C. For a continuous function f : D → C define

Φ(f) := Mf◦a.

Show that Φ : C(D) → C(Cb(Ω)) is a functional calculus for Ma, and each
f ∈ C(D) has a determining regularizer. Can you think of an example showing
that in general the given functional calculus is not “maximal” (whatever this
means precisely)?

2.10. Let Φ : F → C(X) be an F-(proto)-calculus.

a) Suppose that F is commutative. Show that N := {f ∈ F | Φ(f) = 0}
is an ideal of F and that by

Φ(f +N ) := Φ(f)

a F/N -(proto)-calculus is defined.

b) Let F ′ be another unital algebra and Ψ : F ′ → F a unital algebra
homomorphism. Show that Φ ◦Ψ : F ′ → C(X) is a F ′-proto-calculus. If
Φ is a calculus and Ψ is surjective, then Φ ◦ Ψ is a calculus as well.
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Chapter 3

Borel Functional Calculus

In this chapter we introduce the concept of a measurable functional calculus
on a Hilbert space with its important special case of Borel functional calculus.
We study these concepts axiomatically and prove an important uniqueness
result.

3.1 Normal Operators on Hilbert Spaces

Due to the presence of the inner product, abstract operator theory is much
richer on Hilbert spaces than on general Banach spaces. In particular, it
comprises the concepts of adjoint and numerical range of an operator. As in
the last chapter, we avoid going into details here and refer to Appendix A.5
and Exercise 3.1 instead.

The adjoint A∗ of a linear operator A on a Hilbert space H is defined as
a linear relation by

(u, v) ∈ A∗ def.⇐⇒ (x | v ) = (Ax |u) for all x ∈ dom(A).

In the first section of Appendix A.5 it is shown that if A is a densely defined
and closed operator, then so is A∗. Moreover, considered as a linear relation
in H ⊕H, one has

A∗ = [J(A)]⊥ = J(A⊥)

where the unitary operator J on H ⊕H is given by

J : H ⊕H → H ⊕H, J(x, y) := (−y, x).

The following elementary results will be used frequently in the following.

Lemma 3.1. Let A : H ⊇ dom(A) → H be a closed and densely defined
operator. Then for each pair of vectors u, v ∈ H there are uniquely determined
vectors y ∈ dom(A) and x ∈ dom(A∗) with

33
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x−Ay = u and A∗x+ y = v.

Moreover, one has ‖x‖2 + ‖A∗x‖2 + ‖y‖2 + ‖Ay‖2 = ‖u‖2 + ‖v‖2.

Proof. Note that whenever x ∈ dom(A∗) and y ∈ dom(A) one has (x,A∗x) ⊥
J(y,Ay) = (−Ay, y) and

(x,A∗x) + J(y,Ay) = (x−Ay,A∗x+ y).

As A is closed, also J(A) is closed, and hence the first assertion follows from
the existence and uniqueness of the (orthogonal) decomposition of a general
element (u, v) in H⊕H into a vector in A∗ and a vector in J(A). The second
assertion follows by Pythagoras:

‖x‖2 + ‖A∗x‖2 + ‖Ay‖2 + ‖y‖2 = ‖(x,A∗x)‖2 + ‖(−Ay, y)‖2

= ‖(x−Ay,A∗x+ y)‖2 = ‖(u, v)‖2 = ‖u‖2 + ‖v‖2.

If we apply the lemma with u = 0, we obtain the following result.

Theorem 3.2. Let A be a closed and densely defined operator on a Hilbert
space H. Then the operator I +A∗A is densely defined and invertible and its
inverse

TA := (I +A∗A)−1

is a contraction, i.e., it satisfies ‖TA‖ ≤ 1. Both operators TA and A∗A are
self-adjoint and positive, and dom(A∗A) is a core for A.

Proof. Apply the lemma with u = 0 and v ∈ H to obtain elements y ∈
dom(A) and x ∈ dom(A∗) with x = Ay and A∗x + y = v. It follows that
y ∈ dom(I +A∗A) and (I +A∗A)y = v. Moreover,

‖v‖2 = ‖y‖2 + 2‖Ay‖2 + ‖A∗Ay‖2 ≥ ‖y‖2. (3.1)

In particular, I +A∗A is surjective.

On the other hand, suppose that v ⊥ dom(A∗A) and y ∈ dom(A∗A) with
(I +A∗A)y = v. Taking the inner product with y yields

0 = (y | v ) = (y | y +A∗Ay ) = ‖y‖2 + (y |A∗Ay ) = ‖y‖2 + ‖Ay‖2, (3.2)

which implies that y = 0 and v = 0. The choice of v = 0 yields that I+A∗A is
injective and hence bijective. By (3.1), its inverse TA := (I +A∗A)−1 satisfies
‖TAv‖2 ≤ ‖v‖2 for all v ∈ H, i.e., ‖TA‖ ≤ 1.

Furthermore, (3.2) implies that the orthogonal complement of dom(A∗A) is
trivial, hence dom(A∗A) is dense in H. It is now straightfoward to show
that A∗A is symmetric. Therefore, I +A∗A is symmetric and bijective, hence
self-adjoint with self-adjoint inverse TA, by Lemma A.21.

The postivity of A∗A follows directly from the definitions.It follows that
I +A∗A is positive, hence si is its inverse TA.
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Finally, in order to show that dom(A∗A) is a core for A it suffices to show
that its orthogonal complement in dom(A) with respect to the graph inner
product is zero. So let v ∈ dom(A) be such that v ⊥dom(A) dom(A∗A). This
means that

0 = (v | y ) + (Av |Ay ) = (v | y ) + (v |A∗Ay ) = (v | (I +A∗A)y )

for all y ∈ dom(A∗A). As I + A∗A is surjective, this implies that v = 0, and
the claim is proved.

A closed, densely defined operator A on a Hilbert space H is normal if
A∗A = AA∗. If A is normal, then D := dom(A∗A) = dom(AA∗) is a core for
A and for A∗. For u ∈ D one has

‖u‖2 + ‖Au‖2 = (u |u) + (Au |Au) = ((I +A∗A)u |u)

= ((I +AA∗)u |u) = ‖u‖2 + ‖A∗u‖2.

It follows that the graph norm of A and of A∗ coincide on D. Hence,

dom(A) = dom(A∗).

It follows that D = dom(A2) = dom(A∗2).

Corollary 3.3. If A is normal then TAA ⊆ ATA.

Proof. Let x ∈ dom(A) and y := TAx ∈ D. Then y + A∗Ay = x and hence
A∗Ay = x− y ∈ dom(A). Applying A and using the normality we obtain

Ax = Ay +AA∗Ay = (I +AA∗)Ay = (I +A∗A)Ay,

which results in TAAx = Ay = ATAx.

3.2 Measurable Functional Calculus

Recall that a measurable space is a pair (K,Σ) where K is a set and Σ
is a σ-algebra of subsets of K. A function f : K → C is measurable if it is
Σ-to-Borel measurable in the sense of measure theory. The sets

M(K,Σ) := {f : K → C | f measurable} and

Mb(K,Σ) := {f ∈M(K,Σ) | f bounded}

will play an important role in what follows. Note that Mb(K,Σ) is closed
under bp-convergence, by which is meant that if a sequence (fn)n in
Mb(K,Σ) converges boundedly (i.e., with supn ‖fn‖∞ <∞) and pointwise
to a function f , then f ∈Mb(K,Σ) as well.
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If the σ-algebra Σ is understood, we simply write M(K) and Mb(K).
If K is a separable metric space, then we take per default Σ = Bo(K), the
Borel σ-algebra on K generated by the family of open subsets (equivalently:
closed subsets, open/closed balls).

A measurable functional calculus on a measurable space (K,Σ) is a pair
(Φ,H) where H is a Hilbert space and

Φ :M(K,Σ)→ C(H)

is a mapping with the following properties (f, g ∈M(K,Σ), λ ∈ C):

(MFC1) Φ(1) = I;

(MFC2) Φ(f) + Φ(g) ⊆ Φ(f + g) and λΦ(f) ⊆ Φ(λf);

(MFC3) Φ(f)Φ(g) ⊆ Φ(fg) and

dom(Φ(f)Φ(g)) = dom(Φ(g)) ∩ dom(Φ(fg));

(MFC4) Φ(f) is densely defined and Φ(f)∗ = Φ(f);

(MFC5) Φ(f) ∈ L(H) if f is bounded;

(MFC6) If fn → f pointwise and boundedly, then Φ(fn)→ Φ(f) strongly.

Property (MFC6) is called the bp-continuity of the mapping Φ.

Remark 3.4. (MFC1)–(MFC3) simply say that a measurable functional cal-
culus is a proto-calculus in the terminology of Section 2.4. By (MFC5), for

a given function f ∈ M(K) the function (1 + |f |2)−1 is a Φ-regularizer for
f . It is Φ-determining for f by Exercise 2.7. Hence, a measurable functional
calculus also satisfies Axiom (FC4) and is therefore a (functional) calculus.

Example 3.5. Let Ω = (Ω,Σ, µ) be a semi-finite measure space and a : Ω →
C an essentially measurable function. Let, as always,K := essran(a) = σ(Ma)
and ν := a∗µ. In Chapter 2 we have constructed a functional calculus

Φ : L0(K, ν)→ C(H), Φ(f) := Mf◦a

for A := Ma on H := L2(Ω). If we compose this with the canonical mapping

M(K)→ L0(K, ν)

which sends each function to its equivalence class modulo ν-almost every-
where equality, we obtain a measurable functional calculus on (K,Bo(K)).
The proof is Exercise 3.2.

Let us examine more closely the consequences of the axioms defining a
measurable functional calculus.
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Lemma 3.6. Let Φ : M(K,Σ) → C(H) be a measurable functional calculus
on a measurable space (K,Σ). Then the following assertions hold for each
f ∈M(K,Σ):

a) If f 6= 0 everywhere then Φ(f) is injective and Φ(f−1) = Φ(f)−1.

b) Φ(f)Φ(f) = Φ(|f |2) and Φ(f) is normal.

c) ‖Φ(f)‖ ≤ ‖f‖∞ if f is bounded.

d) Φ(f) is self-adjoint if f is real-valued.

Proof. a) If f is nowhere equal to zero, then f−1 is also measurable. So the
claim follows from Theorem 2.3.

b) It is clear by (MFC3) that Φ(f)Φ(f) ⊆ Φ(|f |2). Hence, by (MFC4),

I + Φ(f)∗Φ(f) ⊆ Φ(1 + |f |2).

By a) the operator on the right-hand side is injective while the operator on
the left-hand side is surjective (by Theorem 3.2). Hence these operators must
coincide. Normality of Φ(f) follows readily.

c) For the norm inequality, let f ∈ M(K,Σ) with |f | ≤ 1. Then, with

g := (1− |f |2)
1
2 ,(

(I− Φ(|f |2))x
∣∣x) =

(
Φ(g2)x

∣∣x) = (Φ(g)∗Φ(g)x |x) = ‖Φ(g)x‖2 ≥ 0

and hence

‖Φ(f)x‖2 = (Φ(f)∗Φ(f)x |x) = (Φ(|f |2)x |x) ≤ (x |x) = ‖x‖2

for each x ∈ H. (Cf. also Exercise 3.3.)

d) is immediate from (MFC4).

Remark 3.7. A closer look at the proof of c) above shows that (MFC5) is
actually a consequence of (MFC1)–(MFC4). The reason for including it in
the definition was to ensure without further ado that (MFC6) is meaningful.

3.3 Projection-Valued Measures

If (Φ,H) is a measurable functional calculus on a measurable space (K,Σ),
then the mapping

EΦ : Σ → L(H), EΦ(B) := Φ(1B) ∈ L(H) (B ∈ Σ)

is a projection-valued measure. That means, it has the following, easy-
to-check properties:

1) EΦ(B) is an orthogonal projection on H for each B ∈ Σ.
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2) EΦ(K) = I.

3) If B =
⊔∞
n=1Bn with all Bn ∈ Σ then

∑∞
n=1 EΦ(Bn) = EΦ(B) in the

strong operator topology.

Conversely, one can show that to each projection-valued measure E on (K,Σ)
there exists a unique measurable functional calculus ΦE such that E = EΦE .
In the literature, the notation∫

K

f(z) E(dz) = ΦE(f) (3.3)

is used frequently. The reason is that for bounded functions f one has

(Φ(f)x | y ) =

∫
K

f dµx,y (x, y ∈ H),

where µx,y is the complex measure on Σ defined by

µx,y(B) := (E(B)x | y ) (B ∈ Σ).

For unbounded functions f the interpretation of (3.3) is not as straightforward
any more since the description of the domain of this operator is implicit. We
leave it at that since these topics are not so important to us in the following.

Null Sets

Let (Φ,H) be a fixed measurable functional calculus on (K,Σ). Then a set
B ∈ Σ is called a Φ-null set if Φ(1B) = 0. The set

NΦ := {B ∈ Σ | Φ(1B) = 0}

of Φ-null sets is a σ-ideal of Σ (Exercise 3.4). Similarly to usual measure
theory, we say that something happens Φ-almost everywhere if it doesn’t
happen at most on a Φ-null set. For instance, the assertion “f = g Φ-almost
everywhere” for two functions f, g ∈M(K,Σ) means just that [ f 6= g ] ∈ NΦ.

Finally, the Φ-essential range of f ∈M(K,Σ) is defined by

essranΦ(f) := {λ ∈ C | ∀ ε > 0 : [ |f − λ| ≤ ε ] /∈ NΦ}. (3.4)

The following theorem lists the most important properties.

Theorem 3.8. Let (Φ,H) be a measurable functional calculus on (K,Σ), let
f, g ∈M(K,Σ) and c ≥ 0. Then the following assertions hold:

a) ker(Φ(f)) = ker
(
Φ(1[ f 6=0 ])

)
.

b) Φ(f) = Φ(g) ⇐⇒ f = g Φ-almost everywhere.

c) Φ(f) = 0 ⇐⇒ f = 0 Φ-almost everywhere.
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d) Φ(f) is injective ⇐⇒ f 6= 0 Φ-almost everywhere.

e) σ(Φ(f)) = σa(Φ(f)) = essranΦ(f).

f) f ∈ essranΦ(f) Φ-almost everywhere.

g) Φ(f) ∈ L(H), ‖Φ(f)‖ ≤ c ⇐⇒ |f | ≤ c Φ-almost everywhere.

Proof. a) Since f = f1[ f 6=0 ] one has Φ(f) = Φ(f)Φ(1[ f 6=0 ]). This yields

the inclusion “⊇”. Next, define g := 1
f 1[ f 6=0 ]. Then gf = 1[ f 6=0 ] and hence

Φ(g)Φ(f) ⊆ Φ(1[ f 6=0 ]). This yields the inclusion “⊆”.

c) By a), Φ(f) = 0 if and only if Φ(1[ f 6=0 ]) = 0, if and only if f = 0 Φ-almost
everywhere.

b) If f = g Φ-almost everywhere, then f − g = 0 Φ-almost everywhere and
hence, by c), Φ(f − g) = 0. Since f = g + (f − g), it follows by general
functional calculus rules that Φ(f) = Φ(g) + Φ(f − g) = Φ(g). The converse
implication is left as Exercise 3.5.

d) By a), Φ(f) is injective if and only if Φ(1[ f 6=0 ]) is injective, if and only if
Φ(1[ f 6=0 ]) = I (since it is an orthogonal projection), if and only if Φ(1[ f=0 ]) =
I− Φ(1[ f 6=0 ]) = 0.

e) This is Exercise 3.6.

f) Abbreviate M := essranΦ(f). For each λ ∈ C \M there is ελ > 0 such
that [ f ∈ B(λ, ελ) ] is a Φ-null set. Since C \M is open, it is σ-compact (why
precisely?) and hence countably many B(λ, ελ) suffice to cover C \M . Since
NΦ is a σ-ideal, it follows that [ f /∈M ] is a Φ-null set, and hence that f ∈M
Φ-almost everywhere. (This is similar to Exercise 2.6.)

g) If |f | ≤ c Φ-almost everywhere then f = f1[ |f |≤c ] Φ-almost everywhere.
Hence, by b),

‖Φ(f)‖ = ‖Φ(f1[ |f |≤c ])‖ ≤ ‖f1[ |f |≤c ]‖∞ ≤ c.

Conversely, suppose that ‖Φ(f)‖ ≤ c. Then essranΦ(f) = σ(Φ(f)) ⊆ B[0, c],
and hence |f | ≤ c by f).

We say that Φ is concentrated on a set B ∈ Σ if Bc is a Φ-null set. For
L ⊆ K denote by ΣL the trace σ-algebra

ΣL := {L ∩B | B ∈ Σ}.

If Φ is concentrated on L ∈ Σ then one can induce a functional calculus on
(L,ΣL) by defining

ΦL(f) := Φ(fL) (f ∈M(L,ΣL)),

where fL = f on L and fL = 0 on Lc. (Axioms (MFC2)–(MFC6) are imme-
diate, and Axiom (MFC1) holds since Φ is concentrated on L.)

Conversely, if (Φ,H) is a measurable functional calculus on (L,ΣL) then
by



40 3 Borel Functional Calculus

ΦK(f) := Φ(f |L) (f ∈M(K,Σ))

one obtains a measurable functional calculus (ΦK , H) on (K,Σ) concentrated
on L. For a measurable set L ⊆ K this establishes a one-to-one correspon-
dence between measurable functional calculi on (L,ΣL) and measurable func-
tional calculi on (K,Σ) concentrated on L.

3.4 Borel Functional Calculus

A measurable functional calculus on (K,Σ) is called a Borel functional
calculus if K is a metric space and Σ = Bo(K) is the Borel algebra. If K is
actually a subset of C, then the function z = (z 7→ z) is measurable. Hence,
the terminology of Section 2.5 applies, and Φ is called a (Borel) functional
calculus for the operator Φ(z).

Lemma 3.9. Let (Φ,H) be a Borel functional calculus on a set K ⊆ C for
an operator A ∈ C(H). Then the following assertions hold:

a) σp(A) ⊆ K and σ(A) ⊆ K with

R(λ,A) = Φ
( 1

λ− z

)
(λ /∈ K).

b) Φ(1K\σ(A)) = 0.

Proof. a) Let λ ∈ σp(A). Then λ − A = Φ(λ − z) is not injective. By
Lemma 3.6, the function λ−z must have a zero in K, hence λ ∈ K. If λ /∈ K
then (λ− z)−1 is a bounded measurable function on K, so

(λ−A)−1 = Φ((λ− z)−1)

is a bounded operator. It follows that λ ∈ ρ(A) and R(λ,A) = Φ((λ− z)−1).

b) Theorem 3.8.e) applied to f = z yields σ(A) = essranΦ(z). Hence, by f)
of the very same theorem, z ∈ σ(A) Φ-almost everywhere. This means that
K \ σ(A) = [ z /∈ σ(A) ] ∈ NΦ as claimed.

Remark 3.10. By the previous result, a Borel functional calculus on a set
K ⊆ C for an operator A on H is concentrated on K ∩ σ(A). It follows that
a Borel calculus for an operator A on C is essentially the same as a Borel
calculus for A on σ(A).

Uniqueness

Our next issue is uniqueness of a Borel functional calculus. The following
lemma, which is a functional analytic analogue of Dynkin’s lemma from mea-
sure theory, will be of great help.
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Lemma 3.11. Let E ⊆ Mb(C) be a set that contains C0(C) and is closed
under bp-convergence of sequences. Then E =Mb(C).

Proof. Let us call a subset F ⊆ Mb(C) “good” if it contains C0(C) and
is closed under bp-convergence. Without loss of generality we may suppose
that E is the smallest, i.e., the intersection of all good subsets.

For f ∈Mb(C) define

Ef :=
{
g ∈Mb(C) | f + g ∈ E

}
.

If f ∈ C0(C), then Ef is good, hence E ⊆ Ef . This means that C0(C) +E ⊆
E. In particular, it follows that Ef is good even if f ∈ E. Hence, E ⊆ Ef for
each f ∈ E, and therefore E + E ⊆ E. For λ ∈ C the set{

g ∈Mb(C) | λg ∈ E
}

is good, and hence λE ⊆ E. This establishes that E is a linear subspace of
Mb(C). In the same way one can show that if f, g ∈ E, then fg ∈ E, so E
is an algebra.

Certainly (how?) one can find a sequence of continuous functions ϕn of com-
pact support such that ϕn → 1 boundedly and pointwise. Hence 1 ∈ E, so
E is a unital algebra. It now is an easy exercise to show that the set

Σ :=
{
A ∈ Bo(C) | 1A ∈ E

}
is a σ-algebra (Exercise 3.8). Since bounded measurable functions are uniform
limits of simple functions, it follows that Mb(C, Σ) ⊆ E.

Finally, since for each closed ball B ⊆ C the characteristic function 1B is a
bp-limit of continuous functions with compact support (why?), Σ = Bo(C),
and we are done.

Remark 3.12. We have formulated and proved the lemma just for Mb(C)
only for the sake of convenience. It actually remains true if one replaces C by
any locally compact and separable metric space (and even in more general
situations), in particular for Rd. See Exercise 3.9.

Theorem 3.13. A Borel functional calculus (Φ,H) on C is uniquely deter-
mined by

a) its values on all functions f ∈Mb(C);

b) its value on the function z;

c) its values on the functions
1

1 + |z|2
and

z

1 + |z|2
;

d) its value on the function
z

(1 + |z|2)
1
2

.
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Proof. a) Let f be any measurable function on C. Then g := 1
1+|f |2 and

h := f
1+|f |2 are bounded and measurable. Moreover, g is nowhere zero and

hence, by Lemma 3.6.a, Φ(g) is injective and Φ(g−1) = Φ(g)−1. From f =
g−1h it then follows that

Φ(f) = Φ(g−1h) = Φ(g−1)Φ(h) = Φ(g)−1Φ(h).

So a) is proved.

b) Let t := 1
1+|z|2 and s := z

1+|z|2 . By Lemma 3.6 we have

Φ(t)−1 = Φ(t−1) = Φ(1 + |z|2) = I + Φ(|z|2) = I + Φ(z)∗Φ(z).

So Φ(t) is determined by Φ(z). Also, z t = s and Φ(t) is bounded (due to
(MFC5)), hence Φ(s) = Φ(z)Φ(t). Therefore also Φ(s) is determined by Φ(z),
and we have reduced b) to c).

c) and d) Suppose that Φ and Ψ are Borel calculi on C and let

E := {f ∈Mb(C) | Φ(f) = Ψ(f)}.

For the equality Φ = Ψ it suffices by a) to show that E = Mb(C). The
bp-continuity of a Borel functional calculus implies that E is closed under
bp-convergence. So, by Lemma 3.11 it suffices to show that C0(C) ⊆ E.

In order to establish this, let A := E ∩ C0(C) and note that A is a norm-
closed and conjugation-invariant subalgebra of C0(C). In case c), A contains
the functions

t :=
1

1 + |z|2
and s :=

z

1 + |z|2

and hence, by the Stone–Weierstrass theorem, A = C0(C). In case d), E
contains the function

g :=
z

(1 + |z|2)
1
2

,

hence also the function

h := 1− gg = 1− |g|2 =
1

1 + |z|2
.

So, in this case, h, gh ∈ A and, again by the Stone–Weierstrass theorem,
A = C0(C).

Corollary 3.14. Let K,L be Borel subsets of C and let (Φ,H) and (Ψ,H)
be Borel functional calculi on K and L, respectively, for the same operator A
on H. Then Φ and Ψ are both concentrated on K ∩ L and

ΦK∩L = ΨK∩L.

Proof. By Theorem 3.13 one has ΦC = ΨC. Hence
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Φ(1K\L) = ΦC(1K\L) = ΨC(1K\L) = Ψ(0) = 0.

The rest is simple.

3.5 Supplement: Commutation Results

We begin with an interesting application of the holomorphic functional cal-
culus for bounded operators from Chapter 1.

Theorem 3.15 (Fuglede-Putnam-Rosenblum). Let A, B be bounded
normal operators on the Hilbert spaces K, H, respectively, and let T ∈
L(H;K) such that

AT = TB.

Then A∗T = TB∗.

Proof. The proof makes use of the operator-valued exponential function

eS =

∞∑
n=0

1

n!
Sn (S ∈ L(H)),

in particular of the following properties:

1) if SQ = QS then eS+Q = eSeQ;

2) (eS)∗ = eS
∗
;

3) the function C→ C, z 7→
(

ezSx
∣∣ y) is holomorphic for all x, y ∈ H.

Note that from 1) it follows that eS is invertible and (eS)−1 = e−S . Hence if
Q is a skew-symmetric operator, i.e., if Q∗ = −Q, then(

eQ
)∗

= eQ
∗

= e−Q =
(
eQ
)−1

,

which implies that eQ is a unitary operator. Note that if S is any bounded
operator then S − S∗ is skew-symmetric.

After these preliminaries we turn to the proof of the claim. From the assump-
tion AT = TB we conclude eAT = T eB and hence, since A and B are both
normal operators,

eA
∗
T e−B

∗
= eA

∗−AeAT e−B
∗

= eA
∗−AT eBe−B

∗
= eA

∗−AT eB−B
∗
.

By the remarks from above, the operators eA
∗−A and eB

∗−B are both unitary,
in particular they are contractions. We therefore obtain

‖eA
∗
T e−B

∗
‖ ≤ ‖T‖.

Now let z ∈ C and replace A by zA and B by zB. Then, for fixed x, y ∈ H
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∗
x |y )

∣∣∣ ≤ ‖T‖‖x‖‖y‖.
Hence, the entire function z 7→

(
ezA

∗
T e−zB

∗
x
∣∣ y) is bounded, so by Liou-

ville’s theorem it is constant. Since at z = 0 it has the value (Tx | y ), we
conclude that

ezA
∗
T = T ezB

∗

for all z ∈ C. Looking at the power series representation we arrive at A∗T =
TB∗ as desired.

Corollary 3.16. Let (Φ,H1) and (Ψ,H2) be measurable functional calculi on
a measurable space (K,Σ). Let f ∈ M(K,Σ) and T ∈ L(H1;H2) such that
TΦ(f) ⊆ Ψ(f)T . Then

TΦ(f) ⊆ Ψ(f)T.

Proof. Let C ∈ Σ be such that f1C is bounded, let P := Φ(1C) and Q :=
Ψ(1C). Furthermore, let TC := QTP ∈ L(H1;H2) and define A := Φ(f) and
B := Ψ(f). The operators AC := Φ(f1C) = AP and BC := Ψ(f1C) = BQ
are bounded normal operators. Moreover,

TCAC = QTPAP ⊆ QTAP 2 = QTAP ⊆ QBTP
⊆ BQTP = BQQTP = BCTC .

Hence, Theorem 3.15 applies and yields

TCA
∗
C = B∗CTC .

But

A∗C = Φ(f1C)∗ = Φ(f1C) = Φ(f)Φ(1C) ⊇ Φ(1C)Φ(f) = PA∗

and, similarly, B∗C = B∗Q. Therefore

TCA
∗ = TCPA

∗ ⊆ TCA∗C = B∗CTC = B∗QTC = B∗TC .

Now let, for n ∈ N, Cn := [ |f | ≤ n ] and Pn := Φ(1Cn), Qn := QCn , and
Tn := TCn . Then, by the bp-continuity of the functional calculi, Tn → T
strongly. Since TnA

∗ ⊆ B∗Tn and B∗ is closed, it follows that

TA∗ ⊆ B∗T

as claimed.

With the help of Corollary 3.16 we now find the following commutation
result for Borel calculi.

Theorem 3.17 (Intertwining/Commutation). Let (Φ,H1) and (Ψ,H2)
be two Borel functional calculi on C and T : H1 → H2 a bounded linear
operator. Then the following assertions are equivalent:
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(i) TΦ(f) ⊆ Ψ(f)T for all f ∈M(C);

(ii) TΦ(f) = Ψ(f)T for all f ∈Mb(C);

(iii) TΦ(g) = Ψ(g)T for g =
z

(1 + |z|2)
1
2

;

(iv) TΦ(z) ⊆ Ψ(z)T .

Proof. It is clear that (i)⇒ (ii)⇒ (iii) and (i)⇒ (iv).

(ii)⇒ (i) is left as Exercise 3.10.

(iii)⇒ (ii): Define

E := {f ∈Mb(C) | TΦ(f) = Ψ(f)T}.

Then E is a bp-closed, unital subalgebra ofMb(C). It is conjugation-invariant
by Corollary 3.16. As in the proof of Theorem 3.13 it is now shown that g ∈ E
implies that E =Mb(C).

(iv)⇒ (ii): Let E be defined as before, and define A := Φ(z) and B := Ψ(z).
Then (iv) just tells that TA ⊆ BT . By Corollary 3.16, TA∗ ⊆ B∗T as well.
Since A∗ = Φ(z) and B∗ = Ψ(z), one has

TΦ(1 + |z|2) = T (I +A∗A) ⊆ (I +B∗B)T = Ψ(1 + |z|2)T.

This implies that (1+ |z|2)−1 ∈ E. Likewise, one has z(1+ |z|2)−1 ∈ E. Then,
as in the proof of Theorem 3.13 it follows that E =Mb(C).

Exercises

3.1. Prove Lemma A.21 from Appendix A.5.

3.2. Let Ω be a semi-finite measure space, a : Ω → C measurable and K :=
essran(a). Let H := L2(Ω). Show that the map

Φ :M(K)→ C(H), Φ(f) := Mf◦a

is a measurable functional calculus.

3.3. Let A be unital ∗-subalgebra of bounded functions on a set K and let

Φ : A → L(H)

be a ∗-representation of A on H. Suppose that for each 0 ≤ h ∈ A one has√
h ∈ A as well. Show that Φ is contractive, i.e., it satisfies

‖Φ(f)‖ ≤ ‖f‖∞ (f ∈ A).
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3.4. Let Φ : M(K,Σ) → C(H) be a measurable functional calculus. Show
that

NΦ := {B ∈ Σ | Φ(1B) = 0}

is a σ-ideal, i.e., it is closed under countable unions and under taking mea-
surable subsets.

3.5. Let Φ : M(K,Σ) → C(H) be a measurable functional calculus and
f, g ∈M(K,Σ). Complete the proof of Theorem 3.8.b) and show that

Φ(f) = Φ(g) ⇒ f = g Φ-almost everywhere.

[Hint: Prove this first for bounded functions f, g.]

3.6. Let Φ : M(K,Σ) → C(H) be a measurable functional calculus. Show,
for f ∈M(K,Σ), that

σ(Φ(f)) = σa(Φ(f)) = essranΦ(f).

(See (3.4) for the definition of essranΦ(f).)

3.7. Let Φ : M(K,Σ) → C(H) be a measurable functional calculus and
f ∈M(K,Σ). Show that by

Ψ :M(C)→ C(H), Ψ(g) := Φ(g ◦ f)

a Borel calculus is defined for A = Φ(f).

3.8. Let (K,Σ) be a measurable space and let E ⊆ Mb(K,Σ) be a unital
subalgebra, closed with respect to bp-convergence. Show that

E := {A ⊆ K | 1A ∈ E}

is a sub-σ-algebra of Σ.

3.9. Let (K, d) be a locally compact and separable metric space. Show that
there is a sequence of continuous functions ψn with compact support with
0 ≤ ψn ↗ 1 pointwise. Conclude that Lemma 3.11 holds mutatis mutandis
for subsets E ofMb(K). [Hint: Show first that there are sequences of compact
subsets (Kn)n and open subsets (Un)n such that Kn ⊆ Un ⊆ Kn+1 for all
n ∈ N and

⋃
nKn = K.]

3.10. Let (Φ;H1) and (Ψ,H1) be Borel functional calculi on C and let T :
H1 → H2 be a bounded operator. Show that the following assertions are
equivalent:

(i) T commutes with each Φ(f), f ∈Mb(C);

(ii) TΦ(f) ⊆ Φ(f)T for all Borel measurable functions on C.



Chapter 4

The Spectral Theorem

So far, we have only exploited properties of Borel functional calculi but not
seen so many examples of them. With the so-called “spectral theorem” for
normal operators on Hilbert spaces, this will change drastically.

4.1 Three Versions of the Spectral Theorem

The spectral theorem actually comes in different versions, three of which
shall be presented here. Probably the most striking (and most powerful) is
the following.

Theorem 4.1 (Spectral Theorem, Multiplicator Version). Let A be a
normal operator on a Hilbert space H. Then A is unitarily equivalent to a
multiplication operator on some L2-space over a semi-finite measure space.

To wit: To a normal operator A on a Hilbert space H there exists a semi-
finite measure space Ω, a measurable function a on Ω and a unitary operator
U : H → L2(Ω) such that

A = U−1Ma U.

We shall call this a multiplication operator representation of the normal
operator A. So Theorem 4.1 can be rephrased as: Each normal operator on
a Hilbert space has a multiplication operator representation.

In this form, the spectral theorem can be seen as a far-reaching gener-
alization of a well-known theorem about unitary diagonalization of normal
matrices or the well-known spectral theorem for compact normal operators
[4, Thm. 13.11]. Indeed, the unitary equivalence to a multiplication operator
is a kind of continuous diagonalization.

Actually, one can say much more: The measure space can be chosen to be
a Radon measure on a locally compact space and the multiplier function is
continuous. And even more, one can simultaneously “diagonalize” any family

47
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of pairwise commuting (one would have to define what that is) normal op-
erators on a Hilbert space. However, we shall not treat these generalizations
here.

From the multiplicator version it is only a small step to the version which is
of most interest to us in this course.

Theorem 4.2 (Spectral Theorem, Functional Calculus Version). Let
A be a normal operator on a Hilbert space H. Then A has a unique Borel
functional calculus on σ(A).

Proof. Fix a unitary equivalence, say U , to a multiplication operator Ma on
an L2-space. Now carry over the functional calculus for Ma to one for A by

Φ(f) := U−1Mf◦aU.

This yields the existence part of Theorem 4.2, the uniqueness has been shown
in Theorem 3.13.

The main advantage of this second formulation of the spectral theorem
is that the functional calculus for a normal operator is unique, whereas the
multiplication representation is not.

Finally, here is the third version of the spectral theorem.

Theorem 4.3 (Spectral Theorem, Spectral Measure Version). Let A
be a normal operator on a Hilbert space H. Then there is a unique projection-
valued measure E defined on the Borel subsets of C such that

A =

∫
C
z E(dz).

This theorem follows from Theorem 4.2 and Theorem 3.13 by the one-to-
one correspondence of measurable functional calculi and projection-valued
measures that has been mentioned in Chapter 3. We shall not use this version
of the spectral theorem.

Working with the Spectral Theorem

We shall prove the spectral theorem below. Before, let us assume its validity
and work with it.

From now on, if A is a normal operator on a Hilbert space H then we
denote by ΦA its (unique) Borel functional calculus on σ(A). Note that we
may as well consider ΦA a Borel calculus on C (which is automatically con-
centrated on σ(A), cf. Remark 3.10). For a Borel measurable function f on
σ(A) we also write

f(A) := ΦA(f)
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frequently. The ΦA-null sets are just called A-null sets and abbreviated by

NA := NΦA = {B ∈ Bo(C) | 1B(A) = 0}.

Note that the presence of A-null sets accounts for the fact that the Borel
functional calculus for A may be concentrated on proper subsets of σ(A).

Example 4.4. It is easy to see that λ ∈ C is an eigenvalue of the normal
operator A if and only if {λ} is not a ΦA-null set. In this case, 1{λ}(A) is the
orthogonal projection onto the corresponding eigenspace (Exercise 4.1).

It follows that if A has no eigenvalues then its functional calculus is con-
centrated on each set σ(A) \ {λ} for each λ ∈ σ(A).

One can see this phenomenon most clearly in a multiplication operator
representation of A: In the situation of Example 3.5, where H = L2(Ω),
A = Ma and K = essran(a) = σ(A), the original functional calculus is

L0(K, ν)→ C(H)

but the Borel calculus is just the composition

ΦA :M(K)→ L0(K, ν)→ C(H).

It is easy to see that the ν-null sets are precisely the ΦA-null sets, i.e.,

ν(B) = 0 ⇐⇒ 1B(A) = 0

for each Borel set B ⊆ C. Hence, L0(K, ν) = M(C)/ ∼NA (where ∼NA
denotes the equivalence relation “equality ΦA-almost everywhere”). Observe
that this factor algebra does not depend on the multiplication operator rep-
resentation.

For a normal operator A and a Borel measurable function f on C we let

essranA(f) := {λ ∈ C | ∀ ε > 0 : [ |f − λ| < ε ] /∈ NA}

be the A-essential range of f , cf. Exercise 3.6.

Theorem 4.5 (Composition Rule and Spectral Mapping Theorem).
Let A be a normal operator on a Hilbert space, let f ∈M(C) and B := f(A).
Then B is normal and for each g ∈M(C) one has

g(B) = g(f(A)) = (g ◦ f)(A).

Moreover,
σ(f(A)) = essranA(f) ⊆ f(σ(A)). (4.1)

If f is continuous, one has even σ(f(A)) = f(σ(A)).
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Proof. The definition Φ(g) := ΦA(g ◦ f) = (g ◦ f)(A) for g ∈M(C) yields a
Borel functional calculus on C for the operator B (Exercise 3.7). By unique-
ness, Φ(g) = ΦB(g) = g(f(A)) for all g ∈M(C).

The identity σ(f(A)) = essranA(f) was the subject of Exercise 3.6. If λ /∈
f(σ(A)) then λ has a positive distance ε > 0 to f(σ(A)). Hence, σ(A) ⊆
[ |f − λ| ≥ ε ] and so [ |f − λ| < ε ] is an A-null set. Therefore, λ /∈ essranA(f),
which concludes the proof of (4.1).

Finally, suppose that f is continuous, λ ∈ C and f(λ) /∈ essranA(f). Then
there is ε > 0 such that [ |f − f(λ)| < ε ] ∈ NA. Since f is continuous, there
is δ > 0 such that

[ |z− λ| < δ ] = B(λ, δ) ⊆ [ |f − f(λ)| < ε ] .

Since NA is closed under taking measurable subsets, [ |z− λ| < δ ] ∈ NA. This
means that λ /∈ essranA(z) = σ(A), by what we have shown above.

We note that for the last part of Theorem 4.5 it suffices that the function f
is continuous on σ(A). Indeed, in this case one can find a continuous function
f̃ on C that coincides with f on σ(A) and hence satisfies f̃(A) = f(A).

Note further that, in the case that σ(A) is compact (e.g., if A is bounded)
and f is continuous, Theorem 4.5 yields the spectral mapping identity

σ(f(A)) = f(σ(A)).

See also Exercise 4.2.

Proof of the Spectral Theorem

In the remainder of this chapter we shall present a proof of the spectral
theorem. This will happen in four steps. After the first three, the spectral
theorem for self-adjoint operators will be established and this is sufficient in
many cases. Normal but not self-adjoint operators are treated in an optional
supplement section.

Some of the arguments can be greatly simplified when one is willing to use
Gelfand theory, in particular the commutative Gelfand–Naimark theorem.
This approach can be found, e.g., in our ealier book [3, App.D], see also [2,
Chap. 18]. However, for this course we have decided to avoid that theory.

4.2 Proof: Bounded Self-Adjoint Operators

In the first step of the proof we establish a continuous functional calculus
for a bounded self-adjoint operator. By this we mean a calculus involving
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continuous (instead of measurable) functions. We closely follow [7, Section
5.1].

Let A ∈ L(H) be a bounded, self-adjoint operator on H and let a, b ∈ R such
that σ(A) ⊆ [a, b]. Fix p ∈ C[z], denote by p∗ the polynomial p∗(z) := p(z),
and let q := pp∗. By the spectral inclusion theorem for polynomials1,

σ(q(A)) ⊆ q(σ(A)).

Now observe that p(A)∗p(A) = p∗(A)p(A) = q(A). Hence, q(A) is self-adjoint

and therefore its norm equals its spectral radius. Since q = |p|2 on R,

‖p(A)‖2 = ‖p(A)∗p(A)‖ = ‖q(A)‖ = r(q(A)) = sup{|λ| | λ ∈ σ(q(A))}
≤ sup{|q(µ)| | µ ∈ σ(A)} ≤ ‖q‖∞,σ(A) ≤ ‖p‖2∞,[a,b].

It follows that the polynomial functional calculus for A is contractive for the
supremum-norm on [a, b]. By the Weierstrass approximation theorem, the
polynomials are dense in C[a, b]. A standard result from elementary functional
analysis now yields a bounded (in fact: contractive) linear map

Φ : C[a, b]→ L(H)

such that Φ(p) = p(A) for p ∈ C[z]. It is easily seen that Φ is a unital
∗-homomorphism. We have established the following result.

Theorem 4.6. Let A be a bounded self-adjoint operator on a Hilbert space
H and [a, b] a real interval containing σ(A). Then there is a unique unital
∗-homomorphism

Φ : C[a, b]→ L(H)

such that Φ(z) = A.

Note that each operator Φ(f) can be approximated in operator norm by
operators of the form p(A), where p is a polynomial. This implies the following
corollary.

Corollary 4.7. In the situation of Theorem 4.6, let B be a closed operator
on H such that AB ⊆ BA. Then Φ(f)B ⊆ BΦ(f) for each f ∈ C[a, b].

4.3 Proof: From Continuous Functions to Multiplication
Operators

In the next step we start with a continuous functional calculus and construct
a multiplication operator representation for it. Although we want to apply it
in the case K = [a, b] first, we formulate it in greater generality for later use.

1 One even has equality here, see Exercise 1.1.
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Theorem 4.8. Let K be a compact metric space and let Φ : C(K) → L(H)
be a unital ∗-homomorphism. Then there is a semi-finite measure space Ω, a
unitary operator U : H → L2(Ω), and a unital ∗-homomorphism Ψ : C(K)→
L∞(Ω) such that

MΨ(f) = U Φ(f)U−1 (f ∈ C(K)).

Proof. The construction of the measure space Ω employs the Riesz–Markov–
Kakutani representation theorem (RMK theorem) for positive linear function-
als on C(K), see [2, App.E] or [6, Chap. 2] or [5, Chap. IX]. Namely, for each
vector x ∈ H the mapping

C(K)→ C, f 7→ (Φ(f)x |x)

is a linear functional. It is positive, since for f ∈ C(K)(
Φ(|f |2)x

∣∣ x) = (Φ(f)∗Φ(f)x |x) = ‖Φ(f)x‖2 ≥ 0. (4.2)

Hence, the RMK theorem yields a unique positive regular Borel measure µx
on K that represents this functional, i.e., with

(Φ(f)x |x) =

∫
K

f dµx (f ∈ C(K)). (4.3)

Specializing f = 1 we obtain

‖µx‖ = µx(K) = ‖x‖2.

Combining (4.2) and (4.3) we find

‖f‖2L2(K,µx) = ‖Φ(f)x‖2

for f ∈ C(K) and x ∈ H. Hence, for fixed x ∈ H the map

Vx : C(K)→ H, f 7→ Φ(f)x

extends to an isometric isomorphism (i.e., to a unitary operator) of Hilbert
spaces Vx : L2(µx)→ Z(x), where

Z(x) = Z(x;Φ) := cl
{
Φ(f)x | f ∈ C(K)

}
= cl

{
Sx | S ∈ ran(Φ)

}
is the cyclic subspace (with respect to Φ) generated by x ∈ H. By virtue of

the unitary operator Vx, multiplication by f on L2(µx) is unitarily equivalent
with application of Φ(f) on Z(x). Indeed, for f, g ∈ C(K) one has

VxMfg = Vx(fg) = Φ(fg)x = Φ(f)Φ(g)x = Φ(f)Vxg.

Since C(K) is dense in L2(µx), VxMf = Φ(f)Vx.
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At this stage we would be done if we could find a vector x ∈ H with Z(x) = H
(called a cyclic vector for Φ). However, cyclic vectors need not exist, so we
have to refine our argument. Note that ran(Φ) is a ∗-subalgebra of L(H)
and Z(x) is ran(Φ)-invariant. Hence, so is Z(x)⊥. Therefore, one can employ
Zorn’s lemma to decompose H orthogonally into cyclic subspaces as

H =
⊕
α

Z(xα) ∼=
⊕
α

L2(K,µxα) (4.4)

for some family (xα)α of unit vectors in H.

Next, we interpret the Hilbert space direct sum of L2-spaces in (4.4) as an
L2-space of a larger measure space. To this aim, let Kα := K×{α} be a copy
of K for each α, so that the Kα are pairwise disjoint. Define Ω :=

⊔
αKα,

Σ := {B | B ∩Kα ∈ Bo(Kα) for all α}

and µ :=
⊕

α µxα , i.e.,

µ(B) :=
∑
α

µxα(B ∩Kα) (B ∈ Σ).

Then Σ is a σ-algebra and µ is a measure on it. With Ω := (Ω,Σ, µ) we find

H =
⊕
α

Z(xα) ∼=
⊕
α

L2(K,µxα) ∼= L2
(⊔
α

Kα,
⊕
α

µxα

)
= L2(Ω).

For f ∈ C(K) define Ψ(f) ∈ L∞(Ω) by

Ψ(f) := f on Kα
∼= K.

Then Ψ : C(K)→ L∞(Ω) is a unital ∗-homomorphism. Moreover, by virtue of
the above unitary equivalence the operator Φ(f) on H is unitarily equivalent
with multiplication by Ψ(f) on L2(Ω).

Combining Theorem 4.8 with Theorem 4.6 we arrive at the spectral theorem
for bounded self-adjoint operators. Indeed, for a bounded self-adjoint operator
A on a Hilbert space H we first find the continuous functional calculus on
[a, b] such that Φ(z) = A and then a semi-finite measure space Ω and a unitary
operator U : H → L2(Ω) such that UAU−1 is a multiplication operator.

This proves the spectral theorem (multiplicator version) for bounded self-
adjoint operators. Consequently, also the functional calculus version holds for
this special case.
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4.4 Proof: From Bounded to Unbounded Operators

In this section we suppose the spectral theorem to be known for bounded
self-adjoint or normal operators and show how one can derive the result for
unbounded operators from it.

Let D := {z ∈ C | |z| < 1} be the open unit disc and T := ∂D = {z ∈
C | |z| = 1} its boundary. The function

η : C→ D, η(w) :=
w

(1 + |w|2)
1
2

is bijective, with inverse

η−1 : D→ C, η−1(z) =
z

(1− |z|2)
1
2

.

Given a densely defined and closed operator A (on a Hilbert space), one can
define

ZA := AT
1
2

A , with TA = (I +A∗A)−1.

Note that by Theorem 3.2, TA is a bounded, injective and positive, self-

adjoint operator. So σ(TA) ⊆ R+ and hence the square root T
1
2

A is defined
via the continuous functional calculus (Theorem 4.6).

The operator ZA—which could be seen as an ad hoc definition of η(A)—is
called the bounded transform of A. It goes back to [8] and has been used
in our context originally by Schmüdgen, see e.g. [7, Chapter 5] or [1]. The
following lemma, which is [7, Lemma 5.8], summarizes the most important
properties of the bounded transform.

Lemma 4.9. Let A be a densely defined and closed operator on H. Then its
bounded transform ZA has the following properties:

a) ZA is a bounded operator with ‖ZA‖ ≤ 1 and

TA = (I +A∗A)−1 = I− Z∗AZA.

b) A is uniquely determined by ZA.

c) If A is normal then Z∗A = ZA∗ .

d) If A is self-adjoint or normal, then so is ZA.

Proof. We abbreviate T = TA and Z = ZA.

a) As a product of a closed and a bounded operator, Z is closed. Note that
ran(T ) = dom(A∗A) ⊆ dom(A). Hence, AT is fully defined and therefore

ZT
1
2 = AT ∈ L(H).
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It follows that ran(T
1
2 ) ⊆ dom(Z). But T

1
2 is an injective bounded self-

adjoint operator (its square is injective!), and hence it must have dense range.

Therefore, Z is densely defined. Now take x = T
1
2 y ∈ ran(T

1
2 ) and observe

that

‖Zx‖2 = (ATy |ATy ) = (A∗ATy |Ty ) ≤ ( (I +A∗A)Ty |Ty )

= (y |Ty ) =
∥∥T 1

2 y
∥∥2

= ‖x‖2.

Hence, Z is closed and contractive on a dense subspace and therefore a
bounded operator with ‖Z‖ ≤ 1. Finally, since Z = AT

1
2 one has Z∗ ⊇ T 1

2A∗,
and hence

Z∗ZT
1
2 ⊇ T 1

2A∗AT = T
1
2 (I +A∗A)T − T 1

2T = T
1
2 − T 1

2T = (I− T )T
1
2 .

Since T
1
2 has dense range, Z∗Z = I− T as claimed.

b) Suppose that A and B are densely defined, closed operators on H such
that ZA = ZB . Then, by a),

(I +A∗A)−1 = TA = I− Z∗AZA = I− Z∗BZB = TB = (I +B∗B)−1.

It follows that A∗A = B∗B and AT = ZAT
1
2 = ZBT

1
2 = BT . So A = B

on dom(A∗A) = dom(B∗B). But this space is a core for both operators
(Theorem 3.2), so A = B as claimed.

c) Let A be normal. Then TA∗ = TA = T . Also, by Corollary 3.3, TA ⊆ AT .
Then Corollary 4.7 applied to T (bounded) and A (unbounded) yields

T
1
2A ⊆ AT 1

2 .

Hence,

ZA∗ = A∗T
1
2 = A∗(T

1
2 )∗

!
= (T

1
2A)∗ ⊇ (AT

1
2 )∗ = Z∗A

by i) and g) of Lemma A.21. Since both operators Z∗A and ZA∗ are bounded,
equality follows.

d) If A is self-adjoint then, by c), Z∗A = ZA∗ = ZA is also self-adjoint. If A is
just normal, then by a) and c)

Z∗AZA = I− TA = I− TA∗ = Z∗A∗ZA∗ = ZAZ
∗
A,

and so ZA is normal, too.

With the help of the bounded transform we obtain a result that allows
to establish the spectral theorem for unbounded operators from the spectral
theorem for bounded ones.

Corollary 4.10. Let A be a normal operator on the Hilbert space H. If ZA
has a multiplication operator representation, then so has A.
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Proof. By hypothesis, we find a semi-finite measure space Ω, a bounded
measurable function ζ on Ω and a unitary U : H → L2(Ω) such that
U−1MζU = ZA.

Since ‖ZA‖ ≤ 1, essran(ζ) ⊆ D. But more is true: Since I − Z∗AZA = T is
injective, the same is true for its multiplication operator equivalent M1−|ζ|2 .
By Theorem 2.1.b) this implies that |ζ| < 1 almost everywhere, hence we can
define

a = η−1 ◦ ζ =
ζ

(1− |ζ|2)
1
2

∈ L0(Ω).

We claim that A is equivalent to Ma via U . To prove this, let the operator
B on H be defined by B := U−1MaU . Then B is a normal operator and it
is easy to show that

ZB = U−1ZMa
U = U−1Mη◦aU = U−1MζU = ZA.

From Lemma 4.9.b it then follows that A = B.

Combining Corollary 4.10 with the results from the previous section es-
tablishes the spectral theorem for all self-adjoint operators.

4.5 Supplement: Normal Operators

In this supplement we establish the spectral theorem for all normal operators.
Reviewing the results of the previous sections, it suffices to prove the following
analogue of Theorem 4.6.

Theorem 4.11. Let A be a bounded normal operator on a Hilbert space H.
Then for some real interval [a, b] there is a (unique) unital ∗-homomorphism

Φ : C([a, b]2)→ L(H)

such that Φ(z) = A.

Indeed, this theorem combined with Theorem 4.8 for K = [a, b]2 yields
a multiplication operator representation for every bounded normal operator,
and Lemma 4.9 together with Corollary 4.10 then yields such a representation
for each normal operator.

Proof. Define the bounded self-adjoint operators B and C by

B :=
1

2
(A+A∗) and C :=

1

2i
(A−A∗).

Note that CB = BC, since A is normal. The idea for the proof is that
A = B + iC and a functional calculus for A is the same as a joint functional
calculus for B and C.
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Choose [a, b] such that it contains σ(B) and σ(C). Since B and C are bounded
self-adjoint operators, each of them has a measurable functional calculus ΦB
and ΦC , say, and both are concentrated on [a, b]. Since CB = BC one has
ΦB(f)ΦC(g) = ΦC(g)ΦB(f) for all f and g (Corollary 4.7).

Consider the space

A := span{1Q ⊗ 1R | Q, R subintervals of [a, b]}

of rectangle step functions on [a, b]2. We define a linear map

Φ : A → L(H)

through the requirement that

Φ(1Q ⊗ 1R) := ΦB(1Q) ΦC(1R).

(Of course, one has to show that Φ is well defined, see Exercise 4.9.) Obviously,
A is a ∗-algebra and Φ is a unital ∗-homomorphism. (Here one needs that
the two calculi commute.)

Now we observe that if 0 ≤ h ∈ A then
√
h ∈ A. This is a consequence of the

fact that h can be written as

h =
∑
j

cj1Qj ⊗ 1Rj

where the rectangles Qj × Rj are pairwise disjoint. (Recall this from your
classes on Lebesgue integration.) Hence, by Exercise 3.3 we conclude that Φ
is bounded and one has

‖Φ(f)‖ ≤ ‖f‖∞
for all f ∈ A.

By elementary functional analysis, Φ has a continuous linear extension to the
‖ · ‖∞-closure clA of A. This extension, again called Φ, is of course a unital
∗-homomorphism. But C([a, b]2) ⊆ clA and so we have found the desired
continuous functional calculus.

It remains to show that Φ(z) = A. Observe that2

z = (x⊗ 1) + i(1⊗ x).

Hence,
Φ(z) = ΦB(x)ΦC(1) + iΦB(1)ΦC(x) = B + iC = A.

And this concludes the proof.

2 We denote by x the real coordinate function, i.e., the mapping x : R→ R, x 7→ x.
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Exercises

4.1. Let A be a normal operator on a Hilbert space H.

a) Show that for λ ∈ C the operator ΦA(1{λ}) is the orthogonal projection
onto ker(λ − A). Conclude that λ is an eigenvalue of A if and only if
{λ} is not a ΦA-null set.

b) Show that
ΦA(f)x = f(λ)x

for all f ∈M(C) and x ∈ ker(λ−A). Conclude the spectral inclusion
theorem for the point spectrum

f(σp(A)) ⊆ σp(f(A)).

c) Show that any isolated point of σ(A) is an eigenvalue of A.

4.2. Provide examples of normal operators A on a Hilbert space H and mea-
surable functions f on C such that

a) f(σ(A)) 6⊆ σ(f(A));

b) f is continuous and σ(f(A)) 6= f(σ(A)).

4.3 (Compatibility with the Dunford–Riesz Calculus). Let A be a
bounded normal operator on a Hilbert space H and let f be a holomorphic
function defined on an open set U ⊆ C containing σ(A). Show that ΦA(f)
coincides with Φ(f), where Φ : Hol(U)→ L(H) is the Dunford–Riesz calculus
for A.

4.4. Let A be a normal operator on a Hilbert space H. Show that if A is
bounded, then

‖A‖ = r(A).

[One proof uses the spectral radius formula, another the Borel functional
calculus.]

4.5. Let A be a bounded operator on a Hilbert space H. Show that a closed
linear subspace F of a Hilbert space H is A∗-invariant if and only if F⊥ is
A-invariant. Then work out the Zorn argument mentioned in the proof of
Theorem 4.8.

4.6. Show that the function

η(z) :=
z

(1 + |z|2)
1
2

is a bijection C→ D with inverse given by

η−1(w) =
w

(1− |w|2)
1
2

.
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4.7. Let U : H → K be a unitary operator between the Hilbert spaces H
and K. Suppose that A and B are closed and densely defined operators on H
and K, respectively, satisfying B = UAU−1. Show that B∗ = UA∗U−1 and

ZB = UZAU
−1,

where ZA and ZB are the respective bounded transforms.

4.8. Let H := L2(0, 1), k(t, s) := min(s, t) for s, t ∈ [0, 1] and A ∈ L(H)
given by

Af(t) :=

∫ 1

0

k(t, s)f(s) ds (f ∈ H).

Show that A is a bounded self-adjoint operator and determine a multi-
plication operator representation for it. [Hint: A is compact and satisfies
ran(A) ⊆ C1[0, 1]. What are the eigenvalues and eigenspaces of A?]

4.9. (This exercise only regards the supplementary Section 4.5.) Let F and
G be linear spaces of scalar-functions on the sets X and Y , respectively.
Suppose that β : F × G → E is a bilinear mapping, where E is any linear
space. Show that there is a unique linear mapping

B : F ⊗G→ E such that B(f ⊗ g) = β(f, g).

Here f ⊗ g denotes the function

f ⊗ g : X × Y → C, (f ⊗ g)(x, y) := f(x) g(y)

and F ⊗G is the linear span (within the functions on X×Y ) of all functions
f ⊗ g with f ∈ F and g ∈ G.
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Chapter 5

Fourier Analysis

We know already that functional calculus theory is pretty much the same
as the Banach space representation theory of certain algebras (but without
an a priori restriction to bounded operators). On the other hand, algebra
representations are closely related to (semi)group representations, and this is
what we are going to explore in this and the next chapter. We shall mostly
confine to the additive group Rd and certain subsemigroups of it. However,
many of the treated results have generalizations to all or all Abelian locally
compact topological groups and their subsemigroups.

5.1 Strongly Continuous Semigroup Representations

In the following, S denotes a closed subsemigroup of Rd. This means that
S ⊆ Rd is closed and S + S ⊆ S. In addition we shall suppose always that
0 ∈ S unless otherwise stated.1 Note that if S is a subsemigroup of Rd then
S−S is a subgroup. We are mostly interested in the cases S = Rd+ and S = Rd
(“continuous case”) as well as S = Zd+ and S = Zd (“discrete case”)2.

A representation of S (by bounded operators) on a Banach space X is a
mapping

T : S→ L(X), T = (Tt)t∈S

such that
T0 = I and Tt+s = TtTs (t, s ∈ S). (5.1)

Two representations T 1, T 2 of S on the same Banach space X are called
commuting if

T 1
t T

2
s = T 2

s T
1
t for all t, s ∈ S.

1 Algebraists would call S a monoid, but this term is quite uncommon among analysts.
2 We use Z+ synonymously with N0 here.
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If S is actually a subgroup of Rd then (5.1) implies that each Tt is invert-
ible with T−1

t = T−t. Note that we usually prefer index notation but shall
switch to the alternative “T (t)” whenever it is convenient. Also, instead of
“semigroup representation” we shall simply say “semigroup” as long as the
meaning is clear.

Remark 5.1. Representations π of S = N0 are in one-to-one correspondence
with single operators T ∈ L(X), via T = π1 and πn = Tn. Analogously, the
representations of Z correspond bijectively to invertible operators.

In the same fashion, representations of S = Zd+ (S = Zd) correspond
to d-tuples (T1, T2, . . . , Td) of pairwise commuting, bounded (and invertible)
operators.

Representations T of S = Rd+, sometimes called d-parameter semi-
groups, correspond to d-tuples of pairwise commuting 1-parameter semi-
groups T 1, . . . , T d via

T (t1e1 + · · ·+ tded) = T 1(t1) · · ·T d(td) (t1, . . . , td ≥ 0),

where e1 . . . , ed is the canonical basis of Rd.

Let Ω be any metric (or topological) space and T : Ω → L(X) any mapping.
Then the orbit of x ∈ X under T is the mapping

T (·)x : Ω → X, t 7→ Ttx.

(Sometimes, also the image of this mapping is called the orbit of x, but this
equivocation is unproblematic.) For us, the following continuity notions shall
be important:

1) strong continuity: each orbit T (·)x, x ∈ X, is continuous.

2) weak∗ continuity: X = Y ′ for some Banach space Y and each “weak∗

orbit” 〈T (·)y′, y〉, y′ ∈ Y ′ and y ∈ Y , is continuous.

3) operator norm continuity: the mapping t 7→ Tt is continuous for the
operator norm.

Of course, one could consider also weak continuity, but in the cases we are
interested in, weak and strong continuity are equivalent (see, e.g., [1, p. I.5.8]).
Moreover, for semigroup representations operator norm continuity is far too
restrictive. A good and widely applicable theory exists for strongly continuous
semigroups, so this will be our standard assumption. Weakly∗ continuous
mappings appear naturally when passing from a strongly continuous mapping
T : Ω → L(X) to its dual T ′ : Ω → L(X ′), defined by

T ′t := (Tt)
′ for all t ∈ Ω.

In the following, we shall concentrate mostly on representations of the group
Rd. Proper semigroup theory will appear in the next chapter.
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5.2 The Regular Representations

There is a fairly straightforward way to construct representations of Rd. Just
take a Banach space X of functions f on Rd such that for each t ∈ Rd the
function

τtf := f(· − t)

is again a member of X. (Such a space is called shift invariant.) Then τt is
a linear mapping on X and t 7→ τt satisfies the semigroup law. If, in addition,
each τt is a bounded operator on X, then τ is a representation of Rd. It
is called the regular representation or the right shift group on X. (If
d = 1 and t ≥ 0 then the graph of τtf is just the graph of f shifted by t to
the right.)

Examples 5.2. Examples of regular representations abound:

1) The space Cb(Rd) of bounded and continuous functions is shift invari-
ant and each operator τt is an invertible isometry on it. Hence, τ is
a uniformly bounded d-parameter group. However, it is not strongly
continuous.

2) One can ask for the largest shift invariant subspace of Cb(Rd) on which
the shift group is strongly continuous. This is UCb(Rd) the space of
bounded and uniformly continuous functions (Exercise 5.1).

3) The space C0(Rd) of continuous functions vanishing at infinity is a shift
invariant subspace of UCb(Rd). Hence τ is a strongly continuous group
on it.

4) The space Lp(Rd) of Lebesgue-p-integrable functions (modulo null func-
tions) (1 ≤ p <∞) is shift invariant and each τt is an invertible isometry
on it. The shift group τ is strongly continuous on it (Exercise 5.1).

5) The space L∞(Rd) of bounded measurable functions modulo Lebesgue
null functions is shift invariant and each operator τt is an invertible
isometry on it. As in Example 1), this shift group τ is not strongly
continuous. However, if we view L∞(Rd) as the dual of L1(Rd), it is
weakly∗ continuous. (It is the dual of the “left shift” group (τ−t)t∈Rd on
L1(Rd).)

6) Examples 1)–4) have versions for Banach space valued functions. That
is, if X is a Banach space, the shift group is (well-defined and) isometric
and strongly continuous on the spaces UCb(Rd;X) and C0(Rd;X). This
is as easy to prove as in the case X = C.
Also, for 1 ≤ p <∞ the shift group is (well-defined and) isometric and
strongly continuous on the Bochner space Lp(Rd;X). (This is mentioned
here only for completeness, but will be important from Chapter 11 on.)
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The Shift Group on M(Rd)

Recall from Appendix A.7 that the space M(Rd) of complex (regular) Borel
measures on Rd is a Banach space and can, by the Riesz–Markov–Kakutani
theorem (Theorem A.41), be isometrically identified with the dual of C0(Rd)
via integration. We shall do this, tacitly, henceforth.

The support of a measure µ ∈ M(Rd) is

supp(µ) = supp(|µ|) = {x ∈ Rd | ∀ ε > 0 : |µ| (B(x, ε)) > 0}.

This is a closed subset of Rd and one can easily show that |µ| (Rd\supp(µ)) =
0. The space Mc(Rd) of measures with compact support is norm-dense in
M(Rd), see Exercise 5.3.

Each g ∈ L1(Rd) can be (isometrically) identified with the complex mea-
sure gλ, defined by

(gλ)(B) :=

∫
Rd

1Bg dλ =

∫
B

g dλ (B ∈ Bo(Rd)),

where λ denotes the Lebesgue measure. Integration with respect to gλ is
performed according to the formula∫

Rd
f d(gλ) =

∫
Rd
fg dλ (f ∈Mb(Rd)).

In the following, the map L1(Rd) → M(Rd), g 7→ gλ, is called the natural
embedding. We shall usually identify g with gλ and use the notation gλ
only in exceptional cases.

For µ ∈ M(Rd) and t ∈ Rd we define τtµ ∈ M(Rd) by∫
Rd
f d(τtµ) =

∫
Rd
τ−tf dµ (5.2)

for all f ∈ C0(Rd). This just means that τt on M(Rd) is the Banach space
dual operator to the operator τ−t on C0(Rd). As τ is strongly continuous
on C0(Rd), it is weakly∗ continuous on M(Rd). As an application of Lemma
3.11 and Remark 3.12 we obtain that (5.2) holds even for all bounded Borel
measurable functions f ∈Mb(Rd) (Exercise 5.2).

The definition of τt on M(Rd) is compatible with the definition of τt on
L1(Rd) under the natural embedding. Indeed, for g ∈ L1(Rd) and t ∈ Rd:∫

Rd
f d(τt(gλ)) =

∫
Rd
τ−tf d(gλ) =

∫
Rd

(τ−tf) g dλ =

∫
Rd
f (τtg) dλ

for all f ∈ C0(Rd). And this implies that τt(gλ) = (τtg)λ.

The reflection operator S is defined on functions f by
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(Sf)(s) = f(−s) (s ∈ Rd).

On M(Rd), the reflection is defined by its dual action, i.e. by∫
Rd
f d(Sµ) =

∫
Rd
Sf dµ (5.3)

for f ∈ C0(Rd). As before, this formula extends to all f ∈Mb(Rd) (Exercise
5.2). Note that

τtS = Sτ−t
on functions as on measures. Also, Sµ = Sµ for each µ ∈ M(Rd). Note further
that the definition of Sµ is compatible with the natural embedding, i.e.

(Sg)λ = S(gλ)

for all g ∈ L1(Rd). All this is easy to see and the proofs are left to the reader.

