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OVERVIEW

The cones of divisors and the cones of curves on (quasi-)projective algebraic varieties
have been intensely studied. In this thesis, we want to shed some light on cones generated
by cycles of codimension greater than 1, on which a little is currently known. We focus
on the specific case of orthogonal Shimura varieties, which have the interesting feature
of carrying many algebraic cycles coming from immersions of smaller Shimura varieties.
Remarkable examples of them are the so-called special cycles. They may be considered as
generalizations of the Hirzebruch—Zagier divisors on Hilbert modular surfaces. The question
we have in mind is the following. It motivates all four chapters of this thesis.

Question. Let X be an orthogonal Shimura variety. Consider the cone Cx generated by
the special cycles of codimension 2 in CH?(X) ® R. What properties does Cx have? How
could we deduce them?

In what follows, we introduce the main characters of this work, and give an overview of
our results with respect to the previous question.

Orthogonal Shimura varieties. We choose L to be an even unimodular lattice of
signature (b,2), where b > 2, denoting by (-,-) the bilinear form of L, and by ¢ the quadratic
form defined as ¢(-) = (-,-)/2. Let Dy, be the complex manifold

Dy={2€ LeC\{0}: (2,2) =0and (2,2) <0}/C* C P(L®C).

It is of dimension b and has two connected components. The action of the group of the
isometries of L, denoted by O(L), extends to an action on D,. We choose a connected
component of Dy and denote it by D; . This is the Hermitian symmetric domain associated
to L. We define O™ (L) as the subgroup of O(L) containing all isometries which preserve Dj .
Let ' be a subgroup of finite index in O"(L). The orthogonal Shimura variety associated
to I' is

Xr =T\D;".

By the theorem of Baily and Borel, the analytic space Xt admits a unique algebraic
structure, which makes it a quasi-projective algebraic variety. It inherits a line bundle
from the restriction of the tautological line bundle O(—1) on P(L ® C) to D, . This is the
so-called Hodge bundle, which we denote by w.

The adjective orthogonal used to refer to these varieties is due to the fact that we may
naturally identify Xt with the double quotient I'\G/ K, where G = SO(L ® R) and K is a
maximal compact subgroup of G. In particular, they arise as quotients of the orthogonal
group G = SO(b, 2).

Every Hermitian symmetric domain is Kéahler, hence whenever Xt is smooth, it may
be regarded as a Kéahler manifold. In fact, the cohomology class of the Hodge bundle w
coincides with a Kahler class of Xr. We remark that it is possible to construct a symmetric
domain G/K also for lattices with signature different from (b,2). However, the only cases
where it is Hermitian are the ones where the signature is either (b,2) or (2,b), for some
positive b.
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Orthogonal Shimura varieties may be constructed also for non-unimodular lattices, and
in smaller dimension. This large family includes and generalizes classical varieties, such as
modular curves, Hilbert modular surfaces, Siegel 3-folds, and moduli spaces of K3 surfaces.

Special cycles. The cycles of codimension g in Xt are formal finite sums with integral
coefficients of sub-varieties of codimension g in Xr. They are a generalization of the
concept of divisor in higher codimension. The counterpart of the Picard group of Xt in
codimension g is the Chow group CHY(Xt), where the cycles are considered up to rational
equivalence. If Z is a cycle of X, we denote by {Z} its rational class.

Let Ay, resp. A;, be the set of symmetric half-integral positive semi-definite, resp.
positive definite, g X g-matrices. If A = (A1,...,g) € LY, the moment matriz of A is
defined as ¢(A) = %((/\u /\j))i,j’ while its orthogonal complement in D;' is simply the
intersection of the orthogonal complements of the entries of X. If T € A, then

g
>

Aeld

q(A)=T
is a I'-invariant cycle of codimension ¢ in D; . In fact, it descends to a cycle of codimension g
on X, which we denote by Z(T') and call the special cycle associated to T. The special
cycles of codimension 1 are usually called Heegner divisors. If T' € A is singular, it is still
possible to define a special cycle in CHY(X) by intersecting {Z(7")} with (the dual of) the
rational class of the Hodge bundle w.

The algebraic cycles above are “special” for many reasons. For instance, they are
preserved by pullbacks of covers Xt — X, for any subgroup of finite index IV of I". This
is the reason why we do not keep track of I' in the symbol used to define them. Moreover,
their irreducible components are immersions in Xt of orthogonal Shimura varieties of
dimension b — g. As we are going to illustrate, the special cycles are related with modular
forms, and their irreducible components may equidistribute in subvarieties of Xt which are
irreducible components of special cycles of smaller codimension.

Cones and related properties. Let V' be a vector space over Q of finite dimension. If G
is a non-empty subset of V', we denote by (G)g>o the (convex) cone generated by G. It is the
smallest subset of V' containing G and closed under linear combinations with non-negative
rational coefficients. Let Vg be the real vector space V ® R endowed with the Euclidean
topology. The R-closure C of a cone C C V is the topological closure of C in Vi.

A cone C C V is pointed if it contains no lines, is polyhedral if it can be generated by a
finite subset of V, and is rational if C can be generated over R by elements of V.

If a cone C is defined as the one generated by a certain set of generators G, a general
strategy to prove whether C satisfies the previous properties is the following.

Step 1: find all rays of C arising as “limits” of rays generated by elements of G.
Step 2: understand how sequences of rays generated over G converge towards the “limits”.

For instance, the properties of the cone of special divisors studied in [BM19] are deduced
by showing that the rays generated by such divisors accumulate towards a unique ray, and
that the latter lies in the interior of the cone. This leads us to the following definition.

A ray r of C is an accumulation ray of C with respect to the set of generators G if there
exists a sequence (g;)jen of pairwise different generators in G, such that

R>q-gj —> 1, when j — o0,

where we denote by R>( - g; the ray generated by g;. The accumulation cone of C with
respect to the set of generators G is the cone generated by 0 and the accumulation rays of C
with respect to G.
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We are now ready to introduce the main characters of this thesis. The cone of special
cycles (of codimension 2) on X is the cone in CH?(Xr) ® Q defined as

Cxr = ({Z(D)} : T € A3 ),
while the cone of rank one special cycles (of codimension 2) on Xt is
Cxr = {Z(T)} - {w*} : T € Ag and 1k(T) = 1)q.,-

Whenever we refer to the accumulation cones of Cx,. and C'x., we implicitly consider them
with respect to the set of generators of Cx,. and C'y.. used to define them. We remark that,
although it is still unknown whether CH?(X1) ® Q is of finite dimension, it is known that
so is the subspace generated by the special cycles of codimension 2.

In Chapter 1 we will see that the geometry of the cones generated by special cycles
of codimension 2 is more interesting than the one of their counterparts in codimension 1
considered in [BM19], and in fact that the number of accumulation rays of Cx,. is often
infinite.

The main result of Chapter 1 is the following. We denote by My the space of
elliptic cusp forms of weight 1+ b/2, where the latter is an even positive integer, due to the
classification of indefinite unimodular lattices.

14b/2

Theorem 0.1. Let Xt be an orthogonal Shimura variety associated to an even unimodular
lattice of signature (b,2), where b > 2.

