
BASIC USAGE OF extremal_rays IN SAGEMATH

Ignacio Barros, Laure Flapan, and Riccardo Zuffetti

Summary

In [BFZ25] we illustrated two different methods to check whether the rays generated by primitive
Heegner divisors are extremal in the pseudoeffective cone of an orthogonal modular variety. Both
methods are implemented in the SageMath code extremal_rays, available on the authors’ webpages.
The purpose of the present note is to explain how these methods have been implemented and
double-checked.

Last update: April 24, 2025.

Contents

1. Introduction 1
2. Basic usage 2
2.1. Pulling back Heegner divisors: The unimodular case 2
2.2. Pulling back Heegner divisors: The K3 case 3
2.3. Pulling back Siegel Eisenstein series 5
2.4. A double-check 5
References 6

1. Introduction

Throughout this note, we use the same notation as in [BFZ25]. Let FΛ be the orthogonal
Shimura variety arising from an even lattice Λ of signature (2, n). Let µ ∈ D(Λ) and let m ∈
Z−q(µ). To check whether the primitive Heegner divisor P−m,µ is extremal in the pseudoeffective
cone Eff(FΛ), we showed it is enough to check that

(1.1) deg(φ∗P−m,µ) < 0 or equivalently vol(P 2
−m,µ) < 0.

In the above, φ : FL → FΛ is the finite map of orthogonal modular varieties induced by the
inclusion of the sublattice L := ρ⊥ in Λ, where ρ is a primitive representative for (−m,µ). For
details, see [BFZ25, Corollary 3.3 and Lemma 3.12].

Both quantities deg(φ∗P−m,µ) and vol(P 2
−m,µ) may be explicitly computed (up to the volume

of some modular variety) in terms of Fourier coefficients of modular forms. The former can be
bounded as deg(φ∗P−m,µ) ≤ deg(φ∗H−m,µ), where

(1.2)
deg(φ∗H−m,µ)

vol(FL)
= −

∑
α∈Λ/L⊕K
t∈Z−q(αL)

t≥0

θ
(m
r2

− t, αK

)
ct,αL

(
En+1

2
,L

)
,

see [BFZ25, (3.8)] for a precise formula for deg(φ∗P−m,µ)/vol(FL), while the latter as

vol(P 2
−m,µ)

vol(FΛ)
= g
(
m,µ,Ek

1,Λ

)2
+ 2

∑
r∈Z>0

r2|m

µ(r)
∑

α∈D(Λ)
rα=µ

∑
w1∈Z>0

w2
1 |(m/r2)

∑
β∈D(Λ)
w1β=α

cm/r2w2
1 ,β

(Ek
1,Λ)

×
∑

w2∈Z>0

gcd(w1,w2)=1

g
(
m,µ,PΛ

mw2
2/r

2w2
1 ,w2β

)
,

(1.3)

see [BFZ25, Proposition 3.13].
We implemented (1.2) and (1.3) in extremal_rays. Before describing the implementation, we

outline pros and cons of both formulas.
1

Remark 1.1. We implemented (1.2) for Λ unimodular and for moduli spaces of K3 surfaces.
Since the sum on the right-hand side of (1.2) is finite, this program certifies whether the degree
of φ∗H−m,µ (and hence of φ∗P−m,µ) is negative, and therefore whether the ray generated by P−m,µ

is extremal in Eff(X). This certification led to the table of extremal rays for F2d in [BFZ25, Table
1]. This method computes the exact value of deg(φ∗H−m,µ)/vol(FL) thereby giving a rigorous
certification of extremality, but this computation depends on the choice of a sublattice L ⊂ Λ,
which can be difficult to implement in Sage as it requires more specifics about the lattice Λ (hence
why we only implemented it for Λ unimodular or the lattice associated to a K3 surface).

Remark 1.2. By contrast, the formula (1.3) does not depend on any choice of a sublattice L ⊂ Λ.
In fact, our implementation in Sage works for any lattice Λ. Since (1.3) is given in terms of a sum
of infinitely many Fourier coefficients of Poincaré series, the Sage computation of vol(P 2

m,µ)/FΛ

is up to a fixed precision, which tells the program at which point to truncate the infinite sum.
Nevertheless, it may be used to obtain empirical evidence of the negativity of vol(P 2

m,µ), and
hence of the extremality of rays in the pseudoeffective cone of e.g. moduli spaces of projective
hyperkähler varieties that are not covered by the first implemented method.