If µ ∈ M(Rd) and g ∈Mb(Rd) then their product gµ ∈ M(Rd) is defined by∫
Rd
f d(gµ) :=

∫
Rd
fg dµ (5.4)

for all f ∈ C0(Rd). Again, this formula remains true for f ∈Mb(Rd). Clearly,

‖gµ‖M ≤ ‖g‖∞‖µ‖M.

Also, one has the formulae

S(gµ) = (Sg)(Sµ) and gµ = g µ (µ ∈ M(Rd), g ∈Mb(Rd)).

Again, the simple verification is left to the reader.

5.3 Averaging a Representation and the Convolution of
Measures

We now come to one of the central constructions in the theory of functional
calculus.

Let E ⊆ Rd be a closed subset. Functions on E (to some Banach space)
can be identified with their extension by 0 to all of Rd, and we shall do this
(tacitly) whenever it is convenient. Also, complex measures µ ∈ M(E) are
identified with their canonical (zero-)extension to Rd so that

M(E) ∼= {µ ∈ M(Rd) | supp(µ) ⊆ E}

isometrically.
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For a bounded and strongly continuous mapping T : E → L(X) and a
complex measure µ ∈ M(Rd) we consider the integral

Tµ :=

∫
E

Tt µ(dt) ∈ L(X)

defined strongly by

Tµx =

∫
E

Ttxµ(dt) ∈ X (x ∈ X). (5.5)

To begin with, (5.5) can be viewed as a weak integral since the orbit T (·)x
is bounded and continuous on E as well as on Rd \ E, hence in particular
weakly integrable. Of course, that does define Tµx only as an element of X ′′.
The easiest way to see that in fact Tµx ∈ X is to realize that the orbit T (·)x
is Bochner integrable with respect to the finite positive measure |µ|. (See also
Exercise 5.4.)

Lemma 5.3. Let T : E → L(X) be strongly continuous and bounded. Then

‖Tµ‖ ≤MT ‖µ‖M (µ ∈ M(Rd)), (5.6)

where MT := supt∈E ‖Tt‖. If also S : E → L(Y ) is strongly continuous and
bounded, and Q ∈ L(X;Y ) is such that QTt = StQ for all t ∈ E, then
QTµ = SµQ for all µ ∈ M(Rd).

Proof. Note that from (5.5) and (A.13) it follows that

‖Tµx‖ =
∥∥∫ Ttxµ(dt)

∥∥ ≤ ∫ ‖Ttx‖ |µ| (dt)
≤MT ‖x‖‖x′‖ |µ| (Rd) = MT ‖x‖‖x′‖‖µ‖M.

This implies the first statement. The second follows easily from (A.2).

Convolution

We shall now apply the foregoing results to the strongly continuous regular
representations from before. The general scheme is the following: If X is a
shift invariant Banach space of (maybe vector-valued) functions on Rd on
which the shift group (τt)t∈Rd is strongly continuous and bounded, then for
each µ ∈ M(Rd) we can form the operator τµ ∈ L(X). For f ∈ X one usually
writes

µ ∗ f := τµf

and calls this the convolution of f with µ. Convolution is a (clearly bilinear)
mapping

∗ : M(Rd)×X → X, (µ, f) 7→ µ ∗ f.
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Following this scheme one obtains the convolution products

M(Rd)× C0(Rd)→ C0(Rd),
M(Rd)×UCb(Rd)→ UCb(Rd),
M(Rd)× Lp(Rd)→ Lp(Rd) (1 ≤ p <∞)

with
‖µ ∗ f‖X ≤ ‖µ‖M ‖f‖X

where X ∈ {UCb(Rd), Lp(Rd)}. If µ = gλ for g ∈ L1(Rd) we simply write
g ∗f instead of (gλ)∗f . Of course, in all that one has to be careful not to use
the same notation for different things. E.g., if f ∈ Lp(Rd) ∩ UCb(Rd), then
µ∗f should mean the same, no matter whether we interpret this convolution
as performed in Lp or in UCb. This is indeed the case, see Exercise 5.5.

Our definition of convolution may be uncommon to many readers. It
has the advantage that Fubini’s theorem is completely avoided. An ap-
parent drawback is that one does not obtain immediately the common
pointwise (almost everywhere) representation formulae like

(ϕ ∗ f)(s) =

∫
Rd
ϕ(t)f(s− t) dt (ϕ ∈ L1(Rd)).

If f ∈ UCb(Rd), this formula is easy to prove, as point evaluations are
continuous. If f ∈ Lp(Rd), though, one has to work more (see Exercise
5.7). And of course one has to employ Fubini’s theorem.

As already noted, the right shift representation τ on M(Rd) is weakly∗ con-
tinuous. Hence, for µ, ν ∈ M(Rd) one can define

µ ∗ ν := τµν :=

∫
Rd
τtν µ(dt)

as a weakly∗-convergent integral. In other words, µ ∗ ν ∈ M(Rd) is given by∫
Rd
f d(µ ∗ ν) =

∫
Rd

∫
Rd
f d(τtν)µ(dt) =

∫
Rd

∫
Rd
f(t+ s) ν(ds)µ(dt) (5.7)

for all f ∈ C0(Rd). Since this identity is preserved under bp-limits of func-
tions, it even holds for all bounded measurable functions f ∈Mb(Rd) (Exer-
cise 5.2). (For consistency with the natural embedding see Exercise 5.6.) We
can now state the main theorem about convolutions.
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Theorem 5.4 (Convolution Algebra). With respect to the convolution
product, M(Rd) is a commutative Banach algebra with unit element δ0. In
addition, the following statements hold:

a) δt ∗ µ = τtµ for all t ∈ Rd.

b) Under the natural embedding, the space L1(Rd) is an algebra ideal of
M(Rd) and one has

(µ ∗ g)λ = µ ∗ (gλ) for all g ∈ L1(Rd) and µ ∈ M(Rd).

c) For all f ∈ UCb(Rd) and µ, ν ∈ M(Rd):∫
Rd
f d(µ ∗ ν) =

∫
Rd

(Sµ) ∗ f dν.

d) If S ⊆ Rd is a closed subsemigroup then M(S) is a unital subalgebra of
M(Rd). And if T : S → L(X) is any bounded and strongly continuous
representation, then

TµTν = Tµ∗ν (µ, ν ∈ M(S)).

In other words, the mapping M(S) → L(X), µ 7→ Tµ, is a homomor-
phism of unital algebras.

Proof. We first prove d). Let B ⊆ Rd \ S be any Borel set. Then∫
Rd

1B d(µ ∗ ν) =

∫
S

∫
S
1B(t+ s) ν(ds)µ(dt) = 0

whenever supp(µ), supp(ν) ⊆ S. Hence, |µ ∗ ν| (Sc) = 0, i.e., supp(µ ∗ ν) ⊆ S.

Let T : S → L(X) be any bounded and strongly continuous representation,
and let µ, ν ∈ M(S) and x ∈ X. Then

TµTνx =

∫
S
TtTνxµ(dt) =

∫
S
Tt

∫
S
Tsx ν(ds)µ(dt)

=

∫
S

∫
S
TtTsx ν(ds)µ(dt) =

∫
S

∫
S
Tt+sx ν(ds)µ(dt),

where (A.2) has been used at the change of the line. Applying linear func-
tionals x′ ∈ X ′ to this, interpreting µ and ν as measures on observing (5.7)
we find

TµTνx = Tµ∗νx

as claimed. (One of course has to intepret µ and µ as measures on Rd and T
as a function on Rd.)
Now we show that convolution is associative. From the formula
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(τµf)(0) = (µ ∗ f)(0) =

∫
Rd

(Sf) dµ (f ∈ C0(Rd))

it follows that ‖τµf‖∞ ≥ |〈Sf, µ〉| for all f ∈ C0(Rd) and hence ‖τµ‖L(C0(Rd)) ≥
‖µ‖. (Use that S is an isometric isomorphism on C0(Rd).) In particular, the
mapping

M(Rd)→ L(C0(Rd)), µ 7→ τµ

is injective. Since it turns convolution into operator multiplication and the
latter is associative, so must be the former.

Commutativity is seen similarly. Fix µ, ν ∈ M(Rd) and let τ be as above the
regular representation of Rd on C0(Rd). Since Rd is commutative, τtτs = τsτt
for all s, t ∈ Rd. By Lemma 5.3, τtτµ = τµτt for all t ∈ Rd, and so by d) and
Lemma 5.3 again,

τν∗µ = τντµ = τµτν = τµ∗ν .

As before, it follows that ν ∗ µ = µ ∗ ν.

a) and b) are in Exercise 5.6. Assertion c) follows from∫
(Sµ) ∗ f dν =

〈∫
τtf (Sµ)(dt), ν

〉
=

〈∫
τ−tf µ(dt), ν

〉
=

∫
〈τ−tf, ν〉 µ(dt) =

∫
〈f, τtν〉 µ(dt) = 〈f, µ ∗ ν〉

for all µ, ν ∈ M(Rd), f ∈ UCb(Rd).

5.4 The Fourier Transform

The last part of Theorem 5.4 can be rephrased by saying that each bounded
strongly continuous representation of the semigroup S gives rise to a repre-
sentation of the algebra M(S), i.e., to a calculus. In order to interpret this
calculus as a functional calculus, we need to represent the algebra M(S) as
an algebra of functions. This is where the Fourier transform comes into play.

The Fourier transform of a measure µ ∈ M(Rd) is the function

(Fµ)(s) := µ̂(s) :=

∫
Rd

e−is·t µ(dt) (s ∈ Rd). (5.8)

Here, s · t denotes the usual inner product of Rd. One easily checks that this
definition of the Fourier transform is, under the natural embedding, consistent
with the (probably known) notion of Fourier transform of an L1-function.

Obviously, Fµ is a bounded function with

‖Fµ‖∞ ≤ ‖µ‖M. (5.9)
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A little less obviously, Fµ turns out to be uniformly continuous. (This is
easy if µ has compact support. The general case follows by approximation,
by virtue of (5.9).)

Let us abbreviate
et ∈ UCb(Rd), et(s) := e−is·t.

Then, formally,

µ̂ =

∫
Rd

et µ(dt). (5.10)

Note that, however, the mapping t 7→ et is not continuous with respect to the
norm topology on UCb(Rd). It is just continuous with respect to the “topol-
ogy of uniform convergence on compacts”, also called “compact convergence”.
This means that if tn → t in Rd then etn → et uniformly on each compact
subset of Rd. The next results can be seen as an alternative interpretation of
the formula 5.10.

Theorem 5.5. Let X be a Banach space and let Φ : UCb(Rd) → L(X) be
a functional calculus with the following continuity property: If (fn)n is a
bounded sequence in UCb(Rd) converging to a function f ∈ UCb(Rd) uni-
formly on compacts, then Φ(fn)→ Φ(f) strongly on X. Define

Tt := Φ(et) (t ∈ Rd).

Then (Tt)t∈Rd is a bounded and strongly continuous representation and

Tµ = Φ(µ̂) for all µ ∈ M(Rd).

Proof. By virtue of the closed graph theorem and the continuity property
of Φ it follows that Φ is bounded. Hence T is bounded, and it is strongly
continuous since t 7→ et is continuous with respect to compact convergence.
Since Φ is multiplicative, T is a strongly continuous group.

Now fix f ∈ C0(Rd). Then the mapping (t 7→ etf) : Rd → C0(Rd) is continu-
ous. Integrating against µ ∈ M(Rd) yields(∫

Rd
etf µ(dt)

)
(s) =

∫
Rd

et(s)f(s)µ(dt) = µ̂(s)f(s) for all s ∈ Rd.

Hence, identity (A.2) yields, with x ∈ X,

TµΦ(f)x =

∫
Rd
TtΦ(f)xµ(dt) =

∫
Rd
Φ(etf)xµ(dt) = Φ

(∫
Rd

etf µ(dt)
)
x

= Φ(µ̂f)x = Φ(µ̂)Φ(f)x.

Finally, specialize f = fn for some sequence (fn)n in C0(Rd) that converges
to 1 uniformly on compacts, and apply again the continuity property of Φ.
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Examples 5.6. Theorem 5.5 can be applied to multiplication operator cal-
culi.

1) For X = C0(Rd) or X = Lp(Rd), 1 ≤ p <∞, consider

Φ : UCb(Rd)→ L(X), Φ(f) = Mf , Mfg = fg.

Then Φ satisfies the assumptions of Theorem 5.5. Hence, Tµ = Mµ̂ in
these cases, where Tt := Met for each t ∈ Rd.

2) Likewise, consider

Φ : UCb(Rd)→ L(M(Rd)), Φ(f)µ := f µ.

Then Φ also satisfies the hypotheses of Theorem 5.5. Indeed, if fn → 0
uniformly on compacts, then ‖fnµ‖M → 0 whenever µ has compact sup-
port. By density, this extends to arbitrary µ ∈ M(Rd) if supn ‖fn‖∞ <
∞.

Here is the central theorem about the Fourier transform.

Theorem 5.7 (Fourier transform). The Fourier transform F : M(Rd)→
UCb(Rd) is an injective homomorphism of unital algebras. In particular,

F(µ ∗ ν) = (Fµ) · (Fν) for µ, ν ∈ M(Rd).

Moreover, the following assertions hold:

a) For t ∈ R and µ ∈ M(Rd) the diagrams

M(Rd)

F
��

e−it· · // M(Rd)

F
��

UCb(Rd)
τ−t
// UCb(Rd)

and M(Rd)

F
��

µ̂ · // M(Rd)

F
��

UCb(Rd)
Sµ ∗ ·

// UCb(Rd)

are commutative. The latter encodes the identity

F(µ̂ · ν) = (Sµ) ∗ ν̂ (5.11)

for all µ, ν ∈ M(Rd). In particular, one has

∫
Rd
µ̂dν =

∫
Rd
ν̂ dµ.

b) The Fourier transform maps L1(Rd) into C0(Rd) and the space F(L1) =
{ϕ̂ | ϕ ∈ L1(Rd)} is dense in C0(Rd).

Proof. Clearly, Fδ0 = 1. The injectivity is postponed until the very end of
this proof. For the multiplicativity we apply Theorem 5.5 to the multiplication
operator functional calculus Φ : UCb(Rd)→ L(C0(Rd)) described in Example
5.6. Then
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Φ(µ̂ ν̂) = Φ(µ̂) Φ(ν̂) = TµTν = Tµ∗ν = Φ(F(µ ∗ ν)).

Since Φ is obviously injective, the claim follows. (A more direct proof uses
the formula (5.7).)

a) Consider the multiplication operator functional calculus

Φ : UCb(Rd)→ L(M(Rd)), Φ(f)µ := f µ

as discussed in Example 5.6.2) and define Tt := Φ(et) for t ∈ Rd. Then

F(etµ)(s) =

∫
Rd

esetdµ =

∫
Rd

es+t dµ = µ̂(s+ t) =
(
τ−tµ̂

)
(s)

for all µ ∈ M(Rd) and all s, t ∈ Rd. But this just means that FTt = τ−tF ,
i.e., the commutativity of the first diagram.

Fix µ ∈ M(Rd) and abbreviate St := τ−t (the left shift representation).
Then clearly Sµ = τSµ is convolution with Sµ and hence, by Lemma 5.3

FTµ = SµF = τSµF .

Since by Theorem 5.5, Tµ is nothing but multiplication with µ̂, the commu-
tativity of the second diagram and hence the formula (5.11) are established.
The last claim follows from evaluating at 0 in (5.11).

b) The first assertion is the classical Riemann–Lebesgue–Lemma. It suffices
to show that Fϕ ∈ C0(Rd) for ϕ from a dense subset. Since

F(ϕ1 ⊗ . . .⊗ ϕd) = (Fϕ1)⊗ . . .⊗ (Fϕd)

for ϕ1, . . . , ϕd ∈ L1(R), it suffices to look at the case d = 1. There one can
take ϕ ∈ C1

c(R) and perform integration by parts to see that the claim is
true, cf. [2, Thm. 9.20].

For the second assertion, it suffices for the same reasons as before to consider
the case d = 1. Obviously, F(L1) is a conjugation-invariant subalgebra of
C0(R). Since with ϕ(s) := e−s1R+

(s) one has

ϕ̂(t) =
1

1 + it
(t ∈ R)

and this is nowhere zero and separates the points of R, the claim follows from
the Stone–Weierstrass theorem.

Finally, the injectivity of F : If µ̂ = 0 then by a)

0 =

∫
Rd
µ̂dν =

∫
Rd
ν̂ dµ

for all ν ∈ M(Rd). In particular, µ vanishes on F(L1). Since, by b), this is
dense in C0(Rd), µ = 0.
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Exercises

5.1. a) Let E ⊆ Rd be closed and T : E → L(X) be a locally bounded
mapping. Show that the space

Xc := {x ∈ X | the map (t 7→ Ttx) is continuous}

is a closed subspace of X. (The space Xc is called the subspace of
strong continuity of T .)

b) Show that UCb(Rd) is the subspace of strong continuity for the shift
group τ on Cb(Rd).

c) Show that on Cc(Rd) the shift group is strongly continuous with re-
spect to each norm ‖ · ‖Lp(Rd). Conclude that the shift group is strongly

continuous on Lp(Rd) for each 1 ≤ p <∞.

5.2. Let µ ∈ M(Rd), t ∈ Rd and g ∈Mb(Rd). Show that the set

{f ∈Mb(Rd) | (5.2) holds}

is closed under bp-convergence and conclude that (5.2) holds even for all
f ∈Mb(Rd). Do the same for the statements (5.3) and (5.4).

5.3 (Measures with Compact Support). Let E ⊆ Rd be a closed subset
and

Mc(E) := {µ ∈ M(E) | ∃K ⊆ E compact, |µ| (Kc) = 0}

be the measures with compact support. Show that M+(E)∩Mc(E) is norm
dense in M+(E). Conclude that Mc(E) is norm dense in M(E).

5.4 (Integrals of Vector-Valued Functions). Let E ⊆ Rd a closed subset,
f ∈ Cb(E;X) and µ ∈ M(E). Consider the weakly defined integral

〈f, µ〉 :=

∫
E

f dµ ∈ X ′′

With this exercise you should convince yourself (in one or the other way)
that 〈f, µ〉 ∈ X, at least in the cases E = Rd and E = Rd+.

a) Show that it suffices to consider the case µ ≥ 0.

b) Show that a bounded and continuous function f : E → X is Bochner
integrable with respect to each finite positive measure µ ∈ M+(E).
Conclude that 〈f, µ〉 ∈ X. [This settles the problem for people who feel
comfortable with Appendix A.6.]

c) Show that ‖ 〈f, µ〉 ‖ ≤ ‖f‖∞‖µ‖M. Conclude with the help of Exercise
5.3 that in order to show that 〈f, µ〉 ∈ X it suffices to consider µ ∈
M+(E) ∩Mc(E).
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d) Let Q =
∏d
j=1[aj , bj ] be a d-dimensional rectangle. Show that a function

f ∈ C(Q;X) is the uniform limit of rectangle-step functions. Conclude
(with the help of c)) that 〈f, µ〉 ∈ X whenever E is the union of an
increasing sequence of rectangles, and in particular for E = Rd and
E = Rd+.

5.5 (Compatible Representations). A coupling of two Banach spaces
X, Y is any injective and closed operator J : X ⊇ dom(J) → Y . By calling
the pair (X,Y ) a Banach couple it is meant that there is a (tacit) coupling.
With the help of a coupling J , certain elements of X (those contained in
dom(J)) are identified with certain elements of Y (those of ran(J)). In this
sense, dom(J) can be regarded as “X ∩ Y ”, and this is a Banach space with
respect to the graph norm of J . (Note that one obtains an isometrically
isomorphic space if one interchanges the roles of X and Y and considers the
coupling J−1 instead.

Given a coupling J of X and Y , a pair of operators (SX , SY ) ∈ L(X) ×
L(Y ) is called compatible, if SY J ⊆ JSX . Informally speaking, this just
means that SX and SY agree on X ∩ Y .

Now let E ⊆ Rd be closed and suppose that one has bounded strongly
continuous mappings TX : E → L(X) and TY : E → L(Y ) which consists
for each t ∈ E of compatible operators TXt and TYt . Show that for each
µ ∈ M(E) the operators TXµ and TYµ are compatible as well. Conclude that

the notation “µ ∗ f” is unequivocal, no matter whether f ∈ UCb(Rd) or
f ∈ Lp(Rd), 1 ≤ p <∞.

5.6. Let µ ∈ M(Rd), g ∈ L1(Rd) and t ∈ Rd. Show that

δt ∗ µ = τtµ and µ ∗ (gλ) = (µ ∗ g)λ.

5.7 (Pointwise Representation of Convolutions). Let ϕ ∈ L1(Rd). We
write ϕ ∗ f as an abbreviation for ϕλ ∗ f , whenever the latter is meaningful.

a) Show that for f ∈ UCb(Rd) one has

(ϕ ∗ f)(s) =

∫
Rd
ϕ(t)f(s− t) dt (5.12)

for all s ∈ Rd.
b) Let f ∈ Lp(Rd), 1 ≤ p < ∞. Show that for all Borel sets B ⊆ Rd of

finite measure one has∫
Rd

∫
Rd
|ϕ(t)f(s− t)1B(s)| dtds <∞.

Conclude that for almost all s ∈ Rd the function t 7→ ϕ(t)f(s− t) is in
L1(Rd). Finally, show that (5.12) holds for almost every s ∈ Rd.
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5.8. Let Ω = (Ω,Σ, ν) be a measure space and a : Ω → Rd a measurable
function. Fix p ∈ [1,∞) and abbreviate X := Lp(Ω). For t ∈ Rd let Tt ∈ L(X)
be defined by

Ttf := e−it·a(·)f (f ∈ X).

Show that (Tt)t∈Rd is a bounded, strongly continuous group and

Tµf = (µ̂ ◦ a) f (f ∈ X, µ ∈ M(Rd)).

5.9. In this exercise we consider the case of the discrete subgroup S := Z ⊆ R.
Obviously, M(Z) consists precisely of the measures

µ =
∑
n∈Z

αnδn, α ∈ `1(Z)

and the correspondence µ ↔ (αn)n is an isometric isomorphism M(Z) ∼=
`1(Z). Show that the Fourier transform maps M(Z) injectively onto a dense
subspace of the space C2π(R) of all 2π-periodic functions on R.

5.10 (Reflection and Conjugation). Let µ, ν ∈ M(Rd) and f ∈ X ∈
{UCb(Rd),Lp(Rd)} where 1 ≤ p <∞. Show that

S(µ ∗ ν) = (Sν) ∗ (Sµ), S(µ ∗ f) = (Sµ) ∗ (Sf), µ ∗ ν = µ ∗ ν.

One has
SFµ = FSµ = Fµ.

Conclude that M(Rd) is a Banach ∗-algebra with respect to the involution

M(Rd)→ M(Rd), µ 7→ µ∗ := Sµ

and that F : M(Rd)→ UCb(Rd) is a homomorphism of Banach ∗-algebras.
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Chapter 6

Integral Transform Functional Calculi

In this chapter we continue our investigations from the previous one and en-
counter functional calculi associated with various semigroup representations.

6.1 The Fourier–Stieltjes Calculus

Recall from the previous chapter that the Fourier transform

F : M(Rd)→ UCb(Rd)

is a contractive and injective unital algebra homomorphism. Hence, it is an
isomorphism onto its image

FS(Rd) := F(M(Rd)) = {µ̂ | µ ∈ M(Rd)}.

This algebra, which is called the Fourier–Stieltjes algebra1 of Rd, is en-
dowed with the norm

‖µ̂‖FS := ‖µ‖M (µ ∈ M(Rd)),

which turns it into a Banach algebra and the Fourier transform F : M(Rd)→
FS(Rd) into an isometric isomorphism. (The Fourier algebra of Rd is the
closed ideal(!) A(Rd) := F(L1(Rd)) of Fourier transforms of L1-functions.)

Let S ⊆ Rd be a closed subsemigroup. Then M(S) is a Banach subalgebra
of M(Rd) and

FSS(Rd) := F(M(S)),

1 The Fourier transform on the space of measures is sometimes called the Fourier–Stieltjes

transform, hence the name “Fourier–Stieltjes algebra” for its image. In books on Banach

algebras one often finds the symbol “B(Rd)” for it.

77



78 6 Integral Transform Functional Calculi

called its associated Fourier–Stieltjes algebra, is a Banach subalgebra of
FS(Rd).

Let T : S → L(X) be a strongly continuous and bounded representation
on a Banach space X with associated algebra representation

M(S)→ L(X), µ 7→ Tµ =

∫
S
Tt µ(dt). (6.1)

Since the Fourier transform F : M(S)→ FSS(Rd) is an isomorphism, we can
compose its inverse with the representation (6.1). In this way a functional
calculus

ΨT : FSS(Rd)→ L(X), ΨT (µ̂) := Tµ,

is obtained, which we call the Fourier–Stieltjes calculus for T . Note that
by the definition of the norm on FS(Rd) and by (5.6) we have

‖ΨT (f)‖ ≤MT ‖f‖FS (f ∈ FSS(Rd)), (6.2)

where, as always, MT = supt∈S ‖Tt‖.

Example 6.1. Let Ω = (Ω,Σ, ν) be a measure space and a : Ω → Rd a
measurable function. Fix p ∈ [1,∞) and abbreviate X := Lp(Ω). For t ∈ Rd
let Tt ∈ L(X) be defined by

Ttx := e−it·a(·)x (x ∈ X).

Then (Tt)t∈Rd is a bounded and strongly continuous group and, by Exercise
5.8,

Tµx = (µ̂ ◦ a)x (x ∈ X)

for all µ ∈ M(Rd). This means that the Fourier-Stieltjes calculus for T is
nothing but the restriction of the usual multiplication operator functional
calculus to the algebra FS(Rd).

Example 6.2. Let T = τ be the regular (right shift) representation of Rd on
X = L1(Rd). Then, for f = µ̂ ∈ FS(Rd) one has

Ψτ (f)x = µ ∗ x = F−1(µ̂ · x̂) = F−1(f · x̂) (x ∈ L1(Rd)).

That is, the operator Ψτ (f) is the so-called Fourier multiplier operator with
the symbol f : first take the Fourier transform, then multiply with f , finally
transform back.

In the following we shall examine the Fourier–Stieltjes calculus for the
special cases S = Z, S = Z+, and S = R+.
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Doubly Power-Bounded Operators

An operator T ∈ L(X) is called doubly power-bounded if T is invertible
and MT := supn∈Z ‖Tn‖ < ∞. Such operators correspond in a one-to-one
fashion to bounded Z-representations on X (cf. Example 5.1). The spectrum
of a doubly power-bounded operator T is contained in the torus T = {z ∈
C | |z| = 1}.

By Exercise 5.9, M(Z) ∼= `1(Z) and FSZ(R) consists of all functions

f =
∑
n∈Z

αne−int (α = (αn)n ∈ `1). (6.3)

These functions form a subalgebra of C2π(R), the algebra of 2π-periodic
functions on R.

By the Fourier–Stieltjes calculus, the function f as in (6.3) is mapped to

ΨT (f) =
∑
n∈Z

αnT
n.

Hence, this calculus is basically the same as a Laurent series calculus

ΦT :
∑
n∈Z

αnzn 7−→
∑
n∈Z

αnT
n (6.4)

where the object on the left-hand side is considered as a function on T. We
prefer this latter version of the Fourier–Stieltjes calculus because it works
with functions defined on the spectrum of T and has T as its generator. The
algebra

A(T) :=
{∑
n∈Z

αnzn | α ∈ `1(Z)
}
⊆ C(T)

is called the Wiener algebra and the calculus (6.4) is called the Wiener
calculus.

In order to make precise our informal phrase “basically the same” from above,
we use the following notion from abstract functional calculus theory.

Definition 6.3. An isomorphism of two proto-calculi Φ : F → C(X) and
Ψ : E → C(X) on a Banach space X is an isomorphism of unital algebras
η : F → E such that Φ = Ψ ◦ η. If there is an isomorphism, the two calculi
are called isomorphic or equivalent.

Let us come back to the situation from above. The mapping e−it : R→ T
induces an isomorphism (of unital Banach algebras)

C(T)→ C2π(R), f 7→ f(e−it).

This restricts to an isomorphism η : A(T) → FSZ(R) by virtue of which the
Fourier–Stieltjes calculus is isomorphic to the Wiener calculus.
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Power-Bounded Operators

Power-bounded operators T ∈ L(X) correspond in a one-to-one fashion to
Z+-representations on X. By Exercise 5.9, M(Z+) ∼= `1(Z+) and FSZ+

(R)
consists of all functions

f =

∞∑
n=0

αne−int (α = (αn)n ∈ `1). (6.5)

These functions form a subalgebra of C2π(R). Under the Fourier–Stieltjes
calculus, the function f as in (6.5) is mapped to

ΨT (f) =

∞∑
n=0

αnT
n.

This calculus is isomorphic to the power-series calculus

ΦT : A1
+(D)→ L(X), ΦT

( ∞∑
n=0

αnzn
)

=

∞∑
n=0

αnT
n (6.6)

introduced in Chapter 1. The isomorphism of the two calculi is again given
by the algebra homomorphism f 7→ f(e−it). (Observe that for α ∈ `1 the
function f =

∑∞
n=0 αnzn can be viewed as a function on D, or on D or on T

or on (0, 1) and in either interpretation α is determined by f .)

6.2 Bounded C0-Semigroups and the Hille–Phillips
Calculus

We now turn to the case S = R+. A strongly continuous representation of
R+ on a Banach space is often called a C0-semigroup2. Operator semigroup
theory is a large field and a thorough introduction would require an own
course. We concentrate on the aspects connected to functional calculus theory.
If you want to study semigroup theory proper, read [2] or [1].

Let T = (Tt)t≥0 be a bounded C0-semigroup on a Banach space X. Then we
have the Fourier–Stieltjes calculus

ΨT : FSR+
(R)→ L(X), ΨT (µ̂) =

∫
R+

Tt µ(dt).

2 The name goes back to the important monograph [4, Chap. 10.1] of Hille and Phillips,

where different continuity notions for semigroup representations are considered.
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However, as in the case of power-bounded operators, we rather prefer working
with an isomorphic calculus, which we shall now describe.

The Laplace transform (also called Laplace–Stieltjes transform) of
a measure µ ∈ M(R+) is the function

Lµ : C+ → C, (Lµ)(z) =

∫
R+

e−zt µ(dt).

Here, C+ := {z ∈ C | Re z > 0} is the open right half-plane. By some
standard arguments,

‖Lµ‖∞ ≤ ‖µ‖M and Lµ ∈ UCb(C+) ∩Hol(C+),

and it is easy to see that the Laplace transform

L : M(R+)→ UCb(C+), µ 7→ Lµ

is a homomorphism of unital algebras. Moreover,

(Lµ)(is) = (Fµ)(s) for all s ∈ R (6.7)

and since the Fourier transform is injective, so is the Laplace transform.
Let us call its range

LS(C+) := {Lµ | µ ∈ M(R+)}

the Laplace-Stieltjes algebra and endow it with the norm

‖Lµ‖LS := ‖µ‖M (µ ∈ M(R+)).

Then the mapping

LS(C+)→ FSR+(R), f 7→ f(is)

is an isometric isomorphism of unital Banach algebras. Given a C0-semigroup
(Tt)t≥0 one can compose its Fourier–Stieltjes calculus ΨT with the inverse of
this isomorphism to obtain the calculus

ΦT : LS(C+)→ L(X), ΦT (Lµ) :=

∫
R+

Tt µ(dt).

This calculus is called the Hille–Phillips calculus3 for T . It satisfies the
norm estimate

‖ΦT (f)‖ ≤MT ‖µ‖M (f = Lµ, µ ∈ M(R+)). (6.8)

3 One would expect the name “Laplace–Stieltjes calculus” but we prefer sticking to the

common nomenclature.
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Similar to the discrete case, we note that an element f = Lµ ∈ LS(C+) can
be interpreted as a function on C+, on C+, on iR, or on (0,∞) and in either
interpretation µ is determined by f .

The function z is unbounded on the right half-plane and hence it is not
contained in the domain of the Hille–Phillips calculus. Nevertheless, this func-
tional calculus has a generator, as we shall show next.

The Generator of a Bounded C0-Semigroup

Suppose as before that T = (Tt)t≥0 is a bounded C0-semigroup on a Banach
space X. For Reλ, Re z > 0 one has

1

λ+ z
=

∫ ∞
0

e−λte−zt dt.

In other words, the function 1
λ+z (defined on C+) is the Laplace transform

of the L1-function e−λt1R+
. As such, (λ+ z)−1 ∈ LS(C+) for each λ ∈ C+.

Theorem 6.4. Let T = (Tt)t≥0 be a bounded C0-semigroup on a Banach
space X with associated Hille–Phillips calculus ΦT . Then there is a (uniquely
determined) closed operator A such that

(λ+A)−1 = ΦT

( 1

λ+ z

)
for one/all λ ∈ C+. The operator A has the following properties:

a) [ Re z < 0 ] ⊆ ρ(A) and R(−λ,A) = −ΦT ((λ+ z)−1) for all Reλ > 0.

b) dom(A) is dense in X.

c) λ(λ+A)−1 → I strongly as 0 < λ↗∞.

d) For all w ∈ C, t > 0 and x ∈ X:∫ t

0

ewsTsxds ∈ dom(A) and (A− w)

∫ t

0

eswTsxds = x− etwTtx.

e) ΦT (f)A ⊆ AΦT (f) for all f ∈ LS(C+).

Proof. The operator family

R(w) := ΦT

( 1

w − z

)
= −ΦT

( 1

(−w) + z

)
, Rew < 0,

is a pseudo-resolvent. As such, there is a uniquely determined closed linear
relation A on X such that R(w) = (w−A)−1 for one/all Rew < 0 (Theorem
A.13). In order to see that A is an operator and not just a relation, we need to
show that R(w) is injective for one (equivalently: all) Rew < 0. As ker(R(w))
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does not depend on w (by the resolvent identity), the claim follows as soon
as we have proved part c).

a) This holds by definition of A.

b) Let t > 0, x ∈ X, and w, λ ∈ C. Then a little computation yields

(z + λ)

∫ t

0

ewse−sz ds = (z − w)

∫ t

0

ewse−sz ds+ (w + λ)

∫ t

0

ewse−sz ds

= 1− ewte−tz + (w + λ)

∫ t

0

ewse−sz ds =: f(z) (Re z > 0).

That means that f = Lµ ∈ LS(C+) with

µ := δ0 − e−wtδt + (w + λ)1[0,t]e
wsds.

For each Reλ > 0 one can divide by z + λ and then apply the Hille–Phillips
calculus to obtain∫ t

0

ewsTsxds = ΦT

(∫ t

0

eswe−sz ds
)
x = −R(−λ,A)ΦT (f)x ∈ dom(A).

For w = 0 we hence obtain
∫ t

0
Tsx ds ∈ dom(A), and since

1

t

∫ t

0

Tsxds→ x as t↘ 0

by the strong continuity of T , we arrive at x ∈ dom(A).

c) It follows from the norm estimate (6.8) that

‖(λ+A)−1‖ ≤MT

∫ ∞
0

e−Reλt dt ≤ MT

Reλ

for all Reλ > 0. In particular, supλ>0 ‖λ(λ + A)−1‖ < ∞. Hence, for fixed
λ0 > 0 the resolvent identity yields

λ(λ+A)−1(λ0 +A)−1 =
λ

λ− λ0

(
(λ0 +A)−1 − (λ+A)−1

)
→ (λ0 +A)−1

in operator norm as λ → ∞. Since dom(A) = ran((λ0 + A)−1) is dense,
assertion c) follows.

d) Let V :=
∫ t

0
ewsTs ds. In b) we have seen that V = (λ+A)−1ΦT (f), hence

(λ+A)V = ΦT (f) = I− ewtTt + (w + λ)V.

By adding scalar multiples of V we obtain the identity

(λ+A)V = I− ewtTt + (w + λ)V
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for all λ ∈ C, in particular for λ = −w.

e) As LS(C+) is commutative, ΦT (f) commutes with the resolvent of A, hence
with A (Exercise 2.3).

The operator A of Theorem 6.4 is called the generator of the Hille–
Phillips calculus ΦT and one often writes f(A) in place of ΦT (f). With this
convention we have

Tt = ΦT (Lδt) = ΦT (e−tz) = e−tA (t ≥ 0).

A little unconveniently, it is the operator −A (and not A) which is called
the generator of the semigroup T . One writes −A ∼ (Tt)t≥0 for this. We
shall see in Theorem 6.6 below that the semigroup T is uniquely determined
by its generator.

6.3 General C0-Semigroups and C0-Groups

Suppose now that T = (Tt)t≥0 is a C0-semigroup, but not necessarily
bounded. Then, by the uniform boundedness principle, T is still operator
norm bounded on compact intervals. This implies that T is exponentially
bounded, i.e., there is M ≥ 1 and ω ∈ R such that

‖Tt‖ ≤Meωt (t ≥ 0) (6.9)

(see Exercise 6.1). One says that T is of type (M,ω) if (6.9) holds. The
number

ω0(T ) := inf{ω ∈ R | there is M ≥ 1 such that (6.9) holds}

is called the (exponential) growth bound of T . If ω0(T ) < 0, the semi-
group is called exponentially stable.

For each ω ∈ C one can consider the rescaled semigroup Tω, defined by

Tω(t) := e−ωtTt (t ≥ 0),

which is again strongly continuous. Since T is exponentially bounded, if Reω
is large enough, the rescaled semigroup Tω is bounded and hence has a gener-
ator −Aω, say. The following tells in particular that the operator A := Aω−ω
is independent of ω.

Theorem 6.5. Let T = (Tt)t≥0 be a C0-semigroup on a Banach space X and
let λ, ω ∈ C such that Tλ and Tω are bounded semigroups with generators
−Aω and −Aλ, respectively. Then

A := Aω − ω = Aλ − λ. (6.10)
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Furthermore, the following assertions hold:

a) A is densely defined.

b) TtA ⊆ ATt for all t ≥ 0.

c)
∫ t

0
Ts dsA ⊆ A

∫ t
0
Ts ds = I− Tt for all t ≥ 0.

d) For x, y ∈ X the following assertions are equivalent:

(i) −Ax = y;

(ii) y = lim
t↘0

1

t
(Ttx− x);

(iii) T (·)x ∈ C1(R+;X) and
d

dt
Ttx = Tty on R+.

Proof. Without loss of generality we may suppose that Reλ ≥ Reω. Then

(1 +Aλ)−1 =

∫ ∞
0

e−te−λtTt dt =

∫ ∞
0

e−te−(λ−ω)te−ωtTt dt

= (1 + λ− ω +Aω)−1.

This establishes the first claim. Assertion a) is clear and b) holds true since,
by construction, each Tt commutes with the resolvent of A (Exercise 2.3).
Assertion c) follows directly from d) and e) of Theorem 6.4. For the proof of
d) we note that the implication (iii)⇒ (ii) is trivial.

(i)⇒ (iii): If −Ax = y then (A+ λ)x = −y + λx =: z and hence

Ttx = Tt

∫ ∞
0

e−λsTsz ds =

∫ ∞
0

e−λsTt+sz ds = eλt
∫ ∞
t

e−λsTsz ds.

By the fundamental theorem of calculus (Theorem A.3) and the product rule,
the orbit T (·)x is differentiable with derivative

d

dt
Ttx = λTtx− eλte−λtTtz = Tt(λx− z) = Tty

as claimed.

(ii)⇒ (i): This is left as Exercise 6.2.

If A is as in (6.10), the operator −A is called the generator of the semi-
group T . By construction,

(λ+A)−1 =

∫ ∞
0

e−λtTt dt

for all sufficiently large Reλ.

Theorem 6.6. A C0-semigroup is uniquely determined by its generator.
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Proof. Suppose that B is the generator of the C0-semigroups S and T on
the Banach space X. Fix x ∈ dom(B) and t > 0, and consider the mapping

f : [0, t]→ X, f(s) := T (t− s)S(s)x.

Then by Lemma A.5, f ′(s) = −BT (t− s)S(s)x+ T (t− s)BS(s)x = −T (t−
s)BS(s)x + T (t − s)BS(s)x = 0 for all s ∈ [0, t]. Hence, f is constant and
therefore T (t)x = f(0) = f(t) = S(t)x. Since dom(B) is dense, T (t) = S(t).

Let −A be the generator of a C0-semigroup T = (Tt)t≥0 of type (M,ω).
Then the operator −(A+ω) generates the bounded semigroup Tω and hence
A + ω generates the associated Hille–Phillips calculus ΦTω . It is therefore
reasonable to define a functional calculus ΦT for A by

ΦT (f) := ΦTω
(
f(z− ω)

)
(6.11)

for f belonging to the Laplace–Stieltjes algebra

LS(C+−ω) := {f | f(z−ω) ∈ LS(C+)}.

This calculus is called the Hille–Phillips calculus for T (on C+−ω). Note
the boundedness property

‖ΦT (f)‖ ≤M‖f‖LS(C+−ω) (f ∈ LS(C+−ω))

where ‖f‖LS(C+−ω) := ‖f(z−ω)‖LS(C+).

Remark 6.7. Since the type of a semigroup is not unique, the above termi-
nology could be ambiguous. To wit, if T is of type (M,ω), it is also of type
(M,α) for each α > ω. Accordingly, one has the Hille–Phillips calculi ΦωT on
C+−ω and ΦαT on C+−α for A. However, these calculi are compatible in the
sense that (by restriction) LS(C+−α) ⊆ LS(C+−ω) and

ΦαT (f) = ΦωT (f |C+−ω) (f ∈ LS(C+−α))

(Exercise 6.4). We see that a smaller growth bound results in a larger calculus.

C0-Groups

A C0-group on a Banach space X is just a strongly continuous represen-
tation U = (Us)s∈R of R on X. From such a C0-group, two C0-semigroups
can be derived, the forward semigroup (Ut)t≥0 and the backward semi-
group (U−t)t≥0. Obviously, each determines the other, as U−t = U−1

t for
all t ≥ 0. The generator of the group U is defined as the generator of the
corresponding forward semigroup.
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Theorem 6.8. Let B be the generator of a C0-semigroup T = (Tt)t≥0. Then
the following assertions are equivalent.

(i) T extends to a strongly continuous group.

(ii) −B is the generator of a C0-semigroup.

(iii) Tt is invertible for some t > 0.

In this case −B generates the corresponding backward semigroup (T−1
t )t≥0.

Proof. (ii)⇒ (i): Let −B ∼ (St)t≥0. Then, for all x ∈ dom(B)

d

dt
S(t)T (t)x = (−B)S(t)T (t)x+ S(t)BT (t)x

= −S(t)BT (t)x+ S(t)BT (t)x = 0

by Lemma A.5. Since dom(B) is dense, it follows that S(t)T (t) = S(0)T (0) =
I for all t ≥ 0. Interchanging the roles of S and T yields T (t)S(t) = I as well,
hence each T (t) is invertible with T (t)−1 = S(t). It is now routine to check
that the extension of T to R given by T (s) := S(−s) for s ≤ 0 is a C0-group.

(i)⇒ (iii) is clear.

(iii)⇒ (ii): Fix t0 > 0 such that T (t0) is invertible. For general t > 0 we can
find n ∈ N and r > 0 such that t + r = nt0. Hence, T (t)T (r) = T (r)T (t) =
T (t0)n is invertible, and so must be T (t). Define S(t) := T (t)−1 for t ≥ 0.
Then S is a semigroup, and strongly continuous because for fixed τ > 0

S(t) = S(τ)T (τ)T (t)−1 = S(τ)T (τ − t)T (t)T (t)−1 = S(τ)T (τ − t)

for 0 ≤ t ≤ τ . Let C be the generator of S and x ∈ dom(B). Then for
0 < t < τ ,

S(t)x− x
t

= S(τ)
T (τ − t)x− T (τ)x

t
→ −S(τ)T (τ)Bx = −Bx

as t↘ 0. (Recall (iii) of Theorem 6.5.d).) Hence, −B ⊆ C. By symmetry, it
follows that C = −B.

A C0-group U = (Us)s∈R is said to be of type (M,ω) for some M ≥ 1 and
ω ≥ 0 if

‖Us‖ ≤Meω|s| (s ∈ R).

By the results from above, each C0-group is of some type (M,ω). The quantity

θ(U) := inf{ω ≥ 0 | ∃M ≥ 1 : U is of type (M,ω)}

is called the group type of U .

Let B be the generator of a bounded group U and let ΨU be the associated
Fourier–Stieltjes calculus. Define A := iB, so that B = −iA. Then A is the
generator of ΨU as
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ΨU (e−isz) = Uδs
= Us (s ∈ R)

and, for Imλ > 0,

(λ− z)−1 =
1

i

∫ ∞
0

eiλse−isz ds

as functions on R.
If U is not bounded, one can still define a functional calculus based on

the Fourier transform. However, one has to restrict to a certain subalgebra
of measures/functions. See Exercise 6.7.

6.4 Supplement: Continuity Properties and Uniqueness

In this supplementary section we shall present a uniqueness statement for the
Fourier-Stieltjes calculus of a bounded strongly continuous representation of
S in the cases S = Rd and S = Rd+. These statements involve a certain
continuity property of the calculus, interesting in its own right. We shall
make use of the results b)-d) of Exercise 6.8.

We start with observing that in certain cases the inequality (6.2) is an iden-
tity.

Lemma 6.9. For each µ ∈ M(Rd) one has

‖µ‖M = ‖τµ‖L(L1(Rd)) = ‖τµ‖L(C0(Rd)).

In other words: For X = L1(Rd) and X = C0(Rd) the regular representation
τ : M(Rd)→ L(X), µ 7→ τµ, is isometric.

Proof. The inequality ‖τµ‖ ≤ ‖µ‖ (both cases) is (6.2). For the case X =
C0(Rd) the converse has already been shown in the proof of Theorem 5.4.
For the case X = L1(Rd) we employ duality and compute

‖τµ‖L(L1) = sup
f

sup
g
|〈µ ∗ f, g〉| = sup

g
sup
f
|〈f,Sµ ∗ g〉|

= ‖τSµ‖L(C0) = ‖Sµ‖M = ‖µ‖M,

where the suprema are taken over all g in the unit ball of C0(Rd) and all f
in the unit ball of L1(Rd).

Definition 6.10. A sequence (µn)n in M(Rd) converges strongly to µ ∈
M(Rd) if

µn ∗ f → µ ∗ f in L1-norm for all f ∈ L1(Rd).

In other words: µn → µ strongly if τµn → τµ strongly in L(L1(Rd)).

By Lemma 6.9 and the uniform boundedness principle, a strongly conver-
gent sequence is uniformly norm bounded. From this it follows easily that
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the convolution product is simultaneously continuous with respect to strong
convergence of sequences. Strong convergence implies weak∗ convergence (un-
der the identification M(Rd) ∼= C0(Rd)′), see Exercise 6.11. Note also that if
tn → t in Rd then δtn → δt strongly.

A sequence (ϕn)n in L1(Rd) is called an approximation of the identity
if ϕnλ→ δ0 strongly, and a Dirac sequence4 if∫

Rd
fϕn dλ→ f(0) (n→∞)

for each f ∈ Cb(Rd;X) and any Banach space X. We say that (ϕn)n is a
Dirac sequence on a closed subset E ⊆ Rd if it is a Dirac sequence and
supp(ϕn) ⊆ E for all n ∈ N. Each Dirac sequence is an approximation of the
identity. Observe that Dirac sequences are easy to construct (Exercise 6.9)
and that we have already used a special Dirac sequence on R+ in the proof
of Theorem 6.4.

The following result underlines the importance of our notion of “strong
convergence”.

Theorem 6.11. Let S ∈ {Rd,Rd+} and let T : S → L(X) be a bounded,
strongly continuous representation on a Banach space X. Then the associated
calculus M(S) → L(X) has the following continuity property: If (µn)n is a
sequence in M(S) and µn → µ strongly, then µ ∈ M(S) and Tµn → Tµ strongly
in L(X).

Proof. As already mentioned, strong convergence implies weak∗-convergence.
Hence supp(µ) ⊆ S, i.e., µ ∈ M(S).

Since the µn are uniformly norm bounded, so are the Tµn . Hence, it suffices to
check strong convergence in L(X) only on a dense set of vectors. Let (ϕm)m
be a Dirac sequence on E = S. For each x ∈ X and m ∈ N one has

TµnTϕmx = Tµn∗ϕmx→ Tµ∗ϕmx = TµTϕmx

as n→∞. But Tϕmx→ x as m→∞, and we are done.

Let us call a sequence fn = µ̂n ∈ FSS(Rd) strongly convergent to f = µ̂ ∈
FSS(Rd), if µn → µ strongly. And let us call a functional calculus

Ψ : FSS(Rd)→ L(X)

strongly continuous if whenever fn → f strongly in FSS(Rd) then Ψ(fn)→
Ψ(f) strongly in L(X). With this terminology, Theorem 6.11 simply tells that
in the case of a bounded and strongly continuous representation of S = Rd
or S = Rd+, the associated Fourier–Stieltjes calculus is strongly continuous.
The following is the uniqueness result we annouced.

4 That is our terminology. Different definitions exist in the literature.
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Theorem 6.12. Let S = Rd or S = Rd+ and let Ψ : FSS(Rd) → L(X) be a
strongly continuous calculus. Then T : S→ L(X), defined by Tt := Ψ(et) for
t ∈ S, is a bounded and strongly continuous representation, and Ψ coincides
with the associated Fourier–Stieltjes calculus.

Proof. The continuity assumption on Ψ implies that Ψ is norm bounded
(via the closed graph theorem) and that the representation T is strongly
continuous. By the norm boundedness, T is also bounded.

Let E := {f ∈ FSS(Rd) | Ψ(f) = ΨT (f)}. Then E is a strongly closed sub-
algebra of FSS(Rd) containing all the functions et, t ∈ S. Hence, the claim
follows from the next lemma.

Lemma 6.13. Let S = Rd+ or S = Rd and let M ⊆ M(S) be a convolution
subalgebra closed under strong convergence of sequences. Then M = M(S) in
each of the following cases:

1) M contains δt for each t ∈ S.

2) M contains some dense subset of L1(S).

Proof. As M is strongly closed, it is norm closed. Suppose that 2) holds.
Then L1(S) ⊆ M . As L1(S) contains an approximation of the identity and
M is strongly closed, M(S) ⊆M .

Suppose that 1) holds and consider first the case d = 1. Fix ϕ ∈ Cc(R) such
that supp(ϕ) ⊆ [0, 1]. Then the sequence of measures

µn :=
1

n

n∑
k=1

ϕ
(
k
n

)
δ k
n

converges to ϕλ in the weak∗-sense (as functionals on C0(R)). As the sup-
ports of the µn are all contained in a fixed compact set, Exercise 6.12 yields
that µn → ϕλ strongly. Obviously, with slightly more notational effort this
argument can be carried out for each ϕ ∈ Cc(S). As Cc(S) is dense in L1(S),
we obtain condition 2) and are done.

For arbitrary dimension d ∈ N one can employ a similar argument (with but
even more notational effort).

6.5 The Heat Semigroup on Rd

In this section we shall apply our knowledge of (semi)groups and the corre-
sponding functional calculi in order to become familiar with a special exam-
ple: the heat semigroup on Rd. We shall first treat the case d = 1.

In the following we use the symbol s for the real coordinate function and z
for the coordinate function in Fourier/Laplace domain. Let
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gt :=
1√
4πt

e−s
2/4t (t > 0).

The family (gt)t>0 is called the heat kernel on R. Here are its most impor-
tant properties.

Lemma 6.14. The following assertions hold:

a) gt = 1√
t
g1

(
s√
t

)
for all t > 0.

b) ‖gt‖1 =
∫
R gt = 1 for all t > 0, and (gt)t>0 is a (generalized) Dirac

sequence as t↘ 0.

c) F(gt) = e−tz
2

for all t > 0.

d) gt ∗ gs = gs+t for all s, t > 0.

e) The map (t 7→ gt) : (0,∞)→ L1(R) is continuous.

Proof. a) is immediate.

b) Since gt ≥ 0, ‖gt‖1 =
∫
R gt. By a) and substitution,∫

R
gt =

∫
R
g1 =

1√
2π

∫
R

e−s
2/2 ds = 1,

which is well known. (For a proof see (A.22) in Appendix A.11.)

c) is also well known. (For a proof see (A.23) in Appendix A.11.)

d) follows from c) since the Fourier transform is injective and turns convolu-
tions into products.

e) Given 0 < a < b <∞ one has

|gt| ≤
1√
4πa

e−s
2/4b (a ≤ t ≤ b).

Since obviously t 7→ gt(s) is continuous for each fixed s ∈ R, the claim follows
from Lebesgue’s theorem.

Let −iA be the generator of a bounded C0-group (Us)s∈R on a Banach
space X, with associated Fourier–Stieltjes calculus ΨU . Further, let G =
(Gt)t≥0 be defined by

Gt := ΨU (e−tz
2

) =

{∫
R gt(s)Us ds for t > 0,

I for t = 0.

Then (Gt)t≥0 is a bounded C0-semigroup on X. (The strong continuity fol-
lows from Lemma 6.14.b) and Exercise 6.9.c).) This semigroup is called the
heat semigroup or the Gauss–Weierstrass semigroup associated with
the group (Us)s∈R.
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Let us denote its generator by −B and the associated Hille–Phillips calcu-
lus by ΦG. For the following result one should recall that elements f ∈ LS(C+)
can be interpreted as functions on R+.

Theorem 6.15. Let (Us)s∈R be a bounded C0-group on a Banach space X
and let (Gt)t≥0 be its associated Gauss–Weierstrass semigroup. If f ∈ LS(C+)
then f(z2) ∈ FS(R) and

ΦG(f) = ΨU (f(z2)).

Proof. Given a measure µ ∈ M(R+) write µ = αδ0 + ν where α ∈ C and
ν ∈ M(0,∞). Then Lµ = α1 + Lν and it suffices to prove the claim for
f = Lν.

By Lemma 6.14.e) and c) and the definition of the norm on FS(R), the
mapping

(0,∞)→ FS(R), t 7→ e−tz
2

is bounded and continuous. Hence,

Lν(z2) =

∫ ∞
0

e−tz
2

ν(dt) ∈ FS(R)

since the integral converges in FS(R). (Note that point evaluations are con-
tinuous on FS(R).) Finally,

ΦG(f) =

∫ ∞
0

Gt ν(dt) =

∫ ∞
0

ΨU (e−tz
2

) ν(dt) = ΨU

(∫ ∞
0

e−tz
2

ν(dt)
)

= ΨU (f(z2))

as claimed.

Theorem 6.15 helps to identify the generator −B of (Gt)t≥0.

Corollary 6.16. In the situation from above we have B = A2.

Proof. Applying the theorem with f = 1
1+z yields

(I +B)−1 = ΨU
( 1

1 + z2

)
= ΨU

( 1

(1 + iz)(1− iz)

)
= (I + iA)−1(I− iA)−1 =

(
(I− iA)(I + iA)

)−1
= (I +A2)−1

(see Theorem A.20) from which the claim follows.

Note that −B = −A2 = (−iA)2, so the generator of G is simply the square
of the generator of U .

Examples 6.17. We apply these results to various shift groups, in which
case one simply speaks of the heat or Gauss–Weierstrass semigroup on the
respective space.
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1) Let X = UCb(R) and U = τ the right shift group. The associated heat
semigroup on X is given by

Gtf = gt ∗ f =
1√
4πt

∫
R
f(s)e−(x−s)2/4t ds (t > 0). (6.12)

Its generator is d2

dx2 with domain

UC2
b(R) = {f ∈ C2(R) | f, f ′, f ′′ ∈ UCb(R)}.

This follows from the simple-to-prove fact that the generator of τ is − d
dx

with domain

UC1
b(R) = {f ∈ C1(R) | f, f ′ ∈ UCb(R)}.

An analogous result holds for the heat semigroup on X = C0(R).

2) Let X = Lp(R) for 1 ≤ p < ∞ and U = τ the right shift group. Then
its associated heat semigroup is again given by (6.12) (recall Exercise
5.7). The generator of U is the closure of − d

dx defined on C∞c (R), see
Exercise 6.5.b). By Exercise 6.5.a), its square—which is the generator

of G—is the closure of d2

dx2 on C∞c (R). (Its domain is W2,p(R), but we
do not prove this here.)

3) Fix 1 ≤ j ≤ d and let U be the shift group in the direction of ej on
X = UCb(Rd) or X = C0(Rd), i.e., Us = τsej for all s ∈ R. Its generator

is − ∂
∂xj

with domain

{
f ∈ X

∣∣ ∂f
∂xj

exists everywhere and yields a function in X
}
.

So the associated heat semigroup has generator ∂2

∂x2
j

with domain con-

sisting of those f ∈ X such that ∂f
∂xj

and ∂2f
∂x2
j

exist and are in X.

4) Fix 1 ≤ j ≤ d and let U be the shift group in the direction of ej on
X = Lp(Rd) for 1 ≤ p < ∞. Its generator −Dj , say, is the closure of
the operator − ∂

∂xj
defined originally on C∞c (Rd). (It is true that

Djf = g ⇐⇒ ∂

∂xj
f = g in the weak sense

for f, g ∈ Lp(Rd), but we do not prove this here.) It follows that the gen-

erator of the associated heat semigroup is the closure of − ∂2

∂x2
j

(defined

on C∞c (Rd)).
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The Multidimensional Case

Let us turn to the multidimensional situation. The d-dimensional heat
kernel is the family (gd,t)t>0 given by

gd,t = gt ⊗ . . .⊗ gt =
1

(4πt)
d
2

e−|s|
2/4t (t > 0).

(The modulus |·| here denotes the Euclidean norm on Rd.) It is easily seen
that Lemma 6.14 holds mutatis mutandis: (gd,t)t>0 is a generalized Dirac

sequence and continuous in t > 0 and F(gd,t) = e−t|z|
2

for all t > 0.
If (Us)s∈Rd is a bounded, strongly continuous representation of Rd on a

Banach space X with corresponding Fourier–Stieltjes calculus ΨU the asso-
ciated heat semigroup (also: Gauss–Weierstrass semigroup) is (Gt)t≥0,
defined by

Gt := ΨU (e−t|z|
2

) (t ≥ 0).

This means that Gt =
∫
Rd gd,t(s)Us ds whenever t > 0. Then, with pretty

much the same proof, we obtain the following analogue of Theorem 6.15.

Theorem 6.18. Let (Us)s∈Rd be a bounded and strongly continuous group
on a Banach space X with associated Fourier–Stieltjes calculus ΨU . Let, fur-
thermore, (Gt)t≥0 be the associated Gauss–Weierstrass semigroup and ΦG its

Hille–Phillips calculus. If f ∈ LS(C+) then f(|z|2) ∈ FS(Rd) and

ΦG(f) = ΨU (f(|z|2)).

In the situation of Theorem 6.18, let −iAj be the generator of the bounded
C0-group U j , defined by U js = Usej for s ∈ R and 1 ≤ j ≤ d. Then for
g ∈ FS(Rd) one can think of ΨU (g) as

ΨU (g) = g(A1, . . . , Ad)

similar to the one-dimensional case. Now if −B denotes the generator of
(Gt)t≥0 then, as in the proof of Corollary 6.16,

(I +B)−1 = ΨU

( 1

1 + |z|2
)

=
( 1

1 + z2
1 + · · ·+ z2

d

)
(A1, . . . , Ad).

Hence, we would like to conclude

B = (z2
1 + · · ·+ z2

d)(A1, . . . , Ad)
?
= A2

1 + · · ·+A2
d. (6.13)

The first identity can be justified (e.g. by results of the next chapter), but
the second one fails in general. The best one can say here is the following.

Theorem 6.19. In the situation just described, B = A2
1 + · · ·+A2

d.
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Proof. By Corollary 6.16, the operator −A2
j is the generator of Gj , the heat

semigroup associated with the group U j . Since the groups U j are pairwise
commuting, so are the semigroups Gj . Now observe (by a little computation)
that

G(t) = G1(t) · · ·Gd(t) (t ≥ 0).

Hence, Exercise 6.8.d) yields the claim.

Examples 6.20. Consider the Gauss–Weierstrass semigroup associated with
the right shift group on X = C0(Rd) or X = Lp(Rd), 1 ≤ p < ∞. Then it
follows from Example 6.17.4) and Theorem 6.19 that its generator ∆X , say,
is the closure in X of the operator

∆ :=

d∑
j=1

∂2

∂x2
j

(6.14)

on C∞c (Rd). It can be shown—but we do not do this here—that ∆X is a
restriction of the distributional Laplacian to X. We shall see later that, due
to the boundedness of the so-called Riesz transforms, for 1 < p < ∞ the
domain of ∆Lp is W2,p(Rd).

6.6 Supplement: Subordinate Semigroups

In this section we review our findings from Section 6.5 on the Gauss–
Weierstrass semigroups from a more abstract point of view.

A family of measures (µt)t≥0 in M(Rd) is called a convolution semigroup
if µ0 = δ0 and µt ∗ µs = µs+t whenever s, t ≥ 0. It is called strongly
continuous if µt → δ0 strongly (as defined in Section 6.4 above) as t↘ 0.

In the following we suppose that S = Rd or S = Rd+ and (µt)t≥0 is a con-
volution semigroup in M(S). Then to each bounded and strongly continuous
representation S : S→ L(X) a semigroup (Tt)t≥0 on X is given by

Tt := ΨS(µ̂t) =

∫
S
Ss µt(ds) ∈ L(X) (t ≥ 0).

The semigroup T is called subordinate to the representation S, and the
family (µt)t≥0 is the so-called subordinator. One has the following lemma.

Lemma 6.21. If the convolution semigroup (µt)t≥0 is strongly continuous
then so is the semigroup (Tt)t≥0.

Proof. It follows from Theorem 6.11 that T is strongly continuous at t = 0.
By Exercise 6.14, T is strongly continuous on the whole of R+.
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For strongly continuous convolution semigroups, the following result is of
fundamental importance.

Theorem 6.22. Let (µt)t≥0 be any strongly continuous and uniformly bounded
convolution semigroup in M(S). Then there is a uniquely determined contin-
uous function a : Rd → C+ such that

µ̂t = e−ta (t ≥ 0).

Moreover, for each f ∈ LS(C+) one has f ◦ a ∈ FSS(Rd) and

ΦT (f) = ΨS(f ◦ a)

whenever S : S→ L(X) is a strongly continuous and bounded representation
with Fourier–Stieltjes calculus ΨS, T is the semigroup subordinate to S with
respect to the subordinator (µt)t≥0, and ΦT is its Hille–Phillips calculus.

For the proof, we need the following auxiliary result, interesting in its own
right.

Theorem 6.23. Let T be a bounded linear operator on L1(Rd). Then the
following assertions are equivalent:

(i) T commutes with all translations.

(ii) T (ν ∗ ψ) = ν ∗ Tψ for all ν ∈ M(Rd) and ψ ∈ L1(Rd).

(iii) T (ϕ ∗ ψ) = ϕ ∗ Tψ for all ϕ, ψ ∈ L1(Rd).

(iv) There is a function a : Rd → C such that F(Tψ) = aψ̂ for all ψ ∈
L1(Rd).

(v) There is µ ∈ M(Rd) such that Tψ = µ ∗ ψ for all ψ ∈ L1(Rd).

In this case a = µ̂ and µ is uniquely determined by (v).

Proof. (v)⇒ (iv): take a = µ̂.

(iv)⇒ (ii): For ν ∈ M(Rd) and ψ ∈ L1(Rd):

F(T (ν ∗ ψ)) = aF(ν ∗ ψ) = aν̂ψ̂ = ν̂aψ̂ = ν̂F(Tψ) = F(ν ∗ Tψ)

and hence, by the injectivity of the Fourier transform, T (ν ∗ ψ) = ν ∗ Tψ.

(ii)⇒ (i),(iii): For (i) take ν = ϕλ and for (iii) take ν = δt, t ∈ Rd.
(i)⇒ (ii): This follows from Lemma 5.3 applied to the translation group.

(iii)⇒ (v): Let (ϕn)n∈N be any Dirac sequence in L1(Rd). The sequence
(Tϕn)n∈N is bounded and can be regarded as a sequence in M(Rd) ∼= C0(Rd)′.
Now let ψ ∈ L1(Rd) and f ∈ C0(Rd) be arbitrary. Then Sψ ∗f ∈ C0(Rd) and

〈Sψ ∗ f, Tϕn〉 = 〈f, ψ ∗ Tϕn〉 = 〈f, ϕn ∗ Tψ〉 → 〈f, Tψ〉
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as n → ∞, where we used the continuity of T , the commutativity of convo-
lution, and hypothesis (iii). Since elements of the form Sψ ∗ f are dense in
C0(Rd) and the sequence (Tϕn)n is bounded, it follows that it is weakly∗-
convergent to some µ ∈ M(Rd). Moreover, we obtain

〈f, µ ∗ ψ〉 = 〈Sψ ∗ f, µ〉 = 〈f, Tψ〉 (ψ ∈ L1(Rd), f ∈ C0(Rd)),

which implies that µ ∗ ψ = Tψ for all ψ ∈ L1(Rd).
Uniqueness follows from Lemma 6.9.

Remark 6.24. Suppose that in Theorem 6.23 there is a closed subset E ⊆ Rd
such that L1(E) contains a Dirac sequence and is invariant under T . Then
supp(µ) ⊆ E.

Indeed, the proof shows that µ is a weak∗-limit of functions Tϕn, where
(ϕn)n is a certain subsequence of an arbitrary Dirac sequence in L1(Rd). In
particular, one can suppose that supp(ϕn) ⊆ E for all n ∈ N. Hence, if T
leaves L1(E) invariant, then supp(µ) ⊆ E as well.