(i) The cone of rank one special cycles Cx,. is pointed, rational, polyhedral, and of

dimension dim My"*%/2. (Bruinier-Mdller)

(it) The accumulation cone of the cone of special cycles Cx,. is pointed, rational,
polyhedral, and of the same dimension as C'x,..

(iii) The cone Cx,. is rational and of mazimal dimension in the subspace of CH?(X1)®Q
generated by the special cycles of codimension 2.

(iv) The cones Cx,. and C'x. intersect only at the origin. Moreover, if the accumulation
cone of Cx is enlarged with a non-zero element of C’x,., the resulting cone is
non-pointed.

Theorem 0.1 (i) can be deduced directly from [BM19|. The proof of the remaining
parts of Theorem 0.1 is based on growth properties of Fourier coeflicients of Siegel modular
forms. In Section 1.7 we conjecture the polyhedrality of Cx,., translating it in terms of
properties of Jacobi forms. The pointedness of such cone is more subtle than the one of its
accumulation cone. As we will soon remark, it depends on whether a linear map of vector
spaces contracts rays of certain cones of functionals. Such injectivity may be studied in
terms of the so-called Kudla—Millson lift, and motivates Chapter 3 and Chapter 4.

Siegel modular forms. The Siegel upper-half space Hs is the set of 2 x 2 symmetric
matrices over C with positive definite imaginary part. It is a simply connected open subset
of C3. The symplectic group Sp,(R) acts on Hy as a group of automorphisms by

g: Z+—g-Z=(AZ+ B)(CZ+ D)™,
for every Z € Hy, where we decompose g € Sp,(R) in 2 x 2 matrices as g = (é g).
Let k > 4 be an even integer. A Siegel modular form of weight k (and genus 2) is a

holomorphic function F': Hs — C that satisfies the transformation law
F(g-Z)=det(CZ + D)*F(Z), for every v € Sp,(7).

We denote the finite-dimensional complex vector space of these forms by Mé“
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By the Koecher Principle, every F' € Mé“ admits a Fourier expansion of the form

F(Z) — Z CT(F)GQMH(TZ).
TeAs

The complex numbers cp(F') are the Fourier coefficients of F. If the Fourier expansion
is supported on A;, then F' is called a Siegel cusp form. The subspace of cusp forms is
denoted by S§.

The spaces M5 and S5 admit a basis of Siegel modular forms with rational Fourier
coefficients. We denote the Q-vector spaces generated by these bases by M¥(Q) and S5(Q),
respectively. The dual space Mé“(@)* is generated by the coefficient extraction functionals c,
defined for every T' € Ay as

cr: MQIC(Q) —>Q, F>—>CT(F).
We consider the following cones of functionals in M%(Q)*. The modular cone of weight k
is the cone defined as
Cr = <CT T e A;>@20’
while the rank one modular cone of weight k is

Ci=(cr : T € Ay and 1k(T) = 1)q.,-

Whenever we refer to the accumulation cones of C, and C},, we implicitly consider them
with respect to the set of generators of Cy and C}, used to defined them.

From now on k& = 1 + b/2, where b is the dimension of Xp. Kudla’s Modularity
Conjecture, recently proved by Bruinier and Raum, implies that the linear map

(0.1) Yr: M¥(Q)* — CH(Xp) ® Q,  cp — {Z(T)} - {w*}27 D)

is well-defined, for every I of finite index in O"(L). The idea of Chapter 1 is to study the
cone of special cycles in terms of the modular cone. In fact, the former is the image via ¥r
of the latter.

Not all the properties of Cy, are preserved by #r, if such linear map is not injective. For
instance, we prove in Chapter 1 that Cj is pointed. However, if ¢r contracts an internal
ray of Cj, then Cx,. is non-pointed.

The counterpart in genus 1 of ¢ is known to be injective, as proved in [Bru02| showing
that the Kudla—Millson lift of genus 1 is injective. It is expected that the injectivity
of yr may follow from the injectivity of the Kudla—Millson lift of genus 2, but it is still
unknown whether the latter is injective. Chapter 3 and Chapter 4 are motivated by such
problem, although they are not enough to prove the injectivity of ¥r. We will provide more
information below.

Working with Siegel modular forms instead of rational classes of cycles is advantageous
for at least two reasons. Firstly, we may choose a basis

(02) EéjﬂEg,l(fl)v’"7E§,1(fé)7F17"'7F€’7

of M¥(Q), and rewrite the functionals ¢z over such basis as vectors in Q™+, In (0.2), we
choose f1,..., fo and Fy,..., Fy to be respectively a basis of SF(Q) and S5(Q), we denote
by E% the Siegel Eisenstein series of weight k, and by Eé‘cl( f) the Klingen Eisenstein series
arising from any elliptic cusp form f. In this way, we can compute functionals explicitly,
e.g. via SageMath, and check properties of the modular cone at least empirically. The
second reason to use modular forms is that we may deduce the accumulation rays of Cy, via
the known growth estimates of the Fourier coefficients of Siegel modular forms, associated
to sequences of matrices in A; of increasing determinant.

The situation in genus 2 is more complicated but also more interesting than its counter-
part in genus 1. For instance, the number of the accumulation rays of the modular cone Cy,
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is infinite whenever k > 18. This is due to the presence of the Klingen Eisenstein series,
whose Fourier coefficients may grow more slowly than the one of the Siegel Eisenstein series,
depending on the chosen sequence of matrices with respect to which they are extracted.

Equidistribution of measures. We recall that D" = G/K is the Hermitian symmetric
domain associated to the lattice L, where G = SO(L ® R). Since the cohomology class
of the Hodge bundle w of D; coincides with the one of a G-invariant Kéhler form, we
denote by w also such Kéhler form. The latter induces a G-invariant Kihler metric on D;",
as well as a volume form. We may restrict such metric to a fundamental domain of D;‘
with respect to the action of I', and construct a Borel measure on the orthogonal Shimura
variety Xt = F\Dl;F . With respect to such measure, the metric space Xr is of finite volume.
We denote by vx,. the normalized measure giving volume 1 to Xr. In other words vx. is a
probability measure.

The algebraic group G admits many different kinds of algebraic Q-subgroups, not
necessarily of orthogonal type. Let H = SO(V, q) be a orthogonal Q-subgroup of G arising
from some quadratic subspace (V,q) of L ® R of signature (r,2), where r < b, and inducing
an inclusion of Hermitian symmetric domains

H/(HNK) < G/K.

The immersion of the orthogonal Shimura variety (I' N H)\H/(H N K) in Xt gives rise to
an algebraic subvariety of Xr. We say that a subvariety of Xt is an orthogonal Shimura
subvariety if it arises in this way. An example of such subvarieties are the irreducible
components of the codimension b — r special cycles of Xt. Every orthogonal Shimura
subvariety Z induces a canonical probability measure vz on Xr, with Z as support, that
may be constructed following an analogous construction as vx..

In Chapter 2, we prove a slight generalization of the following result. Recall that a
sequence of probability measures (1) en on Xr weakly converges to a probability measure
on Xr, in short p; — p, if

fdpy ——— fdu,
J—>00

Xr Xr

for every continuous function f on Xr.

