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Introduction

In this course on complex analysis we will investigate the notion of differentiability
for functions with one complex argument. On a very first glance this does not
seem to be too interesting, as we may identify C with R2 and differentiability in
two variables was thoroughly investigated during the last semester in Analysis II.

However, we will note very quickly that complex differentiability and the closely
related notion of holomorphy is a completely different story. Complex differen-
tiability will turn out to be much stronger than the corresponding real notion
and we will find a bunch of interesting and sometimes astonishing results. Just
two of these as an appetizer:

• Every holomorphic function is arbitrarily often complex differentiable and
has a Taylor expansion that converges to the function on an optimal open
circle.

• If you know the values of a holomorphic function for all complex numbers
with modulus 1, then you can calculate its values for all numbers with
modulus less than 1.

The course and the lecture notes are in English. As a matter of fact this is
the international language of communication and research in mathematics and
physics and you will soon get to a point in your studies where the relevant liter-
ature is only available in English anyway. So, we can also start with this now.
You will note that mathematics is a very friendly topic to be treated in a foreign
language. First of all, formulae stay formulae and you will understand these even
in a mathematics book that is written in Georgian1. Furthermore, you do not
need very much grammar to write and read mathematical texts, e.g. no future or
perfect forms are needed. Finally, most of the mathematical vocabulary comes
from Greek or Latin words, and, thus is more or less the same in most languages:
A ’surjective function’ (GB) is a ’surjektive Funktion’ (D), a ’fonction surjective’
(F), a ’funzione suriettiva’ (I),. . .

The results of Complex Analysis presented in this course nowadays are classic
and form a very powerful toolbox that is utilized in nearly all branches of math-
ematics. So, pursuing your studies, you will every now and then need some of
these and then it can be cumbersome, if you only know the english words. So,

1And unless you happen to be Georgian, I am rather sure that you will not understand much
more
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whenever a new notion is introduced in these lecture notes, the corresponding
german expression will be added in squared brackets “[. . . ]” as an additional
information. Finally, you will not only find one index as usual, but also a german
index is included for these new expressions.

Now let’s start to explore the wonderland of holomorphy!
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1 Complex Differentiability

We start with the obvious definition for differentiability in C. In all of this chapter
D ⊆ C is an open set, f : D → C a function in one complex variable and z0 ∈ D.

Definition 1.1. (a) The function f is called complex differentiable [komplex
differenzierbar] in z0, if

f ′(z0) := lim
z→z0

f(z) − f(z0)

z − z0

exists. The complex number f ′(z0) is then called derivative [Ableitung] of
f in z0.

(b) If f is complex differentiable in all z0 ∈ D we say that f is holomorphic
[holomorph] on D and we set

H(D) := {f : D → C | f holomorphic on D}.

For f ∈ H(D) the function f ′ : D → C is the derivative [Ableitung] of f .

(c) We say that f is holomorphic in z0, if there is a neighbourhood U ⊆ D of
z0 with f ∈ H(U).

(d) As ususal we define higher derivatives recursively. If for n ≥ 2 the function
f is n − 1 times complex differentiable in a neighbourhood of z0 and the
(n−1)th derivative f (n−1) is again complex differentiable in z0, then we say
that f is n times complex differentiable in z0 with nth derivative f (n)(z0) =
(f (n−1))′(z0).

The definition of complex differentiability looks very much the same as for
real functions and so it should be no surprise that several easy properties of the
derivative can be proved exactly the same way. We collect some of these in the
following proposition and leave it as an exercise to check that the proofs may be
copied word by word from Analysis I.

Proposition 1.2. (a) The function f is complex differentiable in z0 with deri-
vative a ∈ C, iff1 for all h ∈ C with z0 + h ∈ D we have

f(z0 + h) = f(z0) + ah + r(h), where lim
h→0

r(h)

h
= 0.

1In the literature it is very common to abbreviate “if and only if” by “iff”. This will also be
used here.
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1 Complex Differentiability

(b) Complex differentiability implies continuity.

(c) If f, g : D → C are complex differentiable in z0 and α, β ∈ C, then also
αf + βg, f · g, f/g, f ◦ g and f−1 are complex differentiable in z0, when-
ever the obvious precautions are made, e.g. for f/g one needs g(z0) 6= 0.
Furthermore, the usual derivation rules (product rule and so on) remain
true.

Example 1.3. (a) As we have the same differentiation rules as in R, we may
differentiate for instance a polynomial p(z) = anzn + · · · + a1z + a0 as usual
to get p′(z) = nanzn−1 + · · · + a2z + a1.

(b) The same is true for the complex exponential function which is defined via
the power series ez = exp(z) =

∑∞
n=0

zn

n!
. As in R we get directly

ez − ez0

z − z0

= ez0
ez−z0 − 1

z − z0

=
ez0

z − z0

∞∑

n=1

(z − z0)n

n!

= ez0

∞∑

n=1

(z − z0)n−1

n!
→ ez0 (z → z0).

(c) A genuinly complex function is the complex conjugation f : C → C with
f(z) = z. What is about complex differentiability of this one? For an
arbitrary z0 ∈ C we consider first zn = z0 + 1/n, n ∈ N. Then (zn)
converges to z0 and

lim
n→∞

f(zn) − f(z0)

zn − z0

= lim
n→∞

z0 + 1/n − z0

z0 + 1/n − z0

= lim
n→∞

1/n

1/n
= 1.

On the other hand, for wn := z0 + i/n, n ∈ N, we also have wn → z0 for
n → ∞, but we find

lim
n→∞

f(wn) − f(z0)

wn − z0

= lim
n→∞

z0 + i/n − z0

z0 + i/n − z0

= lim
n→∞

−i/n

i/n
= −1.

So, the limit limz→z0

f(z)−f(z0)
z−z0

does not exist, which means that f is nowhere
complex differentiable.

We may identify C with the real vector space R2. By doing so, we want to
compare complex differentiability with real differentiability in two variables. As
a preparation we prove the following lemma that tells us which R-linear maps on
R

2 can also be seen as C-linear maps. For this we as usual identify a complex
number z = x + yi, where x, y ∈ R, with the vector (x, y)T ∈ R2.

Lemma 1.4. Let Φ : R2 → R2 be an R-linear map with corresponding matrix
A ∈ R2×2. (We use the standard basis of R2.) Then the following assertions are
equivalent:
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(a) Φ is C-linear, i.e. Φ(wz) = wΦ(z) for all w, z ∈ C.

(b) Φ(iz) = iΦ(z) for all z ∈ C.

(c) A =

(
a −b
b a

)
for some a, b ∈ R.

(d) Φ is a complex multiplication, i.e. there exists a ζ ∈ C such that Φ(z) = ζz
for all z ∈ C.

Proof. (a)⇒(b) X

(b)⇒(c) Let A =

(
a c
b d

)
with a, b, c, d ∈ R be the matrix corresponding to Φ.

Then we have

Φ(i) =

(
a c
b d

)(
0
1

)
=

(
c
d

)
= c + di

and

iΦ(1) = i

(
a c
b d

)(
1
0

)
= i

(
a
b

)
= i(a + bi) = −b + ai.

By hypothesis these two must be the same, so c = −b and a = d.

(c)⇒(d) We set ζ = a + bi and get for all z = x + yi ∈ C

Φ(z) =

(
a −b
b a

)(
x
y

)
= ax − by + (bx + ay)i = (a + bi)(x + yi) = ζz.

(d)⇒(a) For all w, z ∈ C we have Φ(wz) = ζwz = wζz = wΦ(z).

Reminder 1.5. In order to compare real and complex differentiability, we recall
that g : R2 → R2 is real differentiable in z = (x, y)T ∈ R2, if there is a matrix
A ∈ R2×2 such that

g(z + h) = g(z) + Ah + r(h) with lim
h→0

r(h)

‖h‖ = 0. (1.1)

Furthermore, if g = ( u
v ) with u, v : R

2 → R is continuously differentiable in
z = (x, y)T , then we have

A =

(
∂1u(x, y) ∂2u(x, y)
∂1v(x, y) ∂2v(x, y)

)
=

(
ux(z) uy(z)
vx(z) vy(z)

)
.
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1 Complex Differentiability

Theorem 1.6 (Cauchy-Riemann differential equations [Cauchy-Riemann-Differ-
entialgleichungen]). Let f : D → C be continuously real differentiable and u :=
Re(f), v := Im(f) : D → R. Then f is complex differentiable in z = (x, y)T ∈ D,
iff u and v fulfill the Cauchy-Riemann differential equations

ux(z) = vy(z) and uy(z) = −vx(z).

In this case it holds

f ′(z) = ux(z) + vx(z)i = vy(z) − uy(z)i.

Remark 1.7. The formula for f ′(z) in the above theorem is often also written
as

f ′(z) =
∂f

∂x
(z) = −i

∂f

∂y
(z).

Proof. If f is complex differentiable in z, we have by Proposition 1.2(a) for all
h ∈ C such that z + h ∈ D

f(z + h) = f(z) + f ′(z)h + r(h) with lim
h→0

r(h)

h
= 0.

Comparing this with (1.1), we find that the multiplication with f ′(z) corresponds
to the linear map induced by A in the definition of real differentiability, so

A =

(
ux(z) uy(z)
vx(z) vy(z)

)

is a complex multiplication. Thus Lemma 1.4 entails that ux(z) = vy(z) and
uy(z) = −vx(z) and these are exactly the Cauchy-Riemann equations.

Conversely, if u and v fulfill the Cauchy-Riemann equations in z = (x, y)T , the
real differentiability of f gives us, cf. Remark 1.5,

f(z + h) = f(z) + Ah + r(h) with lim
h→0

r(h)

|h| = 0,

where

A =

(
ux(z) uy(z)
vx(z) vy(z)

)
=

(
ux(z) −vx(z)
vx(z) ux(z)

)
.

This means that A is a complex multiplication, so thanks to Lemma 1.4, there is
a ζ ∈ C, such that

f(z + h) = f(z) + ζh + r(h) with lim
h→0

r(h)

|h| = 0,

which is complex differentiability of f .
Finally, the proof of “(ii)⇒(iii)” in Lemma 1.4 and again the Cauchy-Riemann

equations show that

f ′(z) = ζ = ux(z) + vx(z)i = vy(z) − uy(z)i.
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Example 1.8. (a) We consider f : C → C with f(z) = z2. We have already
observed in Example 1.3(a) that this function is holomorphic on all of C,
so we should find the Cauchy-Riemann equations satisfied for all z ∈ C.
Indeed, for f(z) = (x + yi)2 = x2 − y2 + 2xyi, we have u(x, y) = x2 − y2,
v(x, y) = 2xy and

ux(x, y) = 2x = vy(x, y) and uy(x, y) = −2y = −vx(x, y).

(b) As a second example we consider g : C → C with g(z) = Re(z). So,
u(x, y) = x and v(x, y) = 0. Obviously, u and v are continuously real
differentiable, but for every choice of z = (x, y)T ∈ C

ux(x, y) = 1 6= 0 = vy(x, y),

so the Cauchy-Riemann equations are violated and g is nowhere complex
differentiable.

Remark 1.9. The Cauchy-Riemann equations can also be deduced by looking
directly at difference quotients of f , u and v. You could compare difference
quotients for h → 0 and h ∈ R and h ∈ iR.

Theorem 1.6 has many important consequences. For the moment, we men-
tion only one: The real and imaginary part of holomorphic functions always are
harmonic functions. We first give a definition of this notion.

Definition 1.10. Let E ⊆ R
d be open and u ∈ C2(E;R). Then u is called

harmonic [harmonisch], if

∆u =
d∑

j=1

∂2
j u = 0 on E.

Proposition 1.11. Let f : D → C be twice continuously real differentiable and
holomorphic on D. Then u := Re(f) and v := Im(f), seen as functions from R2

to R, are harmonic.

Proof. By the Cauchy-Riemann differential equations we have

∆u = uxx + uyy = (ux)x + (uy)y = (vy)x + (−vx)y = vyx − vxy = 0,

where we used Schwarz’ Theorem in the end. An analogous calculation may be
made for v.

Remark 1.12. We will see later, that on a suitable domain every harmonic
function in fact is a real part of some holomorphic function, cf. Proposition 6.10.
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2 Path Integrals

One of the main tools in Complex Analysis are path integrals. We discussed
these already in the real setting in Analysis II, but we will redefine them in the
complex language and recall all properties that we need in the beginning of this
chapter.

Definition 2.1. Let I ⊆ R be an interval.

(a) A continuous map γ : I → C is called a path [Kurve]. If I = [a, b] is a
compact interval, then γ(a) is called initial point [Anfangspunkt] and γ(b)
is called end point [Endpunkt] of γ. A path γ : [a, b] → C with γ(a) = γ(b)
is called closed [geschlossen].

(b) We call a path γ : [a, b] → C piecewise C1 [stückweise C1], if there exists a
partition a = t0 < t1 < · · · < tn−1 < tn = b of the interval [a, b], such that
γ|[tj−1,tj ] is continuously differentiable for all j = 1, 2, . . . , n.

(c) The set tr(γ) := {γ(t) : t ∈ I} ⊆ C is called trace [Spur] of the path γ.

We will need paths in order to build path integrals from them throughout this
course. In order to do so, we need them piecewise C1, so from now on we will
only consider paths that are piecewise C1. Whenever you read “path” in the
following this implicitely means “path that is piecewise C1”.

Reminder 2.2. Let a, b, α, β ∈ R with a < b and α < β. If γ : [a, b] → C is a
path and ϕ : [α, β] → [a, b] is a C1 diffeomorphism, then γ̂ := γ ◦ ϕ : [α, β] → C

is called a reparametrisation [Umparametrisierung] of γ.
If ϕ is strictly increasing this reparametrisation is called orientation preserving

[orientierungserhaltend] and if ϕ is strictly decreasing it is called orientation
reversing [orientierungsumkehrend].

Remark 2.3. (a) Two paths that are linked by a reparametrisation have the
same trace.

(b) Unfortunately, the nomenclature for paths, curves,. . . is not at all unified,
the same way as for the german words Kurve, Weg,. . . . These notions
are defined differently in every single book. So, please do not take the
definitions above as the general ones! This is only one particular choice.
Whenever you look into another source, you should check carefully how
these notions are defined there.
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2 Path Integrals

Definition 2.4. (a) Let γ1 : [a1, b1] → C and γ2 : [a2, b2] → C be two paths
with γ1(b1) = γ2(a2). Then we want to “glue” these two together and define
the combined path γ1 ⊕ γ2 : [a1, b1 + b2 − a2] → C with

(γ1 ⊕ γ2)(t) =

{
γ1(t), for t ∈ [a1, b1]

γ2(t − b1 + a2), for t ∈ [b1, b1 + b2 − a2].

(b) For a path γ : [a, b] → C we define the inverted path [Rückweg]

γ− : [a, b] → C with γ−(t) = γ(b − t + a).

Since we may freely reparametrise paths, in order to get an interval of definition
of our wish, we usually do not have to bother with the technical gluing procedure
in part (a) of Definition 2.4, but can arrange for the intervals to fit.

It is helpful to note, that combining two paths or regarding the inverted path
does not leave our class of paths that are piecewise C1.

Example 2.5. We collect some prominent paths, which we will meet several
times during this course.

(a) connecting line [Verbindungsstrecke]

For w, z ∈ C the path γ[z,w] : [0, 1] → C with γ[z,w](t) = tw + (1 − t)z is the
connecting line joining z to w.

(b) circle [Kreislinie]

For z0 ∈ C and r > 0 the path running around z0 once along a circle with
radius r can be parametrised by γ : [0, 2π] → C, γ(t) = z0 + reit.

(c) Finally, we want to describe the boundary of a half circle, as sketched
in Figure 2.1. We can achieve this by just gluing together half a circle

x

y

1−1

1

γ)trace(

Figure 2.1: The path from Example 2.5(c)

γ1(t) = eit, t ∈ [0, π], and a connecting line γ2(t) = t, t ∈ [−1, 1], in order
to get γ = γ1 ⊕ γ2.
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We will now show that in a connected open subset of C for every two points
there is a path connecting the two points. In fact we even construct a path that
consists of finitely many connecting lines, so it is piecewise affine and in particular
piecewise C1, in accordance with our agreement that all paths considered in this
course have this property. The argument works in every normed vector space,
so, additionally, this gives you a proof for Proposition II.8.11 in Analysis II.

Proposition 2.6. Let D ⊆ C be open and connected. Then for all w, z ∈ D
there exists a path γ : [a, b] → D with γ(a) = w and γ(b) = z that consists of
finitely many connecting lines. In particular D is pathwise connected.

Proof. We fix a w ∈ D and consider the set A of all z ∈ D that can be joined to
w by a path in D that consists of finitely many connecting lines. Furthermore,
we set B := D \ A.

We will show that both, A and B, are open subsets of D. This will give us a
partition of D into two open and disjoint sets. Since D is connected, one of these
must be empty. Evoking a constant path, gives us w ∈ A, so it must be B that
is empty, giving D = A and thus the claim.

In order to show that A is open, choose some z0 ∈ A. Since z0 ∈ D and D is
open, there is an ε > 0, such that Uε(z0) ⊆ D and we will prove that Uε(z0) ⊆ A.
In order to do so, let z ∈ Uε(z0). As z0 ∈ A, there is a path γ1 in D, consisting of
finitely many connecting lines that joins w to z0. Furthermore, Uε(z0) is convex,
so the connecting line γ[z0,z] from z0 to z is contained in this set and therefore
in D. Putting the two together γ := γ1 ⊕ γ[z0,z] is a path in D that consists of
finitely many connecting lines and joins w to z, so z ∈ A.

It remains to show that B is open. Taking some z0 ∈ B, we again fix an ε > 0
with Uε(z0) ⊆ D and show Uε(z0) ⊆ B. If we suppose for a contradiction that
some z ∈ Uε(z0) lies in A, by the very same construction as in the preceeding
paragraph we could construct a path of finitely many connecting lines that joins
w and z0 via z. This would result in z0 lying in A, which is a contradiction. So
there is no z ∈ Uε(z0) ∩ A, which means Uε(z0) ⊆ B and we are done.

We now define the complex path integral.

Definition 2.7. Let D ⊆ C be open, f : D → C continuous, γ : [a, b] → D a
continuously differentiable path. Then we define the path integral or line integral
or contour integral [Kurvenintegral oder Wegintegral] of f along γ by

∫

γ
f(z) dz :=

∫ b

a
f
(
γ(t)

)
γ′(t) dt.

For a path that is only piecewise C1 we take a partition a = t0 < t1 < · · · <
tn−1 < tn = b of [a, b] such that γ|[tj−1,tj ] is continuously differentiable for all
j = 1, 2, . . . , n and set

∫

γ
f(z) dz =

n∑

j=1

∫ tj

tj−1

f
(
γ(t)

)
γ′(t) dt.
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2 Path Integrals

Finally, we define the length of the path [Länge der Kurve] γ by

L(γ) :=
∫ b

a
|γ′(t)| dt


 or L(γ) :=

n∑

j=1

∫ tj

tj−1

|γ′(t)| dt


 .

Remark 2.8. (a) In most of our subsequent considerations we will formulate
our results for paths (which are only piecewise C1), but in the proofs and
calculations we will employ the formula for a globally differentiable path.
Everything also works nicely with all the additional sums in the formulae,
but omitting them makes the exposition much more readable.

(b) As in Analysis II one shows that the path integral is invariant under orien-
tation preserving reparametrisations of the path and that it changes sign,
whenever an orientation reversing reparametrisation is applied. The length,
however, does not see the orientation and, thus, is invariant under every
reparametrisation.

(c) When we will encounter line integrals in the forthcoming chapters, the path
involved often arises as the boundary of a bounded and connected subset
D of C, e.g. a circle or a triangle. We will then often write

∫
∂D f(z) dz for

the path integral of f along a path that runs along the boundary of D once
in the mathematically positive sense, i.e. counter-clockwise.

As an example, for the path γ : [0, 2π] → C, γ(t) = eit, we have
∫

∂U1(0)
f(z) dz =

∫

γ
f(z) dz =

∫ 2π

0
f(eit)ieit dt.

The following example is a very easy one that could well sneak through under
the radar as “let’s do some simple toy example”, but in fact we will revoke this
one again and again during the course and in some sense it is at the very base of
Complex Analysis.

Example 2.9. For n ∈ Z and r > 0 we consider the function f : C \ {0} → C

with f(z) = zn and the path γ(t) = reit, t ∈ [0, 2π], that describes the circle
around 0 with radius r.

The most important case is n = −1. Here we get
∫

γ
f(z) dz =

∫

γ

1

z
dz =

∫ 2π

0

1

γ(t)
γ′(t) dt =

∫ 2π

0

1

reit
ireit dt =

∫ 2π

0
i dt = 2πi.

For n 6= −1 we find
∫

γ
f(z) dz =

∫

γ
zn dz =

∫ 2π

0
rneintrieit dt = irn+1

∫ 2π

0
ei(n+1)t dt

=
irn+1

i(n + 1)
ei(n+1)t

∣∣∣∣
t=2π

t=0
=

rn+1

n + 1

(
ei(n+1)2π − 1

)
= 0.
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We collect some easy properties of the path integral.

Proposition 2.10. Let D ⊆ C be open, f, g : D → C continuous, α, β ∈ C and
γ, γ1, γ2 paths in D, defined on compact intervals and such that γ1 ⊕γ2 is defined.
Then the following assertions hold.

(a)
∫

γ1⊕γ2

f(z) dz =
∫

γ1

f(z) dz +
∫

γ2

f(z) dz.

(b)
∫

γ−

f(z) dz = −
∫

γ
f(z) dz.

(c)
∫

γ
(αf + βg)(z) dz = α

∫

γ
f(z) dz + β

∫

γ
g(z) dz. (linearity)

(d)

∣∣∣∣
∫

γ
f(z) dz

∣∣∣∣ ≤ max
t∈[a,b]

∣∣∣f(γ(t))
∣∣∣ · L(γ). (standard estimate)

Proof. (a) Exercise

(b) Recalling that γ−(t) = γ(b − t + a), t ∈ [a, b], we find by the substitution
s := b − t + a in the real integral

∫

γ−

f(z) dz =
∫ b

a
f
(
γ−(t)

)
(γ−)′(t) dt

=
∫ b

a
f
(
γ(b − t + a)

)
γ′(b − t + a)(−1) dt

=
∫ a

b
f
(
γ(s)

)
γ′(s) ds = −

∫ b

a
f
(
γ(s)

)
γ′(s) ds = −

∫

γ
f(z) dz.

(c) Exercise

(d) As f ◦ γ is continuous on the compact interval [a, b], we find

∣∣∣∣
∫

γ
f(z) dz

∣∣∣∣ =
∣∣∣∣
∫ b

a
f
(
γ(t)

)
γ′(t) dt

∣∣∣∣ ≤
∫ b

a

∣∣∣f
(
γ(t)

)∣∣∣|γ′(t)| dt

≤
∫ b

a
max
t∈[a,b]

∣∣∣f
(
γ(t)

)∣∣∣|γ′(t)| dt = max
t∈[a,b]

∣∣∣f
(
γ(t)

)∣∣∣ · L(γ).
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3 Primitives

In this chapter we will show that every holomorphic function on a star-shaped
open set has a primitive. We will have to invest some work, but this will pay off
largely in the subsequent chapters. We start with the definition of a primitive
that should be no surprise.