2. Basic usage

The program extremal_rays has been written using SageMath Version 10.5, released on Decem-
ber 4, 2024. To use the program, it is necessary to install the SageMath package WeilRep [Wil],
which enables us to work with vector-valued modular forms with respect to the dual Weil
representation ρ∗Λ.

The first step to use the program is to launch it as load("extremal_rays.sage").

2.1. Pulling back Heegner divisors: The unimodular case. We illustrate here the imple-
mentation of (1.2) in the case of Λ unimodular. Due to the classification of even unimodular
lattices of signature (2, n), Λ is of the form Λ = U ⊕ U ⊕ E8(−1)⊕r for some r ≥ 0.

Let m be a positive integer, and ρ ∈ U⊕2 ⊕ E8(−1)⊕r a primitive representative of (−m, 0),
that is, a primitive element such that q(ρ) = −m. Up to O+(Λ), we can assume that ρ = e−mf ,
where {e, f} is the standard basis of the fist copy of U . Then L = ρ⊥ = U ⊕A1(m)⊕ E8(−1)⊕r

and K = Zρ = A1(−m). In this case, Λ
/
L⊕K has order 2m, is cyclic and generated by

f =

(
e+mf

2m

)
−
(
e−mf

2m

)
= (α,−β) ∈ D(L)⊕D(K).

We call α and β the standard generators of D(L) ⊕D(K). Let k = rk(Λ). For simplicity, we
write P−m and H−m in place of respectively PΛ

−m,0 and HΛ
−m,0. Then

φ∗H−m =

2m−1∑
i=0

∑
t∈Z−q(iα)

θ(m− t,−iβ)HL
−t,iα

and

(2.1)
deg (φ∗P−m)

vol(FL)
≤ deg (φ∗H−m)

vol(FL)
= −θ(m, 0) +

2m−1∑
i=0

∑
t∈Z−q(iα)

t̸=0

θ(m− t,−iβ) |ct,iα (EL,k)|

The command to compute (1.2) for Λ unimodular is
deg_H(m,r).

The inputs are:
• r, a positive integer.
• m, a positive integer.

The output is the value of deg(φ∗H−m,0)/vol(FL), with Λ = U ⊕ U ⊕ E8(−1)⊕r and L as above,
computed implementing the right-hand side of (2.1).

2

Example 2.1. Let r = 4 and m = 1, so that Λ = U⊕2⊕E8(−1)⊕4 and L = U⊕A1(1)⊕E8(−1)⊕4.
The command

deg_H(1,4)
gives -149608934335/151628697551, which is the value of deg(φ∗P−1,0)/vol(FL). Since it is
negative, the ray generated by P−1,0 in Eff(FΛ) is extremal. The command

deg_H(5,4)
gives 7375890180567886038104506603698965/19280585931294599249071, which is the value
of deg(φ∗P−5,0)/vol(FL). It is positive, and in fact it is easy to check (see also [BBFW25]) that
the cone of Heegner divisors is generated by P−1,0 and P−2,0, while P−5,0 lies in the interior.
Therefore, P−5,0 does not generate an extremal ray of (the cone of primitive Heegner divisors and
hence of) the pseudoeffective cone of FΛ.

2.2. Pulling back Heegner divisors: The K3 case. We illustrate here the implementation
of (1.2) in the case of moduli spaces of quasi-polarized K3 surfaces of degree 2d, where Λ = Λ2d.
Recall that Λ2d := U⊕2 ⊕E8(−1)⊕2 ⊕ Zℓ, with q(ℓ) = −d and ℓ∗ = ℓ/2d the standard generator
of D(Λ2d).

We start with an algorithm to choose ρ ∈ Λ2d a primitive representative for (−m, bℓ∗). After
this we can compute L = ρ⊥, K = Zρ and decompose the classes α+ bℓ∗ in D(L)⊕D(K). This
is done in [BBBF23, Section 3] for a class h ∈ U⊕3 ⊕E8(−1)⊕2 ⊕ ⟨−2(n− 1)⟩ of fixed square and
divisibility. Since there are enough copies of U , the argument is the same for Λ2d replacing n− 1
with d.