We can now prove Theorem 6.22.

Proof of Theorem 6.22. First, consider the multiplication operator semi-
group (Tt)t≥0 on C0(Rd) defined by

Ttf = µ̂tf (f ∈ C0(Rd), t ≥ 0).

By Example 5.6.1), Tt = Sµt , where (Ss)s∈Rd is the bounded strongly con-
tinuous group on C0(Rd) given by

Ssf = esf (f ∈ C0(Rd)).

Hence, by Lemma 6.21, (Tt)t≥0 is strongly continuous. By Exercise 6.15 there
is a unique continuous function a : Rd → C+ such that µ̂t = e−ta for all t ≥ 0.

For the second part we first deal with the case S = Rd. Let ν ∈ M(R+) and
f = Lν. By Theorem 6.23 there is a unique measure µ ∈ M(Rd) such that∫ ∞

0

µt ∗ ψ ν(dt) = µ ∗ ψ

for all ψ ∈ L1(Rd). Taking Fourier transforms and inserting x ∈ Rd we see
that ∫ ∞

0

e−ta(x)ψ̂(x) ν(dt) = µ̂(x) ψ̂(x).

This yields f ◦ a = µ̂ ∈ FS(Rd).
Finally, with S and T as in the hypotheses of the theorem and ψ ∈ L1(Rd),
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ΦT (f)Sψ =

∫ ∞
0

Tt ν(dt)Sψ =

∫ ∞
0

SµtSψ ν(dt) =

∫ ∞
0

Sµt∗ψ ν(dt)

= S∫∞
0
µt∗ψ ν(dt) = Sµ∗ψ = SµSψ = ΨS(f ◦ a)Sψ.

As ψ ∈ L1(Rd) is arbitrary, it follows that ΦT (f) = ΨS(f ◦ a) as claimed.

Now consider the case S = Rd+. Then supp(µt) ⊆ Rd+ for all t ≥ 0. By Remark
6.24, µ ∈ M(Rd+). The remaining parts of the proof carry over unchanged,
save that one has to take ψ ∈ L1(Rd+) in the final argument.

Example 6.25 (Heat Semigroups). Of course, the heat semigroups of
Section 6.5 are examples of subordinate semigroups for the special choice
µt = gd,tλ for t > 0.

Remark 6.26. Strong continuity of a convolution semigroup (µt)t≥0 is not
easy to check. However, if all µt are probability measures, the strong continuity
is equivalent with the weak∗ convergence of µt to δ0 as t↘ 0 (Exercise 6.16).
So it should not come as a surprise that subordinate semigroups were first
studied by Bochner and Feller in the context of probability theory.

Exercises

6.1 (Growth Bound). Let T = (Tt)t≥0 be a C0-semigroup on a Banach
space X.

a) Show that

ω0(T ) := inf
t>0

log ‖Tt‖
t

= lim
t→∞

log ‖Tt‖
t

∈ R ∪ {−∞}. (6.15)

b) Show that to each ω > ω0(T ) there is M ≥ 1 such that

‖Tt‖ ≤Meωt (t ≥ 0).

Then show that ω0(T ) is actually the infimum of all ω ∈ R with this
property.

The number ω0(T ) is called the growth bound of the semigroup T .

6.2. Let −A be the generator of a C0-semigroup T = (Tt)t≥0 on a Banach
space X and suppose that x, y ∈ X are such that y = limt↘0

1
t (Ttx− x).

a) Show that T (·)x is differentiable on R+ and its derivative is T (·)y. [Hint:
Show first that the orbit is right differentiable, cf. [1, Lemma II.1.1].]

b) Show that −Ax = y. [Hint: For λ > 0 sufficiently large, compute
d
dte
−λtTtx and integrate over R+.]

6.3 (Hille–Yosida Estimates). Let for λ ∈ C and n ∈ N the function
fn : R→ C be defined by
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fn :=
tn−1

(n−1)!
e−λt1R+ .

Prove the following assertions.

a) If λ ∈ C+ then fn ∈ L1(R+) and fn = f1 ∗ · · · ∗ f1 (n times).

b) Let B be the generator of a C0-semigroup T = (Tt)t≥0 of type (M,ω)
on a Banach space X. Then, for Reλ > ω and n ≥ 0,

R(λ,B)n =

∫ ∞
0

tn−1

(n−1)!e
−λtTt dt and

‖R(λ,B)n‖ ≤ M

(Reλ− ω)n
.

[Hint: Reduce to the case ω = 0 by rescaling and then employ a).]

6.4. Let −A be the generator of a C0-semigroup T of type (M,ω) and let
α > ω. Prove the following assertions:

a) If f : R+ → C is such that eωtf ∈ L1(R+), then g :=
∫∞

0
e−ztf(t) dt ∈

LS(C+−ω) and

g(A) =

∫ ∞
0

f(t)Tt dt.

b) Via restriction, the algebra LS(C+−α) can be considered to be a subal-
gebra of LS(C+−ω), and the Hille-Phillips calculus for A on the larger
algebra restricts to the Hille–Phillips calculus for A on the smaller one.

6.5. a) (Nelson’s Lemma) Let −A be the generator of a C0-semigroup
T = (Tt)t≥0, let n ∈ N, and let D ⊆ dom(An) be a subspace which is
dense in X and invariant under the semigroup T . Show that D is a core
for An. (Note that by Theorem A.20 each operator An is closed.)

b) (Coordinate Shifts) Let j ∈ {1, . . . , d} and consider the shift semi-
group (τtej )t≥0 in the direction ej on X = Lp(Rd), 1 ≤ p < ∞, or
X = C0(Rd). Show that its generator B is the closure (as an operator
on X) of the operator

B0 = − ∂

∂xj

defined on the space D = C∞c (Rd) of smooth functions with compact
support.

[Hint: For a) observe first that if y ∈ D and λ is sufficiently large, then
xλ,y := λn(λ + A)−ny is contained in the ‖ · ‖An closure of D, and second
that one can find elements of the form xλ,y arbitrarily ‖ · ‖An -close to any
given x ∈ dom(An), see [1, Proposition II.1.7]. For b) use a).]

6.6 (Right Shift Semigroup on a Finite Interval). Let τ = (τt)t≥0 be
the right shift semigroup on X = Lp(0, 1), where 1 ≤ p < ∞. This can be
described as follows:
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τtx :=
(
τtx̃
)
|(0,1) (x ∈ X, t ≥ 0),

where x̃ is the extension by 0 to R of x and τ on the right hand side is the
just the regular representation of R on X. It is easy to see that this yields a
C0-semigroup on X. Let −A be its generator.

a) Show that τt = 0 for t ≥ 1. Conclude that σ(A) = ∅ and A has a
Hille–Phillips calculus for LS(C++ω) for each ω ∈ R (however large).

b) Show that A−1 = V , the Volterra operator on X (see Section 1.4), and
that σ(V ) = {0}.

c) Let r > 0 and (αn)n be a sequence of complex numbers such that
M := supn≥0 |αn| r−n < ∞. Show that the function f :=

∑∞
n=0 αnz−n

is contained in LS(C++ω) for each ω > r. Show further that

f(A) =

∞∑
n=0

αnV
n

where f(A) is defined via the Hille–Phillips calculus for A.

d) Find a function f such that f(A) is defined via the Hille–Phillips cal-
culus for A, but g := f(z−1) is not holomorphic at 0, so g(V ) is not
defined via the Dunford–Riesz calculus for V .

[Hint: for the first part of b) observe that point evaluations are not continuous
on Lp(0, 1); for the second cf. Exercise 2.4; for c) cf. Exercise 6.3 and show
that the series defining f converges in FS(C++ω).]

Remark: A closer look would reveal that A = d
dt is the weak derivative

operator with domain

dom(A) = W1,p
0 (0, 1) := {u ∈W1,p(0, 1) | u(0) = 0}.

For the case p = 2 this can be found in [3, Section 10.2].

6.7 (Fourier–Stieltjes Calculus for Unbounded C0-Groups). Let −iA
be the generator of a C0-group U = (Us)s∈R of type (M,ω). Define

Mω(R) :=
{
µ ∈ M(R)

∣∣ ‖µ‖Mω
:=

∫
R

eω|s| |µ| (ds) <∞
}
.

Show the following assertions:

a) Mω(R) is unital subalgebra of M(R) and a Banach algebra with respect
to the norm ‖ · ‖Mω .

b) The mapping

Mω(R)→ L(X), µ 7→ Uµ :=

∫
R
Us µ(ds)
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is a unital algebra homomorphism with ‖Uµ‖ ≤M‖µ‖Mω
.

c) The Fourier transform µ̂ of µ ∈ Mω(R) has a unique extension to a
function continuous on the strip Stω = {z ∈ C | |Im z| ≤ ω} and holo-
morphic in its interior.

d) The spectrum σ(A) of A is contained in the said strip and one has

‖R(λ,A)‖ ≤ M

|Imλ| − ω
(|Imλ| > ω).

[Hint for b): show and use that Mc(R) is dense in Mω(R) with respect to the
norm ‖ · ‖Mω

.]

The mapping ΨU defined on {µ̂ | µ ∈ Mω(R)} by

ΨU (µ̂) =

∫
R
Us µ(ds) (µ ∈ Mω(R))

is called the Fourier–Stieltjes calculus associated with U .

6.8 (Multiparameter C0-Semigroups). A (strongly continuous) represen-
tation T : Rd+ → L(X) is called a d-parameter semigroup (C0-semigroup).
Such d-parameter semigroups T are in one-to-one correspondence with d-
tuples (T 1, . . . , T d) of pairwise commuting 1-parameter semigroups via

T (t1e1 + · · ·+ tded) = T 1(t1) · · ·T d(td) (t1, . . . , td ∈ R+),

cf. Remark 5.1.

a) Show that a d-parameter semigroup T is strongly continuous if and only
if each T j , j = 1, . . . , d, is strongly continuous.

Let T be a d-parameter C0-semigroup. Then each of the semigroups T j has
a generator −Aj , say.

b) Show that T is uniquely determined by the tuple (A1, . . . , Ad).

c) Show that dom(A1) ∩ · · · ∩ dom(Ad) is dense in X.

d) Let −A be the generator of the C0-semigroup S, defined by

S(t) := T (te1 + · · ·+ ted) = T 1(t) · · ·T d(t) (t ≥ 0).

Show that A = A1 + · · ·+Ad. [Hint: use d) and Exercise 6.5.b).]

If, in addition, T is bounded, we can consider the associated Fourier–Stieltjes
calculus. However, as in the case d = 1, one rather often works with the
Hille–Phillips calculus which is based on the “d-dimensional” Laplace
transform.

e) Try to give a definition of the Laplace transform of measures in M(Rd+)
and built on it a construction of the “Hille–Phillips calculus” for
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bounded d-parameter C0-semigroups. What is the connection between
this calculus and the invidual calculi for the semigroups T j?

6.9 (Dirac Sequences). Let 0 ∈ E ⊆ Rd be closed. A Dirac sequence on
E is a sequence (ϕn)n in L1(Rd) such that supp(ϕn) ⊆ E for all n ∈ N and∫

Rd
fϕn dλ→ f(0) (n→∞)

whenever f ∈ Cb(E;X) and X is a Banach space.

a) Let (ϕn)n be a sequence in L1(Rd) with the following properties:

1) supp(ϕn) ⊆ E for all n ∈ N.

2) supn ‖ϕn‖1 <∞.

3) limn→∞
∫
Rd ϕn = 1.

4) limn→∞
∫
|x|≥ε |ϕn(x)|dx→ 0 for all ε > 0.

Show that (ϕn)n is a Dirac sequence on E.

b) Let ϕ ∈ L1(Rd) such that
∫
Rd ϕ = 1. Define ϕn(x) := ndϕ(nx) for

x ∈ Rd. Show that (ϕn)n is a Dirac sequence on E = R+ supp(ϕ).

c) Let T : E → L(X) be bounded and strongly continuous, and let (ϕn)n
be a Dirac sequence on E. Show that Tϕn → I strongly.

6.10 (Self-adjoint Semigroups). Show that for an operator A on a Hilbert
space H the following assertions are equivalent:

(i) A is a positive self-adjoint operator.

(ii) −A generates a bounded C0-semigroup T = (Tt)t≥0 of self-adjoint op-
erators.

Show further that in this case the Borel calculus for A coincides with the
Hille–Phillips calculus for A on LS(C+).

Supplementary Exercises

6.11. Show that if µn → 0 strongly in M(Rd) then µn → 0 weakly∗ (under
the identification M(Rd) ∼= C0(Rd)′) and µ̂n → 0 uniformly on compacts.

6.12. Let (µn)n be a sequence in M(Rd) such that µn → µ ∈ M(Rd) weakly∗

as functionals on C0(Rd). Show that µn → µ strongly if, in addition, there is
a compact set K ⊆ Rd such that supp(µn) ⊆ K for all n ∈ N.

6.13. Let H be a Hilbert space and let U : Rd → L(Rd) be a strongly continu-
ous representation of Rd by unitary operators on H. Show that the associated
Fourier–Stieltjes calculus ΨU : FS(Rd)→ L(H) is a ∗-homomorphism. [Hint:
recall Exercise 5.10.]
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6.14. Let T = (Tt)t≥0 be an operator semigroup on a Banach space X such
that limt↘0 Tt = I strongly. Show that T is strongly continuous on R+.
[Hint: Show first that there is δ > 0 such that sup0≤t≤δ ‖Tt‖ < ∞. See also
[1, Prop.I.5.3].]

6.15. Let Ω be a locally compact metric space and let (et)t≥0 be a family
of functions in Cb(Ω) such that et+s = etes for all t, s ≥ 0 and e0 = 1, and
such that the operator family (Tt)t≥0 defined by Tt = Met for all t ≥ 0 is a
bounded strongly continuous semigroup on X = C0(Ω).

a) For x ∈ Ω and t ≥ 0 define ϕx(t) := et(x). Show that there is a unique
a(x) ∈ C such that ϕx(t) = e−ta(x) for all t ≥ 0.

b) Prove that a(Ω) ⊆ C+ and that a is continuous.

[Hint: For a) note first that ϕ is continuous; then the result is classical, see [1,
Prop. I.1.4]; a different proof proceeds by showing that the Laplace transform
of ϕx is (λ+ a(x))−1 for some a(x) ∈ C and all Reλ > 0. For b) consider the
operator

∫∞
0

e−tTt dt.]

6.16. Let (µn)n be a sequence of Borel probability measures on Rd such that
µn → δ0 weakly∗ as n→∞. Show that∫

Rd
f dµn → f(0) (n→∞)

whenever f ∈ Cb(Rd;X) and X is any Banach space. Conclude that µn → δ0

strongly.
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Chapter 7

More about Abstract Functional
Calculus

The Dunford–Riesz calculus from Chapter 1 as well as the Fourier–Stieltjes
and Hille–Phillips calculi of the previous chapter are “bounded” calculi in the
sense that they are representations of certain algebras in bounded operators.
The multiplication operator calculi are so far our only examples of calculi
that may really yield unbounded operators. So the question arises: are there
interesting other examples that justify our quite general axiomatic notion of
an abstract calculus from Chapter 2?

In the following we shall see that the answer to this question is affirmative
and that one does not have to go far to find them. Namely, under some
very natural assumptions, a given “bounded” calculus can be extended to an
“unbounded” calculus for a “larger” algebra.

As an example, take again the Volterra operator V , which featured already
in Section 1.4. It was observed there that the Dunford–Riesz calculus Φ for
V produces only bounded operators, so the unbounded operator V −1, which
could be interpreted as inserting V into the function z−1, is not accessible.
The problem would be solved if we could extend the Dunford–Riesz calculus
towards an algebra of functions that contains also the function z−1.

7.1 Abstract Functional Calculus (III) — Extension

From now on, F denotes an algebra with unit 1 and E a subalgebra of F
(not necessarily containing the unit element). Our goal is, eventually, to find
conditions on F such that a given representation Φ : E → L(X) can be
extended to an F-calculus in a unique way.

A first, rather trivial extension is possible if 1 /∈ E . In this case, E ⊕ C1 is a
unital subalgebra of F and by

Φ̂(f) := Φ(e) + λI, f = e+ λ1, e ∈ E , λ ∈ C

105
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a representation Φ̂ : E ⊕ C1 → L(X) is defined. This extension is obviously
the only possible one when the result is supposed to be a proto-calculus. So
the real challenge lies in extending beyond E ⊕ C1.

Idea: Extension by Regularization

The basic idea for a non-trivial extension is (again) multiplicative regulariza-
tion. Suppose that Φ is an F-calculus and E ⊆ FΦ. (Recall from Chapter 2
that FΦ = {h ∈ F | Φ(h) ∈ L(X)} is the set of Φ-bounded elements of F .)
Suppose that f ∈ F is such that there is e ∈ E with ef ∈ E again. Then it is
easy to see that the following two assertions are equivalent:

(i) e is Φ-determining for f ;

(ii) Φ(e) is injective and Φ(f) = Φ(e)−1Φ(ef).

Suppose, conversely, that Φ is only defined on E (as a representation in L(X)).

Then we are tempted to construct an extension Φ̂ of Φ by defining

Φ̂(f) := Φ(e)−1Φ(ef) (7.1)

for those f ∈ F where one can find a suitable e.
For this approach to work one has to make sure that the operator

Φ(e)−1Φ(ef) is independent of the chosen element e, that the set F ′ of all f
which can be treated in this way is a subalgebra of F , and that the definition
of Φ̂(f) by (7.1) for f ∈ F ′ yields an F ′-calculus.

This approach, however, seems to fail without additional commutativity
assumptions. In the “classical” situation (considered in [3]), the whole algebra
F is supposed to be commutative. But, as we shall see below, it suffices to
require that the regularizer e of f is a member of the center

Z(E) := {e ∈ E | ∀ e′ ∈ E : ee′ = e′e }

of the algebra E . (One does not need ef ∈ Z(E), and this makes our approach
here more general than the “classical” one.)

One can generalize the “classical” results also in another respect. Namely, it
has been observed for the first time in [4] that it is not necessary to confine
oneself to those f ∈ F that are Φ-determined by a single element e, as above.
The price that one pays for this additional amount of generality is that in
the technical parts of many proofs one has to work with anchor sets instead
of single anchor elements. The definition of these terms is our next goal.
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Anchor Sets and Anchor Elements

Suppose that Φ : F → C(X) is a proto-calculus. We say that a subsetM⊆ FΦ
is an anchor set (with respect to Φ) if⋂

e∈M
ker(Φ(e)) = {0}. (7.2)

And an element e ∈ FΦ is an called anchor element if the singleton {e} is
an anchor set, i.e., if Φ(e) is injective.

Clearly, a superset of an anchor set is an anchor set. Moreover, ifM, N ⊆
FΦ are both anchor sets, thenso is

M ·N := {fg | f ∈M, g ∈ N}.

This follows easily from the multiplicativity of Φ on FΦ. In particular, the
product of two anchor elements is an anchor element.

Recall from Lemma 2.4 that each Φ-determining set for an element f ∈ F
must be an anchor set, but the converse may not always be true. However,
there are several technical results asserting that a given anchor set M ⊆
RegΦ(f) is actually Φ-determining, see Exercise 7.1 and Lemma 7.26 below.

Let us go back to our standard “extension problem”-situation: E is a subal-
gebra of a unital algebra F and Φ : E → L(X) is an algebra homomorphism.
We do not suppose that 1 ∈ E , but if it is, we assume that Φ(1) = I.

Remark 7.1. The assumption that Φ(1) = I is not very restrictive. In any
case, P := Φ(1) is a projection on X and Φ(e) = 0 on ker(P ) for each
e ∈ E . Hence, Φ can be regarded as a unital representation of E on the closed
subspace Y := ran(P ) of X.

The representation Φ : E → L(X) is called non-degenerate if Z(E) is an
anchor set, i.e., if ⋂

e∈Z(E)

ker(Φ(e)) = {0}.

Otherwise, Φ is called degenerate. And Φ is called strictly non-degenerate
if Z(E) contains an anchor element. If E is unital and Φ is a unital represen-
tation, then Φ is strictly non-degenerate. Recall that one easily can extend a
degenerate (and hence non-unital) representation to a unital one.

For f ∈ F we introduce the set

[f ]E := {e ∈ Z(E) | ef ∈ E},

which is an ideal in the commutative algebra Z(E). We say that f ∈ F is
anchored in E (with respect to Φ) if [f ]E is an anchor set, and strictly
anchored in E if [f ]E contains an anchor element e. (Such an element is
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then called an anchor element for f .) We drop the explicit reference to E
and Φ if no confusion can arise.

Lemma 7.2. Let E be a subalgebra of a unital algebra F and let f, g ∈ F
and λ ∈ C. Then

[f ]E ⊆ [λf ]E and [f ]E · [g]E ⊆ [fg]E ∩ [f+g]E .

Furthermore, if ef and eg are anchor elements for f and g, respectively, then
efeg is an anchor element for fg and for f + g.

Proof. Let ef ∈ [f ]E and eg ∈ [g]E . Then ef (λf) = λ(eff) ∈ E , hence
ef ∈ [λf ]E . Furthermore, efeg ∈ Z(E) and

(efeg)(fg) = (egef )(fg) = (eg(eff))g = (eff)(egg) ∈ E .

Therefore, efeg ∈ [fg]E . The proof that efeg ∈ [f+g]E is similar. Finally, if
both Φ(ef ) and Φ(eg) are injective, then so is Φ(efeg) = Φ(ef )Φ(eg).

Still in the situation from above, we let

〈E〉Φ := {f ∈ F | [f ]E is an anchor set}

be the set of all anchored elements and

〈〈 E 〉〉Φ := {f ∈ F | [f ]E contains an anchor element}

the set of all strictly anchored elements of F . Obviously, 〈〈 E 〉〉Φ ⊆ 〈E〉Φ.

Corollary 7.3. Let E be a subalgebra of a unital algebra F and let Φ : E →
L(X) be an algebra homomorphism. Then the following statements hold.

a) Φ is non-degenerate if and only if 〈E〉Φ 6= ∅, in which case 〈E〉Φ is a
unital subalgebra of F containing E.

b) Φ is strictly non-degenerate if and only if 〈〈 E 〉〉Φ 6= ∅, in which case
〈〈 E 〉〉Φ is a unital subalgebra of F containing E.

Proof. If 〈E〉Φ 6= ∅ then Z(E) is an anchor set and, since [1]E = [e]E = Z(E)
for all e ∈ E , we then have 1 ∈ 〈E〉Φ and E ⊆ 〈E〉Φ. Similarly, if 〈〈 E 〉〉Φ 6= ∅,
then there is an element e ∈ Z(E) such that Φ(e) is injective, and hence e is
an anchor element for 1 and for each e′ ∈ E .

The remaining assertions follow from Lemma 7.2 and the observation that the
set of products of two anchor sets/elements is again an anchor set/element.

Remark 7.4. Suppose Φ : F → C(X) is a proto-calculus. Then for each sub-
algebra E ⊆ FΦ we can restrict Φ to E and consider the sets 〈E〉Φ and 〈〈 E 〉〉Φ.
If F is commutative, then for each subalgbra D one has the implication
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D ⊆ E ⇒ 〈D〉Φ ⊆ 〈E〉Φ ∧ 〈〈D 〉〉Φ ⊆ 〈〈 E 〉〉Φ.

The same is true under less restrictive assumptions (e.g., if Z(D) ⊆ Z(E),
but we doubt that it holds in general without additional assumptions.

The Extension Theorem

We can now state the central result of the present chapter.

Theorem 7.5 (Extension Theorem). Let F be a unital algebra and E ⊆ F
a subalgebra of F . Suppose that X is a Banach space and

Φ : E → L(X)

is a non-degenerate algebra homomorphism. Then there is a unique 〈E〉Φ-
calculus

Φ̂ : 〈E〉Φ → C(X)

such that Φ̂|E = Φ.

More precisely, for f ∈ 〈E〉Φ the operator Φ̂(f) is given by (x, y ∈ X):

Φ̂(f)x = y ⇐⇒ ∀ e ∈M : Φ(ef)x = Φ(e)y, (7.3)

where M ⊆ [f ]E is any anchor set. In particular, if e ∈ Z(E) is an anchor
element for f , then

Φ̂(f) = Φ(e)−1Φ(ef).

We postpone the proof of Theorem 7.5 to the supplementary Section 7.6.

Theorem 7.5 allows to extend any non-degenerate representation Φ of a
subalgebra E of a unital algebra F to the subalgebra 〈E〉Φ of E-anchored
elements. We shall call this the canonical extension of Φ within F , and
denote it again by Φ (instead of Φ̂ as in the theorem).

Is the canonical extension necessarily consistent with an already given
calculus? The attempt to answer this question leads to the following notion.

Admissible Subalgebras

Suppose that F is a unital algebra, Φ : F → C(X) is a proto-calculus and E ⊆
FΦ is a subalgebra on which Φ is non-degenerate. Then one can restrict Φ to

E and consider its canonical extension Φ̂|E to 〈E〉Φ ⊆ F . If this coincides with
the restriction of the original calculus Φ to 〈E〉Φ, E is called an admissible
subalgebra of F .

Lemma 7.6. In the situation from before, the following assertions are equiv-
alent:
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(i) E is admissible, i.e., Φ̂|E = Φ|〈E〉Φ .

(ii) The restriction of Φ to 〈E〉Φ is a calculus.1

(iii) The set RegΦ(f) ∩ 〈E〉Φ is Φ-determining for f , for each f ∈ 〈E〉Φ.

Proof. The implication (i)⇒ (ii) holds since by Theorem 7.5 the canonical
extension is a calculus. The converse follows from the uniqueness part of
that theorem. And the equivalence (ii)⇔ (iii) follows immediately from the
definition of a calculus, since RegΦ(f) ∩ 〈E〉Φ = RegΦ|〈E〉Φ

.

If F is commutative and Φ is a calculus (and not just a proto-calculus),
then the situation is simple:

Corollary 7.7. Let F be a commutative unital algebra, Φ : F → C(X) an
F-calculus on a Banach space X and E ⊆ FΦ a subalgebra on which Φ is
non-degenerate. Then E is admissible.

Proof. This is left as Exercise 7.3.

Whether Corollary 7.7 holds without the assumption of commutativity is
dubitable, but we neither have proof nor a counterexample yet.

Related to this is the question what happens if one performs an extension,
say from E to 〈E〉Φ, then takes a subalgebra D of Φ-bounded elements of 〈E〉Φ
and performs another extension, now starting with D. If F is commutative,
then nothing strange can happen, and no “new” functions are included in the
domain of the functional calculus (Exercise 7.4). If F is not commutative, it
is unclear (at least to me) what can happen, and only special situations are
well understood (Exercise 7.11).

The Generator of a Functional Calculus

Recall from Chapter 2 that an operator A is called the generator of an F-
calculus Φ if F is a space of functions on a set D ⊆ C, the function z ∈ F
and Φ(z) = A. Later on, we extended this terminology towards the situation
when Φ(z) is not, but Φ((λ− z)−1) is well defined for some λ ∈ C.

By virtue of the canonical extension, one can unify such auxiliary defi-
nitions of a generator, in the following way. Suppose that F is an algebra
of functions on a set D ⊆ C and Φ : E → L(X) is a non-degenerate repre-
sentation, where E is a subalgebra of F . Then we call the operator A the
generator of the calculus Φ if z is anchored in E with respect to Φ and
Φ̂(z) = A. That is, A is the generator of the canonical extension of Φ.

In applications, the following situation is typical: there is an element g ∈ E
and some λ ∈ C \ D such that e := (λ − z)−1g ∈ E is an anchor element.
Since

1 Cf. Remark 2.5.1).
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e · z = −g + λe ∈ E ,

e is an anchor element for z. Hence, in such a situation, Φ̂(z) = Φ(e)−1Φ(e ·z)
is the generator of Φ.

In particular, the above happens when (λ− z)−1 ∈ E and Φ((λ− z)−1) is
injective, since one can then take e = (λ− z)−1.

Corollary 7.8. Let F be an algebra of functions on D ⊆ C, let E ⊆ F be a
subalgebra and let Φ : E → L(X) be a representation. Suppose that there is
an operator A on X, a number λ ∈ ρ(A) \ D and g ∈ E such that Φ(g) is
injective, g · (λ− z)−1 ∈ E and

Φ(g(λ− z)−1) = Φ(g)R(λ,A).

Then A is the generator of Φ.

Proof. By what we have seen above, with e := g · (λ− z)−1 we have e · z =
−g + λe ∈ E and e is an anchor element for z. It follows that

Φ(ez) = Φ(−g + λe) = −Φ(g) + λΦ(g)R(λ,A) = Φ(g)[−I + λR(λ,A)].

Hence,

Φ̂(z) = Φ(e)−1Φ(ez) = (λ−A)Φ(g)−1Φ(g)[−I + λR(λ,A)]

= (λ−A)[−I + λR(λ,A)] = A

as claimed.

The Extension Theorem will unfold its true power only in coming chapters.
However, we can already review the calculi known so far in the light of The-
orem 7.5.

7.2 Extension of the Dunford–Riesz Calculus

Let A be a bounded operator on a Banach space X and let Φ : Hol(U) →
L(X) be the Dunford–Riesz calculus, where U is some open superset of σ(A).
Without loss of generality, we may suppose that V ∩ σ(A) 6= ∅ for each
connected component V of U . (Make U smaller by discarding all the other
components.)

Lemma 7.9. In the described situation, let e ∈ Hol(U). Then for λ ∈ [ e = 0 ]
one has ker(λ − A) ⊆ ker(Φ(e)). And Φ(e) is injective if and only if [ e = 0 ]
is discrete and contains no eigenvalue of A.
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Proof. If λ ∈ U and e(λ) = 0 then there is g ∈ Hol(U) such that e =
g · (λ− z). Hence, ker(λ−A) ⊆ ker(Φ(e)) as claimed.

Suppose that Φ(e) is injective. Then, as just proved, [ e = 0 ] contains no
eigenvalue of A. If [ e = 0 ] is not discrete, then e = 0 on some connected
component V of U . Hence 0 = Φ(e1V ) = Φ(e)Φ(1V ). As Φ(e) is injective,
Φ(1V ) = 0. But this cannot happen as σ(A)∩ V 6= ∅. (Note that σ(A)∩ V is
the spectrum of the restriction of A to ran(Φ(1V )), cf. Exercise 1.8.)

Conversely, suppose that [ e = 0 ] is discrete. Then [ e = 0 ]∩σ(A) is finite and
hence

e = e1

d∏
j=1

(z− λj)kj

for some λ1, . . . , λd ∈ U , k1, . . . , kd ∈ N and some e1 ∈ Hol(U) such that
σ(A) ⊆ [ e1 6= 0 ] =: U1. Since e1 is an invertible element in Hol(U1) and the
Dunford–Riesz calculi on Hol(U) and Hol(U1) are compatible, Φ(e1) is an
invertible operator. So if in addition no λj is an eigenvalue of A, the operator

Φ(e) = Φ(e1)

d∏
j=1

(A− λj)kj

is injective.

In order to extend the Dunford–Riesz calculus on Hol(U) we choose F =
Mer(U), the space of meromorphic functions on U . Recall that a function f
on U is meromorphic if f maps U into the Riemann sphere C∞ := C∪{∞}
such that the set Pf := [ f =∞ ] is discrete, f is holomorphic on U \ Pf and
each λ ∈ Pf is a pole of f .

A standard (but non-trivial) result of complex analysis is that Mer(U)
consists of quotients g/e where g, e are holomorphic on U with no common
zeroes and e has a discrete zero set [9, Section 4.1.5]. We shall employ this
in the following characterization.

Theorem 7.10. Let, as above, Φ : Hol(U) → L(X) be the Dunford–Riesz
calculus of a bounded operator A on a Banach space X, where U ⊆ C is an
open superset of σ(A) such that each connected component of U contains a
point of σ(A). Then the following assertions are equivalent for f ∈ Mer(U):

(i) f is anchored in Hol(U), i.e., f ∈ 〈Hol(U)〉Φ;

(ii) There is e ∈ Hol(U) such that ef ∈ Hol(U) and Φ(e) is injective;

(iii) No eigenvalue of A is a pole of f .

Proof. (i)⇒ (iii): Suppose λ ∈ U is a pole of f and e ∈ [f ]Hol(U). Then ef
is holomorphic, and hence e(λ) = 0. By Lemma 7.9, ker(λ−A) ⊆ ker(Φ(e)).
But [f ]Hol(U) is an anchor, which implies that ker(λ−A) = {0}.
(iii)⇒ (ii): Let f ∈ Mer(U) such that Pf ∩σp(A) = ∅. Find, by the mentioned
characterization, functions g, e ∈ Hol(U) such that [ e = 0 ] is discrete and
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f = g
e . Then [ e = 0 ]∩σ(A) is finite. As f has no poles in σp(A), by dividing

out from e and g a finite number of linear polynomials we may suppose
without loss of generality that [ e = 0 ] ∩ σp(A) = ∅. By Lemma 7.9, Φ(e) is
injective.

(ii)⇒ (i): This is trivial, since (ii) just says that f is strictly anchored in
Hol(U).

See Exercise 7.5 for a direct proof of the implication (i)⇒ (ii) that does not
use the characterization of Mer(U) as the ring of quotients of Hol(U).

From Theorem 7.10 we obtain a good understanding how the canonical
extension of the Dunford–Riesz calculus for a bounded operator A looks like.
We can insert A into functions f which are meromorphic on a neighborhood
of σ(A) with no pole of f being an eigenvalue of A. Since f can have only
finitely many poles within σ(A), one can write it as

f = g ·
d∏
j=1

(z− λj)−kj

where g is holomorphic on a neighborhood of σ(A), the λj are pairwise dif-
ferent members of σ(A) \ σp(A) and each kj ≥ 0. Then f(A) is computed
as

f(A) =
( d∏
j=1

(A− λj)−kj
)
g(A).

7.3 Extensions of the Hille–Phillips and the
Fourier–Stieltjes Calculus

Suppose that −A is the generator of a bounded C0-semigroup T = (Tt)t≥0

on a Banach space X with associated Hille–Phillips calculus ΦT : LS(C+)→
L(X). We interpret elements of the Laplace-Stieltjes algebra LS(C+) as holo-
morphic functions on C+. A natural superalgebra is Mer(C+) the space of
meromorphic functions on C+. The canonical extension of ΦT within this al-
gebra is called the extended Hille–Phillips calculus and denoted (again)
with ΦT . However, we often use the notation “f(A)” instead of “ΦT (f)”, and
say that f(A) is defined in the extended Hille–Phillips calculus.

Remark 7.11. For which f ∈ Mer(C+) is this the case? In general, this is
a much more difficult question than for the Dunford–Riesz calculus. To un-
derstand this, recall that f must be anchored in LS(C+) and this amounts
to finding (enough) functions e ∈ LS(C+) such that ef ∈ LS(C+) again.
So firstly, e has to compensate the singularities of f . But what is more, the
function g := ef must be recognized as the Laplace transform of a complex
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measure. Equivalently, g ∈ Cb(C+)∩Hol(C+) and g(is) is the Fourier trans-
form of a complex measure. (This is a well-known consequence of the classical
Paley–Wiener theorems from [8]. For a direct proof see [1, Lemma 1], a larger
picture gives [5, p.172].)

Unfortunately, it is quite difficult to decide in general whether a given
function is the Fourier transform of a measure. (Exercises 12.6 and 13.2 below
are related to this problem.)

Because of the mentioned difficulties, the following statements—although
important—are of a rather elementary character.

Lemma 7.12. Let −A be the generator of a bounded C0-semigroup on a Ba-
nach space X. Then the following assertions hold.

a) For each polynomial p =
∑n
k=0 αjz

k ∈ C[z] the operator p(A) is defined
in the extended Hille–Phillips calculus and

p(A) =

n∑
k=0

αkA
k.

b) If Reλ ≥ 0 and λ − A is injective, then (λ − z)−1(A) is defined in the
extended Hille–Phillips calculus and (λ− z)−1(A) = (λ−A)−1.

Proof. a) By the remarks preceding Corollary 7.8, we know that z is an-
chored in LS(C+) and (z)(A) = A. Since the anchored functions form an
algebra, p(A) is defined for each polynomial p. The remaining part is actu-
ally true in any proto-calculus, see Exercise 7.6.

b) The function f := (λ − z)−1 is anchored in LS(C+) by e = λ−z
1+z . Indeed,

the functions

e =
λ+ 1

1 + z
− 1 and ef = (1 + z)−1

are both in LS(C+), and the operator

e(A) = (λ+ 1)(1 +A)−1 − I = (λ−A)(1 +A)−1

is injective. The identity f(A) = (λ−A)−1 follows from Theorem 2.3.c).

The next result tells that it does not matter whether one starts with the
full algebra LS(C+) or with the subalgebra

A(C+) := {Lf | f ∈ L1(R+)}

as a point of departure for the extension theorem.

Lemma 7.13. Let T = (Tt)t≥0 be a bounded C0-semigroup on a Banach
space X, let ΦT : LS(C+) → L(X) be the associated Hille–Phillips calculus,
and let f ∈ Mer(C+) be such that f is (strictly) anchored in LS(C+) with
respect to ΦT . Then f is (strictly) anchored in A(C+).
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Proof. Let γ ∈ L1(R+) such that e := Lγ is an anchor element. (Such
functions exist: one can take, e.g., γ = e−t1R+

, so that ΦT (e) = (1 + A)−1,
where −A is the generator of T .) By hypothesis, there is a ΦT -anchor set
N ⊆ [f ]LS(C+). Hence, the product setM := Lγ · N is an anchor set as well.
ButM⊆ A(C+) since A(C+) is an ideal in LS(C+). If N is a singleton, then
so is M, and the claim is proved.

Let us turn to bounded strongly continuous d-parameter groups (Us)s∈Rd
with associated Fourier–Stieltjes calculus ΨU . Here, a possible choice of a
superalgebra of FS(Rd) could be the algebra of formal quotients

f

g

where f, g ∈ C(Rd) and [ g 6= 0 ] is dense in Rd. Quotients as above can be
interpreted as equivalence classes of functions on Rd modulo equality on a
dense subset. Note that functions of the form 1

λ−zj for λ ∈ R and 1 ≤ j ≤ d

are included in this algebra.

Remark 7.14. Quotient rings are a topic from abstract algebra, see [6,
II,§4]. For the construction to work, one needs to know that the set {g ∈
C(Rd) | [ g 6= 0 ] is dense in Rd} is multiplicative, which is a little exercise.
The algebra C(Rd) embeds injectively into this quotient algebra via f 7→ f/1,
another little exercise.

It is relatively easy to see that the analogue of Lemma 7.12 holds true in
this situation. Also, with a completely analogous proof one can establish the
following group version of Lemma 7.13.

Lemma 7.15. Let U = (Us)s∈Rd be a bounded C0-group on a Banach space
X, let ΨU : FS(Rd)→ L(X) be the associated Fourier–Stieltjes calculus, and
let f be (strictly) anchored in FS(Rd) with respect to ΨU . Then f is (strictly)
anchored in A(Rd).

Supplement: Universal Anchor Sets

By the next result one can more or less easily identify anchor sets and ele-
ments in the group case. (We confine ourselves to one-parameter groups, but
a d-dimensional analogue holds.)

Theorem 7.16. The following assertions are equivalent for a set E ⊆ A(R):

(i) For each z ∈ R there is e ∈ E such that e(z) 6= 0.

(ii) For each bounded C0-group (Us)s∈R on a Banach space X the set E is
an anchor set with respect to ΨU .
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Proof. (i)⇒ (ii): For each e ∈ E let γe ∈ L1(R) be such that γ̂e = e.
Furthermore, let x ∈ X such that for all e ∈ E∫

R
γe(s)Usxds = ΨU (e)x = 0. (7.4)

Fix x′ ∈ X ′ and define f(s) := 〈Usx, x′〉 for s ∈ R. Multiplying (7.4) with Ut
and applying x′ yields Sγe ∗f = 0. The set I := {ϕ ∈ L1(R) | Sϕ∗f = 0} is a
closed convolution ideal in L1(R) and it contains all the functions γe, e ∈ E.
By Wiener’s theorem [10, Theorem 9.4], I = L1(R). This implies f = 0 (use
a Dirac sequence, see Exercise 6.9). As x′ ∈ X ′ was arbitrary, it follows that
x = 0.

(ii)⇒ (i): Fix z ∈ R, let X = C and Us := e−isz ∈ C ∼= L(X). Then ΨU (e) =
e(z) for all e ∈ FS(R). Since, by hypothesis, E is a anchor set, there must be
at least one e ∈ E such that e(z) 6= 0.

The semigroup analogue of Theorem 7.16 is a little more complicated to
formulate.

Theorem 7.17. The following assertions are equivalent for a set E ⊆
A(C+):

(i) For each z ∈ C with Re z ≥ 0 there is e ∈ E such that e(z) 6= 0; and for
each ε > 0 there is e ∈ E such that L−1(e) 6= 0 on [0, ε].

(ii) For each bounded C0-semigroup (Ts)s≥0 on a Banach space X the set
E is an anchor set with respect to ΦT .

The proof of Theorem 7.17 is analogous to the proof of Theorem 7.16.
However, one has to deal with convolution ideals in L1(R+) and needs Ny-
man’s theorem, which is the analogue of Wiener’s theorem in that context,
see [7] or [2].

7.4 The Spectral Theorem Revisited

With the extension theorem in mind we can now shed new light on the
spectral theorem for normal operators.

Theorem 7.18. Let (K,Σ) be a measurable space, H a Hilbert space and
Φ : Mb(K,Σ) → L(H) a unital ∗-homomorphism satisfying (MFC6). Then
Φ extends uniquely to a measurable functional calculus M(K,Σ)→ C(H).

Proof. We apply the extension theorem with E = Mb(K,Σ) and F =
M(K,Σ). First we prove that 〈E〉Φ = F . To this end, fix f ∈ F and define
en := 1[ |f |≤n ] ∈ E . Then en → 1 pointwise and boundedly, hence Φ(en)→ I
strongly. In particular {en | n ∈ N} ⊆ [f ]E is an anchor set.
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Hence, the extension theorem applies and yields the canonical extension Φ :
F → C(H). In order to see that this is a measurable functional calculus,
it remains to check (MFC4). For each f ∈ F the operator Φ(f) is densely
defined since dom(Φ(f)) contains the subspace

⋃
n ran(Φ(en)), which is dense

in H.

For the proof that Φ(f)∗ = Φ(f) we first note that x ∈ dom(Φ(f)) im-
plies Φ(en)x ∈ dom(Φ(f)) and Φ(f)Φ(en)x = Φ(fen)x = Φ(en)Φ(f)x. Since
Φ(en)→ I strongly, one has for all u, v ∈ H:

Φ(f)∗u = v ⇔ ∀n ∈ N, x ∈ dom(Φ(f)) : (u |Φ(fen)x) = (v |Φ(en)x) .

Since enf and en are in E and Φ is a ∗-homomorphism by hypothesis,
Φ(fen)∗ = Φ(fen) and Φ(en)∗ = Φ(en). Hence, we can equivalently write

∀n ∈ N, x ∈ dom(Φ(f)) :
(
Φ(f)Φ(en)u

∣∣x) = (Φ(en)v |x) .

Since dom(Φ(f)) is dense, this is equivalent to

∀n ∈ N : Φ(f)Φ(en)u = Φ(en)v,

which, in turn, is equivalent to (u, v) ∈ Φ(f). (Use again that Φ(en) → I
strongly.)

Theorem 7.18 tells that for establishing a measurable functional calculus it
suffices to construct its restriction to bounded functions. The rest is canonical.

Remark 7.19. Theorem 7.18 provides in a way the missing step from
projection-valued measures to a measurable functional calculus. Namely, it
is relatively easy to associate to a projection-valued measure E on a mea-
surable space (K,Σ) a unital ∗-representation Φ : Mb(K,Σ) → L(H) that
satisfies (MFC6). This was indicated in Section 3.3 right after the definition
of projection-valued measures. See also Exercise 7.8.

By Theorem 7.18, Φ extends canonically to a measurable functional calcu-
lus. In our view, this approach is much more perspicuous than the classical
construction as performed, e.g., in [10, 13.22-13.25].

The following example2 shows that without the assumption of (MFC6) in
Theorem 7.18 one can encounter quite degenerate situations.

Supplementary Example 7.20. Let K = N and Σ = P(N). Then

E :=Mb(K,Σ) = `∞ and F :=M(K,Σ) = CN,

the space of all sequences.
For each strictly increasing mapping (“subsequence”) π : N → N pick a

non-zero multiplicative functional Φπ : `∞ → C which vanishes on the ideal

2 Thanks to Hendrik Vogt for the core idea!
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of sequences x = (xn)n ∈ `∞ such that limn→∞ xπ(n) = 0. This exists: by
Zorn’s lemma there is a maximal ideal Mπ containing this ideal and by the
Gelfand–Mazur theorem `∞/Mπ

∼= C as Banach algebras. By the commuta-
tive Gelfand–Naimark theorem, Φπ is a unital ∗-homomorphism. (Alterna-
tively one can define Φπ as the ultrafilter limit with respect to some ultrafilter
that contains all the “tails” {π(k) : k ≥ n} for n ∈ N.)

Now let I be the set of all such subsequences π, let H := `2(I) and define

Φ : `∞ → `∞(I) ⊆ L(H), Φ(x) := (Φπ(x))π,

where we identify a bounded function on I with the associated multiplication
operator on H = `2(I). Then Φ is a unital ∗-homomorphism.

If f : N → C is any unbounded sequence, then there is a subsequence
π ∈ I along which |f | converges to +∞. Hence, if e ∈ `∞ is such that ef ∈
`∞ as well, then e(n) converges to zero along π. Consequently, Φπ(e) = 0.
Let δπ ∈ H be the canonical unit vector which is 1 at π and 0 else. Then
Φ(e)δπ = Φπ(e)δπ = 0. This shows that [f ]E is not an anchor set. It follows
that no unbounded function is anchored in `∞, i.e., 〈`∞〉Φ = `∞. In this
example, the extension theorem does not lead to a proper extension of the
original calculus. Note that (MFC6) fails for Φ.

7.5 Supplement: Approximate Identities in Abstract
Functional Calculi

This supplement has nothing to do with the extension problem. Instead, we
look at abstract conditions to ensure the formulae

Φ(f) + Φ(g) = Φ(f + g) and Φ(f)Φ(g) = Φ(fg) (7.5)

to hold for an F-(proto)-calculus Φ and f, g ∈ F . The main tool to obtain
(7.5) is the following concept.

Definition 7.21. Let F be a commutative unital algebra, Φ : F → C(X) a
proto-calculus, and E ⊆ FΦ a subalgebra of Φ-bounded elements. A (weak)
approximate identity in E (with respect to Φ) is a sequence (en)n in E
such that Φ(en)→ I strongly (weakly) as n→∞.

Note that by the uniform boundedness principle, a weak approximate iden-
tity (en)n is uniformly Φ-bounded, i.e., satisfies supn∈N ‖Φ(en)‖ <∞.

We say that f ∈ F admits a (weak) approximate identity in E if [f ]E
contains a (weak) approximate identity. More generally, we say that the ele-
ments f of a subset M⊆ F admit a common (weak) approximate identity
in E , if

⋂
f∈M[f ]E contains a (weak) approximate identity.
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Lemma 7.22. In the situation of Definition 7.21 if f ∈ F admits a weak
approximate identity, then f is anchored in E and Φ(f) is densely defined.
Moreover, if (en)n is a weak approximate identity in [f ]E , then

D := span
⋃
n∈N

ran(Φ(en))

is dense in X and a core for Φ(f). If (en)n is an approximate identity then
Φ(en)x→ x in the Banach space dom(Φ(f)) for each x ∈ dom(Φ(f)).

Proof. Let (en)n be a weak approximate identity in [f ]E . Then, clearly,⋂
n∈N ker(Φ(en)) = {0}, so {en | n ∈ N} is an anchor set. By definition of a

weak approximate identity, the space D is weakly dense in X, so by Mazur’s
theorem (a consequence of Hahn–Banach), D is dense in X.

Note that Φ(f)Φ(en) = Φ(fen) ∈ L(X) and hence ran(Φ(en)) ⊆ dom(Φ(f))
for each n ∈ N. Therefore, D ⊆ dom(Φ(f)). As D is dense in X, Φ(f) is
densely defined.

Let x, y ∈ X such that Φ(f)x = y. Then for each n ∈ N,

Φ(f)Φ(en)x = Φ(enf)x = Φ(en)y.

Since (Φ(en)x, Φ(en)y) → (x, y) weakly, the space Φ(f)|D—considered as a
subspace of X⊕X—is weakly dense in Φ(f). By Mazur’s theorem again, this
space is strongly dense, hence D is a core for Φ(f).

For the final assertion simply re-read the last argument with strong in place
of weak convergence.

Corollary 7.23. Still in the situation from above, let f, g ∈ F and λ ∈ C,
and suppose that f admits a weak and g admits a strong approximate identity
in E. Then λf, f + g, and fg admit a common weak approximate identity
and one has

Φ(f) + Φ(g) = Φ(f + g) and Φ(f)Φ(g) = Φ(fg).

Proof. The first assertion follows from the fact that if (en)n is a weak and
(e′n)n is a strong approximate identity, then (ene

′
n)n is a weak approximate

identity. The remaining assertions follow from the inclusions

ran(Φ(ene
′
n)) ⊆ dom(Φ(f)) ∩ dom(Φ(g)) ∩ dom(Φ(f)Φ(g))

and the next-to-last assertion in Lemma 7.22.

Example 7.24. If Φ : M(K,Σ) → L(H) is any measurable functional
calculus then each f ∈ M(K,Σ) admits an approximate identity in E =
Mb(K,Σ), for instance en := n

n+|f | or en := 1[ |f |≤n ], n ∈ N.

Example 7.25. Suppose that −A generates a bounded C0-semigroup on a
Banach spaceX and f ∈ Mer(C+) is such that f(A) is defined in the extended
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Hille–Phillips calculus for A. If

D∞ :=
⋂
n≥0

dom(An)

is contained in dom(f(A)) then f admits an approximate identity. In partic-
ular, D∞ is a core for f(A) (Exercise 7.7).

7.6 Supplement: Proof of the Extension Theorem

In this supplement we provide a proof of the extension theorem, Theorem
7.5. We start with an auxiliary result.

Lemma 7.26. Let Φ : F → C(X) be a proto-calculus and E ⊆ FΦ a subal-
gebra. If f ∈ 〈E〉Φ is such that RegΦ(f) ∩ 〈E〉Φ is Φ-determining for f , then
each anchor set M⊆ [f ]E is Φ-determining for f .

Proof. LetM⊆ [f ]E be an anchor set and let x, y ∈ X such that Φ(ef)x =
Φ(e)y for all e ∈ M. Let g ∈ RegΦ(f) ∩ 〈E〉Φ. Then for each e ∈ M and
eg ∈ [g]E

Φ(e)Φ(eg)Φ(gf)x = Φ(eeggf)x = Φ((egg)(ef))x = Φ(egg)Φ(ef)x

= Φ(egg)Φ(e)y = Φ((egg)e)y = Φ(eegg)y = Φ(e)Φ(eg)Φ(g)y.

(Here we have used that e ∈ Z(E) commutes with egg ∈ E .) Since M and
[g]E are both E-anchor sets with respect to Φ, it follows that

Φ(gf)x = Φ(g)y.

As g was an arbitrary element of the Φ-determining set RegΦ(f) ∩ 〈E〉Φ, it
follows that Φ(f)x = y.

We can now go in medias res.

Proof of the Extension Theorem 7.5. Without loss of generality, we may
suppose that F = 〈E〉Φ.

Uniqueness: Suppose Φ̂ is an F-calculus that extends Φ, let f ∈ F and let
M ⊆ [f ]E be an anchor set. Then, by (FC4), RegΦ̂(f) is Φ̂-determining for

f . Hence, Lemma 7.26 applied to Φ̂ yields that M is Φ̂-determining for f .
Since M⊆ E and Φ̂|E = Φ this means that for x, y ∈ X one has

Φ̂(f)x = y ⇐⇒ Φ(ef)x = Φ(e)y for all e ∈M.

This is (7.3).
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Existence: We now define Φ̂(f) through (7.3) with M = [f ]E . Then Φ̂(f) is
a closed relation (easy) and an operator because [f ]E is an anchor set. For
f ∈ E one has Φ(ef) = Φ(e)Φ(f) for all e ∈ [f ]E , hence from (7.3) it follows

that Φ̂(f) = Φ(f). This yields Φ̂|E = Φ.

Now for the four axioms (f, g ∈ F , λ ∈ C and x, y, z ∈ X):

(FC1) By definition,

Φ̂(1)x = y ⇐⇒ ∀ e ∈ [1]E : Φ(e)x = Φ(e)y

and the latter is equivalent to x = y since 1 is anchored. So, Φ̂(1) = I.

(FC2) The inclusion λΦ̂(f) ⊆ Φ̂(λf) is trivial for λ = 0, since Φ̂(0) = Φ(0) =

0. So suppose that λ 6= 0 and Φ̂(f)x = y, and fix e ∈ [λf ]E . Then e ∈ [f ]E ,

too, so by definition of Φ̂(f)

Φ(e(λf))x = λΦ(ef)x = λΦ(e)y = Φ(e)(λy).

By definition of Φ̂(λf), this implies that Φ̂(λf)x = λy = λΦ̂(f)x. Hence, the

inclusion λΦ̂(f) ⊆ Φ̂(λf) is established.

Suppose that Φ̂(f)x = y and Φ̂(g)x = z and let e ∈ [f + g]E . Choose any
ef ∈ [f ]E and eg ∈ [g]E . Then

Φ(ef )Φ(eg)Φ(e(f + g))x = Φ(efege(f + g))x = Φ(eegeff + eefegg)x

= Φ(eeg)Φ(eff)x+ Φ(eef )Φ(egg)x

= Φ(eeg)Φ(ef )y + Φ(eef )Φ(eg)z = . . .

= Φ(ef )Φ(eg)Φ(e)(y + z).

Varying ef and eg we obtain

Φ(e(f + g))x = Φ(e)(y + z).

Since e ∈ [f + g]E was arbitrary, it follows that

Φ̂(f + g)x = y + z = Φ̂(f)x+ Φ̂(g)x.

(FC3) Suppose that Φ̂(g)x = y and Φ̂(f)y = z and let e ∈ [fg]E , eg ∈ [g]E

and ef ∈ [f ]E . Then

Φ(eg)Φ(ef )Φ(e(fg))x = Φ(egefefg)x = Φ(eegeffg)x

= Φ(e(eff)(egg))x = Φ(e)Φ(eff)Φ(egg)x

= Φ(e)Φ(eff)Φ(eg)y = Φ(eg)Φ(e)Φ(eff)y

= Φ(eg)Φ(e)Φ(ef )z = Φ(eg)Φ(ef )Φ(e)z.
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Varying eg and ef yields Φ(efg)x = Φ(e)z, and hence the inclusion Φ̂(f)Φ̂(g) ⊆
Φ̂(fg). The domain inclusion

dom(Φ̂(f)Φ̂(g)) ⊆ dom(Φ̂(g)) ∩ dom(Φ̂(fg))

is now immediate. For the converse inclusion suppose that x ∈ dom(Φ̂(g)) ∩
dom(Φ̂(fg)). Then Φ̂(g)x = y and Φ̂(fg)x = z, say. Hence, for all ef ∈ [f ]E
and eg ∈ [g]E :

Φ(eg)Φ(eff)y = Φ(eff)Φ(eg)y = Φ(eff)Φ(egg)x

= Φ((eff)(egg))x = Φ((efeg)(fg))x

= Φ(efeg)z = Φ(eg)Φ(ef )z.

Varying eg yields Φ(eff)y = Φ(ef )z, and varying ef shows that Φ̂(f)y = z.
This concludes the proof of Axiom (FC3).

(FC4) Since Φ̂ extends Φ, E ⊆ FΦ̂. Hence, from the construction of Φ̂ it

follows that for each f ∈ F the set [f ]E ⊆ RegΦ̂(f) is Φ̂-determining for f . A

fortiori also RegΦ̂(f) is Φ̂-determining for f .

Exercises

7.1. Let Φ : F → C(X) be an F-proto-calculus, let f, g ∈ F andM, N ⊆ FΦ
such that uv = vu for all u ∈ M and v ∈ N . Show the following assertion:
If N ⊆ RegΦ(f) is Φ-determining for f and M ⊆ RegΦ(f) is an anchor set,
then M is Φ-determining for f .

7.2. [has been removed]

7.3. Prove Corollary 7.7. [Hint: Exercise 7.1.a)]

7.4. Let F be a commutative algebra, E ⊆ F a subalgebra and Φ : E → L(X)
a non-degenerate representation with the canonical extension to 〈E〉Φ being
again denoted by Φ.

a) LetD ⊆ 〈E〉Φ be a subalgebra of Φ-bounded operators on which Φ is non-
degenerate. Show that D is admissible and 〈D〉Φ ⊆ 〈E〉Φ. (That means
that the extension theorem applied to D does not lead to anything new.
A non-commutative version of this is Exercise 7.11 below.)

b) Suppose further that f, g ∈ F are such that fg = 1 and f is anchored
in E . Show that then g is anchored in E if and only if Φ(f) is injective,
in which case Φ(g) = Φ(f)−1. [Hint: compare with Theorem 2.3.]

7.5. Let A be a bounded operator on a Banach space X, let U ⊇ σ(A) open
and let Φ : Hol(U)→ L(X) be the Dunford–Riesz calculus for A. Suppose in
addition that
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V ∩ σ(A) 6= ∅

for each connected component V of U . Let, finally, M⊆ Hol(U) be an ideal
of Hol(U) which is an anchor set with respect to Φ.

a) Show that there are only finitely many connected components V of U .

b) Show that for each eigenvalue λ of A there is e ∈M such that e(λ) 6= 0.

c) Show that for each connected component V of U there is e ∈ M such
that e 6= 0 on V .

d) Now suppose in addition that M = [f ]Hol(U) for some meromorphic
function f on U . Show (without using that Mer(U) is the ring of quo-
tients of Hol(U)) that there is e ∈M such that e 6= 0 on each connected
component of U and e(λ) 6= 0 for each eigenvalue λ of A. Conclude (with
the help of Lemma 7.9) that e is an anchor element of f with respect
to Φ.

[Hint: for c) show first that Φ(1V ) 6= 0, cf. Exercise 1.8; for d) show first that
no eigenvalue of A is a pole of f .]
Remark: This yields a direct proof of the implication (i)⇒ (ii) in Theorem
7.10.

7.6 (Polynomials3). For an unbounded operator A on a Banach space X
and any polynomial p(z) =

∑n
j=0 αjz

j one defines p(A) :=
∑n
j=0 αjA

j , see

also Appendix A.4. In particular, dom(p(A)) = dom(Adeg(p)) for p 6= 0. Note
that p(A) need not be closed even if A is.

Let F be a commutative unital algebra, Φ : F → C(X) a proto-calculus
and a ∈ F such that 1

λ−a ∈ FΦ for some λ ∈ C. Show that

Φ(p(a)) = p(Φ(a))

for each polynomial p ∈ C[z].

[Hint: Induction over n = deg(p); write p(a)
λ−a = q(a) a

λ−a + α0
1

λ−a and infer
from this that dom(Φ(p(a))) ⊆ dom(Φ(a)); then conclude the proof of the
claim.]

7.7. Let −A be the generator of a bounded C0-semigroup T = (Tt)t≥0 on a
Banach space X.

a) Let ϕ ∈ C∞c (0,∞) and e := Lϕ. Show that within the extended Hille–
Phillips calculus for A the function e is a regularizer for zn for each
n ∈ N and conclude that

ran(e(A)) ⊆ D∞ :=
⋂
n≥0

dom(An).

3 This exercise could have been posed in Chapter 2.
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b) Suppose that f ∈ Mer(C+) is such that f(A) is defined in the extended
Hille–Phillips calculus and satisfies D∞ ⊆ dom(f(A)). Show that D∞
is a core for f(A).

[Hint: a) Integration by parts; b) consider a Dirac sequence (ϕn)n in C∞c (0,∞)
and cf. Lemma 7.22.]

7.8. Let (K,Σ) be a measurable space and E : Σ → L(H) a projection-
valued measure on a Hilbert space H in the sense of Section 3.3. Define Φ on
Σ-simple functions by

Φ(f) :=

n∑
j=1

αjE(Bj) ∈ L(H)

whenever f =
∑n
j=1 αj1Bj , n ∈ N, αj ∈ C for all j and the Bj ∈ Σ are

pairwise disjoint.

a) Show that this is a good definition, i.e., the value Φ(f) does not depend
on the representation of f .

b) Show that ‖Φ(f)‖ ≤ ‖f‖∞ whenever f is a Σ-simple function.

c) By b), Φ has a continuous extension to Mb(K,Σ); denote this again
by Φ. Show that Φ : Mb(K,Σ) → L(H) is a homomorphism of unital
∗-algebras.

d) Show that for each x ∈ H the mapping

µx : Σ → C, µx(B) := (E(B)x |x) (B ∈ Σ)

is a finite positive measure on (K,Σ).

e) Show that for each x ∈ H and f ∈Mb(K,Σ)

(Φ(f)x |x) =

∫
K

f dµx.

Conclude that the ∗-representation Φ : Mb(K,Σ) → L(H) satisfies
(MFC6).

Supplementary Exercises

7.9. Let Φ : F → C(X) be a proto-calculus, let E ⊆ F a subalgebra. The
commutator of E (in F) is

E ′ := {f ∈ F | ef = fe for all e ∈ E}.

It is a unital subalgebra of F . For an element f ∈ F we define

bfcE := {g ∈ F : gf ∈ E},
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which is a left ideal of E . Finally, let

G := {g ∈ F | bgcE ∩ FΦ is an anchor set}.

Let f ∈ F and let M ⊆ RegΦ(f) be an anchor set. Show that each of the
following two assumptions imply that M is Φ-determining for f :

1) RegΦ(f) ∩ E ′ is Φ-determining for f and M⊆ G;

2) RegΦ(f) ∩ G is Φ-determining for f and M⊆ E ′.

7.10. Show that Lemma 7.26 and Exercise 7.1.a) are special cases of Exercise
7.9.

7.11. Let E be a subalgebra of a unital algebra F and Φ : E → L(X) a non-
degenerate representation. Denote its canonical extension to 〈E〉Φ again by Φ.
Now suppose that D ⊆ 〈E〉Φ is a subalgebra of Φ-bounded operators on which
Φ is non-degenerate. So one can think of taking D as the basis of another
application of the extension theorem. Show that if each element of Z(D)
commutes with each element of E , then 〈D〉Φ ⊆ 〈E〉Φ and D is admissible.
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lag, 2006, pp. xiv+392.

[4] M. Haase. “On abstract functional calculus extensions”. In: Tübinger
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Chapter 8

The Holomorphic Functional Calculus
Approach to Operator Semigroups

In Chapter 6 we have associated with a given C0-semigroup an operator,
called its generator, and a functional calculus, the Hille–Phillips calculus.
Here we address the converse problem: which operators are generators? The
classical answer to this question and one of our goals in this chapter is the so-
called Hille–Yosida theorem, which gives a characterization of the generator
property in terms of resolvent estimates.

However, instead of following the standard texts like [4], we shall approach
the problem via a suitable functional calculus construction. Our method is
generic, in that we learn here how to use Cauchy integrals over infinite con-
tours in order to define functional calculi for unbounded operators satisfying
resolvent estimates. (The same approach shall be taken later for defining
holomorphic functional calculi for sectorial and strip-type operators.) This
chapter is heavily based on the first part of [2], which in turn goes back to
the unpublished note [5].

8.1 Operators of Half-Plane Type

Recall from Chapter 6 that if B generates a C0-semigroup of type (M,ω),
then σ(B) is contained in the closed half-plane [ Re z ≤ ω ] and

‖R(λ,B)‖ ≤ M

Reλ− ω
(Reλ > ω).

In particular, if ω < α then R(·, A) is uniformly bounded for Reλ ≥ α. This
“spectral data” is our model for what we shall call below an operator of “left
half-plane type”.

Recall, however, that the associated Hille–Phillips calculus for the semi-
group generated by B is actually a calculus for the negative generator

127
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A := −B. So in order to stay in line with the Hille–Phillips picture we shall
construct our new functional calculus for operators of right half-plane type.

Let us turn to the precise definitions. For ω ∈ [−∞,∞] we let

Lω := {z ∈ C | Re z < ω} and Rω := {z ∈ C | Re z > ω}

be the open left and right half-plane at the abscissa ω. (So Rω = C++ω in
the terminology of Chapter 6.) An operator A on a Banach space X is said
to be of right half-plane type ω ∈ (−∞,∞] if σ(A) ⊆ Rω and

M(A,α) := sup{‖R(z,A)‖ | Re z ≤ α} < ∞ for every α < ω.

We say that A is of right half-plane type if A is of right half-plane type
ω for some ω. For an operator A of right half-plane type we call

ωhp(A) := sup
{
α
∣∣ sup

Re z≤α
‖R(z,A)‖ <∞

}
the abscissa of uniform boundedness of its resolvent.

An operator B is called of left half-plane type ω if A = −B is of right
half-plane type −ω. The abscissa of uniform boundedness of the resolvent of
such an operator is denoted by

s0(B) := inf
{
α
∣∣ sup

Reλ≥α
‖R(λ,B)‖ <∞

}
∈ R ∪ {−∞}

as it is common in semigroup theory. (See [1, p.342] where this number is
called the pseudo-spectral bound of B.)