Definition 3.1. Let D ⊆ C be open and f : D → C continuous. We say that
F ∈ H(D) is a primitive or antiderivative [Stammfunktion] of f , if F ′ = f on
D.

As in Analysis II we find that calculating path integrals is particularly easy, if
you have a primitive of the integrand at hand.

Proposition 3.2. Let D ⊆ C be open and γ : [a, b] → D a path. If a continuous
function f : D → C has a primitive F ∈ H(D), then

∫

γ
f(z) dz = F

(
γ(b)

)
− F

(
γ(a)

)
.

In particular, if γ is a closed path, then the above path integral is zero.

Proof. By the chain rule and the fundamental theorem of calculus, we infer

∫

γ
f(z) dz =

∫ b

a
f
(
γ(t)

)
γ′(t) dt =

∫ b

a
F ′
(
γ(t)

)
γ′(t) dt

=
∫ b

a
(F ◦ γ)′(t) dt = F

(
γ(b)

)
− F

(
γ(a)

)
.

What is about the converse assertion of the above proposition? If the path
integral of some function along every closed path is zero, does it then have a
primitive? The answer is yes on connected sets. We therefore introduce the
following notion that is used widely in all areas of analysis.

Definition 3.3. A subset of C is called a domain [Gebiet], if it is non-empty,
open and connected.

Proposition 3.4. Let G ⊆ C be a domain and f : G → C continuous. Then the
following assertions are equivalent.

(a) f has a primitive on G.

13



3 Primitives

(b) For all closed paths γ : [a, b] → G we have
∫

γ
f(z) dz = 0.

(c) For all paths γ1 : [a1, b1] → G and γ2 : [a2, b2] → G with γ1(a1) = γ2(a2)

and γ1(b1) = γ2(b2) we have
∫

γ1

f(z) dz =
∫

γ2

f(z) dz.

Proof. (a)⇒(b) This is Proposition 3.2.

(b)⇒(c) Let γ1, γ2 be as in (c). Then γ1 ⊕ γ−
2 is a closed path, so we find with

the help of (b) and Proposition 2.10

0 =
∫

γ1⊕γ−

2

f(z) dz =
∫

γ1

f(z) dz +
∫

γ−

2

f(z) dz =
∫

γ1

f(z) dz −
∫

γ2

f(z) dz.

This yields (c).

(c)⇒(a) Finally, we attack the substantial part of the proof. We fix some z0 ∈ G
and for each z ∈ G we denote by γz : [0, 1] → G some path with γz(0) = z0

and γz(1) = z. These paths exist thanks to Proposition 2.6.

Now, we consider the function

F : G → C with F (z) =
∫

γz

f(ζ) dζ.

Note that this function is well-defined thanks to our hypothesis (c).

We want to show that F is a primitive of f , i.e. F ∈ H(G) and F ′ = f . In
order to derive F in z ∈ G, we fix ε > 0 such that Uε(z) ⊆ G and consider
h ∈ Uε(0) with h 6= 0. We have for the difference quotient

F (z + h) − F (z)

h
=

1

h

[∫

γz+h

f(ζ) dζ −
∫

γz

f(ζ) dζ
]
.

Since our path integrals over f are path independent by (c), we may replace
the path γz+h by γz ⊕ γ[z,z+h]. This yields with the help of Proposition 2.10

F (z + h) − F (z)

h
=

1

h

[∫

γz⊕γ[z,z+h]

f(ζ) dζ −
∫

γz

f(ζ) dζ
]

=
1

h

[∫

γz

f(ζ) dζ +
∫

γ[z,z+h]

f(ζ) dζ −
∫

γz

f(ζ) dζ
]

=
1

h

∫

γ[z,z+h]

f(ζ) dζ.

We plug in the parametrisation of the connecting line

γ[z,z+h](t) = t(z + h) + (1 − t)z = z + th, t ∈ [0, 1],

14



and find

F (z + h) − F (z)

h
=

1

h

∫ 1

0
f(z + th)h dt =

∫ 1

0
f(z + th) dt.

Finally, by continuity of f , we have limh→0 f(z + th) = f(z) uniformly in
t ∈ [0, 1], so we may push this limit into the integral and obtain for every
z ∈ G

F ′(z) = lim
h→0

F (z + h) − F (z)

h
= lim

h→0

∫ 1

0
f(z + th) dt =

∫ 1

0
f(z) dt = f(z).

Remark 3.5. We have seen in Analysis II that for functions in several real
variables primitives are very rare and we can only hope for primitives if some
integrability condition is fulfilled and the geometry of the domain is nice. It will
turn out that for holomorphic functions things get easier, as we only have to cope
with the geometric problem.

The fact that not every holomorphic function has a primitive can already be
seen from our standard example 2.9. There we considered f : C \ {0} → C with
f(z) = 1/z. Then f is holomorphic on C \ {0} (with derivative f ′(z) = −1/z2),
but we calculated in Example 2.9 that

∫

∂U1(0)
f(z) dz = 2πi 6= 0.

Since this is an integral along a closed path, by Proposition 3.4 this function f
cannot have a primitive on C \ {0}.

We recall the definition of star-shaped and convex domains.

Reminder 3.6. A domain G ⊆ C is called star-shaped [sternförmig], if there is
some z0 ∈ G, such that tr(γ[z0,z]) ⊆ G for all z ∈ G.

It is called convex [konvex], if tr(γ[w,z]) ⊆ G for all w, z ∈ G.

Inspecting the proof of Proposition 3.4 (c)⇒(a) one finds the following result.
It is a good exercise to thoroughly do this inspection!

Proposition 3.7. Let G ⊆ C be a star-shaped domain and f : G → C contin-
uous. Then f has a primitive on G, iff for all closed triangles △ ⊆ G one has∫

∂△ f(z) dz = 0.

We now formulate the main result of this chapter.

Theorem 3.8 (Cauchy’s Integral Theorem (for star-shaped domains) [Cauchy-In-
tegral-Satz (für sternförmige Gebiete)]). Let G ⊆ C be a star-shaped domain,
f : G → C continuous and f ∈ H(G) or f ∈ H(G \ {w0}) for some w0 ∈ C.
Then f has a primitive on G. In particular

∫

γ
f(z) dz = 0

for all closed paths γ : [a, b] → G.

15



3 Primitives

Remark 3.9. On a first glance we could hope that we can deduce this result
from our corresponding result in Analysis II (Satz II.19.8), but there are two
drawbacks. First, we do not know yet that the partial derivatives of a holomorphic
function are continuous, which we would need to apply this result. (In fact we
will later on show this based on the Cauchy Integral Theorem. . . ) Secondly, this
would not give us the little additional information that we can dispense with the
holomorphy of f in one exceptional point and this little exception will help us a
lot in the next chapter. (Ironically, we will then see later that this exception in
fact is none. . . )

So, we will present here a different approach that gives a purely Complex
Analysis proof of the Cauchy Integral Theorem. We start with two auxiliary
results that, nevertheless, are very important on their own.

In order to formulate the first of these lemma-theorems we introduce the fol-
lowing notion.

Definition 3.10. Let (M, d) be a metric space and A ⊆ M bounded. Then the
diameter [Diameter] of A is given by

diam(A) := sup
x,y∈A

d(x, y).

Lemma 3.11 (Cantor’s Intersection Theorem [Cantor’scher Durchschnittssatz]).
Let (M, d) be a complete metric space and let {An : n ∈ N} be a family of closed
subsets of M such that

(a) An 6= ∅ for all n ∈ N,

(b) An ⊇ An+1 for all n ∈ N and

(c) limn→∞ diam(An) = 0.

Then there exists some x0 ∈ M such that
⋂

n∈N An = {x0}.

Proof. We first show that the intersection
⋂

n∈N An cannot contain more than one
point. In order to do so, let x1 and x2 be two elements of this intersection. Then
we have x1, x2 ∈ An for all n ∈ N, so for all n ∈ N we find

d(x1, x2) ≤ sup
x,y∈An

d(x, y) = diam(An).

Letting n → ∞ we find d(x1, x2) = 0, so x1 = x2.
It remains to prove that the intersection of all An is non-empty. Investing (a),

for every n ∈ N we may pick some xn ∈ An. Then (xn) is a Cauchy sequence in M .
Indeed, given some ε > 0, by (c) we find some N ∈ N, such that diam(AN) < ε
and for all n, m ∈ N that are larger than N we get from (b) that xn, xm ∈ AN .
So for all n, m ≥ N we find

d(xn, xm) ≤ diam(AN ) < ε.
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Since M is complete, we conclude that x0 := limn→∞ xn exists. Finally, for all
n ∈ N, we know by (b) that the truncated sequence (xj)j≥n lies in An. Since An

is closed its limit x0 must also be contained in An, so we have found that x0 ∈ An

for all n ∈ N hence x0 ∈ ⋂
n∈N An.

Lemma 3.12 (Goursat’s Integral Lemma [Lemma von Goursat]). Let G ⊆ C be
a domain and f ∈ H(G). Then

∫

∂△
f(z) dz = 0 for all closed triangles △ ⊆ G.

Proof. We pick some closed triangle △0 ⊆ G. Joining the three midpoints of
its sides by straight lines we cut △0 into four smaller triangles △(1)

0 , △(2)
0 , △(3)

0

and △(4)
0 , as indicated in Figure 3.1. In this sketch the bigger arrows show the

∆(1)
0 ∆

∆

∆0
(4)

(2)

0
(3)

∆0

0

Figure 3.1: The decomposition of △0 in the proof of Goursat’s Integral Lemma.

path along that the integration
∫

∂△0
f(z) dz is performed. The small arrows

correspond to the integration along the four boundaries of the four new triangles.
The miraculous effect is now that all the integrations along the boundary of the
smaller inner triangle △(4)

0 cancel out. Thus, we find

∫

∂△0

f(z) dz =
4∑

j=1

∫

∂△(j)
0

f(z) dz.

Now, we can choose j0 ∈ {1, 2, 3, 4} in such a way that
∣∣∣∣
∫

∂△(j0)
0

f(z) dz

∣∣∣∣

is the maximal absolute value of the four integrals in the above sum and set
△1 := △(j0)

0 . Then we know on the one hand

∣∣∣∣
∫

∂△0

f(z) dz
∣∣∣∣ ≤

4∑

j=1

∣∣∣∣
∫

∂△(j)
0

f(z) dz
∣∣∣∣ ≤ 4

∣∣∣∣
∫

∂△(j0)
0

f(z) dz
∣∣∣∣ = 4

∣∣∣∣
∫

∂△1

f(z) dz
∣∣∣∣
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3 Primitives

and on the other hand, since the new triangles where constructed by cutting the
sides of △0 exactly in halfs, we have

L(∂△1) =
1

2
L(∂△0).

We now treat △1 in exactly the same way. This yields one more closed triangle
△2 ⊆ △1 with

∣∣∣∣
∫

∂△1

f(z) dz
∣∣∣∣ ≤ 4

∣∣∣∣
∫

∂△2

f(z) dz
∣∣∣∣ and L(∂△2) =

1

2
L(∂△1).

Iterating this procedure results in a sequence of closed triangles (△n) in G, that
fulfill for all n ∈ N0

• △n ⊇ △n+1,

•
∣∣∣∣
∫

∂△0

f(z) dz
∣∣∣∣ ≤ 4n

∣∣∣∣
∫

∂△n

f(z) dz
∣∣∣∣ and

• L(∂△n) =
1

2n
L(∂△0).

The sequence (△n) now fulfills all the requirements of Cantor’s Intersection The-
orem, so we know that

⋂
n∈N0

△n = {z0} for some z0 ∈ △0.
Now, it is time to invest the holomorphy of f . This gives us for all z ∈ G

f(z) = f(z0) + f ′(z0)(z − z0) + r(z) with lim
z→z0

r(z)

z − z0
= 0.

Inserting this into our path integral along ∂△n, we get for all n ∈ N

∣∣∣∣
∫

∂△n

f(z) dz

∣∣∣∣ =
∣∣∣∣
∫

∂△n

f(z0) dz +
∫

∂△n

f ′(z0)(z − z0) dz +
∫

∂△n

r(z) dz

∣∣∣∣.

The first two integrals on the right hand side are both zero by Proposition 3.2,
since ∂△n corresponds to a closed path and both integrands obviously have prim-
itives on G, which are z 7→ f(z0) · z and z 7→ 1/2 · f ′(z0)(z − z0)2, respectively.
So, we are left with

∣∣∣∣
∫

∂△n

f(z) dz
∣∣∣∣ =

∣∣∣∣
∫

∂△n

r(z)

z − z0

(z − z0) dz
∣∣∣∣.

Estimating by Proposition 2.10(d), we find

∣∣∣∣
∫

∂△n

f(z) dz
∣∣∣∣ ≤ L(∂△n) max

z∈△n

|z − z0|︸ ︷︷ ︸
≤L(∂△n)

∣∣∣∣
r(z)

z − z0

∣∣∣∣ ≤ L(∂△n)2 max
z∈△n

∣∣∣∣
r(z)

z − z0

∣∣∣∣.
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Putting everything together, this means that

∣∣∣∣
∫

∂△0

f(z) dz
∣∣∣∣ ≤ 4n

∣∣∣∣
∫

∂△n

f(z) dz
∣∣∣∣ ≤ 4nL(∂△n)2 max

z∈△n

∣∣∣∣
r(z)

z − z0

∣∣∣∣

= 4n L(∂△0)2

22n
max
z∈△n

∣∣∣∣
r(z)

z − z0

∣∣∣∣ = L(∂△0)2 max
z∈△n

∣∣∣∣
r(z)

z − z0

∣∣∣∣.

In view of taking the limit n → ∞, it remains to show that maxz∈△n |r(z)/(z−z0)|
tends to 0 as n goes to ∞.

Let ε > 0. We know that limz→z0 r(z)/(z−z0) = 0, so there exists a δ > 0, such
that |r(z)/(z − z0)| < ε for all z ∈ Uδ(z0). Since our triangles △n get smaller and
smaller and z0 ∈ △n for all n ∈ N, there exists an n0 ∈ N for that △n0 ⊆ Uδ(z0).
As our triangles are nested, this implies that △n ⊆ Uδ(z0) for all n ≥ n0 and this
means that

max
z∈△n

∣∣∣∣
r(z)

z − z0

∣∣∣∣ < ε for all n ≥ n0

and this is nothing than the asserted convergence.

Lemma 3.13 (Goursat’s Integral Lemma, Version 2.0). Let G ⊆ C be a domain
and f ∈ H(G \ {z0}) for some z0 ∈ G, but f is still continuous in z0. Then

∫

∂△
f(z) dz = 0 for all closed triangles △ ⊆ G.

Proof. We reduce this to the case of f being holomorphic on all of some suitable
triangles. In order to do so, we first treat the case, where z0 is exactly a vertex
of our triangle △, cf. Figure 3.2. For z1 close to the vertex z0 as in the sketch,

z0 z1

∆3

∆

∆

2

1

Figure 3.2: The decomposition of △, if z0 is a vertex.

we decompose △ as indicated into three triangles △1, △2 and △3. With the
same reasoning as in the proof of the original Goursat Integral Lemma (put in
the arrows!), we find

∫

∂△
f(z) dz =

3∑

j=1

∫

∂△j

f(z) dz.

19



3 Primitives

Furthermore, the integrals around the boundaries of △2 and △3 are both zero by
the original Goursat 3.12, since here f is completely holomorphic. So we are left
with ∫

∂△
f(z) dz =

∫

∂△1

f(z) dz.

Using the standard estimation this reveals
∣∣∣∣
∫

∂△
f(z) dz

∣∣∣∣ =
∣∣∣∣
∫

∂△1

f(z) dz
∣∣∣∣ ≤ max

z∈△1

|f(z)|L(△1) ≤ max
z∈△

|f(z)|L(△1).

Now, if we let z1 → z0 the length L(△1) tends to zero, so we really find that∫
∂△ f(z) dz = 0.

As a second case we consider z0 to be contained in an edge of △. Then we
decompose △ into the two triangles △1 and △2 as indicated in Figure 3.3. As

z0

∆∆1 2

Figure 3.3: The decomposition of △, if z0 is contained in an edge.

before it holds ∫

∂△
f(z) dz =

∫

∂△1

f(z) dz +
∫

∂△2

f(z) dz

and both integrals on the right hand side are zero by our considerations in the
first case, as z0 now is a vertex of these triangles.

Finally, we take care of the case when z0 is an interior point of our triangle.
Again, we decompose the triangle into two triangles as indicated in Figure 3.4,
such that z0 is situated on some edges of △1 and △2. Then we again have

∫

∂△
f(z) dz =

∫

∂△1

f(z) dz +
∫

∂△2

f(z) dz = 0 + 0 = 0.

After all these preparations the Cauchy Integral Theorem can now be deduced
easily.

Proof of Theorem 3.8. In Lemma 3.12 and Lemma 3.13 we have shown that un-
der our hypotheses

∫

∂△
f(z) dz = 0 for all closed triangles △ ⊆ G.
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∆ ∆

z0

1 2

Figure 3.4: The decomposition of △ for z0 in the interior.

Since G is star-shaped, Proposition 3.7 reveals that f has a primitive on G and
by Proposition 3.4 we conclude that the path integral of f along every closed
path in G is zero.
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4 The Cauchy Integral Formula

In this chapter we do the first steps into the wonderland of holomorphy. We
will prove the Cauchy Integral Formula that already by itself reveals a sort of
magical long range effect of holomorphy. But, even more important, we will see
this formula as the source of a huge load of marvelous results about holomorphic
functions.

As a preparatory step we translate our results from Analysis II about derivation
with respect to a parameter under the integral sign into the context of path
integrals in C.

Lemma 4.1. Let D ⊆ C be open, γ : [a, b] → C a path and f : tr(γ) × D → C

continuous. If for every ζ ∈ tr(γ) the function z 7→ f(ζ, z) is complex differen-
tiable with a continuous derivative ∂2f(ζ, z), then the function

F : D → C with F (z) =
∫

γ
f(ζ, z) dζ

is holomorphic in D and

F ′(z) =
∫

γ
∂2f(ζ, z) dζ.

Proof. We reduce the problem to real differentiation under the integral. We set
ϕ(t, z) := f(γ(t), z)γ′(t), t ∈ [a, b], z ∈ D, to the effect that

F (z) =
∫ b

a
f
(
γ(t), z

)
γ′(t) dt =

∫ b

a
ϕ(t, z) dt.

In the following we identify as usual z = x+iy ∈ D with the real vector (x, y)T

and F (z) = F (x, y) = U(x, y) + iV (x, y) with U, V : D → R. Furthermore, in
the same spirit, we set u(t, x, y) := Re(ϕ)(t, x, y) and v(t, x, y) := Im(ϕ)(t, x, y).
With this notation we have

U(x, y) = Re
(
F (x, y)

)
= Re

(∫ b

a
ϕ(t, x, y) dt

)
=
∫ b

a
u(t, x, y) dt

and, in the same way, V (x, y) =
∫ b

a v(t, x, y) dt.
Since z 7→ ϕ(t, z) is continuously complex differentiable throughout D, the

functions u and v are continuously real differentiable and fulfill the Cauchy-
Riemann differential equations (see Theorem 1.6), i.e. we have

ux(t, x, y) = vy(t, x, y) and uy(t, x, y) = −vx(t, x, y)
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4 The Cauchy Integral Formula

for all t ∈ [a, b] and (x, y) ∈ D.
We deduce from the theorem on differentiation of parameter integrals, cf.

Proposition II.18.4 in Analysis II, that U and V are continuously real differ-
entiable in D and

Ux(x, y) =
∂

∂x

(∫ b

a
u(t, x, y) dt

)
=
∫ b

a
ux

(
t, x, y

)
dt =

∫ b

a
vy(t, x, y) dt

=
∂

∂y

(∫ b

a
v(t, x, y) dt

)
= Vy(x, y).

Analogously, one sees that Uy(x, y) = −Vx(x, y), so U and V fulfill the Cauchy-
Riemann equations as well, which means that F ∈ H(D). The asserted formula
follows then from the formula in Theorem 1.6 as follows

F ′(z) = Ux(z) + iVx(z) =
∫ b

a
ux(t, x, y) dt + i

∫ b

a
vx(t, x, y) dt

=
∫ b

a

(
ux(t, x, y) + ivx(t, x, y)

)
dt =

∫ b

a

∂ϕ

∂z
(t, z) dt

=
∫ b

a

∂

∂z

(
f(γ(t), z)γ′(t)

)
dt =

∫ b

a
∂2f(γ(t), z)γ′(t) dt =

∫

γ
∂2f(ζ, z) dζ.

We can use this Lemma to generalise our fundamental Example 2.9. (You
recover Example 2.9 as the case z0 = z = 0.)

Proposition 4.2. Let z0 ∈ C and r > 0. Then for all z ∈ Ur(z0)
∫

∂Ur(z0)

1

ζ − z
dζ = 2πi.

Proof. We consider the function h : Ur(z0) → C with

h(z) :=
∫

∂Ur(z0)

1

ζ − z
dζ

and we want to prove that h is constantly 2πi on Ur(z0). First of all, the de-
nominator in the integral is never zero on ∂Ur(z0), so by Lemma 4.1 we have
h ∈ H(Ur(z0)). We will now show that h′ = 0 everywhere on Ur(z0) and
h(z0) = 2πi. Since Ur(z0) is a connected set, the first property yields that h
is constant, while the second property gives the right value to this constant.

The second goal is easily accomplished just by inserting the parametrisation
(in fact it is the same calculation as in Example 2.9.)

h(z0) =
∫

∂Ur(z0)

1

ζ − z0
dζ =

∫ 2π

0

1

z0 + reit − z0
ireit dt =

∫ 2π

0
i dt = 2πi.

In order to prove that h′(z) = 0 for all z ∈ Ur(z0), we again invoke Lemma 4.1
to find

h′(z) =
∫

∂Ur(z0)

d

dz

(
1

ζ − z

)
dζ =

∫

∂Ur(z0)

1

(ζ − z)2
dζ. (4.1)
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Now, for every fixed z ∈ Ur(z0) the function ζ 7→ 1/(ζ−z)2, which is integrated,
has a primitive on C \ {z}: it is just ζ 7→ −1/(ζ − z). Since the path described
by ∂Ur(z0) lies in C \ {z}, Proposition 3.4 tells us, that the path integral in the
right hand side of (4.1) is zero and we find h′(z) = 0, as we wanted.

Definition 4.3. Let D ⊆ C be open. We say that an open set U is compactly
contained [kompakt-offen] in D and we write U ⊂⊂ D, if U is compact and
U ⊆ D.

Theorem 4.4 (Cauchy’s Integral Formula [Cauchy-Integral-Formel]). Let a do-
main G ⊆ C, z0 ∈ G, f ∈ H(G) and r > 0 be given. If Ur(z0) ⊂⊂ G, then for
all z ∈ Ur(z0)

f(z) =
1

2πi

∫

∂Ur(z0)

f(ζ)

ζ − z
dζ.

Remark 4.5. The Cauchy Integral Formula looks innocent, but it is worthwhile
to take a closer look. In the integral the only arguments of f that are used are
those who lie on the circle {ζ ∈ C : |ζ − z0| = r}, but the forumula is valid for
all z with |z − z0| < r. This means that once you know the values of f on the
circle you can calculate the values of f on the whole disk! This is a remarkable
long range effect of holomorphy that we will still encounter several times.