We keep the same notation as in [BBBF23, Section 3]. For a primitive element ρ ∈ Λ2d, γ is
its divisibility, which is the same as the order of ρ∗ (the primitive multiple of ρ in Λ∨

2d) in D(Λ2d).
First note that

γ = ord(bℓ∗) =
2d

gcd(b, 2d)

and if ρ is a primitive representative, then q(ρ) = −mγ2. We have to find 0 ≤ a < γ coprime
with γ, and t an integer such that γ(e+ tf)− aℓ is in the same Õ+(L)-orbit as ρ, in particular,
we need

(2.2) q(γ(e+ tf)− aℓ) = −γ2m and
a · 2d
γ

= b.

If P−m,bℓ∗ is non-empty, that is, if there is a primitive representative ρ for (−m, bℓ∗), then there
is always a and t such that (2.2) holds. This is a restatement of [BBBF23, Lemma 3.4].

The first condition in (2.2) becomes

(2.3) γ2m = a2d− γ2t.

This means that given (m, b, d) we can find integers γ, a and t as above if and only if P−m,bℓ∗
is non-empty. There is a standard check in the SAGE program, when t is not an integer, then
P−m,bℓ∗ will be empty and the program returns “Bad entries: m is not in ZZ-q”. From now on we
assume ρ = γ(e+ tf)− aℓ.

The orthogonal complement of ρ in U ⊕ Zℓ is generated by

z1 =
2d · a
γ

f − ℓ = bf − ℓ and z2 = e− tf.

Then L = ρ⊥ = U ⊕ E8(−1)⊕2 ⊕Q, where

Q =

(
−2d 2d·a

γ
2d·a
γ −2t

)
=

(
−2d b
b −2t

)
.

This means that given (m, b, d) we can find L and natural generators for D(L). Recall that
DL = 4md. Now for α ∈ Λ2d

/
L⊕K we have to decompose α+ bℓ∗ in D(L)⊕D(K). The rest of

the algorithm involves computing θ(x, (α+ bℓ∗)K) and ct,(α+bℓ∗)L , both implemented in WeilRep
[Wil].

3

Recall that Λ2d

/
L⊕K is cyclic of order 2mγ generated by any α ∈ Λ2d such that γ = |⟨α, ρ⟩|.

In particular we can take α = f and sum with index i = 0, . . . , 2γm − 1 over the classes
(if + bℓ∗) =

(
if + ρ

γ

)
. Then as in the proof of [BFZ25, Theorem 3.7]

f =

(
f +

1

2γm
ρ

)
︸ ︷︷ ︸

fL

+

(
− 1

2γm
ρ

)
︸ ︷︷ ︸

fK

and

if + bℓ∗ =

(
ifL, ifK +

ρ

γ

)
=

(
if +

i

2γm
ρ

)
︸ ︷︷ ︸

(if+bℓ∗)L

+

(
1

γ
− i

2γm

)
ρ︸ ︷︷ ︸

(if+bℓ∗)K

.

Now, g = ρ
2γ2m

is a generator of D(K) and

(z1)∗ =
z1

divL(z1)
=

z1
2d/γ

, (z2)∗ =
z2

divL(z2)
=

z2
gcd(2t, b)

are generators for D(L). These are the generators induced by the column vectors of the Gram
matrix, so they are recover via w.ds(), where w is the Weil representation attached to L
computed with WeilRep. Elements in w.ds() should be tuples of the form (x/(2d/γ), y/ gcd(2t, b))
corresponding to the element x(z1)∗ + y(z2)∗ ∈ D(L). Then

(if + bℓ∗) =

(
i · a · d
γ2m

(z1)∗ +
i · gcd(2t, b)

2m
(z2)∗, γ(2m− i)g

)
=

(
i · a
2γm

z1 +
i

2m
z2,

2m− i

2γm
ρ

)
∈ D(L)⊕D(K).