Proposition 0.1. Let Xt be an orthogonal Shimura variety, and let (Zy,)men be a sequence
of orthogonal Shimura subvarieties of Xr with the same dimension. The sequence of
probability measures (vz,,)men contains a subsequence (vz;); which weakly converges to the
probability measure vz associated to some orthogonal Shimura subvariety Z of Xr. The
subvarieties Z; are eventually contained in Z.

The subvarieties Z; such that vz, — vz as in Proposition 0.1 are said to equidistribute
in Z. Proposition 0.1 may be considered as a refinement of a result proved by Clozel and
Ullmo [CUO05], in the special case of orthogonal Shimura subvarieties. It is of the same
flavour as many results on equidistribution, e.g. [EMS97| [EO06] [KM18| [T'T21], inspired
by Ratner’s seminal works.

We are now ready to state the main result of Chapter 2. In fact, we will extend it to
the case of singular Xr.

Theorem 0.2. Let Xr be a smooth orthogonal Shimura variety of dimension n, and
let (Z;)jen be a sequence of pairwise different orthogonal Shimura subvarieties of Xt of
dimension r > 3. If such subvarieties equidistribute in an orthogonal Shimura subvariety Z
of dimension v’ > r, then

1] r! / [Z]

03 iy o M T A i

VO](Z) P 1 n HZ(TL*T) (XFa Q) N anr,nfr(XF)'
J o0 :




The idea to prove Theorem 0.2 is to rewrite the convergence of normalized de Rham
cohomology classes (0.3) in terms of cohomology of currents. The latter are functionals
defined as integrals over the subvarieties Z; of Xr. We “lift” such currents to integrals
defined on the characteristic bundle S(Zj) of Z;, on which we may compute the limit of
such lifted functionals using the weak convergence of the probability measures vz;. Such
limit can be then rewritten as (a cohomology class of) a current on X, which is equivalent
to the cohomology class appearing on the right-hand side of (0.3).

Theorem 0.2 may be applied to compute the limit of sequences of rays generated
by (cohomology classes of) subvarieties, or more generally, cycles. We provide examples of
results in this direction, focusing on sequences of rays generated by Heegner divisors and
special cycles of codimension 2 on Xr. For instance, we reprove [BM19, Proposition 4.5 in
terms of equidistribution, which was proved by Bruinier and Moller by means of modular
forms. This lay the foundation of a strategy to double check the results of Chapter 1 in
cohomology, together with a possible generalization of them to cycles of higher codimension.

The unfolding of the Kudla—Millson lift of genus 1. As previously explained, the
cone of special cycles Cx;. may not inherit some of the properties of the modular cone Cy_/o
if the map 1y, defined in (0.1) is non-injective. Its counterpart in genus 1 is known to be
injective [Bru02|, and the idea to prove it is based on the injectivity of the Kudla—Millson
lift of genus 1. It is expected that the injectivity of the Kudla—Millson lift of genus 2 implies
the one of 11, motivating the last two chapters of this thesis.

In Chapter 3 we reprove the injectivity of the Kudla—Millson lift of genus 1 with a new
method, namely applying Borcherds’ formalism [Bor98, Section 5] to unfold the defining
integrals of the lift. Such procedure has the advantage of paving the ground for a strategy
to unfold the defining integrals of the lifts in higher genus. In fact, in Chapter 4 we apply
an analogous procedure to unfold the defining integrals of the Kudla—Millson lift of genus 2.
However, the unfolded integrals in the latter case do not seem to be enough to deduce the
injectivity of the lift. We conclude this section with an outline of Chapter 3 and postpone
the details of Chapter 4 to the next one. For simplicity, the reader may assume Xr to be
smooth.

The Kudla-Millson lift of genus 1 is a linear map AXM: SF — Z2(X1), where Z2(XT)
is the space of closed 2 forms of the orthogonal Shimura variety Xr. Intuitively, the closed
form AXM(f) is defined as the Petersson scalar product between the cusp form f and a
theta series of two variables, with respect to which the latter transforms as a modular form
of weight 1 + b/2 and as a closed 2-form. Such theta series was constructed in greater
generality in the foundational works of Kudla and Millson [KM86] [KM87] [KM90], and
can be rewritten in terms of Siegel theta functions associated to the lattice L. In fact, in
this thesis we show that it is possible to rewrite AXM(f) as

dx dy
Y2

b
0.4) AKXM(f) = / Ml e()OL(r, g, P ® g" (Wapsr1 A w ,
) M= 30 (AT OBLE G Pap) T ) 9 (asin Awsisa)

a?ﬁ:]'

=Za,p(9)
where g € G, and O(, g, P(a,5)) it the Siegel theta function associated to some homoge-
neous polynomial P, g) of degree (2,0) defined on the standard quadratic space R»2. The
Siegel theta functions ©f, were introduced by Borcherds in [Bor98|.

The pullback g* (wa7b+1 ACUﬁ’bJ’_Q) appearing in (0.4) is an element of /\2 Tr Gr(L),
where Gr(L) is the Grassmannian model of D ; see Section 3.3.1 for a precise construction
of it, and the relation between g € G and z € Gr(L).

We refer to the integral functions Z, g: G — C appearing in (0.4) as the defining
integrals of the lift AXM(f). The idea of Chapter 3 is to apply Borcherds’ formalism [Bor98]
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to unfold the defining integrals of AXM(f), rewriting them over the easier unfolded do-
main I'o\H, where '« is the subgroup of translations in SLy(Z). To do so, we will choose
a splitting L = Ly @ U, for some Lorentzian sublattice L1, and hyperbolic plane U, and
unfold Z, g following the wording of [Bor98, Section 5|. Such procedure is carried out in
Section 3.5.2.

If a complex valued function defined over G is invariant with respect to some Lorentzian
sublattice of L, then it admits a Fourier expansion. Although this general principle is
classical in the literature, for the sake of completeness we provide an overview of it in
Section 3.4. This is based on an explicit Iwasawa decomposition of G.

In Section 3.5, we use such unfolded integrals to compute the Fourier expansion of Z, g.
This is illustrated in Theorem 3.5.4. As application of such expansions, we eventually prove
the injectivity of the lift. The proof is given also for non-unimodular lattices, in the case
they split off two orthogonal hyperbolic planes. As previously remarked, this result was
already proved |[Bru02| [BF10], but the new strategy we propose may work also in higher
genus.

Theorem 0.3 (Bruinier-Funke and Theorem 3.6.1). The Kudla—Millson theta lift AXM
associated to L is injective.

The idea to prove Theorem 0.3 is as follows. The lift AIfM( f) of a cusp form f equals zero
if and only if all defining integrals Z, g are zero, which implies that all Fourier coefficients
of Z, g are trivial. From the explicit formulas of such coefficients provided by Theorem 3.5.4,
we deduce that if 7, g3 = 0, then all Fourier coefficients of f equal zero, therefore f is trivial.

The unfolding of the Kudla—Millson lift of genus 2. The Kudla—Millson lift of
genus 2 is a linear map AKM: S& — Z4(X7), where Z4(Xt) is the space of closed 4 forms
of the orthogonal Shimura variety Xr. As above, the reader may assume Xr to be smooth.