If we do this calculation in particular for the centre of the disk, i.e. for z = z0

we find

f(z0) =
1

2πi

∫

∂Ur(z0)

f(ζ)

ζ − z0
dζ =

1

2πi

∫ 2π

0

f(z0 + reit)

z0 + reit − z0
ireit dt

=
1

2π

∫ 2π

0
f(z0 + reit) dt, (4.2)

which itself is a remarkable formula. It says that the value of f in z0 is the mean
value of f on a circle around z0 (This integral can indeed be seen as a sort of mean
value, as all values of f along an ’interval’ of length 2π are summed up and then
one divides by the length of the interval). That’s why this formula is usually
referred to as the mean value property [Mittelwerteigenschaft] of holomorphic
functions.

Note that the right hand side of the Cauchy Integral Formula and also of the
formula in the mean value property depend formally on the radius r, but the
value of the integral obviously does not.

Proof. As D := Ur(z0) is compactly contained in G, we find an ε > 0 such that
even Ur+ε(z0) ⊆ G. On this slightly larger ball and for a fixed z ∈ D we now
consider

g(ζ) :=





f(ζ) − f(z)

ζ − z
, for ζ 6= z

f ′(z), for ζ = z
, ζ ∈ Ur+ε(z0)
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4 The Cauchy Integral Formula

This function g is continuous, since f is complex differentiable in z and g is even
holomorphic on Ur+ε(z0) \ {z}. Finally Ur+ε(z0) is convex and thus star-shaped,
so we are in the position to apply the Cauchy Integral Theoerm 3.8 to the closed
path described by ∂D in Ur+ε(z0). This yields

0 =
∫

∂D
g(ζ) dζ =

∫

∂D

f(ζ) − f(z)

ζ − z
dζ =

∫

∂D

f(ζ)

ζ − z
dζ − f(z)

∫

∂D

1

ζ − z
dζ.

By Proposition 4.2 the last path integral in the above equation can be evaluated
as 2πi and we find

2πif(z) =
∫

∂D

f(ζ)

ζ − z
dζ,

from which the Cauchy Integral Formula follows immediately.

The Cauchy Integral Formula is at the base of many important results on
holomorphic functions. We could label every single result in the rest of this
chapter as Corollary, but we will refrain from doing so in order to highlight the
importance of these results.

Proposition 4.6 (Cauchy’s Integral Formula for derivatives). Let G ⊆ C be a
domain and f ∈ H(G). Then f is arbitrarily often complex differentiable and
f (n) ∈ H(G) for all n ∈ N. Furthermore, for all z0 ∈ G and r > 0 such that
Ur(z0) ⊂⊂ G it holds

f (n)(z) =
n!

2πi

∫

∂Ur(z0)

f(ζ)

(ζ − z)n+1
dζ for all z ∈ Ur(z0) and all n ∈ N0.

Proof. We prove the formula by induction. The base case n = 0 is just the Cauchy
Integral Formula for the function itself from Theorem 4.4. For the inductive step
from n to n + 1 we differentiate the formula for the nth derivative that is true
thanks to the inductive hypothesis. Invoking Lemma 4.1 to differentiate under
the integral, we find

f (n+1)(z) =
(
f (n)

)′
(z) =

d

dz

(
n!

2πi

∫

∂Ur(z0)

f(ζ)

(ζ − z)n+1
dζ
)

=
n!

2πi

∫

∂Ur(z0)

(n + 1)f(ζ)

(ζ − z)n+2
dζ =

(n + 1)!

2πi

∫

∂Ur(z0)

f(ζ)

(ζ − z)n+2
dζ

and we are done.

Theorem 4.7 (Morera’s Theorem). Let G ⊆ C be a domain. Then a continuous
function f : G → C is holomorphic on G, iff

∫

∂△
f(z) dz = 0 for all closed triangles △ ⊆ G. (4.3)
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Proof. The ’only if’ part is just the Integral Lemma of Goursat. So, we only have
to prove the converse.

Suppose that (4.3) is true. If, additionally, G is star-shaped we know from
Proposition 3.7 that f has a primitive F ∈ H(G). But then by Proposition 4.6
also f = F ′ ∈ H(G).

Now, let us prove the holomorphy of f in the case where G is a general domain.
Fix some z ∈ G and choose a radius ε > 0 with Uε(z) ⊂⊂ G. Then Uε(z) is star-
shaped and by hypothesis all path integrals of f along boundaries of triangles in
Uε(z) vanish. So, by the above considerations f |Uε(z) is holomorphic on this ball.
In particular f is complex differentiable in z. Since z was arbitrary in G we have
f ∈ H(G).

Proposition 4.8. Let z0 ∈ C and r > 0. If f ∈ H(Ur(z0)) fulfills |f(z)| ≤ M
for all z ∈ Ur(z0) and some M > 0, then for all n ∈ N0

∣∣∣f (n)(z0)
∣∣∣ ≤ n!

rn
M.

Proof. Take some ̺ ∈ (0, r). Then U̺(z0) ⊂⊂ Ur(z0), so by the Cauchy Integral
Formula for derivatives from Proposition 4.6

∣∣∣f (n)(z0)
∣∣∣ =

∣∣∣∣
n!

2πi

∫

∂U̺(z0)

f(ζ)

(ζ − z0)n+1
dζ

∣∣∣∣ =
n!

2π

∣∣∣∣
∫

∂U̺(z0)

f(ζ)

(ζ − z0)n+1
dζ

∣∣∣∣

Since |ζ − z0| = ̺ throughout our integration path and by the bound on f we
have ∣∣∣∣

f(ζ)

(ζ − z0)n+1

∣∣∣∣ =
|f(ζ)|

|ζ − z0|n+1
=

|f(ζ)|
̺n+1

≤ M

̺n+1
.

Thus, by the standard estimation for path integrals, cf. Proposition 2.10(d), we
get

∣∣∣f (n)(z0)
∣∣∣ ≤ n!

2π

M

̺n+1
L(∂U̺(z0)) =

n!

2π

M

̺n+1
2π̺ =

n!

̺n
M.

This argument works for all ̺ ∈ (0, r), so we can let ̺ → r and this yields the
claim.

The growth bound that we just proved looks again not very spectacular. But,
wait and see. . .

Definition 4.9. A function f : C → C that is holomorphic on all of C is called
entire [ganz].

Theorem 4.10 (Liouville’s Theorem [Satz von Liouville]). Every entire and
bounded function is constant.
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4 The Cauchy Integral Formula

Proof. Let f be an entire and bounded function and let M > 0 be such that
|f(z)| ≤ M for all z ∈ C. For every z ∈ C and every r > 0 we may apply
Proposition 4.8 and we find

∣∣∣f ′(z)
∣∣∣ ≤ 1!

r1
M =

M

r
.

But r > 0 was arbitrary, so we can let r → ∞, yielding |f ′(z)| = 0 for all z ∈ C.
This means the derivative of f vanishes everywhere and since C is connected, we
deduce that f is constant.

Liouville’s Theorem has many applications in several realms of mathematics.
We want to give two very different ones. The first is a corollary that is an immense
sharpening of the Liouville Theorem itself.

Corollary 4.11. Every entire function f that is non-constant has a dense image,
i.e. the closure of the image f(C) is the whole of C.

Proof. We assume that this is false, so the open set C \ f(C) is non-empty. This
means there is a whole ball Uε(z0) in this set with suitable z0 ∈ C and ε > 0.
Consider the function g : C → C with g(z) = 1/(f(z) − z0). This function is
indeed defined and holomorphic on all of C, as by assumption f(z) is never z0.
So g is an entire function. Furthermore, by our assumption |f(z) − z0| ≥ ε for
all z ∈ C, so we have ∣∣∣g(z)

∣∣∣ =
1

|f(z) − z0|
≤ 1

ε
,

which means that g is bounded, so by Liouville’s Theorem g is constant. But if
g is constant, so is f and we have a contradiction.

Remark 4.12. The above Corollary again does not tell the whole story. In fact,
Picard’s Little Theorem [Kleiner Satz von Picard] states, that if f : C → C is
entire and non-constant then f(C) is either C or C without one single point.

The second application of Liouville’s Theorem presented here is a short proof
of the fundamental theorem of Algebra.

Theorem 4.13 (Fundamental Theorem of Algebra [Fundamentalsatz der Alge-
bra]). Every polynomial over C with degree n ≥ 1 has exactly n zeros (counted
with multiplicity).

Proof. Let p be a polynomial over C with degree n ≥ 1. As usual we show that p
has a zero. Then, if p(λ1) = 0, we have p(z) = (z − λ1)q(z) with a polynomial q
that has degree n − 1. Then one can do the same argument for q or rather prove
the claim by induction.

So, we have to show, that a polynomial

p(z) =
n∑

k=0

akzk
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with coefficients ak ∈ C, k = 1, 2, . . . , n, and an 6= 0 has a zero in C. We assume
that this is not the case, i.e. p(z) 6= 0 for all z ∈ C. Then the function f := 1/p
is defined everywhere on C and is holomorphic, so f is an entire function. We
will prove that f is bounded. Then Liouville tells us that f is constant, but this
means that p is constant and this is in contradiction with the degree of p being
at least 1.

In order to prove that f = 1/p is bounded, we set

r :=
2n

|an|
n

max
k=0

|ak|.

Then r ≥ 2n > 1 (consider k = n). Furthermore, for all k = 0, 1, . . . , n − 1 and
all z ∈ C with |z| ≥ r we have

∣∣∣∣
ak

an
zk−n

∣∣∣∣ =
|ak|
|an| |z|k−n ≤ r

2n
rk−n =

rk−n+1

2n
≤ 1

2n
,

where the last inequality is true, since k − n + 1 ≤ 0 and r > 1. Applying the
reverse triangle inequality, the triangle inequality and the above estimate yields
for all z ∈ C with |z| ≥ r

|p(z)| =
∣∣∣∣anzn +

n−1∑

k=0

akzk
∣∣∣∣ =

∣∣∣∣anzn
(

1 +
n−1∑

k=0

ak

an
zk−n

)∣∣∣∣

= |an||z|n
∣∣∣∣1 −

n−1∑

k=0

−ak

an
zk−n

∣∣∣∣ ≥ |an|rn
(

1 −
∣∣∣∣
n−1∑

k=0

ak

an
zk−n

∣∣∣∣
)

≥ |an|rn
(

1 −
n−1∑

k=0

∣∣∣∣
ak

an
zk−n

∣∣∣∣
)

≥ |an|rn
(

1 −
n−1∑

k=0

1

2n

)

= |an|rn
(

1 − n

2n

)
= |an|rn 1

2
.

This shows that for all |z| ≥ r

|f(z)| =
1

|p(z)| ≤ 2

|an|rn
,

so f is bounded outside of the closed ball Ur(0) in C. But f is continuous on the
compact set Ur(0) und thus also bounded there. Taking the two bounds together
f is bounded on C and the proof is finished.

Exercise 4.14. (a) Let f ∈ H(C) satisfy |f(z)| ≤ M |z| for some M ≥ 0 and
all z ∈ C. Show that f is a linear function, i.e. there is a ∈ C such that
f(z) = az for all z ∈ C.

(b) Show that every complex polynomial is either constant or surjective.
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4 The Cauchy Integral Formula

As a last important consequence of Cauchy’s Integral Formula we want to prove
Weiserstrass’ Convergence Theorem that deals with sequences of functions and
in particular holomorphy of the limit function. This needs some preparations.
First, we briefly recall the relevant notions from Analysis I.

Reminder 4.15. Let D ⊆ C be open and for every n ∈ N let fn : D → C be a
function. We say that the sequence of functions (fn)

(a) converges pointwise [konvergiert punktweise] to f : D → C, if

∀ε > 0 ∀z ∈ D ∃n0 ∈ N ∀n ≥ n0 :
∣∣∣fn(z) − f(z)| < ε.

(b) converges uniformly [konvergiert gleichmäßig] to f : D → C, if

∀ε > 0 ∃n0 ∈ N ∀z ∈ D ∀n ≥ n0 :
∣∣∣fn(z) − f(z)| < ε.

In the following we need a slightly weaker version of uniform convergence.

Definition 4.16. Let D ⊆ C be open and for every n ∈ N let fn : D → C be a
function. We say that the sequence of functions (fn) converges locally uniformly
[konvergiert lokal-gleichmäßig] to f : D → C, if for all K ⊆ D compact the
sequence (fn|K) converges uniformly to f |K on K.

There is a useful reformulation of the definition of local uniform convergence
that we prove in the following lemma.

Lemma 4.17. Let D ⊆ C be open and let (fn) be a sequence of continuous
functions on D. Then (fn) converges locally uniformly on D to f : D → C, iff
for all z0 ∈ D there is a neighbourhood U ⊆ D of z0, such that (fn|U) converges
uniformly to f |U on U .

Proof. “⇒” Let z0 ∈ D. As D is open, there exists an r > 0 with U2r(z0) ⊆ D.
Then K := Ur(z0) ⊆ D is compact. By hypothesis we thus know that
(fn|K) converges uniformly to f |K on K. In particular, the same is true for
U := K◦ = Ur(z0) instead of K. So, U is a neighbourhood of z0 on which
(fn|U) converges uniformly to f |U .

“⇐” Let K ⊆ D be compact. By the hypothesis, for every z ∈ K there is
a neighbourhood U(z) ⊆ D of z such that (fn|U(z)) converges uniformly
to f |U(z) on U(z). Taking all these neighbourhoods together we get that
{U(z) : z ∈ K} is an open covering of K. So, by compactness of K, there
is a finite subcovering, i.e. we have a k ∈ N and z1, z2, . . . , zk ∈ K satisfying
K ⊆ ⋃k

j=1 U(zj).
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For the proof of uniform convergence on K we pick an ε > 0. Since (fn|U(zj))
converges uniformly on U(zj) for all j = 1, 2, . . . , k there are numbers Nj ∈
N such that

∣∣∣fn(z) − f(z)
∣∣∣ < ε for all n ≥ Nj and all z ∈ U(zj) (4.4)

for j = 1, 2, . . . , k.

We set N0 := maxk
j=1 Nj . Then for all z ∈ K there is an index j ∈

{1, 2, . . . , k} for which z ∈ U(zj). For all n ≥ N0 we have in particular
n ≥ Nj , so (4.4) gives us |fn(z) − f(z)| < ε and this is true for all z ∈ K
and all n ≥ N0. This means that we have proved that (fn|K) converges to
f |K uniformly on K.

In the following we use a topological lemma that we will not prove here. If you
look for a nice reminder of the topics in the beginning of the course in Analysis II,
then you can do the proof as an exercise (It works in every normed vector space).

Lemma 4.18. Let D ⊆ C be open and K ⊆ D compact. Then there is an open
set E with K ⊆ E ⊂⊂ D.

It is one of the nice features of uniform convergence that it allows to interchange
the limit with integrals. This is also true for path integrals, as we will show now.

Lemma 4.19. Let D ⊆ C be open and (fn) a sequence of continuous functions
on D that converges locally uniformly on D to f : D → C. Then f is continuous
and for all paths γ : [a, b] → D it holds

lim
n→∞

∫

γ
fn(z) dz =

∫

γ
lim

n→∞
fn(z) dz =

∫

γ
f(z) dz.

Proof. We saw in Analysis I, see Satz I.20.13, that under the conditions of our
Lemma f is continuous. In fact, we there considered uniform convergence instead
of local uniform convergence, but as continuity is a local property this does not
matter.

The only thing we have to prove is, that we can take the limit into the integral.
Since γ([a, b]) is a compact subset of D, by Lemma 4.18 there is an open set E
with γ([a, b]) ⊆ E ⊂⊂ D. As E is a compact subset of D, we know that (fn|E)
converges uniformly to f |E on E. This implies that (fn ◦ γ) converges uniformly
to f ◦ γ on [a, b] and that ((fn ◦ γ) · γ′) converges uniformly to (f ◦ γ) · γ′ on [a, b].
Thus Satz I.26.12 from Analysis I, which states that uniform limits may be taken
under the integral, enables us to calculate

lim
n→∞

∫

γ
fn(z) dz = lim

n→∞

∫ b

a
fn(γ(t))γ′(t) dt =

∫ b

a
lim

n→∞

(
fn(γ(t))γ′(t)

)
dt

=
∫ b

a
f(γ(t))γ′(t) dt =

∫

γ
f(z) dz.
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4 The Cauchy Integral Formula

Theorem 4.20 (Weierstrass’ Convergence Theorem [Weierstraß’scher Konver-
genzsatz]). Let G ⊆ C be a domain and let (fn) be a sequence of holomorphic
functions on G that converges locally uniformly on G to some f : G → C. Then
f ∈ H(G) and (f ′

n) converges locally uniformly to f ′ on G.

Remark 4.21. Note that this result is fundamentally different from the situation
in R. If there you want to have that the limit function is differentiable, you have to
impose some uniform convergence on the sequence (f ′

n), cf. Satz I.26.15. In fact,
in the real setting we should not even dream of differentiability to be inherited
by the limit function. If you wonder why, you could search for information on
the “Weierstrass function”.

A second important observation is that this result is magically self-improving
in the following way: The theorem tells us, that if the fn are holomorphic and
converge locally uniformly to f then we have the same convergence for the deriva-
tives f ′

n. But this means that the sequence of the derivatives (f ′
n) again fulfills

the hypotheses of the theorem. So even the sequence of the second derivatives
(f ′′

n) converges locally uniformly to f ′′. This can be iterated and we find, that
just from the convergence of (fn) we find that for all k ∈ N the kth derivatives
(f (k)

n ) converge locally uniformly to f (k).

Proof. In a first step we show that f ∈ H(G) based on an application of the
Morera Theorem 4.7. So, let △ ⊆ G be a closed triangle. We first note that the
limit function is at least continuous, so we can write down path integrals over f .
We have by Lemma 4.19

∫

∂△
f(z) dz =

∫

∂△
lim

n→∞
fn(z) dz = lim

n→∞

∫

∂△
fn(z) dz.

These last integrals are zero for every n ∈ N by Morera’s Theorem (or the Gour-
sat Integral Lemma), since all fn are holomorphic. Thus the limit is not too
complicated and we get ∫

∂△
f(z) dz = 0

for all closed triangles △ ⊆ G, which means f ∈ H(G) by the Morera Theorem.
Knowing now that f is complex differentiable we can head into the second

step that is to show local uniform convergence of the derivatives. Appealing to
Lemma 4.17 it suffices to show that for every z0 ∈ G there exists some ̺ > 0 such
that (f ′

n|U̺(z0)) converges uniformly to f ′|U̺(z0).
Let z0 ∈ G. Then we choose some r > 0 with Ur(z0) ⊂⊂ G, which is possible

since G is open. By the Cauchy Integral Formula we have for all z ∈ Ur(z0)

f ′
n(z) − f ′(z) =

1

2πi

∫

∂Ur(z0)

fn(ζ)

(ζ − z)2
dζ − 1

2πi

∫

∂Ur(z0)

f(ζ)

(ζ − z)2
dζ

=
1

2πi

∫

∂Ur(z0)

fn(ζ) − f(ζ)

(ζ − z)2
dζ.
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and this yields

∣∣∣f ′
n(z) − f ′(z)

∣∣∣ =
1

2π

∣∣∣∣
∫

∂Ur(z0)

fn(ζ) − f(ζ)

(ζ − z)2
dζ

∣∣∣∣ ≤ 1

2π
max

ζ∈∂Ur(z0)

∣∣∣fn(ζ) − f(ζ)
∣∣∣

|ζ − z|2 · 2πr.

Setting ̺ := r/2 and allowing z to only vary in the smaller ball U̺(z0) we have
that |ζ − z| ≥ r/2. This allows to estimate for all z ∈ U̺(z0)

∣∣∣f ′
n(z) − f ′(z)

∣∣∣ ≤ r max
ζ∈∂Ur(z0)

∣∣∣fn(ζ) − f(ζ)
∣∣∣

(r/2)2
=

4

r
max

ζ∈∂Ur(z0)

∣∣∣fn(ζ) − f(ζ)
∣∣∣.

Now, let ε > 0 be given. By hypothesis (fn) converges uniformly to f on the
compact set ∂Ur(z0), so there is an n0 ∈ N such that for all ζ ∈ ∂Ur(z0) and all
n ≥ n0 we have ∣∣∣fn(ζ) − f(ζ)

∣∣∣ < ε
r

4
.

This implies for all z ∈ U̺(z0) and all n ≥ n0

∣∣∣f ′
n(z) − f ′(z)

∣∣∣ ≤ 4

r
max

ζ∈∂Ur(z0)

∣∣∣fn(ζ) − f(ζ)
∣∣∣ <

4

r
· ε

r

4
= ε,

yielding the desired unifom convergence of (f ′
n) to f ′ on U̺(z0).
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5 Analytic Functions

We have seen in the last chapter that every holomorphic function is arbitrarily
often differentiable. In the real case, for such functions we have considered Taylor
expansions. So, it is a natural idea to do the same here. And we will again find
that the complex world is the best of all possible worlds. While in the real
context it could well happen that some function has a Taylor series, but this
series converges to something completely different, we will find here that every
holomorphic function can be written as a power series with positive convergence
radius around every point in its domain.

We first give a name to such beautiful functions.

Definition 5.1. Let D ⊆ C (or R) be open. A function f : D → C (or R) is
called analytic [analytisch], if for all z0 ∈ D there exists a radius r = r(z0) > 0
and a sequence (an) in C such that

f(z) =
∞∑

n=0

an(z − z0)n for all z ∈ Ur(z0). (5.1)

We recall some facts about power series.

Reminder 5.2. (a) Given a power series
∑∞

n=0 an(z − z0)n there is a number
r ∈ [0, ∞] called the convergence radius [Konvergenzradius] that tells us
that the power series is

• absolutely and locally uniformly convergent on Ur(z0) and

• divergent on {z ∈ C : |z − z0| > r}.

Furthermore, it holds

r =
(
lim sup

n→∞
n

√
|an|

)−1
.

(b) Every analytic function in R is arbitrarily often differentiable and the co-
efficients in the expansion (5.1) can be calculated by

an =
f (n)(z0)

n!
.

In particular, if the expansion exists, it is uniquely determined.
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5 Analytic Functions

We will first show that analytic functions are holomorphic, in accordance with
the real result.

Proposition 5.3. Let (an) be a complex sequence, z0 ∈ C and

f(z) =
∞∑

n=0

an(z − z0)
n

a power series with convergence radius r > 0. Then f ∈ H(Ur(z0)) and

f ′(z) =
∞∑

n=1

nan(z − z0)n−1 for all z ∈ Ur(z0).

Proof. We know from Analysis I that power series converge locally uniformly on
Ur(z0). Since the partial sums

fN(z) :=
N∑

n=0

an(z − z0)n, N ∈ N, z ∈ Ur(z0),

are polynomials, they are holomorphic, so holomorphy of the power series follows
from Weierstrass’ Convergence Theorem 4.20. The same theorem tells us that
the derivative of f is given as the limit of the derivatives of fN , thus we find for
all z ∈ Ur(z0)

f ′(z) = lim
N→∞

( N∑

n=0

an(z − z0)n
)′

= lim
N→∞

N∑

n=1

nan(z − z0)n−1 =
∞∑

n=1

nan(z − z0)n−1,

where in the last step we used that the resulting power series has the same
convergence radius as the original one, cf. the corresponding proof in Analysis I
(Proposition I.23.1)

The real surprise comes now. For holomorphic functions we also have the
converse!