Remark 8.1. The definition of a half-plane type operator may appear com-
plicated and unintuitive at first glance. Why do we not define A to be of right
half-plane type ω simply by

σ(A) ⊆ Rω, sup
Re z<ω

‖R(z,A)‖ <∞ ? (8.1)

The answer is that, with our definition, A is of right half-plane type ωhp(A),
whereas this would be false with the alternative definition. See Exercise 8.1.

In the following, when we speak of half-plane type operators, it has to be
read as right half-plane type, unless explicitly noted otherwise.

8.2 Functional Calculus on Half-Planes

As already announced, we are aiming at defining a functional calculus for
operators A of half-plane type. There is a “cheap” way of doing this: pick
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some λ ∈ ρ(A) and define Aλ := R(λ,A). Then set up the Dunford-Riesz
calculus for Aλ and play it back to A. (See Exercise 8.2 for details.)

This approach, elegant as it appears, does not use at all the resolvent
estimates which are characteristic for operators of half-plane type. Moreover,
it is principally unsuitable to reach our goal, because the functions e−tz have
an essential singularity at ∞ and hence are not accessible by that calculus
nor by its canonical extension.

So one has to take a different route. The idea is to mimic the construction
of the Dunford–Riesz calculus but with contours leading into the possible
singularity, which here is the point at infinity. Since the spectrum of an oper-
ator A of half-plane type may be a whole right half-plane, a straightforward
choice for such contours are vertical straight lines, oriented downwards. (Pic-
ture this on the Riemann sphere and you will see that this comes as close as
possible to “surrounding once the spectrum counterclockwise”.)

R

γ

δ ωhp(A)ω

σ(A)

Fig. 8.1 The path γ runs from δ + i∞ to δ − i∞, where ω < δ < ωhp(A).

In the following, we shall work out this plan. Let A be an operator of half-
plane type on a Banach space X and fix ω < δ < ωhp(A). We want to define

Φ(f) :=
1

2πi

∫
γ

f(z)R(z,A) dz
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for suitable functions f ∈ Hol(Rω), where γ is the downwards parameriza-
tion of the vertical line [ Re z = δ ], see Figure 8.1. (We use the alternative
expressions

1

2πi

∫
Re z=δ

f(z)R(z,A) dz and
−1

2πi

∫ δ+i∞

δ−i∞
f(z)R(z,A) dz

to denote this integral. Observe that the orientation of the contour is implicit
in the first of these.)

Of course, as the contour is infinite, not every holomorphic function f on
Rω will be suitable. Rather, the properties of f and R(z, A) should match in
order to guarantee that the integral is convergent. As the resolvent is assumed
to be bounded, it is reasonable to require that f is integrable on vertical lines.
This is the reason for the following definition. For ω ∈ R we let1

E(Rω) :=
{
f ∈ H∞(Rω) | ∀ δ > ω : f ∈ L1(δ + iR)

}
and call it the algebra of elementary functions on the half-plane Rω. By
writing f ∈ L1(δ + iR) we mean that the function f(δ + ix) is in L1(R), i.e.,
that ∫

R
|f(δ + ix)| dx <∞.

It is easily checked that E(Rω) is a (non-unital) subalgebra of H∞(Rω). For
elementary functions we have the following version of Cauchy’s integral the-
orem.

Lemma 8.2. Let f ∈ E(Rω), δ > ω, and a ∈ C with Re a 6= δ. Then

1

2πi

∫
Re z=δ

f(z)

z − a
dz =

{
f(a) if δ < Re a,

0 if δ > Re a.
(8.2)

Moreover, f ∈ C0(Rδ).

Proof. Consider first the case Re a < δ. Define

g(a) :=

∫
Re z=δ

f(z)

z − a
dz (Re a < δ).

Then, by some standard arguments, g is holomorphic and

g′(a) =

∫
Re z=δ

f(z)

(z − a)2
dz.

We claim that for fixed a this integral does not depend on δ > Re a. Indeed,

1 For an open set O ⊆ C we denote by H∞(O) the space of bounded and holomorphic

functions. It is a unital Banach algebra with respect to the sup-norm.
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0 =
1

2πi

∫
γR

f(z)

(z − a)2
dz,

by Cauchy’s theorem, where γR is the positively oriented boundary of the
rectangle [δ, δ′] × [−R,R] with δ′ > δ and R > 0. Since f is bounded, the
integrals over the horizontal line segments tend to zero as R→∞, resulting
in

0 =
1

2πi

∫
Re z=δ

f(z)

(z − a)2
dz − 1

2πi

∫
Re z=δ′

f(z)

(z − a)2
dz.

But now we can let δ′ →∞ and, again by the boundedness of f , we conclude
that g′(a) = 0. Hence, g is constant. On the other hand, g(a)→ 0 as Re a→
−∞, which yields g = 0.

Consider now the case Re a > δ. Again we employ Cauchy’s theorem with
the contour γR as above, but now with δ < Re a < δ′ and R > |Im a|. This
yields

f(a) =
1

2πi

∫
γR

f(z)

z − a
dz.

Again, the integrals over the horizontal line segments tend to zero as R→∞.
It follows that

f(a) =
1

2πi

∫
Re z=δ

f(z)

z − a
dz − 1

2πi

∫
Re z=δ′

f(z)

z − a
dz.

By what we have proved first, the second integral is equal to zero, and we
are done.

For the last assertion, fix δ′ > δ. Then it follows from (8.2) and the dominated
convergence theorem that f(a) → 0 as a → ∞ within Rδ′ . As δ′ > δ > ω
were arbitrary, the claim follows.

For f ∈ E(Rω) we now let (as announced above)

ΦA(f) :=
1

2πi

∫
Re z=δ

f(z)R(z,A) dz, (8.3)

where A is the given half-plane type operator and ω < δ < ωhp(A), see
also Figure 8.1. Since the resolvent R(·, A) is bounded on the vertical line
[ Re z = δ ], the integral converges absolutely. By virtue of Cauchy’s theo-
rem (for vector-valued functions) and the last assertion of Lemma 8.2, the
definition of ΦA(f) is independent of the choice of δ.

Theorem 8.3. The so-defined mapping ΦA : E(Rω)→ L(X) has the follow-
ing properties:

a) ΦA is a homomorphism of algebras.

b) If T ∈ L(X) satisfies TA ⊆ AT , then TΦA(f) = PhiA(f)T for all
f ∈ E(Rω).
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c) ΦA(f · (λ− z)−1) = ΦA(f)R(λ,A) whenever Reλ < ω and e ∈ E(Rω).

d) ΦA((λ− z)−1(µ− z)−1) = R(λ,A)R(µ,A) whenever Reλ,Reµ < ω.

Proof. a) Additivity is clear. Multiplicativity follows from a combination of
Fubini’s theorem, the resolvent identity and Lemma 8.2. The computation is
the same as for the Dunford–Riesz calculus, see Exercise 8.3.

b) is obvious.

c) By the resolvent identity and Lemma 8.2

ΦA(f)R(λ,A) =
1

2πi

∫
Re z=δ

f(z)R(z,A)R(λ,A) dz

=
1

2πi

∫
Re z=δ

f(z)

λ− z
[R(z,A)−R(λ,A)] dz

=
1

2πi

∫
Re z=δ

f(z)

λ− z
R(z,A) dz = ΦA

(
f

λ− z

)
.

d) We only give an informal argument and leave the details to the reader
(Exercise 8.3). In the integral

1

2πi

∫
Re z=δ

1

(λ− z)(µ− z)
R(z,A) dz

we shift the path to the left, i.e., let δ → −∞. When one passes the ab-
scissas δ = Reλ and δ = Reµ, the residue theorem yields some additive
contributions which sum up to R(λ,A)R(µ,A) by the resolvent identity; if
δ < min(Reλ,Reµ), the integral does not change any more as δ → −∞ and
hence it is equal to zero.

The so-defined mapping ΦA : E(Rω) → L(X) is called the elementary
calculus on Rω for the half-plane type operator A. Since resolvents are injec-
tive, property d) of Theorem 8.3 implies that this calculus is non-degenerate,
in the terminology of Chapter 7. We can therefore pass to its canonical ex-
tension within the algebra Mer(Rω) of meromorphic functions on Rω. The
emerging calculus is again denoted by ΦA and called the extended calculus
for A on Rω. Its domain, the set of meromorphic functions f such that ΦA(f)
is defined in the extended calculus, is denoted by

MerA(Rω).

Suppose that f ∈ Hol(Rω) is such that there is n ∈ N0 with

|f(z)| . 1 + |z|n (Re z > ω).

Then f is anchored by the elementary function e = 1
(λ−z)n+2 , whenever

Reλ < ω. Indeed, ef ∈ E(Rω) and, by c) and d) of Theorem 8.3,
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ΦA(e) = R(λ,A)n+2,

which is injective.

Corollary 8.4. Let A be an operator of half-plane type on a Banach space
X, let ω < ωhp(A) and let ΦA : MerA(Rω)→ C(X) be the associated extended
calculus as constructed above. Then the following statements hold.

a) z ∈ MerA(Rω) and ΦA(z) = A.

b) Whenever λ /∈ σp(A), (λ − z)−1 ∈ MerA(Rω) and ΦA((λ − z)−1) =
(λ−A)−1.

c) H∞(Rω) ⊆ MerA(Rω) and (λ− z)−2 is a universal acnhor element for
the whole of H∞(Rω) whenever Reλ < ω. In particular,

dom(A2) ⊆ dom(ΦA(f))

for all f ∈ H∞(Rω).

Proof. a) follows from Corollary 7.8 with g = (λ− z)−2 and Reλ < ω.

b) This is similar to Lemma 7.12.b), and actually a consequence of a result
in abstract functional calculus theory (Exercise 7.4).

c) This is just the case n = 0 in the discussion preceeding this corollary.

Remark 8.5. So far, the elementary calculus still depends on the parameter
ω < ωhp(A). This dependence is somehow virtual: For ω < ω′ the restriction
map

E(Rω) ↪→ E(Rω′), f 7→ f |Rω′
is an embedding (by the identity theorem for holomorphic functions) which
allows us to regard E(Rω) as a subalgebra of E(Rω′). And the δ-independence
of the integral in (8.3) implies that the elementary calculi defined on E(Rω)
and on E(Rω′) are compatible with this identification. If desired, one could
then pass to the “inductive limit” algebra

Ẽ(Rωhp(A)) :=
⋃

ω<ωhp(A)

E(Rω)

and define ΦA thereon. (Something similar could have been done with the
Dunford–Riesz calculus in Chapter 1.) One could even talk about “function
germs” instead of functions here, but at least for our purposes we regard this
as terminological overkill.

From now on, we abbreviate

f(A) := ΦA(f)

whenever A is an operator of right half-plane type on a Banach space X and
f ∈ MerA(Rω) with ω < ωhp(A). Also, we say that f(A) is defined by the
(holomorphic) half-plane calculus for A.
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8.3 Convergence Theorems

Let us look at continuity properties of the half-plane calculus.

Continuity with Respect to the Operator

One says that the elements of a set A of operators on a Banach space X are
uniformly of right half-plane type r > −∞ if

sup
A∈A

M(A,α) = sup{‖R(λ,A)‖ | A ∈ A, Reλ ≤ α} <∞

for all α < r. A subset F ⊆ E(Rω) is called dominated if for each δ > ω
sufficiently close to ω the set of functions {f(δ + ix) | f ∈ F} is dominated
in L1(R).

Lemma 8.6. Let (An)n∈N be a sequence of operators on a Banach space X,
uniformly of right half-plane type r ∈ R. Let, furthermore, A be an operator
on X such that Lr ⊆ ρ(A) and

R(λ,An)→ R(λ,A) strongly on X whenever Reλ < r.

Then A is also of right half-plane type r and f(An) → f(A) strongly on X
for all ω < r and all f ∈ E(Rω). Even more, for each x ∈ X the convergence

f(An)x→ f(A)x

is uniform in f from dominated subsets of E(Rω).

Proof. It is easy to see that A is of right half-plane type r and M(A,α) ≤
supn∈NM(An, α) for all α < r. Let ω < r and F ⊆ E(Rω) be dominated.
Choose ω < δ < r and 0 ≤ g ∈ L1(R) such that |f(z)| ≤ g(Im z) for z ∈ δ+iR
and f ∈ F . Then

f(An)x− f(A)x =
1

2πi

∫
Re z=δ

f(z)
(
R(z,An)x−R(z,A)x

)
dz.

Hence, sup
f∈F
‖f(An)x− f(A)x‖

≤ 1

2π

∫
Re z=δ

g(Im z)‖R(z,An)x−R(z,A)x‖ |dz| → 0

by the dominated convergence theorem.

Remark 8.7. An inspection of the proof reveals that Lemma 8.6 holds mu-
tatis mutandis for operator norm convergence. I.e., if one has R(λ,An) →
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R(λ,A) in operator norm for each Reλ < r, then also f(An) → f(A) in
operator norm, uniformly in f from dominated subsets of E(Rω), ω < r.

The sequence (An)n is called a half-plane type approximation of A on
Rr if the hypotheses of Lemma 8.6 are satisfied.

Theorem 8.8 (First Convergence Theorem). Let A be a densely defined
operator on a Banach space X and let (An)n be a half-plane type approxi-
mation of A on the half-plane Rr. Let ω < r and F ⊆ H∞(Rω) be uniformly
bounded such that

C := sup
n∈N,f∈F

‖f(An)‖ <∞.

Then supf∈F ‖f(A)‖ ≤ C and for each x ∈ X

f(An)x→ f(A)x (n→∞)

uniformly in f ∈ F .

Proof. Fix λ < ω and define ef := f · (λ − z)−2 ∈ E(Rω) for f ∈ F . Then,
for x ∈ dom(A2),

‖ef (An)(λ−A)2x‖ = ‖f(An)R(λ,An)2(λ−A)2x‖
≤ C‖R(λ,An)2(λ−A)2x‖.

Since R(λ,An)→ R(λ,A) and ef (An)→ ef (A) strongly (by Lemma 8.6),

‖f(A)x‖ = ‖ef (A)(λ−A)2x‖ ≤ C‖R(λ,A)2(λ−A)2x‖ = C‖x‖.

Since dom(A) is dense, so is dom(A2) (Exercise 8.4), whence it follows that
f(A) ∈ L(X) with ‖f(A)‖ ≤ C.

Now abbreviate y := (λ−A)2x and observe that

f(An)R(λ,An)2y = ef (An)y → ef (A)y = f(A)R(λ,A)2y = f(A)x

uniformly in f ∈ F . Indeed, this follows from Lemma 8.6 since

|ef | ≤
(
sup
f∈F
‖f‖∞

)
|λ− z|−2

for all f ∈ F , which is why the set {ef | f ∈ F} ⊆ E(Rω) is dominated. In
addition,

‖f(An)x− f(An)R(λ,An)2y‖ = ‖f(An)R(λ,A)2y − f(An)R(λ,An)2y‖
≤ C‖R(λ,A)2y −R(λ,An)2y‖ → 0

for all f ∈ F . It follows that f(An)x→ f(A)x uniformly in f ∈ F for each x ∈
dom(A2). Since dom(A2) is dense and the operator family (f(An))n∈N,f∈F is
uniformly bounded, the claim is proved.
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Continuity with Respect to the Function

Now we look at approximating the function and keeping the operator fixed.

Lemma 8.9. Let A be a set of operators on a Banach space X, uniformly of
half-plane type r ∈ R, let ω < r and (fn)n be a dominated sequence in E(Rω)
converging pointwise to zero. Then ‖fn(A)‖ → 0 uniformly in A ∈ A.

Proof. This is left as Exercise 8.5.

The following result is traditionally named the “convergence lemma”.

Theorem 8.10 (Second Convergence Theorem). Let A be a densely de-
fined operator of half-plane type r ∈ R on a Banach space X. Let ω < r and
let (fn)n be a sequence in H∞(Rω) converging pointwise and boundedly to
some function f ∈ H∞(Rω). If

C := sup
n∈N
‖fn(A)‖ <∞

then ‖f(A)‖ ≤ C and fn(A)→ f(A) strongly on X.

Proof. This is also left as Exercise 8.5.

Remark 8.11. A complete analogue of Theorem 8.8 (in which one would
have uniformity in A from a given set A of half-plane type operators) seems
out of reach here. Such a result will only hold under additional hypotheses
for A.

8.4 The Theorems of Trotter–Kato and Hille–Yosida

Suppose that A is an operator of right half-plane type on a Banach space X.
For each t ≥ 0 the function e−tz is bounded and holomorphic on each right
half-plane Rω. Hence, we can define

e−tA := (e−tz)(A) = ΦA(e−tz) (t ≥ 0).

Recall that dom(A2) ⊆ dom(e−tA).

Lemma 8.12. Let A be an operator of right half-plane type, and let ω <
ωhp(A). Then for each x ∈ dom(A2) the function

R+ → X, t 7→ e−tAx

is continuous and satisfies supt≥0 ‖eωte−tAx‖ <∞. Its Laplace transform is∫ ∞
0

e−λte−tAx dt = R(λ,−A)x = (λ+A)−1x (Reλ > −ω).



8.4 The Theorems of Trotter–Kato and Hille–Yosida 137

Proof. Fix µ < ω. By Lemma 8.9, the mapping t 7→
(
e−tz

(µ−z)2
)
(A) is contin-

uous. Hence, so is the mapping

t 7→ e−tAx =
( e−tz

(µ− z)2

)
(A) (µ−A)2x.

The uniform bound is established by a straightfoward estimation. Finally, an
application of Fubini’s theorem yields (with y := (µ−A)2x)∫ ∞

0

e−λte−tAxdt =
1

2πi

∫
Re z=δ

∫ ∞
0

e−λte−tz dt
R(z,A)y

(µ−z)2
dz

=
1

2πi

∫
Re z=δ

R(z,A)y

(λ+ z)(µ−z)2
dz

= (λ+A)−1R(µ,A)2y = (λ+A)−1x

as claimed.

The following result is the gateway to many so-called “generation theo-
rems”, i.e., theorems that assert that operators with certain properties are
generators of semigroups.

Theorem 8.13 (Basic Generation Theorem). Let A be an operator of
right half-plane type on a Banach space X. Then −A is the generator of
a C0-semigroup T = (Tt)t≥0 if and only if A is densely defined, e−tA is a
bounded operator for all t ∈ [0, 1], and supt∈[0,1] ‖e−tA‖ < ∞. In this case,

T (t) = e−tA for all t ≥ 0.

Proof. Let −A generate a C0-semigroup (T (t))t≥0. Then A is densely de-
fined, so dom(A2) is dense (Exercise 8.4). Lemma 8.12 yields that R(·,−A)x
is the Laplace transform of (t 7→ e−tAx) for x ∈ dom(A2). By the uniqueness
of Laplace transforms, T (t)x = e−tAx, t ≥ 0. Since dom(A2) is dense and
e−tA is a closed operator, e−tA = T (t) is a bounded operator. The uniform
boundedness for t ∈ [0, 1] is a standard property of C0-semigroups.

Conversely, suppose that A is densely defined and T (t) := e−tA is a bounded
operator for all t ≥ 0. Then T is a semigroup (by abstract functional cal-
culus) and dom(A2) is dense (see above). From the uniform boundedness
supt∈[0,1] ‖T (t)‖ < ∞ and the semigroup property one concludes easily that
(T (t))t≥0 is uniformly bounded on compact intervals. Lemma 8.12 and the
density of dom(A2) imply that (T (t))t≥0 is strongly continuous. Its Laplace
transform coincides with the resolvent of −A on dom(A2) (Lemma 8.12), and
hence on X by density. So −A is the generator of T .

Remark 8.14. The boundedness assumption cannot be omitted from The-
orem 8.13. Indeed, Phillips in [9, p.337] has given an example of a densely
defined operator A of half-plane type such that e−tA is a bounded operator
for all t ≥ 0 but the map t 7→ e−tA is not strongly continuous at t = 0. (Note
that it is necessarily strongly continuous for t > 0.)
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Combining the convergence Theorem 8.8 with the generation Theorem
8.13 we obtain the following important result.

Theorem 8.15 (Trotter–Kato). Suppose that for each n ∈ N the operator
−An is the generator of a C0-semigroup of common type (M,−r). Suppose
further that A is a densely defined operator and for some Reλ0 < r one
has λ0 ∈ ρ(A) and R(λ0, An) → R(λ0, A) strongly. Then −A generates a
C0-semigroup and one has e−tAnx→ e−tAx uniformly in t ∈ [0, τ ], for each
x ∈ X and τ > 0.

Proof. First, observe that the operators An, n ∈ N, are uniformly of half-
plane type r. By Exercise 8.6, Lr ⊆ ρ(A) and R(λ,An) → R(λ,A) strongly
for all Reλ < r. So, the claim is a consequence of Theorem 8.8 applied with
F = {e−tz | t ∈ [0, τ ]}.

Remarks 8.16. 1) It is easy to see that the following converse of Theorem
8.15 holds: If −An for each n ∈ N and −A generate C0-semigroups of
common type (M,−r) and e−tAn → e−tA strongly for each t ≥ 0, then
R(λ,An)→ R(λ,A) strongly for each Reλ < r.

2) A common assumption on An and A implying that R(λ0, An) →
R(λ0, A) strongly is the following: λ0 − A has dense range, and there
exists a core D of A such that Anx → Ax for all x ∈ D. See Exercise
8.7 and [4, Theorem III.4.9].

From the Trotter–Kato theorem it is just a small step to the most im-
portant generation theorem. It should be called after Hille, Yosida, Miyadera
and Phillips, but the short “Hille–Yosida” has gained the most popularity.

Theorem 8.17 (Hille–Yosida). The following assertions are necessary and
sufficient for an operator B to be the generator of a C0-semigroup T = (Tt)t≥0

on X of type (M,ω):

1) B is densely defined;

2) (ω,∞) ⊆ ρ(B);

3) ‖R(λ,B)n‖ ≤ M

(λ− ω)n
for all λ > ω and n ∈ N.

Proof. The necessity of 1)–3) follow easily from our findings in Chapter 6,
see Exercise 6.3. For the proof of sufficiency we can confine ourselves to the
case ω = 0 (by passing to B − ω). Define A = −B and let

An := nA(n+A)−1 = n− n2(n+A)−1 (n ∈ N)

be the Yosida approximants of A. These are bounded operators and the
respective generated semigroups satisfy
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‖e−tAn‖ = ‖e−tnetn
2(n+A)−1

‖ ≤ e−tn
∞∑
k=0

(tn)k

k!
‖nk(n+A)−k‖

≤ e−tn
∞∑
k=0

(tn)k

k!
M = M for each n ∈ N and t ≥ 0.

(Here we have used that bounded operators are generators of semigroups
which are given by the usual power series. See also Exercise 8.9.) Finally, a
little computation (Exercise 8.8.a)) shows that −1 ∈ ρ(An) and

R(−1, An) =
n2

(n+ 1)2
R
(
− n

n+ 1
, A
)
− 1

n+ 1
→ R(−1, A)

in operator norm as n→∞. Hence, Theorem 8.15 yields that −A generates
a semigroup of type (M, 0).

Remark 8.18. A more direct proof of the Hille–Yosida theorem, but still
using our functional calculus approach, proceeds as follows: Reduce again to
ω = 0. Then prove that A := −B is of right half-plane type 0. (Look at the
power series for R(z, A) around −λ for λ > 0; it has radius of convergence at
least λ.) Next, consider the rational functions

rn,t :=
(

1 +
t

n
z
)−n

and note that ‖rn,t‖H∞(Rω) =
(
1 + tω

n

)−n
for each ω < 0. The Hille–Yosida

condition just tells that ‖rn,t(A)‖ ≤ M for all n ∈ N and t ≥ 0. Finally, one
can apply the second convergence theorem (Theorem 8.10). It follows that(

I + t
nA
)−n

= rn,t(A)→ e−tA

strongly. A more refined version of Theorem 8.10 even yields that this conver-
gence is uniform in t from compact subsets of R+. For details see [2, Sec.3].

Let us stress the fact that our functional calculus approach to the clas-
sical generation theorems can be “tweaked” in order to obtain new
generation theorems, e.g., for semigroups that are not strongly continu-
ous at zero. Namely, one can set up Cauchy-integral based holomorphic
functional calculi under much weaker hypotheses (on the expense of
stronger requirements for the elementary functions, of course.) As soon
as the functions e−tz, t > 0, are contained in the domain of the canonical
extension of the so-constructed calculus, one is in the game.
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8.5 Supplement: Compatibility and the Complex
Inversion Formula

In this supplement we address the problem of compatibility of the half-plane
calculus and the Hille–Phillips calculus for negative generators of semigroups.
We start with some considerations about compatibility of abstract functional
calculi.

Abstract Functional Calculus (IV) — Compatibility

Let X be a Banach space and Φ : F → C(X) and Ψ : F ′ → C(X) be proto-
calculi for unital algebras F ,F ′. Let η : F → F ′ be a unital homomorphism
of algebras. Then the proto-calculi Φ and Ψ are called compatible with
respect to η if Ψ ◦ η = Φ. In this case, η is called a homomorphism of the
two proto-calculi.

The following theorem states that compatibility of non-degenerate rep-
resentations in bounded operators sometimes implies the compatibility of
canonical extensions.

Theorem 8.19. Let η : F → F ′ be a unital homomorphism of unital
algebras, let E and E ′ be subalgebras of F and F ′, respectively, and let
Φ : E → L(X) and Φ′ : E ′ → L(X) be representations on a Banach space X
such that η(E) ⊆ E ′ and Φ = Φ′ ◦ η on E.
Suppose that Φ is non-degenerate and η(Z(E)) ⊆ Z(E ′). Then Φ′ is also
non-degenerate,

η(〈E〉Φ) ⊆ 〈E ′〉Φ′ and Φ̂ = Φ̂′ ◦ η on 〈E〉Φ.

Proof. Let f ∈ 〈E〉Φ and define f ′ := η(f). We claim that

a) η([f ]E) is a Φ′-anchor set and

b) η([f ]E) ⊆ [f ′]E′ .

a) follows easily from the fact that [f ]E is a Φ-anchor set and Φ′ ◦η = Φ on E .
For b), note that if e ∈ [f ]E , then e ∈ Z(E) and ef ∈ E . Hence, η(e) ∈ Z(E ′)
and

η(e)f ′ = η(e)η(f) = η(ef) ∈ E ′,

by which b) is established. It follows directly from a) and b) that f ′ ∈ 〈E ′〉Ψ .

To prove the identity Φ̂′(f ′) = Φ̂(f), recall that η([f ]E) (actually, any anchor

set contained in [f ′]E′) is Φ̂′-determining. So, for x, y ∈ X, (̂f ′)x = y if and
only if Ψ(η(e)f ′)x = Ψ(η(e))y for all e ∈ [f ]E . But Ψ(η(e)) = Φ(e) and

Ψ(η(e)f ′) = Ψ(η(e)η(f)) = Ψ(η(ef)) = Φ(ef).

Hence Ψ(f ′)x = y is equivalent with Φ(f)x = y, and the proof is complete.
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Note that if the involved algebras are commutative, the additional hypothesis
η(Z(E)) ⊆ Z(E ′) is automatic.

Theorem 8.19 is frequently applied to the case that F = F ′, η = id, and
E ⊆ E ′.

With Theorem 8.19 at hand we are in the advantageous position that
almost always it suffices to show compatibility only on relatively small sub-
algebras. Our next topic shall illustrate this.

Compatibility of Hille–Phillips and Half-Plane Type Calculus

Suppose that −A generates a bounded C0-semigroup (Tt)t≥0. Then we can
consider the Hille–Phillips calculus ΦT on LS(C+) and its canonical extension,
again named ΦT , within Mer(C+).

On the other hand, A is also of half-plane type 0 and for ω < 0 we can form
the half-plane type calculus ΦA on E(Rω) and its canonical extension, again
named ΦA, within Mer(Rω). Its domain has been called MerA(Rω) above.

The restriction mapping η : Mer(Rω) → Mer(C+) is a unital algebra ho-
momorphism. We shall show that the two calculi are compatible with respect
to η, i.e., η restricts to a homomorphism of the two calculi. Since all the in-
volved algebras are commutative, by Theorem 8.19 the claim is a consequence
of the following theorem.

Theorem 8.20. Let −A be the generator of a bounded C0-semigroup (Tt)t≥0

on a Banach space X. Let ω < 0 and f ∈ E(Rω). Then there is a unique
ϕ ∈ L1(R+) such that f = Lϕ on C+. Moreover,

ΦA(f) =

∫ ∞
0

ϕ(t)Tt dt.

Proof. Let us first try to “guess” ϕ. Since the claim should hold for all
bounded C0-semigroups, it must in particular be true for the right shift group
τ on C0(R), whose negative generator is A0 = d

dt , the first derivative operator
(with maximal domain). But this just means that ΦA0(f) = τϕ.

In order to find ϕ, pick δ ∈ (ω, 0) and consider the formula

ΦA0(f) =
1

2πi

∫
Re z=δ

f(z)R(z,A0) dz.

Note that R(z,A0) = τrz (convolution with rz), where

rz = −etz1R+
∈ L1(R+).

By Lemma 6.9, the mapping

L1(R+)→ L(C0(R)), ϕ→ τϕ
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is isometric. It follows that ΦA0
(f) = τϕ for

ϕ :=
1

2πi

∫
Re z=δ

f(z)rz dz, (8.4)

and the integral converges (actually: must converge) in L1(R+).

It remains to show that ϕ has the desired properties. Since the integral in
(8.4) is convergent in L1(R+),

ΦT (Lϕ) =

∫ ∞
0

ϕ(t)Tt dt =
1

2πi

∫
Re z=δ

f(z)

∫ ∞
0

rz(t)Tt dtdz

=
1

2πi

∫
Re z=δ

f(z)R(z,A) dz = ΦA(f).

Finally, fix Re a ≥ 0 and specialize X = C, A = a and Tt = e−ta, t ≥ 0. With
this choice,

(Lϕ)(a) =

∫ ∞
0

ϕ(t)Tt dt =
1

2πi

∫
Re z=δ

f(z)R(z,A) dz

=
1

2πi

∫
Re z=δ

f(z)

z − a
dz = f(a)

by Lemma 8.26.

Evaluating at points t ≥ 0 in the formula (8.4) we obtain

ϕ(t) =
1

2πi

∫ δ+i∞

δ−i∞
etz(Lϕ)(z) dz (t ≥ 0),

which is the complex inversion formula for the Laplace transform. (The
point evaluation is justified, as the integral (8.4) converges also in C0(R+).)

The Complex Inversion Formula for Semigroups

Let B be of left half-plane type 0. If B generates a semigroup T , then the
resolvent R(·, B) is the Laplace transform of T . Hence, one should be able to
reconstruct T from R(·, B) by the complex inversion formula from above in
some sense. This is true, as the following considerations show.

Lemma 8.21. Let B be of left half-plane type 0. Then for δ > 0 and x ∈
dom(B2)

etBx =
1

2πi

∫ δ+i∞

δ−i∞
etzR(z,B)x dz (t > 0), (8.5)

where the integral converges in the improper sense, uniformly in t from com-
pact subintervals of (0,∞).
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Proof. Let x ∈ dom(B2) and λ < −δ =: δ′. By Lemma 8.26 below,∫
Re z=δ′

e−zt

λ− z
dz = 0 (8.6)

in the improper sense. Next, we let A := −B, which is of right half-plane
type 0, and employ the formula (λ−A)R(z,A) = (λ− z)R(z,A) + I as well
as (8.6) twice in computing (with y := (λ−A)2x)

e−tAx =

(
e−tz

(λ− z)2

)
(A)y =

1

2πi

∫
Re z=δ′

e−tz

(λ− z)2
R(z,A)(λ−A)2xdz

=
1

2πi

∫
Re z=δ′

e−tz

λ− z
R(z,A)(λ−A)xdz

=
1

2πi

∫
Re z=δ′

e−tzR(z,A)x dz.

The last term is easily seen to be equal to (8.5). The proof of the uniformity
statement is left to the reader.

We remark that if B is actually a generator, we can say more.

Theorem 8.22 (Complex Inversion for Semigroups). Let B be the gen-
erator of a C0-semigroup (Tt)t≥0 on a Banach space X. Then for each
δ > ω0(T ) and x ∈ dom(B)

Ttx =
1

2πi

∫ δ+i∞

δ−i∞
etzR(z,B)x dz (t > 0), (8.7)

where the integral converges in the improper sense, uniformly in t from com-
pact subintervals of (0,∞).

Proof. By rescaling we may suppose that M := supt≥0 ‖Tt‖ <∞ and δ > 0.
Since dom(B2) is a core for dom(B), by Lemma 8.21 it suffices to show that
for some fixed λ > δ the operators∫ δ+iN ′

δ−iN

etzR(z,B)R(λ,B) dz (0 < N, N ′ <∞)

are uniformly bounded. By the resolvent identity and Lemma 8.26 it suffices
to show that the operators

SN,N ′ :=

∫ δ+iN ′

δ−iN

etz

λ− z
R(z,B) dz (0 < N, N ′ <∞)

are uniformly bounded. For this, fix x ∈ X and x′ ∈ X ′ and estimate
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|〈SN,N ′x, x′〉| ≤
∫ δ+iN ′

δ−iN

eδt

|λ− z|
|〈R(z,B)x, x′〉| |dz|

≤ eδt
(∫ δ+i∞

δ−i∞

|dz|
|λ− z|2

) 1
2
(∫ δ+i∞

δ−i∞
|〈R(z,B)x, x′〉|2 |dz|

) 1
2

.

By Plancherel’s theorem [7, Thm. 9.33],∫ δ+i∞

δ−i∞
|〈R(z,B)x, x′〉|2 |dz| = 2π

∫ ∞
0

e−2δs |〈Tsx, x′〉|
2

ds

≤ π

δ
M2‖x‖2‖x′‖2,

which implies that ‖SN,N ′‖ ≤ πeδtM√
δ(λ−δ)

. The claim follows.

Remark 8.23. The complex inversion formula (8.7) is a classical result from
semigroup theory, see for instance [8, Thm.11.6.1]. Clearly, it immediately
suggests to use it in the other direction as a starting point for generation
theorems. So it is of no suprise that this has been done again and again since
the early days of semigroup theory, see for instance [8, Thm.12.6.1] for a
classical and [3, Thm.2.4] for a more recent example. Lemma 8.21 from above
reveals that also our approach to generation theorems is just the complex
inversion formula in disguise. However, there is a decisive difference: we have
embedded the definition of the semigroup in a whole functional calculus;
and we do not employ closures of operators in our definitions, hence tedious
approximation arguments are avoided.

8.6 Supplement: Some Results from Complex Analysis

In this section we prove some results of complex analysis. The first regards the
function classes E(Rω) that were used to define the half-plane functional cal-
culus. Namely, one may wonder about how natural our choice of elementary
functions actually is. Integrability along a vertical line is certainly important,
as well as to have Lemma 8.2. But how about uniform boundedness on a half-
plane? The following theorem and its corollary (in combination with Remark
8.5) tells that we could not have done much better as we actually did.

Theorem 8.24. Let ω ∈ R and u ∈ L1(ω + iR) such that∫
Re z=ω

u(z)

z − a
dz = 0 (Re a < ω).

Let the function f : Rω → C be given by
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f(a) :=
1

2πi

∫
Re z=ω

u(z)

z − a
dz (Re a > ω).

Then the following statements hold:

a) f is holomorphic on Rω.

b) f ∈ C0(Rδ) for each δ > ω.

c) f ∈ L1(δ + iR) with ‖f‖L1(δ+iR) ≤ ‖u‖L1(ω+iR) for all δ > ω.

Proof. Without loss of generality ω = 0. The proof of a) is standard: one
uses Lebesgue’s theorem to show that f is continuous; and then Morera’s
theorem in combination with an interchanging of integrals to show that f is
holomorphic.

b) This is an elementary estimate and left as exercise.

c) We fix δ > 0 and a = δ+ it, for t = Im a ∈ R. Then Re(−a) < 0 and hence

f(a) =
1

2πi

∫
iR

u(z)

z − a
dz =

1

2πi

∫
iR

u(z)

z − a
dz − 1

2πi

∫
iR

u(z)

z + a
dz

=
1

2πi

∫
iR

2δ

(z − a)(z + a)
u(z) dz.

Hence,

‖f‖L1(δ+iR) =

∫
R
|f(δ + it)| dt ≤ δ

π

∫
R

∫
R

|u(ix)|
|(ix− δ − it) (ix+ δ − it)|

dtdx

=
δ

π

∫
R

∫
R

|u(ix)|
δ2 + (x− t)2

dtdx =
δ

π
‖u‖L1(iR)

∫
R

dt

δ2 + t2

= ‖u‖L1(iR).

Corollary 8.25. Suppose that f ∈ Hol(Rα) is such that for some α < ω one
has f ∈ L1(ω + iR) and

1

2πi

∫
Re z=ω

f(z)

z − a
=

{
f(a), if Re a > ω,

0 if Re a < ω.

Then f ∈ E(Rδ) for each δ > ω.

The next lemma has been used in the proofs of Lemma 8.21 and Theorem
8.22. It is a classic from elementary complex analysis and is usually proved
with the help of “Jordan’s lemma”. Here we give a different proof that builds
on Lemma 8.2.

Lemma 8.26. Let Reλ < δ ∈ R. Then∫
Re z=δ

e−zt

λ− z
dz = 0 (t > 0),
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where the integral converges in the improper sense, uniformly in t from com-
pact subintervals of (0,∞).

Proof. Note first that

e−zt

λ− z
=

e−zt

t(λ− z)2
−
(

e−zt

t(λ− z)

)′
=

2e−zt

t2(λ− z)3
−
(

e−zt

t2(λ− z)2

)′
−
(

e−zt

t(λ− z)

)′
.

From the first line of the computation above and the Cauchy criterion for the
existence of improper integrals, it follows that the improper integral exists
uniformly in t from compact subintervals. To determine its value, look at

the second line of the computation. The first summand is of the form g(z)
λ−z

for g ∈ E(Rω), ω < δ, so the integral over this term equals zero by Lemma
8.2. The improper integrals over the two remaining terms is zero by the
fundamental theorem of calculus.

Exercises

8.1. Let A be an operator on a Banach space X such that the straight line
[ Re z = ω ] is contained in the resolvent set and

M := sup
Re z=ω

‖R(z,A)‖ <∞.

Show that there is r = r(M) > 0 such that [ |Re z− ω| < r ] ⊆ ρ(A) and for
each 0 < r′ < r one has

sup
|Re z−ω|≤r′

‖R(z,A)‖ <∞.

Conclude that ωhp(A) > ω for an operator A satisfying (8.1). [Hint: Power
series representation of R(·, A).]

8.2 (Dunford–Riesz Calculus for Unbounded Operators). In this ex-
ercise we let C∞ := C ∪ {∞} be the Riemann sphere and consider it as a
(simple) Riemann surface. In particular, a function f : U → C defined on an
open subset U ⊆ C∞ is called holomorphic, if f is holomorphic on U ∩C and
f(z−1) is holomorphic on U \ {0}.

Let A be any operator on a Banach space with ρ(A) 6= ∅. Define

σ̃(A) :=

{
σ(A) if A is bounded

σ(A) ∪ {∞} if A is not bounded.
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Fix an open set U ⊆ C∞ such that σ̃(A) ⊆ U . For λ ∈ ρ(A) let Uλ := { 1
λ−z :

z ∈ U} and for f ∈ Hol(U) let fλ := f(λ − z−1) ∈ Hol(Uλ). Moreover, let
Aλ := R(λ,A). Then define

ΦA(f) := ΦAλ(fλ) (f ∈ Hol(U))

where ΦAλ : Hol(Uλ) → L(X) is the Dunford–Riesz calculus for Aλ. (Recall
the spectral mapping theorem for the inverse from Exercise 2.4 and cf. also
[6, Sec. A.3].)

Show that ΦA(f) does not depend on the choice of λ ∈ ρ(A) and that
ΦA : Hol(U) → L(X) is a unital algebra homomorphism that maps the
function (λ − z)−1 to R(λ,A) whenever λ ∈ ρ(A). Finally, show that ΦA
coincides with the Dunford–Riesz calculus for A if A is bounded.

[Hint: For the proof of the independence of λ note that Aλ and Aµ are
linked by a Möbius transformation. One way to proceed is to use Remark 1.9.
Alternatively one can compute directly with the integrals employing Exercise
2.4.]

8.3. Let A be an operator of right half-plane type on a Banach space X, let
ω < ωhp(A) and ΦA : E(Rω)→ L(X) defined by (8.3) with ω < δ < ωhp(A).
Show that ΦA(fg) = ΦA(f)ΦA(g) for all f, g ∈ E(Rω) and

ΦA

( 1

(λ− z)(µ− z)

)
= R(λ,A)R(µ,A)

whenever Reµ, Reλ < ω. [This completes the proof of Theorem 8.3.]

8.4. Let A be an operator with non-empty resolvent set on a Banach space
X. Show that if A is densely defined, then so is An for each n ∈ N. [Hint:
induction.]

8.5. Prove Lemma 8.9 and the “second convergence theorem” (Theorem
8.10).

8.6. Let (An)n be a sequence of linear operators on a Banach space X. Let
Ω be a subset of

⋂
n∈N ρ(An) such that

M := sup
n∈N,λ∈Ω

‖R(λ,An)‖ <∞.

Finally, let A be an operator on X and consider

Λ := {λ ∈ Ω ∩ ρ(A) | R(λ,An)→ R(λ,A) strongly}.

Prove that a) B(λ, 1
M )∩Ω ⊆ Λ for all λ ∈ Λ and that b) Ω∩Λ ⊆ Λ. Conclude

that if Ω is connected and Λ 6= ∅, then Λ = Ω.
[Hint: for a) use the power series expansion of the resolvent, for b) use a).]
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8.7. Let (An)n be a sequence of operators on a Banach space X and let
λ ∈

⋂
n ρ(An) with supn ‖R(λ,An)‖ < ∞. Let, furthermore, A be a closed

operator on X and D ⊆ X a subspace with the following properties:

1) D is a core for A;

2) D ⊆
⋂
n dom(An) and Anx→ Ax for all x ∈ D;

3) ran(λ−A) is dense in X.

Show that then λ ∈ ρ(A) and R(λ,An)→ R(λ,A) strongly.

8.8. Let A be an operator on a Banach space X with (−∞, 0) ⊆ ρ(A). Define
its Yosida approximants by

Aλ := λA(λ+A)−1 (λ ≥ 1).

Prove the following assertions.

a) If λ 6= µ ∈ C is such that λµ
λ−µ ∈ ρ(A), then µ ∈ ρ(Aλ) and

R(µ,Aλ) =
λ2

(λ− µ)2
R
( λµ

λ− µ
,A
)
− 1

λ− µ
.

b) If A is of right half-plane type 0, then the Aλ for λ ≥ 1 are uniformly
of right half-plane type 0 and actually a half-plane approximation of A
on C+.

8.9 (Compatibility with the Dunford–Riesz calculus). Let A be a
bounded operator on a Banach space X and let r := inf{Reλ | λ ∈ σ(A)}.
a) Show that −A generates an operator norm continuous group (Us)s∈R

defined by

Us =

∞∑
n=0

sn

n!
(−A)n.

b) Show that A is of right half-plane type r.

c) Fix ω < r and f ∈ H∞(Rω). Show that the definitions of f(A) within
the Dunford–Riesz calculus of Chapter 1 and within the (extended)
half-plane calculus of the current chapter coincide.

[Hint: for a) use the “baby version” of the Dunford–Riesz calculus; for c)
observe that

∫
Re z=δ

f(z)R(z,A) dz = 0 for large δ ∈ R and f ∈ E(Rω).]
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Chapter 9

The Holomorphic Functional Calculus
for Sectorial Operators

9.1 Sectorial Operators

For 0 < ω ≤ π and 0 < ω′ we consider the open sector and the open strip

Sω := {z ∈ C \ {0} | |arg z| < ω},
Stω′ := {z ∈ C | |Im z| < ω′}.

So, Sω is symmetric about the positive real axis with opening angle 2ω. For
ω = π/2 we have Sπ/2 = C+. (Note that 2ω > π is allowed here.) The strip
Stω′ extends horizontally, symmetric about the real axis. We also define

S0 := (0,∞) and St0 := R

and consider them as a degenerate sector and strip, respectively. For 0 ≤ ω <
π, the exponential function is a biholomorphic mapping (conformal equiva-
lence)

ez : Stω → Sω with inverse log z : Sω → Stω,

the (principal branch of the) logarithm. Note that the additive group R acts
by translations on each strip, whereas the multiplicative group (0,∞) acts
by multiplication on each sector.

An operator A on a Banach space X is called sectorial of angle ω ∈ [0, π)
if σ(A) ⊆ Sω and for each α ∈ (ω, π)

M(A,α) := sup{‖λR(λ,A)‖ | λ ∈ C \ Sα} <∞.1

An operator A is simply called sectorial if it is sectorial of angle ω for some
ω ∈ [0, π). In this case,

1 In these notes, the meaning of the symbol “M(A,α)” is heavily depending on the context,

cf. Section 8.1.
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ωse(A) := min{ω ∈ [0, π) | A sectorial of angle ω}

is called the sectoriality angle of A. Analogously to the half-plane case, we
say that a set A of operators is uniformly sectorial of angle ω < π if

sup
A∈A

M(A,α) <∞

for all α ∈ (ω, π).

Examples 9.1. (See Exercise 9.1).

1) Let Ω be a semi-finite measure space and a : Ω → C a measurable
mapping. The multiplication operator Ma on Lp(Ω), 1 ≤ p ≤ ∞, is
sectorial of angle ω if and only if a ∈ Sω almost everywhere.

2) Let H be a Hilbert space and A a closed operator on H with numerical
range W(A) ⊆ Sω, ω ≤ π/2, and such that ran(I + A) = H. Then A
is sectorial of angle ω. In particular, a positive, self-adjoint operator is
sectorial of angle 0.

3) Suppose that the resolvent of an operator A satisfies an estimate of the
form

‖R(λ,A)‖ ≤ M

|Reλ|
for all Reλ < 0.

Then A is sectorial of angle π/2. In particular, this is the case if −A
generates a bounded C0-semigroup.

4) Suppose that the resolvent of an operator A satisfies an estimate of the
form

‖R(λ,A)‖ ≤ M

|Imλ|
for all λ ∈ C \ R.

Then A2 is sectorial of angle 0. In particular, this is the case if −iA
generates a bounded C0-group.

Let us list some elementary properties of sectorial operators.

Theorem 9.2. An operator A on a Banach space X is sectorial if and only
if (−∞, 0) ⊆ ρ(A) and M := supt>0 ‖t(t + A)−1‖ < ∞. Moreover, if A is
sectorial, the following assertions hold:

a) x ∈ dom(A) if and only if limt→∞ t(t+A)−1x = x;
x ∈ ran(A) if and only if limt→0 t(t+A)−1x = 0.

b) ran(A) ∩ ker(A) = {0}.
c) If X is reflexive then dom(A) is dense and X = ker(A)⊕ ran(A).

Proof. Note that, trivially, if A is sectorial then the stated criterion holds.
The converse is proved in Exercise 9.2, as well as the assertions in a) and b).

Let X be reflexive and let x ∈ X. Then the bounded sequence n(n+ A)−1x
has a subsequence which is weakly convergent to some y. Since dom(A) is a
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subspace, by Mazur’s theorem we have y ∈ dom(A). On the other hand,

(1 +A)−1n(n+A)−1 =
n

n− 1

(
(1 +A)−1 − (n+A)−1

)
→ (1 +A)−1

in operator norm. It follows that (1 + A)−1x = (1 + A)−1y and hence x =
y ∈ dom(A).

The proof that X = ker(A)⊕ ran(A) is similar. First, for x ∈ X find a weak
limit y of a subsequence of (A( 1

n + A)−1x)n∈N. Then, by Mazur’s theorem,
y ∈ ran(A). Finally, observe that x− y ∈ ker(A(1 +A)−1) = ker(A).

Remark 9.3. In dealing with sectorial operators and functions on sectors,
the following observations are frequently helpful. Each sector Sω is invariant
under inversion z−1 and under multiplication by positive scalars. Moreover,

C \ Sω = −Sπ−ω.

If ω + ω′ ≤ π then

Sω · Sω′ = Sω+ω′ and Sω + Sω′ = Smax(ω,ω′).

If 0 < ω < α < π then

sup
z,λ

∣∣∣∣ λ

λ− z

∣∣∣∣+

∣∣∣∣ z

λ− z

∣∣∣∣ <∞, (9.1)

where the supremum runs over all z ∈ Sω and λ ∈ C\Sα. (The reason is that
for these choices of z and λ one has z/λ, λ/z ∈ C \ Sα−ω and hence these
fractions have a uniform distance to 1.)

In accordance with these properties of sectors, sectorial operators enjoy
certain permanence properties, see Exercise 9.3.

9.2 Elementary Functions on Sectors and Strips

Quite analogously to the half-plane case in the previous chapter, we introduce
the algebra of elementary functions2 on Sω, 0 < ω ≤ π, by

E(Sω) :=
{
f ∈ H∞(Sω)

∣∣ ∫ ∞
0

∣∣f(reiα)
∣∣ dr

r
<∞ for all |α| < ω

}
.

So, f : Sω → C is elementary if f is holomorphic and bounded and, for each

0 ≤ α < ω, f is integrable over ∂Sα with respect to the measure |dz||z| . We

2 Actually Sπ/2 = C+ = R0 and hence the symbol E(C+) is ambiguous. To avoid confusion,

the elementary functions on the sector C+ will be denoted by E(Sπ/2), while the elementary

functions on the half-plane C+ are denoted by E(R0).
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shall write f ∈ L1
∗(∂Sα) for this. The boundary ∂Sα shall be so oriented that

the points of Sα are to its left. That means that we use the formula∫
∂Sα

f(z)
dz

z
=

∫ ∞
0

f(xe−iα)
dx

x
−
∫ ∞

0

f(xeiα)
dx

x

for integration along ∂Sα.
For technical reasons here, and for later use, we also introduce the algebra

of elementary functions on the strip Stω, ω > 0, by

E(Stω) :=
{
f ∈ H∞(Stω)

∣∣ ∫ ∞
−∞
|f(r + iα)|dr <∞ for all |α| < ω

}
.

In other words, a function f : Stω → C is elementary if f is holomorphic and
bounded and, for each 0 ≤ α < ω, f is integrable over ∂Stα with respect to
arclength measure. We shall write f ∈ L1(∂Stα) for this. The boundary ∂Stα
shall be so oriented that the points of Stα are to its left, so that we have the
formula ∫

∂Stα

f(z) dz =

∫
R
f(x− iα) dx−

∫
R
f(x+ iα) dx,

for integration along ∂Stα. Note that if 0 < α < ω < π,

f ∈ E(Sω) ⇐⇒ f(ez) ∈ E(Stω)

with ∫
∂Sα

f(z)
dz

z
=

∫
∂Stα

f(ez) dz,

The following is the analogue of Lemma 8.2 for elementary functions on strips
and sectors.

Lemma 9.4. a) Let 0 < δ < ω, f ∈ E(Stω), and a ∈ C \ ∂Stδ. Then

1

2πi

∫
∂Stδ

f(z)

z − a
dz =

{
f(a) if |Im a| < δ,

0 if |Im a| > δ.

Moreover, f ∈ C0(Stδ) and
∫
∂Stδ

f(z) dz = 0.

b) Let 0 < δ < ω ≤ π, f ∈ E(Sω) and a ∈ C \ ∂Sδ. Then

1

2πi

∫
∂Sδ

f(z)

z − a
dz =

{
f(a) if |arg a| < δ,

0 if |arg a| > δ.

Moreover, f ∈ C0(Sδ \ {0}) and
∫
∂Sδ

f(z) dz
z = 0.

Proof. a) For R > 0 let γR be the positively oriented boundary of the
rectangle [−R,R]× [−δ, δ]. Then
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lim
R→∞

∫
γR

f(z)

z − a
dz =

∫
∂Stδ

f(z)

z − a
dz

since f is uniformly bounded on Stδ. If a /∈ Stδ then∫
γR

f(z)

z − a
dz = 0

for all R > 0, by Cauchy’s theorem. And if a ∈ Stδ then a ∈ Int(γR) for all
sufficiently large R > 0 and hence∫

γR

f(z)

z − a
dz = 2πi f(a),

again by Cauchy’s theorem.

For the next assertion, fix 0 < δ′ < δ. By the dominated convergence theorem
and the first, already proved, assertion, it follows that f(a) → 0 as a → ∞
within Stδ′ . As 0 < δ < ω is arbitrary, the claim is proved. For the last claim
we take γR as above and observe that, since f ∈ C0(Stδ),

0 =

∫
γR

f(z) dz →
∫
∂Stδ

f(z) dz (R→∞).

b) We let b := log a and g := f(ez) and note that

h :=
ez

ez − eb
− 1

z− b
∈ H∞(Stω).

In particular, gh ∈ E(Stω) and hence, by the last assertion of a),∫
∂Sδ

f(z)

z − a
dz =

∫
∂Stδ

ezg(z)

ez − eb
dz =

∫
∂Stδ

g(z)

z − b
dz.

Now all claims in b) follow from a).

Remark 9.5 (The class H∞0 (Sω)). Fix 0 < ω < π and let f ∈ Hol(Sω) be
such that for some s > 0 and some C ≥ 0 one has

|f(z)| ≤ C min{|z|s , |z|−s} (z ∈ Sω). (9.2)

The set of functions with this property was introduced by McIntosh in his
groundbreaking article [5] and is usually denoted by H∞0 (Sω). It still features
in many texts dealing with the functional calculus for sectorial operators.

Clearly H∞0 (Sω) ⊆ E(Sω) and one has

sup
|α|≤δ

∫ ∞
0

∣∣f(reiα)
∣∣ dr

r
<∞ (0 ≤ δ < ω) (9.3)
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for each f ∈ H∞0 (Sω). (One can show that (9.3) holds actually for each
f ∈ E(Sω), see Exercise 9.11.)

9.3 The Sectorial Functional Calculus

Let A be a sectorial operator and let ωse(A) < ω < π. Then, for f ∈ E(Sω)
we define

ΦA(f) :=
1

2πi

∫
∂Sδ

f(z)R(z,A) dz, (9.4)

where ωse(A) < δ < ω. The integral does not depend on δ (by Cauchy’s
theorem) because f ∈ C0(Sω′ \ {0}) for each 0 < ω′ < ω. (Note that there is
a problem not only at ∞ but also at 0, and one needs f to vanish also at 0
in order to prove the independence of δ.)

∂Sδ

σ(A)

∂Sω̃

Fig. 9.1 The integration contour ∂Sδ lies within the domain Sω of the function f and
outside the sector Sω̃ , where ω̃ = ωse(A) > π/2 is the sectoriality angle of A.

Theorem 9.6. The so-defined mapping ΦA : E(Sω) → L(X) has the follow-
ing properties (f ∈ E(Sω)):

a) ΦA is a homomorphism of algebras.

b) If T ∈ L(X) satisfies TA ⊆ AT , then ΦA(f)T = TΦA(f).
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∂Sδ

σ(A)

Fig. 9.2 An example where ωse(A) < δ < ω < π

2
.

c) ΦA(f · (λ− z)−1) = ΦA(f)R(λ,A) whenever λ ∈ C \ Sω.

d) ΦA(z(λ− z)−1(µ− z)−1) = AR(λ,A)R(µ,A) whenever λ, µ ∈ C \ Sω.

e) sup
r>0
‖ΦA(f(rz))‖ ≤ inf

{M(A, δ)

2π
‖f‖L1

∗(∂Sδ)

∣∣ ωse(A) < δ < ω
}
<∞.

Proof. The proof of a)–c) is analogous to the proof of Theorem 8.3.

d) Fix ωse(A) < δ < ω and for R > 0 let γR be the positively oriented
boundary of the “cake piece” B[0, R] \ Sδ. If R is large enough, the points λ
and µ are contained in the interior of γR. Since zR(z, A) is bounded on γR
uniformly in R > 0, it follows that

1

2πi

∫
∂Sδ

z

(z − λ)(z − µ)
R(z,A) dz = lim

R→∞

−1

2πi

∫
γR

z

(z − λ)(z − µ)
R(z,A) dz.

By the residue theorem, the right-hand side equals

− λ

λ− µ
R(λ,A)− µ

µ− λ
R(µ,A)

which is equal to AR(µ,A)R(λ,A) by an elementary computation.

e) We use the definition of ΦA to estimate

‖ΦA(f(rz))‖ ≤ 1

2π

∫
∂Sδ

|f(rz)| ‖R(z,A)‖ |dz| ≤ M(A, δ)

2π
‖f‖L1

∗(∂Sδ).
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This yields the claim.

Corollary 9.7. In the situation from before, ΦA is non-degenerate if and
only if A is injective.

Proof. If A is injective, then so is AR(λ,A)R(µ,A). On the other hand, for
x ∈ ker(A) and e ∈ E(Sω) we have

ΦA(e)x =
1

2πi

∫
∂Sδ

e(z)R(z,A)xdz =
( 1

2πi

∫
∂Sδ

e(z)
dz

z

)
x = 0

by Lemma 9.4. Hence, ker(A) ⊆ ker(Φ(e)).

So, if A is not injective one has to extend the calculus ΦA in order to render
it non-degenerate. The extension to E(Sω) ⊕ C1 as described in Section 7.1
would do, but it has the unpleasant feature that no “resolvent function” (λ−
z)−1 is anchored in that algebra. (Look at limits at 0 and at ∞.) Therefore,
one rather takes the larger algebra

Ee(Sω) := E(Sω)⊕ C1⊕ C(1 + z)−1.

It follows from Theorem 9.6.c) that this extension, which is again denoted
by ΦA, is a non-degenerate algebra homomorphism, see Exercise 9.12. Note
that for λ ∈ C \ Sω one has (λ− z)−1 ∈ Ee(Sω), see Exercise 9.6.

The domain within Mer(Sω) of the canonically extended calculus is de-
noted by MerA(Sω). As the operator A is clearly the generator of this calcu-
lus, we write f(A) in place of ΦA(f) and say that f(A) is defined by3 the
sectorial calculus for A.

Remark 9.8 (Compatibility with the Hille–Phillips Calculus). Sup-
pose that −A generates a bounded C0-semigroup (Tt)t≥0 on a Banach space
X. Then A is sectorial of angle π/2 (Example 9.1.3). By essentially the same
argument as in the proof of Theorem 8.20 one can show that each f ∈ E(Sω),
ω > π/2, is the Laplace transform f = Lϕ of a function ϕ ∈ L1(R+), and that

f(A) =

∫ ∞
0

ϕ(t)Tt dt,

see [3, Lemma 3.3.1]. Hence, the Hille–Phillips calculus, which takes the right-
hand side as the definition of “f(A)” is an extension of the sectorial calculus.

Injective vs. Non-Injective Sectorial Operators

The sectorial calculus is much nicer for injective operators than for non-
injective ones. The reason is that for an injective sectorial operator A the

3 or: within
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E(Sω)-calculus is already non-degenerate and every f ∈ H∞(Sω) is anchored
in E(Sω) (e.g., by e = z(1 + z)−2). In particular, the function (1 + z)−1 is
anchored, and hence Ee ⊆ 〈E〉ΦA . By Exercise 7.4, this means that 〈E〉ΦA =
〈Ee〉ΦA , and one does not need the algebra Ee in this case.

On the other side, the fact that a sectorial operator A is not injective
has unpleasant consequences. First of all, one has to use the algebra Ee(Sω)
instead of E(Sω) as a basis for the canonical extension. As a result, proofs
become usually clumsier than under the injectivity assumption.

Next, the class of functions f for which f(A) is defined in the sectorial
calculus is more restricted, due to a necessary condition at z = 0 which is
not needed in the injective case. (See Exercise 9.7 for a precise formulation
of this condition.)

As a consequence, if f does not have a limit at z = 0 it is impossible
to define f(A) if A is not injective. (For instance, the imaginary powers
(zis)(A) of A for s 6= 0 are not defined, cf. Section 10.3 below.)

Furthermore, there are functions f which do have a limit at z = 0 and
for which f(A) can be reasonably defined by other means, but not by the
sectorial calculus. This is the topic of the supplementary Section 9.5 below.

This being said, one should recall that on reflexive spaces X one has the
decomposition X = ker(A) ⊕ ran(A), by which one can reduce problems for
general sectorial operators to injective ones. So the unpleasant features of
non-injective operators can be avoided in this case.

Convergence Theorems

Similar to the half-plane case, one can coin the notion of a sectorial approx-
imation (An)n∈N of a sectorial operator A and prove analogues of Lemma
8.6 and Theorem 8.8 for the sectorial calculus [3, Sec.2.1.2]. However, we shall
not do this here, but rather turn to the approximations of functions. We say
that a subset F ⊆ E(Sω) is dominated if for each 0 < δ < ω sufficiently close
to ω the set {f |∂Sδ | f ∈ F} is dominated in L1

∗(∂Sδ). Clearly, if F ⊆ E(Sω)
is dominated then

sup
f∈F
‖f(A)‖ <∞

for each sectorial operator A with ωse(A) < ω.

Lemma 9.9. Let A be sectorial of angle ωse(A) < ω and (en)n a sequence
in E(Sω) converging to 0 pointwise and boundedly on Sω. Then the following
assertions hold:

a) If {en | n ∈ N} is dominated, then en(A)→ 0 in norm.

b) If en(A)→ T strongly for some bounded operator T , then T = 0.

Proof. a) This is a consequence of Lebesgue’s theorem like in Lemma 8.9.
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b) Let e := z
(1+z)2 . By a), (een)(A)→ 0 in norm. On the other hand,

(een)(A) = e(A)en(A)→ e(A)T = A(1 +A)−2T

strongly. Hence, ran((1+A)−2T ) ⊆ ker(A). On the other hand, (1+z)−2en ∈
E(Sω) and hence, by Exercise 9.5,

(1 +A)−2Tx = lim
n→∞

(
(1 + z)−2en

)
(A)x ∈ ran(A) (x ∈ X).

Since ker(A) ∩ ran(A) = {0} (Theorem 9.2), it follows that (1 +A)−2T = 0,
which implies that T = 0.

Theorem 9.10 (“Convergence Lemma”). Let 0 < ω < π and let (fn)n
be a sequence in H∞(Sω) converging pointwise and boundedly on Sω to some
f ∈ H∞(Sω). Let, furthermore, A be an injective sectorial operator on a
Banach space X with ωse(A) < ω. Suppose that fn(A) ∈ L(X) for all n ∈ N.
Then the following assertions hold:

a) If fn(A)→ T ∈ L(X) strongly, then f(A) = T .

b) If dom(A) ∩ ran(A) is dense in X and supn ‖fn(A)‖ <∞ then f(A) ∈
L(X), fn(A)→ f(A) strongly, and ‖f(A)‖ ≤ lim infn→∞ ‖fn(A)‖.

Proof. Let e = z(1 + z)−2. For the proof of a), apply Lemma 9.9.b) with
en := e(fn − f). This yields e(A)T = (ef)(A). Hence,

f(A) = (e−1)(A)(ef)(A) = e(A)−1e(A)T = T

as claimed.

For the proof of b), apply Lemma 9.9.a) to conclude that limn→∞ fn(A)x ex-
ists for all x ∈ ran(e(A)) = ran(A) ∩ dom(A). Uniform boundedness in com-
bination with the density yields that (fn(A))n∈N converges strongly, hence
to f(A) by a). The rest is standard.

An analogue for non-injective sectorial operators is treated in the supple-
mentary Section 9.5 below.

9.4 Holomorphic Semigroups

In this section we shall see the sectorial calculus “at work”.

Observe that the function e−z is an element of Ee(Sπ/2) since the function

f := e−z − 1

1 + z
∈ E(Sπ/2) (9.5)

satisfies (9.2) with s = 1 for each ω < π/2. Consequently, for each λ ∈ Sπ/2 the
function
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e−λz = f(λz) +
1

1 + λz

is contained in Ee(Sω), where ω = π/2− |arg λ|. In particular,

e−λA := (e−λz)(A)

is defined for each sectorial operator A of angle ωse(A) < π/2− |arg λ|.
Let us abbreviate ωA := ωse(A) and θA := π/2− ωA. Then e−λA is defined

for each λ ∈ SθA . Moreover, functional calculus rules imply that

e−λAe−µA = e−(λ+µ)A (λ, µ ∈ SθA).

The operator family (e−λA)λ∈SθA
is called the holomorphic semigroup

generated by −A. The reason for this terminology is the following classical
result, see [1, Section II.4].

Theorem 9.11. Let A be a sectorial operator of angle ωA < π/2 and let
θA := π/2− ωA. Then the mapping

SθA → L(X), λ 7→ e−λA

is holomorphic with

sup
λ∈Sθ

‖e−λA‖ <∞ for each 0 < θ < θA. (9.6)

The derivatives are given by

dn

dλn
e−λA = (−A)ne−λA ∈ L(X) (n ∈ N). (9.7)

For each µ ∈ Sπ/2

(µ+A)−1 =

∫ ∞
0

e−µte−tA dt. (9.8)

Finally, x ∈ dom(A) if and only if e−λAx → x as λ → 0 within Sθ for
one/each 0 < θ < θA.

Proof. Fix 0 < θ < θA, let ω := π/2− θ and f := e−z − (1 + z)−1 ∈ E(Sπ/2).
Since

(1 + λz)−1(A) = −λ−1R(−λ−1, A),

and this is holomorphic in λ and uniformly bounded for λ ∈ Sθ (even for
λ ∈ Sπ/2), it suffices to consider the function λ 7→ f(λA). Fix ωA < δ < ω and
define

Fn(λ) :=
1

2πi

∫
Γn

f(λz)R(z,A) dz (n ∈ N, λ ∈ Sθ),

where Γn is just ∂Sδ, but restricted to the region [ 1/n ≤ |z| ≤ n ]. By standard
arguments, Fn is holomorphic on Sθ. Moreover, Fn(λ)→ f(λA) pointwise and



162 9 The Holomorphic Functional Calculus for Sectorial Operators

boundedly on Sθ since

‖Fn(λ)‖ .
∫
∂Sδ

|f(λz)| |dz|
|z|
≤ sup
|α|≤δ+θ

∫ ∞
0

∣∣f(reiα)
∣∣ dr

r

for all λ ∈ Sθ (cf. Remark 9.5). The uniform bound (9.6) follows readily.