As for to the genus 1 case, the closed form AgM( f) may be intuitively considered as the
Petersson scalar product between the Siegel cusp form f and a theta series in two variables,
with respect to which the latter transforms as a Siegel modular form of weight 1 4 b/2 and
as a closed 4-form.

In this thesis, we show that it is possible to rewrite AKM(f) as

b b

—dxd
Aé{M(f) - Z Z (/ det yk—‘rlf(T)Fa(T,g)K% ) X
(0.5) Om%:vl B,6=1 7 Spa(Z)\Hz Y
o B<d

=Za(9)
xg* (wa,b+1 AN Wgpt+2 N\ Wy pt1 A Wé,b+2)7

where g € G and Fy is an auxiliary function which may be written in terms of a Siegel
theta function of genus 2 attached to some homogeneous polynomial P, on (R»2)2, when-
ever a # 8 and v # J. In fact, under such hypothesis, we have

Fo(r,9) =dety-Op (7,9, Pa)-

We define the Siegel theta function ©r o in Section 4.3, inspired from the work of
Roehrig [Roe21|. They may be considered as a generalization in genus 2 of the ones
appearing in [Bor98, Section 4].

The term g¢*(wap+1 A+  Awspyo) appearing in (0.5) is a vector of N\ T*(D); see
Corollary 4.2.5 for details.

We refer to the integral functions Z, : G — C appearing in (0.5) as the defining integrals
of the genus 2 Kudla—Millson lift. The idea of this chapter is to generalize Borcherds’
formalism [Bor98, Section 5|, as illustrated in Section 4.4, and apply it to unfold the defining
integrals of AgM( f), rewriting them over the easier unfolded domain Cy; \Hp, where Ca 1
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is the Klingen parabolic subgroup of Sp,(Z). This is carried out in Section 4.6 under the
hypothesis that o # § and v # 0. As for the genus 1 case, we use the unfolded integrals to
compute the Fourier expansion of Z; see Theorem 4.6.7.

We now illustrate why such unfolding does not seem to be enough to prove the injectivity
of AKM. The lift AXM(f) of a Siegel cusp form f is zero if and only if all defining integrals Zy
are zero, which in turn happens only if all Fourier coefficients of Z,, are trivial. In the
elliptic case, it was easy to see that all such Fourier coefficients are zero only when f = 0.
This was deduced from an explicit decomposition of such coefficients in real and imaginary
parts. In genus 2, the Fourier coefficients of Z,, are integrals over I'/\H x C, where I'’ is
the full Jacobi group, and the integrands contain certain Fourier—Jacobi coefficients of f. It
is then non-trivial to prove that such integrals are zero only if f = 0. It may be necessary
to apply another unfolding, rewriting the integrals over I'/\H x C as integrals over easier
domains. Such problem is not tackled in this thesis.
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CHAPTER 1

CONES OF SPECIAL CYCLES OF CODIMENSION 2 ON
ORTHOGONAL SHIMURA VARIETIES

ABSTRACT

Let Cx be the cone of special cycles of codimension 2 on an orthogonal Shimura variety X
associated to a unimodular lattice. We prove that the accumulation cone of Cx is pointed,
rational and polyhedral. The idea is to show analogous properties for the cones of Fourier
coefficients of Siegel modular forms. We also compute the accumulation rays of Cx, proving
that they are generated by combinations of Heegner divisors intersected with the Hodge class
of X. Eventually, we conjecture the polyhedrality of Cx, translating it into properties of
Fourier coefficients of Jacobi cusp forms.

1.1. INTRODUCTION

The cones of divisors and the cones of curves on (quasi-)projective varieties have been
intensely studied. In this paper we illustrate properties of certain cones of codimension 2
cycles. We focus on orthogonal Shimura varieties, studying the geometric properties of
the cones generated by the codimension 2 special cycles via the arithmetic properties of
the Fourier coefficients of genus 2 Siegel modular forms. The easier case in codimension 1
has already been treated in [BM19], in which the cones of special divisors is proved to
be rational and polyhedral, whenever these varieties arise from lattices which split off a
hyperbolic plane.

Let V be a finite dimensional vector space over Q, and let Vg be the vector space V@R
endowed with the Euclidean topology. To study the properties of a (convex) cone C
generated by some subset G C V, in short C = (G)qg.,, it is useful to find all rays in Vg
arising as “limits” of rays generated by sequences of elements in G. For instance, the
properties of the cone of special divisors studied in [BM19] are deduced by showing that
the rays generated by such divisors accumulate towards a unique ray, and that the latter
lies in the interior of the cone. This motivates the following definition.

A ray r of Vg is said to be an accumulation ray of C with respect to the set of generators G
if there exists a sequence of pairwise different generators (g;);jen in G such that

R>o-gj —> 1, when j — o0,

where we denote by R>g - g; the ray generated by g; in Vg. The accumulation cone of C
with respect to G is defined as the cone in Vg generated by 0 and the accumulation rays
of C with respect to G.

By what we recalled above on [BM19], the accumulation cone of the cone generated by
the set of special divisors is of dimension 1. In this paper we show that the the situation of
cones generated by special cycles of codimension 2 is much more complicated, and in fact
that the number of accumulation rays is often infinite. To state our main results, we need
to introduce some notation.

Let X be a Shimura variety of orthogonal type (over Q), arising from an even unimodular
lattice of signature (b,2), with b > 2. The special cycles of X are suitable sums of orthogonal
Shimura subvarieties of X, and are parametrized by half-integral positive semi-definite
matrices of order 2. We denote by Ao the set of these matrices, and by A; the subset of
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the ones whose determinant is positive. If T' € A}, we denote by Z(T') the special cycle
associated to T, and by {Z(T)} its rational class in the Chow group CH?*(X). If T is
singular, it is still possible to define a special cycle in CH?(X) by intersecting with (the
dual of) the rational class of the Hodge bundle w of X. We refer to Section 1.4.1 for further
details.

Definition 1.1.1. The cone of special cycles (of codimension 2) on X is the cone defined
in CH*(X) ® Q as
Cx = ({Z(D)} : T € A3)qs,
The cone of rank one special cycles (of codimension 2) on X is
Cx = ({Z(T)} - {w*} : T € Ay and 1k(T) = D@so-

Whenever we refer to the accumulation cones of Cx and C’x, we implicitly consider
them with respect to the set of generators of Cx and C’x used in Definition 1.1.1. All these
cones are of finite dimension.

We briefly recall some properties of cones, referring to Section 1.4 for a more detailed
explanation. Let C be a cone in a finite dimensional vector space V over Q. We say that C
is pointed if it contains no lines. The R-closure C is the topological closure of C in V. We
say that C is rational if C may be generated over R by a subset of the rational space V.
Recall that we write C = (G)qg., if C is generated by G C V. The cone C is polyhedral
if C = (G)g.,, for some finite set of generators G.

The following theorem collects the main results of this chapter. For k even, we denote
by Mf the space of elliptic modular forms of weight k.

Theorem 1.1.2. Let X be an orthogonal Shimura variety associated to a non-degenerate
even unimodular lattice of signature (b,2), with b > 2.

(i) The cone of rank one special cycles C'x is pointed, rational, polyhedral, and of
dimension dim M +%/2. (Bruinier—Mdller)

(i) The accumulation cone of the cone of special cycles Cx is pointed, rational, poly-
hedral, and of the same dimension as Cx.