Theorem 5.4. Let D ⊆ C be open. Every f ∈ H(D) is analytic.

Proof. Let z0 ∈ D. Then we have to show that there is a disk around z0 on
that f allows for a power series expansion. As D is open, we know that there is
some r > 0 with Ur(z0) ⊆ D. For every R ∈ (0, r) we know by Cauchy’s Integral
Formula, cf. Theorem 4.4,

f(z) =
1

2πi

∫

∂UR(z0)

f(ζ)

ζ − z
dζ, z ∈ UR(z0).

Using a geometric series, we can rewrite a part of the integrand in a useful way.
For all ζ ∈ ∂UR(z0) and all z ∈ UR(z0), we have

1

ζ − z
=

1

ζ − z0 − z + z0
=

1

ζ − z0
· 1

1 − z−z0

ζ−z0
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and since ∣∣∣∣
z − z0

ζ − z0

∣∣∣∣ =
|z − z0|
|ζ − z0| =

|z − z0|
R

<
R

R
= 1,

we find
1

ζ − z
=

1

ζ − z0
· 1

1 − z−z0

ζ−z0

=
1

ζ − z0

∞∑

n=0

(z − z0)n

(ζ − z0)n
.

Inserting this in our Cauchy Integral Formula results in

f(z) =
1

2πi

∫

∂UR(z0)
f(ζ)

1

ζ − z0

∞∑

n=0

(z − z0)n

(ζ − z0)n
dζ.

The geometric series converges localy uniformly (special case of a power series!),
so in particular our sum converges uniformly for ζ ∈ ∂UR(z0). This allows us to
interchange sum and integral and we obtain for all z ∈ UR(z0)

f(z) =
∞∑

n=0

1

2πi

∫

∂UR(z0)
f(ζ)

1

ζ − z0

(z − z0)n

(ζ − z0)n
dζ

=
∞∑

n=0

1

2πi

∫

∂UR(z0)

f(ζ)

(ζ − z0)n+1
dζ(z − z0)

n,

which is a wonderful power series

f(z) =
∞∑

n=0

an(z − z0)
n with an :=

1

2πi

∫

∂UR(z0)

f(ζ)

(ζ − z0)n+1
dζ =

f (n)(z0)

n!
,

where the last equality is due to Cauchy’s Integral Formula for derivatives from
Proposition 4.6.

Inspecting the proof of our theorem, we see that we proved much more than
analyticity of f . First of all we have an explicit formula for the coefficients of the
power series, no, make that two formulae: one via the derivatives of f in z0 as in
the real case and a second one involving a path integral. Furthermore, the proof
worked for every r > 0 for which Ur(z0) ⊆ D. So, we not only know that every
holomorphic function is analytic but that the convergence radius of the power
series is always the maximal possible! All this deserves to be formulated in a
more prominent manner.

Corollary 5.5. Let D ⊆ C be open, f ∈ H(D) and z0 ∈ D. If we set

an :=
f (n)(z0)

n!
, n ∈ N, and r := sup{̺ > 0 : U̺(z0) ⊆ D},

then the power series
∑∞

n=0 an(z − z0)n has at least convergence radius r and

f(z) =
∞∑

n=0

an(z − z0)n for all z ∈ Ur(z0).
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5 Analytic Functions

Remark 5.6. (a) At a first glance, the information of the above Corollary
that the convergence radius is “at least” r looks like just mathematical
correctness. By the way, this caution is justified here, already for some
rather boring reason: Consider the sine function on the unit disk D = U1(0).
Then r = 1, but we all know that the power series of the sine function has
an infinite convergence radius.

But the main point is that this small “at least” is of big importance in
Complex Analysis. Often, one starts with the knowledge of a holomorphic
function only on some small portion of C. Considering the power series
then somtetimes reveals a bigger convergence radius and allows to expand
the domain of definition. Even more, as the convergence radius is always
maximal in the realm of holomorphy of the function, from its knowledge one
can even infer on which circle there must be a first point, where holomorphy
of the function fails. We will see this effect in the last chapter on the
Riemann Zeta Function.

(b) This result also explains the somehow unpredictable behaviour of conver-
gence radii in Analysis I. Looking at them from a complex perspective
clarifies many things that seem obscure in a purely real world. Why does
the power series of f(x) = 1/(1 + x2) around zero only have convergence
radius 1, although this function is smooth on the whole real line? Because
this function has poles on the unit circle in x = ±i!

We summarize some of the results on holomorphy we had up to now.

Theorem 5.7. Let D ⊆ C be open and f : D → C a continuous function. Then
the following assertions are equivalent:

(a) f ∈ H(D).

(b) f is analytic on D.

(c) f is real differentiable and the Cauchy-Riemann differential equations are
fulfilled.

If, additionally, D is a domain, there is also

(d)
∫

∂△ f(z) dz = 0 for all closed triangles △ ⊆ D.

The analyticity of holomorphic functions gives now again rise to some aston-
ishing insights. We start with a famous result attributed to Bernhard Riemann.

Theorem 5.8 (Riemann’s Theorem on removable singularities [Riemann’scher
Hebbarkeitssatz]). Let D ⊆ C be open, z0 ∈ D and let f ∈ H(D\{z0}) be bounded
in some neighbourhood of z0. Then f can be extended to a holomorphic function
on D, i.e. there is f̂ ∈ H(D) with f(z) = f̂(z) for all z ∈ D \ {z0}.
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Remark 5.9. (a) It is interesting to compare this result to the real situation,
where a corresponding result would be grotesquely false. It is worthwhile
to think more than 10 seconds about this!

(b) The Riemann Theorem immediately implies that a continuous function on
a domain that is holomorphic with the exception of one point (or a finite
number of points) is, in fact, holomorphic everywhere.

Having this in mind, all the work we invested into the proof of version 2.0
of the Goursat Integral Lemma 3.13, seems to be completely wasted. The
exceptional point z0 that was treated there with some efforts, in fact is none.
However, this was not futile. Only this version of the Goursat Integral
Lemma allowed to prove the Cauchy Integral Formula and the proof of the
Riemann Theorem will rely heavily on our results that came out of this one.

Proof. For simplicity of the presentation we present the proof in the case z0 = 0.
The general case follows by suitably shifting the function.

We consider the function h : D → C with

h(z) =

{
z2f(z), z 6= 0,

0, z = 0.

Then h ∈ H(D \ {0}) as f and, since f is bounded in a neighbourhood of zero
by hypothesis, we find

h′(0) = lim
z→0

h(z) − h(0)

z
= lim

z→0

z2f(z) − 0

z
= lim

z→0
zf(z) = 0.

So, we even have h ∈ H(D). Theorem 5.4 tells us that h is analytic on D, so we
can expand h into a power series around zero on some ball Ur(0) with r > 0, i.e.

h(z) =
∞∑

n=0

anzn for all z ∈ Ur(0), where an =
h(n)(0)

n!
, n ∈ N0.

Since h(0) = h′(0) = 0 the first two terms of this series are not present and we
have

h(z) =
∞∑

n=2

anzn = a2z2 + a3z3 + . . . .

We set

f̂(z) :=
∞∑

n=0

an+2zn = a2 + a3z + a4z2 + . . . , z ∈ Ur(0),

and f̂ = f on D \ Ur(0). Then, on the one hand, we find for all z ∈ Ur(0) \ {0}

f̂(z) =
∞∑

n=0

an+2z
n =

1

z2

∞∑

n=0

an+2zn+2 =
1

z2

∞∑

n=2

anzn =
h(z)

z2
= f(z).

On the other hand f̂ is analytic on Ur(0) by construction, so f̂ is holomorphic
on Ur(0) and is thus a holomorphic extension of f to zero.
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5 Analytic Functions

We will now approach another important result: The Identity Theorem for
holomorphic functions. We have seen that every holomorphic function is analytic,
so it is completley determined by the choice of the corresponding sequence of
coefficients in its power series expansion. This are some but not too many degrees
of freedom, meaning that two holomorphic functions that coincide on a small but
large enough set have to coincide everywhere. We will now make this intuition
precise.

Reminder 5.10. Let X ⊆ C. Then z0 ∈ C is an accumulation point [Häufungs-
punkt] of X, if there exists a sequence in X \ {z0} that converges to z0.

Definition 5.11. Let Y ⊆ C. Then N ⊆ Y is discrete [diskret] in Y , if N has
no accumulation points in Y .

Exercise 5.12. (a) Prove the following reformulation: N is discrete in Y , iff
for all z ∈ Y there exists an r > 0 such that Ur(z) ∩ Y ∩ (N \ {z}) = ∅.

(b) Show that every discrete subset of a compact set is finite.

Example 5.13. (a) The integers Z are discrete in C.

(b) Every finite set is discrete in C.

(c) The set {1/n : n ∈ N} is discrete in C \ {0} but not in C. Note that the
ambient set Y in Definition 5.11 is important!

We first show that the set of zeros of a holomorphic function on a domain is
either all the domain (i.e. f is constantly zero) or very small.

Lemma 5.14. If G ⊆ C is a domain and f ∈ H(G) is not constantly zero, then
Nf(0) := {z ∈ C : f(z) = 0} is discrete in G.

Proof. We consider M to be the set of all accumulation points of Nf(0) in G and
aim to prove that M is empty. We will do so by showing that M is open and
closed in G. As G is connected this then entails that M is either the whole of G
or empty and since we know that f is not constantly zero, this eventually yields
that M is empty, so Nf(0) is discrete in G.

As sets of accumulation points are always closed, we only have to show that
M is open. In order to do so let z0 ∈ M be given. Then z0 is an accumulation
point of Nf (0), so we find a sequence (zn) in Nf(0) \ {z0} that converges to z0.
Furthermore, z0 ∈ G and f is holomorphic on G, so we can expand f into a power
series around z0. This means that there exist an r > 0 and an ∈ C, n ∈ N, such
that

f(z) =
∞∑

n=0

an(z − z0)n for all z ∈ Ur(z0).
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Our claim is now that all coefficients an of this series are zero and we will prove
this by induction. The base case follows directly from

a0 = f(z0) = f( lim
n→∞

zn) = lim
n→∞

f(zn) = lim
n→∞

0 = 0,

investing that f is continuous and that all zn are in Nf (0).
The inductive hypothesis is then that ak = 0 for all k = 0, 1, . . . , n for some

n ∈ N and for the inductive step we have to prove that an+1 = 0. We already
know that

f(z) =
∞∑

k=n+1

ak(z − z0)
k for all z ∈ Ur(z0),

so if, additionally, z 6= z0, we have

f(z)

(z − z0)n+1
=

∞∑

k=n+1

ak(z − z0)
k−n−1 =

∞∑

k=0

ak+n+1(z − z0)
k.

The last power series in the above equation defines an analytic and thus holo-
morphic function on all of the disk Ur(z0), so the function z 7→ f(z)/(z − z0)n+1

is holomorphic on Ur(z0) \ {z0} and bounded in a neighbourhood of z0. By the
Riemann Theorem on removable singularities it has an analytic extension to the
whole disk and we get an+1 as the value of this function in z0, so

an+1 = lim
z→z0

f(z)

(z − z0)n+1
= lim

k→∞

f(zk)

(zn − z0)n+1
= lim

k→∞

0

(zn − z0)n+1
= 0.

Up to now we have proved: If z0 ∈ M then there is a neighbourhood Ur(z0) with
f = 0 on this set. So Ur(z0) ⊆ Nf (0) and all elements of Ur(z0) are then also
accumulation points of Nf(0), which means Ur(z0) ⊆ M . This eventually shows
that M is open and thus concludes the proof.

Having these preparations at hand, the proof of the Identity Theorem is now
rather short.

Theorem 5.15 (Identity Theorem [Identitätssatz]). Let G ⊆ C be a domain,
f, g ∈ H(G) and let M ⊆ G be a set that has an accumulation point in G. Then
f |M = g|M already implies f = g on G.

Proof. The function f − g is also a holomorphic function on G and

Nf−g(0) = {z ∈ G : f(z) − g(z) = 0} = {z ∈ G : f(z) = g(z)} ⊇ M,

so Nf−g(0) contains an accumulation point. By Lemma 5.14 we conclude that
f − g is constantly zero on G, which shows f = g on G.

The Identity Theorem is a very powerful result. For instance it tells you that
if you have to entire functions f and g and you know that just f(1/n) = g(1/n)
holds for all n ∈ N, then already f(z) = g(z) for all z ∈ C.
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5 Analytic Functions

Example 5.16. We consider f(z) = ez and g(z) = ez for z ∈ C. Obviously
these functions are equal on the whole real line which has one (and even many)
accumulation points in C. On the other hand we have

f(iπ/2) = ei π
2 = i and g(iπ/2) = ei π

2 = e−i π
2 = −i,

so f 6= g. This means by the Identity Theorem that either f or g is not holomor-
phic. Naturally, the bad guy is g.

We will see more nice consequences of the Identity Theorem later. For the
moment we only note the following corollary.

Corollary 5.17. Let D ⊆ C be open, z0 ∈ D and f ∈ H(D). Then there exists a
neighbourhood U ⊆ D of z0 such that either f is constantly zero on U or f(z) 6= 0
for all z ∈ U \ {z0}.

Proof. If f(z0) 6= 0 than we immediately infer by continuity of f that there is a
whole neighbourhood of z0 where f is not zero, either. So this case is easy.

In the case f(z0) = 0 we suppose that for every neighbourhood U ⊆ D of z0 we
do not have f(z) 6= 0 for all z ∈ U \ {z0}. Thus for every neighbourhood U ⊆ D
of z0 there is some point z ∈ U with z 6= z0 and f(z) = 0. Choose N ∈ N so big
that U1/N (z0) ⊆ D. Then for all n ≥ N the disk U1/n(z0) is a neighbourhood of
z0 in D, so there is a point zn ∈ U1/n(z0) \ {z0} with f(zn) = 0. This yields a
sequence (zn)n≥N in U1/N (z0) \ {z0} that converges to z0, since |zn − z0| < 1/n
for all n ≥ N .

Now, U1/N (z0) is a domain and f is holomorphic on it. Furthermore, the set
{z ∈ U1/N (z0) : f(z) = 0} contains {z0, zk : k ≥ N} which has z0 as accumulation
point in U1/N (z0), so by the Identity Theorem, or alternatively by Lemma 5.14,
we find that f is constantly zero on U1/N (z0).
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6 The Maximum Principle

One topic of real analysis is to find the extrema and the extremal points of
functions. This does not make sense for functions with values in C, since C is
not an ordered field. At least we can search for maxima and minima of |f |. In
this chapter we will show, among other things, that when you are searching for
maximal points of |f | for a holomorphic f , it suffices to consider the boundary of
your domain: The Maximum Principle states that the modulus of a holomorphic
function does not have an interior maximal point.

We start with another important theorem from which the Maximum Principle
then follows easily.

Theorem 6.1 (Open Mapping Theorem [Offenheitssatz, Satz von der Gebiets-
treue]). If G ⊆ C is a domain and f ∈ H(G) is not constant, then f(G) is a
domain, too.

Remark 6.2. (a) The assertion that f(G) is a domain means two things: it is
connected and open. Connectedness is no surprise, as already the contin-
uous image of every connected set is connected, cf. Satz II.7.5. The main
point is here that f(G) is open. In this spirit the theorem may also be
expressed as: Every non-constant holomorphic function is an open map.
This also explains the name of the theorem.

(b) Observe again here the difference to the real case. There f : (−1, 1) → R,
f(x) = x2, is a smooth function and (−1, 1) is open and connected, but
f((−1, 1)) = [0, 1) is not open! Another nice example is sin((−10, 10)) =
[−1, 1].

(c) Another consequence of the theorem is that a non-constant holomorphic
function f : D → C with an open set D ⊆ C can never have an image that
is contained in a line in the complex plane. For instance you will never have
Ref(z) = 0 for all z ∈ D, i.e. the image can not be part of the real axis, as
this can never be an open set.

Small Exercise: Show that every holomorphic function on a domain for
which |f | is constant, is itself constant.

Proof. As already observed in the remark above, the set f(G) is connected as G
is connected and f is continuous as a holomorphic function. It remains to show
that f(G) is open.
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6 The Maximum Principle

We fix a value w0 ∈ f(G) and pick some z0 ∈ G with f(z0) = w0. Then
we consider the function ϕ ∈ H(G) with ϕ(z) = f(z) − w0 for z ∈ G. From
Corollary 5.17 we know that there exists some r > 0 such that on U2r(z0) we
either have that ϕ is constantly zero or that z0 is the only possible zero of ϕ in
this closed disk. But we can rule out the first alternative, as then by the Identity
Theorem 5.15 the function ϕ would be constantly zero on all of G and so f would
be constant on G, too.

We found that ϕ(z) 6= 0 for all z ∈ U2r(z0) \ {z0}, in particular this is true on
∂Ur(z0). This implies that f(z) 6= w0 for all z ∈ ∂Ur(z0) and so

∣∣∣f(z) − w0

∣∣∣ > 0 for all z ∈ ∂Ur(z0).

The circle ∂Ur(z0) is compact and z 7→ |f(z) − w0| is continuous, so there exists
an α > 0 such that

∣∣∣f(z) − w0

∣∣∣ > 3α for all z ∈ ∂Ur(z0). (6.1)

For this value of α we now claim that Uα(w0) ⊆ f(G). In order to prove this, for
every w ∈ Uα(w0) we aim to find a z ∈ Ur(z0) with f(z) = w, which then yields
w ∈ f(G). So, let us assume for a contradiction that for some w ∈ Uα(w0) we
have f(z) 6= w for all z ∈ Ur(z0).

We will first show, that under this assumption we even have f(z) 6= w for all
z ∈ Ur(z0). Let z ∈ ∂Ur(z0). By the reverse triangle inequality and (6.1) we get

∣∣∣f(z) − w
∣∣∣ =

∣∣∣f(z) − w0 − (w − w0)
∣∣∣ ≥

∣∣∣f(z) − w0

∣∣∣− |w − w0|
≥ 3α − α = 2α > 0 (6.2)

and this implies f(z) 6= w for all z ∈ ∂Ur(z0). Together we have f(z) 6= 0 for all
z ∈ Ur(z0) ∪ ∂Ur(z0) = Ur(z0).

Let ζ ∈ Ur(z0). Then f(ζ) 6= w, so by continuity of f , there is some radius
̺ = ̺(ζ) > 0 such that U̺(ζ) ⊆ G and f(z) 6= w for all z ∈ U̺(ζ). Since arbitrary
unions of open sets are open, we know that

O :=
⋃

ζ∈Ur(z0)

U̺(ζ)

is open and that f(z) 6= w for all z ∈ O. Furthermore, we know that

Ur(z0) ⊆ O ⊆ G, i.e. Ur(z0) ⊂⊂ O.

Consider the function g : O → C with

g(z) =
1

f(z) − w
, z ∈ O.
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Then, investing that f(z) 6= 0 for all z ∈ O, we find that g ∈ H(O) and we may
invoke the Cauchy Integral Formula from Theorem 4.4 to find

1∣∣∣f(z0) − w
∣∣∣

=
∣∣∣g(z0)

∣∣∣ =
∣∣∣∣

1

2πi

∫

∂Ur(z0)

g(z)

z − z0
dz

∣∣∣∣

≤ 1

2π
2πr max

z∈∂Ur(z0)

∣∣∣∣
g(z)

z − z0

∣∣∣∣ = r
1

r
max

z∈∂Ur(z0)

∣∣∣g(z)
∣∣∣

= max
z∈∂Ur(z0)

1∣∣∣f(z) − w
∣∣∣

=
1

minz∈∂Ur(z0)

∣∣∣f(z) − w
∣∣∣
.

This yields
min

z∈∂Ur(z0)

∣∣∣f(z) − w
∣∣∣ ≤

∣∣∣f(z0) − w
∣∣∣

and, investing (6.2) and w ∈ Uα(w0), we thus get to the contradiction

2α ≤ min
z∈∂Ur(z0)

∣∣∣f(z) − w
∣∣∣ ≤

∣∣∣f(z0) − w
∣∣∣ = |w0 − w| ≤ α.

Consequently, our assumption that f(z) 6= w for all z ∈ Ur(z0) was wrong and
there is some z̃ ∈ Ur(z0) ⊆ G with f(z̃) = w. This implies w ∈ f(G), so
Uα(w0) ⊆ f(G) for some α > 0. This means that w0 is an interior point of f(G)
and since w0 ∈ f(G) was arbitrary, we have thus shown that f(G) is open.

We can now immediately infer the Maximum Principle.

Theorem 6.3 (Maximum Principle [Maximumsprinzip]). Let G ⊆ C be a domain
and f ∈ H(G). If |f | has a local maximum in G, then f is constant.

Proof. We assume for a contradiction that f is non-constant, while |f | has, nev-
ertheless, a maximal value in some z0 ∈ G. So we choose a suitable r > 0, such
that Ur(z0) ⊆ G and |f(z)| ≤ |f(z0)| for all z ∈ Ur(z0). By the Identity Theorem
f is non-constant on Ur(z0) (otherwise it would be constant on all of G). Then,
by the Open Mapping Theorem the image f(Ur(z0)) is an open set that contains
f(z0). So there is a radius ̺ > 0 such that the whole disk U̺(f(z0)) is part of
f(Ur(z0)). But this last ball must contain some w with |w| > |f(z0)|, which is a
contradiction, as |f(z0)| is the maximal value of |f | on Ur(z0).

Remark 6.4. Note that in the situation of the above theorem, a minimum of |f |
is well possible. Consider the sine function on G = C. Then |sin| is minimally
zero and this minimum also is attained. However, in general a minimum of |f |
for a non-constant f is only possible in points z0 where f(z0) = 0 like in this
example. Can you prove this?

In most applications the Maximum Principle is used in the following form that
was also alluded to in the text at the beginning of this chapter.
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6 The Maximum Principle

Corollary 6.5. Let G ⊆ C be a bounded domain and let f : G → C a continuous
function with f |G ∈ H(G). Then

max
z∈G

|f(z)| = max
z∈∂G

|f(z)|.

Proof. If f is constant on G the assertion is not very exiting, but nevertheless
true. So we consider the case that f is non-constant. Since G is compact and |f |
is continuous, the maximum of |f | on G exists and is attained in some z0 ∈ G.
By the Maximum Principle z0 can not be in the interior of G, that is in G, so
z0 ∈ ∂G, which gives the claim.

Here is another corollary of the Maximum Principle.

Corollary 6.6. Let G ⊆ C be a domain, K ⊆ G compact and let f ∈ H(G) be a
non-constant function. Then

max
z∈K

|f(z)| < sup
z∈G\K

|f(z)|.

Proof. We suppose for a contradiction that maxz∈K |f(z)| ≥ supz∈G\K |f(z)|.
Then there exists a z0 ∈ K ⊆ G such that

∣∣∣f(z0)
∣∣∣ = max

z∈K
|f(z)| ≥ sup

z∈G\K

∣∣∣f(z)
∣∣∣.

This implies that |f(z0)| ≥ |f(z)| for all z ∈ G and this is in contradiction with
the Maximum Principle, since z0 ∈ G.

As a final consequence of the Maximum Principle we present the Schwarz
Lemma.