Since zne−λz ∈ E(Sπ/2), it follows that Ane−λA ∈ L(X) for all λ ∈ Sθ. In

particular, e−λA maps into dom(An) for each n ∈ N. Hence, if e−λAx→ x as
λ→ 0, then x ∈ dom(A).

For the converse implication note that it follows from Theorem 9.2.a) and
the uniform boundedness of (t(t+A)−1)t>0 that

dom(A) = dom(A2).

So by (9.6) it suffices to suppose that x ∈ dom(A2). For λ ∈ Sθ consider the
function

fλ :=
1

(1 + z)2
(1− e−λz) = λ

1− e−λz

λz

z

(1 + z)2
∈ E(Sω).

Since the function (1−e−z)/z is bounded on Sπ/2, the functions fλ/λ are domi-
nated in E(Sω). It follows that

(I− e−λA)(1 +A)−2 = fλ(A)→ 0

in norm as 0← λ ∈ Sθ.

For the computation of the derivatives it suffices to compute right derivatives
since we already know that λ 7→ e−λA is holomorphic. Fix λ ∈ Sθ and note
that

1

t

(
e−λA − e−(λ+t)A

)
−Ae−λA =

[(1− e−tz

tz
− 1
)
ze−λz

]
(A) =: gt(A).

Since the function ze−λz is contained in E(Sω) and the term in big round
brackets converges to 0 pointwise and boundedly on Sω, Lemma 9.9.a) yields
that gt(A)→ 0 in operator norm as t↘ 0. The claim about higher derivatives
follows easily.

Finally, fix µ ∈ Sπ/2 and compute
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(1 +A)−2
(
µ

∫ ∞
0

e−µte−tA dt− 1
)

=

∫ ∞
0

(
e−tz − 1

(1 + z)2

)
(A)µe−µt dt

=

∫ ∞
0

1

2πi

∫
∂Sδ

e−tz − 1

tz

zR(z,A)

(1 + z)2
dz µt e−µt dt

=
1

2πi

∫
∂Sδ

∫ ∞
0

(e−tz − 1)µe−µt dt
R(z,A)

(1 + z)2
dz

=
1

2πi

∫
∂Sδ

−z
µ(µ+ z)

R(z,A)

(1 + z)2
dz = −(1 +A)−2A(µ+A)−1.

(We have used that (e−tz − 1)/(1 + z)2 ∈ E(Sπ/2) and that Fubini’s theorem
is applicable since te−µt ∈ L1(R+).) It follows that

µ

∫ ∞
0

e−µte−tA dt = I−A(µ+A)−1 = µ(µ+A)−1

and hence (9.8).

Suppose that A is as above and, in addition, densely defined. Then, by
Theorem 9.11, (e−tA)t≥0 is a bounded C0-semigroup with generator −A.
Moreover, this semigroup has a holomorphic extension to the sector SθA and
is uniformly bounded on each smaller sector.

Conversely, suppose that an operator−A generates a C0-semigroup (Tt)t≥0

which for some 0 < θ0 ≤ π/2 has a holomorphic extension to Sθ0 , uniformly
bounded on each smaller sector. Then A is sectorial of angle π/2 − θ0. (The
proof of this claim is Exercise 9.8.)

9.5 Supplement: A Topological Extension of the
Sectorial Calculus

Let A be a non-injective sectorial operator and ω ∈ (ωse(A), π). As we have
observed above, there are bounded and holomorphic functions f such that
f(A) is not defined. This is unavoidable, since if f ∈ H∞(Sω) is such that
f(A) is defined, the limit f(0) := limz↘0 f(z) must exist.

However, there is a more serious shortcoming. Suppose that µ ∈ M(0,∞)
is a bounded complex measure on (0,∞) and f is given by

f(z) =

∫ ∞
0

t

t+ z
µ(dt) for z ∈ C \ (−∞, 0].

Then f ∈ H∞(Sω) for each 0 < ω < π and limz→0,z∈Sω f(z) exists. Moreover,
one clearly expects the formula

f(A) =

∫ ∞
0

t(t+A)−1 µ(dt) ∈ L(X). (9.9)
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However, there are examples of measures µ such that f is not anchored in
Ee(Sω) [2, Example 5.2]. That is, f(A) is not defined within the sectorial
calculus for A even if the right-hand side of (9.9) is a perfectly well-defined
expression.

The best one can say is that if f(A) is defined in the sectorial calculus
for A, then (9.9) holds. This is a consequence of the following analogue of
Theorem 9.10.a), see also Exercise 9.13.

Theorem 9.12. Let A be a non-injective sectorial operator on a Banach
space X, let ω ∈ (ωse(A), π) and let (fn)n be a sequence in H∞(Sω) and
f ∈ H∞(Sω) such that all fn(A) and f(A) are defined within the sectorial
calculus for A.

Suppose in addition that fn → f pointwise and boundedly on Sω ∪ {0},
that fn(A) ∈ L(X) for all n ∈ N and that fn(A)→ T ∈ L(X) strongly. Then
f(A) = T .

Proof. Let e := (1+z)−1, so that e(A) = (1+A)−1. By passing to fn−fn(0)e
and f − f(0)e we may suppose that fn(0) = f(0) = 0. By Exercise 9.7,
efn, ef ∈ E(Sω). Now apply Lemma 9.9.b) to en := e(fn − f). This yields
e(A)T = (ef)(A) and hence

f(A) = e(A)−1(ef)(A) = e(A)−1e(A)T = T

as claimed.

In order to cover all instances of (9.9) it is necessary to extend the sectorial
calculus again, but now in a topological way. There is an abstract framework
for this.

Abstract Functional Calculus (V) — Topological Extensions

Let F be an algebra. A sequential convergence structure on F is a
mapping

τ : FN ⊇ dom(τ)→ F

with the following properties:

1) dom(τ) is a subalgebra of FN and τ is an algebra homomorphism.

2) For each f ∈ F the constant sequence (f)n is in dom(τ) and τ
(
(f)n)

)
=

f .

3) τL = τ , where L is the left shift on FN.

One writes fn
τ→ f in place of f = τ((fn)n). From now on we suppose that

F is endowed with a fixed sequential convergence structure τ .

Let E be a subalgebra of F and Φ : E → L(X) a representation. Then the
set
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Eτ := {f ∈ F | ∃ (en)n in E , T ∈ L(X) : en
τ→ f, Φ(en)→ T strongly}

is a subalgebra of F containing E . Suppose in addition that Φ is closable
with respect to τ , which means that

(en)n ∈ EN, T ∈ L(X), en
τ→ 0, Φ(en)→ T strongly ⇒ T = 0. (9.10)

Then one can define the τ-extension Φτ : Eτ → L(X) of Φ by

Φτ (f) := lim
n→∞

Φ(en)

whenever (en)n ∈ EN, en
τ→ f , and limn→∞ Φ(en) exists (strongly) in L(X).

(Indeed, (9.10) just guarantees that Φτ is well-defined, i.e., does not depend
on the chosen τ -approximating sequence (en)n.) The following theorem is
straightforward.

Theorem 9.13. The so-defined mapping Φτ : Eτ → L(X) is an algebra ho-
momorphism which extends Φ.

Now suppose in addition that Φ : E → L(X) is non-degenerate, so that
we can speak of its canonical (algebraic) extension. Since, as easily seen,
Z(E) ⊆ Z(Eτ ), Theorem 8.19 yields

〈E〉Φ ⊆ 〈Eτ 〉Φτ and Φ̂τ |〈E〉Φ = Φ̂

for the canonical (algebraic) extensions of Φ and Φτ within F .

Topological Extension of the Sectorial Calculus

Let A be a sectorial operator on a Banach space X, let ωse(A) < ω < π and

ΦA : Ee(Sω)→ L(X)

the sectorial calculus for A. As an immediate consequence of Theorems 9.10
and Theorem 9.12 (with fn ∈ Ee(Sω) and T = 0) we obtain:

Theorem 9.14. The sectorial calculus ΦA on Ee(Sω) is closable in H∞(Sω)
with respect to bounded and pointwise convergence on Sω ∪ {0}.

Applying Theorem 9.13 yields the bp-extension Φbp
A of the sectorial cal-

culus ΦA for A. Note that if A is injective then, by Theorem 9.10.a), ΦA
on Ee(Sω) is even closed (and not just closable) in H∞(Sω) with respect to
bp-convergence on Sω. Hence, the bp-extension of the sectorial calculus does
not lead to a larger calculus in this case.

This is different for non-injective sectorial operators, as the following ex-
ample shows.
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Example 9.15 (Hirsch Functional Calculus). Suppose that µ ∈ M(0,∞)
and

f(z) :=

∫ ∞
0

t

t+ z
µ(dt) (z ∈ C \ (−∞, 0]). (9.11)

Functions of this form are the core of the so-called Hirsch calculus, see [4,
Chap.4]. It is easy to see that f is bounded and holomorphic on Sω with
limits

f(0) =

∫ ∞
0

1 dµ and f(∞) = 0

for each ω ∈ (0, π). The approximants

fn(z) =

∫
[1/n,n]

t

t+ z
µ(dt)

converge to f uniformly on each such sector Sω. Moreover, one can show that
fn ∈ Ee(Sω) and, by an application of Fubini’s theorem, that

fn(A) =

∫
[1/n,n]

t(t+A)−1 µ(dt)

for every sectorial operator A. It follows that f(A) is defined in the bp-
extension of the sectorial calculus for A and

f(A) =

∫ ∞
0

t(t+A)−1 µ(dt)

as expected. (Cf. also Exercise 9.13).

As mentioned in the beginning of this section, there are examples of mea-
sures µ such that the function f defined by (9.11) is not covered by the secto-
rial calculus for non-injective operators. Hence, in this case, the bp-extension
of the sectorial calculus is strictly larger than the sectorial calculus.

Exercises

9.1 (Examples of Sectorial Operators).

a) Let Ω be a semi-finite measure space and a : Ω → C a measurable
mapping. Show that the multiplication operator Ma on Lp(Ω), 1 ≤ p ≤
∞, is sectorial of angle ω if and only if a ∈ Sω almost everywhere.

b) Let H be a Hilbert space and A a closed operator on H with numerical
range W(A) ⊆ Sω and such that ran(I+A) = H. Show that A is sectorial
of angle ω.
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c) Suppose that the resolvent of an operator A satisfies an estimate of the
form

‖R(λ,A)‖ ≤ M

|Reλ|
for all Reλ < 0.

Show that A is sectorial of angle π/2.

d) Suppose that the resolvent of an operator A satisfies an estimate of the
form

‖R(λ,A)‖ ≤ M

|Imλ|
for all λ ∈ C \ R.

Show thay A2 is sectorial of angle 0.

[Hints: For a) observe that ‖R(λ,A)‖ = 1/dist(λ,Sω) and use (9.1); for b)
use Theorem A.23 and the same argument as in a); for d) prove first that
‖λR(λ2, A2)‖ ≤ M/|Imλ|.]

9.2. Let A be an operator on a Banach space X such that (−∞, 0) ⊆ ρ(A)
and M := supt>0 ‖t(t+A)−1‖ <∞. Show that M ≥ 1 and that A is sectorial
of angle ωse(A) ≤ π− arcsin( 1

M ). Moreover, show for x ∈ X the equivalences

x ∈ dom(A) if and only if lim
t→∞

t(t+A)−1x = x

x ∈ ran(A) if and only if lim
t→0

t(t+A)−1x = 0.

Conclude that ker(A) ∩ ran(A) = {0}.
[Hint: For the first statement, fix ω > π− arcsin( 1

M ) and λ ∈ C \Sω and pick
a < 0 such that that the triangle with vertices 0, a and λ has a right angle at
λ. Then use the Taylor expansion of R(z, A) at z = a to estimate λR(λ,A).]

9.3. Let A be a sectorial operator of angle ω ∈ (0, π). Show that

a) for each r > 0 the operator rA is sectorial of angle ω with

M(rA, α) = M(A,α) (ω < α < π);

b) if A is injective then A−1 is sectorial of angle ω with

M(A−1, α) ≤ 1 +M(A,α) (ω < α < π);

c) for each |θ| < π− ω the operator eiθA is sectorial of angle ω + |θ| with

M(eiθA,α′) ≤M(A,α′ − |θ|) (ω + |θ| < α′ < π);

d) for each µ ∈ C \ {0} with |argµ| =: ω′ < π − ω the operator A + µ is
sectorial of angle max(ω, ω′) with

M(A+ µ, α′) ≤ 1

sin
(
min(α′ − ω′, π/2)

) ·M(A,α),

where α = min(α′, π− ω′) and max(ω, ω′) < α′ < π.
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[Hint for b) cf. Exercise 2.4.]

9.4. Show that for a closed operator A on a Banach space X and a number
0 < θ0 ≤ π/2 the following assertions are equivalent:

a) e±iθ0A are sectorial of angle π/2.

b) A is sectorial of angle π/2− θ0.

[Hint: For the implication b)⇒ a) note Exercise 9.3.c).]

9.5. Let A be a sectorial operator and let f ∈ E(Sω) for some ω ∈ (ωse(A), π).
Show that

ran
(
f(A)

)
⊆ dom(A) ∩ ran(A).

Moreover, show that the following assertions are equivalent for x ∈ X:

(i) x ∈ dom(A) ∩ ran(A);

(ii) x ∈ dom(A) ∩ ran(A);

(iii) n2A(1 + nA)−1(n+A)−1x→ x as n→∞.

9.6 (Functions with polynomial limits). Let 0 < ω < π. Show that

(λ− z)−1 ∈ Ee(Sω) (λ ∈ C \ Sω).

More generally, let f ∈ H∞(Sω) such that

f(z)− c = O(|z|s) (z → 0) and f(z)− d = O(|z|−s
′
) (z →∞)

for some c, d ∈ C and s, s′ > 0. Show that

f − d1− c− d
1 + z

∈ E(Sω)

and hence f ∈ Ee(Sω). (One says that f has polynomial limit c at 0 and d
at∞.) Finally, show that f has a polynomial limit at 0 if f has a holomorphic
extension to a neighborhood of 0.

9.7. Let A be a non-injective sectorial operator of angle ω on a Banach space
X and let f ∈ H∞(Sω), ω ∈ (ωse(A), π). Show that the following assertions
are equivalent:

(i) f(A) is defined in the sectorial calculus for A;

(ii) f(0) := limz↘0 f(z) exists and (1 + z)−1(f − f(0)) ∈ E(Sω);

(iii) (1 + z)−1 is an anchor element for f w.r.t. the sectorial calculus for A.

9.8. Let −A be the generator of a bounded C0-semigroup T : R+ → L(X)
and suppose that T has a holomorphic extension (again denoted by T ) to Sθ0
for some 0 < θ0 ≤ π/2 such that T is uniformly bounded on each sector Sθ,
0 < θ < θ0. For |θ| < θ0 define
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T θ(t) := T (teiθ), t ≥ 0.

a) Show that T (z + w) = T (z)T (w) for all z, w ∈ Sθ0 .

b) Show that∫ ∞
0

e−λtT θ(t) dt = (λ+ eiθA)−1 (λ ∈ Sπ/2−θ, |θ| < θ0).

c) Conclude from b) that T θ is a bounded C0-semigroup and −eiθA is its
generator (|θ| < θ0).

d) Show that A is sectorial of angle π/2− θ0 and that

T (λ) = e−λA (λ ∈ Sθ0).

[Hints: For b) consider
∫

eiθR+
T (z)e(e−iθλz) dz and apply Cauchy’s theorem.

For the strong continuity in c) note that it suffices to consider elements of
the form x = (λ+ eiθA)−1y for y ∈ X and λ > 0. For the first part of d) see
Exercise 9.4, for the second use the uniqueness of the Laplace transform.]

9.9. Let −iA be the generator of a bounded C0-group U = (Us)s∈R on a
Banach space X. Show that A2 is sectorial of angle 0 and the holomorphic
semigroup generated by −A2 is given by

e−λA
2

=
1√
4πλ

∫
R

e−
s2

4λUs ds (Reλ > 0).

[See also Exercise 9.1.d) and Exercise 9.8.]

9.10. Let A be a normal operator on a Hilbert space H and let ω ∈ (0, π).

a) Show that A is sectorial of angle ω if and only if σ(A) ⊆ Sω.

b) Suppose that A is sectorial of angle ω and f ∈ Mer(Sω) is such that f(A)
is defined in the sectorial calculus for A. Show that the set [ f =∞ ] of
poles of f is an A-null set and that f(A) = Ψ(g), where Ψ is the Borel
calculus for A and g is any Borel function on C such that [ g 6= f ] is an
A-null set.

[Hint for a): Exercise 9.1.a).]

Supplementary Exercises

9.11 (Cauchy–Gauss Representation). Let ω > 0. Show that

e−(a−z)2 ∈ E(Stω) for each a ∈ C.

Conclude that for each f ∈ H∞(Stω) one has the Cauchy–Gauss repre-
sentation
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f(a) =
1

2πi

∫
∂Stδ

f(z)
e−(z−a)2

z−a
dz (a ∈ Stδ, 0 < δ < ω). (9.12)

Use this to show that for each f ∈ E(Stω)

sup
|α|≤δ

∫
R
|f(r + iα)| dr <∞ (0 < δ < ω).

In the case ω ≤ π conclude that

sup
|α|≤δ

∫ ∞
0

∣∣f(reiα)
∣∣ dr

r
<∞ (0 < δ < ω)

for each f ∈ E(Sω).

9.12. Let A be a sectorial operator on a Banach space X, let ωse(A) < ω < π

and ΦA : E(Sω)→ L(X) the associated sectorial calculus. Show that

Ee(Sω) := E(Sω)⊕ C1⊕ C
1

1 + z

is an algebra and that Ψ : Ee(Sω)→ L(X) given by (c, d ∈ C, e ∈ E(Sω))

Ψ(e+ c1 + d(1 + z)−1) := ΦA(e) + cI + d(1 +A)−1

is a well-defined algebra homomorphism. Show further that

sup
r>0
‖Ψ(f(rz))‖ <∞

for each f ∈ Ee(Sω) and that b) of Theorem 9.6 holds for Ψ instead of ΦA.
(We usually write again ΦA instead of Ψ .)

9.13. Let µ ∈ M(0,∞) and define

f(z) :=

∫ ∞
0

t

t+ z
µ(dt) (z ∈ C \ (−∞, 0]).

Moreover, for n ∈ N define

fn(z) :=

∫
[1/n,n]

t

t+ z
µ(dt) (z ∈ C \ (−∞, 0])

Fix 0 < ω < π and a sectorial operator A of angle ωse(A) < ω on a Banach
space X. Prove the following assertions:

a) fn = fn(0)
1+z +hn, where z ·hn and z−1 ·hn are bounded on Sω. Conclude

that fn ∈ Ee(Sω).

b) fn(A) =

∫
[1/n,n]

t(t+A)−1 dt→
∫ ∞

0

t(t+A)−1 dt in operator norm.
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c) fn → f uniformly on Sω.

d) If f(A) is defined within the sectorial calculus for A, then

f(A) =

∫ ∞
0

t(t+A)−1 µ(dt). (9.13)

e) f(A) is defined in the bp-extension of the sectorial calculus for A, and
(9.13) holds.

[Hint: d) is a direct consequence of Theorem 9.12, but also of e).]
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Chapter 10

Fractional Powers and the Logarithm

10.1 Fractional Powers

Let A be a sectorial operator on a Banach space X. Then for each α ∈ C+

the operator
Aα := (zα)(A) := (eα log z)(A)

is defined within the sectorial calculus for A. Indeed, if n > Reα then

zα

(1 + z)n
∈ E(Sω)

for each 0 < ω < π and hence the function (1 + z)−n is an anchor element
for the function zα with respect to the sectorial calculus for A.

Theorem 10.1. For a sectorial operator A on a Banach space X, the fol-
lowing assertions hold (α, β ∈ C):

a) If Reα,Reβ > 0, then
AαAβ = Aα+β .

b) If A ∈ L(X) and Reα > 0, then Aα ∈ L(X).

c) If 0 < Reα < Reβ, then dom(Aβ) ⊆ dom(Aα) and the mapping

Azx : [ 0 < Re z < Reβ ]→ X

is holomorphic for each x ∈ dom(Aβ).

d) For each ε > 0 and Reα > 0 the operator (A + ε)α is invertible with
inverse (

(A+ ε)α
)−1

=
1

(z + ε)α
(A).

e) For each ε > 0 and Reα > 0 one has dom(A+ ε)α = dom(Aα).

f) For each Reα > 0 one has ran(Aα) ⊆ ran(A) and dom(Aα) ⊆ dom(A).

173
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Proof. a) The inclusion AαAβ ⊆ Aα+β follows from functional calculus
rules. Fix x ∈ dom(Aα+β) and n > Reα,Reβ. For Re γ < n define
fγ := zγ(1 + z)−n and let u := fβ(A)x. Then

An(1 +A)−nu =

[
zn+β

(1 + z)2n

]
(A)x = (1 +A)−nfn−α(A)Aα+βx,

which yields An(1 +A)−nu ∈ dom(An). This implies first that (1 +A)−nu ∈
dom(A2n), which in turn yields u ∈ dom(An). So there is y ∈ X such that
(1 +A)−ny = u, i.e.,[

zβ

(1 + z)n

]
(A)x =

[
1

(1 + z)n

]
(A)y.

Since (1 + z)−n is an anchor element for zβ , x ∈ dom(Aβ) and y = Aβx. As
dom(AαAβ) = dom(Aβ) ∩ dom(Aα+β) by general rules, the claim is proved.

b) Fix n > Reα. Then An−αAα = An, which is bounded. So, dom(Aα) = X,
hence Aα is bounded as well.

c) The first assertion follows from a). The second is left as an exercise.

d) For each 0 < ω < π the function

f :=
1

(z + ε)α
∈ H∞(Sω)

has “polynomial limits” at 0 and at ∞, so f ∈ Ee(Sω), see Exercise 9.6. In
particular, (z + ε)−α(A) is defined and a bounded operator.

e) Fix ε > 0 and ω ∈ (ωse(A), π). For Reα ∈ (0, 1) the assertion follows from
Exercise 10.1, where it is shown that there is a bounded operator T such that
(A+ ε)α = Aα + T . Actually, the proof shows even more: there is a function
f ∈ Ee(Sω) such that (z + ε)α = zα + f . For n ∈ N one therefore has

(z + ε)nα = (zα + f)n = znα +

n−1∑
j=0

(
n

j

)
fn−j · zjα.

Since dom(Anα) ⊆ dom(Ajα) for all 0 ≤ j < n, it follows that dom(Anα) ⊆
dom((A+ ε)nα).

The converse inclusion follows similarly. Alternatively one can argue as fol-
lows. Fix Reα > 0 and observe that

g :=
zα

(z + ε)α
∈ Ee(Sω).

Writing (A+ ε)−α := [(A+ ε)α]−1 = (z + ε)−α(A) (cf. d)) we obtain

Aα(A+ ε)−α = g(A) ∈ L(X),
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which implies that dom(A+ ε)α = ran((A+ ε)−α) ⊆ dom(Aα).

f) By a) we may suppose that Reα < 1. Let x ∈ dom(Aα) and y := Aαx.
Then

(1 +A)−1y =
( zα

1 + z

)
(A)x ∈ ran(A)

by Exercise 9.5. Hence,

y = (1 +A)−1y +A(1 +A)−1y ∈ ran(A) + ran(A) ⊆ ran(A)

as claimed. For the second assertion we use e) and write with u := (1 +A)αx

x = (1 + z)−α(A)(1 +A)αx = (1 +A)−αu.

Since the function f := (1 + z)−α − (1 + z)−1 is elementary, by Exercise 9.5
we have ran(f(A)) ⊆ dom(A) and hence

x = (1 +A)−αu = f(A)u+ (1 +A)−1u ∈ dom(A) + dom(A) ⊆ dom(A)

as claimed.

Remark 10.2. There is a certain ambiguity in the term (A+ε)α. Above, we
have always read this as (z + ε)α(A). However, since A+ ε is also a sectorial
operator, we could also read it as (zα)(A + ε). This ambiguity is virtual, as
one can show that both operators are equal. More generally, one can prove a
composition rule of the form

f(z + ε)(A) = f(A+ ε)

for (many) functions defined on Sω. And this is just an instance of a more
general composition rule of the form

(f ◦ g)(A) = f(g(A)),

which holds under certain conditions on g and f . See [3, Section 2.4] for a
more detailed discussion.

Remark 10.3. One can show that if A is a sectorial operator and α > 0 is
such that αωse(A) < π, then Aα is sectorial with

ωse(Aα) = αωse(A).

Moreover, a composition rule of the form

f(Aα) = f(zα)(A)

holds in the sense that the left-hand side is defined in the sectorial calculus
for Aα if and only if the right-hand side is defined in the sectorial calculus
for A. It follows that for such α and all β ∈ C+ one has
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(Aα)β = Aαβ .

See [3, 3.1.2–3.1.5] for details.

Fractional Powers of Bounded Operators

If A is a bounded sectorial operator, then each fractional power Aα of A
with Reα > 0 is again bounded, by Theorem 10.1.b). By a) and c) of that
theorem, the mapping

Sπ/2 → L(X), α 7→ Aα

is a holomorphic semigroup (representation). By Exercise 10.4, this semigroup
is bounded for α→ 0 within each proper subsector Sϕ of Sπ/2.

Since ran(Aα) ⊆ ran(A) by Theorem 10.1, one has the implication “⇐”
in the equivalence

x ∈ ran(A) ⇐⇒ Aαx→ x (Sϕ 3 α→ 0), (10.1)

where 0 < ϕ < π/2. The remaining implication is proved in Exercise 10.4.

Fractional Powers with Negative Real Part

Suppose that A is an injective sectorial operator on a Banach space X and
fix ω ∈ (ωse(A), π). For each α ∈ C one can find n ∈ N such that

zn

(1 + z)2n
zα ∈ E(Sω).

Hence
Aα := (zα)(A)

is defined in the sectorial calculus for A. By a general composition rule (Ex-
ercise 10.5) we find

A−α = (Aα)−1 = (A−1)α.

This allows to apply Theorem 10.1 and we find, for instance, that

AαAβ = Aα+β (10.2)

whenever Reα,Reβ < 0. Note, however, that (10.2) is true for all α, β ∈ C
if and only if A is bounded and invertible. (Indeed, it would follow that
I = AA−1 = A−1A.)



10.2 The Logarithm and Operators of Strip Type 177

If A is invertible (and not just injective), then (A−α)Reα>0 is a holo-
morphic semigroup of bounded operators. Its space of strong continuity is
ran(A−1) = dom(A). Its generator is described in the following section.

10.2 The Logarithm and Operators of Strip Type

From now on we shall suppose that A is an injective sectorial operator on a
Banach space X. Then the operator logarithm

logA := (log z)(A)

is defined in the sectorial calculus. Indeed, log z has only a mild growth at 0
and at ∞ and is anchored by e := z(1 + z)−2. By Exercise 10.5 one has

logA−1 = − logA. (10.3)

If A is invertible and has dense domain, then (A−s)s≥0 is a C0-semigroup
and − logA is its generator (Exercise 10.6).

Recall that log z maps the sector Sω (for ω ∈ [0, π]) biholomorphically
onto the strip Stω. Since A has its spectrum in the sector of angle ωse(A),
one could imagine that logA has spectrum in the strip of height ωse(A). A
first result in this direction is the following theorem of Nollau from [5].

Theorem 10.4 (Nollau). Let A be an injective sectorial operator on a Ba-
nach space X. Then σ(logA) ⊆ [ |Im z| ≤ π ] and

R(λ, logA) =

∫ ∞
0

−1

(λ− log t)2 + π2
(t+A)−1 dt

for all |Imλ| > π.

Sketch of Proof. In a first step one has to show that the formula is true if
X = C and A = a ∈ C \ (−∞, 0] is a number. This can be done by standard
path deformation arguments (Exercise 10.9) and yields

1

λ− log z
=

∫ ∞
0

−1

(λ− log t)2 + π2
(t+ z)−1 dt.

Since
−1

t
(
(λ− log t)2 + π2

) ∈ L1(R+),

the claim follows from Exercise 9.13.d).

From Nollau’s theorem and (10.3) it follows immediately that
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dom(logA) ⊆ dom(A) ∩ ran(A). (10.4)

By combining Nollaus result with the scaling technique from Remark 10.3,
one can prove that σ(logA) ⊆ [ |Im z| ≤ ωse(A) ]. Actually, one has the fol-
lowing stronger result.

Theorem 10.5. Let A be an injective sectorial operator on a Banach space
X and let B := log(A). Then for ω = ωse(A) the following assertions hold:

a) The operator B has spectrum in the strip Stω.

b) For each α > ω there is Mα > 0 such that

‖R(λ,B)‖ ≤ Mα

|Imλ| − α
(λ ∈ C \ Stα).

Moreover, ωse(A) is the smallest number ω such that a) and b) hold.

For a proof see [3, Prop.3.5.2 and Thm.4.3.1].

An operator B that satisfies a) and b) of Theorem 10.5 is said to be of
strong strip type ω. The minimal ω that is possible here is denoted by

ωst(B)

and is called the strip type of B. So Theorem 10.5 tells that if A is an
injective sectorial operator then log(A) is of strong strip type ωst(log(A)) =
ωse(A).

Remark 10.6 (Functional Calculus for Strip Type Operators). In the
same way as for sectorial operators one can construct a holomorphic calculus
for strong strip type operators. For ω > ωst(B) and an elementary function
f ∈ E(Stω) one defines

ΦB(f) :=
1

2πi

∫
∂Stδ

f(z)R(z,B) dz ∈ L(X)

where ωst(B) < δ < ω is arbitrary. (Note that R(z, B) is bounded on ∂Stδ.)
Thanks to Lemma 9.4.a) one obtains an analogue of Theorem 9.6, with a
completely analogous proof.

It follows that
ΦB : E(Stω)→ L(X)

is a non-degenerate representation, hence it has a canonical extension within
Mer(Stω), again denoted by ΦB . The domain of this extension is denoted
by MerB(Stω) (by abuse of notation). If f ∈ MerB(Stω) we write (as usual)
f(B) instead of ΦB(f) and say that f(B) is defined in the strip calculus for
B.

The logarithm logA of an injective sectorial operator A on X is of strong
strip type ωse(A). One can show that
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f(logA) = f(log z)(A) (10.5)

for each f ∈ H∞(Stω), ω > ωse(A). As a consequence, one obtains that an in-
jective sectorial operator is completely determined by its logarithm (Exercise
10.11).

Furthermore, if A is of strong strip type then one can show that eA is
defined in the (extended) strip calculus. This operator need not be sectorial,
see Exercise 12.6 below. However, if eA is sectorial, then one has

log(eA) = A

as one would expect. Detailed proofs of all these statements can be found in
[3, Sec.4.2].

10.3 The Purely Imaginary Powers

The (purely) imaginary powers of an injective sectorial operator A on a
Banach space X is the family of operators

A−is, s ∈ R.

Note that the holomorphic function z−is is bounded on each sector Sϕ with
0 < ϕ ≤ π since∣∣z−is

∣∣ =
∣∣e−is log z

∣∣ = es arg z ≤ eϕ|s| (z ∈ Sϕ).

One says that A has bounded imaginary powers (BIP), if the conditions
(i)–(iii) of the following theorem are satisfied.

Theorem 10.7. For an injective sectorial operator A on a Banach space X
the following assertions are equivalent:

(i) A has dense domain and range and Ais ∈ L(X) for all s ∈ R.

(ii) The family (Ais)s∈R is a C0-group of bounded operators on X.

(iii) The operator i logA is the generator of a C0-group on X.

In this case, i logA is the generator of the C0-group (Ais)s∈R.

Proof. Abbreviate e := z(1 + z)−2, so that ran(e(A)) = dom(A) ∩ ran(A).
Observe that by Lemma 9.9 the function

R→ L(X), s 7→ Aise(A) =
( zis+1

(1 + z)2

)
(A)

is continuous. This will be used several times in the following.

(i)⇒ (ii): Fix x = e(A)y ∈ dom(A) ∩ ran(A). Then the mapping
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R→ X, s 7→ Aisx = Aise(A)y

is continuous. Since A has dense range and domain, dom(A) ∩ ran(A) is
dense in X (Exercise 9.5). Consequently, for each x ∈ X its orbit Aisx is
strongly measurable. By a classical result of Hille and Phillips [4, Thm.10.2.3],
the orbit is continuous for s > 0. But as (Ais)s∈R is a group, the orbit is
continuous on the whole of R.

(ii)⇒ (iii): Fix θ ∈ (ωse(A), π), Reλ > θ and let rλ := (λ − i log z)−1 ∈
H∞(Sθ). Then, by using the definition of Aise(A) = (e · zis)(A) as a Cauchy
integral and interchanging the order of integration, we obtain∫ ∞

0

e−λsAise(A) ds =
( e

λ− i log z

)
(A) = (erλ)(A).

Hence, with B denoting the generator of (Ais)s∈R and if Reλ is large enough,

e(A)R(λ,B) = e(A)

∫ ∞
0

e−λsAis ds =

∫ ∞
0

e−λsAise(A) ds = (erλ)(A).

It follows that rλ(A) = R(λ,B). By general functional calculus arguments
we conclude that B = i logA.

(iii)⇒ (ii): Suppose that i logA generates a C0-group (Us)s∈R. Then∫ ∞
0

e−λse(A)Us ds = e(A)R(λ, i logA) = (erλ)(A) =

∫ ∞
0

e−λsAise(A) ds

for large Reλ > 0. By the uniqueness of the Laplace transform, it follows
that

e(A)Us = (ezis)(A),

which implies that Us = Ais for each s ∈ R.

(iii)⇒ (i) follows from (10.4).

Corollary 10.8 (Prüss–Sohr). Let A be a sectorial operator with bounded
imaginary powers and θ ≥ 0 such that there is K ≥ 0 with

‖Ais‖ ≤ Ke|s|θ (s ∈ R). (10.6)

Then ωse(A) ≤ θ. In other words: the group type of (Ais)s∈R is always larger
than the sectoriality angle of A.

Proof. We know that B := i log(A) is the generator of the group (Ais)s∈R.
Hence, the Hille–Yosida estimates yield

‖R(λ,B)‖ ≤ K

|Reλ| − θ
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for all λ ∈ C with |Reλ| > θ. But this just says that log(A) = −iB is of
strong strip type θ. By Theorem 10.5, ωse(A) ≤ θ.

Exercise 10.7 shows that the domain/range-condition cannot be dropped from
(i) of Theorem 10.7.

The imaginary powers of a sectorial operator are notoriously mysterious
objects. Even if A is bounded, the powers Ais need not be bounded (unless
s = 0 of course). There are examples, where Ais is bounded for infinitely
many, but not all, s ∈ R, see [6]. We shall encounter non-trivial examples of
operators with and without BIP in the following chapters.

A natural question is of course which C0-groups are the imaginary powers
of an injective sectorial operator. Or, more generally, which strip type oper-
ators are logarithms of sectorial operators. We shall see soon that the shift
group on L1(R) is bad in this respect. Eventually, we shall encounter Monni-
aux’s theorem, which states that each C0-group U of group type strictly less
than π on a so-called UMD-Banach space is the group of imaginary powers
of a sectorial operator.

10.4 Two Examples

Fractional Integrals and the Riemann–Liouville Semigroup

Let −A be the generator of the right shift semigroup τ = (τs)s≥0 on X =
Lp(0, 1) as in Exercise 6.6. From that exercise we know already that σ(A) = ∅
and A−1 = V , the Volterra operator, given by

(A−1x)(s) = (V x)(s) =

∫ s

0

x(t) dt (x ∈ X).

The domain of A, viz. the range of V , is

dom(A) = ran(V ) = W1,p
0 (0, 1)

and A = d
dt in the sense of weak derivatives, but we shall not need these facts

in the following.
Since −A generates a bounded C0-semigroup, A is a densely defined sec-

torial operator of angle π/2. As A is injective, we can form the fractional
powers Aα for all α ∈ C. Since A is invertible, we obtain the holomorphic
C0-semigroup

A−α = V α (Reα > 0),

which is sometimes called the Riemann–Louville semigroup. The individ-
ual operators V α are the so-called Riemann–Liouville fractional integral
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operators. The inverse operators Aα are the (Riemann–Liouville) fractional
differentiation operators.

Theorem 10.9. For x ∈ Lp(0, 1) and Reα > 0,

(A−αx)(s) = (V αx)(s) =
1

Γ(α)

∫ s

0

(s− t)α−1x(t) dt (s ∈ (0, 1)). (10.7)

Sketch of Proof. For z > 0 one has (by definition of the Gamma function)

Γ(α) =

∫ ∞
0

sα−1e−s ds = zα
∫ ∞

0

sα−1e−sz ds.

By the uniqueness theorem for holomorphic functions,

z−α =
1

Γ(α)

∫ ∞
0

sα−1e−sz ds

for all z ∈ C+. This means that the function z−α is the Laplace transform of
the function sα−1. Now observe that −A is the generator of the nilpotent, in
particular exponentially decaying, semigroup τ . So τ admits a Hille–Phillips
calculus on each half-plane C++ε, ε > 0, as described in (6.11). One can show
that this calculus is compatible with the sectorial calculus (cf. also Remark
9.8). Hence,

A−α =

∫ ∞
0

sα−1τs ds.

Applying both sides to x ∈ Lp(0, 1) and performing a change of variables
yields (10.7). (See [3, Cor.3.3.6] for a full proof rather than a sketch.)

The Poisson Semigroup

Suppose that −A generates a bounded C0-semigroup (Ts)s≥0. Then A is

sectorial of angle π/2 and one can form the square root
√
A := A1/2 through

the sectorial calculus. By Remark 10.3,
√
A is sectorial of angle π/4 and hence

−
√
A generates an analytic semigroup of that angle, namely (e−t

√
A)t≥0.

This semigroup is also accessible by the Hille–Phillips calculus for A. In-
deed, define

ϕt(s) :=
te−t

2/4s

√
4πs3/2

(s > 0)

for t > 0. By (A.24) from Appendix A.11,

(Lϕt)(z) =

∫ ∞
0

te−t
2/4s

√
4πs3/2

e−sz ds = e−t
√
z
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for all Re z > 0. (Observe that letting z ↘ 0 shows that ϕt ∈ L1(R+).) Since
the Hille–Phillips calculus and the sectorial calculus for A are compatible
(Remark 9.8), we obtain

e−t
√
A =

∫ ∞
0

ϕt(s)Ts ds.

Now let us specialize the above situation to the case that −A is an “abstract
Laplace operator”, i.e., (Ts)s≥0 = (Gs)s≥0 is the heat semigroup associated
with some strongly continuous and bounded representation (Ur)r∈Rd . Then
Theorem 6.18 yields

e−t
√
A = ΨU (e−t|z|) (t > 0),

where ΨU is the Fourier–Stieltjes calculus for U . The semigroup (e−t
√
A)t≥0

is called the Poisson semigroup associated with the group U and is often
denoted by (Pt)t≥0.

Theorem 10.10. Let U = (Us)s∈Rd be a bounded and strongly continuous
representation on a Banach space X. Then the associated Poisson semigroup
(Pt)t≥0 is given by

Pt =

∫
Rd
pt(x)Ux dx (t > 0),

where

pt(x) =
Γ
(
d+1

2

)
t

π
d+1
2 (t2 + |x|2)

d+1
2

(10.8)

for t > 0 and x ∈ Rd. In particular,

Fpt = e−t|z| (t > 0). (10.9)

Proof. Recall from the proof of Theorem 6.15 that the mapping

(0,∞)→ FS(Rd), s 7→ e−s|z|
2

is bounded and continuous. So

e−t|z| =

∫ ∞
0

ϕt(s)e
−s|z|2 ds

as an integral in FS(Rd). It follows that e−t|z| = Fpt, where
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pt(x) =

∫ ∞
0

ϕt(s)gs(x) ds =

∫ ∞
0

te−t
2/4s

√
4πs3/2

1

(4πs)
d
2

e−|x|
2/4s ds

=
t

(4π)
d+1
2

∫ ∞
0

s−
d+3
2 e−(t2+|x|2)/4s ds

=
t

(4π)
d+1
2 (t2 + |x|2)

d+1
2

∫ ∞
0

s−
d+1
2 e−1/4s ds

s

and ∫ ∞
0

s−
d+1
2 e−1/4s ds

s

u=1/4s
= 4

d+1
2

∫ ∞
0

u
d+1
2 e−u

du

u
= 4

d+1
2 Γ
(
d+1

2

)
.

This establishes (10.8). The first claim now follows from the definition of ΨU
since Pt = ΨU (e−t|z|).

The Poisson semigroup associated with the right shift group τ on Lp(Rd)
or C0(Rd) is the classical Poisson semigroup. Its generator is (in a sense) the
operator −

√
−∆.

Exercises

10.1. Let A be a sectorial operator on a Banach space X and 0 < Reα < 1.
Show that for each ε > 0 there is a bounded operator Tε ∈ L(X) such that
(A+ ε)α = Aα + Tε and

‖Tε‖ = O(εα) (ε > 0)

[Hint: Consider the function εαf(z/ε) with f := (z + 1)α − zα − (1 + z)−1.]

10.2. Let A be a sectorial operator on a Banach space X. Show that for each
Reα > 0

ker(Aα) = ker(A).

[Hint: reduce the proof of “⊆” to the case that α = n ∈ N; then use Theorem
9.2 to reduce the proof to the case α = n− 1 (in case n ≥ 2).]

10.3. Fix 0 < Reα < 1. In this exercise we take the formula∫ ∞
0

t−α

1 + t
dt =

π

sinαπ
(10.10)

for granted. (See Exercise 10.10 below or any standard textbook on complex
analysis, for instance [2, Prop.III.7.12] or [1, Example V.2.12].)

a) Show from (10.10) that
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zα =
sinαπ

π

∫ ∞
0

t−α
z

1 + tz
dt (10.11)

for all z ∈ C \ (−∞, 0].

b) Let A be a sectorial operator on a Banach space X. Show that

Aα(1 +A)−1 =
sinαπ

π

∫ ∞
0

t−αA(1 + tA)−1(1 +A)−1 dt

as an absolutely convergent integral.

[Hint: Reduce a) to the case z > 0 and perform a suitable change of variables.
For b), imitate the proof of Exercise 9.13.d); or rewrite (10.11) as

π

sinαπ
zα =

1

α
−
∫ ∞

0

tα−11[ t<1 ]
t

t+ z
dt+ z

∫ ∞
0

tα−21[ t>1 ]
t

t+ z
dt

and apply Exercise 9.13.d).]

10.4. Let A be a bounded and sectorial operator on a Banach space X.

a) Show that for Reα ∈ (0, 1)

Aα =
sinαπ

π

∫ ∞
0

t−αA(1 + tA)−1 dt.

b) Conclude from a) that for some constant K ≥ 0

‖Aα‖ ≤ K |α|
Reα

for 0 < Reα < 1/2, |α| ≤ 1.

c) Let ϕ ∈ (0, π/2) and x ∈ ran(A). Show that

lim
Sϕ3α→0

Aαx = x.

[Hint: For a) use Exercise 10.3.b). For b) observe that supt>0 ‖(1 + t)A(1 +
tA)−1‖ <∞.]

10.5. Let A be an injective sectorial operator on a Banach space X and let
ω ∈ (ωse(A), π).

a) Let f ∈ E(Sω). Show that f(z−1) ∈ E(Sω) and

f(A−1) = f(z−1)(A). (10.12)

Cf. also Exercise 9.3.b).

b) Let f ∈ MerA−1(Sω). Show that f(z−1) ∈ MerA(Sω) with (10.12).

[Hint: b) follows from a) and Theorem 8.19.]
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10.6. Let A be an invertible sectorial operator on a Banach space X. By
Exercise 10.4, the holomorphic semigroup (A−t)t>0 is bounded for 0 < t ≤
1/2. It follows that there is M ≥ 1 and ω > 0 such that ‖At‖ ≤ Meωt for all
t > 0. Let λ ∈ C such that Reλ > ω and |Imλ| > π.

a) Show that∫ b

a

e−λtA−t dt = e−λaA−a(λ+ logA)−1 − e−λbA−b(λ+ logA)−1

for all 0 < a < b <∞.

b) Show that

(λ+ logA)−1 =

∫ ∞
0

e−λtA−t dt

c) Conclude from b) that, in the case that dom(A) = X, the operator
− logA is the generator of the C0-semigroup (A−s)s≥0.

[Hint: a) Fix b < n ∈ N and multiply by An(1 + A)−n. b) Use (10.4) and
Exercise 10.4.c) for the limit as a↘ 0.]

10.7 (Sectorial Multiplication Operators). Let Ω be a metric space and
a : Ω → C a continuous function such that a(Ω) ⊆ Sθ for some θ ∈ (0, π).
Let X = Cb(Ω) and A = Ma the multiplication operator associated with a
(with maximal domain) on X as in Exercise 2.5. Finally, fix ϕ ∈ (θ, π).

a) Show that A is sectorial with ωse(A) ≤ θ.
b) Show that f(A) = Mf◦a for each f ∈ Ee(Sϕ).

c) Show that λ ∈ σp(A) if and only if [ a = λ ] has non-empty interior.

d) Let f ∈ Hol(Sϕ) ∩ C(Sθ) such that f(A) is defined in the sectorial
calculus for A. Show that f(A) = Mf◦a. Conclude that

Aα = Maα (Reα > 0).

e) Suppose that A is injective and let f ∈ H∞(Sϕ). Show that f(A) =
Mf◦a, where the operator on the right-hand side is defined by

(x, y) ∈Mf◦a
def.⇐⇒ (f ◦ a)x = y on [ a 6= 0 ].

f) Still in the situation from e), show that f(A) ∈ L(X) if and only if f ◦a
has a (necessarily unique) continuous extension to the whole of Ω.

g) Give an example of a metric space Ω and a continuous function a : Ω →
C such that A := Ma is sectorial on X = Cb(Ω) and sups∈R ‖A−is‖ <
∞, but neither dom(A) nor ran(A) is dense.

10.8. Let A be a sectorial operator on a Banach space X and let Y :=
dom(A)∩ ran(A). Let B be the part of A in Y , i.e., B := A∩ (Y ⊕ Y ). Show
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that B is sectorial of angle ωse(B) ≤ ωse(A) and R(λ,B) = R(λ,A)|Y for all
λ ∈ ρ(A). Also, show that B has dense domain and dense range.
[Hint: Theorem 9.2.a).]

Supplementary Exercises

10.9. Let a ∈ C \ (−∞, 0] and λ ∈ C with |Imλ| > π. Show that

1

λ− log a
=

∫ ∞
0

−1

(λ− log t)2 + π2
(t+ a)−1 dt.

[Hint: Start by writing

1

λ− log a
=

1

2πi

∫
Γ

dz

(λ− log z)(z − a)
,

where Γ is a “keyhole contour” with the cut on the negative real axis and
then pass to the limit so that the circular contour vanishes and one is left
with an integral from ∞ to 0 on [ arg z = π ] and an integral from 0 to ∞ on
[ arg z = −π ].]

10.10. Let 0 < Reα < 1. Show that∫
R

eαx

1 + ex
dx =

π

sinαπ
, (10.13)

for instance by shifting the contour from R to R + 2πi. Then derive (10.10)
from (10.13).

10.11. Let A be an injective sectorial operator on a Banach space X, let
ω ∈ (ωse(A), π) and λ ∈ C \ Sω. Then (λ − ez)−1 ∈ H∞(Stω). Take the
existence of the strip calculus and (10.5) from Remark 10.6 for granted and
show that

(λ− ez)−1(logA) = R(λ,A).

Conclude that (ez)(logA) is defined within the strip calculus for logA, and

(ez)(log(A)) = A.

(This shows in particular that an injective sectorial operator is uniquely de-
termined by its logarithm.)
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Chapter 11

Bounded H∞-Calculus for Hilbert
Space Operators

11.1 Bounded H∞-Calculus

Let D ⊆ C be some (non-empty) domain in the complex plane. We say that
an operator A on a Banach space X has a bounded H∞-calculus on D if
there is a bounded representation

Φ : H∞(D)→ L(X)

such that its canonical extension within Mer(D) has A as its generator (in
the sense that Φ(z) = A). Obviously, the case D = C is pretty uninteresting
since H∞(C) = C1 by Liouville’s theorem. So in the following we take D 6= C
as a standing assumption.

In general, to say that A “has a bounded H∞(D)-calculus” does not tell
much. In particular, considered in this generality there is no reason to think
that such a calculus must be unique.

However, if we suppose even more that D 6= C, then for each λ ∈ C\D one
has rλ := (λ− z)−1 ∈ H∞(D), and hence Φ(rλ) = R(λ,A). In this case Φ is
completely determined at least on the space of rational functions bounded on
D and then, by boundedness of Φ, on the closure of this space with respect
to the uniform norm

‖f‖∞,D := sup{|f(z)| | z ∈ D}.

For certain domains D one can then use results from complex approximation
theory to infer that some special, explicitly constructed, H∞-calculus ΦA
for A is bounded. (The reason for this is usually that a general function
f ∈ H∞(D) can be approximated by a bp-convergent sequence of bounded
rational functions, and the calculus ΦA is bp-continuous in a certain sense.)
In such a situation, A having “a” bounded H∞-calculus on D is equivalent
to the concretely given ΦA being bounded on H∞(D), and the latter is what
is usually intended when one uses the former terminology.

189
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To wit, this all holds for sectorial operators with dense domain and range,
as the following result shows.

Theorem 11.1. Let A be a sectorial operator with dense domain and range
on a Banach space X. Then the following assertions are equivalent for ω ∈
(ωse(A), π) and C ≥ 0:

(i) The sectorial calculus for A is bounded on H∞(Sω) with

‖f(A)‖ ≤ C‖f‖∞,Sω (11.1)

for all f ∈ H∞(Sω).

(ii) The estimate (11.1) holds for each rational function f ∈ H∞(Sω) with
f(0) = 0 = f(∞).

(iii) The estimate (11.1) holds for each elementary function f ∈ E(Sω).

Sketch of Proof. The implication (i)⇒ (ii) is clear.

Now define
A := {f ∈ H∞(Sω) | (11.1) holds}.

It follows from the convergence lemma (Theorem 9.10) that if A 3 fn → f
pointwise and lim infn→∞ ‖fn‖∞ ≤ ‖f‖∞, then f ∈ A.

(ii)⇒ (iii): Denote by K := Sω ∪ {∞} ⊆ C∞ and let R0(Sω) be the algebra
of rational functions f bounded on Sω and with f(0) = f(∞) = 0. Using [4,
II, Thm.10.4] it can be shown that R0(Sω) is sup-norm dense in the algebra

B := {f ∈ C(K) ∩H∞(Sω) | f(0) = 0 = f(∞)}

(cf. the proof of [6, Prop.F.3]). So (ii) implies B ⊆ A. Given f ∈ E(Sω) define
fn := f(zαn), where αn := 1 − 1/n, n ∈ N. By Lemma 9.4.b), fn ∈ B, so
fn ∈ A. But fn → f pointwise on Sω and supn∈N ‖fn‖∞ ≤ ‖f‖∞, hence
f ∈ A as claimed.

(iii)⇒ (i): Let f ∈ H∞(Sω) and define fn := f · z1/n(1 + z)−2/n for n ∈ N.

Then fn ∈ E(Sω) and fn → f pointwise on Sω. Moreover, ‖fn‖∞ ≤ ‖f‖∞c
1
n ,

where c = ‖z(1 + z)−2‖∞,Sω . It follows that f ∈ A as desired.

Remark 11.2. A result analogous to Theorem 11.1 holds for operators of
right half-plane type and for strong strip type operators (Exercise 11.10).
See Exercise 11.1 for a similar theorem in the context of bounded operators.

An estimate of the form ‖f(A)‖ ≤ C‖f‖∞ is usually the best one can
expect since one has equality (with C = 1) for multiplication operators. To
understand the situation better, suppose that A is a densely defined operator
of right half-plane type 0. For such an operator one has the holomorphic
calculus on each open half-plane which contains C+. But as −A need not
be the generator of a C0-semigroup, the operators (e−tz)(A) need not be
bounded. A fortiori, A cannot have a bounded H∞-calculus on any half-plane.
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But now suppose that −A generates a bounded C0-semigroup (Tt)t≥0.
Then one has the Hille–Phillips calculus on C+ for A, with the estimate

‖f(A)‖ ≤ (sup
t≥0
‖Tt‖) ‖f‖LS(C+) (f ∈ LS(C+)).

The Hille–Phillips calculus is already “better” than the holomorphic half-
plane calculus. However, the Laplace-Stieltjes norm is strictly stronger than
the uniform norm, and the example of the shift semigroup on L1(R) shows
that one cannot expect a better estimate in general (Lemma 6.9).

This indicates that a supremum norm estimate for a functional calculus
(and in particular a bounded H∞-calculus) is quite special and one may
wonder whether there are interesting non-trivial situations where such an
estimate holds. We shall see soon that the answer to this question is yes.

11.2 Plancherel’s Theorem

The most satisfying results on H∞-estimates for functional calculi hold for
Hilbert space operators. The spectral theorem (Chapter 4) is the most im-
pressive witness for this claim. In the remainder of this chapter we shall see
what can be said when the operators in question are not normal anymore.

One of the most important “gateways” to H∞-boundedness results on
Hilbert spaces, at least in the context of semigroups, is a vector-valued version
of Plancherel’s theorem.

For any Banach space X the vector-valued Fourier transform is de-
fined as for scalar functions by

(Ff)(t) :=

∫
Rd

e−it·sf(s) ds (t ∈ Rd, f ∈ L1(Rd;X)).

(We shall freely use the results of Appendix A.6 on Bochner spaces from
now on.) In Appendix A.9 we have collected important information about
the Fourier transform for vector-valued functions. In particular, one can find
a proof of the Fourier inversion theorem (Theorem A.47).

Note that if H is a Hilbert space, then so is L2(Rd;H), with the scalar
product being

(f | g )L2(Rd;H) =

∫
Rd

(f(s) | g(s))H ds

for f, g ∈ L2(Rd;H). For a proof of the following result, see Theorem A.50
in Appendix A.9. (Recall that S is the reflection operator, defined in Section
5.2.)

Theorem 11.3 (Plancherel). Let H be a Hilbert space. Then the Fourier
transform maps L1(Rd;H) ∩ L2(Rd;H) into L2(Rd;H) and extends to a
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bounded operator (again denoted by F) on L2(Rd;H) in such a way that
F2 = (2π)dS and the operator

(2π)−
d
2F : L2(Rd;H)→ L2(Rd;H)

is unitary. Moreover, for each µ ∈ M(Rd) and f ∈ L2(Rd;H)

F(µ ∗ f) = µ̂ · f̂ . (11.2)

The Gearhart–Greiner–Prüss Theorem

Plancherel’s theorem is useful in the context of semigroup theory through the
following observation. Let B be the generator of a C0-semigroup T = (Tt)t≥0

on a Hilbert space H, let ω > ω0(T ), the exponential growth bound of T .
Then, for s ∈ R and x ∈ X we have

R(ω + is,B)x =

∫ ∞
0

e−(ω+is)tTtxdt =

∫ ∞
0

e−istTωt x dt.

(Recall the definition of Tω from page 84.) Hence,

R(ω + is, B)x = F(Tωt x) (x ∈ H).

(We view T as a function on R by setting T (t) = 0 for t < 0.) Plancherel’s
theorem then implies that

‖R(ω + is, B)x‖L2(R;H) =
√

2π‖Tωt x‖L2(R;H) ≤ Cω‖x‖

for some Cω independent of x ∈ H (Exercise 11.2). The following important
result of semigroup theory is a nice application.

Theorem 11.4 (Gearhart–Greiner–Prüss). Let B be the generator of a
C0-semigroup T = (Tt)t≥0 on a Hilbert space. Then R(z, B) is not bounded
on [ Re z > ω0(T ) ].

Proof. By rescaling we may suppose without loss of generality that ω0(T ) =
0. Suppose towards a contradiction that M ′ := supRe z>0 ‖R(z,B)‖ <∞. For
each 0 < α < ω the resolvent identity yields

R(α+ is, B) =
(
I + (ω − α)R(α+ is, B)

)
R(ω + is, B).

Hence, there is C ≥ 0 independent of α such that∫ ∞
0

e−2αt‖Ttx‖2 dt = (2π)−1‖R(α+ is, B)x‖2L2

≤ (2π)−1(1 +M ′(ω − α))2‖R(ω + is, B)x‖2L2 ≤ C2‖x‖2
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for all x ∈ H. Letting α↘ 0 yields∫ ∞
0

‖Ttx‖2 dt ≤ C2‖x‖2 (x ∈ H).

Now fix M ≥ 0 such that ‖Ts‖ ≤Meωs for all s ≥ 0. Then(∫ t

0

e−2ωs ds
)
‖Ttx‖2 =

∫ t

0

e−2ωs ‖TsTt−sx‖2 ds ≤M2C2‖x‖2.

It follows that K := supt≥0 ‖Tt‖ <∞. Therefore,

t‖Ttx‖2 =

∫ t

0

‖Tt−sTsx‖2 ds ≤ K2C2‖x‖2.

This implies that ‖Tt‖ → 0 and then, by Exercise 6.1.a), that ω0(T ) < 0.

Remark 11.5. Theorem 11.4 tells that if the resolvent of a semigroup gen-
erator B is bounded on some right half plane Rω, then ω0(T ) < ω. (In still
other words: s0(B) = ω0(T ), where s0(B) is the left half-plane type of B,
cf. page 128.) Note that the identity s0(B) = ω0(T ) may fail on a general
Banach space [3, Comments V.1.12].

Recall from Chapter 6 that if (Us)s∈R is a C0-group on a Banach space X
then

θ(U) = inf{θ ≥ 0 | sup
s∈R

e−θ|s|‖Us‖ <∞}

is the group type of U .

Corollary 11.6. Let −iA be the generator of a C0-group U on a Banach
space X Then A is an operator of strong strip type ωst(A) ≤ θ(U). If X = H
is a Hilbert space, then ωst(A) = θ(U).

Proof. The first part follows from the first order Hille–Yosida estimates (Ex-
ercise 6.3) and the fact that iA generates the semigroup (U−s)s≥0 (Theorem
6.8). The second part follows from the Gearhart–Greiner–Prüss Theorem. See
Exercise 11.7.

11.3 Von Neumann’s Inequality

Von Neumann’s inequality is without doubt one of the most important non-
trivial H∞-boundedness results in the theory of functional calculus. In its
simplest, discrete, form it reads as follows. (Recall that D := [ |z| < 1 ] is the
open unit disc.)
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Theorem 11.7 (Von Neumann). Let T be a linear contraction on a Hilbert
space H. Then

‖f(T )‖ ≤ ‖f‖∞,D (11.3)

for each polynomial f ∈ C[z].

Theorem 11.7 is called von Neumann’s inequality. By Exercise 11.1
it is equivalent to the assertion that a contraction on a Hilbert space has a
contractive H∞-calculus on Dr for each r > 1.

So, von Neumann’s inequality is in fact a result about bounded H∞-
calculus, even if it does not assert that each contraction T has a bounded
H∞-functional calculus on D. This, namely, cannot be true: T may have
eigenvalues on T = ∂D, but a generic H∞-function on D cannot be meaning-
fully evaluated in those eigenvalues.

At the end of this section we shall deduce von Neumann’s inequality from
the following continuous version of it. A contraction semigroup is a semi-
group (Tt)t≥0 with ‖Tt‖ ≤ 1 for all t ≥ 0. By (a special case of) the so-called
Lumer–Phillips theorem, the negative generators of contraction semigroups
are precisely the so-called m-accretive operators. See Appendix A.8 for the
precise definition of accretivity and the Lumer–Phillips theorem.

Theorem 11.8. Let −A be the generator of a strongly continuous contraction
semigroup (Tt)t≥0 on a Hilbert space H. Then∥∥∥∫

R+

Tt µ(dt)
∥∥∥ ≤ ‖Lµ‖∞ for all µ ∈ M(R+). (11.4)

Equivalently, ‖f(A)‖ ≤ ‖f‖∞,C+ for all f ∈ LS(C+).

Our proof of Theorem 11.8 is an elaboration of [12, Cor. 3.5].
Without loss of generality one may suppose that T is exponentially sta-

ble, i.e., satisfies ω0(T ) < 0. Indeed, if Theorem 11.8 is true for exponentially
stable contraction semigroups, then it is true for T ε = e−εtTt for each ε > 0,
and hence for T : simply let ε↘ 0 in the inequality∥∥∥∫

R+

e−εtTt µ(dt)
∥∥∥ ≤ ‖Lµ‖∞.

An exponentially stable semigroup T is strongly stable, by which it is meant
that limt→∞ ‖Ttx‖ = 0 for all x ∈ H. Also, the generator of an exponentially
stable semigroup is invertible.

Lemma 11.9 (Zwart). Let −A be the generator of a contraction semigroup
(Tt)t≥0 on a Hilbert space H. If T is strongly stable and A is invertible, then
there is an operator C : dom(A)→ H such that∫ ∞

0

‖CTtx‖2 dt = ‖x‖2 for all x ∈ dom(A). (11.5)
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Proof. Since A is invertible, S := A−1 +(A−1)∗ is bounded and self-adjoint.
The orbit Ttx of x ∈ dom(A) is differentiable with derivative −ATtx. Since
each Tt is a contraction, ‖Ttx‖ is decreasing. Hence, for x ∈ dom(A),

0 ≤ − d

dt
‖Ttx‖2 = (ATtx |Ttx) + (Ttx |ATtx)

=
(
ATtx

∣∣A−1ATtx
)

+
(
A−1ATtx

∣∣ATtx)
=
(

(A−1)∗ATtx
∣∣ATtx)+

(
A−1ATtx

∣∣ATtx)
= (SATtx |ATtx) .

Inserting t = 0 yields (SAx |Ax) ≥ 0 for all x ∈ dom(A), and since ran(A) =
H, it follows that S ≥ 0. Therefore,

− d

dt
‖Ttx‖2 = (SATtx |ATtx) = ‖S1/2ATtx‖2.

It follows that

‖x‖2 = lim
r→∞

(
‖x‖2 − ‖Trx‖2

)
=

∫ ∞
0

− d

dt
‖Ttx‖2 dt =

∫ ∞
0

‖S1/2ATtx‖2 dt,

which is (11.5) with C := S1/2A.

By Lemma 11.9 and the density of dom(A) in H we obtain an isometric
operator

J : H → L2(R;H),

defined for x ∈ dom(A) by

(Jx)(s) :=

{
CT−sx s ≤ 0

0 s > 0.

The range ran(J) of J is a closed subspace of L2(R;H). Define

P : L2(R;H)→ H, P := J−1Q,

where Q is the orthogonal projection onto ran(J).

Lemma 11.10. Let the invertible operator −A be the generator of a strongly
stable contraction semigroup (Tt)t≥0 on a Hilbert space H, and let the oper-
ators J and P be defined as above. Then

P ◦ τt ◦ J = Tt (t ≥ 0),

where (τt)t∈R is the right shift group on L2(R;H). Equivalently, the diagram
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L2(R;H)
τt // L2(R;H)

P

��
H

Tt //

J

OO

H

(11.6)

is commutative for each t ≥ 0.

Proof. Note first that ran(J) is contained in the closed subspace

K = {f ∈ L2(R;H) | 1R−f = f}.

The orthogonal projection onto K is multiplication by 1R− , hence Pf =
P (1R−f) for each f ∈ L2(R;H). Now let x ∈ dom(A). Then for s ≤ 0 and
t ≥ 0 one has (Jx)(s− t) = CTt−sx = CT−sTtx = (JTtx)(s). Consequently,

1R−τtJx = 1[ s≤0 ] · (Jx)(s− t) = JTtx.

Applying P yields PτtJx = Ttx, hence the claim by density of dom(A).

Proof of Theorem 11.8. Let µ ∈ M(R+). Then after integrating against
µ, (11.6) becomes

L2(R;H)
τµ // L2(R;H)

P

��
H

Tµ //

J

OO

H

(11.7)

from which it follows that ‖Tµ‖ ≤ ‖τµ‖. But τµ is convolution with µ, hence

τµf = F−1(µ̂ · f̂).

By Plancherel’s theorem, this implies ‖τµ‖ ≤ ‖µ̂‖∞,R ≤ ‖Lµ‖∞,C+ . (One even
has equality in the last step as a consequence of the maximum principle.) This
completes the proof of Theorem 11.8.

Remarks 11.11. 1) Actually, an appeal to Plancherel’s theorem here is
not necessary if we assume the spectral theorem to be known. Indeed,
the right shift group on the Hilbert space L2(R;H) is unitary, so its
generator B, say, is skew-symmetric. Since the Borel calculus for B is
compatible with the Fourier–Stieltjes calculus (this is similar to Exercise
6.10), we obtain the desired norm estimate.

2) The commutativity of the diagram (11.6) means that the pair (J, P )
is a dilation of the original semigroup T to the unitary group τ . A
famous theorem of Szökefalvi-Nagy and Foiaş [10, Sec.I.8] states that
each contraction semigroup on a Hilbert space has a dilation to a unitary
group on another Hilbert space.