(iii) The cone Cx is rational and of mazimal dimension in the subspace of CH?(X) ®Q
generated by the special cycles of codimension 2.

(iv) The cones Cx and C'x intersect only at the origin. Moreover, if the accumulation
cone of Cx 1s enlarged with a non-zero element of C'x, the resulting cone is non-
pointed.

The first point of the previous theorem is proved in Section 1.4.1 as a direct consequence
of [BM19]. The key result to prove the remaining points is Kudla’s modularity conjecture,
recently proved by Bruinier and Raum [BWR15|, which enables us to deduce geometric
properties of Cx via arithmetic properties of the Fourier coefficients of genus 2 Siegel
modular forms with even weights, as we briefly recall.

Let k be a positive even integer and let M5 (Q) be the finite-dimensional space of
weight k and genus 2 Siegel modular forms with rational Fourier coefficients. For every F
in M¥(Q), we denote the Fourier expansion of F by

F(Z) _ Z CT(F)SZWitr(TZ),
TeAs

where Z lies in the Siegel upper-half space Hy, and cp(F) is the rational Fourier coefficient
of F associated to the matrix 7' € Ay. The dual space MJ(Q)* is generated by the coefficient
extraction functionals cr, defined for every T' € Ag as

cr: Még((@) — Q, Fr+—cp(F).

2



The main result of [BWR15] implies that the linear map
bx: My T2(Q)F — CHY(X)®Q, or — {Z(T)},

is well-defined. Note that 1+ b/2 is an even integer, in fact 14 b/2 = 2 mod 4. This follows
from the well-known classification of even indefinite unimodular lattices.

Definition 1.1.3. The modular cone of weight k is the cone in MF(Q)* defined as
Cr = <CT T e A;>Q20'

The key idea of this chapter is to deduce the properties of the cone of special cy-
cles Cx appearing in Theorem 1.1.2 proving analogous properties of the associated modular
cone Cyyp/2. In fact, such properties are preserved via the linear map ¢ x, as we prove in
Section 1.4.1. If the map ¢ is injective, then also the pointedness of Cyy/, is preserved,
hence the cone Cx is pointed; see Remark 1.4.11 for more information on the injectivity
of wx.

In Section 1.5, we provide a complete classification of all possible accumulation rays
of the modular cone Cg, for every integer k£ > 4 such that £ = 2 mod 4. This allows us to
deduce that all accumulation rays of the cone of special cycles Cx are generated by rational
linear combinations of intersections of the Hodge bundle w with certain Heegner divisors.
We make these generators explicit in Section 1.8.

We also prove that whenever the weight k is large enough, the number of accumulation
rays of the modular cone Cy, is infinite. This makes Cy, very different from its counterpart for
elliptic modular forms in M{“(Q)*, since the latter has a unique accumulation ray, as proved
in [BM19, Section 3]. Nevertheless, the accumulation cone of Cy, is rational polyhedral, as
proved in Section 1.6.

The results on the accumulation rays of the modular cone Cj, are deduced via estimates
of the growth of the Fourier coefficients of genus 2 Siegel modular forms, and via the values
assumed by certain ratios of Fourier coefficients of the weight k Siegel Eisenstein sertes.
The main difficulty arising in genus 2 is the presence of the so-called Klingen Eisenstein
series, which do not appear if only elliptic modular forms are considered, as in [BM19]. The
main resource we use to treat this issue is the recent paper [BD18], where the growth of
the coefficients of the Klingen Eisenstein series is clarified; we refer to Sections 1.2 and 1.3
for the needed background.

In Section 1.7, we prove additional properties of Cr, which allow us to conclude the
proof of Theorem 1.1.2. We furthermore provide a sufficient condition to the polyhedrality
of Cy, (hence also of Cx); see Theorem 1.7.5. Explicit examples in SageMath suggest that
the hypothesis of Theorem 1.7.5 might be always satisfied. This leads us to the following
conjecture.

Conjecture 1. Suppose that k =2 mod 4 and k > 4. The cone Cy, is polyhedral.

We conclude Section 1.7 reducing the problem of the polyhedrality of Cp to “how a
sequence of rays (R>g - cry )jen converges towards the accumulation cone of Cp”, with a
translation of Conjecture 1 into a conjecture on Fourier coefficients of Jacobi cusp forms.

1.2. ELLIPTIC AND JACOBI MODULAR FORMS

To fix the notation, in this section we recall the definitions of elliptic and Jacobi
modular forms. Eventually, we illustrate some properties about positive linear combinations
of coeflicients extraction functionals associated to these forms. Such properties will be
essential in Section 1.6 to prove that certain accumulation rays of Cy lies in the interior of
its accumulation cone.



For the purposes of this thesis, we do not need to consider congruence subgroups, hence
all modular forms here treated are with respect to the full modular groups. Introductory
books are e.g. [Bru+08| and [EZ85.

We begin with elliptic modular forms. The modular group SLy(Z) acts on the upper-half
plane H via the Mdbius transformation as

ar+b

7:(22):H—>H, T>—>’)/'T:767_+d,

where 7 € SLg(Z). Let k > 2 be an even integer and let f: H — C be a holomorphic
function on the upper-half plane. We say that f is an elliptic (or genus 1) modular form of
weight k if f satisfies f(y-7) = (et +d)*f(7) for all 7 € H and all v = (¢ Y) € SLy(Z),

and if it admits a Fourier expansion of the form
e .
f(r) = Z cn(f)q",  where g = ™7,
n=0

The complex number ¢, (f) is the n-th Fourier coefficient of f. We denote the finite-
dimensional complex vector space of weight k elliptic modular forms by Mlk We put the
subscript 1 to recall that these are modular forms of genus 1, avoiding confusion with the
Siegel modular forms we are going to define in Section 1.3. The first examples of such
functions are the (normalized) Eisenstein series

2 o0
(1.2.1) Ef(r) =1+ M;Ukl(n)qn’

where ((s) is the Riemann zeta function, and ox_;(n) is the sum of the (k — 1)-powers of
the positive divisors of n.

An elliptic cusp form of weight k is a modular form f € MF such that its first
Fourier coefficient is trivial, namely co(f) = 0. We denote by S¥ the subspace of cusp
forms of weight k. It is well-known that the space of elliptic modular forms decomposes
as M = (E¥)c @ St

We denote by MF(Q) (resp. S¥(Q)) the space of elliptic modular forms (resp. cusp
forms) with rational Fourier coefficients. Since S} admits a basis of cusp forms with rational
coefficients, it turns out that the dimension of MF(Q) = (E¥)q @ SF(Q) over Q is equal
to the complex dimension of M¥. The dual space M} (Q)* is generated by the coefficient
extraction functionals ¢y, defined as

Cn: Mf(@) —Q, fr—culf),

for every n > 0. In [BM19], the authors proved that whenever k& = 2 mod 4, the cone
generated by the functionals ¢, with n > 1 is rational polyhedral in MF(Q). A key result
used in the cited paper is [BM19, Proposition 3.3, here stated in our setting.