Proposition 6.7 (Schwarz Lemma [Schwarz’sches Lemma]). Let f ∈ H(U1(0)),
such that f(0) = 0 and |f(z)| ≤ 1 for all z ∈ U1(0). Then

(a) |f(z)| ≤ |z| for all z ∈ U1(0),

(b) |f ′(0)| ≤ 1 and

(c) the following assertions are equivalent:

i) There is some z0 ∈ U1(0) \ {0} with |f(z0)| = |z0|
ii) |f ′(0)| = 1

iii) There exists an a ∈ C, |a| = 1, such that f(z) = az for all z ∈ U1(0).
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Proof. We consider the function g : U1(0) → C with

g(z) =





f(z) − f(0)

z − 0
=

f(z)

z
, z 6= 0,

f ′(0), z = 0

Since f is holomorphic, g is holomorphic on U1(0)\{0} and continuous in zero. By
the Riemann Theorem on removable singularities, we infer that even g ∈ H(U1(0))
holds.

Pick some r ∈ (0, 1). Then we have

max
|z|=r

∣∣∣g(z)
∣∣∣ = max

|z|=r

|f(z)|
|z| = max

|z|=r

|f(z)|
r

≤ 1

r
sup

z∈U1(0)

∣∣∣f(z)
∣∣∣ ≤ 1

r
.

By the Maximum Principle, in particular Corollary 6.5, we see that

max
|z|≤r

|g(z)| = max
|z|=r

|g(z)| ≤ 1

r
.

Letting r → 1, it follows that |g(z)| ≤ 1 for all z ∈ U1(0). This immediately
yields (a) and (b) due to

|f(z)| = |zg(z)| = |z||g(z)| ≤ |z| for all z ∈ U1(0)

and
|f ′(0)| = |g(0)| ≤ 1.

For the proof of (c) we start by proving “(ii)⇒(iii)”. If |g(0)| = |f ′(0)| = 1, we
know that |g| is maximal in zero, since we have proved above that |g| is bounded
by one on the unit disk. By the Maximum Principle g is constant, so there is
some a ∈ C with g(z) = a for all z ∈ U1(0). This implies f(z) = zg(z) = az for
all z ∈ U1(0). Furthermore, |a| = |g(0)| = 1.

The implication from (iii) to (i) follows just by calculating

∣∣∣f(z)
∣∣∣ = |az| = |a||z| = |z|,

so (i) is even fulfilled for all z ∈ U1(0).
It remains “(i)⇒(ii)”, but the argument is the same as above. If there is some

z0 ∈ U1(0) with z0 6= 0 such that |f(z0)| = |z0|, then |g(z0)| = |f(z0)|/|z0| = 1, so
again |g| has a maximal point in U1(0) and is thus constant with a constant of
modulus one. This implies |f ′(0)| = |g(0)| = 1.

For most famous theorems there are several standard ways to prove them. This
also holds true for the Maximum Principle. We present here an alternative proof
that rests on the mean value formula, cf. (4.2).
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6 The Maximum Principle

Alternative Proof of Theorem 6.3. Let z0 ∈ G be such that |f(z0)| is maximal.
Consider the set of all maximal points of |f |, i.e.

M :=
{

z ∈ G :
∣∣∣f(z)

∣∣∣ =
∣∣∣f(z0)

∣∣∣
}

.

Then M 6= ∅ as z0 ∈ M and M is a closed set thanks to the continuity of |f |.
We will now prove that M is also open in G. As G is connected this then implies
that M is all of G, so |f | is constant and, referring to Remark 6.2(c), we find
that f is constant.

In order to prove that M is open, take w0 ∈ M and choose some r > 0 for
which Ur(w0) ⊆ G. We now claim that for all ̺ ∈ (0, r) and all w ∈ ∂U̺(w0) we
have |f(w)| = |f(w0)|.

Suppose for a contradiction that this is false, so there exist ̺ ∈ (0, r) and
w ∈ ∂U̺(w0) with |f(w)| < |f(w0)|. (Note that |f(w)| > |f(w0)| is impossible,
since |f(w0)| = |f(z0)| is maximal due to w0 ∈ M). The number w is on the circle
around w0 with radius ̺, so there exists some t0 ∈ [0, 2π) such that w = w0+̺eit0 .

Since t 7→
∣∣∣f(w0 + ̺eit)

∣∣∣ is continuous and

∣∣∣f(w0 + ̺eit0)
∣∣∣ = |f(w)| < |f(w0)| = |f(z0)|

by our assumption, there exists some ε > 0 such that
∣∣∣f(w0 + ̺eit)

∣∣∣ <
∣∣∣f(z0)

∣∣∣ for all t ∈ (t0 − ε, t0 + ε).

(If, of all things, t0 = 0, then the interval (t0 − ε, t0 + ε) has to be understood as
[0, ε) ∪ (2π − ε, 2π).)

This implies by the mean value property of f , cf. (4.2),

2π
∣∣∣f(w0)

∣∣∣ =
∣∣∣∣
∫ 2π

0
f(w0 + ̺eit) dt

∣∣∣∣ ≤
∫ 2π

0

∣∣∣f(w0 + ̺eit)
∣∣∣ dt

=
∫ t0−ε

0

∣∣∣f(w0 + ̺eit)
∣∣∣

︸ ︷︷ ︸
≤|f(w0)|

dt +
∫ t0+ε

t0−ε

∣∣∣f(w0 + ̺eit)
∣∣∣

︸ ︷︷ ︸
<|f(w0)|

dt

+
∫ 2π

t0+ε

∣∣∣f(w0 + ̺eit)
∣∣∣

︸ ︷︷ ︸
≤|f(w0)|

dt

<
∫ 2π

0

∣∣∣f(w0)
∣∣∣ dt = 2π

∣∣∣f(w0)
∣∣∣

and this is a contradiction.
Thus for all ̺ ∈ (0, r) and all w ∈ ∂U̺(w0) we found |f(w)| = |f(w0)| which

means w ∈ M , so Ur(w0) ⊆ M and M is open. This concludes the proof.

What is the interest in this second proof? Apart from just being a beautiful
application of the mean value poperty, it allows for an interesting generalisation,
as it turns out that not only holomorphic functions have the mean value property.
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Definition 6.8. Let D ⊆ C be open. A continuous function f : D → C is said
to satisfy the mean value property [Mittelwerteigenschaft], if for all z0 ∈ D there
is some R > 0 such that

f(z0) =
1

2π

∫ 2π

0
f(z0 + reit) dt for all 0 < r < R.

We already know that every holomorphic function has the mean value property,
the following lemma shows that there are at least some more functions doing so.
The proof is straightforward and it is left as an exercise.

Lemma 6.9. Let D ⊆ C be open. If f, g : D → C have the mean value property
and α, β ∈ C, then also αf + βg, Re(f), Im(f) and f have the mean value
property.

We can now formulate the following more general maximum principle.

Proposition 6.10. Let G ⊆ C be a domain and f : G → C a continuous function
that satisfies the mean value property. If |f | has a local maximum in G, then f
is constant.

The proof is again left as an exercise, but this requires a comment. At a first
glance this looks an easy task, just copy our alternative proof from above. There
is one problem: This will only give you that |f | is constant and in C one cannot
argue by continuity to get that f is constant! (In the proof above it was the
Open Mapping Theorem that came to help by Remark 6.2(c).) Here is a hint
how to circumvent this: Do the argument only for real-valued functions without
the absolute value sign and then consider Re(f) and Im(f).

In the next proposition we show that every harmonic function on a star-shaped
domain in C is the real part of some holomorphic function. On the one hand this
fulfills the promise given in Remark 1.12, but on the other hand, by our results
above, this means that there is a maximum priciple for every harmonic function!
Indeed, if a harmonic function is the real part of a holomorphic one, it satisfies
the mean value property by Lemma 6.9

The maximum principle for harmonic functions has far-reaching consequences
in many branches of mathematics. Note that this result is not restricted to har-
monic functions defined in C or R2. The mean value property and the maximum
principle for harmonic functions extend to harmonic functions in d variables.

Proposition 6.11. Let G ⊆ C be a star-shaped domain and u : G → R a
harmonic function. Then there is some f ∈ H(G) such that u = Re(f).

Proof. As a harmonic function u is twice continuously real differentiable, the
function ϕ : G → R with ϕ(z) := ux(z) − iuy(z) is still continuously real differ-
entiable. The real and imaginary part of ϕ fulfill

(Re(ϕ))x − (Im(ϕ))y = (ux)x − (−uy)y = uxx + uyy = ∆u = 0
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6 The Maximum Principle

and
(Re(ϕ))y + (Im(ϕ))x = (ux)y + (−uy)x = uxy − uyx = 0.

This means that (Re(ϕ))x = (Im(ϕ))y and (Re(ϕ))y = −(Im(ϕ))x, so the Cauchy-
Riemann differential equations, see Theorem 1.6, are fulfilled and ϕ ∈ H(G).

Since G is star-shaped the Cauchy Integral Theorem 3.8 tells us that ϕ possesses
a primitive g ∈ H(G). Heuristically Re(g) should not be too different from u, so
let us check. We find by the formula for the derivative in Theorem 1.6 and since
g fulfills the Cauchy-Riemann differential equations,

ϕ = g′ = (Re(g))x + i(Im(g))x = (Re(g))x − i(Re(g))y.

This implies that ux = (Re(g))x and uy = (Re(g))y on G. In the language of real
differentiability this means that u and Re(g) have the same gradient.

Now, G is connected, so there exists a c ∈ R such that u = Re(g) + c. This
entails that the function f : G → R with f(z) := g(z) + c, z ∈ G, is holomorphic
on G and fulfills

Re(f) = Re(g + c) = Re(g) + c = u.

Remark 6.12. Note that this in particular implies that every harmonic function
is arbitrarily often real differentiable. It somehow inherits this nice feature from
the holomorphic function and carries it back into the real world. Seen from a
purely real point of view, the result seems magical: Every twice continuously
differentiable function u that fulfills the – innocent looking – differential equation
∆u = 0 is automatically C∞.
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7 Elementary Functions

In this chapter we take a complex look at the usual elementary functions, such
as the exponential function, logarithms and the trigonometric and hyperbolic
functions.

Reminder 7.1. For z ∈ C we have the entire functions

• ez = exp(z) =
∞∑

n=0

zn

n!
,

• sin(z) =
∞∑

n=0

(−1)n z2n+1

(2n + 1)!
• cos(z) =

∞∑

n=0

(−1)n z2n

(2n)!
,

• sinh(z) =
1

2

(
ez − e−z

)
• cosh(z) =

1

2

(
ez + e−z

)

and there is the holomorphic function

• tan(z) =
sin(z)

cos(z)
, z ∈ C \

{
(k + 1/2)π : k ∈ Z

}
.

Proposition 7.2 (Functional equation of the exponential function [Funktional-
gleichung der Exponentialfunktion]). For all w, z ∈ C we have ew+z = ewez.

For the proof one could go back to the Cauchy product and work it out by hand.
But why should we do that, having such powerful results of complex analysis at
hand?

Proof. For the start fix some w ∈ R. Then the functions z 7→ ew+z and z 7→ ewez

are entire functions that coincide on the real axis by the functional equation we
proved in Analysis I. Since the real axis possesses an accumulation point in C

these two functions must be identical by the Identity Theorem 5.15.
Up to now we already have the assertion for all z ∈ C and all w ∈ R. In order

to conclude we fix a z ∈ C and consider the functions w 7→ ew+z and w 7→ ewez.
Again both are entire functions and by the considerations above they coincide
on the real axis. Thus, the Identity Theorem tells us that they coincide for all
w ∈ C, finishing the proof.

The relations stated in the following Proposition can either be shown in the
same manner or the proof is the same as in the real case. So, we omit the proofs.
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7 Elementary Functions

Proposition 7.3. (a) sin′ = cos, cos′ = − sin, tan′ =
1

cos2
= 1 + tan2.

(b) For all w, z ∈ C we have

• sin(−z) = − sin(z) and cos(−z) = cos(z),

• sin(w + z) = sin(w) cos(z) + sin(z) cos(w),

• cos(w + z) = cos(w) cos(z) − sin(w) sin(z),

• sin2(z) + cos2(z) = 1,

• cosh2(z) − sinh2(z) = 1.

(c) For all z ∈ C we have

• eiz = cos(z) + i sin(z),

• cos(z) =
1

2
(eiz + e−iz) and sin(z) =

1

2i
(eiz − e−iz),

• sin(iz) = i sinh(z) and cos(iz) = cosh(z).

(d) e2πi = 1, i.e. the exponential function is periodic with period 2πi.

The periodicity of the exponential function means in particular that this func-
tion is not injective on C. So the definition of a logarithm is not easy. However,
logarithms are indespensable, so we do as good as we can. In the following we
denote by ’ln’ the natural logarithm defined on the real numbers.

Lemma 7.4. For a ∈ R we consider the horizontal strip

Sa := {z ∈ C : a ≤ Im(z) < a + 2π}.

Then exp : Sa → C \ {0} is bijective.

Proof. For all z ∈ C \ {0} we find, using polar coordinates

z = |z|ei arg(z) = eln(|z|)ei arg(z) = exp
(
ln(|z|) + i arg(z)

)
.

Using this equality we first attack the proof of surjectivity. Let z ∈ C\{0} and let
ϕ ∈ [a, a + 2π) be such that z = |z|eiϕ. This is possible due to the representation
of complex numbers in polar coordinates that we proved in Analysis I. Setting
w := ln(|z|) + iϕ we find w ∈ Sa and

ew = exp
(
ln(|z|) + iϕ

)
= exp

(
ln(|z|) + i arg(z)

)
= z.

So, we turn to the proof of injectivity. Let w1, w2 ∈ Sa such that ew1 = ew2 . Then
by the functional equation of the exponential function we have ew1−w2 = 1. Thus
w1 − w2 = 2kπi for some k ∈ Z. If we assume that k 6= 0, then

∣∣∣Im(w1) − Im(w2)
∣∣∣ =

∣∣∣Im(w1 − w2)
∣∣∣ = |2kπ| = 2|k|π ≥ 2π

and so w1 and w2 cannot be both in Sa. This means that k = 0, i.e. w1 = w2.
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For every z ∈ C \ {0} this provides us with infinitely many “logarithms” of z.
We could now try to just pick one for each such z, but for doing analysis this
would be a disaster. We do not just need some logarithms but we need a logarithm
function that has some nice properties. At least it should be continuous, at the
best holomorphic. By just picking some random logarithms we will never achieve
this. So, we first define what we want to have and then we will see, how far we
can get.

Definition 7.5. (a) Let z ∈ C \ {0}. Every w ∈ C with ew = z is called a
logarithm [Logarithmus] of z.

(b) Let G ⊆ C \ {0} be a domain. A continuous function f : G → C with
ef(z) = z for all z ∈ G is called a branch of the logarithm [Zweig des
Logarithmus’].

Warning 7.6. When you are working with complex logarithms, always be very
careful to

(a) make sure that your domain allows for a branch of the logarithm in the
sense of the above definition. This is not always the case, as we will see!

(b) specify exactly which branch you use.

(c) stick hundred per cent with your choice. This is of particular importance,
if you use results from other sources.

(d) check what exactly is meant, when you find ’log(z)’ in some mathematical
text.

(e) take nothing as obvious. For instance you can easily choose a branch, for
which log(x) 6= ln(x) for x > 0!

If there is a branch of the logarithm on some domain, there are infinitely many
possible branches. Nevertheless, they cannot be too different:

Exercise 7.7. Let G ⊆ C \ {0} be a domain and f : G → C a branch of the
logarithm. Then g : G → C is a branch of the logarithm, iff there is some k ∈ Z

with g(z) = f(z) + 2πik for all z ∈ G.

We collect some properties of the branches of the logarithm.

Proposition 7.8. Let G ⊆ C \ {0} be a domain. Then the following assertions
hold.

(a) If f : G → C is a branch of the logarithm, then f ∈ H(G) and f ′(z) = 1/z
for all z ∈ G.
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7 Elementary Functions

(b) There exists a branch of the logarithm on G, iff the function z 7→ 1/z has
a primitive on G.

Proof. (a) Let z0, z ∈ G with z0 6= z. Then we have, since f is a branch of the
logarithm,

f(z) − f(z0)

z − z0
=

f(z) − f(z0)

ef(z) − ef(z0)

Letting z to z0, we find limz→z0 f(z) = f(z0) thanks to the continuity of f
and this yields

f ′(z0) = lim
z→z0

f(z) − f(z0)

z − z0

= lim
z→z0

f(z) − f(z0)

ef(z) − ef(z0)
=

1

limz→z0

ef(z)−ef(z0)

f(z)−f(z0)

=
1

exp′(f(z0))
=

1

exp(f(z0))
=

1

z0
.

This means that f ∈ H(G) and f ′(z) = 1/z for all z ∈ G.

(b) The direction from left to right follows from (a). So we concentrate on the
reverse direction.

Let f ∈ H(G) be a primitive of z 7→ 1/z on G and consider the function
g(z) := ze−f(z), z ∈ G. We have g ∈ H(G) and

g′(z) = e−f(z) + ze−f(z)
(
−f ′(z)

)
= e−f(z) − ze−f(z) 1

z
= 0

for all z ∈ G. As G is connected, this implies that g is constant and since
the exponential function never attains zero as value, this constant value c
cannot be zero. Thus, there exists some w ∈ C with ew = c.

Now, we consider h(z) := f(z) + w, z ∈ G. Then h ∈ H(G), in particular
h is continuous on G, and we find for all z ∈ G

eh(z) = ef(z)+w = ef(z)ew = ef(z)c = ef(z)g(z) = ef(z)ze−f(z) = z,

making h a branch of the logarithm on G.

Example 7.9. (a) There is no branch of the logarithm on C\{0}, which would
be the maximal choice of a domain one could hope for. If we assume
for a contradiction there would be such a branch, then by the preceding
proposition the function z 7→ 1/z would have a primitive on C \ {0}. But
this entails ∫

∂U1(0)

1

z
= 0

in contradiction to Example 2.9.

The same argument can be applied whenever the domain under considera-
tion contains a path that surrounds the origin, then stemming on Proposi-
tion 4.2.
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(b) The rule of thumb is: If a domain exludes all paths encircling the origin,
then there is a branch of the logarithm. The usual way to achieve this is to
take a slit plane [geschlitzte Ebene], i.e. C without a line “joining the origin
to ∞”. The most common choice is G = C \ (−∞, 0]. On this domain one
then usually defines the branch of the logarithm

log(z) = ln(|z|) + i arg(z) where arg(z) ∈ (−π, π).

This is the so-called principal branch [Hauptzweig] of the logarithm.

But every other slit is also fine, for instance one may take out the positive
real line or one half of the imaginary axis. This may be interesting, if you
need to talk about a logarithm of −1 or if you need a logarithm of −1 and
of 1 at the same time.

Once we have a logarithm we can define complex powers in the usual way.

Definition 7.10. Let G ⊆ C \ {0} be a domain and log : G → C a branch of the
logarithm on G. For b ∈ C and a ∈ G we define the bth power [Potenz] of a by

ab := eb log(a).

Remark 7.11. It is essential to observe that the definition of complex powers
is based on the complex logarithm and thus inherits all the ambiguities of this
function! In general there are many possible choices of the logarithm, so there
are also many possible choices for the complex power. In this spirit, everything
said in Warning 7.6 remains true in the context of powers.

This is of particular importance because several calculations that seem evident
to us from a real point of view use the power function in disguise. For instance
already every square root is a power 1/2 and thus affected by this problem.

We have seen in the proof of Lemma 7.4 that different values of the logarithm
differ by 2kπi for some k ∈ Z. This means that different values for the power
ab = eb log(a) differ by e2kπib for some k ∈ Z. If b ∈ Z, this value is always 1, so we
find uniqueness of the power for integer exponents.

For rational b the set {e2kπib : k ∈ Z} is finite, so there are only a finite number
of different values possible for the bth power. Rational values of b correspond to
roots, so this fits well to our experience that there are several but finitely many
nth roots.

Finally, if b is irrational, there are infinitely many possible values for ab.

Example 7.12. We consider in some detail the case of the square root, i.e.
b = 1/2.

(a) On G = C \ (−∞, 0] we use the principal branch of the logarithm, that is
log(z) = ln(|z|) + i arg(z) with arg(z) ∈ (−π, π). Then we find

z1/2 = e
1
2

log(z) = exp
(

1

2

(
ln(|z|) + i arg(z)

))
= e

1
2

ln(|z|)e
1
2

i arg(z)

= eln(
√

|z|)ei arg(z)/2 =
√

|z|ei arg(z)/2.
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This results in a value for the square root with arg(z1/2) ∈ (−π/2, π/2),
so it lies in the right halfplane, which means that Re(z1/2) > 0 for all
z ∈ C \ (−∞, 0].

For x ∈ (0, ∞) we have x1/2 =
√

|x|ei·0 =
√

x, so this choice extends the
usual real square root.

This branch of the square root, coming from the principal branch of the
logarithm, is also called prinicpal branch of the square root. Note that
for this branch there is no such thing as (−1)1/2. We have excluded the
negative real numbers!

(b) If you want to include negative real numbers, you may for instance sacrifice
the positive reals and consider the domain C \ [0, ∞) and the branch of the
logarithm given by log(z) = ln(|z|) + i arg(z) with arg(z) ∈ (0, 2π). Then
we find

z1/2 =
√

|z|ei arg(z)/2, where arg(z1/2) ∈ (0, π).

The square root of any complex number that is not a positive real then lies
in the upper halfplane and in this case we find (−1)1/2 = i. However, be
aware that this branch of the square root is not a continuous extension of
the real square root.

It is highly recommended that you play around with some other branches
of the square root. Can you find a branch, for which 11/2 and (−1)1/2 are
defined and (−1)1/2 = −i?

Warning 7.13. Once more: Do not mix up several branches in the same calcu-
lation. Perhaps the following ’easy’ calculation shows best what sort of hidden
traps are to be avoided:

1 =
√

1 =
√

(−1) · (−1) =
√

−1 ·
√

−1 = i · i = −1. (Huh?)

56



8 Homology and Homotopy

We have seen several times that the geometry of a domain plays an important
role in complex analysis, think of the Cauchy Integral Theorem or logarithms.
In this chapter we will introduce some tools to describe the relevant features of
domains. Later on, this will, among other things, lead to a better understanding
and a generalisation of the Cauchy Integral Theoerem.

In a first step we generalise our notion of path integral a little bit.

Definition 8.1. Let γj : [aj, bj ] → C, j = 1, 2, . . . , n be paths in C.

(a) A chain [Kette] γ is a formal linear combination

γ =
n∑

j=1

αjγj

with coefficients αj ∈ Z.

There is a natural way to build the sum of two chains. If γ =
∑n

j=1 αjγj

and γ̃ =
∑d

k=1 βkγ̃k are two chains, then

γ + γ̃ =
n∑

j=1

αjγj +
d∑

k=1

βkγ̃k.

As a generalisation of the inverted path we define for a chain γ =
∑n

j=1 αjγj

γ− :=
n∑

j=1

(−αj)γj.

(b) If all paths γ1, γ2, . . . , γn are closed, a chain built from these is called a
closed chain [geschlossene Kette, auch Zyklus].

(c) The trace [Spur] of a chain γ =
∑n

j=1 αjγj is

tr(γ) :=
n⋃

j=1

tr(γj).