The formula (1.2) boils then down to
(2.4)
deg (φ∗H−m,bℓ∗)

vol(FL)
= −θ(m, bℓ∗) +

2γm−1∑
i=0

∑
t∈Z−q((if+bℓ∗)L)

t̸=0

θ(m− t, γ(2m− i)g)
∣∣ct,(if+bℓ∗)L (Ek,L)

∣∣ .
The command to compute (1.2) in the case of moduli spaces of K3 surfaces is

deg_Hb(m,b,d).
The inputs are:

• b, a positive integer.
• m, an element of Z− q(bℓ∗).
• d, a positive integer.

The output is the value of deg(φ∗H−m,bℓ∗)/vol(FL), where Λ = Λ2d, computed implementing (2.4).

Example 2.2. Let d = 3, so that the Heegner divisors are on FΛ6 .
We compute deg(φ∗H−1/12,ℓ∗)/vol(FL) as
deg_Hb(1/12,1,3).

The output is -1. Since it is negative and deg(φ∗P−1/12,ℓ∗) ≤ deg(φ∗H−1/12,ℓ∗), then P−1/12,ℓ∗

generates an extremal ray in Eff(FΛ6).
We compute deg(φ∗P−1/3,2ℓ∗)/vol(FL) as
deg_Hb(1/3,2,3).

The output is -1983/1984. Since it is negative, P−1/3,2ℓ∗ generates an extremal ray in Eff(FΛ6).
It has been certified in [BBFW25, Table 1] that P−4/3,2ℓ∗ does not generate an extremal ray

of Eff(FΛ6). In fact, if we compute deg(φ∗P−4/3,2ℓ∗)/vol(FL) as
deg_Hb(4/3,2,3),

then the output is 692302366439/520093696, which is positive.
4

2.3. Pulling back Siegel Eisenstein series. We illustrate here how to use the implementation
of (1.3), then we describe a doublecheck of it in terms of the Fourier coefficients of Ek

2,Λ.

The command to compute (1.3) is
vol_selfint_prim_Heegner(m,delta,S,up_to=20,nterms=50).

The inputs are:

• S, the Gram matrix of the lattice Λ.
• delta, an element of D(Λ). It must be given as an element of the discriminant group

computed with WeilRep, hence as an entry of the list WeilRep(S).ws().
• m, a positive rational number in Z− q(delta).
• up_to, a positive integer. In the implementation, the series

∑
w2

appearing on the right-
hand side of (1.3) is truncated up to such value. If this input is not given, the program
runs with up_to= 20 by default.

• nterms, a positive integer. It is the value at which we truncate the series in the formula
for the Fourier coefficients of the Poincaré series appearing in (1.3). It is the same as for
the command poincare_series of WeilRep, see [Wil, README, Section 1.4.5].

The output is a floating-point number which approximates the value of vol(P 2
−m,delta)/vol(FΛ).

The greater the values of up_to and nterms, the more precise the output.

Example 2.3. Denote by U and E8 the Gram matrix of the lattices U and E8 respectively. The
command

S=block_diagonal_matrix(U, U, -E8, -E8, matrix([[-6]]), subdivide=false)
gives the Gram matrix S of the K3 lattice Λ6. The command

D=WeilRep(S).ds()
gives the list D of the elements of the discriminant group of Λ6. The standard generator ℓ∗
of D(Λ6) is

D[len(D)-1].
The command

vol_selfint_prim_Heegner(1/12,D[len(D)-1],S)
computes an approximation of vol

(
P 2
−1/12,ℓ∗

)
/vol(FΛ6) with the default precision. The out-

put is the floating number -4.84929386352914e-9, which is negative. This provide evidence
that P−1/12,ℓ∗ generates an extremal ray of Eff(FΛ6).

Similarly, the command
vol_selfint_prim_Heegner(1/3,D[4],S)

computes an approximation of vol
(
P 2
−1/3,2ℓ∗

)
/vol(FΛ6). The output is -0.00253866837593326,

which is negative, hence provides evidence that P−1/3,2ℓ∗ is extremal in Eff(FΛ6).
The extremality of the previous two divisors has been actually certified in Example 2.2.

Remark 2.4. All the outputs we wrote in [BFZ25, Tables 1 and 2] were verified with the method
of Section 2.2 and the one of the present section. For a fixed primitive Heegner divisor, we checked
that both outputs obtained with deg_Hb and vol_selfint_prim_Heegner have the same sign.