Lemma 1.2.1. Suppose that k = 2 mod 4. There exist a positive integer A and positive
rational numbers n;, with j =1,..., A, such that

A
> 1 ¢lsi@ =0
j=1

Furthermore, the constant A can be chosen arbitrarily large such that the restrictions cj|S{c(Q)
generate ST(Q)*.



For the purposes of this chapter, we need a slight generalization of Lemma 1.2.1 to Jacobi
forms, as we are going to illustrate.

Jacobi forms play an important role in the study of the Fourier coefficients of Siegel
modular form. As we will recall in the next sections, the Fourier series of a Siegel modular
form can be rewritten in terms of Jacobi forms. This arithmetic property will be translated
into a geometric property of the cone C; we defined in the introduction. Namely, the
convergence of certain sequences of rays in Cy will be deduced from results on the growth
of Fourier coefficients of Jacobi forms. This is one of the goals of Section 1.5.

Let k > 2 be an even integer, and let m € Z>p. A holomorphic function ¢ : H x C — C
is said to be a Jacobi form of weight k and index m if

b 71'1'7’rlcz2
¢<Zidcrid> = (er + e = g(r2), for every (25) € SLa(2),

ATz + AT+ p) = 6727rim()\27'+2)\z)¢(7_7 z), for every (\, u) € Z?,

and if ¢ admits a Fourier expansion of the form

o)
(122) ¢(7‘7 z) — Z Z Cn,'r(¢)qn<r; where q= 6271'in7' and C — e27rirz.
n=0 rez
Anm—r2>0

The complex numbers ¢, ,(¢) are the Fourier coefficients of ¢. We denote by Jj ,, the
finite-dimensional complex vector space of such functions. If in the Fourier expansion (1.2.2)
the coefficients c(,, ,y(¢) such that 4nm = r? are zero, then ¢ is said to be a Jacobi cusp
form. We denote the space of these forms by J V.

First explicit examples of Jacobi forms are the Jacobi Fisenstein series. We avoid to
define them explicitly in this thesis, we refer instead to [EZ85, Section 2| for a detailed
introduction. The subspace generated by the Jacobi Eisenstein series is denoted by JEI;L
By [EZ85, Theorem 2.4], the space of Jacobi forms of even weight k& > 2 decomposes into
(1.2.3) T = T & Ty

In analogy with the case of elliptic modular forms, the spaces JE‘;L and Jgﬁp admit a
basis of Jacobi forms with rational Fourier coefficients. We denote the associated spaces of
Jacobi forms with rational coefficients by JE;,S%(Q) and J;};Snp((@), respectively. An analogous
decomposition as (1.2.3) holds also over Q.

The dual space J, , (Q)* is generated by the Jacobi coefficient extraction functionals cy, .,
defined as

Cnr: Jk,m(@) — Q, ¢ — Cn,r(¢)v
for every n > 0 and r € Z such that 4nm — r2 > 0.

The slight generalization of Lemma 1.2.1 previously announced is the following.

Lemma 1.2.2. Suppose that k = 2 mod 4. For every positive integer m there exist a
positive integer A and positive rational numbers fi, , such that

(1.2.4) S ) tmecasl e () = 0.

1<n<A reZ
Anm—r2>0

Furthermore, the constant A can be chosen arbitrarily large such that the restrictions
Cnrl jeme () generate T (Q)*.



PROOF. If ¢ € Jim(Q), then the map on H defined as ¢(r,0) lies in MF(Q); see
e.g. |[EZ85, Section 3. Its Fourier expansion is

on(r0) =3 (3" cnrl@))a"

n=0

The previous sums over 7 are finite, because ¢(n,r) # 0 implies 72 < 4nm. Since the finite
sum ), Cn,r| jeus(q) extracts the n-th Fourier coefficient of the elliptic modular form ¢(,0)
for any Jacobi cusp form ¢ and any n > 1, it is enough to apply Lemma 1.2.1 to such sum
of functionals to conclude the proof. U

1.3. SIEGEL MODULAR FORMS OF GENUS 2

We briefly recall Siegel modular forms, which are the counterpart of elliptic modular
forms in several variables. For the aim of this thesis, we treat only the genus 2 case.

The Siegel upper-half space Hs is the set of 2 x 2 symmetric matrices over C with
positive definite imaginary part. It is a simply connected open subset of C3. The symplectic
group Sp,(R) acts on Hy as a group of automorphisms by

g: Zv+——g-Z=(AZ+B)(CZ+ D)™},
for every Z € Hy, where we decompose g € Spy(R) in 2 x 2 matrices as g = (é g).
Let k > 4 be an even integer. The symplectic group Sp,(R) acts also on the space of

complex-valued functions F': Hy — C via the so-called |i-operator, defined as
(Flkg)(Z) = det(CZ + D) " F(g - 2),

for every g € Sp,(R). A Siegel modular form of weight k (and genus 2) is a holomorphic
function F': Hy — C that satisfies the transformation law

Flyy =F, for every v € Spy(Z).

We denote the finite-dimensional complex vector space of these forms by Mé“ By the
Koecher Principle, every Siegel modular form admits a Fourier expansion. We denote by As
the set of symmetric half-integral positive semi-definite matrices of order 2, namely
2
Ay = {T: (r%rr/n > :n,r,m€Zand T > O}7
and by A;r the subset of matrices which are positive definite. The Fourier expansion of
any F' € M} is indexed over Ay as

(1.3.1) F(Z)= Y cp(F)e™ T2,
TeNs

The complex numbers cp(F) are the Fourier coefficients of F. If the Fourier expansion
is supported on A;, then F' is called a Siegel cusp form. We denote the subspace of cusp
forms in M5 by S§.

The group GLy(Z) acts on Ay via the action T+ u!-T-u, where u € GLy(Z) and T' € Ag,
preserving A;. The Fourier coefficients of Siegel modular forms of even weight are invariant
with respect to this action, namely cr(F) = cyi.7.,(F) for every F € M}. We say that a

" r/z)GAQ is reduced if 0 <r <m <n.

matrix T = (T/2 m

Remark 1.3.1. The orbit of the subset of reduced matrices via the action of GL2(Z) is the
whole Ag. For this reason, the study of the Fourier coefficients of Siegel modular forms (of
even weight) restricts to the ones associated to reduced matrices.

6



Our definition of reduced matrix is slightly different from the one in the literature. In
fact, the reduced matrices are usually constructed to be representatives in As with respect
to the action of SLy(Z), fulfilling the weaker condition |r| < m < n. In our case, in virtue
of Remark 1.3.1, we may consider the action of the whole GL3(Z) on As. In particular, we
may suppose r to be non-negative.

In analogy with the case of elliptic and Jacobi modular forms, the spaces Mé“ and S§
admit a basis of Siegel modular forms with rational Fourier coefficients. We denote the Q-
vector spaces generated by these bases by M§(Q) and S%(Q), respectively.

The dual space M}(Q)* is generated by the Siegel coefficient extraction functionals cr,
defined for every T € Ay as

cr: MY(Q) — Q, Fr—— cp(F).

An important feature of the Siegel modular forms is that their Fourier expansions can
be rewritten via Jacobi modular forms. That is, every F € Mé“ admits a Fourier—Jacobt
exrpansion

(1.3.2) F(Z) = f: G (T, 2)eXTT
m=0

where Z = (%) € Hy, and ¢, € Jip is the m-th Fourier—Jacobi coefficient of F.