If tr(γ) ⊆ D for some open set D ⊆ C, we say that γ is a chain in D.
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(d) If γ =
∑n

j=1 αjγj is a chain and f : tr(γ) → C is a continuous function, we
define the path integral [Kurvenintegral, auch Wegintegral] along the chain
by ∫

γ
f(z) dz =

n∑

j=1

αj

∫

γj

f(z) dz

and the length of γ as

L(γ) :=
n∑

j=1

|αj|L(γj).

Remark 8.2. (a) In this course the notion of a chain is just a handy short
notation for adding several path integrals. However, the sum of two chains
defined in part (a) of the above definition provides the structure of a group
to the set of all chains in a given domain. This opens the door to investigate
topological properties of domains by algebraic means, making this a major
tool in algebraic topology.

(b) Allowing for negative coefficients αj in the definition of a chain, includes
inverse paths. One should think of γ1 − γ2 as γ1 + γ−

2 .

(c) It follows directly from the above definitions that for two chains γ and γ̃ it
holds ∫

γ+γ̃
f(z) dz =

∫

γ
f(z) dz +

∫

γ̃
f(z) dz

and ∫

γ−

f(z) dz = −
∫

γ
f(z) dz.

(d) An example of a closed chain can be found in Figure 8.1.

Exercise 8.3. Prove the standard estimate
∣∣∣∣
∫

γ
f(z) dz

∣∣∣∣ ≤ max
z∈tr(γ)

|f(z)|L(γ)

for chains.

The main geometric obstruction in the Cauchy Integral Theorem or in the
definition of logarithms came from closed paths (or chains) that surround some
points in the complement of the domain. So, we have to exclude such chains, but
the problem is, how to define precisely what it means to “surround points”. The
following notion is the key to such a definition.

Definition 8.4. Let γ be a closed chain and z ∈ C \ tr(γ). Then

n(γ, z) :=
1

2πi

∫

γ

1

ζ − z
dζ

is called winding number [Windungszahl, auch Umlaufzahl oder Index] of γ
around z.
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The winding number describes how many times the chain γ surrounds the
point z counter-clockwise, while turning around z in a clockwise sense is counted
negative. Just looking at the formula, one would never imagine such an integral
to be counting something. We will see in the following that its value is indeed
always an integer and we will see in some examples that this integer has the
aforementioned meaning.

First we note some easy properties of the winding number.

Remark 8.5. (a) If γ and γ̃ are two closed chains and z 6∈ tr(γ + γ̃), then

n(γ + γ̃, z) =
1

2πi

∫

γ+γ̃

1

ζ − z
dζ

=
1

2πi

∫

γ

1

ζ − z
dζ +

1

2πi

∫

γ̃

1

ζ − z
dζ

= n(γ, z) + n(γ̃, z).

This means that the winding numbers of two chains just add up, as one
would expect.

(b) Let γ be a closed chain and z ∈ C \ tr(γ). For γ− we have

n(γ−, z) =
1

2πi

∫

γ−

1

ζ − z
dζ = − 1

2πi

∫

γ

1

ζ − z
dζ = −n(γ, z).

(c) Putting these two insights together, we find in particular, that for a closed
chain γ =

∑n
j=1 αjγj composed from closed paths γ1, γ2, . . . , γn we have

n(γ, z) =
n∑

j=1

αjn(γj, z) for all z ∈ C \ tr(γ).

Example 8.6. Let z0 ∈ C and r > 0. We know already from Proposition 4.2
that for all z ∈ Ur(z0)

n(∂Ur(z0), z) =
1

2πi

∫

∂Ur(z0)

1

ζ − z
dζ =

2πi

2πi
= 1.

So, for a circle that is run once in a counter-clockwise sense, we indeed find that
our winding number counts correctly to one for all points inside the circle.

What about points z in the exterior of the circle, i.e. with |z − z0| > r? In this
case choose some ̺ ∈ (r, |z−z0|). Then the function ζ 7→ 1/(ζ −z) is holomorphic
on U̺(z0), since the problematic point ζ = z is not contained. Furthermore, the
path ∂Ur(z0) lies inside U̺(z0) and this disk is convex and thus star-shaped, so
the Cauchy Integral Theorem 3.8 tells us that

n(∂Ur(z0), z) =
1

2πi

∫

∂Ur(z0)

1

ζ − z
dζ = 0.
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8 Homology and Homotopy

This also fits to our idea of a winding number: The circle does not run around
points lying outside.

Together with the above remark that allows to combine many circles and to
change the orientation of the circles, this already means that the winding number
does what it should for chains that consist of arbitrary combinations of circles,
cf. Figure 8.1.

1

1

−1 0

0

0 0

−1
3

Figure 8.1: A chain of circles and the values of the corresponding winding number.
The arrows indicate how many times and in which direction the circles
are run through.

We will now show that the winding number is indeed always an integer.

Proposition 8.7. Let γ be a closed chain and z ∈ C \ tr(γ). Then n(γ, z) ∈ Z.

Proof. We do the proof for a closed path γ : [a, b] → C only. The general result
for chains then follows from Remark 8.5(c).

Consider the function F : [a, b] → C with

F (t) :=
1

2πi

∫ t

a

γ′(s)

γ(s) − z
ds.

Then F (a) = 0 and

F (b) =
1

2πi

∫ b

a

γ′(s)

γ(s) − z
ds =

1

2πi

∫

γ

1

ζ − z
dζ = n(γ, z).

Furthermore, F is continuously differentiable and

F ′(t) =
1

2πi

γ′(t)

γ(t) − z
.
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Define
G(t) := e−2πiF (t)

(
γ(t) − z

)
, t ∈ [a, b].

Then, together with F , also G is continuously differentiable and

G′(t) = −2πiF ′(t)e−2πiF (t)
(
γ(t) − z

)
+ e−2πiF (t)γ′(t)

= − γ′(t)

γ(t) − z
e−2πiF (t)

(
γ(t) − z

)
+ e−2πiF (t)γ′(t)

= −γ′(t)e−2πiF (t) + e−2πiF (t)γ′(t) = 0

for all t ∈ [a, b]. This means that G is constant, that is for some c ∈ C we have

c = G(t) = e−2πiF (t)
(
γ(t) − z

)
for all t ∈ [a, b].

Since γ(t) 6= z throughout tr(γ), this constant c cannot be zero. Putting every-
thing together and using that γ is closed, we find

e2πin(γ,z) = e2πiF (b) =
1

c

(
γ(b) − z

)
=

1

c

(
γ(a) − z

)
= e2πiF (a) = e0 = 1

and this implies n(γ, z) ∈ Z.

Proposition 8.8. Let γ be a closed chain and G ⊆ C\tr(γ) a domain that avoids
the trace of γ. Then

(a) the map z 7→ n(γ, z) is constant on G and

(b) if G is unbounded, then n(γ, z) = 0 for all z ∈ G.

Proof. (a) The function (ζ, z) 7→ 1/(ζ − z) is continuous on tr(γ) × G, so by
Satz II.18.2 from Analysis II on continuity of parameter integrals, also the
function

z 7→ n(γ, z) =
1

2πi

∫

γ

1

ζ − z
dζ

is continuous on G. In Proposition 8.7 we have proved that this function is
integer-valued. Since G is connected this forces it to be constant.

(b) We have tr(γ) =
⋃n

j=1 tr(γj), where γj : [aj , bj] → G, j = 1, 2, . . . , n, are the
closed paths that form the chain γ. Thus, the trace of γ is a finite union of
continuous images of compact sets and, consequently, itself a compact and
in particular bounded set. This means that there is some R > 0 such that
tr(γ) ⊆ UR(0). Since G is unbounded it has a non-empty intersection with
U := C \ UR(0).

Furthermore, U is open and connected, so U ∪ G is open and connected,
too, cf. Übungsaufgabe II.7.8. By construction we have (U ∪G)∩tr(γ) = ∅,
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8 Homology and Homotopy

so part (a) tells us that z 7→ n(γ, z) is constant on U ∪ G. Thus, in order
to prove the assertion it suffices to find some z∗ ∈ U with n(γ, z∗) = 0.

Our set U is unbounded and tr(γ) is bounded, so we may pick a sequence
(zn) in U that fulfills dist(zn, tr(γ)) ≥ n for all n ∈ N. For this sequence we
find

∣∣∣n(γ, zn)
∣∣∣ =

1

2π

∣∣∣∣
∫

γ

1

ζ − zn
dζ

∣∣∣∣ ≤ L(γ)

2π

1

dist(zn, tr(γ))
≤ L(γ)

2π

1

n
.

This last expression goes to zero for n → ∞, so there is some n0 ∈ N with
|n(γ, zn0)| < 1. But we know from Proposition 8.7 that the winding number
is always an integer, so n(γ, zn0) = 0 and we have found our z∗ := zn0 .

We can now use the winding number to define what it means for a chain not
to surround points in the complement of the domain.

Definition 8.9. Let D ⊆ C be open.

(a) A closed chain γ in D is D-homologous to zero [nullhomolog in D], if
n(γ, z) = 0 for all z ∈ C \ D.

(b) Two closed chains γ1, γ2 in D are D-homologous [homolog in D], if the
closed chain γ1 − γ2 is D-homologous to zero.

Remark 8.10. (a) Homology of chains defines an equivalence relation on the
group of closed chains in D. The factor group then provides a valuable
description of the topological nature of D. This is the topic of homology
theory.

(b) Intuitively, two closed chains are D-homologous, if they wind around all z
from the complement of D the same number of times.

Example 8.11. (a) We start with our standard example D := C \ {0} and
γ(t) = reit, t ∈ [0, 2π], for some r > 0. Then we already know that

n(γ, 0) =
1

2πi

∫

γ

1

z
dz = 1,

so γ is not D-homologous to zero.

(b) We consider again D = C \ {0} and, now, for r1, r2 > 0 the two paths

γ1(t) = r1e
it, t ∈ [0, 2π], and γ2(t) = r2eit, t ∈ [0, 2π].

Then, both are not D-homologous to zero, as we have seen in (a). However,
for the chain γ1 − γ2 we have

n(γ1 − γ2, 0) = n(γ1, 0) − n(γ2, 0) = 1 − 1 = 0,
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γ
1

γ
2

D

Figure 8.2: Two paths that are D-homologous, while both are not D-homologous
to zero

so γ1 − γ2 is D-homologous to zero. This means that γ1 and γ2 are D-
homologous paths.

The same is true for the more general situation in Figure 8.2.

(c) Another, more involved example of a closed path that is D-homologous to
zero is depicted in Figure 8.3.

D

Figure 8.3: A closed path that is D-homologous to zero

Our results on the winding number also allow to define the interior and the
exterior of a closed path or chain.

Definition 8.12. Let γ be a closed chain. Then we call

int(γ) := {z ∈ C \ tr(γ) : n(γ, z) 6= 0} interior [Inneres] of γ and

ext(γ) := {z ∈ C \ tr(γ) : n(γ, z) = 0} exterior [Äußeres] of γ.

Remark 8.13. Let D ⊆ C be open and γ a closed chain in D.
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8 Homology and Homotopy

(a) The sets int(γ) and ext(γ) are open subsets of C and it holds

C = int(γ) ∪ ext(γ) ∪ tr(γ)

as a disjoint partition.

(b) We have the following reformulation of ’homologous to zero’: γ is D-
homologous to zero, if and only if int(γ) ⊆ D.

There is another, completely different idea to formulate that a closed path (or
chain) surrounds a point from the complement of the domain under consideration.
Imagine a closed path as an elastic strap. Then you can try to continuously
contract the closed path inside the domain to a point. If this is possible, the path
did not wind around points from the complement, if it did, you would get stuck
around the obstacle after some time. The heuristic concept of deforming a path
continuously into another path inside a domain is made rigorous in the following
definition.

Definition 8.14. Let D ⊆ C be open and γ0, γ1 : [a, b] → D be paths with
γ0(a) = γ1(a) =: za and γ0(b) = γ1(b) =: zb.

(a) The paths γ0 and γ1 are called D-homotopic [homotop in D], if there exists
a continuous map h : [0, 1] × [a, b] → D such that

• h(0, t) = γ0(t) and h(1, t) = γ1(t) for all t ∈ [a, b]

• h(s, a) = za and h(s, b) = zb for all s ∈ [0, 1].

In this case, h is called homotopy [Homotopie].

(b) A closed path γ in D is null-homotopic in D [nullhomotop in D], if γ is
D-homotopic to a constant path.

Remark 8.15. (a) In the above definition we require that the paths γ0 and
γ1 are defined on the same interval [a, b]. This is just for simplifying the
notation, as one can always achieve this situation by a suitable reparametri-
sation.

(b) The homotopy h deforms the path γ0 continuously into the path γ1 without
leaving D. For s ∈ (0, 1) we can consider the “intermediate” paths

γs : [a, b] → D with γs(t) := h(s, t), t ∈ [a, b].

You could object that these γs shouldn’t be called paths, since h was only
requested to be continuous, so there is no reason why γs should be piecewise
C1 (remember the agreement following Definition 2.1). However, one finds
that on an open set, whenever there is a continuous homotopy one can also
find one that is C1, so this problem does not exist.
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(c) Two paths γ0 and γ1 in D with common initial points and endpoints are
D-homotopic, if and only if, the closed path γ0 ⊕ γ−

1 is null-homotopic in
D.

(d) As in the case of D-homology the notion of D-homotopy defines an equiv-
alence relation on the paths in D. The corresponding equivalence classes
then define the fundamental group of D that is another important tool to
describe topological and geometric properties of D by algebraic means.

Example 8.16. (a) Figure 8.4 shows a situation with two paths that are not
homotopic and another where they are homotopic.

D

γ
0

γ
1

γ
1

D

γ
0

Figure 8.4: Two paths that are not D-homotopic on the left and two paths that
are D-homotopic on the right.

(b) The path in Figure 8.3 is not null-homotopic (try to contract it to a single
point!), but it is homologous to zero. This example shows that homology
and homotopy are different concepts. However, we will see in the next
proposition that two homotopic paths are always homologous.

Proposition 8.17. Let D ⊆ C be open and γ0, γ1 : [a, b] → D be two paths in D
with γ0(a) = γ1(a) and γ0(b) = γ1(b). If γ0 and γ1 are D-homotopic, then they
are also D-homologous.

Proof. Let h : [0, 1] × [a, b] → D be a continuously differentiable homotopy de-
forming γ0 into γ1 and for s ∈ [0, 1] denote again by γs = h(s, ·) : [a, b] → D the
intermediate paths.

We want to show that γ0 and γ1 are D-homologous, which means that γ0 −γ1 is
D-homologous to zero. By definition we have to make sure that n(γ0 − γ1, z) = 0
holds for all z ∈ C \ D, i.e. that n(γ0, z) = n(γ1, z) for all these z.

So let z ∈ C \ D. Since h is continuously differentiable, by our results on
continuity of parameter integrals from Analysis II, Satz 18.2, the mapping

s 7→ n(γs, z) =
1

2πi

∫

γs

1

ζ − z
dζ =

1

2πi

∫ b

a

1

h(s, t) − z
∂2h(s, t) dt

from [0, 1] to R is continuous. At the same time Proposition 8.7 implies that the
values of this map are in Z, so it can only be constant. This immediately gives
n(γ0, z) = n(γ1, z) and we are done.
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8 Homology and Homotopy

Using homotopy we can define a rigorous notion for ’domain that has no hole’.

Definition 8.18. A domain G ⊆ C is called simply connected [einfach zusam-
menhängend], if every closed path in G is null-homotopic in G.
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9 The Cauchy Integral Theorem
revisited

Using our notion of homology we can now prove a more general version of the
Cauchy Integral Formula and the Cauchy Integral Theorem. We will see that
indeed the only obstruction for this theorem to hold are points in the complement
of the realm of holomorphy of f that are surrounded by the chain we integrate
along. This leads to a Cauchy Integral Theorem for all chains that are homologous
to zero.

This time we start with the Cauchy Integral Formula and we will then get
Cauchy’s Integral Theorem as a corollary.

Theorem 9.1 (Cauchy’s Integral Formula, homology version). Let D ⊆ C be
open, f ∈ H(D) and γ a closed chain in D that is D-homologous to zero. Then
for all z ∈ D \ tr(γ) and all k ∈ N0

n(γ, z)f (k)(z) =
k!

2πi

∫

γ

f(ζ)

(ζ − z)k+1
dζ.

Remark 9.2. (a) We get back our ’old’ Cauchy Integral Formula from Theo-
rem 4.4 and Proposition 4.6 when we consider a single circle γ in a star-
shaped D. In this case n(γ, z) = 1 inside γ.

(b) Note that the result is also true for z in the exterior of γ, albeit not very
exciting: In this case n(γ, z) = 0 and the integral on the right hand also
vanishes applying the general version of Cauchy’s integral theorem that we
will prove next.

Before we start the more involved proof of the Cauchy Integral Formula, we
first use it to deduce Cauchy’s Integral Theorem.

Theorem 9.3 (Cauchy’s Integral Theorem, homology version). Let D ⊆ C be
open, f ∈ H(D) and let γ be a closed chain in D that is D-homologous to zero.
Then ∫

γ
f(z) dz = 0.
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9 The Cauchy Integral Theorem revisited

Proof. Fix some z0 ∈ D \ tr(γ) and consider the function F (z) = f(z)(z − z0).
Then F ∈ H(D) and it satisfies F (z0) = 0. Applying the Cauchy Integral Formula
from above with k = 0 to F leads to

0 = n(γ, z0)F (z0) =
1

2πi

∫

γ

F (ζ)

ζ − z0
dζ =

1

2πi

∫

γ
f(ζ) dζ

and this yields the claim.

Now it is time to prove the homology version of Cauchy’s Integral Formula.

Proof of Theorem 9.1. As in the proof of our first version of the Cauchy Integral
Formula in Theorem 4.4 the formula for k ≥ 1 follows from the formula for k = 0
by induction. Since this inductive step is the easy part of this proof, we give it
first and do the base case afterwards, even if this is a little bit uncustomary.

So, admit for the moment that the formula is valid for some k ∈ N0 and let
z ∈ D \ tr(γ). Since the set D \ tr(γ) is open, there is some ball around z that
is completely contained in this set. By Proposition 8.8(a) the winding number
n(γ, ·) is constant on this ball, so we have

n(γ, z)f (k+1)(z) = n(γ, z)
(
f (k)

)′
(z) =

(
n(γ, ·)f (k)

)′
(z).

Investing now the induction hypothesis, we get

n(γ, z)f (k+1)(z) =
d

dz

[
k!

2πi

∫

γ

f(ζ)

(ζ − z)k+1
dζ
]
.

Our Lemma 4.1 on differentiation of path integrals with respect to a parameter
then yields

n(γ, z)f (k+1)(z) =
k!

2πi

∫

γ

f(ζ)(k + 1)

(ζ − z)k+2
dζ =

(k + 1)!

2πi

∫

γ

f(ζ)

(ζ − z)k+2
dζ

and this is exactly the Cauchy Integral Formula for k + 1.
So, it “only” remains to prove the case k = 0, i.e. the equality

n(γ, z)f(z) =
1

2πi

∫

γ

f(ζ)

ζ − z
dζ.

From the definition of the winding number we know

n(γ, z)f(z) =
1

2πi

∫

γ

1

ζ − z
dζ f(z) =

1

2πi

∫

γ

f(z)

ζ − z
dζ.

In order to show that the right hand sides of the two equalities above coincide,
we consider the function h : D \ tr(γ) → C with

h(z) =
∫

γ

f(ζ) − f(z)

ζ − z
dζ
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and our goal is to show that this function is constantly zero.
Before we enter into this argument, here is a brief description of the idea

behind: We will show in a first step that h can be extended holomorphically to
D. In a second step we will see that h even has a holomorphic extension to the
whole complex plane, so there is an entire function h̃ with h = h̃ on D \ tr(γ).
Finally, we will show that h̃ is bounded and thus constant by Liouville’s Theorem.
Since it will turn out that limn→∞ h̃(n) = 0, its constant value is zero, so h̃, and
consequently also h, is constantly zero.

First step: h has a holomorphic extension to D

The main work here is to establish a continuous extension of the integrand in
the definition of h to points with ζ = z. The candidate for this is the function
g : D × D → C with

g(ζ, z) =





f(ζ) − f(z)

ζ − z
, for ζ 6= z,

f ′(z), for ζ = z.

In order to show that g is continuous, let (ζ0, z0) ∈ D × D. In case that ζ0 6= z0

there is a whole neighbourhood of (ζ0, z0) in D, such that ζ 6= z holds for all
(ζ, z) in this neighbourhood, so for continuity of g in (ζ0, z0) we are only dealing
with the upper line in the definition of g and this function is continuous just as
quotient of continuous functions.

So, we can focus on the case ζ0 = z0. Since D is open, there is some r0 > 0
such that Ur := Ur(ζ0) × Ur(z0) = Ur(z0) × Ur(z0) ⊆ D × D for all r ∈ (0, r0).
For every choice of r ∈ (0, r0) and all (ζ, z) ∈ Ur with ζ 6= z we have

∣∣∣g(ζ, z) − g(ζ0, z0)
∣∣∣ =

∣∣∣g(ζ, z) − g(z0, z0)
∣∣∣ =

∣∣∣∣
f(ζ) − f(z)

ζ − z
− f ′(z0)

∣∣∣∣.

Since ζ and z both lie in Ur(z0), the connecting line γ[z,ζ], cf. Example 2.5(a), is
contained in Ur(z0) ⊆ D, so by the holomorphy of f , we may continue

=
∣∣∣∣

1

ζ − z

∫

γ[z,ζ]

f ′(w) dw − f ′(z0)
∣∣∣∣.

Doing the same trick for the identity function, we find

=
∣∣∣∣

1

ζ − z

∫

γ[z,ζ]

f ′(w) dw − f ′(z0)
1

ζ − z

∫

γ[z,ζ]

1 dw

∣∣∣∣

=
∣∣∣∣

1

ζ − z

∫

γ[z,ζ]

(
f ′(w) − f ′(z0)

)
dw
∣∣∣∣.
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9 The Cauchy Integral Theorem revisited

Now, the time has come to estimate this integral and this provides us with1

∣∣∣g(ζ, z) − g(z0, z0)
∣∣∣ ≤ 1

|ζ − z|L(γ[z,ζ]) sup
w∈zζ

∣∣∣f ′(w) − f ′(z0)
∣∣∣.

Since L(γ[ζ,z]) is exactly |ζ −z| and zζ ⊆ Ur(z0), we are left with the final estimate
∣∣∣g(ζ, z) − g(z0, z0)

∣∣∣ ≤ sup
w∈Ur(z0)

∣∣∣f ′(w) − f ′(z0)
∣∣∣. (9.1)

All these calculations were under the hypothesis that ζ 6= z, but if ζ = z, we
immediately get
∣∣∣g(ζ, z)−g(ζ0, z0)

∣∣∣ =
∣∣∣g(z, z)−g(z0, z0)

∣∣∣ =
∣∣∣f ′(z)−f ′(z0)

∣∣∣ ≤ sup
w∈Ur(z0)

∣∣∣f ′(w)−f ′(z0)
∣∣∣,

so (9.1) holds for all (ζ, z) ∈ Ur(z0) × Ur(z0).
Now, let ε > 0. Since f ′ is continuous in z0, there exists δ ∈ (0, r0), such that

|f ′(w) − f ′(z0)| < ε for all w ∈ Uδ(z0). So, for all (ζ, z) ∈ Uδ we have by (9.1)
∣∣∣g(ζ, z) − g(z0, z0)

∣∣∣ ≤ sup
w∈Uδ(z0)

∣∣∣f ′(w) − f ′(z0)
∣∣∣ ≤ ε,

but this is just continuity of g in (z0, z0).
Having established continuity of G throughout D × D, we can redefine

h(z) =
∫

γ
g(ζ, z) dζ

for all z ∈ D, gaining a continuous extension of our original h to all of D.
It remains to prove that this new h is holomorphic, which will be achieved by
applying Morera’s Theorem.