2.4. A double-check. We illustrate in this section a double-check of the implemented for-
mula (1.3) to compute vol(P 2

−m,µ). This check depends on the computation of the Fourier
coefficients of the Siegel Eisenstein series Ek

2,Λ, with k := rkΛ/2. Currently, a formula for those
coefficients is available in the literature only for Λ unimodular. Therefore, we assume in this
section that Λ is unimodular. For simplicity, we write Ek

2 , P−m and H−m in place of respec-
tively Ek

2,Λ, P−m,0 and H−m,0.

We described in the proof of [BFZ25, Proposition 3.13] a formula for the volume of the
intersection of two Heegner divisors on FΛ. Up to a factor, this volume is some Fourier coefficient

5

of the restricted Siegel Eisenstein series Ek
2

(
τ1 0
0 τ2

)
, more precisely

vol(H−m1 ·H−m2)

vol(FΛ)
= c(m1,m2)

(
Ek

2

(
τ1 0
0 τ2

))
.

This can be computed in terms of elliptic Eisenstein and Poincaré series. If m is square-free,
then H−m = P−m, and the formula for c(m,m)

(
Ek

2

(
τ1 0
0 τ2

))
is the same as (1.3).

To verify that the implemented formula for c(m,m)

(
Ek

2

(
τ1 0
0 τ2

))
is correct, we compute such

Fourier coefficient in a different way as follows. Let

Ek
2 (τ) =

∑
T∈S2
T≥0

cT (E
k
2)e(trTτ)

denote the Fourier expansion of Ek
2 . Then

(2.5) c(m,m)

(
Ek

1

(
τ1 0
0 τ2

))
=
∑
r∈Z

|r|≤2m

c(m r/2
r/2 m

)(Ek
2).

The Fourier coefficients cT (E
k
2) can be computed using the package degree2 of Takemori [Tak17]

with the command eisenstein_series_degree2.

Example 2.5. Let k = 18 and m = 1. Then

(2.6) c(1,1)
(
Ek

1

(
τ1 0
0 τ2

))
= c(1 0

0 1)
(Ek

2) + 2 · c(1 1/2
1/2 1

)(Ek
2) + 2 · c(1 1

1 1)
(Ek

2).

The right-hand side of (2.6) can be computed in Sage with [Tak17], obtaining the rational
output -5311478523411648/6651496075469717. We transform it in a floating-point number by
multiplying it by 1.0 as

-5311478523411648/6651496075469717 * 1.0.
The output is -0.798538924648852.

We now compute the left-hand side of (2.6) with the command
vol_selfint_prim_Heegner(1,WeilRep(S).ds()[0],S),

where S is the Gram matrix of the lattice U⊕2 ⊕E8(−1)⊕4. The output is -0.798538924648852.
This verifies that the output of vol_selfint_prim_Heegner(1,WeilRep(S).ds()[0],S) is a
good approximation of c(1,1)

(
Ek

1

(
τ1 0
0 τ2

))
.

References

[BBBF23] I. Barros, P. Beri, E. Brakkee, and L. Flapan. Kodaira dimension of moduli spaces
of hyperkähler varieties. https://arxiv.org/abs/2212.12586. 2023.

[BBFW25] I. Barros, P. Beri, L. Flapan, and B. Williams. Cones of Noether-Lefschetz divisors
and moduli spaces of hyperkähler manifolds. https://arxiv.org/abs/2407.07622.
2025.

[BFZ25] I. Barros, L. Flapan, and R. Zuffetti. Extremal divisors on moduli spaces of K3
surfaces. 2025.

[Tak17] S. Takemori. A Sage package for computation of degree 2 Siegel modular forms.
https://github.com/stakemori/degree2/. 2017.

[Wil] B. Williams. WeilRep. Available at https://github.com/btw-47/weilrep.

6

https://arxiv.org/abs/2212.12586
https://arxiv.org/abs/2407.07622
https://github.com/stakemori/degree2/
https://github.com/btw-47/weilrep

	1. Introduction
	2. Basic usage
	2.1. Pulling back Heegner divisors: The unimodular case
	2.2. Pulling back Heegner divisors: The K3 case
	2.3. Pulling back Siegel Eisenstein series
	2.4. A double-check

	References