Theorem 11.8 can be rephrased in terms of H∞-calculi as follows.
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Theorem 11.12. Let −A be the generator of a contraction C0-semigroup on
a Hilbert space H. Then the inequality

‖f(A)‖ ≤ ‖f‖∞,C+
(11.8)

holds in the following cases:

1) f ∈ H∞(Rω), ω < 0, and f(A) is defined within the half-plane calculus
for A.

2) f ∈ H∞(Sω), ω ∈ (π/2, π), A is injective, and f(A) is defined in the
sectorial calculus for A.

Proof. We give a proof in the case of 2) and leave case 1) as Exercise 11.3.
So suppose that the hypotheses of 2) are satisfied. Take first f ∈ E(Sω).
Then by Remark 9.8 there is ϕ ∈ L1(R+) such that f = L(ϕ) and f(A) =∫∞

0
ϕ(t)Tt dt. Hence, (11.8) is true in this case, by Theorem 11.8.

For general f ∈ H∞(Sω) let fn := enf , where en := n2z(n+z)−1(1+nz)−1 for
n ∈ N. Then ‖enf‖∞,C+ ≤ ‖f‖∞,C+ and enf → f pointwise and boundedly
on Sω. Since A is injective and H is reflexive, A has dense range (and anyway
dense domain). By the convergence lemma, f(A) ∈ L(H) with

‖f(A)‖ ≤ lim inf
n
‖fn(A)‖ ≤ lim inf

n
‖fn‖∞,C+

≤ ‖f‖∞,C+

as desired.

Proof of Von Neumann’s Inequality

Von Neumann’s inequality (Theorem 11.7) is a consequence of Theorem 11.8
in the following way. By passing to rT for r < 1 and then letting r ↗ 1 it
suffices to consider contractions T such that I− T is invertible. Now let

A := (I + T )(I− T )−1 ∈ L(X).

It is a simple exercise to show that Re (Ax |x) ≥ 0 for all x ∈ H. By Theorem
A.23 it follows that [ Re z < 0 ] ⊆ ρ(A) and

‖R(λ,A)‖ ≤ 1

dist(λ,C+)
=

1

|Reλ|
(Reλ < 0).

Since A is bounded, it is densely defined. So the Hille–Yosida theorem with
ω = 0 and M = 1 yields that −A generates a contraction semigroup.

We can write A = f(T ), where f = (1 + z)(1 − z)−1 is a Möbius trans-
formation which maps the unit disc to the right half-plane. Its inverse is
c := (z− 1)(z + 1)−1, called the Cayley transform mapping, and it is an-
other simple exercise to show that A+ I is invertible and c(A) = T . (Observe
that c ∈ LS(C+).) Hence, if p ∈ C[z] is any polynomial,
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p(T ) = (p ◦ c)(A).

Since c maps C+ into D, it follows from Theorem 11.8 that

‖p(T )‖ = ‖(p ◦ c)(A)‖ ≤ ‖p ◦ c‖∞,C+ ≤ ‖p‖∞,D.

This concludes the proof of Theorem 11.7. (See also Exercise 11.5.)

11.4 Strongly Continuous Groups on Hilbert Spaces

In this section we shall prove that generators of C0-groups on Hilbert spaces
have a bounded H∞-calculus on strips. The best result here holds for bounded
C0-groups.

Theorem 11.13 (Szökefalvi-Nagy). Let −iA be the generator of a bounded
C0-group (Us)s∈R on a Hilbert space H. Then the group U is unitary with
respect to some equivalent scalar product1 on H, and A admits a bounded
Mb(R)-calculus.

Proof. If U is unitary, then by Stone’s theorem (Theorem A.45), A is self-
adjoint. By the spectral theorem, A has a Borel calculus on R, in particular
a contractive Mb(R)-calculus. Hence, if U is unitary merely with respect to
some equivalent scalar product, A still admits a bounded (but not necessarily
contractive) Mb(R)-calculus. So it suffices to prove the first assertion.

To this end, let M := sups∈R ‖Us‖. Then

M−2‖x‖2 ≤ ‖Usx‖2 ≤M2‖x‖2 (s ∈ R, x ∈ H). (11.9)

Let p be a an invariant mean on `∞(R;C), i.e. a positive, shift invariant
linear functional with p(1) = 1.2 Define the sesquilinear form

α : H ×H → C, α(x, y) := p
(
(Usx |Usy )

)
.

Since p is positive, it is monotone. Applying p to (11.9) therefore yields

M−2‖x‖2 ≤ α(x, x) ≤M2‖x‖2 (x ∈ H).

Hence, α is an equivalent scalar product on H. Since p is shift invariant,

α(Utx, Utx) = p
(
(UsUtx |UsUtx)

)
= p
(
(Us+tx |Us+tx)

)
= α(x, y)

1 An equivalent scalar product on a Hilbert space H is a scalar product that induces

an equivalent norm on H.
2 Such an object exists by an application of the Markov-Kakutani fixed point theorem
([2, Thm.10.1], [9, Thm.5.11]), which shows that R is an amenable group. Most textbooks

cover the discrete version, under the name Banach limit. Lax [7, Chap.4] derives the result

from a version of the Hahn–Banach theorem.
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for all t ∈ R and x, y ∈ H. Hence, U is a unitary group with respect to α.

An alternative proof of Theorem 11.13 is provided in Exercise 11.6.

The Boyadzhiev–deLaubenfels Theorem

Let us now turn to unbounded C0-groups.

Theorem 11.14 (Boyadzhiev–de Laubenfels). Let A be a densely de-
fined operator on a Hilbert space H. Then the following assertions are equiv-
alent:

(i) −iA generates a C0-group (Us)s∈R on H;

(ii) A has a bounded H∞-calculus on some strip Stω, ω > 0.

In this case, for each ω > θ(U) there is C ≥ 0 such that

‖f(A)‖ ≤ C‖f‖∞,Stω (f ∈ H∞(Stω)),

where f(A) is defined in the canonical extension of the Fourier–Stieltjes cal-
culus3 for A.

Recall from Exercise 6.7 that the Fourier–Stieltjes calculus ΨU for a C0-
group U of type (M,ω) on a Banach space X is defined by

ΨU (f) =

∫
R
Us µ(ds), f = Fµ, µ ∈ Mω(R),

where

Mω(R) =
{
µ ∈ M(R)

∣∣ ∫
R

eω|s| |µ| (ds) <∞
}
.

We denote by L1
ω(R) := Mω(R) ∩ L1(R).

Proof of (ii)⇒ (i) in Theorem 11.14. Let ω > 0 and Φ : H∞(Stω) →
L(H) be a bounded representation. Let Us := Φ(e−isz) for s ∈ R. Then
(Us)s∈R is an operator group satisfying

‖Us‖ ≤ ‖Φ‖ ‖e−isz‖∞,Stω = ‖Φ‖eω|s| (s ∈ R).

Pick λ ∈ C \ Stω and note that the function

R→ H∞(Stω), s 7→ e−isz

(λ− z)2

is continuous. Hence,

3 We shall see below in Theorem 11.15 that f(A) is indeed defined in that way.



200 11 Bounded H∞-Calculus for Hilbert Space Operators

s 7→ UsR(λ,A)2 = Φ
( e−isz

(λ− z)2

)
is continuous in operator norm. Since dom(A2) is dense and U is locally
bounded, U is strongly continuous. For α > ω we have

R(λ,A)2

∫ ∞
0

e−αsUs ds =

∫ ∞
0

e−αsUsR(λ,A)2 ds

= Φ
(∫ ∞

0

e−αs
e−isz

(λ− z)2
ds
)

= iΦ((iα− z)−1(λ− z)−2
)

= iR(λ,A)2R(iα,A),

because the integral in the second line converges within H∞(Stω). Hence,∫ ∞
0

e−αsUs ds = iR(iα,A) = (α+ iA)−1.

The concludes the proof of the implication (ii)⇒ (i) in Theorem 11.14.

The proof of the implication (i)⇒ (ii) is more complicated. In order to
facilitate the reasoning it is convenient to switch from the Fourier–Stieltjes
calculus to the strip calculus explained in Remark 10.6. However, in our
situation we do not start with an arbitrary (strong) strip type operator (for
which one has to define the strip calculus in the first place) but with a group
generator, where a functional calculus is already at hand. What we need is the
following representation theorem (which of course expresses the compatibility
of strip calculus and Fourier–Stieltjes calculus).

Theorem 11.15. Let ω > 0 and f ∈ E(Stω). Then the function ϕ : R → C
defined by

ϕ(s) :=
1

2π

∫
R

eiszf(z) dz (s ∈ R)

has the following properties:

1) ϕ is continuous and eα|s|ϕ is bounded for each 0 ≤ α < ω.

2) ϕ ∈ L1
α(R) for each 0 ≤ α < ω.

3) Fϕ = f |R.

4) Whenever −iA generates a C0-group (Us)s∈R with θ(U) < ω on a Ba-
nach space X,

ΨU (f) =
1

2πi

∫
∂Stδ

f(z)R(z,A) dz

for each δ ∈ (θ(U), ω).

Proof. 1) Since f is elementary, it is integrable over R, so ϕ ∈ Cb(R). Let
0 ≤ α < ω. Then, since eiszf is elementary we can shift the contour onto
[ Im z = ±α ] and obtain
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2π ϕ(s) =

∫
R

eiszf(z) dz =

∫
R±iα

eiszf(z) dz = e∓αs
∫
R

eistf(t± iα) dt.

It follows that e±αsϕ is bounded and this yields 1). 2) follows from 1).

For 3) and 4) we use the observation from above to write

2π

∫
R
ϕ(s)Us ds =

∫ ∞
0

∫
R+iδ

eiszf(z) dz Us ds+

∫ 0

−∞

∫
R−iδ

eiszf(z) dz Us ds

=

∫
R+iδ

f(z)

∫ ∞
0

eiszUs dsdz +

∫
R−iδ

f(z)

∫ 0

−∞
eiszUs dsdz

=

∫
R+iδ

f(z)R(−iz,−iA) dz +

∫
R−iδ

f(z)R(iz, iA) dz

= (−i)

∫
∂Stδ

f(z)R(z,A) dz.

Here we used Fubini’s theorem and that −iA is the generator of (Us)s≥0 and
iA is the generator of (U−s)s≥0. Applying the result to X = C and A = a ∈ R
we obtain

Fϕ(a) =
1

2πi

∫
∂Stδ

f(z)

z − a
dz = f(a)

by Lemma 9.4.b). This completes the proof.

Theorem 11.15 shows in particular that E(Stω) is in the domain of the
Fourier–Stieltjes calculus for U . It allows us to compute and estimate with
the functions f directly rather than with their Fourier pre-images.

Square Function Estimates

At this point of the proof, Plancherel’s theorem enters the scene.

Lemma 11.16. Let −iA be the generator of a C0-group U on a Hilbert space
H. Then, for each ω > θ(U) and g ∈ E(Stω),∫

R
‖g(A+ t)x‖2dt . ‖x‖2 (x ∈ H). (11.10)

Remark: The notation

F (x) . G(x) (x ∈M)

is shorthand for: there is a number C ≥ 0 such that F (x) ≤ C G(x) for all
x ∈ M. (So, C may depend on F and G, but not on x.) We use this notion
if the size of the precise constant is unimportant and keeping track of these
constants would render the presentation awkward.
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Proof. Find ϕ to f := g as in Theorem 11.15. Then, as −i(A+ t) generates
the group e−itsUs,

g(A+ t)x =

∫
R

e−itsϕ(s)Usxds (x ∈ H).

Since ϕeθ|s| ∈ L2(R) and e−θ|s|Us is uniformly bounded for θ(U) < θ < ω,
the claim follows from Plancherel’s theorem.

We call (11.10) a square function estimate. Note that the operator
−iA∗ generates the C0-group (U∗−s)s∈R, so Lemma 11.16 can be applied again
and yields a dual square function estimate∫

R
‖h(A∗ + t)x‖2dt . ‖x‖2 (x ∈ H) (11.11)

for any h ∈ E(Stω). We shall see below that a square function estimate and
a dual square function estimate together imply the boundedness of the H∞-
calculus. To this aim, we need another auxiliary result. It will be convenient
to write

ft := f(z + t)

for t ∈ R and f ∈ Hol(Stω).

Lemma 11.17. Let ϕ, ψ ∈ E(Stω) such that
∫
R ψ(t) dt = 1. Then the follow-

ing assertions hold:

a)

∫
R
(ψtϕ)(A) dt = ϕ(A) as an absolutely convergent integral in L(H).

b) There is a constant C ≥ 0 such that

sup
t∈R
‖(fϕt)(A)‖ ≤ C‖f‖∞,Stω

for all f ∈ H∞(Stω).

Proof. We leave a) as Exercise 11.8. For b) let δ < ω be so close to ω that
we have

(fϕt)(A) =
1

2πi

∫
∂Stδ

f(z)ϕ(z + t)R(z,A) dz.

Taking norms we obtain

‖(fϕt)(A)‖ . ‖f‖∞
∫
∂Stδ

|ϕ(z + t)| |dz| = ‖f‖∞
∫
∂Stδ

|ϕ(z)| |dz| .

This yields b).

The following important theorem shows that square function estimates
imply a bounded H∞-calculus. The hypotheses on A are as before, but see
also Remark 11.19 below.
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Theorem 11.18. Suppose that g, h ∈ E(Stω) \ {0} and one has a square
function estimate (11.10) for g and a dual square function estimate (11.11)
for h. Then there is C ≥ 0 such that

‖f(A)x‖ ≤ C‖f‖∞,Stω ‖x‖ (11.12)

for all f ∈ H∞(Stω) and x ∈ H.

Proof. Since both g and h are non-zero and holomorphic, gh can vanish
only on a discrete set, so c := ‖gh‖L2(R) 6= 0. For a function u on Sω we write

u∗ := u(z). With this notation, let ϕ := c−2hg∗ and ψ := ϕh∗g. Then∫
R
ψ(t) dt = c−2

∫
R
|h(t)g(t)|2 dt = 1.

Take any e ∈ E(Stω) and f ∈ H∞(Stω). By Lemma 11.17.a)

(fe)(A) =

∫
R

(ψtfe)(A) dt =

∫
R
h∗t (A) (fϕt)(A) gt(A) e(A) dt. (11.13)

Inserting x ∈ H and taking the inner product with y ∈ H we obtain

((fe)(A)x | y ) =

∫
R

(
(fϕt)(A)gt(A)e(A)x

∣∣ ht(A∗)y)dt

since ht(A
∗) =

(
h∗t (A)

)∗
(Exercise 11.9). The Cauchy–Schwarz inequality

together with the square function estimates (11.10) and (11.11) then yield a
constant C ′ such that

|( (fe)(A)x | y )| ≤ C ′ sup
t∈R
‖(fϕt)(A)‖ ‖e(A)x‖ ‖y‖.

Lemma 11.17.b) then yields C ≥ 0 with

‖(fe)(A)x‖ ≤ C ‖f‖∞,Stω‖e(A)x‖ (x ∈ H).

Specializing e := (λ − z)−2 for some λ ∈ C \ Stω we obtain the estimate
(11.12) for x ∈ dom(A2). But this space is dense in H and f(A) is a closed
operator, so (11.12) must hold for all x ∈ H.

This concludes the proof of the Boyadzhiev–deLaubenfels Theorem 11.14.

Supplementary Remark 11.19. Theorem 11.18 holds under the more gen-
eral condition that A is a strong strip type operator on H with ωst(A) < ω.
Indeed: the proof works only with Cauchy integrals and the group U did not
play a role at any point. So (i) and (ii) of Theorem 11.14 are equivalent to

(iii) The operator A is of strong strip type and admits a square function
estimate (11.10) and a dual square function estimate (11.11) for some
functions g, h ∈ E(Stω) \ {0} and some ω > ωst(A).
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11.5 Supplement: Sectorial Operators with BIP

Boyadzhiev-deLaubenfels’ theorem from [1] was a strip analogue of an ear-
lier result by McIntosh from the seminal paper [8]. Analogously to the strip
situation, an estimate of the form∫ ∞

0

‖g(tA)x‖2 dt

t
. ‖x‖2 (x ∈ H) (11.14)

for a function g ∈ E(Sω) is called a square function estimate for the
sectorial operator A; and∫ ∞

0

‖h(tA∗)x‖2 dt

t
. ‖x‖2 (x ∈ H) (11.15)

is called a dual square function estimate for A.

Theorem 11.20 (McIntosh). Let A be an injective sectorial operator on a
Hilbert space H. Then the following assertions are equivalent:

(i) A has a bounded H∞-calculus on Sω for some ω ∈ (ωse(A), π).

(ii) A has BIP.

(iii) A admits a square function estimate (11.14) and a dual square function
estimate (11.15) for some ω ∈ (ωse(A), π) and some g, h ∈ E(Sω) \ {0}.

In this case, the following assertions hold:

a) The group type of the group (Ais)s∈R equals the sectoriality angle ωse(A)
of A.

b) A has a bounded H∞-calculus on Sω for all ω ∈ (ωse(A), π).

c) A admits square function estimates (11.14) and dual square function
estimates (11.15) for all ω ∈ (ωse(A), π) and all g, h ∈ E(Sω).

Proof. First note that an injective sectorial operator on a Hilbert space has
dense domain and range. So (i)⇒ (ii) follows from Theorem 10.7. Suppose
that (ii) holds and let B := logA. Then −iB generates the group U := A−is.
By the Boyadzhiev–deLaubenfels theorem, B has bounded H∞(Stω)-calculus
for each ω > θ(U). By Corollary 11.6 and Theorem 10.5, θ(U) = ωst(B) =
ωse(A). Moreover, by Remark 10.6 and, in particular, identity (10.5), we have

f(A) = f(ez)(B) (11.16)

for each f ∈ H∞(Sω). This yields (i) as well as assertion b).

By (11.16), square and dual square function estimates for A and B are in
one-to-one correspondence. So the equivalence (i), (ii)⇔ (iii) and assertion c)
follow from our proof of the Boyadzhiev–deLaubenfels theorem and Remark
11.19.
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Exercises

11.1. Show that the set of polynomial functions is dense in the Banach alge-
bra H∞(D) ∩ C(D). Then show that the following statements are equivalent
for a bounded operator T ∈ L(X) on a Banach space X and a number C ≥ 0:

(i) ‖p(T )‖ ≤ C‖p‖∞,D for all p ∈ C[z];

(ii) T has a bounded H∞(D) ∩ C(D)-calculus of norm at most C;

(iii) T has, for each r > 1, a bounded H∞(Dr)-calculus of norm at most C.

Suppose that (i)–(iii) hold and show the following assertions:

a) T is power–bounded.

b) The bounded H∞(D) ∩ C(D)-calculus asserted in (ii) is unique and its
restriction to A1

+(D) coincides with the calculus for power–bounded op-
erators defined in Section 1.2.

c) For each r > 1 the Dunford–Riesz calculus for T on Dr restricts to a
bounded representation H∞(Dr)→ L(X) of norm at most C.

11.2. Let T = (Tt)t≥0 be a C0-semigroup on a Banach space X and let
ω > ω0(T ). Show that for each 1 ≤ p ≤ ∞ there is a constant Cp ≥ 0 such
that

‖Tωt x‖Lp(R+;X) ≤ Cp‖x‖.

11.3. Let −A be the generator of a contraction C0-semigroup on a Hilbert
space H and ω < 0. Show that

‖f(A)‖ ≤ ‖f‖∞,C+ (f ∈ H∞(Rω)),

where f(A) is defined within the half-plane calculus for A.
[Hint: Imitate the proof of Case 2) in Theorem 11.12; you’ll need the com-
patibility Theorem 8.20 and the convergence lemma (Theorem 8.10).]

11.4. Let A be a closed and densely defined operator on a Hilbert space.
Prove the following assertions.

a) If A is of right half-plane type ω ∈ R then so is A∗, and M(A,α) =
M(A∗, α) for all α < ω.

b) If A is sectorial of angle ω ∈ (0, π) then so is A∗, and M(A,α) =
M(A∗, α) for all α ∈ (ω, π).

c) If −A generates a C0-semigroup (Tt)t≥0 then (T ∗t )t≥0 is a C0-semigroup
and −A∗ is its generator.

[Hint for a) and b): Corollary A.22. Hint for c): prove first, e.g. by using the
Hille–Yosida theorem, that −A∗ is a generator; then prove that the generated
semigroup coincides with (T ∗t )t≥0. Note that A∗ is densely defined (see the
last statement before the rubric “The Numerical Range” in Appendix A.5).]
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11.5 (Von Neumann’s Inequality). Let T be a contraction on a Hilbert
space such that Tn → 0 strongly.

a) Show that there is an operator C ∈ L(H) such that

∞∑
n=0

‖CTnx‖2 = ‖x‖2 (x ∈ H).

b) Construct an isometric embedding η : H → `2(Z;H) and a contraction
P : `2(Z;H)→ H such that

Tn = P ◦ τn ◦ η (n ∈ N0)

where τ is the right shift on `2(Z;H).

c) Prove von Neumann’s inequality for T . Then prove von Neumann’s in-
equality for an arbitrary contraction on a Hilbert space.

[Hint: One can take C := (I− T ∗T )1/2.]

11.6. Let −iA be the generator of a C0-group (Us)s∈R on a Hilbert space H,
and let M ≥ 1 and θ ≥ 0 such that ‖Us‖ ≤ Meθ|s| for all s ∈ R. For each
ω > θ let

Qω :=

∫ ∞
0

e−2ω|s|U∗sUs ds

as a weak integral.

a) Show that Qω is a self-adjoint operator satisfying

M−2

ω+θ I ≤ Qω ≤ M2

ω−θ I.

b) Conclude that by (x | y )ω := (Qωx | y ) an equivalent scalar product on
H is given. Prove that

‖Us‖ω ≤ eω|s| (s ∈ R).

c) Suppose in addition that U is bounded, i.e., that θ = 0. Then the
sequence (1/nQ1/n)n∈N is bounded. Since closed norm-balls in L(H) are
compact in the weak operator topology, the sequence has a cluster point
Q, say. Prove that by α(x, y) := (Qx | y ) an equivalent scalar product
is given in H with respect to which U is unitary.

Remarks: c) provides an alternative proof of Theorem 11.13. The main idea
is from Zwart’s paper [11].

From b) one can prove that the operator A can be written as A = B+ iC,
where B and C are self-adjoint with respect to the equivalent scalar product
( · | ·)ω and C is bounded with ‖C‖ ≤ ω. In particular: Each generator of
a C0-group on a Hilbert space is a bounded perturbation of a generator of a
bounded C0-group. See [5] or [6, Sec.7.2] for details.
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11.7. Let −iA be the generator of a C0-group (Us)s∈R on a Banach space X.
Show that A is of strong strip type ωst(A) ≤ θ(U). If X = H is a Hilbert
space, show that θ(U) = ωst(A).

11.8. Let A be an operator of strong strip type on a Banach space X and let
ω > ωst(A). Let ϕ,ψ ∈ E(Stω) and define c :=

∫
R ψ(t) dt. For a function g on

Stω and t ∈ R we abbreviate gt := g(z + t). Take the strip calculus (Remark
10.6) for granted and prove the following assertions:

a) For each f ∈ H∞(Stω) the function t 7→ (fψt)(A) is continuous on R.

b) sup
s>0

∫
R
‖(ψtϕs)(A)‖ dt <∞.

c)

∫
R

(ψtϕ)(A) dt = cϕ(A).

11.9. Let A be a densely defined operator of strong strip type on a Hilbert
space H. Show that also A∗ is of strong strip type with ωst(A) = ωst(A

∗)
and

h∗(A) = h(A∗)∗

for each h ∈ E(Stω), ω > ωst(A).

Supplementary Exercises

11.10. Suppose that A is a densely defined operator of strong strip type
on a Banach space X. Let ω > ωst(A) and take the existence of the strip
calculus on E(Stω) and its natural extension to H∞(Stω) for granted.4 Prove
the following statements:

a) (Convergence Lemma) Let (fn)n be a sequence in H∞(Stω) which
converges pointwise and boundedly on Stω to some function f ∈
H∞(Stω). If supn ‖f(A)‖ < ∞ then f(A) ∈ L(X) and fn(A) → f(A)
strongly.

b) Let there be C ≥ 0 such that

‖f(A)‖ ≤ C‖f‖∞,Stω

for all f ∈ E(Stω). Then this holds for all f ∈ H∞(Stω).

[Hint: For a) imitate the proof of Theorem 9.10. For b) imitate the proof of

the implication (iii)⇒ (i) of Theorem 11.1. One can take fn(z) = f(z)e−
1
n z

2

as an approximation of f .]

4 If −iA generates a C0-group U with θ(U) < ω, the strip calculus can be found as a

subcalculus of the Fourier–Stieltjes calculus, by Theorem 11.15.
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Chapter 12

Fourier Multipliers and Elliptic
Operators on Lp(Rd)

In the previous chapter we have seen that on Hilbert spaces “many” oper-
ators admit a bounded H∞-calculus in one or the other way. This changes
drastically when one leaves the regime of Hilbert spaces. However, on “good”
spaces (among which are Lp-spaces for 1 < p <∞) one still can prove inter-
esting and non-trivial results.

We shall postpone the clarification of what precisely is meant by “good”
here to the next (and final) chapter. Instead, in the present chapter we shall
devise an important class of sectorial operators with a bounded H∞-calculus.
As a background, we have to introduce a central notion of harmonic analysis.

12.1 Fourier Multiplier Operators

Let X be a Banach space. For m ∈ L∞(Rd) define

Tmf := F−1(m · f̂)

for functions f ∈ E(Rd;X), where

E(Rd;X) := {f | f, f̂ ∈ L1(Rd;X) ∩ C0(Rd;X)}.

Here, F−1 is the inverse Fourier transform given by F−1 = (2π)−dSF (see
Theorem A.47). The operator

Tm : E(Rd;X)→ C0(Rd;X)

is called a Fourier multiplier operator with symbol m. By Corollary
A.48, the space E(Rd;X) is dense in Lp(Rd;X) for each 1 ≤ p < ∞. In
particular, this is true for p = 1, which implies that m is uniquely determined
by Tm.

209
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Now fix 1 ≤ p < ∞. The function m ∈ L∞(Rd) is called an Lp(X)-
multiplier if the associated Fourier multiplier operator Tm extends to a
bounded operator on Lp(Rd;X). By density of E(Rd;X), this extension—
which is again denoted by Tm—is unique. We let

MX
p (Rd) := {m ∈ L∞(Rd) | m is an Lp(X)-multiplier}

and endow it with the norm

‖m‖MX
p

:= ‖Tm‖L(Lp(Rd;X)). (12.1)

If X = C we abbreviate Mp(Rd) :=MC
p (Rd).

In the following we shall highlight some of the most important properties
of Lp-Fourier multipliers. However, we shall not give proofs here but refer to
Appendix A.10 for details, in particular to Theorem A.56.

Theorem 12.1. The spaceMX
p (Rd) is a subalgebra of L∞(Rd) and a Banach

algebra with respect to the norm (12.1). Moreover, it contains FS(Rd) and
both inclusions

FS(Rd) ⊆MX
p (Rd) ⊆ L∞(Rd)

are contractive. Finally, the mapping

MX
p (Rd)→ L(Lp(Rd;X)), m 7→ Tm (12.2)

is an isometric and unital algebra homomorphism onto a closed unital subal-
gebra of L(Lp(Rd;X)). It is an extension of the Fourier–Stieltjes calculus for
the shift group on Lp(Rd;X).

Each operator Tm, m ∈ MX
p (Rd), is translation invariant, i.e., com-

mutes with all translation operators (τs)s∈Rd (Exercise 12.1). On the other
hand, for X = C one can show that each translation invariant operator on
Lp(Rd) must already be of the form Tm for some m ∈Mp(Rd) [1, p.143]. So,
in that case, the functional calculus (12.2) is in a certain sense the maximal
bounded calculus extending the Fourier–Stieltjes calculus. (This is false for
X 6= C, as one can also consider Fourier multiplier operators with operator-
valued symbols. However, we do not pursue this topic further here.)

Are there good criteria that help deciding whether a certain function m
is an Lp-Fourier multiplier or not? Well, if p = 2 and X = H is a Hilbert
space, then MH

2 (Rd) = L∞(Rd). This is a straightforward consequence of
Plancherel’s theorem, see Theorem A.56.e). If p = 1, then we know from
Theorem 6.23 thatM1(Rd) = FS(Rd), and this stays true also in the vector-
valued situation (Theorem A.56.d)).

For 1 < p < ∞ (and p 6= 2 if X is a Hilbert space) things are more
interesting (and difficult). There are non-trivial results if the Banach space X
is “good” (recall our introductory remarks to this chapter). For now, however,
we restrict ourselves to the scalar case X = C.
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The Mikhlin Multiplier Theorem

Let kd := bd/2c+1 be the least integer strictly bigger than d/2. A function
m ∈ Ckd(Rd \ {0}) is called Mikhlin function if its Mikhlin norm

‖m‖Mi := max
|α|≤kd

∥∥|t||α|Dαm(t)
∥∥
∞,Rd\{0}

is finite. We denote by Mi(Rd \ {0}) the space of all Mikhlin functions. Note
that each Mikhlin function is bounded and determines an element of L∞(Rd),
with

‖m‖L∞ ≤ ‖m‖Mi.

The following is one of the central results of harmonic analysis.

Theorem 12.2 (Mikhlin). For each p ∈ (1,∞) the space Mi(Rd \ {0})
of Mikhlin functions embeds continuously into Mp(Rd). In other words: for
each 1 < p < ∞ there is a constant Cp such that each Mikhlin function
m ∈ Mi(Rd \ {0}) is an Lp(Rd)-multiplier with

‖m‖Mp
≤ Cp ‖m‖Mi.

We take this result for granted and refer to [1, Thm.5.2.7] for a proof.

12.2 Elliptic Operators on Lp

In this section we shall define elliptic, constant coefficient differential oper-
ators on Lp(Rd), 1 < p < ∞, and show that they are sectorial and admit a
bounded H∞-calculus on sectors. However, we shall take a slightly unusual
route, as we shall define the functional calculus first and then identify its
“generator” as the operator we are aiming at.

The Polynomial

A polynomial a : Rd → C is called homogeneous of degree m ∈ N0 if it is
of the form1

a =
∑
|α|=m

aαi|α|tα (12.3)

for certain aα ∈ C (α ∈ Nd0, |α| = m). As a result, one has

a(λt) = λma(t) (t ∈ Rd, λ ≥ 0).

1 The presence of the factors i|α| in (12.3) is motivated by our wish to obtain the formulae

(12.6) and (12.7) below, where Dα is an unscaled product of partial derivative operators.
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A homogenous polynomial of degree m ∈ N is called elliptic if −1 /∈ a(Rd)
and there is c > 0 such that

|a(t)| ≥ c |t|m for all t ∈ Rd; (12.4)

and it is called strongly elliptic if there is c > 0 such that even

Re a(t) ≥ c |t|m for all t ∈ Rd (12.5)

holds.

Lemma 12.3. Let a be a homogeneous and elliptic polynomial. Then a(t) = 0
if and only if t = 0. Moreover, a(Rd) ⊆ Sωa for some (minimal) ωa ∈ [0, π).
If the polynomial a is strongly elliptic, then ωa < π/2.

Proof. By (12.4), a(t) = 0 if and only if t = 0. Moreover, |a(t)| → ∞ if
|t| → ∞. Since a is continuous, a(Rd) is closed. By homogeneity, a(Rd) ⊆ Sωa
where ωa ∈ [0, π] is chosen minimally with this property. Since −1 /∈ a(Rd),
we have ωa < π. Finally, suppose that a is strongly elliptic. Then a(Rd) ∩
[ Re z ≤ 0 ] = {0} and hence ωa < π/2.

Examples 12.4. In dimension d = 1 the 1-homogeneous polynomial a = it
is elliptic with ωa = π/2. In any dimension, the 2-homogeneous polynomial

a = |t|2 =
∑d
j=1 t2

j is strongly elliptic with ωa = 0.

From now on, fix an elliptic homogeneous polynomial a as in (12.3) with
m ∈ N. We associate with a the differential operator

A :=
∑
|α|=m

aαDα. (12.6)

The reason for this is that

Af = F−1(a · f̂) (f ∈ S(Rd)), (12.7)

where S(Rd) is the Schwartz space2 (Theorem A.51). In order to find a “re-
alization” Ap of A on Lp(Rd) for 1 < p <∞, we shall first prove that a gives
rise to a bounded H∞-Fourier multiplier calculus.

The Calculus

We start with an auxiliary result.

Lemma 12.5. Let ω ∈ (0, π), n ∈ N and 0 < ϕ < ω. Then there is a constant
C ≥ 0 such that

2 If you do not know much about the Schwartz space, you can safely ignore this remark at

this point. It will be important only in Theorem 12.7 below.
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‖znf (n)(z)‖∞,Sϕ ≤ C‖f‖∞,Sω
for all f ∈ H∞(Sω).

Proof. By Cauchy’s integral formula there is a constant C ′ such that

znf (n)(z) = C ′
∫
∂Sδ

znf(w)

(w − z)n+1
dw

for all δ ∈ (ϕ, ω) and z ∈ Sϕ. Taking the modulus yields

∣∣znf (n)(z)
∣∣ ≤ C ′ ∫

∂Sδ

|z|n |f(w)|
|w − z|n+1 |dw| ≤ C

′‖f‖∞,Sδ
∫
∂Sδ

|z|n

|w − z|n+1 |dw|

≤ C ′ ‖f‖∞,Sω
∫
∂Sδ

|dw|
|w − (z/ |z|)|n+1 .

Hence, the claim holds with

C = C ′ sup
λ

∫
∂Sδ

|dw|
|w − λ|n+1 <∞,

where the supremum is taken over all λ ∈ Sϕ with |λ| = 1.

Lemma 12.5 is the key to proving that if f ∈ H∞(Sω) for ω > ωa then
f ◦ a is a Mikhlin function. More precisely, we have the following.

Lemma 12.6. Let a be a homogeneous and elliptic polynomial on Rd, and let
ωa ∈ (0, π) be defined as in Lemma 12.3. Let ω ∈ (ωa, π). Then composition
with the function a yields a bounded operator

H∞(Sω)→ Mi(Rd \ {0}), f 7→ f ◦ a.

Proof. Let a be homogeneous of degree m ∈ N. By Exercise 12.2 one can
write

Dα(f ◦ a) =

|α|∑
j=0

(f (j) ◦ a) pα,j

where pα,j = 0 if jm < |α| and pα,j is a homogeneous polynomial of degree
jm− |α| and there is a constant cα,j ≥ 0 such that

|pα,j(t)| ≤ cα,j |t|jm−|α| (t ∈ Rd)

if mj ≥ |α|. With the ellipticity (12.4) this yields the estimate
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|t||α| |Dα(f ◦ a)(t)| ≤
|α|∑
j=0

|t||α|
∣∣f (j)(a(t))

∣∣ |pα,j(t)|
≤
|α|∑
j=0

cα,j |t|jm
∣∣f (j)(a(t))

∣∣ ≤ |α|∑
j=0

cα,j
cj
|a(t)|j

∣∣f (j)(a(t))
∣∣ . ‖f‖∞,Sω ,

where in the last step we have applied Lemma 12.5.

We can now put together all the pieces. Fix 1 < p <∞ and the polynomial
a as before and define, for ω ∈ (ωa, π),

Φa : H∞(Sω)→ L(Lp(Rd)), Φa(f) = Tf◦a.

The mapping is well-defined and a bounded algebra representation by Lemma
12.6 and the Mikhlin multiplier Theorem 12.2.

The Operator

In the situation from before, for λ ∈ C \ Sω the function rλ := (λ − z)−1 is
in H∞(Sω) and hence

Rλ := Φa(rλ), λ ∈ C \ Sω

is a pseudo-resolvent on Lp(Rd).

Theorem 12.7. The so-constructed pseudo-resolvent (Rλ)λ is the resolvent
of a sectorial operator Ap of angle ωse(Ap) ≤ ωa with dense domain and range
in Lp(Rd). The Schwartz space S(Rd) is a core for Ap and

Apf =
∑
|α|=m

aαDαf (f ∈ S(Rd)).

The calculus Φa coincides with the sectorial calculus for Ap on H∞(Sω).

Proof. Fix α ∈ (ω, π). Then (cf. Remark 9.3)

sup
λ∈C\Sα

‖λrλ‖∞,Sω <∞.

The boundedness of the calculus Φa hence yields

sup
λ∈C\Sα

‖λRλ‖ <∞.

Next, observe that n(n + a)−1 → 1 pointwise on Rd as n → ∞. Since the
associated Fourier multiplier operators are uniformly bounded, part g) of
Theorem A.56 yields
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(−n)R−n = Tn(n+a)−1 → I weakly (12.8)

as n → ∞. It follows that the pseudo-resolvent (Rλ)λ consists of injective
operators, and hence is the resolvent of a unique closed operator Ap on Lp(Rd)
(Remark A.14). By what we have shown earlier, Ap is sectorial of angle
at most ω. As ω can be chosen as close to ωa as one likes, we find that
ωse(Ap) ≤ ωa.

The approximation (12.8) already shows that dom(Ap) is weakly dense, hence
strongly dense. (We could also have invoked Theorem 9.2.) With a similar
argument as before one can show that

n−1(n−1 +Ap)
−1 → 0 weakly

as n→∞. This implies that Ap has dense range.

Now let f ∈ S(Rd), λ ∈ C \ Sω and define g := (λ − A)f , where A is the
differential operator defined in (12.6). Then g ∈ S(Rd) as well and

R(λ,Ap)g = Φa(rλ)g = F−1((λ− a)−1ĝ) = F−1((λ− a)−1(λ− a)f̂) = f

by (12.7). Hence, f ∈ dom(Ap) and Apf = Af as claimed. Since S(Rd) is
dense in Lp(Rd) and invariant under the application of the resolvent of Ap,
it must be a core for Ap.

Finally, let us show that for f ∈ H∞(Sω) one has Φa(f) = f(Ap) where the
latter is defined in the sectorial calculus for Ap. By general theory, it suffices
to consider f ∈ E(Sω) here. By Lemma 9.4 we have

f ◦ a =
1

2πi

∫
∂Sδ

f(z)

z − a
dz (12.9)

(with an arbitrary δ ∈ (ωa, ω)), where initially this identity is to be under-
stood pointwise on Rd. However, if under the integral sign we pass to the
associated Fourier multiplier operators the right hand side of the identity
becomes

1

2πi

∫
∂Sδ

f(z)R(z,Ap) dz,

and this integral is convergent with respect to the operator norm. As the
correspondence of symbols m ∈ Mp(Rd) and operators Tm on Lp(Rd) is
isometric, we conclude that (12.9) can actually be interpreted as an identity
in Mp(Rd). This yields

Φa(f) = Tf◦a =
1

2πi

∫
∂Sδ

f(z)R(z,Ap) dz = f(Ap)

as desired.
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Supplementary Remarks 12.8. One can show that, actually, ωse(Ap) =
ωa and that dom(Ap) = Hm

p (Rd), the Bessel potential space of order m.

Our theory so far only deals with homogeneous polynomials. One can deal
with more general polynomials of the form p = a+b, where a is a homogeneous
elliptic polynomial of order m ∈ N and b is any polynomial of degree m−1.
On the operator level, one obtains as before the operator Ap associated with
a and an operator B defined as the closure of the operator x 7→ F−1(b · x̂)
on the Schwartz space. One can view B as a lower order perturbation of Ap
and prove that for some λ ≥ 0 the operator λ+ Ap + B is sectorial of angle
ωa and has a bounded H∞(Sω)-calculus for each ω ∈ (ωa, π). See, e.g., [2,
Section 5.5] or [3, Section 13].

Exercises

12.1. Let X be a Banach space and recall the definition

E(Rd;X) := {f ∈ L1(Rd;X) | f̂ ∈ L1(Rd;X)}.

Prove the following statements for f ∈ L1(Rd;X), µ ∈ M(Rd), m ∈ L∞(Rd)
and 1 ≤ p <∞:

a) F−1(µ̂ · f) = µ ∗ (F−1f).

b) If f ∈ E(Rd;X) then µ ∗ f ∈ E(Rd;X) and

Tm(µ ∗ f) = µ ∗ (Tmf). (12.10)

c) If m ∈MX
p (Rd) then (12.10) holds for all f ∈ Lp(Rd;X).

[Hint for a): Identity (5.11) and Exercise 5.10 plus a density argument.]

12.2. Let a : Rd → C be a homogeneous polynomial of degree m ∈ N. Prove
the following assertions:

a) There is C ≥ 0 such that |a(t)| ≤ C |t|m for all t ∈ Rd.
b) For each j = 1, . . . , d the function ∂ja is a homogeneous polynomial of

degree m− 1.

c) For each n ∈ N0 and each multi-index α ∈ Nd0 with |α| = n there are
polynomials pα,j , j = dn/me, . . . , n such that each pα,j is homogeneous
of degree jm− n ≥ 0 and

Dα(f ◦ a) =

n∑
j=dn/me

(f (j) ◦ a) pα,j on a−1(U)

wherever U ⊆ C is open and f ∈ Cn(U).

[Hint for c): Use b) and employ induction on n ∈ N0.]
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12.3. Let 1 < p < ∞ and Ap be the operator on Lp(R) associated (by the
results of Section 12.2) with the elliptic homogeneous polynomial a = it.
Show that −Ap is the generator of the right shift semigroup (τs)s≥0.

12.4. Let 1 < p < ∞ and let −iA be the generator of the right shift group
(τs)s∈R on Lp(R). Let ω > 0 and f ∈ Hol(Stω). The following refers to the
canonical extension of the Fourier–Stieltjes calculus for A.

a) Show that if x ∈ S(R) then x ∈ dom(f(A)) and f(A)x ∈ L1(R) with

f̂(A)x = f · x̂ on R.

b) Show that f(A) ∈ L(Lp(R)) if and only if m := f |R ∈Mp(R), in which
case f(A) = Tm.

c) Show that (τs)s∈R is the group of imaginary powers of some sectorial
operator B with ωse(B) = 0.

[Hint: Use the anchor element e := (i − z)−2 and observe that e(A) is an
isomorphism on S(R). For b) observe Remark A.55. For c) use b) and the
Mikhlin multiplier theorem to show that eA is sectorial of angle 0. The rest
follows from Remark 10.6.]

Remark: In the case p 6= 2 one can show that the operator A in Exercise 12.4
does not have a bounded H∞-calculus on any horizontal strip. So the operator
B = eA is sectorial and has BIP, but does not have a bounded H∞-calculus
on any sector.

Supplementary Exercises

12.5. Let −iA be the generator of the right shift group (τs)s∈R on X = L1(R).
Let ω > 0 and f ∈ Hol(Stω). The following refers to the canonical extension
of the Fourier–Stieltjes calculus for A.

a) Show that C2
c(R) ⊆ dom(f(A)).

b) Show that if x ∈ dom(f(A)) then

f̂(A)x = f · x̂ on R.

c) Suppose that f(A) ∈ L(L1(R)). Show that f |R ∈ FS(R).

[Hint: a) The function (i− z)−2 is an anchor element for f . b) Example 6.2.
c) Theorem 6.23.]

12.6. a) (Wiener’s Lemma) Let m = µ̂ for some µ ∈ M(R). Show that
both Cesàro-limits

lim
T→∞

1

T

∫ T

0

m(s) ds and lim
T→∞

1

T

∫ 0

−T
m(s) ds

exist and are equal to µ{0}. Conclude that if both limits lims→∞m(s)
and lims→−∞m(s) exist, these limits are the same.
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b) Show that the function 1
1+ex on R is not contained in FS(R).

c) Prove that the shift group (τs)s∈R on L1(R) is not the group of imaginary
powers of a sectorial operator.

[Hint for c): Use Exercise 12.5.c) and part b) of the present exercise to show
that eA is not a sectorial operator. The rest then follows from Remark 10.6.]
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Chapter 13

The Dore–Venni Theorem

13.1 A Transference Principle

Let −iA be the generator of a C0-group U = (Us)s∈R on a Banach space X
and 1 ≤ p <∞. For each N > 0 we shall construct a partial dilation of U
on the interval [−N,N ] to the shift group (τs)s∈R on Lp(R;X). By this we
mean a pair (J, P ) of bounded operators

J : X → Lp(R;X) and P : Lp(R;X)→ X

such that the diagram

Lp(R;X)
τs // Lp(R;X)

P

��
X

J

OO

Us // X

is commutative for all s ∈ [−N,N ]. The idea for this dilation comes from the
observation that the left-hand side of the identity

Usx = UtUs−tx

does not depend on t ∈ R and hence one has

Usx =
1

2K

∫ K

−K
UtUs−txdt

for each K > 0 and s ∈ R. Defining

P : Lp(R;X)→ X, Pf :=
1

2K

∫ K

−K
Utf(t) dt

219
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and Jx := U−tx one formally obtains

Us = P τs J (s ∈ R).

However, for x 6= 0 the (reflected) group orbit Jx is not contained in Lp(R;X).
To remedy this, we restrict the range of t to the interval [−N,N ] and define

J : X → Lp(R;X), Jx := 1[ |t|≤K+N ]U−tx.

With these choices, the pair (J, P ) does what we have promised.

As a consequence, for each µ ∈ M[−N,N ] we obtain the commutative
diagram

Lp(R;X)
τµ // Lp(R;X)

P

��
X

J

OO

Uµ // X

and hence the estimate

‖Uµ‖ ≤ ‖J‖‖P‖ ‖τµ‖L(Lp(R;X)),

which with f := µ̂ can be equivalently written as

‖f(A)‖ ≤ ‖J‖‖P‖ ‖f‖MX
p
.

This inequality allows to “transfer” an estimate for the Fourier multiplier
norm of f to an estimate for the norm of f(A), hence the name transference
principle.

Theorem 13.1. Let −iA be the generator of a C0-group (Us)s∈R on a Banach
space X. Define

w(t) := sup
0≤|s|≤t

‖Us‖ (t ≥ 0).

Then the following assertions hold:

a) For each 1 ≤ p < ∞ and N > 0 there is a constant C = C(p,N,w)
such that ∥∥f(A)

∥∥ ≤ C ‖f‖MX
p

for all f = µ̂, µ ∈ M(R), supp(µ) ⊆ [−N,N ].

b) If U is a bounded group, then with M := sups∈R ‖Us‖,∥∥f(A)
∥∥ ≤M2‖f‖MX

p

for all f = µ̂, µ ∈ M(R) and 1 ≤ p <∞.

Proof. a) For the partial dilation (J, P ) constructed above we easily find

‖J‖ ≤ w(K + N) ·
(
2(K+N)

) 1
p and ‖P‖ ≤ w(K) · (2K)

−1
p . This yields the
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claim of a) with

C(p,N,w) := inf
K>0

w(K+N) w(K)
(

1 +
N

K

) 1
p

. (13.1)

b) If ‖Us‖ ≤M for all s ∈ R then for the constant from a) we obtain

C ≤ inf
K>0

M2
(

1 +
N

K

) 1
p

= M2.

Hence, in this case the dependence on N > 0 has vanished and since Mc(R)
is dense in M(R), the claim of b) follows.

Remark 13.2. Part b) of Theorem 13.1 is the special case G = R of a result
by Berkson–Gillespie-Muhly [3] for general locally compact amenable groups
G. That theorem, in turn, is the vector-valued version of its scalar analogue
due to Coifman and Weiss from [6]. Our proof is the original one, suitably
adapted.

Lemma 13.3. Let 1 ≤ p <∞ and let the Banach space X 6= {0} be a closed
subspace of a space Lp(Ω) for some measure space Ω. Then

‖µ̂‖Mp
= ‖µ̂‖MX

p
.

for each µ ∈ M(Rd).

Proof. The implication ‖µ̂‖Mp ≤ ‖µ̂‖MX
p

is Theorem A.56.b) and holds
for any Banach space X. For the converse, note that one has an isometric
isomorphism

ι : Lp(Rd; Lp(Ω))→ Lp(Ω; Lp(Rd))

that commutes with the translation group and hence with the convolution
operator τµ. By this it is meant that

ιτµf = τµ ◦ (ιf)
(
f ∈ Lp(Rd; Lp(Ω))

)
.

Since ι is isometric, it easily follows that

‖τµf‖Lp(Rd;X) ≤ ‖µ̂‖Mp ‖f‖Lp(Rd;X)

for each f ∈ Lp(Rd;X), i.e., the claim.

Remark 13.4. With more effort one can even show MX
p (Rd) = Mp(Rd)

isometrically if X is a closed subspace of an Lp-space, but we shall not need
this in the following.



222 13 The Dore–Venni Theorem

13.2 The Hilbert Transform and UMD Spaces

One of the simplest non-trivial candidates for an Lp(R;X)-Fourier multiplier
is the function

h := −i sgn t.

Since h′ = 0 on R \ {0}, h is a Mikhlin function on R \ {0}, and hence, by
the Mikhlin multiplier theorem, H := Th is a bounded operator on Lp(R) for
1 < p <∞. It is called the Hilbert transform1.

A Banach space X is called an HTp space if h ∈MX
p (R). In this case,

CHTp(X) := ‖h‖MX
p

is called theHTp-constant of X. Recall that, unless X = {0}, any L1-Fourier
multiplier is the Fourier transform of a measure and hence continuous. So
X 6= {0} can be an HTp space only if 1 < p <∞. Define

hε,T := F
(1[ ε≤|s|≤T ]

π s

)
=

2

πi

∫ T

ε

sin(st)

s
ds (0 < ε ≤ T <∞).

The following is an important characterization of the HTp-property. (We
use the convention that a Fourier multiplier norm ‖m‖MX

p
equals +∞ if

m /∈MX
p (R).)

Theorem 13.5. There is a constant C ≥ 1 such that for every Banach space
X and every 1 < p <∞

‖h‖MX
p
≤ sup

0<ε≤1
‖hε,1‖MX

p
= sup

0<ε≤T<∞
‖hε,T ‖MX

p
≤ C ‖h‖MX

p
.

In particular, the following assertions are equivalent:

(i) X is an HTp space;

(ii) sup0<ε≤1 ‖hε,1‖MX
p
<∞;

(iii) sup0<ε≤T<∞ ‖hε,T ‖MX
p
<∞.

Proof. Trivially, the inequality sup0<ε≤1 ‖hε,1‖MX
p
≤ sup0<ε≤T<∞ ‖hε,T ‖MX

p

holds. For the converse inequality, note that

hε,T =
2

πi

∫ T

ε

sin(ts)

s
ds =

2

πi

∫ 1

ε/T

sin(tTs)

s
ds = h ε

T ,1
(T t).

Hence, ‖hε,T ‖MX
p

= ‖h ε
T ,1
‖MX

p
by Theorem A.56.h) (with A being multipli-

cation by T ).

1 Actually, the boundedness of the Hilbert transform is one of the “first” results in the

theory of singular integrals and multipliers, and does not need the full force of the Mikhlin

multiplier theorem. See [9, Thm.4.1.7].
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Define mn := h 1
n ,n

. Then, by the well-known Dirichlet integral (see (A.25)

in Appendix A.11) ∫ ∞
0

sin s

s
ds =

π

2
,

mn → h pointwise on R \ {0}. Hence h ∈MX
p (R) and

π‖h‖MX
p
≤ sup

n
‖mn‖MX

p

by Theorem A.56.g).

For the final inequality we write

πi

2
hε,T =

∫ T

ε

sin(ts)

s
ds = sgn(t)

∫ T

ε

sin(|t| s)
s

ds = sgn(t)
(
f(εt)− f(T t)

)
where

f(t) :=

∫ ∞
|t|

sin s

s
ds (t ∈ R).

By Exercise 13.3, f ∈ F(L1(R)) ⊆ FS(R). It follows that the functions f(εt)−
f(T t), 0 < ε ≤ T <∞, are uniformly bounded in MX

p (R), by 2‖f‖FS. Since

MX
p (R) is a Banach algebra (Theorem 12.1, Theorem A.56.f)), we obtain

sup
0<ε≤T<∞

‖hε,T ‖MX
p
≤
(

4/π‖f‖FS

)
‖h‖MX

p

as claimed.

Corollary 13.6. Let 1 < p <∞.

a) Each Hilbert space is an HT2 space.

b) Each closed subspace of an HTp space is an HTp space.

c) Lp(Ω) is an HTp space for any measure space Ω. More generally, if X
is an HTp space, then so is Lp(Ω;X).

Proof. The first part of c) follows from Lemma 13.3. For the second part
one needs a vector-valued version of Lemma 13.3, but we skip the proof.

Remark 13.7. It follows from a result of Benedek, Calderón and Panzone
from [2] that if a Banach space X is an HTp space for one p ∈ (1,∞) then
it is an HTp space for all p ∈ (1,∞). Hence, one can drop the reference to p
and call them simply HT spaces.

By results of Burkholder [5] and Bourgain [4] the class of HT spaces
coincides with the class of the so-called UMD spaces. These are defined
via the requirement that certain vector-valued martingale differences are
unconditional in Lp. We do not need this description and hence refer to [12]
for a thorough treatment. However, we shall adopt the name “UMD spaces”
in the following.

One can show that UMD spaces are reflexive, see [12, Thm.4.3.3].
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13.3 Singular Integrals for Groups and Monniaux’s
Theorem

We now combine the transference principle and Theorem 13.5.

Theorem 13.8. Let −iA be the generator of a C0-group U = (Us)s∈R on a
UMD space X. Then the following assertions hold:

a) The principle value integral

HU1 x :=
1

π
p.v.

∫ 1

−1

Usx

s
ds := lim

ε↘0

1

π

∫
ε≤|s|≤1

Usx

s
ds (13.2)

converges for all x ∈ X.

b) If U is bounded and A is injective, the principle value integral

HUx :=
1

π
p.v.

∫ ∞
−∞

Usx

s
ds := lim

ε↓0,T↑∞

1

π

∫
ε≤|s|≤T

Usx

s
ds (13.3)

converges for all x ∈ X.

Proof. a) Note that, for any x ∈ X and 0 < ε ≤ 1,∫
ε≤|s|≤1

Usx

s
ds =

∫
ε≤|s|≤1

Usx− x
s

ds.

This shows that the principle value integral (13.2) exists for all x ∈ dom(A).
Since dom(A) is dense, it suffices to show that the family of operators

Sε :=

∫
ε≤|s|≤1

Us
s

ds (0 < ε ≤ 1)

is uniformly bounded. Since X is an HTp space for any 1 < p <∞, Theorem
13.5 together with the transference principle (Theorem 13.1) yields the claim.

b) As before, the principal value integral (13.2) converges as ε ↘ 0 for x ∈
dom(A). If x = (−iA)y ∈ ran(A), however, integration by parts yields∫

1≤|s|≤T

Usx

s
ds =

∫
1≤|s|≤T

Us(−iAy)

s
ds

=
UT y + U−T y

T
− (U1y + U−1y) +

∫
1≤|s|≤T

Usy

s2
ds

and this converges as T ↗ ∞. Hence, the principal value integral (13.3)
converges for x ∈ dom(A) ∩ ran(A).

By Remark 13.7, X is reflexive. Since −iA is a densely defined injective
sectorial operator on X, dom(A) ∩ ran(A) is dense in X. Hence, as before it
suffices to show that the family of operators
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Sε,T :=

∫
ε≤|s|≤T

Us
s

ds (0 < ε ≤ T <∞)

is uniformly bounded. Again, Theorem 13.5 combined with the transference
principle (Theorem 13.1) yields the claim.

Remark 13.9. The proof of Theorem 13.8 actually yields more than what is
stated in the theorem. Indeed, a re-examination of the proof and employing
(13.1) yields

‖HU1 ‖L(X) ≤ C 2
1
p
(

sup
|s|≤2

‖Us‖
)2
CHTp(X)

for the (universal) constant C from Theorem 13.5. A similar remark is valid
for the norm of HU in case of a bounded group.

Monniaux’s Theorem

Theorem 13.8 can be reformulated in functional calculus terms. Namely, for
scalars z ∈ C we have

h0,1(z) :=
1

π
p.v.

∫ 1

−1

e−isz

s
ds =

2

πi

∫ 1

0

sin zs

s
ds.

By Exercise 13.4, h0,1 ∈ H∞(Stω) for each ω > 0 satisfying

lim
|Im z|≤ω,Re z→±∞

h0,1(z) = ∓i.

Moreover,

h0,1(z) =
2

πi

∫ z

0

sin s

s
ds,

where the right hand side is to be understood as a complex line integral
over the straight line segment from 0 to z. In other words, h0,1 is the unique
primitive of the function 2 sin z/πiz which vanishes at z = 0.

So, part a) of Theorem 13.8 essentially says that h0,1(A) ∈ L(X) whenever
−iA generates a C0-group on a UMD space.

Theorem 13.10 (Monniaux [14]). Let −iA be the generator of a C0-group
(Us)s∈R on a UMD space X with θ(U) < π. Then eA is a sectorial operator.
In particular, A is the logarithm of a sectorial operator.

Proof. By Remark 10.6, the second assertion follows from the first. The first,
in turn, amounts to proving that( t

t+ ez

)
(A), t > 0

is a bounded family of bounded operators. To achieve this, we make use of
the representation
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t

t+ ez
=

1

2
+

1

2i
p.v.

∫
R
tise−isz ds

sinh(πs)
(13.4)

which holds for all z ∈ Stπ and t > 0. (Actually, by replacing z by z + log t
we see that it suffices to establish the formula for t = 1. A proof is left as
Exercise 13.9.)

Observe that the integral (13.4) is singular only at 0 since |Im z| < π. Taking
(13.4) for granted, we can write

(2i)
t

t+ ez
= i +

∫
|s|≥1

tise−isz ds

sinh(πs)
+

∫ 1

−1

tise−isz
( 1

sinh(πs)
− 1

πs

)
ds

+
1

π
p.v.

∫ 1

−1

tise−isz

s
ds

=
(
µ̂+ h0,1

)
(z − log t)

for some µ ∈ Mω(R). By Theorem 13.8, inserting A we find that t(t+eA)−1 is
a bounded operator. Since for t > 0 all the groups tisUs have the same growth
behaviour, it follows from Remark 13.9 that supt>0 ‖t(t+ eA)−1‖ <∞.

13.4 The Maximal Regularity Problem

Let A be a densely defined sectorial operator of angle ωse(A) < π/2 on a
Banach space X. (For example, A could be a strongly elliptic operator on
X = Lp(Rd) as treated in Chapter 12.) As such, −A generates a bounded
holomorphic C0-semigroup T = (Tt)t≥0 on X (Chapter 9).

Given an initial value x ∈ X, the trajectory u(t) := Ttx is a so-called
“mild” solution to the homogeneous Cauchy problem{

u′(t) +Au(t) = 0 (t > 0),

u(0) = x.

For example, if A = −∆ on Lp(Rd) then (Tt)t≥0 is the heat semigroup and
u solves the homogeneous parabolic equation

d

dt
u = ∆u.

Using the semigroup T one can also construct “mild” solutions to the (finite
time) inhomogeneous Cauchy problem{

u′(t) +Au(t) = f(t) (0 < t < 1),

u(0) = x,
(13.5)
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where f ∈ L1((0, 1);X), namely

u(t) = Ttx+

∫ t

0

Tt−sf(s) ds (0 ≤ t ≤ 1).

In the following we shall restrict ourselves to the case x = 0, which amounts
to

u(t) = (Sf)(t) :=

∫ t

0

Tt−sf(s) ds (0 ≤ t ≤ 1). (13.6)

(See Exercise 13.5 for a proof that u is a “mild” solution of (13.5) with x = 0.)

Given p ∈ (1,∞) one says that A has maximal Lp-regularity if the
solution u = Sf given by (13.6) satisfies

f ∈ Lp((0, 1);X) ⇒ u′, Au ∈ Lp((0, 1);X). (13.7)

Here, Au ∈ Lp((0, 1);X) means that u ∈ Lp((0, 1); dom(A)) and u′ ∈
Lp((0, 1);X) means that there is v ∈ Lp((0, 1);X) with

u(t) =

∫ t

0

v(s) ds (0 ≤ t ≤ 1).

The terminology stems from the fact that both summands on the left-hand
side of the equation

u′ +Au = f

should have the maximal “amount of regularity” that one can reasonably
expect, given that the right-hand side f is in Lp.

The maximal regularity problem consists in deciding whether a given
operator has maximal Lp-regularity or not. One can show that if A has max-
imal Lp-regularity for one 1 < p < ∞, then this is true for all such p. As
a result, one often drops the reference to p and only speaks of “maximal
regularity”.

Remark 13.11. One may wonder why we have confined ourselves to genera-
tors of holomorphic semigroups. Indeed, all the notions and definitions so far
are meaningful for general C0-semigroups. However, Dore has shown in [7]
that the holomorphy of the semigroup is necessary for maximal Lp-regularity.

Operator-Theoretic Reformulation

In the following we briefly sketch how the maximal regularity problem can be
reformulated in purely operator-theoretic terms. To this aim we fix p ∈ (1,∞)
and pass to the new Banach space

Xp := Lp((0, 1);X).
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On Xp we consider the operator A given by

dom(A) := Lp((0, 1); dom(A)), (Au)(t) := A(u(t)) (t ∈ (0, 1)).

It is easy to see that A inherits from A many of its properties (Exercise 13.6).
For example, A is a densely defined sectorial operator of angle ωse(A) =
ωse(A).

We also consider the operator B := V −1, where V is the Volterra operator
on X defined by

(V u)(t) :=

∫ t

0

u(s) ds (0 ≤ t ≤ 1).

As in the scalar case (Exercise 6.6) one can prove that −B is the generator
of the right shift semigroup (τs)s≥0. As such, B is a densely defined and
invertible sectorial operator of angle π/2. Its domain is

dom(B) = ran(V ) = {u ∈W1,p((0, 1);X) | u(0) = 0},

but we shall not need the second identity.

Using the operators A and B on X , one can reformulate the maximal
regularity property of A as follows.

Lemma 13.12. Let A be a sectorial operator of angle ωse(A) < π/2 on a
Banach space X, and let the operators A and B on Xp = Lp((0, 1);X) be
defined as above. Then the following assertions are equivalent:

(i) A has maximal Lp-regularity;

(ii) There is a constant K ≥ 0 such that

‖Au‖Xp + ‖Bu‖Xp ≤ K‖Au+ Bu‖Xp

for all u ∈ dom(A) ∩ dom(B);

(iii) The operator A+ B defined on dom(A) ∩ dom(B) is closed.

Proof. By definition of A and B, (i) is equivalent to the assertion: For each
f ∈ Xp one has Sf ∈ dom(A)∩dom(B). Recall that, since A and B are closed
operators, dom(A) ∩ dom(B) is a Banach space with respect to the norm

|||u ||| := ‖u‖Xp + ‖Au‖Xp + ‖Bu‖Xp .

(ii)⇒ (i): It follows from (ii) that

|||u ||| ≤ ‖u‖Xp +K‖Au+ Bu‖Xp ≤ (K + 1)(‖Au+ Bu‖Xp + ‖u‖Xp)

for all u ∈ dom(A)∩dom(B). Now, given f ∈ C([0, 1]; dom(A)), let u := Sf be
defined by (13.6). Then u ∈ C1([0, 1];X)∩C([0, 1]; dom(A)) and Au+u′ = f
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(Exercise 13.5). Since u(0) = 0, we have even u ∈ dom(A) ∩ dom(B), and
therefore we can write f = Au+ Bu. That implies

|||Sf ||| ≤ K ′(‖f‖Xp + ‖Sf‖Xp) . ‖f‖Xp .

Since the space C([0, 1]; dom(A)) is dense in Xp, we conclude that S maps
Xp into dom(A) ∩ dom(B), which is equivalent to (i).

(i)⇒ (ii): (We only give a sketch here.) Suppose that (i) holds, i.e., S maps
Xp into dom(A) ∩ dom(B). By an application of the closed graph theorem,
there is a constant K ≥ 0 such that

|||Sf ||| ≤ K‖f‖Xp

for all f ∈ Xp. Now let u ∈ dom(A) ∩ dom(B) and define f := Au+ Bu. By
the uniqueness of the mild solutions of the inhomogeneous Cauchy problem
(13.5) (see [10, Sec.9.3.1] or [1, Prop.3.1.16]), u = Sf , and hence

‖Au‖Xp + ‖Bu‖Xp ≤ K‖f‖Xp = K‖Au+ Bu‖Xp

as claimed.

The proof of the equivalence (i),(ii)⇐⇒ (iii) is Exercise 13.7.

Lemma 13.12 is the key equivalence for many classical results on maximal
regularity. In particular, it is fundamental for the following result from [8].

Theorem 13.13 (Dore–Venni). Let A be an injective sectorial operator on
a UMD Banach space X. Suppose that A has BIP with θA < π/2. Then A has
maximal Lp-regularity for all p ∈ (1,∞).

Here, we denote by θA the group type of the group (Ais)s∈R, i.e.,

θA := inf{ω ≥ 0 | sup
s∈R

e−ω|s|‖Ais‖ <∞}.

Recall from Remark 13.7 that each UMD space is reflexive, and hence A is
densely defined and has dense range by Theorem 9.2.

Remark 13.14. The Dore–Venni theorem was, at the time, a landmark re-
sult in the study of maximal regularity. It was superseded, in a certain sense,
by results of Kalton and Weis from [13] and by Weis’ characterization of the
maximal regularity property from [15]. However, these papers use even more
involved notions and techniques, whereas the Dore–Venni theorem is now in
our reach. This is the reason why we present it here.
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13.5 The Dore–Venni Theorem

The proof of Theorem 13.13 aims at verifying condition (ii) from Lemma
13.12. It rests on a more abstract result (Theorem 13.15 below) and a deep
result from harmonic analysis on UMD spaces. Let us start with collecting
some important properties of the involved operators A and B and the space
Xp.