In order to do so, let △ ⊆ D be a closed triangle. Then
∫

∂△
h(z) dz =

∫

∂△

∫

γ
g(ζ, z) dζ dz.

By the Fubini Theorem, Theorem II.18.62, we can interchange the integrals and
obtain ∫

∂△
h(z) dz =

∫

γ

∫

∂△
g(ζ, z) dz dζ.

For a fixed ζ ∈ tr(γ) the function z 7→ g(ζ, z) is holomorphic in D \ {ζ} and our
above considerations show that it is still continuous in ζ . So, by the Riemann

1Recall the notation ab := {λa + (1 − λ)b : λ ∈ [0, 1]} for the connecting line between a and b.
2In the course Analysis II we formulated this result for real-valued functions and integrals

on the real line. The generalization to complex path integrals remains as an exercise.
Alternatively you can wait for the general Fubini Theorem in the course on measure and
integration theory in the next semester

70



Theorem on removable singularities, cf. Theorem 5.8 and Remark 5.9(b), this
function is even holomorphic on all of D. Thus, Goursat’s Integral Lemma tells
us that ∫

∂△
g(ζ, z) dz = 0 for all ζ ∈ D.

But this implies
∫

∂△
h(z) dz =

∫

γ

∫

∂△
g(ζ, z) dz dζ =

∫

γ
0 dζ = 0,

so, by the Morera Theorem, h is holomorphic throughout D.

Second step: There exists h̃ ∈ H(C) with h̃|D = h.
It is now, that we will need the hypothesis that the chain γ is D-homologous

to zero. We recall the exterior of γ from Definition 8.12 as

ext(γ) = {z ∈ C \ tr(γ) : n(γ, z) = 0}.

The set D ∩ ext(γ) is non-empty and since D and ext(γ) are open subsets of C,
their intersection is open, too. On the other hand, γ being D-homologous to zero
means that C \ D ⊆ ext(γ), so D ∪ ext(γ) is the whole complex plane.

For all z ∈ D ∩ ext(γ) we have

h(z) =
∫

γ

f(ζ) − f(z)

ζ − z
dζ =

∫

γ

f(ζ)

ζ − z
dζ − f(z)

∫

γ

1

ζ − z
dζ.

The last integral is the one from the definition of the winding number and, since
z ∈ ext(γ) its value is 2πi · n(γ, z) = 0. This leads to

h(z) =
∫

γ

f(ζ)

ζ − z
dζ for all z ∈ D ∩ ext(γ).

This allows us to define h̃ : C → C by

h̃(z) =





h(z), for z ∈ D∫

γ

f(ζ)

ζ − z
, for z ∈ ext(γ)

in a consistent way and h̃ is the required entire extension of h.

Third step: Application of Liouville’s Theoerem
Choose some r > 0 with tr(γ) ⊆ Ur(0). By Proposition 8.8(b), we know that

n(γ, z) = 0 for all z ∈ C \ Ur(0), so C \ Ur(0) ⊆ ext(γ). This implies that for all
z ∈ C with |z| > 2r

|h̃(z)| =
∣∣∣∣
∫

γ

f(ζ)

ζ − z
dζ

∣∣∣∣ ≤ L(γ) max
ζ∈tr(γ)

|f(ζ)|
|ζ − z| ≤ L(γ)

dist(z, tr(γ))
max

ζ∈tr(γ)
|f(ζ)|

≤ L(γ)

r
max

ζ∈tr(γ)
|f(ζ)|,
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9 The Cauchy Integral Theorem revisited

i.e. h̃ is bounded on C\U2r(0). Since h̃ is also bounded on U2r(0) by compactness,
h̃ is an entire and bounded function, so it is constant by Liouville’s Theorem.
Finally, the above estimate also yields for all n ∈ N with n ≥ 2r

|h̃(n)| ≤ L(γ)

dist(n, tr(γ))
max

ζ∈tr(γ)
|f(ζ)| ≤ L(γ)

n − r
max

ζ∈tr(γ)
|f(ζ)| −→ 0 (n → ∞),

to the effect that limn→∞ h̃(n) = 0, so we must have h̃(z) = 0 for all z ∈ C, which
means that also h(z) = 0 for all z ∈ D.

The Cauchy Integral Theorem implies that the value of a path integral does
not change, if we use another path for integration, provided the two paths are
homologous.

Corollary 9.4. Let D ⊆ C be open, f ∈ H(D) and γ1 and γ2 two D-homologous
chains in D. Then ∫

γ1

f(z) dz =
∫

γ2

f(z) dz.

Proof. The chain γ1 − γ2 is D-homologous to zero by definition of homology, so
by the Cauchy Integral Theorem 9.3

∫

γ1

f(z) dz −
∫

γ2

f(z) dz =
∫

γ1−γ2

f(z) dz = 0.
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10 Laurent series

In this chapter we start to investigate singularities of holomorphic functions. In
a first step we will generalize the notion of a power series to series containing
also negative powers of the free variable. These can then be used to describe the
behaviour of holomorphic functions in the neighbourhood of their singularities.

Definition 10.1. Let z0 ∈ C and 0 ≤ r < R ≤ ∞. Then the annulus [Kreisring]
around z0 with radii r and R is

Ar,R(z0) :=
{
z ∈ C : r < |z − z0| < R

}
.

Proposition 10.2. Let 0 ≤ r < R ≤ ∞ and f ∈ H(Ar,R(0)). Then there are
functions g ∈ H(UR(0)) and h ∈ H(U1/r(0)) with h(0) = 0, such that

f(z) = g(z) + h
(

1

z

)
for all z ∈ Ar,R(0).

Remark 10.3. (a) The above proposition gives a decomposition of a holo-
morphic function on the annulus into a friendly part g that is holomorphic
on all of the disc UR(0) and the nasty part, usually called principal part
[Hauptteil], h that contains all the singularities of f that lie inside the disc
Ur(z0).

(b) If f itself already has a holomorphic extension to the big disc UR(0), one
can choose g = f and h = 0.

Proof. We show the existence of g and h on every annulus A̺,P (0) with a choice
of1 r < ̺ < P < R. Since we will observe that the construction in fact does not
depend on the actual values of ̺ and P , the claim follows by exhausting Ar,R(0)
with smaller annuli.

For this proof we will use the short hand notation γs for the path ∂Us(0). Using
this we define for r < ̺ < P < R

g : UP (0) → C, g(z) =
1

2πi

∫

γP

f(ζ)

ζ − z
dζ

and

h : U1/̺(0) → C, h(w) = − 1

2πi

∫

γ̺

wf(ζ)

ζw − 1
dζ.

1Note that the letter “P ” is here intended to designate a capital greek Rho ;)
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10 Laurent series

Applying Lemma 4.1, we indeed have g ∈ H(UP (0)) and h ∈ H(U1/̺(0)). Fur-
thermore, we find

h(0) =
1

2πi

∫

γ̺

0 · f(ζ)

1
dζ = 0.

Note that for every different choice of r1, r2 ∈ (r, R) the chain γr1 −γr2 is Ar,R(0)-
homologous to zero, so by the homology version of the Cauchy Integral Theorem,
cf. Corollary 9.4, we find

∫

γr1

f(ζ)

ζ − z
dζ =

∫

γr2

f(ζ)

ζ − z
dζ

and

∫

γr1

wf(ζ)

ζw − 1
dζ =

∫

γr2

wf(ζ)

ζw − 1
dζ.

This means that the definitions of g and h indeed do not depend on the specific
choices of ̺ and P .

We invest again that γP − γ̺ is Ar,R(0)-homologous to zero, and infer from the
Cauchy Integral Formula in Theorem 9.1 that for all z ∈ A̺,P (0)

g(z) + h
(

1

z

)
=

1

2πi

∫

γP

f(ζ)

ζ − z
dζ − 1

2πi

∫

γ̺

1
z
f(ζ)

ζ
z

− 1
dζ

=
1

2πi

∫

γP

f(ζ)

ζ − z
dζ − 1

2πi

∫

γ̺

f(ζ)

ζ − z
dζ =

1

2πi

∫

γP −γ̺

f(ζ)

ζ − z
dζ

= n(γP − γ̺, z)f(z) = f(z).

We profit from the above proposition by expanding g and h into their power
series. Since g and h are holomorphic on discs around the origin, they are analytic
on these discs and we find complex sequences (an)n≥0 and (bn)n∈N with

g(z) =
∞∑

n=0

anzn, z ∈ UR(0)

and

h(w) =
∞∑

n=1

bnwn, w ∈ U1/r(0).

Note that the series for h only starts with n = 1 thanks to h(0) = 0.
For z ∈ Ar,R(0) we find due to 1/z ∈ U1/r(0)

f(z) = g(z) + h
(1

z

)
=

∞∑

n=0

anzn +
∞∑

n=1

bn

(
1

z

)n

=
∞∑

n=0

anzn +
∞∑

n=1

bn
1

zn
.
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We rearrange the notation by setting a−n = bn for n ∈ N. This yields

f(z) =
∞∑

n=0

anzn +
∞∑

n=1

a−nz−n =
∞∑

n=0

anzn +
−1∑

n=−∞
anzn =

∞∑

n=−∞
anzn.

This is the Laurent series expansion of f and here is the corresponding theorem.

Theorem 10.4 (Laurent series). Let an annulus Ar,R(z0) with 0 ≤ r < R ≤ ∞
and z0 ∈ C be given. If f ∈ H(Ar,R(z0)). Then there is a unique sequence (an)n∈Z

with

f(z) =
∞∑

n=−∞
an(z − z0)n for all z ∈ Ar,R(z0)

and the series converges absolutely and locally uniformly in Ar,R(z0). Further-
more, for all ̺ ∈ (r, R) and all n ∈ Z it holds

an =
1

2πi

∫

∂U̺(z0)

f(z)

(z − z0)n+1
dz. (10.1)

Proof. As a starter we shift the problem to the origin by considering the function
f̂(z) = f(z + z0) for z ∈ Ar,R(0). Since f̂ ∈ H(Ar,R(0)), by Proposition 10.2 we
get g ∈ H(UR(0)) and h ∈ H(U1/r(0)) with h(0) = 0 such that

f̂(z) = g(z) + h
(

1

z

)
.

Following the calculations that precede this theorem we get for z ∈ Ar,R(0)

f̂(z) =
∞∑

n=−∞
anzn

with absolute and locally uniform convergence, since all the power series involved
have this nice convergence behaviour. Shifting back we find for all z ∈ Ar,R(z0)

f(z) = f̂(z − z0) =
∞∑

n=−∞
an(z − z0)

n

with absolute and locally uniform convergence.
We turn to the proof of formula (10.1). By our representation of f we have for

all ̺ ∈ (r, R) and all n ∈ Z

1

2πi

∫

∂U̺(z0)

f(z)

(z − z0)n+1
dz =

1

2πi

∫

∂U̺(z0)

∞∑

k=−∞

ak(z − z0)k

(z − z0)n+1
dz.

Since the convergence of the sum is locally uniform and ∂U̺(z0) is compact, we
can interchange sum and integral and obtain

1

2πi

∫

∂U̺(z0)

f(z)

(z − z0)n+1
dz =

∞∑

k=−∞

ak

2πi

∫

∂U̺(z0)

1

(z − z0)n+1−k
dz.
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10 Laurent series

The remaining integral can now be evaluated as 2πi for n + 1 − k = 1 and zero
for all other values of k. Thus, we are only left with the summand for k = n and
we find

1

2πi

∫

∂U̺(z0)

f(z)

(z − z0)n+1
dz =

an

2πi
2πi = an.

On the one hand, this is (10.1), on the other hand, this means that there is only
this choice for an possible, which gives us the claimed uniqueness.

Definition 10.5. Let (an)∞
n=−∞ be a complex sequence and let z0 ∈ C.

(a) The series
∑∞

n=−∞ an(z − z0)n is called Laurent series [Laurent-Reihe].

(b) The series
∑−1

n=−∞ an(z − z0)n is called principle part [Hauptteil] of the
Laurent series.

(c) A Laurent series is called convergent in z ∈ C, if both series

∞∑

n=0

an(z − z0)
n and

∞∑

n=1

a−n(z − z0)−n

are convergent.

The typical domain of convergence for Laurent series are annuli, as we had
them in the preceding theorem.

Example 10.6. We consider f : C \ {0, 1} → C with

f(z) =
1

z − z2
=

1

z
+

1

1 − z
.

For this function there are two maximal annuli around the origin, where it is
holomorphic: A0,1(0) = U1(0)\{0} and A1,∞(0) = {z ∈ C : |z| > 1}. We can find
the corresponding Laurent expansion on the first annulus, i.e. for 0 < |z| < 1,
just using a geometric series:

f(z) =
1

z
+

1

1 − z
=

1

z
+

∞∑

n=0

zn,

and the principal part is just 1/z.
For the second annulus, i.e. for |z| > 1, we have 1/|z| < 1, so with a little bit

more elaborated geometric series, we find

f(z) =
1

z
+

1

1 − z
=

1

z
+

1

z
· 1

1
z

− 1
=

1

z
− 1

z
· 1

1 − 1
z

=
1

z
− 1

z

∞∑

n=0

1

zn

=
1

z
−

∞∑

n=0

1

zn+1
=

∞∑

n=1

1

zn+1
=

∞∑

n=2

1

zn
=

−2∑

n=−∞
zn.

So, in this case the Laurent series consists only of its principle part.
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The knowledge of the Laurent series, more precisely of the coefficient a−1, can
be of great importance to calculate certain path integrals. This is an outcome of
the following proposition and will be discussed in more detail in Chapter 12.

Proposition 10.7. Let 0 ≤ r < R ≤ ∞, z0 ∈ C and f ∈ H(Ar,R(z0)). If (an)n∈Z

are the coefficients of the Laurent series of f in this annulus and if γ is a closed
chain in Ar,R(z0), then

∫

γ
f(z) dz = 2πi · n(γ, z0)a−1.

Proof. By the locally uniform convergence of the Laurent series we have

∫

γ
f(z) dz =

∫

γ

∞∑

n=−∞
an(z − z0)

n dz =
∞∑

n=−∞
an

∫

γ
(z − z0)n dz.

In order to calculate the remaining integral, we choose some ̺ ∈ (r, R) and
consider the path γ̺(t) = z0 + ̺eit, t ∈ [0, 2π]. Note that the winding number
n(γ, ·) is constant on the connected open set Ur(z0), so γ −n(γ, z0)γ̺ has winding
number zero around every point in Ur(z0), which means that this chain is Ar,R(z0)-
homologous to zero. We infer that γ is A(r, R)(z0)-homologous to n(γ, z0)γ̺, so
by Corollary 9.4 we may continue the above calculation by

∫

γ
f(z) dz =

∞∑

n=−∞
an

∫

γ
(z − z0)

n dz =
∞∑

n=−∞
an

∫

n(γ,z0)γ̺

(z − z0)n dz

=
∞∑

n=−∞
ann(γ, z0)

∫

γ̺

(z − z0)n dz.

Like this the integral boils down to our standard example, i.e. it is 2πi for n = −1
and zero otherwise. So we find

∫

γ
f(z) dz =

∞∑

n=−∞
ann(γ, z0)2πiδn,−1 = a−1n(γ, z0)2πi.
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11 Isolated singularities

We want to use our new tool of Laurent series to investigate the behaviour of
holomorphic functions around isolated points that do not belong to their domain
of definition. We will categorise these singularities into three classes.

Definition 11.1. Let z0 ∈ C, let U ⊆ C be an open neighbourhood of z0, and let
f ∈ H(U \ {z0}). Then z0 is called an isolated singularity [isolierte Singularität]
of f . We say that the singularity is

(a) removable [hebbar], if f has a holomorphic extension to all of U .

(b) pole of order [Pol der Ordnung] n ∈ N, if z 7→ (z−z0)nf(z) has a removable
singularity in z0, but z 7→ (z − z0)n−1f(z) has not.

(c) essential [wesentlich], in all other cases.

Example 11.2. (a) The function

sin(z)

z
=

∞∑

k=0

(−1)n z2n

(2n + 1)!

is analytic in zero, so it has a holomorphic extension to all of C. The
singularity in the origin is, thus, a removable one.

(b) The notion of pole generalizes in a sensible way the notion of a pole for
rational functions, as z−n has a pole of order n in zero: zn · z−n = 1 has a
removable singularity but zn−1 · z−n = 1/z has not.

If some point z0 is an isolated singularity of f , then there is some R > 0, such
that f is holomorphic on UR(z0) \ {z0} = A0,R(z0), to the effect that we can
consider the Laurent series expansion of f around z0. The quality of the isolated
singularity can then be read off the principal part of this series in the following
way.

Proposition 11.3. Let D ⊆ C be open and z0 ∈ D. If f ∈ H(D \ {z0}) has the
Laurent series expansion f(z) =

∑∞
k=−∞ ak(z − z0)k around z0, then the isolated

singularity in z0 is

(a) removable, iff ak = 0 for all k < 0.

(b) pole of order n ∈ N, iff a−n 6= 0 and ak = 0 for all k < −n.
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11 Isolated singularities

(c) essential, iff ak 6= 0 for infinitely many k < 0.

Proof. (a) If z0 is removable, then f has a holomorphic extension f̂ ∈ H(D).
Since the Laurent expansion is unique, the Taylor series of f̂ around z0 and
the Laurent series of f around z0 coincide, which yields ak = 0 for all k < 0.

Conversely, if ak = 0 for all k < 0, then the Laurent series is in fact a Taylor
series, so it provides us with an analytic extension of f to z0.

(b) “⇒” Let f have a pole of order n in z0. Then (z−z0)nf(z) has a removable
singularity in z0, so the Laurent series expansion

(z − z0)nf(z) = (z − z0)
n

∞∑

k=−∞
ak(z − z0)

k =
∞∑

k=−∞
ak(z − z0)k+n

has no principal part by part (a) above. This implies

(z − z0)nf(z) =
∞∑

k=−n

ak(z − z0)
n+k

which means ak = 0 for all k < −n.

If we assume that also a−n = 0, we find by an analogous calculation

(z − z0)n−1f(z) = (z − z0)n−1
∞∑

k=−n

ak(z − z0)
k =

∞∑

k=−n

ak(z − z0)k+n−1

= a−n(z − z0)−1 +
∞∑

k=−n+1

ak(z − z0)
k+n−1 (11.1)

=
∞∑

k=0

ak−n+1(z − z0)k.

This would mean, that (z − z0)n−1f(z) has an analytic extension to
z0, i.e. this function has a removable singularity in z0, which leads to
a contradiction to the hypotheses. So we find a−n 6= 0.

“⇐” By hypothesis we have

(z − z0)
nf(z) = (z − z0)n

∞∑

k=−n

ak(z − z0)
k =

∞∑

k=−n

ak(z − z0)k+n

=
∞∑

k=0

ak−n(z − z0)k,

which means that (z − z0)nf(z) has a removable singularity in z0.

Furthermore, we know that a−n 6= 0 and by the calculation in (11.1)

(z − z0)
n−1f(z) =

a−n

z − z0
+

∞∑

k=0

ak−n+1(z − z0)k.
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This function is unbounded around z0, so it surely does not have a
removable singularity there.

(c) If z0 is an essential singularity, it is not a removable one, so by part (a)
there is some k < 0 with ak 6= 0. Furthermore, z0 is not a pole, so for all
n < 0, there is some k < n with ak 6= 0. Together this means that there
are infinitely many k < 0 with ak 6= 0.

Conversely, if ak 6= 0 for infinitely many k < 0, then z0 is neither removable
nor a pole, so it is an essential singularity.

Example 11.4. (a) We consider the function f1 : C \ {0, i} → C with

f1(z) =
1

z(z − i)2
.

The mapping z 7→ (z − i)−2 is analytic on U1(0), so we have some sequence
(ak)k≥0 with

1

(z − i)2
=

∞∑

k=0

akzk, z ∈ U1(0), and a0 =
1

(0 − i)2
= −1 6= 0.

Thus

f1(z) =
1

z

∞∑

k=0

akzk = a0
1

z
+ a1 + a2z + a3z2 + . . .

with a0 6= 0. From this series and the above proposition we can immediately
read off that f1 has a pole of order one in the origin.

Analogously, one finds that f1 has a pole of order 2 in i.

(b) For the function f2 : C \ {0} → C with f2(z) = e1/z we find

e1/z =
∞∑

k=0

1

k!

1

zk
=

0∑

k=−∞

1

(−k)!
zk,

so the origin is an essential singularity of this function.

(c) Finally, we consider f3 : C \ Z → C with

f3(z) = cot(πz) =
cos(πz)

sin(πz)
.

This function has isolated singularities in all z ∈ Z. Exemplarily, we ex-
amine the case z = 0, the other singularities can be treated analogously or
one can argue by periodicity. We have

lim
n→∞

cos(π/n) = cos(0) = 1 and lim
n→∞

sin(π/n) = sin(0) = 0,
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11 Isolated singularities

so

lim
n→∞

|f3(1/n)| = lim
n→∞

∣∣∣∣
cos(π/n)

sin(π/n)

∣∣∣∣ = ∞.

This means that f3 is unbounded in every neighbourhood of the origin, so
the singularity is not removable. On the other hand

lim
z→0

zf3(z) =
1

π
lim
z→0

πz

sin(πz)
cos(πz) =

1

π
· 1 · 1 =

1

π

exists, so z 7→ zf3(z) has a removable singularity. By definition this means
that f3 has a pole of order one in zero.

The following theorem gives a complete characterisation of the type of isolated
singularities by mapping properties of f . It shows that the behaviour of f3 above
is the generic behaviour of a function around a pole and that essential singularities
are really nasty. For the sake of completeness, we include as a first part Riemann’s
Theorem on removable singularities that we already proved in Theorem 5.8.

Theorem 11.5. Let D ⊆ C be open, z0 ∈ D and f ∈ H(D \ {z0}). Then f has
a

(a) removable singularity in z0, iff there exists some r > 0 such that f is
bounded on Ur(z0). (Riemann’s Theorem on removable singularities)

(b) pole in z0, iff limz→z0 |f(z)| = ∞, i.e. for every C > 0 there is some ε > 0
with

|f(z)| > C for all z ∈ Uε(z0) \ {z0}.

(c) essential singularity in z0, iff for all r > 0 with Ur(z0) ⊆ D the image
f(Ur(z0) \ {z0}) is dense in C, i.e. for all w ∈ C and for all ε > 0 there
is some z ∈ Ur(z0) \ {z0} with |f(z) − w| < ε. (Thorem of Casorati-
Weierstrass)

Proof. (a) This was proved in Theorem 5.8.

(b) “⇒” Let z0 be a pole of order n of f and let

f(z) =
∞∑

k=−n

ak(z − z0)
k with a−n 6= 0

be the Laurent expansion of f , cf. Proposition 11.3. Then by the
definition of a pole, z0 is a removable singularity of h(z) = (z−z0)nf(z)
and we have h(z0) = a−n 6= 0.