Whenever we want to highlight that ¢,, is a coefficient of F € Mé’“, we write ¢f . Clearly,
if [ € M¥Q), then ¢, € Jem(Q), and if F € Sk then ¢, € Jp°P. Furthermore,

if T = (;}2 % 2), then the T-th Fourier coefficient of F' coincides with one of the Fourier

coefficients of ¢y, more precisely cr(F) = cpr(ém).

1.3.1. Siegel Eisenstein series. This section is a focus on the Siegel Eisenstein series Eé“ of

genus 2 and even weight k > 4. We deal with the Fourier coefficients a%(T') of E§ associated

to positive definite matrices 7 and certain ratios of the form af( T72 . ;//2; ) /a5 ( Tr/LQ % g ), for
some positive t. The possible limits of these ratios, where t is fixed and with respect to
sequences of matrices of increasing determinant, are essential to classify the accumulation
rays of the cone generated by the coefficient extraction functionals indexed over A7, and

are extensively used in Section 1.5.1.

Definition 1.3.2. Let Py be the Siegel parabolic subgroup of Sp,(Z). The (normalized)
Siegel Fisenstein series of even weight k > 4 is defined as

Ef Hy —C, Z+— > det(CZ + D)7k
(é g)EPO\SIM(Z)

It is well-known that E¥} is a Siegel modular form of weight k. We denote its Fourier
expansion by
ES(Z) — Z alg(T)e%ritr(TZ)'
TeA2

We reserve the special notation af(T) for the Fourier coefficients of E¥, instead of cp(E%),

since they play a key role in the whole theory.

To state the Coefficient Formula of a}(T), we need to recall some definitions. An
integer D is said to be a fundamental discriminant if either D = 1 mod 4 and squarefree,
or D = 4s for some squarefree integer s = 2 or 3 mod 4. Its associated Dirichlet character xp
is the one given by the Kronecker symbol (Q)

Definition 1.3.3 (See [Coh75, Section 2|). Let r and N be non-negative integers, with r
positive. The Cohen H-function H(r, N) is defined as follows. If N > 0 and (—1)"N =0
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or 1 mod 4, we decompose N = —Dc? with D a fundamental discriminant. In this case we
set

H(r,N)=L(1—r,xp) Y _ pld)xp(d)d" ' o2r_1(c/d).
dlc
If N =0, then H(r,0) = (1 —2r).
Lemma 1.3.4 (Coefficient Formula, see [EZ85, p. 80|). The Fourier coefficients of the
Siegel Fisenstein series Eé“ are rational and given by

2 k— 4det T :
(1.3.3) ok (1) = 4 TTRCEEm ey @ H (k=1 5E) AT £O,
L, if T =0,

forany T = (:;2 %2) € As.

The value af (2 9) coincide with the n-th Fourier coefficient of the (normalized) elliptic
Eisenstein series (1.2.1). The following lemma summarizes well-known properties of a4 (7).

Lemma 1.3.5. The Fourier coefficients of the Siegel Eisenstein series E§ satisfy the
following properties.
(i) Suppose that k = 2 mod 4 and T € Ay \ {0}. If detT > 0, resp. detT = 0,

then ag(T) s a positive, Tesp. negative, rational number.

(1i) Suppose that k = 0 mod 4 and T' € Ay \ {0}. If detT > 0, resp. detT = 0,
then aé(T) is a negative, resp. positive, rational number.
(iii) There exist positive constants ¢ and co such that

¢ det(T)F=3/2 < |aB(T)| < o det(T) =32, for every T > 0.

We will usually refer to Lemma 1.3.5 (iii) saying that a5(T) has the same order of
magnitude of det(T)k_3/2, usually abbreviated as a5(T) =< det(T)k_3/2.

PROOF. The proof of first two points is a simple check using the Coefficient Formula.
The idea is to show that all values of the H-function appearing in Formula (1.3.3) have the
same sign if det 7' > 0 (resp. det T'= 0). This can be proved by induction on the number
of prime factors of 4det(T)/d?, or via the equivalent definition of the H-function given
in [Coh75, Section 2|. We follow the latter argument.

(i) Suppose that det 7" > 0, then 4det 7" = 0 or —1 mod 4. Decompose the H-function
in h-functions as in [Coh75, Section 2|, that is

H(k—1,4detT)= > h(k—1,4detT/d*).
d?|4det T
Under the hypothesis that £ = 2 mod 4, the h-functions are defined as
h(k —1,4detT) = (k — 2)1227 7 F (4 det T)* 32 L(k — 1, x—sdet ),

for every T € AJ. Clearly, the sign of h(k — 1,4det T') depends on the sign of the
last factor, which is positive since

(e}

X—4det (1) 1 1
—_ = _— _— > _— .
p

Suppose now det 7" = 0, then H(k — 1,0) = ((3 — 2k) and

2

as(T) = 7_1{7)%,1 (ged(n,r,m)).

Since ¢(1—k) = (—1)k¥~!'B;/k and k—1 = 1 mod 4, where By, is the k-th Bernoulli
number, the coefficient ak(T) is negative.
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(i1) It is analogous to the previous one. If k£ = 0 mod 4, then the decomposition in h-
functions is as above but with a factor of —1, changing the sign of H(k—1,4detT),
for every.

(111) This is well-known; see e.g. [Das16, Remark 2.2|. O

Remark 1.3.6. Let £ > 4 be an even integer and let F' € S§ be a Siegel cusp form.
Suppose that (T});en is a sequence of matrices in Ay of increasing determinant, that is,
such that det Tj — +o0o0 when j — +00. As explained e.g. in [Das16, Section 1.1.1], the
growth of the Fourier coefficients (er; (F'));en is estimated by the Hecke bound as

e, (F) = Op(det(T))"?).

By Lemma 1.3.5 (iii), we deduce that the Fourier coefficients a5(7}) of the Siegel Eisenstein
series 5 grow faster than cr; (F) when j — oo, for every cusp form F' € Sk and for every
sequence of matrices (7}); of increasing determinant.

1.3.2. Siegel series and ratios of Fourier coefficients. The aim of this section is to
provide a classification of certain quotients of coefficients of Siegel Eisenstein series, and
their limits over sequences of matrices with increasing determinant. The idea is to simplify
the explicit formulas of these ratios using the so-called Siegel series. These results will play
a key role in Section 1.5 and Section 1.7, namely to classify the accumulation rays of the
modular cone Ci and to translate the polyhedrality of Ci in terms of weight k Jacobi cusp
forms. We suggest the reader to skip this rather technical section during the first reading.

We begin with an introduction on Siegel series. If a is a non-zero integer, we denote
by vp(a) the maximal power of p dividing a.

Definition 1.3.7. Let T = ( " T/Q) € A; and let D be the fundamental discriminant

r/2 m
such that 4detT = —Dc%. For every prime p, we define a1 (T,p) = Vp(gcd(n,r, m))
and o(T,p) = vp(—4det T/D)/2 = vp(c). The local Siegel series F,(T, s) is defined as
O41(7—17])) (X(T,p)—f O[(T,p)—f—l
Fy(T,s)= Y pe(“)( S p T x> pw(?’zs)),
/=0 w=0 w=0

where s € C and xp(n) = (%) is the Dirichlet character associated to the Kronecker
symbol (Q)

Conventionally, any sum from zero to a negative number is zero. We remark that if p
does not divide —4det T', then F,(T,s) = 1.