First of all, the operators A and B are resolvent commuting, by which
it is meant that

R(λ,A)R(µ,B) = R(µ,B)R(λ,A)

for one/all (λ, µ) ∈ ρ(A) × ρ(B), cf. Corollary A.19. Next, by Exercise 13.6,
A has pretty much the same functional calculus properties as A does. In
particular, A has BIP and θA < π/2.

On the other hand, B is an invertible and densely defined sectorial operator
of angle π/2. Its functional calculus properties depend on how good the space
X is. Now, it turns out that if X is a UMD space, then B has BIP and
θB = π/2. This is actually a deep result in vector-valued harmonic analysis
which we cannot prove here in detail. (We have tried to give more insight
into the matter in the supplementary Section 13.6 below. See in particular
Corollary 13.19.)

Finally, by Corollary 13.6 and Remark 13.7, Xp is a UMD space since
X is one. So, we have shown that A and B satisfy all the hypotheses of the
following “abstract Dore–Venni theorem”, which implies (ii) of Lemma 13.12.
This concludes the proof of Theorem 13.13.

Theorem 13.15 (Dore–Venni). Let A and B be two resolvent commuting
sectorial operators with dense domain and range on a UMD Banach space
X. Suppose that both A and B have BIP with θA + θB < π. Then there is a
constant K ≥ 0 such that

‖Ax‖+ ‖Bx‖ ≤ K‖Ax+Bx‖ (x ∈ dom(A) ∩ dom(B)). (13.8)

Proof. Let us abbreviate Al := logA and Bl := − logB. Then −iAl and iBl
generate the C0-groups (A−is)s∈R and (Bis)s∈R, respectively. Since A and B
are resolvent commuting, one has f(A)g(B) = g(B)f(A) for all elementary
functions f, g such that f(A) and g(B) are defined. Consequently, the groups
of imaginary powers of A and B commute. We thus obtain a new C0-group
U by defining

Us := A−isBis (s ∈ R).

Its generator is denoted by −iCl.

Clearly, θ(U) ≤ θA+θB < π, hence by Monniaux’s theorem (Theorem 13.10)
the operator C := eCl is sectorial. In particular, 1 + C is invertible, which is
why there is K ′ ≥ 0 such that
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‖x‖ ≤ K ′‖(1 + C)x‖ (x ∈ dom(C)). (13.9)

Suppose that we can establish the inclusion

AB−1 ⊆ C. (13.10)

Then, given x ∈ dom(A) ∩ dom(B) one has Bx ∈ dom(AB−1), and hence
Bx ∈ dom(C) with CBx = Ax; so (13.9) yields

‖Bx‖ ≤ K ′‖(1 + C)Bx‖ = K ′‖Ax+Bx‖.

It follows that

‖Ax‖+ ‖Bx‖ ≤ ‖Ax+Bx‖+ 2‖Bx‖ ≤ (1 + 2K ′)‖Ax+Bx‖,

and this is (13.8) with K = 2K ′ + 1.

Therefore, it remains to prove (13.10) . To this end, consider the unbounded
2-parameter group

V (s) := A−is1Bis2 (s = (s1, s2) ∈ R2)

and the associated Fourier–Stieltjes calculus given by

ΨV (f) :=

∫
R2

V (s)µ(ds),

where f = µ̂ and µ ∈ M(R2) is such that∫
R2

‖V (s)‖ |µ| (ds) <∞.

Note that f = f(z1, z2) is a function of two variables. The calculi for Al and
Bl are incorporated into this calculus via the formulae

f(Al) = ΨV (f(z1)) = ΨV (f ⊗ 1) and g(Bl) = ΨV (g(z2) = ΨV (1⊗ g).

But the calculus for Cl is incorporated as well, namely via

f(Cl) = ΨV (f(z1 + z2))

(Exercise 13.8). It follows that

AB−1 = eAleBl = ΨV (ez1)ΨV (ez2) ⊆ ΨV (ez1ez2) = ΨV (ez1+z2) = eCl = C

by general functional calculus rules. This concludes the proof.
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13.6 Supplement: The Derivative as a Sectorial
Operator

Fix a Banach space X and 1 < p < ∞ and let −A be the generator of the
right shift group on Lp(R;X). We alternatively write A = d

ds because—as
in Exercise 6.5 for scalar functions—one can show that A is the closure in
Lp(R;X) of the operator d

ds defined on C∞c (R;X). As the right shift group
is bounded, A is sectorial of angle π/2. By Exercise 13.10, A has dense range.

Lemma 13.16. Let 1 < p < ∞ and A = d
ds on Lp(R;X), X some Banach

space. Then for ω ∈ (π/2, π) and f ∈ H∞(Sω) the following statements are
equivalent:

(i) f(A) ∈ L(Lp(R;X));

(ii) f(it) ∈MX
p (R).

In this case,
f(A) = Tf(it) (13.11)

is the Fourier multiplier with symbol f(it).

Proof. The identity (13.11) is clear if f = Lµ for some µ ∈ M(R+), by (6.7)
and the definition of the Hille–Phillips calculus. Suppose that f ∈ H∞(Sω)
such that f(it) ∈MX

p (R) and let e = z(1+z)−2 be the usual anchor element.
Then e, ef ∈ E(Sω). By Remark 9.8 and what we have just seen,

(ef)(A) = T(ef)(it) = Te(it)Tf(it) = e(A)Tf(it).

(We have used Theorem 12.1.) It follows that f(A) = Tf(it) and hence that
f(A) is a bounded operator.

The proof of the remaining implication is skipped since we shall not use it in
the following.

We shall need the following one-dimensional version of the Mikhlin multi-
plier theorem for X-valued functions, due to Zimmermann [16].

Theorem 13.17 (Mikhlin, vector-valued). Let X be a UMD space. Then
for each p ∈ (1,∞) the space Mi(R\{0}) of Mikhlin functions embeds contin-
uously into MX

p (R). In other words: for each 1 < p <∞ there is a constant

Cp such that each Mikhlin function m ∈ Mi(Rd \ {0}) is an Lp(X)-multiplier
with

‖m‖MX
p
≤ Cp ‖m‖Mi.

As in the scalar case, we take this theorem for granted. Its proof, or rather
a proof of a much more general result, can be found in [12, Section 5.3.c].

Theorem 13.18. Let, as before, 1 < p < ∞ and A = d
ds on Lp(R;X), X

some Banach space. Then the following assertions are equivalent:
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(i) X is a UMD space;

(ii) A has BIP;

(iii) A has a bounded H∞(Sω)-calculus for one/all ω ∈ (π/2, π).

In this case, there is a constant C such that

‖Ais‖ ≤ C(1 + |s|)e π

2 |s| (s ∈ R). (13.12)

Proof. (i)⇒ (iii): Let ω ∈ (π/2, π) and f ∈ H∞(Sω). Then by Lemma 12.5,
f(it) is a Mikhlin function on R \ {0}, and hence by Theorem 13.17, f(it) ∈
MX

p (R). By Lemma 13.16, f(A) ∈ L(X). Moreover, by going through the
arguments again we see that

‖f(A)‖ = ‖f(it)‖MX
p
. ‖f(it)‖Mi . ‖f‖∞,Sω .

Fix s ∈ R and specialize f = zis. Then f(it) = eis log(it). A simple estimation
yields ‖f(it)‖∞ = e

π

2 |s| and

‖tf ′(it)‖∞ = |s| e π

2 |s|.

This establishes the inequality (13.12).

(iii)⇒ (ii): This follows from Theorem 10.7 since A has dense domain and
range.

(ii)⇒ (i): By (the unproven implication in) Lemma 13.16, the hypothesis (ii)
implies that (it)is ∈MX

p (R) for all s ∈ R. SinceMX
p (R) is reflection invariant

and an algebra (Theorem A.56, parts h) and f)), also the function

eπ sgn t = (−it)−is(it)is

is in MX
p (R). But then also

−i sgn t = −i
eπ sgn t − e−π sgn t

eπ − e−π

is in MX
p (R), which means that X is an HTp space, viz. a UMD space.

The results for the derivative on the line can be transferred to an interval.

Corollary 13.19. Let 1 < p <∞ and A1 = d
ds on Lp((0, 1);X), where X is

a UMD space. Then A1 has a bounded H∞(Sω)-calculus for each ω ∈ (π/2, π).
Moreover, there is a constant C ≥ 0 such that

‖Ais
1 ‖ ≤ C(1 + |s|)e π

2 |s| (s ∈ R). (13.13)

Proof. Let A = d
ds on Lp(R;X). Fix ω ∈ (π/2, π) and f ∈ H∞(Sω). Then, by

Theorem 13.18, f(A) is a bounded operator.
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We claim that Y := Lp(R+;X), considered as a closed subspace of Lp(R;X),
is invariant under f(A). This is clear for f = Lµ for some µ ∈ M(R+) since
Y is invariant under τs for each s ≥ 0. In particular (Remark 9.8), Y is
invariant under e(A) for each e ∈ E(Sω). But as in the proof of Theorem 11.1
one can find a sequence (en)n in E(Sω) which approximates f in such a way
that en(A)→ f(A) strongly. Hence, Y is invariant under f(A) as claimed.

Now we let P : Lp(R;X)→ Lp((0, 1);X) be the restriction operator, defined
by Px := x|(0,1) and J : Lp((0, 1);X)→ Lp(R;X) the operator defined by

Jx =

{
x on (0, 1),

0 on R \ (0, 1).

Then τsP = Pτs on Y . It follows that e(A1)P = Pe(A) on Y for each
e ∈ LS(C+), in particular for each e ∈ E(Sω). Taking into account that Y is
invariant under f(A) we obtain

(ef)(A1)P = P (ef)(A) = Pe(A)f(A) = e(A1)Pf(A) on Y .

Multiplying from the right with J then yields

(ef)(A1) = e(A1)Pf(A)J.

But e can be any anchor element for f , so it follows that f(A1) is bounded
and f(A1) = Pf(A)J . Now all claims follow from Theorem 13.18.

Exercises

13.1. A function m : Rd \ {0} → C is called positively homogeneous of
order γ ∈ R if

m(λx) = λγm(x)

for all λ > 0. Prove the following assertions:

a) Let k ∈ N, let m ∈ Ck(Rd \ {0}) be positively homogeneous of order
γ ∈ R and α ∈ Nd0 with |α| ≤ k. Then Dαm is positively homogeneous
of order γ − |α|.

b) Let m ∈ Ckd(Rd \ {0}) be positively homogeneous of order γ = 0. Then
m ∈ Mi(Rd \ {0}).

13.2 (Carlson–Beurling Inequality). Let f ∈ C0(R) be differentiable on
R \ {0} and such that f, f ′ ∈ L2(R). Show that Ff ∈ L1(R) and

‖Ff‖1 ≤ 2π
√
‖f‖2 ‖f ′‖2.

Conclude that f is the Fourier transform of an L1-function.
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[Hint: Show first that Ff = (it)−1Ff ′ on R \ {0}. Then take a, b > 0 and
apply Cauchy–Schwarz and Plancherel to the integral

‖Ff‖1 =

∫
R

√
a2 + b2t2√
a2 + b2t2

|Ff(t)| dt.

Finally, optimize with respect to a and b (cf. [11, Thm.E.5])].

13.3. Show that the function

f(t) :=

∫ ∞
|t|

sin s

s
ds (t ∈ R)

is the Fourier transform of an L1-function.
[Hint: Use integration by parts to show that f(t) = O(|t|−1

) as |t| → ∞.
Then employ Exercise 13.2.]

13.4. For z ∈ C let

h0,1(z) :=
1

π
p.v.

∫ 1

−1

e−isz

s
ds.

Show that

h0,1(z) =
2

πi

∫ 1

0

sin zs

s
ds =

2

πi

∫ z

0

sin s

s
ds,

where the right hand side is to be understood as a complex line integral over
the straight line segment from 0 to z. Furthermore, show that h0,1 ∈ H∞(Stω)
for each ω > 0 with

lim
|Im z|≤ω,Re z→±∞

h0,1(z) = ∓i.

13.5. Let −A be the generator of a bounded C0-semigroup (Tt)t≥0 on a
Banach space X. For f ∈ L1((0, 1);X) define

u(t) := (Sf)(t) :=

∫ t

0

Tt−sf(s) ds (0 ≤ t ≤ 1).

Prove the following assertions:

a) S is a well-defined bounded operator S : L1((0, 1);X)→ C([0, 1];X).

b) For each t ∈ [0, 1]:∫ t

0

u(r) dr ∈ dom(A) and −A
∫ t

0

u(r) dr = u(t)−
∫ t

0

f(s) ds.

(This means by definition that u is a mild solution to (13.5) with
x = 0.)

c) If f ∈ C([0, 1]; dom(A)) then Sf ∈ C([0, 1]; dom(A))∩C1([0, 1];X) with
u′ +Au = f .
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d) Let 1 < p <∞ and suppose that there is a constant K ≥ 0 such that

‖ASf‖Lp((0,1);X) ≤ K‖f‖Lp((0,1);X)

(
f ∈ C([0, 1]; dom(A))

)
.

Then A has maximal Lp-regularity.

13.6. Let A be a closed operator on a Banach space X, let Ω be a measure
space and let, for 1 ≤ p <∞, Xp := Lp(Ω;X). Define A on Xp by

dom(A) := Lp(Ω; dom(A)), Au := A ◦ u.

(Here, dom(A) has to be viewed as a Banach space with respect to the graph
norm.) Prove the following assertions:

a) If A is densely defined/injective, then so is A.

b) If ran(A) is dense in X, then ran(A) is dense in Xp.
c) ρ(A) ⊆ ρ(A) with

R(λ,A)u = R(λ,A) ◦ u (u ∈ Xp)

and ‖R(λ,A)‖ ≤ ‖R(λ,A)‖.
d) If A is sectorial then so is A, with ωse(A) ≤ ωse(A).

e) Suppose that A is sectorial, ω ∈ (ωse(A), π), and f ∈ H∞(Sω) is
such that f(A) is defined and bounded. Then also f(A) is defined and
bounded and

f(A)u = f(A) ◦ u (u ∈ Xp).

In particular ‖f(A)‖ ≤ ‖f(A)‖.
f) If A is sectorial and has BIP or a bounded H∞(Sω) calculus, then so

does A.

13.7. Let A be a densely defined sectorial operator of angle ωse(A) < π/2 and
let 1 < p <∞. Let the space Xp and the operators A and B be defined as in
Section 13.4. Show that the following assertions are equivalent:

(i) A has maximal Lp-regularity;

(ii) The operator A+ B with domain dom(A) ∩ dom(B) is closed.

Show further that, in this case, A+ B is invertible.
[Hint: Use Lemma 13.12 and that B is invertible; in order to show that A+B
has dense range, look into the proof of Lemma 13.12.]

13.8 (Fourier–Stieltjes Calculus for d-Parameter Groups). LetX be a
Banach space and let U : Rd → L(X) be any strongly continuous d-parameter
group on X. Define

ω : Rd → (0,∞), ω(s) := ‖U(s)‖ (s ∈ Rd),

and let M(Rd, ω) consist of all µ ∈ M(Rd) such that
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Rd
ω(s) |µ| (ds) <∞.

Prove the following assertions:

a) M(Rd, ω) is a unital convolution subalgebra of M(Rd).
b) For µ ∈ M(Rd, ω) let

Uµ :=

∫
Rd
Us ds.

Then the mapping

M(Rd, ω)→ L(X), µ 7→ Uµ

is a unital homomorphism.

Define FS(Rd, ω) := {µ̂ | µ ∈ M(Rd, ω)}. The mapping

ΨU : FS(Rd, ω)→ L(X), ΨU (f) := Uµ (f = µ̂, µ ∈ M(Rd, ω))

is the Fourier–Stieltjes calculus for U . Its canonical extension is also de-
noted by ΨU .

c) Define for j ∈ {1, . . . , d} the 1-parameter group U j by

U jsj := U(sjej) (sj ∈ R),

where ej is the j-th canonical basis vector of Rd. Let −iAj be the gen-
erator of U j . Show that

f(Aj) = ΨU (f(zj))

whenever the left-hand side is defined in the (canonically extended)
Fourier–Stieltjes calculus for Aj .

d) Let −iC be the generator of the 1-parameter group V defined by

V (s) := U(se1 + · · ·+ sed) (s ∈ R).

Show that
f(C) = ΨU (f(z1 + · · ·+ zd))

whenever the left-hand side is defined in the (canonically extended)
Fourier–Stieltjes calculus for C.

Supplementary Exercises

13.9. This exercise is to establish the formula

1

1 + ez
=

1

2
+

1

2i
p.v.

∫
R

e−isz 1

sinh(πs)
ds (13.14)
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used in the proof of Theorem 13.10. We abbreviate f := (1 + ez)−1. Then
f ′ = −ez(1 + ez)−2.

a) For s ∈ R let

Js := F−1(f ′)(s) =
1

2π

∫
R

eisz −ez

(1 + ez)2
dz.

Shift the contour of integration to R + 2πi and show that

(1− e−2πs)Js = Rs,

where Rs is the residue of the function gs := ieisz −ez

(1+ez)2 at z = πi.

b) Show that Rs = −se−πs, e.g. by passing to gs(z+ πi) and using a power
series argument.

c) Conclude that

f ′ =
1

2
F
( −s

sinh(πs)

)
.

d) Define the function u by

u(z) =
1

2i
p.v.

∫
R

e−isz 1

sinh(πs)
ds (z ∈ R).

Show, e.g. by splitting the integral as in the proof of Theorem 13.10,
that u is well defined, u(0) = 0 and u′ = f ′.

e) Prove the validity of the representation (13.14).

Remark: One can prove (13.14) more directly. Can you imagine, how?

13.10. Let X be a Banach space and let A = d
ds on Lp(R;X) for 1 < p <∞.

Show that A has dense range.
[Hint: Let D := {ϕ ∈ C∞c (R) :

∫
R f = 0} and show that D ⊗X is dense in

Lp(R;X) and contained in ran(A).]
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Appendix

A.1 Notational and Terminological Conventions

In this appendix we list certain of our conventions regarding notation and
terminology.

Point and Number Sets. The set of natural numbers is N := {1, 2, 3, . . . }
and Z+ := N0 := N ∪ {0} We write R+ := {x ∈ R | x ≥ 0} for the positive
real line and, a little inconsistently, C+ := {z ∈ C | Re z > 0} for the open
right half-plane. The open unit disc is D := {z ∈ C | |z| < 1} and T := {z ∈
C | |z| = 1} is the unit circle.

Functions. As is usual in functional analysis, we normally write f for a
function and f(x) for its value at the argument x. We use z for the function
z 7→ z (where the domain D ⊆ C is usually understood). Accordingly, we
use zj : Cd → C to denote the projection onto the j-th component. Similar
conventions apply to other domains like R or R+, where the coordinates are
often denoted by s or t, and sj and tj for the projections Rd → R onto the
j-th component.

Metric Spaces. Open and closed balls of radius r ≥ 0 round a point x ∈ Ω
in a metric space (Ω, d) are generically written as

B(x, r) := {y ∈ Ω | d(x, y) < r} and B[x, r] := {y ∈ Ω | d(x, y) ≤ r}.

Functional Analysis and Operator Theory. The generic notation for
Banach spaces is X, Y, Z. The dual space of a Banach space X is denoted
by X ′, and the canonical duality is

〈x, x′〉 (x ∈ X, x′ ∈ X ′).

The set of bounded linear operators T : X → Y is L(X;Y ), with L(X) :=
L(X;X). The dual or Banach space adjoint of an operator T ∈ L(X;Y ) is
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T ′ ∈ L(Y ′;X ′). An operator T ∈ L(X;Y ) is called a contraction if ‖T‖ ≤ 1
and isometric or an isometry if ‖Tx‖ = ‖x‖ for all x ∈ X. Each isometry
is an injective contraction with closed range. A surjective isometry is called
an isometric isomorphism.

Hilbert spaces are generically denoted by H, K. The inner product of a
(pre-)Hilbert space H is usually written as

(x | y ) (x, y ∈ H).

The Hilbert space adjoint of an operator T ∈ L(H;K) is denoted by T ∗.
An operator T ∈ L(H;K) is isometric if and only if T ∗T = IH , i.e., if

(Tx |Ty ) = (x | y ) for all x, y ∈ H.

An isometric isomorphism T : H → K is called unitary. Equivalently, T ∈
L(H;K) is invertible and T−1 = T ∗.

Function Spaces. For any set Ω we denote by `∞(Ω) the space of all
bounded functions, endowed with the supremum norm

‖f‖∞ := ‖f‖∞,Ω := sup
z∈Ω
|f(z)| .

For a topological space Ω, the space of continuous functions is C(Ω),
whereas Cb(Ω) is the space of all bounded and continuous functions.
If Ω is metric, we write UCb(Ω) for the space of bounded and uniformly
continuous functions. If Ω is locally compact, we have Cc(Ω), the space of
continuous functions with compact support and its sup-norm closure
C0(Ω), the space of continuous functions vanishing at infinity. Note that
the support of a function f is

supp(f) := [ f 6= 0 ].

All these function spaces have analogues for vector-valued functions. So,
for example, we write `∞(Ω;X) for the bounded X-valued functions and
Cb(Ω;X) for the bounded and continuous functions.

For an open subset O ⊆ C we denote by Hol(O) the set of all scalar-valued
holomorphic functions defined on O. According to our general convention,
Hol(O;X) denotes the space of X-valued holomorphic functions on O. (See
Appendix A.3 for more on such functions.)

The space of bounded holomorphic functions on O is H∞(O) :=
`∞(O)∩Hol(O). It is a unital Banach algebra (see below) with respect to the
norm ‖f‖H∞ := ‖f‖∞ = supz∈O |f(z)|.

If (Ω,Σ) is a measurable space (i.e., Ω is a set and Σ is a σ-algebra on
Ω), then

M(Ω,Σ) := {f : Ω → C | f is measurable}
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is the space of all measurable functions. The space of bounded and mea-
surable functions is

Mb(Ω,Σ) := {f ∈M(Ω,Σ) | f bounded}.

If the σ-algebra Σ is understood, we simply write M(Ω) and Mb(Ω).

BP-Convergence. Let Ω be a set. We say that a sequence of bounded
functions (fn)n on Ω converges boundedly and pointwise (in short: bp-
converges) to a function f on Ω if

sup
n∈N
‖fn‖∞ <∞ and fn(x)→ f(x) for all x ∈ Ω.

Measure Theory. We expect the reader to be familiar with the basics of
measure theory and measure-theoretic integration as it is treated in many
books. We stick to common notation and terminology apart from a few pe-
culiarities that shall now be explained briefly.

Our standard notation for a measure space is Ω = (Ω,Σ, µ). Note the
difference between Ω (denoting the whole measure space) and Ω (denoting
the underlying set). This convention allows us to denote the corresponding
Lp-spaces by Lp(Ω).

We use the symbol
∞⊔
n=1

An

to denote the union of a sequence (An)n of pairwise disjoint sets.
The characteristic function (sometimes also called indicator function)

of a set A is denoted by 1A.
The integral of f ∈ L1(Ω) is denoted by∫

Ω

f :=

∫
Ω

f dµ.

Generically, for “the set of points in Ω where . . . happens” we use square
brackets [ . . . ] where other books may use curly brackets. E.g., if f : Ω → X
is a function into any set X and A ⊆ X, then

[ f ∈ A ] := {ω ∈ Ω | f(ω) ∈ A}.

Analogously, if g : Ω → X is another function, [ f = g ] := {ω ∈ Ω | f(ω) =
g(ω)}.

A null set in Ω is any subset of Ω that is contained in a measurable subset
of zero measure. So a null set need not be measurable with respect to Σ, but
would be with respect to the µ-completion of Σ.

Two functions f, g : Ω → X are equal almost everywhere if [ f 6= g ] is
a null set.
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A function f : Ω → C is essentially measurable if f coincides almost
everywhere with a measurable function. Equivalently, for each Borel set B ⊆
C the set [ f ∈ B ] is contained in the µ-completion of Σ. The essential range
of such a function is

essran(f) = {z ∈ C | µ[ |f − z| < ε ] > 0 for all ε > 0}.

The set of all essentially measurable functions (modulo equality almost ev-
erywhere) is denoted by L0(Ω).

If Ω = (Ω,Σ, µ) is a measure space and f : Ω → Ω′ is a mapping then we
denote by f∗µ the image measure of µ under f , defined on (sub-σ-algebras
of) the σ-algebra f∗(Σ) := {A ⊆ Ω′ | f−1(A) ∈ Σ}.

A monolith in a measure space Ω is any measurable set of infinite measure
whose only measurable subsets either have infinite measure as well or are null
sets. A measure space is called semi-finite if it does not have monoliths. More
formally, Ω is semi-finite if it has the following property:

∀A ∈ Σ : µ(A) > 0 ⇒ ∃B ∈ Σ : B ⊆ A ∧ 0 < µ(B) <∞.

Monoliths, or rather their characteristic functions, play a role for L∞ but
none in Lp whenever p < ∞. In the presence of a monolith, L∞ cannot be
identified with the dual of L1, since multiplication with the characteristic
function of a monolith is the zero operator on each Lp for p <∞.

Complex Measures. If (Ω,Σ) is a measurable space, we denote by
M(Ω,Σ) the space of all complex measures on it, endowed with the to-
tal variation norm. If Σ is understood, then we simply write M(Ω). For a
complex measure µ ∈ M(Ω,Σ), its total variation measure is |µ|.

If Ω is a locally compact or a metric space, then Σ = Bo(Ω), the Borel
algebra, is the canonical choice. In this case, M(Ω) denotes the set of complex
regular Borel measures on Ω.

The support of a positive Borel measure µ on a topological space Ω is
the set

supp(µ) := {x ∈ Ω | µ(U) > 0 for each open neighborhood U of x}.

For more on complex measures see Appendix A.7.

Algebras. In this text, by an algebra we mean an associative algebra over
the complex field C. An algebra A is commutative if ab = ba for all a, b ∈ A.
An algebra is unital if it contains a unit element (usually denoted by e). A
∗-algebra or algebra with involution is an algebra A with an antilinear
self-map (a 7→ a∗) : A→ A satisfying

(ab)∗ = b∗a∗ and (a∗)∗ = a (a, b ∈ A).
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(If A is unital, it then follows that e∗ = e.) A norm ‖ · ‖ on an algebra is
called an algebra norm if it is submultiplicative, i.e., if

‖a·b‖ ≤ ‖a‖ ‖b‖ (a, b ∈ A).

An algebra endowed with an algebra norm is called a normed algebra. If,
in addition, the algebra is complete with respect to the induced metric, then
it is called a Banach algebra. A C∗-algebra is a Banach algebra A with
involution such that

‖x∗x‖ = ‖x‖2 (x ∈ A).

(It then follows that ‖x∗‖ = ‖x‖ for all x ∈ A.)
An ideal in an algebra A is a subspace I of A such that ax, xa ∈ I for all

a ∈ A and x ∈ I. If A is a ∗-algebra, then an ideal I of A is a ∗-ideal if x ∈ I
implies x∗ ∈ I.

Groups and Semigroups. A semigroup is a set S together with an
associative operation S × S → S. A unit element in a semigroup S is an
element e such that

e s = s e = s for all s ∈ S.

Semigroups with unit are sometimes called monoids, but we shall avoid this
terminology and call them just semigroups again. (The reason is that one
can always adjoin a unit element.) A semigroup homomorphism between
semigroups S and T is a mapping f : S → T such that

f(st) = f(s)f(t) (s, t ∈ S)

and f(eS) = eT if eS and eT are units in S and T , respectively.
An inverse of an element s in a semigroup with unit is an element t ∈ S

such that st = ts = e. A group is a semigroup with unit in which each element
is invertible. The set S× of invertible elements of a semigroup S is a group.

A.2 Calculus in Banach Spaces

In this appendix we review basic differential and integral calculus on intervals
for vector-valued functions.

Weak Integrability

Let Ω = (Ω,Σ, µ) be any measure space and X a Banach space with dual
space X ′. A function f : Ω → X is (essentially) weakly measurable if
x′◦f is (essentially) measurable for each x′ ∈ X ′. It is weakly integrable if
x′◦f ∈ L1(Ω) for each x′ ∈ X ′. Note that x′◦f = 〈f(·), x′〉.
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If f is weakly integrable, then one can consider the following linear map-
ping:

X ′ → L1(Ω), x′ 7→ x′◦f.

An application of the closed graph theorem shows: this mapping is bounded,
i.e., there is c ≥ 0 such that

‖x′◦f‖L1(Ω) =

∫
Ω

|x′◦f | ≤ c‖x′‖X′ (x′ ∈ X ′).

Hence we can define an element
∫

Ω
f of X ′′ by

〈
∫

Ω

f , x′ 〉 :=

∫
Ω

〈f(·), x′〉 (x′ ∈ X ′).

This element of X ′′ is called the (weak) integral of f . Obviously∥∥∫
Ω

f
∥∥ ≤ sup

‖x′‖≤1

∫
Ω

|x′◦f | .

If T : X → Y is a bounded linear mapping and f : Ω → X is weakly
integrable, then T◦f : Ω → Y is weakly integrable and∫

Ω

T◦f = T ′′
∫

Ω

f. (A.1)

(Note that y′◦T◦f = (T ′y′)◦f for each y′ ∈ Y ′.)

Recall from elementary functional analysis that X can be regarded via the
canonical embedding ιX : X → X ′′ as a closed subspace of X ′′. Usually, ee
shall perform this identification tacitly and do not distinguish notationally
between elements x ∈ X and their images ιX(x) ∈ X ′′.

Under this identification it is reasonable to ask whether the weak integral∫
Ω
f of a weakly integrable function f : Ω → X is a member of X rather than

just of X ′′. This will not hold in general, but under additional hypotheses,
e.g. Bochner integrability (Appendix A.6). However, if it is the case for a
given f as above, then it is also true for T ◦ f , where T : X → Y is any
bounded linear mapping, and one has∫

Ω

T◦f = T

∫
Ω

f. (A.2)

This follows from (A.1) and the fact that T ′′ ◦ ιX = ιY ◦ T .
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Weak∗ Integrability

Let, again, Ω = (Ω,Σ, µ) be any measure space and X a Banach space with
dual space X ′. A function f : Ω → X ′ is (essentially) weakly∗ measur-
able if 〈x, f(·)〉 is (essentially) measurable for each x ∈ X. It is weakly∗

integrable if 〈x, f(·)〉 ∈ L1(Ω) for each x ∈ X.
If f is weakly∗ integrable, then one can consider the following linear map-

ping:
X → L1(Ω), x 7→ 〈x, f(·)〉 .

As before, an application of the closed graph theorem shows that this mapping
is bounded, i.e., there is c ≥ 0 such that

‖ 〈x, f(·)〉 ‖L1(Ω) =

∫
Ω

|〈x, f(·)〉| ≤ c‖x‖X (x ∈ X).

Hence we can define an element
∫

Ω
f of X ′ by

〈x ,
∫

Ω

f 〉 :=

∫
Ω

〈x, f(·)〉 (x ∈ X).

This element of X ′ is called the (weak∗) integral of f . Obviously∥∥∫
Ω

f
∥∥ ≤ sup

‖x‖≤1

∫
Ω

|〈x, f(·)〉| .

If T : X → Y is a bounded linear mapping and f : Ω → Y ′ is weakly∗

integrable, then T ′◦f : Ω → X ′ is weakly integrable and∫
Ω

T ′◦f = T ′
∫

Ω

f. (A.3)

Clearly if f : Ω → X ′ is even weakly integrable, then it is weakly∗ inte-
grable, and the integrals coincide.

Regulated and Continuous Functions

Let (Ω, d) be any metric space and, as before, X a Banach space. We write
C(Ω;X) for the space of continuous functions f : Ω → X. For each f ∈
C(Ω;X) the function ‖f‖X : Ω → R defined by

‖f‖X(t) := ‖f(t)‖X (t ∈ Ω)

is continuous.
A basic result of functional analysis states that the space `∞(Ω;X) of

bounded and the space Cb(Ω;X) of bounded and continuous functions are
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Banach spaces with respect to the norm

‖f‖∞ := sup
t∈Ω
‖f(t)‖X .

Now let Ω = [a, b] be a compact subinterval of R. An X-valued step
function is a function f : [a, b]→ X such that there is a partition

a = t0 < t1 < · · · < tn = b

such that f is constant on each interval (tj−1, tj), j = 1, . . . , n. The space of
step functions is Step([a, b];X). Its closure in `∞([a, b];X) is

Reg([a, b];X),

the space of regulated functions.

Lemma A.1. The space of continuous functions C([a, b];X) is a closed sub-
space of Reg([a, b];X).

Proof. Let f ∈ C([a, b];X). Since [a, b] is compact, f is uniformly continuous.
Now the proof proceeds as for scalar functions.

If f ∈ Step([a, b];X) then ‖f‖X is a scalar step function and x′◦f is a
scalar step function for each x′ ∈ X ′. Hence f is weakly integrable. It is a
simple exercise to show that∫ b

a

1(c,d)(t)xdt = (d− c)x ∈ X.

It follows (how?) that if f is regulated then ‖f‖X is regulated and x′◦f is
regulated for each x′ ∈ X ′.

Theorem A.2. Let f ∈ Reg([a, b];X) be a regulated function. Then ‖f‖X is
regulated and f is weakly integrable, and the integral satisfies∫ b

a

f(t) dt ∈ X

and ∥∥∫ b

a

f(t) dt
∥∥ ≤ ∫ b

a

‖f(t)‖X dt ≤ (b− a)‖f‖∞. (A.4)

Proof. Note that |x′◦f | ≤ ‖x′‖‖f‖X and therefore

‖x′◦f‖∞ ≤ ‖x′‖‖f‖∞

for each f ∈ `∞([a, b];X). Approximating f by a sequence of step functions
we see (how precisely?) that ‖f‖X is regulated and x′◦f is regulated for each
x′ ∈ X ′. Consequently, f is weakly integrable and one has
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a

|〈f(t), x′〉| dt ≤ ‖x′‖
∫ b

a

‖f(t)‖X dt ≤ (b− a)‖x′‖‖f‖∞

for each x′ ∈ X ′. This implies (A.4), which tells that the integral

Reg([a, b];X)→ X ′′, f 7→
∫ b

a

f(t) dt

is a bounded linear mapping. Since this mapping maps the dense subspace of
step functions into X (viewed as a closed linear subspace of X ′′), it follows

that
∫ b
a
f(t) dt ∈ X for each f ∈ Reg([a, b];X).

Note that if f : [a, b] → X is regulated (a step function, continuous) and
T : X → Y is a bounded linear mapping into another Banach space Y , then
Tf := T◦f is regulated (a step function, continuous), and

T

∫ b

a

f(t) dt =

∫ b

a

Tf(t) dt.

Improper Integrals. Suppose that f : (0,∞) → X is a function that is
regulated on each finite interval and satisfies

∫∞
0
‖f(t)‖Xdt <∞. Then∫ ∞

0

f(t) dt := lim
T→∞

∫ T

0

f(t) dt

exists in X, by Cauchy’s criterion.

Strongly Continuous Mappings. Let Ω be any topological space and
X,Y Banach spaces. A mapping F : Ω → L(X;Y ) is called strongly con-
tinuous, if for each x ∈ E the function

Ω → Y, t 7→ F (t)x

is continuous. Analogously, a function F : [a, b]→ L(X;Y ) is called strongly
regulated if F (·)x is regulated for each x ∈ X. For a strongly regulated

function F its integral
∫ b
a
F (t) dt ∈ L(X;Y ) is defined by

(∫ b

a

F (t) dt
)
x :=

∫ b

a

F (t)xdt (x ∈ X).

The Fundamental Theorem of Calculus

A function u : [a, b]→ X is differentiable at t0 ∈ [a, b] if

lim
t→t0

1

t− t0
(
u(t)− u(t0)

)
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exists in X. In that case this limit is denoted by u′(t0) or by

du

dt
(t0).

As for scalar functions, if u is differentiable at each point of [a, b], the function
u′ is called the derivative of u.

Theorem A.3 (Fundamental Theorem). Let u ∈ C([a, b];X). Then the
function

Ju(t) :=

∫ t

a

u(s) ds

is differentiable and (Ju)′ = u.
On the other hand, let u be differentiable and u′ ∈ Reg([a, b];X). Then∫ b

a

u′(s) ds = u(b)− u(a).

Proof. The first part is proved as in the scalar case. The second can be
reduced to the scalar case by applying elements of X ′.

Corollary A.4. Let u : [a, b] → X be differentiable and u′ = 0. Then u is
constant.

Let us push the calculus a little further.

Lemma A.5 (Product rule). Let f : [a, b] → X differentiable and let T :
[a, b] → L(X;Y ) be strongly continuous such that T (·)f(t) is differentiable
for each t ∈ [a, b]. Then the product function Tf : [a, b]→ Y is differentiable,
with

(Tf)′(t) = T (t)f ′(t) + [T (·)f(t)]′(t).

Proof. Since T is strongly continuous, it is uniformly norm bounded. Fix
t ∈ [a, b] and s ∈ R such that s+ t ∈ [a, b]. Then

1

s

(
T (t+ s)f(t+ s)− T (t)f(t)

)
= T (t+ s)

f(t+ s)− f(t)

s
+

1

s

(
T (t+ s)f(t)− T (t)f(t)

)
.

Since T is uniformly bounded and strongly continuous, the first summand
converges to T (t)f ′(t) as s→ 0. The second summand is clear.

Note that if T (·) is actually differentiable with respect to the operator
norm, then the product rule takes the common form

(Tf)′ = Tf ′ + T ′f.
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From the product rule one derives immediately an integration-by-parts for-
mula: ∫ b

a

T (s)f ′(s) ds = T (t)f(t)
∣∣∣t=b
t=a
−
∫ b

a

[T (·)f(t)]′(t) dt.

A.3 Vector-valued Holomorphic Functions

Let D ⊆ C be a nonempty open set and X a Banach space. A function

f : D → X

is called holomorphic if the derivative

f ′(z) := lim
w→z

f(w)− f(z)

w − z

exists as a ‖ · ‖X -limit in X for each z ∈ D.
If f is holomorphic and T : X → Y is a bounded operator, then Tf is

holomorphic and
(Tf)′(z) = Tf ′(z) (z ∈ D)

as an easy computation shows. Also, it follows easily that a holomorphic
function is continuous.

In particular, if f is holomorphic, then it is weakly holomorphic, i.e.,
for each x′ ∈ X ′ the mapping x′◦f is holomorphic, and one has

(x′◦f)′(z) = 〈f ′(z), x′〉 (z ∈ D).

(Do not confuse the different dashes here!) Since elements of X ′ separate the
points of X, one can transfer results from scalar function theory to vector-
valued function theory. Maybe the most important one is Cauchy’s theorem.

Theorem A.6. Let Γ be a path (or cycle) in D such that for all scalar-valued
holomorphic functions f on D the formula∫

Γ

f(z) dz = 0

holds. Then it holds as well for all vector-valued holomorphic functions f .

Note that, since a holomorphic function is continuous, the integral in The-
orem A.6 is defined in the sense of Appendix A.2. (Our paths are continuous
and piecewise continuously differentiable.)

Proof. Let f : D → X be holomorphic and x′ ∈ X ′. Then〈∫
Γ

f(z) dz, x′
〉

=

∫
Γ

〈f(z), x′〉 dz = 0
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by hypothesis. Since X ′ separates the points, the claim is proved.

Analogously, a Cauchy integral formula

f(a) =
1

2πi

∫
Γ

f(z)

z − a
dz

holds for vector-valued holomorphic functions if it holds for scalar-valued
ones.

As a consequence, one obtains in the same way as for scalar functions that
a vector-valued holomorphic function f is infinitely differentiable and, locally
around each point a ∈ D, given by a power series

f(z) =

∞∑
n=0

vn(z − a)n,

where vn = 1
n!f

(n)(a) ∈ X for all n ∈ N0.

The next theorem is often helpful to decide whether a vector-valued function
is holomorphic. We call a subset N ⊆ X ′ of the dual X ′ of a Banach space
X norming if by

|||x ||| := sup
x′∈N

|〈x, x′〉| (x ∈ X)

an equivalent norm is defined on X. (Then, necessarily, N is bounded (why?)
and separates the points of X.)

Theorem A.7. Let X be a Banach space, let N ⊆ X ′ be a norming subset
of X ′, and let f : D → X be locally bounded. Then the following assertions
are equivalent:

(i) f is holomorphic.

(ii) x′◦f is holomorphic for each x′ ∈ N .

Proof. The implication (i)⇒ (ii) is clear. In order to prove the converse, fix
a ∈ D and r > 0 such that B[a, r] ⊆ D, and consider the functions

g(z) :=
f(z)− f(a)

z − a
and h(z, w) = g(z)− g(w)

for w, z ∈ D \ {a}. It suffices to show that

lim
(z,w)→(a,a)

h(z, w) = 0.

(Then one can apply Cauchy’s criterion to conclude that limz→a
f(z)−f(a)

z−a
exists.)

We write fx′ = x′◦f for x′ ∈ N . By hypothesis, the function fx′ is holomor-
phic on D. Hence, by Cauchy’s theorem, for 0 < |z − a| , |w − a| < r:
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〈h(z, w), x′〉 = gx′(z)− gx′(w)

=
1

2πi(z − a)

∫
|u−a|=r

fx′(u)

(
1

u− z
− 1

u− a

)
du

− 1

2πi(w − a)

∫
|u−a|=r

fx′(u)

(
1

u− w
− 1

u− a

)
du

=
1

2πi

∫
|u−a|=r

fx′(u)
1

(u− z)(u− a)
du

− 1

2πi

∫
|u−a|=r

fx′(u)
1

(u− w)(u− a)
du

=
1

2πi

∫
|u−a|=r

fx′(u)
z − w

(u− z)(u− a)(u− w)
du.

By taking the modulus and the supremum over x′ ∈ N we find that

|||h(z, w) ||| ≤M |z − w|
2rπ

∫
|u−a|=r

|du|
|u− z| |u− w|

,

where M := sup|u−a|=r ||| f(u) ||| <∞, by hypothesis. Hence,

|||h(z, w) ||| = O(|z − w|)

as (z, w)→ (a, a).

Sometimes the set N is large enough even to ensure the local boundedness
of f , like in the following corollary.

Corollary A.8. Let X,Y be Banach spaces, D ⊆ C a nonempty open set.
Then for a mapping f : D → L(X;Y ) the following assertions are equivalent:

(i) The function f is holomorphic.

(ii) The function f is strongly holomorphic, i.e., for each x ∈ X the function
f(·)x : D → Y is holomorphic.

(iii) The function f is weakly holomorphic, i.e., for each x ∈ X and y′ ∈ Y ′
the function fx,y′ := 〈f(·)x, y′〉 is holomorphic.

Proof. Since for x ∈ X and y′ ∈ Y ′ the mappings

δx : L(X;Y )→ Y, δx(T ) = Tx

and
δy′ : Y → C, δy′(y) = 〈y, y′〉

are linear and bounded, the implications (i) =⇒ (ii) =⇒ (iii) are clear.

Now suppose (iii) and let K ⊆ D be a compact set. For each pair (x, y′) ∈ X×
Y ′ the function 〈f(·)x, y′〉 is holomorphic, hence continuous, hence bounded
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on K. By the uniform boundedness principle(!), it follows that f is bounded
on K. So f is locally bounded, and one can apply Theorem A.7 with

N := {T 7→ 〈Tx, y′〉 | ‖x‖ ≤ 1, ‖y′‖ ≤ 1}.

(Note that N is strongly norming in the sense that

sup
ϕ∈N
|ϕ(T )| = ‖T‖

for each T ∈ L(X;Y ).)

Remark A.9. Arendt and Nikolski have shown that Theorem A.7 holds un-
der the even weaker assumption that N is just a point-separating subset of
X ′, see [1, Theorem A.7].

Next, we turn to a remarkable consequence.

Theorem A.10 (Vitali). Let X be a Banach space, D ⊆ C open and con-
nected, and fn : D → X holomorphic (n ∈ N). Suppose that (fn)n is locally
uniformly bounded and the set

C := {z ∈ D | lim
n→∞

fn(z) exists}

of convergence points is non-discrete. Then

f(z) := lim
n→∞

fn(z)

exists for all z ∈ D, f is holomorphic, and the convergence is locally uniform
in all derivatives.

Proof. Define F : D → `∞(N;X) by F (z) = (fn(z))n. Then F is locally
bounded. Write πn : `∞(N;X)→ X for the projection onto the n-th coordi-
nate. Then the functionals

x′ ◦ πn (x′ ∈ X ′, n ∈ N)

are norming. Moreover, for each x′ ∈ X ′ and n ∈ N the function x′ ◦πn ◦F =
x′ ◦ fn is holomorphic. By Theorem A.7 it follows that F is holomorphic.

The space c(N;X) of convergent sequences in X is a closed subspace of
`∞(N;X), so we can consider the factor space

Y := `∞(N;X)/c(N;X)

and the induced holomorphic mapping F∼ : D → Y . By definition, F∼

vanishes on C, which by hypothesis is a non-discrete set. Hence, by the
identity theorem of complex function theory, F∼ must vanish identically.
So F (z) ∈ c(N;X) for all z ∈ D. The remaining assertions are standard con-
sequences.
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A.4 Unbounded Operators

In this appendix we treat the basic theory of unbounded operators on Banach
spaces.

Closed Linear Relations and Operators

Let X and Y be Banach spaces. A linear relation between X and Y is a
linear subspace

A ⊆ X ⊕ Y.

We call the subspace

dom(A) := {x ∈ X | ∃ y ∈ Y : (x, y) ∈ A}

of X the domain and the subspace

ran(A) := {y ∈ Y | ∃x ∈ X : (x, y) ∈ A}

of Y the range of the relation A. The space

ker(A) := {x ∈ X | (x, 0) ∈ A}

is called its kernel. With

A−1 := {(y, x) | (x, y) ∈ A}

we denote the inverse relation. (Hence, dom(A) = ran(A−1) and ran(A) =
dom(A−1).)

A linear relation A is called a (linear) operator if the space

A[0] := ker(A−1) = {y ∈ Y | (0, y) ∈ A} ⊆ Y

is trivial. Because of linearity, this is the case if and only if A is a functional
relation, i.e.: for each x ∈ dom(A) there is exactly one y ∈ Y such that
(x, y) ∈ A. This element y is then usually denoted by Ax, and A is the graph
of a linear mapping

A : X ⊇ dom(A)→ Y.

Set theory purists would claim that there is anyway no difference between a
mapping and its graph. So we are justified to not distinguish them notation-
ally.

A linear relation/operator A is called densely defined if dom(A) is dense
in X, fully defined if dom(A) = X, and closed, if A is closed as a subspace
of X ⊕ Y . Since flipping the entries is a topological isomorphism X ⊕ Y ∼=
Y ⊕X, A is closed if and only if A−1 is closed.
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If A is an operator, the graph norm on dom(A) is given by

‖x‖A := ‖x‖X + ‖Ax‖Y (x ∈ dom(A)).

It is a norm on dom(A) such that both the inclusion mapping dom(A)→ X
and the operator A : dom(A)→ Y are bounded for the graph norm.

Lemma A.11. Let X and Y be Banach spaces and let A : X ⊇ dom(A)→ Y
be a linear operator.

a) The following assertions are equivalent:

(i) A is closed.

(ii) Whenever dom(A) 3 xn → x ∈ X and Axn → y ∈ Y then x ∈
dom(A) and Ax = y.

(iii) The space (dom(A), ‖ · ‖A) is a Banach space.

b) Each two of the following three assertions together imply the third one:

(i) A is continuous (for the norm of X), i.e., there is c ≥ 0 such that
‖Ax‖ ≤ c‖x‖ for all x ∈ dom(A).

(ii) A is closed.

(iii) dom(A) is a closed subspace of X.

Proof. This is left as Exercise 2.1.

In accordance with the usual terminology, we call a linear operator
bounded if A ∈ L(X;Y ). By the closed graph theorem, this is equivalent to
dom(A) = X and A being closed.

A linear relation A ⊆ X ⊕ Y is called invertible if A−1 ∈ L(Y ;X).
(Invertible relations are necessarily closed and have trivial kernel.)

Linear operators are sometimes called unbounded operators, even if
the possibility of having a bounded operator is not excluded. It would
be better to speak of possibly unbounded operators, but this termi-
nology is rarely used. Because of this ambiguity, we prefer to call them
just “operators”.

We write
A ⊆ B

for two linear relations when this inclusion holds as subspaces of X ⊕ Y . If
both are operators, this just means that dom(A) ⊆ dom(B) and Ax = Bx
for all x ∈ dom(A).

A linear operator A is called closable if there is a closed operator B such
that A ⊆ B. Alternatively, A is closable if the closure A within X⊕Y is again
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an operator. Closability of A can be characterized by means of sequences
through the requirement

dom(A) 3 xn → 0 ∈ X, Axn → y ∈ Y =⇒ y = 0.

If A is closed then a subspace V ⊆ dom(A) is called a core for A if A is the
closure of its restriction to V or, in other words, if V is dense in dom(A) with
respect to the graph norm.

The Algebra of Linear Relations and Operators

Let us turn to the algebra of linear relations/operator. The scalar multiple
λA of a relation A with a scalar λ ∈ K is defined by

λA := {(x, λy) | (x, y) ∈ A}.

If A is an operator, this just means that

dom(λA) = dom(A), (λA)x := λ(Ax).

Given two relation A, B between X and Y , their sum A+B is defined by

A+B := {(x, y + z) | (x, y) ∈ A, (x, z) ∈ B}.

If both are operators, this just means that

dom(A+B) := dom(A) ∩ dom(B), (A+B)x := Ax+Bx.

Addition of linear relation is associative

(A+B) + C = A+ (B + C)

as a moment’s thought reveals.
If A is a linear relation in X ⊕ Y and B is a linear relation in Y ⊕Z then

their product is the (linear!) relation BA in X ⊕ Z given by

BA := {(x, z) | ∃ y ∈ Y : (x, y) ∈ Y, (y, z) ∈ B}.

If both A and B are operators, this just means that

dom(BA) = {x ∈ dom(A) | Ax ∈ dom(B)}, (BA)x := B(Ax).

Multiplication of linear relations is associative:

(CB)A = C(BA)

as is easily seen. Moreover, one has the inversion rule
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(BA)−1 = A−1B−1.

Unfortunately, due to the domains of the operators, the algebra of unbounded
operators is usually not as simple as for bounded operators. For example, one
has

0 ·A = 0|dom(A) ⊆ 0

but in general not 0 · A = 0, due to the different domains. The following
theorem lists a few important properties.

Theorem A.12. Let A,B,C linear operators. Then the following assertions
hold:

a) (A+B)C = AC +BC.

b) C(A+B) ⊇ CA+ CB, with equality, e.g., if ran(A) ⊆ dom(C).

c) If A is closed and B is bounded, then AB is closed.

d) If B is closed and A is invertible, then AB is closed.

Proof. This is left as Exercise 2.2.

Spectral Theory

We assume the reader to be familiar with the the usual spectral theory for
bounded operators (definition of resolvent and spectrum, formula for the
spectral radius) as can be found in many introductory texts on functional
analysis. Here we want to extend these notions to closed operators, and even
to linear relations.

Let X be a Banach space over K, and let A ⊆ X ⊕X be a linear relation.
For each λ ∈ K, the relation

λ−A := λI−A

has the same domain as A and is closed if and only if A is. (Check that!)
We call λ ∈ K a spectral point of A if λ−A is not invertible. The set

σ(A) := {λ ∈ K | λ−A is not invertible}

is called the spectrum of A, its complement

ρ(A) := K \ σ(A) = {λ ∈ K | (λ−A)−1 ∈ L(X)}

the resolvent set of A. The mapping

R(·, A) : ρ(A)→ L(X), R(λ,A) := (λ−A)−1

is called the resolvent of A. Note that
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A = λ−R(λ,A)−1 (A.5)

for each λ ∈ ρ(A). It follows that a linear relation with non-empty resolvent
set must be closed and is uniquely determined by any of its resolvent opera-
tors. In particular, A is an operator if and only if one/all resolvent operators
R(λ,A) are injective.

In order to state the main result, we need another notion. A mapping
R : Ω → L(X) (where Ω ⊆ K is any non-empty subset) is called a pseudo-
resolvent if it satisfies the resolvent identity

R(λ)−R(µ) = (µ− λ)R(λ)R(µ) (λ, µ ∈ Ω).

Note that if R(·) is a pseudo-resolvent, then by interchanging λ and µ it
follows that

R(λ)R(µ) = R(µ)R(λ) (λ, µ ∈ Ω).

The connection of resolvents and pseudo-resolvents is given by the next result.

Theorem A.13. Let A be a linear relation with ρ(A) 6= ∅. Then its resolvent
R(·, A) : ρ(A) → L(X) satisfies the resolvent identity, i.e., is a pseudo-
resolvent.

Conversely, let R : Ω → L(X) be any pseudo-resolvent. Then there is a
unique linear relation A such that R(λ) = (λ − A)−1 for one (equivalently:
all) λ ∈ Ω.

Proof. Let A be a linear relation. Then (A.5) can be written equivalently as
(λ ∈ ρ(A) and x, y ∈ X):

(x, y) ∈ A ⇐⇒ R(λ,A)(λx− y) = x. (A.6)

Let z ∈ X and λ, µ ∈ ρ(A). Let x := R(λ,A)z and y := λx − z, so that
(x, y) ∈ A and z = λx− y. Now (A.6) as it stands and with λ replaced by µ
yields

R(λ,A)z = x = R(µ,A)(µx− y) = R(µ,A)((µ− λ)x+ z)

= (µ− λ)R(µ,A)x+R(µ,A)z

= (µ− λ)R(µ,A)R(λ,A)z +R(µ,A)z.

Conversely, suppose that R : Ω → L(X) is a pseudo-resolvent. According to
(A.6) it suffices to show that the relation A defined by

(x, y) ∈ A def.⇐⇒ R(λ)(λx− y) = x

is independent of λ ∈ Ω. To this aim take λ, µ ∈ Ω and x, y ∈ X such that
R(λ)(λx− y) = x. Then, with z := λx− y,
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R(µ)(µx− y) = R(µ)((µ− λ)x+ z)

= (µ− λ)R(µ)R(λ)z +R(µ)z = R(λ)z = x,

and this suffices (by symmetry).

Theorem A.13 can be rephrased as follows: Each pseudo-resolvent is the
restriction of a resolvent of a linear relation.

Remark A.14. Let R : Ω → L(X) be a pseudo-resolvent and A the unique
linear relation such that (λ−A)−1 = R(λ) for λ ∈ Ω. Then for each λ ∈ Ω

ker(R(λ)) = {y ∈ X | (0, y) ∈ A}.

It follows that A is an operator (and not just a linear relation) if and only if
R(λ) is injective for one/all λ ∈ Ω.

Corollary A.15. Let A be a linear relation on X, µ ∈ ρ(A) and λ ∈ K such
that

R(λ) :=

∞∑
n=0

(µ− λ)nR(µ,A)n+1

is convergent. Then λ ∈ ρ(A) and R(λ) = R(λ,A).

Proof. By an elementary calculation, R(λ)−R(µ,A) = (µ−λ)R(λ)R(µ,A).
Theorem A.13 with Ω := {µ, λ} yields the claim.

Corollary A.16. Let A be a linear relation. Then the resolvent set ρ(A) is
an open subset of K and the resolvent R(·, A) is an analytic mapping. At each
point µ ∈ ρ(A) it has the power series expansion

R(λ,A) =

∞∑
k=0

(λ− µ)k(−1)kR(µ,A)k+1

which is valid at least for |λ− µ| < ‖R(µ,A)‖−1. In particular,

‖R(µ,A)‖ ≥ 1

dist(µ,σ(A))

and
d

dλ
R(λ,A) = −R(λ,A)2 on ρ(A).

Proof. For |λ− µ| < ‖R(µ,A)‖−1 the series

R(λ) :=

∞∑
n=0

(µ− λ)nR(µ,A)n+1

converges. By Corollary A.15 it follows that λ ∈ ρ(A) and R(λ,A) := R(λ).
The remaining statements follow readily as in the theory of scalar-valued
holomorphic mappings.
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If K = C, the resolvent of a linear relation is an operator-valued holomor-
phic mapping. A short introduction to such mappings is given in Appendix
A.3.

(Approximate) Eigenvalues

From now on we confine to operators for convenience. A scalar λ ∈ K is called
an eigenvalue of an operator A if

ker(λ−A) = {x ∈ dom(A) | Ax = λx} 6= {0}.

Each vector 0 6= x ∈ ker(λ− A) is called a corresponding eigenvector. The
set

σp(A) := {λ ∈ K | λ eigenvalue of A}

is called the point spectrum of A. Clearly, σp(A) ⊆ σ(A).

Lemma A.17. For a closed operator A and a scalar λ ∈ K the following
assertions are equivalent:

(i) There is c ≥ 0 such that

‖x‖ ≤ c‖(λ−A)x‖ for all x ∈ dom(A).

(ii) λ−A is injective and has closed range.

Moreover, (i) and (i) are not satisfied if and only if there is a sequence (xn)n
of ‖ · ‖X-unit vectors in dom(A) such that ‖λxn −Axn‖ → 0.

Proof. The equivalence of (i) and (ii) is proved as for bounded operators.
The rest is easy.

A scalar λ ∈ K such that the equivalent conditions (i) and (ii) do not hold,
is called an approximate eigenvalue of A, and a sequence (xn)n as in the
last part, is called an approximate eigenvector of A. The set

σa(A) = {λ ∈ C | λ approximate eigenvalue of A}

is called the approximate point spectrum of A. Clearly, σa(A) ⊆ σ(A).

Lemma A.18. The topological boundary ∂σ(A) of the spectrum of an oper-
ator A consists of approximate eigenvalues:

∂σ(A) ⊆ σa(A).

Proof. Let λ ∈ ∂σ(A) and let λn ∈ ρ(A) such that λn → λ. Then, by
Theorem A.16, ‖R(λn, A)‖ → ∞. Hence, we can find vectors yn ∈ X such
that ‖yn‖ ≤ 1 and ‖R(λn, A)yn‖ → ∞. Define
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xn :=
R(λn, A)yn
‖R(λn, A)yn‖

∈ X.

Then ‖xn‖ = 1 and

(λ−A)xn = (λ− λn)xn +
yn

‖R(λn, A)yn‖
→ 0.

What Does It Mean To Commute?

Two bounded operators A and B on a Banach space commute if AB = BA
holds. It would be straighforward to extend this notion of commutation also to
general operators, or even to linear relations. However, from such a definition
practically nothing useful follows. In particular, for general operators A and
B and resolvent points λ ∈ ρ(A) and µ ∈ ρ(B) one would expect

A and B commute ⇒ R(λ,A) and R(µ,B) commute,

but such an implication is sometimes false if the left-hand side just means
that AB = BA as linear relations. So we need to look for something better.

Let, as always, X and Y be Banach spaces and let A and B linear rela-
tions on X and Y , respectively. A bounded operator T ∈ L(X;Y ) is said to
intertwine A with B if

TA ⊆ BT. (A.7)

Equivalently(!): T intertwines A with B if for all x, y ∈ X the implication

(x, y) ∈ A ⇒ (Tx, Ty) ∈ B

holds. If T intertwines A with B then it also intertwines A−1 with B−1 and
λ−A with λ−B, for each λ ∈ K. (Proof as exercise.)

Note that (A.7) becomes the identity

TA = BT

if A is fully defined and B is an operator. It follows that if λ ∈ ρ(A) ∩ ρ(B)
then

TA ⊆ BT ⇐⇒ T R(λ,A) = R(λ,B) T.

Corollary A.19. Let A be a linear relation on a Banach space X such that
ρ(A) 6= ∅ and let T ∈ L(X). Then the following statements are equivalent:

(i) T intertwines A with itself, i.e., TA ⊆ AT .

(ii) TR(λ,A) = R(λ,A)T for one/all λ ∈ ρ(A).

(iii) R(µ, T )A ⊆ AR(µ, T ) for one/all µ ∈ ρ(T ).

(iv) R(µ, T )R(λ,A) = R(λ,A)R(µ, T ) for one/all (λ, µ) ∈ ρ(A)× ρ(T ).
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Cf. also Exercise 2.3.

Polynomials of Operators

Let A be an operator on a Banach space X. Then the powers Aj of A for
j ∈ N0 are defined recursively by

A0 := I, Aj = Aj−1A (j ∈ N).

It follows from the associativity of operator multiplication that

AkAm = Ak+m (k,m ∈ N0).

A simple induction yields the equivalence

x ∈ dom(An) ⇐⇒ x ∈ dom(A), Ax ∈ dom(A), . . . , An−1x ∈ dom(A)

for each n ∈ N and x ∈ X. Moreover, one has the chain of inclusions

dom(A) ⊇ dom(A2) ⊇ dom(A3) ⊇ . . . .

For a polynomial p(z) =
∑n
j=0 ajz

j ∈ C[z] with an 6= 0 we define

p(A) :=

n∑
j=0

ajA
j

so that dom(p(A)) = dom(An). It follows that

p(A) + q(A) = (p+ q)(A)

for polynomials p, q ∈ C[z] as long as the leading coefficients of p and q do
not sum up to zero.

Theorem A.20. Let A be an operator on a Banach space X and let p, q ∈
C[z] be polynomials. Then the following assertions hold.

a) If p 6= 0 then p(A)q(A) = (pq)(A).

b) If ρ(A) 6= ∅ then p(A) is a closed operator.

Proof. a) We may suppose that q 6= 0 as well. By a) and b) of Theorem
A.12 it is easy to see that

p(A)q(A) ⊇ (pq)(A).

So the result follows if we can show that

x ∈ dom(Am+n) ⇐⇒ x ∈ dom(An), q(A)x ∈ dom(Am)



264 Appendix

whenever x ∈ X, m ∈ N0 and deg(q) = n ∈ N0. This is clearly true if
n = 0 or m = 0. Also, the implication ⇒ is easy. For the converse we
induct over n + m. So suppose that deg(q) = n ≥ 1 and x ∈ dom(An) such
that q(A)x ∈ dom(Am) with m ≥ 1. Then q(A)x ∈ dom(Am−1), hence by
induction applied to (n,m− 1) we know that x ∈ dom(An+m−1). But n ≥ 1,
so x ∈ dom(Am). Now write q(z) = r(z)z + a0 with deg(r) = n − 1. Then
r(A)Ax = r(A)Ax+ a0x− a0x = q(A)x− a0x ∈ dom(Am). So by induction
applied to (m,n − 1) we conclude that Ax ∈ dom(An−1+m), which yields
x ∈ dom(An+m) as desired.

b) Fix λ ∈ ρ(A). We prove the statement by induction on n = deg(p) ∈ N0,
the case n = 0 being trivial. Write p(z) = (λ − z)q(z) − µ for some scalar
µ ∈ C and a polynomial q with deg(q) = n− 1. Suppose that xn ∈ dom(An)
with xn → x and p(A)xn → y. Then

q(A)xn = R(λ,A)p(A)xn + µR(λ,A)xn → R(λ,A)(y + µx).

By induction, x ∈ dom(An−1) and q(A)x = R(λ,A)(y + µx) ∈ dom(A). So
x ∈ dom(An) and

p(A)x = (λ−A)q(A)x− µx = (λ−A)R(λ,A)(y + µx)− µx = y

as claimed.

A.5 Operators on Hilbert Space

In this appendix, an “operator” is always meant to be a possibly unbounded
linear operator in the sense of Appendix A.4.

The Hilbert Space Adjoint

Let H and K be Hilbert spaces. The adjoint relation A∗ of an operator
A : H ⊇ dom(A)→ K is given by

(u, v) ∈ A∗ def.⇐⇒ (x | v )H = (Ax |u)K for all x ∈ dom(A).

The following lemma summarizes its properties. The proof is quite straight-
foward.

Lemma A.21. Let A, B be operators between Hilbert spaces H and K and
λ ∈ K. Then the following assertions hold:

a) A∗ is closed. It is an operator if and only if dom(A) is dense, and in
this case
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(Ax |u) = (x |A∗u) (x ∈ dom(A), u ∈ dom(A∗)).

b) ker(A∗) = ran(A)⊥.

c) A∗ is injective if and only if A has dense range.

d) If A is injective, then (A−1)∗ = (A∗)−1.

e) (λ−A)∗ = λ−A∗.
f) If A is bounded then so is A∗, and one has ‖A‖ = ‖A∗‖.
g) If A ⊆ B then B∗ ⊆ A∗.
h) A∗ +B∗ ⊆ (A+B)∗ with equality if B ∈ L(H).

i) A∗B∗ ⊆ (BA)∗ with equality if B ∈ L(H).

Proof. As exercise.

Recall that even if A is an operator, its adjoint need not be an operator
as well. Nevertheless, the following corollary yields information about the
spectrum of the linear relation A∗.

Corollary A.22 (Spectral mapping theorem for the adjoint). Let A
be a closed operator on H. Then

σ(A∗) = {λ | λ ∈ σ(A)}

and R(λ,A∗) = R(λ,A)∗ for λ ∈ ρ(A).

Proof. Suppose that λ ∈ ρ(A). Then (λ−A) is invertible, and

L(H) 3 R(λ,A)∗ = [(λ−A)−1]∗ = [(λ−A)∗]−1 = (λ−A∗)−1

by d), e) and f) of Lemma A.21. Hence, λ ∈ ρ(A∗) and R(λ,A∗) = R(λ,A)∗.

Conversely, suppose that λ − A∗ = (λ − A)∗ is invertible. We need to show
that λ − A is invertible. Abbreviate B := λ − A. Since B∗ is invertible, B
has dense range by Lemma A.21.c. Let x ∈ dom(B) and u := (B∗)−1x. Then
(u, x) ∈ B∗ and hence

‖x‖2 = (x |x) = |(Bx |u)| ≤
∥∥(B∗)−1

∥∥‖Bx‖‖x‖.
It follows that ‖x‖ ≤

∥∥(B∗)−1
∥∥‖Bx‖ for all x ∈ dom(B), hence B is injective

and has closed range. Since B also has dense range, B is invertible.