Since h is continuous in z0, there is some r > 0 with

|h(z)| ≥ 1

2
|h(z0)| for all z ∈ Ur(z0). (11.2)
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Now, let C > 0 be given and choose ε ∈ (0, r) so small that

εn <
|a−n|
2C

.

Then for all z ∈ Uε(z0)\{z0}, we find, investing (11.2) and h(z0) = a−n

|f(z)| =
|h(z)|

|z − z0|n ≥ |h(z0)|
2|z − z0|n >

|a−n|
2εn

> C.

“⇐” Our hypothesis with C = 1 provides us with some r > 0, such that
|f(z)| > 1 for all z ∈ Ur(z0) \ {z0}. On this ball we may thus define
the function 1/f(z) and we claim that limz→z0 1/f(z) = 0.

In order to verify this, let ε̃ > 0 be given. By our hypothesis applied
to C = 1/ε̃ we find an ε > 0 such that |f(z)| > C = 1/ε̃ for all
z ∈ Uε(z0) \ {z0}. So, for all these z we conclude

∣∣∣∣
1

f(z)

∣∣∣∣ =
1

|f(z)| <
1

C
= ε̃.

This is the claimed convergence.

By the Riemann Theorem on removable singularities in part (a), see
also Remark 5.9(b), we get that g : Ur(z0) → C with

g(z) =





1

f(z)
, z 6= z0,

0, z = z0,

is holomorphic on all of Ur(z0), so we can develop it into a Taylor series
around z0. Since g(z0) = 0 and g is not constantly zero, this series has
the form

g(z) =
∞∑

k=n0

ak(z − z0)k with an0 6= 0 for some n0 > 0.

So, we can factorise out (z − z0)n0 and get

g(z) = (z − z0)n0

∞∑

k=n0

ak(z − z0)
k−n0 = (z − z0)n0

∞∑

k=0

ak+n0(z − z0)
k

and we find that g(z) = (z−z0)n0h(z) for some function h ∈ H(Ur(z0))
with h(z0) = an0 6= 0. Since h is continuous in z0, we find again some
̺ ∈ (0, r), such that 1/h is a holomorphic function on U̺(z0).

Putting everything together, this means that for all z ∈ U̺(z0)

f(z) =
1

g(z)
=

1

(z − z0)n0h(z)
= (z − z0)−n0

1

h(z)

with an analytic function 1/h that is non-zero in z0, so f has a pole
of order n0 in z0.
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11 Isolated singularities

(c) “⇒” Let r > 0 with Ur(z0) ⊆ D be given. We suppose for a contradiction
that there exist a w ∈ C and an ε > 0 such that |f(z) − w| ≥ ε
for all z ∈ Ur(z0) \ {z0}. This allows us to consider the function
g : Ur(z0) \ {z0} → C with

g(z) =
1

f(z) − w

as a holomorphic function that is nowhere zero. Note that we can
come back to f from g as

f(z) = w +
1

g(z)
, z ∈ Ur(z0) \ {z0}.

Furthermore, we know that for all z ∈ Ur(z0) \ {z0}

|g(z)| =
1

|f(z) − w| ≤ 1

ε
,

so g is bounded around its isolated singularity in z0. By part (a) this
means that the singularity is removable and we may view g even as a
holomorphic function on all of Ur(z0).

If g(z0) 6= 0, then

lim
z→z0

f(z) = w + lim
z→z0

1

g(z)
= w +

1

g(z0)

exists, so in this case also f has a removable singularity in z0, which is
wrong due to our hypothesis. But if g(z0) = 0, we find by the reverse
triangle inequality that

lim
z→z0

|f(z)| = lim
z→z0

∣∣∣∣w +
1

g(z)

∣∣∣∣ ≥ lim
z→z0

1

|g(z)| − |w| = ∞,

so, using part (b), f has a pole in z0 which is not allowed, either.

The only way out is that our assumption was false, so f(Ur(z0) \ {z0})
is dense in C.

“⇐” For the converse direction it suffices to observe that the hypothesis
means on the one hand that f is unbounded on every neighbourhood
of z0, so f surely has no removable singularity in z0. On the other
hand we surely do not have that |f(z)| goes to infinity for z → z0, so
f also does not have a pole, either.

Remark 11.6. As for Liouville’s Theorem 4.10, for the Casorati-Weierstrass
Theorem there is a massive generalisation due to Picard which is known as Pi-
card’s Great Theorem [Großer Satz von Picard]:
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If f has an essential singularity in z0 and U is a neighbourhood of
z0, then the restriction of f to U \ {z0} takes on every value z ∈ C

infinitely often, with only one possible exception.

The proof of this theorem is far beyond the scope of this course.
Note that the “one possible exception” is important here, as for instance the ex-

ponential function never takes the value zero and, as we saw, e1/z has an essential
singularity in zero.
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12 The Residue Theorem

In Proposition 10.7 we found that the value of an integral over a holomorphic
function on an annulus Ar,R(z0) along a closed chain contained in this annulus is
given by 2πi·n(γ, z0)a−1, where a−1 is the corresponding coefficient of the Laurent
series of f around z0. In the case of an isolated singularity in z0 we always have
a Laurent series expansion on an annulus of the form A0,R(z0) around z0, so we
can hope to apply this result here and we will find that this provides us with a
(and even the) powerful tool to evaluate path integrals and more.

This makes the coefficient a−1 of the Laurent series a particularly valuable
number that is even given the honor of having his own name.

Definition 12.1. Let D ⊆ C be open and f : D → C be a holomorphic function
with an isolated singularity in z0 ∈ C. Choose some R > 0 with A0,R(z0) ⊆ D
and consider the Laurent series expansion

f(z) =
∞∑

n=−∞
an(z − z0)

n, z ∈ A0,R(z0),

from Theorem 10.4. Then we call

resf(z0) := a−1

the residue [Residuum] of f in z0.

Remark 12.2. (a) The result from Proposition 10.7 quoted above is also at
the origin of the name. The latin word “residuum” means “the remaining
part”. The residue is what remains of f after integration along a closed
chain.

(b) By the formula for the coefficients of the Laurent series that we obtained
in Theorem 10.4 we have

resf(z0) =
1

2πi

∫

∂U̺(z0)
f(z) dz for all 0 < ̺ < R.

But this formula is not of much practical help to calculate the residue, as,
on the contrary, we want to use residues to evaluate path integrals. We will
see later some tricks how to calculate residues, but first we want to prove
the main result of this chapter.
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12 The Residue Theorem

Theorem 12.3 (Residue Theorem [Residuensatz]). Let D ⊆ C be open, N ⊆ D
discrete in D and f ∈ H(D \ N). If γ is a closed chain in D \ N that is D-
homologous to zero, then

∫

γ
f(z) dz = 2πi

∑

w∈N

n(γ, w)resf(w).

Remark 12.4. (a) In principle the sum over w ∈ N that appears in the
Residue Theorem can have infinitely many summands, making convergence
an issue. But this problem never occurs, since only the elements of N in
the interior of γ contribute to the series. The set int(γ) is bounded and N
is discrete, so only finitely many elements of N can be in the interior of γ.

(b) Some other results of this lecture can be seen as special cases of the Residue
Theorem. In particular, that is true for the Cauchy Integral Theorem 9.3,
which is the special case for N = ∅.

Furthermore, for the function f(z) = z−n and the chain that consists of one
single circle, we obtain Proposition 4.2.

(c) The Residue Theorem shows once more that path integrals over holomor-
phic functions are widely independent of the particular path. The only
things that matter are the isolated singularities inside the path and their
corresponding residues. This means that, given a complicated path (or
chain), one can freely simplify it, as long as the winding numbers around
the isolated singularities of f are unchanged, i.e. as long as the two chains
are D-homologous. This is also the principle idea in the proof of the Residue
Theorem.

Proof. We set D̃ := D \N . It was already explained in Remark 12.4(a) that only
finitely many singularities w ∈ N contribute to the series, so we label them by

{w1, w2, . . . , wm} = {w ∈ N : n(γ, w) 6= 0}.

Since N is discrete in D, for every j = 1, 2, . . . , m we can find an εj > 0, such
that wj is the only singularity of f in Uεj

(wj) and such that Uεj
(wj) ⊆ D. Now

we consider the chain

γ̃ := γ −
m∑

j=1

n(γ, wj)∂Uεj
(wj).

Note that γ̃ is a chain in D̃, since by our choices of εj there are no singularities
w ∈ N on ∂Uεj

(wj).

We now claim that γ̃ is D̃-homologous to zero, i.e. we have to show that
n(γ̃, z) = 0 for all z ∈ C \ D̃. So let z ∈ C \ D̃ be given. By the properties of the
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winding numbers in Remark 8.5 we have

n(γ̃, z) = n(γ, z) − n
( m∑

j=1

n(γ, wj)∂Uεj
(wj), z

)

= n(γ, z) −
m∑

j=1

n(γ, wj)n
(
∂Uεj

(wj), z
)
.

As a first case we consider z 6∈ D. Then we have n(γ, z) = 0 thanks to the
hypothesis that γ is D-homologous to zero. Additionally, we find n(∂Uεj

(wj), z) =
0 for all j = 1, 2, . . . , m, since the disk Uεj

(wj) is completely contained in D, so
z cannot be in the interior of any of these disks. Alltogether we get n(γ̃, z) = 0
in this case.

We turn to the case that z ∈ D. Since z is not in D̃ and D̃ = D \ N , this
means that z must lie in N . If n(γ, z) = 0, our z is none of the w1, w2, . . . , wm,
which means that it is not contained in any of the disks Uεj

(wj). This entails
n(∂Uεj

(wj), z) = 0 for all j = 1, 2, . . . , m and we find n(γ̃, z) = 0 as in the first
case.

The only remaining case is z ∈ N with n(γ, z) 6= 0, so we have z = wℓ for some
ℓ ∈ {1, 2, . . . , m}. Then we find

n(γ̃, z) = n(γ̃, wℓ) = n(γ, wℓ) −
m∑

j=1

n(γ, wj)n
(
∂Uεj

(wj), wℓ

)
.

By our choice of εj we have assured that in every disk Uεj
(wj) the only element

of N is wj, so n(∂Uεj
(wj), wℓ) is one for j = ℓ and zero otherwise. This leads to

n(γ̃, z) = n(γ, wℓ) − n(γ, wℓ) · 1 = 0.

Putting everything together, we have proved that γ̃ is D̃-homologous to zero,
which means that γ and

∑m
j=1 n(γ, wj)∂Uεj

(wj) are D̃-homologous chains. Ap-
plying Corollary 9.4 of the homology version of Cauchy’s Integral Theorem, we
find

∫

γ
f(z) dz =

∫
∑m

j=1
n(γ,wj)∂Uεj (wj)

f(z) dz =
m∑

j=1

n(γ, wj)
∫

∂Uεj (wj)
f(z) dz.

Investing the formula for the residue in Remark 12.2(b) and adding the zeros
arising from singularities w ∈ N with n(γ, w) = 0 we end up with

∫

γ
f(z) dz =

m∑

j=1

n(γ, wj) · 2πi · resf(wj) = 2πi
∑

w∈N

n(γ, w)resf (w).

If we want to use the full strength of the Residue Theorem, we obviously need
some methods to calculate residues. Some of the elementary properties of residues
are collected in the following proposition.
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12 The Residue Theorem

Proposition 12.5. Let D ⊆ C be open and z0 ∈ D. If f ∈ H(D \ {z0}) and
g ∈ H(D), then the following assertions are valid.

(a) If z0 is a removable singularity of f , then resf(z0) = 0.

(b) If z0 is a pole of order 1 of f , then

resf(z0) = lim
z→z0

(z − z0)f(z).

(c) If z0 is a pole of order 1 or a removable singularity of f , then

resfg(z0) = g(z0)resf (z0).

(d) If both f and g are holomorphic in z0 with f(z0) = 0, f ′(z0) 6= 0 and
g(z0) 6= 0, then

resg/f(z0) =
g(z0)

f ′(z0)
.

(e) If z0 is a pole of order m of f and h(z) = (z − z0)mf(z), z ∈ D, is the
holomorphic extension guaranteed by the definition of a pole, then

resf(z0) =
1

(m − 1)!
h(m−1)(z0).

Proof. (a) Since z0 is a removable singularity of f , the Laurent series of f
around z0 is in fact a Taylor series and resf (z0) = a−1 = 0.

(b) For a pole of order 1 the Laurent series of f around z0 has the form

f(z) =
∞∑

k=−1

ak(z − z0)k =
a−1

z − z0
+

∞∑

k=0

ak(z − z0)
k, z ∈ A0,R(z0),

for some R > 0. Thus

lim
z→z0

(z − z0)f(z) = lim
z→z0

(
a−1 +

∞∑

k=0

ak(z − z0)k+1
)

= a−1 = resf(z0).

If z0 is a removable singularity, we have that the resdiude is zero by part (a)
and we get immediately

lim
z→z0

(z − z0)f(z) = 0 · f(z0) = 0 = resf(z0).

(c) By the holomorphy of g, the function fg has at worst a pole of order 1 in
z0, so investing part (b), we find

resfg(z0) = lim
z→z0

(z − z0)f(z)g(z) = lim
z→z0

g(z) · lim
z→z0

(z − z0)f(z)

= g(z0)resf (z0).
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(d), (e) Exercise.

Example 12.6. (a) We can read off directly the residue if the function is al-
ready given as a Laurent series, e.g.

res1/z(0) = 1 and res1/z2(0) = 0.

(b) In the same way, once you have a Laurent series expansion, the residue can
just be read off. For instance, we have

e1/z =
0∑

n=−∞

1

(−n)!
zn, so rese1/z(0) = a−1 =

1

1!
= 1.

(c) We consider ϕ(z) =
1

z(z − i)2
, cf. Example 11.4(a). Then, since 0 is a pole

of order 1 of ϕ, by part (b) of the above proposition we find

resϕ(0) = lim
z→0

zϕ(z) = lim
z→0

1

(z − i)2
=

1

(−i)2
= −1.

The point i is a pole of order 2 of ϕ, so we can apply part (e) of the above
proposition with m = 2 and h(z) = (z−i)2ϕ(z) = 1/z. Then h′(z) = −1/z2,
so

resϕ(i) =
1

1!

(
− 1

i2

)
= 1.

One important field of application for the Residue Theorem is the evaluation of
improper real integrals. This is a wide field and we just want to look exemplarily
at one method that uses the Residue Theorem.

Proposition 12.7. Let p, q be two complex polynomials such that q(x) 6= 0 for
all x ∈ R and that the degree of q is at least two higher than the degree of p. Then
the improper integral

∫∞
−∞ p(x)/q(x) dx is absolutely convergent and we have

∫ ∞

−∞

p(x)

q(x)
dx = 2πi

∑

Im(z)>0

resp/q(z).

Note that, again, the seemingly infinite sum in the formulation of the proposi-
tion is in fact a finite one, as p/q can only have singularities in the finitely many
zeros of q.

Proof. For the absolute convergence of the integral we only have to consider the
behaviour of p/q in ±∞, since q has no real zeros. At both places the absolute
convergence is assured by the condition on the degrees of p and q that allows for
an estimate ∣∣∣∣

p(z)

q(z)

∣∣∣∣ ≤ C

|z|2 for all z ∈ C (12.1)
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12 The Residue Theorem

with some C > 0, so that C/|x|2 can serve as a majorant.
Since we know that the doubly improper integral is absolutely convergent, we

can write ∫ ∞

−∞

p(x)

q(x)
dx = lim

r→∞

∫ r

−r

p(x)

q(x)
dx.

We already observed, that z 7→ p(z)/q(z) can only have a finite number of singu-
larities in C, so we can choose some r0 > 0, such that all these are contained in
Ur0(0).

Now, for every r > 2r0 we consider the path γr : [0, π] → C with γr(t) = reit

that describes a half circle in the upper complex halfplane that joins r to −r. We
complement this to a closed path by adding the connection line γ[−r,r] from −r
to r. Then by the Residue Theorem

∫

γ[−r,r]

p(z)

q(z)
dz +

∫

γr

p(z)

q(z)
dz =

∫

γr+γ[−r,r]

p(z)

q(z)
dz = 2πi

∑

Im(z)>0

resp/q(z).

Note that we can use the sum over all of the upper halfplane, as we made sure
that all singularities of p/q with positive imaginary part lie inside our path.

Investing the estimate in (12.1), we find for the integral along γr by the standard
estimate

∣∣∣∣
∫

γr

p(z)

q(z)
dz

∣∣∣∣ ≤ πr max
z∈tr(γr)

∣∣∣∣
p(z)

q(z)

∣∣∣∣ ≤ πr max
|z|=r

C

|z|2 = Cπr
1

r2
=

Cπ

r
.

For r going to infinity this expression goes to zero, so we find

∫ ∞

−∞

p(x)

q(x)
dx = lim

r→∞

∫ r

−r

p(x)

q(x)
dx = lim

r→∞

∫

γ[−r,r]

p(z)

q(z)
dz

= lim
r→∞

(
2πi

∑

Im(z)>0

resp/q(z) −
∫

γr

p(z)

q(z)
dz
)

= 2πi
∑

Im(z)>0

resp/q(z).

Example 12.8. We consider p(x) = x2 and q(x) = 1 + x4. Then the conditions
of the above Proposition are fulfilled, so

∫ ∞

−∞

x2

1 + x4
dx = 2πi

∑

Im(z)>0

resf(z)

for f(z) = z2/(1 + z4).
The singularities of f are exactly in the zeros of q, so in

z1 = eiπ/4 =
1√
2

(1 + i), z2 = e3iπ/4 =
1√
2

(−1 + i),

z3 = e5iπ/4 =
1√
2

(−1 − i) and z4 = e7iπ/4 =
1√
2

(1 − i).
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Only the two singularities in z1 and z2 are relevant for our calculation, as the
others have negative imaginary part. Since q has four distinct zeros, each of
these leads to a single pole of f , so we can calculate the residues by part (b) of
Proposition 12.5 as

resf(z1) = lim
z→z1

(z − z1)f(z) = lim
z→z1

(z − z1)
z2

1 + z4
= lim

z→z1

z2

(z − z2)(z − z3)(z − z4)

=
z2

1

(z1 − z2)(z1 − z3)(z1 − z4)

=
eiπ/2

(
1√
2
(1 + i) − 1√

2
(−1 + i)

)(
1√
2
(1 + i) − 1√

2
(−1 − i)

)(
1√
2
(1 + i) − 1√

2
(1 − i)

)

=

√
2

3
i

(1 + i + 1 − i)(1 + i + 1 + i)(1 + i − 1 + i)
=

2
√

2i

2(2 + 2i)2i
=

√
2

4 + 4i

and, analogously,

resf(z2) =

√
2

−4 + 4i
.

Putting everything together, we find

∫ ∞

−∞

x2

1 + x4
dx = 2πi

( √
2

4 + 4i
+

√
2

−4 + 4i

)
= 2πi

√
2

4

(
1

1 + i
+

1

−1 + i

)

=
πi√

2

−1 + i + 1 + i

(i + 1)(i − 1)
=

πi√
2

2i

−2
=

π√
2

.
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analytische, 35
Exponential-, 51
ganze, 27

harmonische, 5
holomorphe, 1
komplex differenzierbare, 1
reell differenzierbare, 3

Funktionalgleichung der Exponential-
funktion, 51

ganze Funktion, 27
Gebiet, 13

einfach zusammenhängendes, 66
konvexes, 15
sternförmiges, 15

Gebietstreue, Satz von der, 43
geschlitzte Ebene, 55
geschlossene Kurve, 7
gleichmäßige Konvergenz, 30
Goursat, Lemma von, 17
großer Satz von Picard, 84

harmonische Funktion, 5
Häufungspunkt, 40
Hauptteil der Laurentreihe, 76
Hauptzweig des Logarithmus’, 55
hebbare Singularität, 38, 79
Hebbarkeitssatz, Riemann’scher, 38,

82
holomorphe Funktion, 1

Mittelwerteigenschaft, 25
homolog, 62

null-, 62
homotope Kurven, 64
Homotopie, 64

Identitätssatz, 41
Index, 58
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Inneres eines Zyklus, 63
isolierte Singularität, 79

hebbare, 38, 79
Pol, 79
wesentliche, 79

Kette, 57
geschlossene, 57
Kurvenintegral entlang einer, 58
Länge einer, 58
Spur einer, 57
Summe, 57

Kleiner Satz von Picard, 28
kompakt-offen, 25
komplex differenzierbar, 1
konvergente Laurent-Reihe, 76
Konvergenz

gleichmäßige, 30
lokal-gleichmäßige, 30
punktweise, 30

Konvergenzradius, 35
konvexes Gebiet, 15
Kreislinie, 8
Kreisring, 73
Kurve, 7

geschlossene, 7
homologe, 62
homotope, 64
Länge einer, 10
nullhomologe, 62
nullhomotope, 64
Spur einer, 7
stückweise C1, 7
umparametrisierte, 7

Kurvenintegral, 9
entlang einer Kette, 58

Länge einer Kette, 58
Länge einer Kurve, 10
Laurent-Reihe, 75, 76

Hauptteil, 76
konvegente, 76

Lemma

Schwarz’sches, 46
von Goursat, 17

Liouville, Satz von, 27
Logarithmus, 53

Zweig des, 53
Haupt-, 55

lokal-gleichmäßige Konvergenz, 30

Maximumsprinzip, 45
alternativer Beweis, 48

Menge, diskrete, 40
Mittelwerteigenschaft, 25, 49
Morera, Theorem von, 26

nullhomolog, 62
nullhomotop, 64

Offenheitssatz, 43
Ordnung eines Pols, 79

Picard, großer Satz von, 84
Picard, kleiner Satz von, 28
Pol, 79
Potenz, 55
punktweise Konvergenz, 30

Rückweg, 8
reelle Differenzierbarkeit, 3
Residuensatz, 88
Residuum, 87
Riemann’scher Hebbarkeitssatz, 38, 82

Satz
Cantor’scher Durschnitts-, 16
Cauchy-Integral-, 15

Homologie-Version, 67
Fundamental-∼ der Algebra, 28
Identitäts-, 41
Offenheits-, 43
Residuen-, 88
Riemann’scher Hebbarkeits-, 38,

82
von Casorati-Weierstraß, 82
von der Gebietstreue, 43
von Liouville, 27
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von Picard, großer, 84
von Picard, kleiner, 28
Weierstraß’scher Konvergenz-, 32

Schwarz’sches Lemma, 46
Singularität, isolierte, 79

hebbare, 38, 79
Pol, 79
wesentliche, 79

Sinus, 51
hyperbolicus, 51

Spur
einer Kette, 57
einer Kurve, 7

Stammfunktion, 13
sternförmiges Gebiet, 15
stückweise C1, 7
Summe von Ketten, 57

Tangens, 51
Theorem von Morera, 26

Umlaufzahl, 58
Umparametrisierung, 7

orientierungserhaltende, 7
orientierungsumkehrende, 7

Verbindungsstrecke, 8

Wegintegral, 9
entlang einer Kette, 58

Weierstraß’scher Konvergenzsatz, 32
wesentliche Singularität, 79
Windungszahl, 58

Zweig des Logarithmus’, 53
Haupt-, 55

Zyklus, 57
Äußeres eines, 63
homologe, 62
Inneres eines, 63
nullhomologer, 62
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