One can rephrase the definition of A∗ in terms of orthogonality. On H⊕H
we consider the canonical inner product

((u, v) | (x, y)) := (u |x) + (v | y )

which amounts to
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‖(x, y)‖2 = ‖x‖2 + ‖y‖2.

Let J : H ⊕H → H ⊕H be the (unitary!) operator J(x, y) := (−y, x). Then
J2 = −I and

A∗ = [J(A)]⊥ = J(A⊥)

as subsets of H ⊕ H (the last equation holds since J is unitary). It follows
that

A∗∗ = JA∗⊥ = J [J(A)]⊥⊥ = JJ(A) = J2A = A.

In particular, A∗∗ = A if and only if A is closed. Since A is an operator, it
follows that the adjoint of a closed and densely defined operator is densely
defined.

The Numerical Range

For an operator A on a Hilbert space H its numerical range is defined as

W(A) := {(Ax |x) | x ∈ dom(A), ‖x‖ = 1}.

By the Toeplitz–Hausdorff theorem, the numerical range is always a convex
subset of K. Let us collect some useful facts about the numerical range.

Theorem A.23. Let A be an operator on a Hilbert space H. Then the fol-
lowing assertions hold:

a) σp(A) ⊆W(A) and σa(A) ⊆W(A).

b) If λ ∈ ρ(A) \W(A), then

‖R(λ,A)‖ ≤ 1

dist(λ,W(A))
.

c) If U ⊆ K \W(A) is connected and U ∩ ρ(A) 6= ∅, then U ⊆ ρ(A).

d) If A ∈ L(H) then σ(A) ⊆W(A).

Proof. a) If λ ∈ K is an eigenvalue of A then there is x ∈ dom(A) with
‖x‖ = 1 such that Ax = λx. Hence, 〈Ax, x〉 = 〈λx, x〉 = λ. If λ is merely
an approximate eigenvalue, then there is a sequence (xn)n of unit vectors in
dom(A) with (λ−A)xn → 0. Hence,

λ− (Axn |xn ) = ((λ−A)xn |xn )→ 0,

so λ ∈W(A).

b) Let δ := dist(λ,W(A)). Then, for each x ∈ dom(A),

δ‖x‖2 ≤
∣∣λ‖x‖2 − (Ax |x)

∣∣ = |( (λ−A)x |x)| ≤ ‖(λ−A)x‖‖x‖.

Replacing x by R(λ,A)x we find ‖R(λ,A)x‖ ≤ δ−1‖x‖ as claimed.
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c) Since ρ(A) is open in K, U ∩ ρ(A) is open in U . If (λn)n is a sequence
in U ∩ ρ(A) with λn → λ ∈ U , then by b) supn ‖R(λn, A)‖ < ∞. Hence,
λ /∈ σ(A). Consequenty, U ∩ ρ(A) is closed in U . Since U is connected, the
claim is proved.

d) Let A ∈ L(H) and λ ∈ K \W(A). Then, as seen above δ‖x‖ ≤ ‖(λ−A)x‖
for all x ∈ H, so λ−A is injective and has closed range. Let y ⊥ ran(λ−A).
Then A∗y = λy, so that

(Ay | y ) = (y |A∗y ) =
(
y
∣∣λy) = λ‖y‖2.

Since λ /∈W(A), y = 0. It follows that λ−A has dense range and is therefore
invertible.

Self-Adjoint Operators

An operator A on a Hilbert space H is symmetric if

(Ax | y ) = (x |Ay ) for all x, y ∈ dom(A)

and self-adjoint if A∗ = A. A look at the definition of A∗ teaches that
a densely defined operator is symmetric if and only if A ⊆ A∗. Since A∗

is a closed operator, it follows that a densely defined symmetric operator
is closable and its closure is again symmetric. A closable operator A with
self-adjoint closure is called essentially self-adjoint.

Note that, by Theorem A.23, if A is symmetric then λ − A is injective
whenever λ ∈ C \ R.

Remark A.24. It is a standard result about sesquilinear forms that in the
case K = C one has

A is symmetric ⇐⇒ W(A) ⊆ R.

Lemma A.25. Let A be a symmetric operator. If λ−A is surjective and λ−A
has dense range for some λ ∈ C, then A is self-adjoint and λ, λ ∈ ρ(A).

Proof. We first show that A is densely defined. Let y ⊥ dom(A). By hypo-
thesis there is x ∈ dom(A) such that (λ−A)x = y. Then for all u ∈ dom(A)(

x
∣∣ (λ−A)u

)
= ((λ−A)x |u) = (y |u) = 0.

It follows that x ⊥ ran(λ−A) and hence x = 0. Therefore, y = 0.

As A is densely defined, its adjoint A∗ is an operator and, by symmetry,
A ⊆ A∗. Hence,

λ−A ⊆ λ−A∗ = (λ−A)∗.

As λ−A has dense range, its adjoint is injective. But λ−A is surjective, so
λ−A = λ−A∗, from which it follows that A = A∗. Moreover, it follows that
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λ − A is bijective, so λ ∈ ρ(A). If K = R, we are done. Else, we first note
that λ−A = (λ−A)∗ is injective, and

(λ−A)−1 =
(
(λ−A)∗

)−1
= R(λ,A)∗ ∈ L(H)

The following is an immediate corollary.

Corollary A.26. A symmetric operator A with ρ(A)∩R 6= ∅ is self-adjoint.

For symmetric operators on a complex Hilbert space we have the following
important characterization.

Theorem A.27. For an operator A on a complex Hilbert space H, the fol-
lowing assertions are equivalent:

(i) A is essentially self-adjoint.

(ii) A is symmetric and densely defined, and for some λ ∈ C \R both oper-
ators λ−A, λ−A have dense range.

(iii) A is closable, σ(A) ⊆ R and

‖R(λ,A)‖ ≤ 1

|Imλ|
(λ ∈ C \ R).

Proof. All three conditions state or imply the closability of A, so without
loss of generality we may suppose that A is closed.

(i)⇒ (ii): Only the assertions about the ranges are to be proved. But since
A = A∗ it follows that W(A∗) = W(A) ⊆ R. Hence, λ − A∗ and λ − A∗ are
both injective, so λ−A and λ−A both have dense range.

(ii)⇒ (iii): As A is symmetric, W(A) ⊆ R. As A is closed, σa(A) ⊆W(A) ⊆
R. It follows from Theorem A.23.a that λ − A and λ − A are injective and
have closed ranges. Since, by hypothesis, these ranges are dense, λ, λ ∈ ρ(A).
Then from Theorem A.23.c we conclude that C \ R ⊆ ρ(A) and

‖R(λ,A)‖ ≤ 1

dist(λ,W(A))
≤ 1

dist(λ,R)
=

1

|Imλ|

for all λ ∈ C \ R.

(iii)⇒ (i): Define B := iA. Then R \ {0} ⊆ ρ(B) and ‖λR(λ,B)‖ ≤ 1 for all
0 6= λ ∈ R. Take x ∈ dom(A) = dom(B). Then

‖λx‖2 ≤ ‖(λ−B)x‖2 ≤ ‖λx‖2 + ‖Bx‖2 − 2λRe (x |Bx)

It follows that 0 = Re (x |Bx) = Im (Ax |x), i.e., W(A) ⊆ R. Hence A is
symmetric (Remark A.24). By Lemma A.25, A is self-adjoint.

From now on we want to allow for K = R as well as for K = C.
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Lemma A.28. Let A ∈ L(H) be a bounded self-adjoint operator on a Hilbert
space H. Let λmin and λmax the smallest and the largest spectral value of A.
Then the following assertions hold:

a) λmax = ‖A‖ or λmin = −‖A‖.
b) W(A) = [λmin, λmax].

Proof. a) We may suppose that c := ‖A‖ 6= 0. Then σ(A) ⊆ [−c, c]. By the
definition of the norm there is a sequence (xn)n in H such that ‖x‖n = 1 and
‖Axn‖ → c. Then, by virtue of the identity ‖A∗A‖ = ‖A‖2 = c2,

‖A∗Axn − c2xn‖ = ‖A∗Axn‖2 +−2c2 Re (A∗Axn |xn ) + c4‖xn‖2

≤ 2c4 − 2c2‖Axn‖2 → 0.

Hence, c2 is an approximate eigenvalue of A∗A = A2, i.e.,

c2 −A2 = −(c−A)(−c−A)

is not invertible. But this means that at least one of the operators c−A and
−c−A is not invertible.

b) By Theorem A.23 , σ(A) ⊆ W(A). Since the latter set is convex and
closed, [λmin, λmax] ⊆ W(A). For proving the converse we shift the operator
and consider B := A − α, where α := 1

2 (λmin + λmax). By a) applied to B,
we have

λmin − α = −‖B‖ and λmax − α = ‖B‖.

Hence,

W(A)− α = W(B) ⊆ [−‖B‖, ‖B‖] = [λmin, λmax]− α.

A symmetric operator A on a Hilbert space H is called positive (symbol-
ically: A ≥ 0) if (Ax |x) ≥ 0 for all x ∈ dom(A).

Theorem A.29. For a self-adjoint operator A on a Hilbert space H the fol-
lowing assertions are equivalent:

(i) A is positive, i.e., W(A) ⊆ [0,∞).

(ii) σ(A) ⊆ [0,∞).

In this case, ‖λ(λ+A)−1‖ ≤ 1 for all λ > 0.

Proof. (i)⇒ (ii): Let λ > 0. Then λ + A is injective and has closed range.
But since A = A∗ and λ ∈ R, it follows that λ + A also has dense range, so
is invertible.

(ii)⇒ (i): Again, let λ > 0. Then λ+A is invertible. Denote B := (λ+A)−1.
Then B is a bounded self-adjoint operator with spectrum σ(B) ⊆ [0, 1

λ ]. By
Lemma A.28 it follows that ‖B‖ ≤ 1

λ and W(B) ⊆ [0, 1
λ ]. But this implies

that
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λ+ (Ax |x) = ((λ+A)x |x) = (y |By ) ≥ 0

whenever x ∈ dom(A) with ‖x‖ = 1 and y := (λ + A)x. As λ > 0 was
arbitrary, (Ax |x) ≥ 0 follows.

A.6 The Bochner Integral

Let Ω = (Ω,Σ, µ) be any measure space and X a Banach space with dual
space X ′. We built on the notions of weak measurability and integrability
developed in Section A.2.

The Pettis Measurability Theorem

For a scalar function f : Ω → C and an element x ∈ X one writes f ⊗ x, or
fx, for the function

f ⊗ x : Ω → X, (f ⊗ x)(t) := f(t)x.

An X-valued simple function is a linear combination of functions 1A ⊗ x,
for x ∈ X and A ∈ Σ. That is,

Simp(Ω;X) = span{1A ⊗ x | A ∈ Σ, x ∈ X}

In other words, one can write

f =

n∑
j=1

1Ajxj (A.8)

where the Aj are measurable sets and xj ∈ X. Equivalently, f has finitely
many values and for each x ∈ f(Ω) the set [ f = x ] is in Σ. One can hence
find a representation (A.8) where the sets Aj are pairwise disjoint. In this
case the function ‖f‖X , defined as ‖f‖X(t) := ‖f(t)‖X , is a simple function,
namely

‖f‖X =

n∑
j=1

1Aj‖xj‖.

In particular, ‖f‖X is measurable. Obviously, Simp(Ω;X) is a vector space,
and invariant under pointwise multiplication with scalar simple functions.

A mapping f : Ω → X is called µ-measurable if there is a sequence of
simple functions fn ∈ Simp(Ω;X) such that fn → f µ-almost everywhere
(in the norm of X). If X = C, a µ-measurable function is just an essentially
measurable function. Obviously, the set of µ-measurable functions is a vec-
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tor space, and invariant under multiplication with scalar-valued (essentially)
measurable functions. Moreover, if f is µ-measurable then so is ‖f‖X .

Lemma A.30. If f : Ω → X is µ-measurable, there is a sequence fn of X-
valued simple functions such that fn → f µ-almost everywhere and ‖fn‖X ≤
2‖f‖X µ-almost everywhere for each n ∈ N.

Proof. Since f is µ-measurable, there is a sequence of simple functions (gn)n
such that gn → f almost everywhere. Then fn := 1[ ‖gn‖X≤2‖f‖X ]gn does the
job. (Details as exercise.)

If f is a simple function with representation (A.8) then for each x′ ∈ X ′
the function

x′◦f =

n∑
j=1

〈x′, xj〉 1Aj

is simple. Since measurability is preserved under limits of sequences, it is clear
that a µ-measurable function is essentially weakly measurable. Moreover, it
is essentially separably valued, by which we mean that there is a null set
N ⊆ Ω such that f(Ω \ N) is contained in a separable subspace Xs of X.
The following famous theorem states the converse.

Theorem A.31 (Pettis’ Measurability Theorem). Let Ω = (Ω,Σ, µ) be
a measure space, X a Banach space and f : Ω → X weakly measurable and
essentially separably-valued. Then it is µ-measurable.

Proof. By changing f on a measurable null set, we may suppose that f has
values in a separable subspace Xs of X. The Hahn–Banach theorem yields a
countable set M ⊆ BX′ [0, 1] of the unit ball of X ′ which is norming for Xs,
i.e. such that

‖x‖X = sup
x′∈M

|〈x, x′〉| for all x ∈ Xs.

Hence the mapping ‖f(·) − x‖ is measurable for any x ∈ Xs (being the
pointwise supremum of a countable set of measurable functions). Now let
(xn)n be a sequence, dense in Xs. For fixed m ∈ N and 1 ≤ j ≤ m we let

Am,j :=
[
‖f(·)− xj‖ = min

1≤k≤m
‖f(·)− xk‖

]
and (Bm,j)j the “disjointification” of the Am,j , i.e.,

Bm,1 := Am,1, Bm,2 = Am,2 \Bm,1, . . . Bm,m := Am,m \
m−1⋃
j=1

Bm,j .

Then the Bm,j form a finite measurable partition of Ω. Define the step func-
tion fm by
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fm :=

m∑
j=1

1Bm,jxj .

Note that for each t ∈ Ω one has

‖fm(t)− f(t)‖X = min
1≤k≤m

‖f(t)− xk‖ ↘ 0

as m→∞ (check that!) since the set {xn | n ∈ N} is dense in Xs.

Corollary A.32. If fn is µ-measurable and fn → f µ-almost everywhere,
then f is again µ-measurable.

Bochner Integrability

A µ-measurable function f : Ω → X is called (Bochner) integrable if the
function ‖f‖X is integrable, i.e.,∫

Ω

‖f(t)‖X µ(dt) <∞.

The space of Bochner integrable functions (modulo almost everywhere null-
functions) is denoted by

L1(Ω;X).

This is a vector space and

‖f‖L1 :=

∫
Ω

‖f‖X

is a norm on it.

Theorem A.33 (Dominated Convergence). Let (fn)n be a sequence in
L1(Ω;X) such that fn → f µ-almost everywhere and there is a function
0 ≤ g ∈ L1(Ω) such that ‖fn‖X ≤ g almost everywhere for all n ∈ N. Then
f ∈ L1(Ω;X) and ‖fn − f‖L1 → 0.

Proof. By Corollary A.32, f is µ-measurable. Moreover, ‖fn‖X → ‖f‖X
a.e., hence ‖f‖X ≤ g a.e.. It follows that f ∈ L1(Ω;X) and and ‖f − fn‖X ≤
‖f‖X + ‖fn‖X ≤ 2g a.e. for each n ∈ N. So by the scalar dominated conver-
gence theorem, ‖f − fn‖L1 → 0.

The previous result implies the following, with a proof exactly as in the
scalar case.

Corollary A.34. The space L1(Ω;X) is complete. If (fn)n is a sequence
in L1(Ω, X) that converges in L1-norm to f ∈ L1(Ω;X), then there is a
subsequence (fnk)k and a function 0 ≤ g ∈ L1(Ω) such that fnk → f a.e. and
‖fnk‖X ≤ g a.e. for all k ∈ N.
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Another consequence of the dominated convergence theorem is that the
space of integrable simple functions is dense in L1(Ω).

Corollary A.35. The space of integrable simple functions is dense in L1(Ω;X).
More precisely: A function f : Ω → X is in L1(Ω;X) if and only if there is
an L1-Cauchy sequence (fn)n of integrable simple functions such that fn → f
µ-a.e..

(In some texts, for example in [3], the definition of L1(Ω;X) is based on
the last characterization.)

The Bochner Integral

Let f ∈ L1(Ω;X), i.e., a Bochner integrable function. Since |x′◦f | ≤
‖x′‖‖f‖X , f is weakly integrable with∥∥∫

Ω

f
∥∥ ≤ ∫

Ω

‖f(·)‖X = ‖f‖1.

The norm on the left-hand side is by defnition the norm of X ′′. However, we
shall show that actually

∫
Ω
f ∈ X.

This is pretty clear for an integrable simple function. Namely, let

f =

n∑
j=1

1Ajxj

be an integrable simple function and suppose without loss of generality that
the Aj are pairwise disjoint. Then

‖f‖X =

n∑
j=1

‖xj‖1Aj

and since this is integrable, either µ(Aj) <∞ or xj = 0 for each j. By leaving
out zeros from the sum we may further suppose that µ(Aj) <∞ for all j. A
simple computation then yields∫

Ω

f =

n∑
j=1

µ(Aj)xj ∈ X.

So, since the space of integrable simple functions is dense in L1(Ω;X) and X
is (identified with) a closed subspace of X ′′, it follows that∫

Ω

f ∈ X for all f ∈ L1(Ω;X).

The integral of a Bochner integrable function is called its Bochner integral.
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Lemma A.36. Let Y be a closed subspace of X and f ∈ L1(Ω;X) is such
that f ∈ Y µ-almost everywhere. Then∫

Ω

f ∈ Y.

Proof. For x′ ∈ X ′ vanishing on Y we obtain

〈
∫

Ω

f , x′ 〉 :=

∫
Ω

〈f(·), x′〉 = 0

since x′ ◦ f = 0 µ-almost everywhere. The claim follows from the Hahn–
Banach theorem.

(A closer analysis would show that actually f ∈ L1(Ω;Y ) in Lemma A.36.)

Theorem A.37 (Hille). Let A : X ⊇ dom(A)→ Y be a closed operator and
f ∈ L1(Ω;X) such that f ∈ dom(A) almost everywhere and Af := A ◦ f ∈
L1(Ω;Y ). Then ∫

Ω

f ∈ dom(A) and A

∫
Ω

f =

∫
Ω

Af.

Proof. By hypothesis, the mapping (f,Af) : Ω → X ⊕ Y is well defined
and Bochner integrable. Since it has (almost everywhere) values in the closed
subspace graph(A), its Bochner integral also lies in there (Lemma A.36).
Applying the (bounded) projections onto the summands X and Y yields the
claim, by virtue of (A.2).

The Bochner-Lebesgue Spaces

Let 1 ≤ p < ∞. A µ-measurable function f : Ω → X is called Bochner
p-integrable if

‖f‖pLp :=

∫
Ω

‖f‖pX <∞.

The space of Bochner p-integrable functions (modulo almost everywhere null-
functions) is denoted by

Lp(Ω;X).

It is a (useful) exercise to prove the following theorem:

Theorem A.38. Let Ω be a measure space, X a Banach space, and 1 ≤ p <
∞. Then the following assertions hold:

a) The set Lp(Ω;X) is a space, and f 7→ ‖f‖Lp is a norm on it.

b) A dominated convergence theorem similar to Theorem A.33 holds for
Lp(Ω;X).
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c) The space of p-integrable simple functions (which coincides with the
space of integrable simple functions) is dense in Lp(Ω;X). In partic-
ular, the space

Lp(Ω)⊗X := span{f ⊗ x | f ∈ Lp(Ω), x ∈ X}

is dense in Lp(Ω;X).

d) The space Lp(Ω;X) is complete, and each convergent sequence in it has
a dominated subsequence that converges almost everywhere to the limit.

Finally we consider the case p = ∞. A µ-measurable function f is called
essentially bounded, if there is c ≥ 0 such that ‖f‖X ≤ c almost everywhere,
i.e. if ‖f‖X ∈ L∞(Ω). We let

L∞(Ω;X)

be the space (!) of all essentially bounded µ-measurable functions f : Ω → X
(modulo almost everywhere null-functions) endowed with the norm(!)

‖f‖L∞ = ‖‖f‖X‖L∞ = inf{c ≥ 0 | µ[ ‖f‖X ≥ c ] = 0}.

Convergence in this norm is uniform convergence outside some null set. The
space L∞(Ω;X) is a Banach space. Unless dim(X) <∞ the space of simple
functions is not dense in L∞(Ω;X).

Bochner Spaces over Intervals. Let J = (a, b) ⊆ R be an interval. (We
allow a = −∞ and/or b = +∞.) Then we abbreviate

Lp(a, b;X) := Lp((a, b), λ;X),

where λ is the Lebesgue measure.
If f : J → X is piecewise continuous then it is µ-measurable. This is easily

seen by Pettis’ measurability theorem. (Note that a continuous image of a
separable metric space is separable.)

Simultaneous Approximation

In certain situations it is helpful to know that a given function can be ap-
proximated by step functions in Lp-norm for more than one p.

Theorem A.39. Let Ω a measure space, X a Banach space and 1 ≤ p < r <
q ≤ ∞. Then the following assertions hold:

a) Lp(Ω;X) ∩ Lq(Ω;X) ⊆ Lr(Ω;X) and

‖f‖r ≤ ‖f‖p + ‖f‖q (f ∈ Lp ∩ Lq).



276 Appendix

b) For each f ∈ L1(Ω;X)∩L∞(Ω;X) and each ε > 0 there is a sequence of
integrable simple functions (fn)n with ‖fn−f‖1 → 0 and supn ‖fn‖∞ ≤
‖f‖∞ + ε.

c) The space of integrable simple functions is dense in the space Lp(Ω;X)∩
Lr(Ω;X) with respect to the norm ‖f‖p + ‖f‖r.

Proof. a) For scalar functions, this is a well-known conseqence of Hölder’s
inequality. The statement for vector-valued functions follows readily.

b) Let (gn)n be a dominated sequence of integrable step functions such that
gn → f almost everywhere. Then fn := gn1[ ‖gn(·)‖≤‖f‖∞+ε ] does the job.

c) Let f ∈ Lp(Ω;X) ∩ Lr(Ω;X). Then fn := f1[ ‖f(·)‖≤n ] → f almost every-
where and dominated by ‖f(·)‖. Hence fn → f both in Lp- and in Lr-norm.
Observe that each fn ∈ L1 ∩ L∞. Now apply b).

A.7 Complex Measures

A complex measure on a measurable space (Ω,Σ) is a mapping µ : Σ → C
which is σ-additive and satisfies µ(∅) = 0. If the range of µ is contained in
R, µ is called a signed measure. The sets of complex and signed measures
on (Ω,Σ) are denoted by M(Ω,Σ) and M(Ω,Σ;R), respectively. They are
vector spaces with the natural operations.

The conjugate of a complex measure µ ∈ M(Ω,Σ) is the complex measure
µ defined by

µ(B) := µ(B) (B ∈ Σ).

The real part and imaginary part of µ are then given by

Reµ :=
1

2
(µ+ µ), and Imµ :=

1

2i
(µ− µ).

Clearly Reµ and Imµ are signed measures, and µ = Reµ+ i Imµ.
A complex measure µ ∈ M(Ω,Σ) is positive, written µ ≥ 0, if µ(B) ≥ 0

for all B ∈ Σ. It is then a positive finite measure in the sense of elementary
measure theory. The set of positive finite measures is denoted by M+(Ω,Σ).
The signed measures are ordered by the partial ordering given by

µ ≤ ν def.⇐⇒ ν − µ ≥ 0.

This turns M(Ω,Σ;R) into a (real) ordered vector space.
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The Total Variation

The total variation or modulus |µ| of a complex measure µ ∈ M(Ω,Σ) is
defined by

|µ| (B) := sup
{ ∞∑
n=1

|µ(Bn)| | (Bn)n∈N ∈ ΣN, B =
⊔
n∈N

Bn

}
for B ∈ Σ. Then |µ| is a positive finite measure, see [4, Thm. 6.2]. It is
characterized by the property

ν ∈ M(Ω,Σ), ∀B ∈ Σ : |µ(B)| ≤ ν(B) =⇒ |µ| ≤ ν.

Consequently,
|µ| = sup

c∈T
Re(cµ) = sup

t∈Q
Re(eiπtµ).

From this, the following statements about the total variation are easy to
prove (µ, ν ∈ M(Ω,Σ), c ∈ C):

a) |µ+ ν| ≤ |µ|+ |ν|.
b) |cµ| = |c| |µ|.
c) |Reµ| , |Imµ| ≤ |µ|.

The definition
‖µ‖M := |µ| (Ω) (µ ∈ M(Ω,Σ))

turns M(Ω,Σ) into a Banach space. (This is a simple exercise.)
If µ is a signed measure, then µ+ := 1

2 (|µ|+ µ) and µ− := 1
2 (|µ| − µ) are

positive measures satisfying

µ+ − µ− = µ, µ+ + µ− = |µ| .

It follows that each complex measure µ is a linear combination of four positive
measures µj satisfying µj ≤ |µ|.

Integration with respect to a Complex Measure

Let µ ∈ M(Ω,Σ). For a step function f =
∑n
j=1 xj1Aj ∈ Step(Ω,Σ, |µ|) one

defines ∫
Ω

f dµ :=

n∑
j=1

xjµ(Aj)

as usual, and shows (using finite additivity) that this does not depend on the
representation of f . Moreover, one obtains
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Ω

f dµ
∣∣∣ ≤ ∫

Ω

|f | d|µ| = ‖f‖L1(Ω,Σ,|µ|), (A.9)

whence the integral has a continuous linear extension to L1(Ω,Σ, |µ|). By
continuity, (A.9) remains true for all f ∈ L1(Ω,Σ, |µ|).

Alternatively, one can write µ as a linear combination of four positive
measures µj as

µ = (µ1 − µ2) + i(µ3 − µ4) (A.10)

where each µj ≤ |µ|. By the latter inequality, L1(Ω,Σ, |µ|) ⊆ L1(Ω,Σ, µj)
canonically. Hence, for f ∈ L1(Ω,Σ, |µ|) one can let∫

Ω

f dµ :=

∫
Ω

f dµ1 −
∫
Ω

f dµ2 + i
(∫

Ω

f dµ3 −
∫
Ω

f dµ4

)
.

Of course, one has to make sure that this definition is independent of the
representation (A.10).

By using either way of computing the integral, one finds that∫
Ω

f dµ =

∫
Ω

f dµ for all f ∈ L1(Ω,Σ, |µ|).

The definition of weak or weak∗-integrals from Appendix A.2 can be easily
extended to complex measures. Suppose that µ ∈ M(Ω,Σ) is a complex
measure, X is a Banach space and f : Ω → X is weakly integrable with
respect to |µ|. Then for each x′ ∈ X ′ one has∣∣∣∫

Ω

〈f(·), x′〉dµ
∣∣∣ ≤ ∫

Ω

|〈f(·), x′〉|d|µ| ≤ c‖x′‖ (A.11)

for some c ≥ 0 independent of x′. Hence, as for a positive measure, one can
define the integral

∫
Ω
f dµ as the unique element of X ′′ satisfying

〈
∫
Ω

f dµ , x′ 〉 :=

∫
Ω

〈f(·), x′〉 dµ (x′ ∈ X ′). (A.12)

In general one may have
∫
Ω
f dµ /∈ X. However, if f ∈ L1(Ω,Σ, |µ| ;X) (the

Bochner space), then
∫
Ω
f dµ ∈ X. This is most easily seen by decomposing

µ as in (A.10) and noting that one has

L1(Ω,Σ, |µ| ;X) ⊆ L1(Ω,Σ, µj ;X)

canonically for each j.
If f is weakly integrable and ‖f(·)‖X is integrable with respect to |µ|, then∥∥∫

Ω

f dµ
∥∥ ≤ ∫

Ω

‖f(·)‖Xd|µ|. (A.13)
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This follows from (A.12) and (A.11) by taking the supremum over x′ ∈ X ′
with ‖x′‖ ≤ 1.

The situation for weak∗ integrals is analogous.

The Radon–Nikodym Theorem

Let Ω = (Ω,Σ, µ) be a measure space. For f ∈ L1(Ω) a complex measure fµ
is defined by

(fµ)(B) :=

∫
B

f dµ (B ∈ Σ).

The mapping
L1(Ω)→ M(Ω,Σ), f 7→ fµ

is an isometric embedding satisfying

|fµ| = |f |µ.

Integration with respect to fµ is simple: one has

g ∈ L1(Ω,Σ, |fµ|) ⇐⇒ fg ∈ L1(Ω)

and, in this case, ∫
Ω

g dfµ =

∫
Ω

fg dµ.

The following famous result yields a characterization of those complex mea-
sures that are of the form fµ for some f ∈ L1(Ω).

Theorem A.40 (Radon–Nikodym). Let Ω = (Ω,Σ, µ) be σ-finite mea-
sure space. A complex measure ν ∈ M(Ω,Σ) is of the form ν = fµ for some
f ∈ L1(Ω) if and only if it satisfies

∀B ∈ Σ : µ(B) = 0 =⇒ ν(B) = 0. (A.14)

The property (A.14) is called the absolute continuity of ν with respect
to µ. A proof of Theorem A.40 can be found in [4, p. 6.10].

Locally Compact Spaces

A topological space Ω is called locally compact if each point in Ω has a
compact neighborhood. It can be shown that if Ω in addition is Hausdorff,
then each point even has a neighborhood base consisting of compact sets.

Locally compact Hausdorff spaces provide a rich supply of continuous func-
tions on it, a fact that makes them particularly suitable objects for functional
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analysis. For example, Urysohn’s lemma tells that to each compact sub-
set K and open subset O of a locally compact Hausdorff space Ω there is
f ∈ Cc(Ω) such that 0 ≤ f ≤ 1, f = 1 on K and supp(f) ⊆ O. (Here,
supp(f) := [ f 6= 0 ] is the support of f and Cc(Ω) is the space of continuous
functions with compact support.) Urysohn’s lemma is easy to prove if Ω is
metric. A proof in the general case can be found in [4, Sec. 2.12].

Obviously, Cc-functions are bounded. The supremum-norm closure of
Cc(Ω) is C0(Ω), the space of continuous functions that vanish at infin-
ity. A continuous function f on Ω is contained in C0(Ω) if and only if for
each ε > 0 there is a compact set K ⊆ Ω such that |f | ≤ ε on Ω \K. (This
follows from Urysohn’s lemma, see [4, Sec. 3.17].)

The Riesz–Markov–Kakutani Theorem

Let Ω be a locally compact Hausdorff space. We take, canonically, Σ = Bo(Ω)
the Borel σ-algebra and suppress explicit reference to Σ henceforth.

A finite positive Borel measure is regular if for each Borel set A

µ(A) = inf{µ(O) | O ⊇ A, O open}
= sup{µ(K) | K ⊆ A, K compact}.

A consequence of regularity is (by Urysohn’s lemma) that the space Cc(Ω) of
continuous functions of compact support is dense in Lp(Ω,µ) for 1 ≤ p <∞,
see [4, p. 3.14].

A complex Borel measure µ on Ω is called regular if |µ| is regular. It is
[4, Exe. 6.3] to show that the space

M(Ω) := {µ ∈ M(Ω,Bo(Ω)) | µ is regular}

of regular complex Borel measures is a closed subspace of all complex Borel
measures. If Ω is separable and metrizable, each complex Borel measure is
regular.

Theorem A.41 (Riesz–Markov–Kakutani (RMK)). The mapping

M(Ω)→ C0(Ω)′, µ 7→ (f 7→
∫
Ω

f dµ)

is a positivity-preserving isometric isomorphism.

A proof can be found in [4, Thm. 6.19] or [3, Thm. IX.4.2].
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A.8 Accretive Operators on Hilbert Spaces

This appendix is a continuation of Appendix A.5.

An operator A on a Hilbert space H is called accretive if its numerical
range W(A) is contained in [ Re z ≥ 0 ], i.e., if

Re (Ax |x) ≥ 0 for all x ∈ dom(A).

An operator A is called dissipative if −A is accretive. Note that an operator
A is symmetric if and only if ±iA both are accretive. And a self-adjoint
operator is accretive if and only if it is positive.

Here are a couple of equivalent characterizations of accretivity.

Lemma A.42. Let A be an operator on a Hilbert space H and let µ > 0.
Then the following assertions are equivalent:

(i) A is accretive;

(ii) ‖(A+ µ)x‖ ≥ ‖(A− µ)x‖ for all x ∈ dom(A);

(iii) ‖(A+ λ)x‖ ≥ (Reλ)‖x‖ for all x ∈ dom(A), Reλ ≥ 0;

(iv) ‖(A+ λ)x‖ ≥ λ‖x‖ for all x ∈ dom(A), λ ≥ 0.

Proof. (i)⇔ (ii) follows from ‖(A+µ)x‖2−‖(A−µ)x‖2 = 4 Re (Ax |x) for
all x ∈ dom(A).

(i)⇔ (iv): For λ > 0 we have ‖(A+λ)x‖2−λ2‖x‖2 = ‖Ax‖2 + 2λRe (Ax |x)
for all x ∈ dom(A). This shows that (i)⇒ (iv). Dividing by λ and letting
λ→∞ yields the converse implication.

(iii)⇒ (iv): This is obvious.

(i)⇒ (iii): Suppose that (i) holds and let Reλ ≥ 0. Define α := Imλ. Then
(i) holds with A replaced by A + iα. Since we have already established the
implication (i)⇒ (iv),

‖(A+ λ)x‖ = ‖((A+ iα) + Reλ)x‖ ≥ (Reλ)‖x‖

for all x ∈ dom(A), which is (iii).

An operator A is called m-accretive if it is accretive and closed and
ran(1 +A) is dense in H.

Theorem A.43. Let A be an operator on H, α ∈ R and λ > 0. The following
assertions are equivalent:

(i) A is m-accretive;

(ii) A+ iα is m-accretive;

(iii) A+ ε is m-accretive for all ε > 0;

(iv) −λ ∈ ρ(A) and ‖(A− λ)(A+ λ)−1‖ ≤ 1;
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(v) {Re z < 0} ⊆ ρ(A) and

‖R(λ,A)‖ ≤ 1

|Reλ|
(Reλ < 0);

(vi) (−∞, 0) ⊆ ρ(A) and supt>0 ‖t(t+A)−1‖ ≤ 1;

(vii) A is closed and densely defined, and A∗ is m-accretive.

Proof. Let B be a closed, accretive operator on H. By a) and c) of Theorem
A.23, if ran(B+µ) is dense for some µ with Reµ > 0, then [ Re z < 0 ] ⊆ ρ(B).
(This consideration will be used several times in the following.) It follows that
(i)⇔ (ii)⇔ (iii).

The equivalence (i)⇔ (iv) holds by (ii) of Lemma A.42. Similarly, (i)⇔(v)
and (i)⇔(vi) hold by (iii) and (iv) of Lemma A.42, respectively.

(vi)⇒ (vii): By (vi), A is sectorial. As H is reflexive, dom(A) is dense (The-
orem 9.2.c)). Taking the adjoint yields that (vi) also holds for A∗ in place of
A. Hence, by what was already shown, A∗ is m-accretive.

(vii)⇒ (i): By the already established implication (i)⇒(vii) we conclude that
A = A = A∗∗ is m-accretive.

The operator (A− 1)(A+ 1)−1 is called the Cayley transform of A.

Theorem A.44 (Lumer–Phillips). An operator A on a Hilbert space H
is m-accretive if and only if −A generates a strongly continuous contraction
semigroup.

Proof. If A is m-accretive, parts (vi) and (vii) of Theorem A.43 show that
the Hille–Yosida theorem (Theorem 8.17) is applicable with ω = 0 and M = 1
to the operator −A. Conversely, suppose that −A generates the C0-semigroup
T such that ‖T (t)‖ ≤ 1 for all t ≥ 0. Then, by the “easy” part of the Hille–
Yosida theorem, (vi) of Theorem A.43 holds.

Theorem A.45. (Stone) An operator −iA on a Hilbert space H generates
a C0-group of unitary operators if and only if A is self-adjoint.

Proof. Suppose that A is self-adjoint. Then ±iA are both m-accretive and
hence, by the Lumer–Phillips theorem, generate contraction semigroups. By
Theorem 6.8, −iA generates a unitary group. This proof also works in the
converse direction.

A.9 The Fourier Transform for Vector-Valued Functions

In Chapter 5 the Fourier transform of bounded measures and integrable func-
tions on Rd was introduced. In this appendix we back up those findings with
some results about the vector-valued Fourier transform defined by
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f̂(t) := (Ff)(t) :=

∫
Rd

e−it·sf(s) ds (t ∈ Rd, f ∈ L1(Rd;X)),

where X is any Banach space. Obviously,

F(f ⊗ x) = f̂ ⊗ x

where f ∈ L1(Rd) is a scalar function and x ∈ X.
Since L1(Rd)⊗X is dense in L1(Rd;X) (Theorem A.38), results from the

scalar case extend by approximation to the vector-valued case. For example,
the Riemann–Lebesgue lemma tells that the Fourier transform is a linear
contraction

F : L1(Rd;X)→ C0(Rd;X).

Recall from Example 5.2.6) that for 1 ≤ p < ∞ the space Lp(Rd;X) is
shift invariant and the regular representation (τt)t∈Rd is strongly continuous
and contractive thereon. In particular, if µ ∈ M(Rd) and f ∈ Lp(Rd;X)
one can form the convolution µ ∗ f =

∫
Rd τtf µ(dt) and obtains the estimate

‖µ ∗ f‖p ≤ ‖µ‖M ‖f‖p.
The identity

F(µ ∗ f) = µ̂ · f̂ , (A.15)

established in Theorem 5.7 for µ ∈ M(Rd) and f ∈ L1(Rd) continues to hold
for f ∈ L1(Rd;X). Analogously, the identity

F(ψf̂) = ψ̂ ∗ (Sf)

from (5.11) extends to the case f ∈ L1(Rd;X) and ψ ∈ L1(Rd). Finally, if
(ϕn)n is an approximation of the identity in L1(Rd), then

ϕn ∗ f → f in Lp(Rd;X)

for all f ∈ Lp(Rd;X), 1 ≤ p <∞.

Lemma A.46. Let 0 6= ψ ∈ L1(Rd)∩C0(Rd) such that ψ̂ ∈ L1(Rd)∩C0(Rd)
and ψ(0) = 1 and ψn = ψ(t/n) for n ∈ N. Then the following statements
hold:

a) ψn → 1 boundedly and uniformly on compacts.

b) ((2π)−dψ̂n)n is a Dirac sequence.

c) ψ̂n ∗ f → (2π)d f in Lp-norm for each f ∈ Lp(Rd;X), 1 ≤ p <∞.

Proof. a) is clear and c) follows from b). For b) note that ψ̂n = ndψ̂(ns).

So, by Exercise 6.9, (c−1ψ̂n)n is a Dirac sequence, where

c =

∫
Rd
ψ̂.
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For the concrete choice ψ := exp(−
∑d
j=1 |xj |) one can compute the Fourier

transform explicitly by elementary methods and finds c = (2π)d. It will be a
consequence of the Fourier inversion theorem below (Theorem A.47) that c
is actually independent of the choice of ψ.

Theorem A.47 (Fourier inversion). If f ∈ L1(Rd;X) is such that f̂ ∈
L1(Rd;X), then f has a representative in C0(Rd;X) given by

f(t) =
1

(2π)d

∫
Rd
f̂(s)eis·tds

for all t ∈ Rd. In other words: f = (2π)−dSF f̂ (almost everywhere).

Proof. Take any function ψ ∈ C0(Rd) ∩ L1(Rd) such that ψ̂ ∈ L1(Rd) and
the sequence (ψn)n satisfies a)–c) of Lemma A.46. Then

(2π)dSf = lim
n→∞

ψ̂n ∗ Sf = lim
n→∞

F(ψnf̂) (A.16)

as a limit in L1(Rd;X). On the other hand, ψnf̂ → f̂ in L1(Rd;X) as well,

hence F(ψnf̂)→ F2f uniformly. The claim follows.

Corollary A.48. The space

E(Rd;X) := {f | f, f̂ ∈ L1(Rd;X) ∩ C0(Rd;X)}

is shift and reflection invariant. It is dense in Lp(Rd;X) for all 1 ≤ p <∞.
The Fourier transform restricts to an isomorphism of E(Rd;X) with inverse
F−1 = (2π)−dSF .

Proof. The first and last assertions follow from the inversion theorem since
SF = FS and F(τtf) = e−itsf̂ . For the middle statement let f ∈ L1(Rd;X)∩
C0(Rd;X) and let (ψn)n be a sequence as in Lemma A.46. Then fn := ψ̂n ∗
f → (2π)df in Lp(Rd;X). Moreover, fn ∈ L1(Rd;X) and

f̂n = (F2ψn) · f̂ = (2π)d(Sψn) f̂ ∈ L1(Rd)

for each n ∈ N. The claim follows.

We head for Plancherel’s theorem. The following is an auxiliary result.

Lemma A.49. Let f ∈ L1(Rd) ∩ L2(Rd). Then f̂ ∈ L2(Rd) and

‖f̂‖22 = (2π)d‖f‖22. (A.17)

Proof. Define h := f ∗ Sf . Then ĥ = f̂ · F(Sf) = |f̂ |2 and h ∈ C0(Rd).
(By the Cauchy–Schwarz inequality and since Cc(Rd) is dense in L2(Rd),
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convolution maps L2 × L2 boundedly into C0(Rd).) Let (ψn)n be a sequence
of functions as in Lemma A.46. Then∫

Rd
|f̂ |2ψn =

∫
Rd
ĥ ψn =

∫
Rd
h ψ̂n.

By b) of Lemma A.46, passing to the limit yields

‖f̂‖22 =

∫
Rd
|f̂ |2 = (2π)dh(0) = (2π)d‖f‖22

as claimed.

Identity (A.17) is called Plancherel’s identity.

Theorem A.50 (Plancherel). Let H be a Hilbert space. Then the Fourier
transform maps L1(Rd;H) ∩ L2(Rd;H) into L2(Rd;H) and extends to a
bounded operator (again denoted by F) on L2(Rd;H) in such a way that
F2 = (2π)dS and the operator

(2π)−
d
2F : L2(Rd;H)→ L2(Rd;H)

is unitary. Moreover, for each µ ∈ M(Rd) and f ∈ L2(Rd;H)

F(µ ∗ f) = µ̂ · f̂ . (A.18)

Proof. Let f : Rd → H be an integrable simple function. Then there is a
finite orthonormal system e1, . . . , en in H and f1, . . . , fn ∈ L2(Rd) ∩ L1(Rd)
such that f =

∑n
j=1 fj ⊗ ej . Hence, by Lemma A.49,

‖Ff‖2L2(Rd;H) =

∫
Rd
‖f(s)‖2H ds =

∫
Rd

n∑
j=1

|Ffj(s)|2 ds =

n∑
j=1

‖Ffj‖22

=

n∑
j=1

(2π)d‖fj‖22 = · · · = (2π)d‖f‖2L2(Rd;H).

Since the space of integrable simple functions is dense in L2(Rd;H), F has
a unique bounded extension to L2(Rd;H). Since the integrable simple func-
tions are even dense in L1(Rd;H)∩L2(Rd;H) (Theorem A.39), this bounded
extension coincides with F on that space. Hence, it is allowed to denote it
again by F .

Plancherel’s identity (A.17) has been shown already for integrable simple
functions f , so it holds for all f ∈ L2(Rd;H) by approximation. Similarly, the
identity (A.18) holds for f ∈ L1(Rd), hence for integrable simple functions,
and hence for all f ∈ L2(Rd;H).

By Theorem A.47, the identity F2f = (2π)dSf holds for functions f ∈
E(Rd;H). By Corollary A.48 these functions are dense in L2(Rd;H) so by
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approximation, the identity is true for all f ∈ L2(Rd;H). It follows, in par-
ticular, that (2π)−d/2F is a surjective isometry, i.e., a unitary operator.

The Fourier Transform on the Schwartz Space

The Schwartz space of X-valued functions on Rd is defined by

S(Rd;X) :=
{
f ∈ C∞(Rd;X)

∣∣ tα Dβf ∈ Cb(Rd;X) for all α, β ∈ Nd0
}
.

Here we apply the usual notational conventions of multivariable differential
calculus: the elements α = (α1, . . . , αd) ∈ Nd0 are called multi-indices and
their modulus is defined by

|α| = α1 + · · ·+ αd (α = (α1, . . . , αd) ∈ Nd0).

The monomial associated with such a multi-index is the function

tα :=

d∏
j=1

t
αj
j

where tj is the projection onto the j-th coordinate; and the associated partial
derivative operator is

Dα :=

d∏
j=1

D
αj
j ,

where Dj = ∂/∂tj is the partial derivative operator in the tj-direction.

The Schwartz space contains the space

C∞c (Rd;X) := {f ∈ C∞(Rd;X) | supp(f) is compact}

of X-valued test functions and is dense in Lp(Rd;X) for 1 ≤ p <∞ and in
C0(Rd;X).

A function m ∈ C∞(Rd) is called of tempered growth if for each multi-
index α ∈ Nd0 there is n ∈ N such that

(1 + |t|)−n Dαf is bounded.

Each polynomial is of tempered growth. If f, g ∈ C∞(Rd) are of tempered
growth, then so are f , f + g, fg, ei Re f . (This is easy to see.)

Theorem A.51. For a Schwartz function f ∈ S(Rd;X) the following state-
ments hold:

a) Dαf ∈ S(Rd;X) for all α ∈ Nd0.

b) f ◦A ∈ S(Rd′ ;X) for each linear mapping A : Rd′ → Rd, d′ ∈ N.
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c) g · f ∈ S(Rd;X) for all g ∈ C∞(Rd) of tempered growth.

d) Ff ∈ S(Rd;X) and

F(Dαf) = (it)αf̂ and Dαf̂ = F((−it)αf) (A.19)

for each α ∈ Nd0.

e) µ∗f ∈ S(Rd;X) for all µ ∈ M(Rd) such that µ̂ ∈ C∞(Rd) is of tempered
growth. In particular, τsf ∈ S(Rd) for all s ∈ Rd.

Proof. a) is clear from the definition of the Schwartz space. b) follows since
each Dα(f ◦A) is a linear combination of functions (Dβf) ◦A. c) holds since
Dα(gf) is, by Leibniz’ rule, a linear combination of functions (Dβg)(Dγf).

d) Fix j ∈ {1, . . . , d} and let gj := (−itj)f . Then gj ∈ S(Rd;X) by b). In
particular, gj is integrable. For 0 6= h ∈ R and s ∈ Rd we can write

1

h

(
f̂(s+ hej)− f̂(s)

)
=

∫
Rd

e−ihtj − 1

−itjh
e−istgj(t) dt.

Since the function e−ix−1
−ix is uniformly bounded in x ∈ R, one can apply

the dominated convergence theorem and let h → 0 under the integral sign.
This yields Dj f̂ = F(gj). Applying this result inductively we find that f̂ ∈
C∞(Rd;X) and the second formula in (A.19).

The first formula is also proved inductively, where in each step one per-
forms an integration by parts. Combining both formulae yields f̂ ∈ S(Rd;X).

d) Let µ ∈ M(Rd) such that µ̂ ∈ C∞(Rd) is of tempered growth. Then

F(µ ∗ f) = µ̂f̂ is a Schwartz function. By the Fourier inversion theorem,

µ ∗ f = (2π)−dSF(µ̂f̂),

and this is a Schwartz function by what already has been proved.

Corollary A.52. The Fourier transform restricts to a linear isomorphism
on S(Rd;X).

Corollary A.53. The space C∞c (Rd;X) is dense in the space E(Rd;X) with
respect to the norm

‖f‖E = ‖f‖1 + ‖f̂‖1.

Proof. Let f ∈ E(Rd;X) and let ψ ∈ C∞c (Rd) be constant to 1 in a neighbor-
hood of 0. Let ϕ := F−1ψ, which is a Schwartz function, and ϕn := ndϕ(nt)
for n ∈ N. Then (ϕn)n is a Dirac sequence and hence fn := f ∗ ϕn → f
in L1(Rd;X). Furthermore, fn ∈ C∞(Rd) with Dαfn = f ∗ Dαϕn for each
α ∈ Nd0.

Note that ψn := ϕ̂n = ψ(s/n) → 1 boundedly and locally uniformly. We
claim that ψnfn → f in the norm of E(Rd;X). Obviously
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ψnfn = ψn(fn − f) + ψnf → f in L1(Rd;X).

For the Fourier transform we obtain

F(ψnfn) = F(ϕ̂nfn) = f̂n ∗ (Sϕn) = (f̂ψn) ∗ (Sϕn)→ f̂

in L1(Rd;X) as well. So our claim is established, and since ψnfn ∈ C∞c (Rd;X),
the proof is complete.

Corollary A.54. Let U ⊆ Rd be open and t0 ∈ U . Then there is a function
f ∈ L1(Rd) such that f̂(t0) = 1, 0 ≤ f̂ ≤ 1, and supp(f̂) ⊆ U .

Proof. Let ψ ∈ C∞c (Rd) with 0 ≤ ψ ≤ 1, ψ(t0) = 1, and supp(ψ) ⊆ U . Then
f := F−1ψ does the job.

A.10 Fourier Multiplier Operators

Let X be a Banach space. Recall from Corollary A.48 that the space

E(Rd;X) := {f | f, f̂ ∈ L1(Rd;X) ∩ C0(Rd;X)}

is dense in Lp(Rd;X) for all 1 ≤ p < ∞. For a function m ∈ L∞(Rd) we
define the operator

Tm : E(Rd;X)→ C0(Rd;X), Tmf := F−1(m · f̂).

Here, F−1 = (2π)−dSF is the inverse Fourier transform. The operator Tm
is called a Fourier multiplier operator with symbol m. It is easy to see
that Tm is uniquely determined by m, i.e., the mapping

m 7→ Tm

is injective.

Now fix 1 ≤ p < ∞. Then m ∈ L∞(Rd) is called an Lp(X)-multiplier if
the associated Fourier multiplier operator Tm extends to a bounded operator
on Lp(Rd;X). By density of E(Rd;X), this extension—again denoted by Tm—
is unique. We let

MX
p (Rd) := {m ∈ L∞(Rd) | m is an Lp(X)-multiplier}

and endow it with the norm

‖m‖MX
p

:= ‖Tm‖L(Lp(Rd;X)). (A.20)

If X = C we abbreviate Mp(Rd) :=MC
p (Rd).
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Remark A.55. It follows from Corollary A.53 that m ∈ MX
p (Rd) with

‖m‖MX
p
≤ C if and only if

‖Tmϕ‖p ≤ C‖ϕ‖p for all ϕ ∈ C∞c (Rd;X).

The following result lists the most important properties of the spaces
MX

p (Rd).

Theorem A.56. Let X 6= {0} be a Banach space and 1 ≤ p <∞. Then the
following assertions hold:

a) If µ ∈ M(Rd) then µ̂ ∈ MX
p (Rd) and Tµ̂ = τµ, i.e., convolution with µ.

In particular,
‖µ̂‖MX

p
≤ ‖µ‖M.

b) MX
p (Rd) ⊆Mp(Rd) contractively.

c) If 1 < p <∞ then Mp(Rd) =Mp′(Rd) isometrically (1/p+1/p′ = 1).

d) MX
1 (Rd) =M1(Rd) = FS(Rd) isometrically.

e) If X is a Hilbert space, then MX
2 (Rd) = L∞(Rd) isometrically.

f) The space MX
p (Rd) is a subalgebra of L∞(Rd) and a Banach algebra

with respect to the norm (A.20). The inclusion MX
p (Rd) ⊆ L∞(Rd) is

contractive:

‖m‖L∞ ≤ ‖m‖Mp (m ∈MX
p (Rd)).

Moreover, the mapping

MX
p (Rd)→ L(Lp(Rd;X)), m 7→ Tm

is an isometric and unital algebra homomorphism onto a closed unital
subalgebra of L(Lp(Rd;X)).

g) If (mn)n is a bounded sequence in MX
p (Rd) which converges pointwise

almost everywhere to a function m ∈ L∞(Rd), then m ∈MX
p (Rd) and

‖m‖MX
p
≤ lim inf

n→∞
‖mn‖MX

p
.

Moreover, if 1 < p <∞ then∫
Rd
〈Tmnf, g〉X,X′ →

∫
Rd
〈Tmf, g〉X,X′

for all f ∈ Lp(Rd;X) and g ∈ Lp
′
(Rd;X ′).

h) If m ∈ MX
p (Rd) then for A ∈ GL(Rd) one has m ◦ A ∈ MX

p (Rd) with
‖m ◦A‖MX

p
= ‖m‖MX

p
.
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i) If m ∈ MX
p (Rd) then for s ∈ Rd one has τsm ∈ MX

p (Rd) with
‖τs‖MX

p
= ‖m‖MX

p
. Moreover, the mapping

Rd → L(Lp(Rd;X)), s 7→ Tτsm

is strongly continuous, and for each µ ∈ M(Rd) one has µ∗m ∈MX
p (Rd)

with
‖Tµ∗m‖MX

p
≤ ‖µ‖M‖m‖MX

p
.

Proof. a) Let f ∈ E(Rd;X) and µ ∈ M(Rd). Then

F(µ ∗ f) = µ̂ · f̂ .

Hence, by the Fourier inversion theorem (Theorem A.47) and the definition
of Tm, τµf = µ ∗ f = Tmf . It follows that

‖Tmf‖p = ‖τµf‖p ≤ ‖µ‖M‖f‖p

and hence the claim.

b) Let m ∈MX
p (Rd), f ∈ E(Rd) and x ∈ X with ‖x‖ = 1. Then

TXm (f ⊗ x) = TC
mf ⊗ x

where for clarity we have written TXm and TC
m to distinguish the operators on

X-valued and on scalar functions. Taking p-norms yields

‖TC
mf‖p = ‖TXm (f ⊗ x)‖p ≤ ‖m‖MX

p
‖f ⊗ x‖p = ‖m‖MX

p
‖f‖p.

The claim follows.

c) Let f, g ∈ E(Rd). Then, since F−1 = (2π)−dSF = (2π)−dFS,

〈Tmf, g〉 = (2π)−1
〈
SF(mf̂), g

〉
= (2π)−1

〈
mf̂, Ŝg

〉
= (2π)−1

〈
f,F(mŜg)

〉
=
〈
Sf, Tm(Sg)

〉
,

where the pointed brackets indicate the usual Lp − Lp
′
-duality. Since E(Rd)

is reflection-invariant and dense in Lp(Rd) and in Lp
′
(Rd), the claim follows.

d) Let µ ∈ M(Rd). Then, by Lemma 6.9,

‖µ‖M = ‖τµ‖L(L1(Rd)) ≤ ‖τµ‖L(L1(Rd;X)) ≤ ‖µ‖M.

Hence, by a),

‖µ̂‖MX
1

= ‖τµ‖L(L1(Rd;X)) = ‖µ‖M = ‖µ̂‖FS(Rd).

So the inclusion M(Rd) ⊆ MX
1 (Rd) is isometric. Next, fix m ∈ MX

1 (Rd).
By b), m ∈ M1(Rd) and hence Tm is a bounded operator on L1(Rd) that
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commutes with all translations. By Theorem 6.23, there is µ ∈ M(Rd) such
that Tm = τµ = Tµ̂, from which it follows that m = µ̂.

e) Suppose that X = H is a Hilbert space and m ∈ L∞(Rd). Then

Tm = F−1MmF (A.21)

on E(Rd;H), where Mm is the multiplication operator with m. Since, by
Plancherel’s theorem, the Fourier transform extends to an isomorphism on
L2(Rd;H), Tm is bounded and (A.21) holds on the whole L2(Rd;H). Since
the operator (2π)−d/2F is unitary, ‖Tm‖ = ‖Mm‖ = ‖m‖L∞ . (Here we use
Theorem 2.1.d).)

f) We first show that MX
p (Rd) is an algebra and the mapping

MX
p (Rd)→ L(Lp(Rd;X)), m 7→ Tm

is a homomorphism. The only non-trivial issue is the multiplicativity. Let
f ∈ E(Rd;X) and m1,m2 ∈MX

p (Rd). Let, furthermore, (ψn)n be a sequence

in E(Rd) as in Lemma A.46. Then ψ̂n ∗ (m1f̂) ∈ L1(Rd;X) and

F−1(ψ̂n ∗m1f̂) = (2π)dψn(Tm1f),

which is in L1(Rd;X) as well. Hence, F−1(ψ̂n ∗ (m1f̂)) ∈ E(Rd;X)) and we
can apply Tm2

to obtain

(2π)d Tm2

(
ψn · (Tm1

f)
)

= F−1
(
m2 · (ψ̂n ∗m1f̂)

)
.

Since Tm1f ∈ Lp(Rd;X) and Tm2 is Lp-bounded,

(2π)d Tm2

(
ψn · (Tm1f)

)
→ (2π)d Tm2Tm1f

in Lp(Rd;X). On the other hand,

F−1
(
m2 · (ψ̂n ∗m1f̂)

)
→ (2π)d F−1

(
m2 · (m1f̂)

)
= (2π)d Tm2m1

f

in C0(Rd;X). It follows that Tm2m1f = Tm2Tm1f ∈ Lp(Rd;X) and hence the
claim.

Next, we show that ‖m‖L∞ ≤ ‖m‖MX
p

for m ∈ MX
p (Rd). This is clear for

p = 1 from d). For 1 < p < ∞ we argue as follows. By b) it suffices to
consider X = C. By the Riesz–Thorin interpolation theorem [5, Thm.2.1.]
and assertion c),

‖Tm‖L(L2) ≤ ‖Tm‖θL(Lp) ‖Tm‖
1−θ
L(Lp′ )

= ‖Tm‖L(Lp)

for some suitable θ ∈ [0, 1]. Hence, an application of e) establishes the claim.
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Finally, we prove thatMX
p (Rd) is complete. Let (mn)n be a Cauchy sequence

in MX
p (Rd). Then (Tmn)n is a Cauchy sequence in L(Lp(Rd;X)) and hence

has a limit T ∈ L(Lp(Rd;X)). On the other hand, by what we already have
proved, (mn)n is a Cauchy sequence in L∞(Rd) and hence has a limit m ∈
L∞(Rd). Therefore, given f ∈ E(Rd;X) the sequence

Tmnf = F−1(mnf̂)

converges in Lp(Rd;X) to Tf and in C0(Rd;X) to Tmf . The rest is straight-
forward.

g) By what has already been proved, supn∈N ‖mn‖L∞ < ∞. For each f ∈
E(Rd;X) one hence has

Tmnf = F−1(mnf̂)→ Tmf

in C0(Rd;X). On the other hand, supn ‖Tmnf‖p < ∞ and hence Fatou’s
theorem yields that Tmf ∈ Lp(Rd;X) and

‖Tmf‖p ≤ lim inf
n→∞

‖Tmnf‖p ≤
(
lim inf
n→∞

‖mn‖MX
p

)
‖f‖p.

This establishes the first claim. For the second, suppose in addition that
1 < p <∞, f ∈ E(Rd;X) and g ∈ L1(Rd;X ′). Then∫

Rd
〈Tmnf, g〉X,X′ =

1

(2π)d

∫
Rd

∫
Rd

eistmn(t)
〈
f̂(t), g(s)

〉
X,X′

dtds,

which converges to

1

(2π)d

∫
Rd

∫
Rd

eistm(t)
〈
f̂(t), g(s)

〉
X,X′

dtds =

∫
Rd
〈Tmf, g〉X,X′

by Lebesgue’s theorem. So the claim follows by approximation.

h) This follows (after some computation) from the formulae (B ∈ GL(Rd))

̂f ◦B−1 = |detB| (f̂ ◦Bt)

and
‖f ◦B−1‖p = |detB|

1
p ‖f‖p,

which can be established by a change of variables.

i) Let f ∈ E(Rd;X) and s ∈ Rd. Then by an application of 5.7.a) one obtains

Tτsmf = e−is·Tm
(
e−is·f

)
.

This yields ‖τsm‖MX
p

= ‖m‖MX
p

and the strong continuity of the mapping
s 7→ Tτsm. The rest is straightforward.
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Remark A.57. If X is a reflexive Banach space and 1 < p < ∞, then
Lp
′
(Rd;X ′) ∼= Lp(Rd;X)′ via the canonical pairing

〈f, g〉 =

∫
Rd
〈f(t), g(t)〉X,X′ dt,

see [2, Cor.1.3.22]. So, in this case, the second part of Theorem A.56.g) just
means that Tmn → Tm in the weak operator topology on Lp(Rd;X).

A.11 Some Analytical Identities

In this appendix we provide proofs for some analytical identities.

The Gaussian Kernel

One of the most useful identities in mathematics is∫
R

e−x
2

dx =
√

π. (A.22)

We shall provide a proof which only uses facts from elementary real analysis.
To this end, consider the functions

f(t) :=
(∫ t

0

e−x
2

dx
)2

and g(t) :=

∫ 1

0

e−t
2(1+x2)

1 + x2
dx (t ≥ 0).

Then F and G are differentiable on R+ and

f ′(t) = 2

∫ t

0

e−x
2

dx e−t
2

=

∫ t

0

2e−(t2+x2) dx =

∫ 1

0

2te−t
2(1+x2) dx

= −g′(t),

where we have used that we can differentiate g under the integral sign. It
follows that f + g is constant on R+, and inserting 0 yields

f(t) + g(t) =

∫ 1

0

dx

1 + x2
= arctan 1 =

π

4
.

Estimating G with the triangle inequality for integrals yields

|g(t)| ≤ e−t
2

→ 0 as t→∞.

Since the square root function is continuous, it follows that
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0

e−x
2

dx = lim
t→∞

√
f(t) =

√
π

2
,

and hence (A.22).

The Fourier Transform of the Gaussian Kernel

Here we shall establish the formula

1√
4π

∫
R

e−s
2/4e−ist ds = e−t

2

(t ∈ R). (A.23)

Since the function e−s
2/4 is even and for each t ∈ R the function sin(ts) is

odd, it suffices to prove

f(t) :=
1√
4π

∫
R

e−s
2/4 cos(ts) ds = e−t

2

.

Now, differentiating under the integral and performing integration by parts
yields

f ′(t) =
2√
4π

∫
R

−s
2 e−s

2/4 sin(ts) ds =
−2√
4π

∫
R

e−s
2/4t cos(ts) ds = −2t · f(t).

Multiplying by et
2

we obtain

0 = f ′(t)et
2

+ 2tf(t)et
2

=
d

dt

[
f(t)et

2]
.

Hence f(t) = ce−t
2

for some constant c. Inserting t = 0 yields

c = f(0) =
1√
4π

∫
R

e−s
2/4 ds = 1

as desired.

The Inverse Laplace Transform of e−
√

z

We shall establish the formula∫ ∞
0

(
te−t

2/4s

2
√

πs3/2

)
e−zs ds = e−t

√
z (t > 0, Re z > 0). (A.24)

To this end, we first prove a lemma.

Lemma A.58. Let α > 0. Then
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0

e−(αt −t)
2

dt =

∫ ∞
0

α

t2
e−(αt −t)

2

dt =

√
π

2
.

Proof. The first identity follows from a change of variables t = α/s and
then renaming s by t. Adding the first and the second term and changing the
variable to s = t− α

t yields∫ ∞
0

(
1 +

α

t2

)
e−(αt −t)

2

dt =

∫ ∞
−∞

e−s
2

ds =
√

π.

This yields the claim.

We can now establish (A.24). By analyticity of the functions it suffices to
prove the identity only for z > 0. Replacing z by z2/t2 and changing the
variable in the integral from s to s2t2, the claim is equivalent with

1√
π

∫ ∞
0

1

s2
e−1/4s2e−z

2s2 ds = e−z

for z > 0. Now

ez
∫ ∞

0

1

s2
e−1/4s2e−z

2s2 ds =

∫ ∞
0

1

s2
e−( 1

2s−zs)
2

ds

= 2

∫ ∞
0

z

2s2
e−( z2s−s)

2

ds = 2

√
π

2
=
√

π

by Lemma A.58.

The Dirichlet integral

Next, we shall provide a proof for the so-called Dirichlet integral∫ ∞
0

sin s

s
ds =

π

2
. (A.25)

There is a well-known approach to this formula via complex analysis by in-

tegrating the function eiz−1
z over semi-circles with radius tending to infinity,

and then taking the imaginary part.
A real-variable approach works as follows. Integration by parts easily yields

lim
a,b→∞

∫ b

a

sin s

s
ds = 0.

Hence, by Cauchy’s criterion, the improper integral

c := lim
T→∞

∫ T

0

sin s

s
ds
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exists. By the Laplace transform version of Abel’s theorem (with an analogous
proof) it follows that

c = lim
x↘0

∫ ∞
0

e−sx
sin s

s
ds.

(Note that the function sin s
s is not absolutely integrable, so the dominated

convergence theorem is not applicable here.)
Now let

f(x) :=

∫ ∞
0

e−sx
sin s

s
ds (x > 0).

Then, by a standard argument,

f ′(x) = −
∫ ∞

0

e−sx sinx ds = Im

∫ ∞
0

e−s(x+i) ds =
−1

1 + x2
.

Since limx→∞ f(x) = 0, it follows that

f(x) =
π

2
− arctanx

and hence c = limx↘0 f(x) = π

2 .
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