Sometimes, in the literature, the definition of the local Siegel series differs from ours by
a factor, more precisely it is defined as

(1—p~*)(1—p*%)
1—xpppt=

see [Kat99] and [Kau59, p. 473, Hilfssatz 10]. For our purposes, the factor ~,(7), s) plays no
role.

bp(T7 8) = fyp(T7 S)Fp(Tv 8)7 where VP(T7 S) =

Definition 1.3.8. Let T € AJ. The Siegel series Fr(s) is the product of local Siegel series

Pris)= [] F(T.9).

plddetT

Using Siegel series, we may rewrite some of the Fourier coefficients a5(T) of Siegel
Eisenstein series, as stated in the following result; see [Kau59).
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Proposition 1.3.9. Let T € AQL and let k > 4 be an even integer. We may rewrite the
Fourier coefficient of the Siegel Eisenstein series Eé“ associated to the matriz T as

ag(T) = C(21L_(2k)_<‘f§ {D;k) ’ FT(3 - k)?

where D is the fundamental discriminant such that 4det T = —Dc?.

We conclude this section with some results on quotients of certain Fourier coefficients
of E§ and their possible limits, as previously announced. To simplify the explanation, for
every positive integer ¢ and every

(1.3.4) T= (), 7)€ rs, wedefine T = ( 7 "%

Lemma 1.3.10. Let T = (,},"/?

If t is a positive integer such that t # 1, t|r and t*|m, then
k(lt] pr®] g _
as (T ) _ H FP(T ) 3 k)

) be a matriz in A; and let k > 4 be an even integer.

1.3.5
139 A@ U Rmsh
Moreover 0 < a(TH)/ak(T) < 1.
PROOF. Let D be the fundamental discriminant such that 4det Tl = —Dc?, then
4detT = 4t>det T = —D(tc)?, hence the fundamental discriminants associated to T

and T are equal. We use Proposition 1.3.9 to deduce

af(TW)  Fry(3—k) 7 E(TY,3-k) F,(TH 3 — k)
ng - ;T(3—k) =11 F,(T,3 —k) 11 Fy(T,3—k)

(1.3.6)

Let p be a prime such that p does not divide ¢, then
(T, p) = vp(ged(n, r,m)) = vp(ged(n, r/t, m/t?) = ar (T, p).

Analogously, we deduce a(T,p) = (T, p). This implies that F,(T",3 k) = F,(T,3 k)
for every p which does not divide ¢, hence the last factor in (1.3.6) simplifies to 1.

Suppose now that p divides t. Since a(T[t],p) = a(TL”Vp(t)],p) and

v, v, vp (t)
a1(T1, p) = vy (ged(n, r/t,m /%)) = vp(ged(n,r/p®, m/p** D)) = ar (T, p),

we deduce that (1.3.6) simplifies to (1.3.5). Furthermore, since k > 4, the value F},(T,3 — k)

is positive for every T € AJ. Moreover, since ai (T, p) < a1 (T, p) and a(TH, p) = vjp(c) is
less than a(T,p) = v,(ct), then F,(T!" 3 —k) < F,(T,3— k). This concludes the proof. [

We want to classify all possible limits of ratios of the form (1.3.5), indexed over a
sequence of matrices (T})jen in AJ, with increasing determinant and fixed bottom-right
entry. To do so, we need to define certain special limits associated to such families. For the
purposes of this chapter, we may consider only reduced matrices.

Proposition 1.3.11. Let k > 4 be even and let m be a positive integer. Consider a sequence

of reduced matrices <TJ =(" ri/?

/2 m )>j€N n A;, of increasing determinant. Suppose that

a prime p is chosen such that p®|r; and p*|m for some positive integer s. If the sequence
of ratios alg(Tj[ps})/aé(Tj) converges to a value A\ps and o1}, p) diverges when j — oo, then
the sequence {(al(T][pS],p), aq (Tj,p))}jeN is eventually constant and
1_ p(z—kxal(T}pS],p)H)

1 — p(2=Fk)(ar(Tjp)+1)

10

(1.3.7) My = pi3-28).



for j large enough.

We remark that for different values of o (T, p) and a1 (7} a ,D), the ratio (1.3.7) assumes
different values.

Definition 1.3.12. Let k£ > 4 be even and let m be a positive integer. For all positive
integers s and all primes p such that p?* divides m, the special limits (of weight k and
index m) associated to p® are the limits of ratios arising as in Proposition 1.3.11. We denote
by EZ?m(ps ) the set of these special limits.

As we are going to see with Proposition 1.3.16, the elements of £;* (p®) are those limits
of ratios which can be obtained only asymptotically, since they are not ratios of Fourier
coefficients of Eé“ arising from any matrix in A;r. For this reason, we call them “special”.

Remark 1.3.13. Let £ > 4 be even and let m be a positive integer. Since a1(Tj,p)
and al(T[p S}, p) can assume only a finite number of values in (1.3.7), the set £;° (p®) is
finite for every positive integer s and every prime p such that p?* divides m.

PROOF OF PROPOSITION 1.3.11. The local Siegel series evaluated in s =3 — k is

a(T,p)—¢ a(T,p)—f—1
T 3 k Z p (k—1) ( Z pw(2k73) _XD(p)pk72 Z pw(2k3)).
w=0
—_——

w=0

(*) (%)

We remark that (x) and (x*) are two different truncates of a geometric series. Since the

truncate of a geometric series can be computed as > 1,7’ = 17“7 for every r # 1, then
a1 (T,p) 2k—3\(T'p)—L+1 2k—3\(T.p)—¢
1= () 1= ()
o _ ((k—1) o k—2 _
FP(T73 k) - % p ( 1 _ ka_3 XD(p)p 1— p2k—3 -
o1 (T,p)

—— T Z pl=1) ( — o)+ (XD(p)pl%Q _p2k73)p(a(T,p)fZ)(2k73)> _

aq (Tvp)

1 _ _
:H)W«l—XD(p)Pk > p Y+
(=0

()

—l—(XD(p)pk*Q P2 3) T.p)(2k—3) Z pe(2 k))

_,_/
(%)

The terms (x) and (xx) are truncates of two different geometric series. Computing their
values, we deduce

1 1 — xp(p)p*=2) (1 — ptk=D((T:p)+1)
Fy(I3 k) = —— %3(( )0y )
P p
()
(1.3.8)
1 — p(2=k)(@a (T.p)+1)
T R e )

o
w (o)
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Let (T});en be a sequence of reduced matrices in A3 with bottom-right entry fixed
to m and increasing determinant, such that «(7},p) — oo when j — co. We want to
study the asymptotic behavior of F,(T},3 — k) with respect to j — oo via (1.3.8). The
terms (%) and (&&) are independent from (T}, p), and they remain bounded since a4 (T}, p)
and xp,(p) assume only a finite number of values. In contrast, the value of (#) diverges
if § — oo, since k > 4 by hypothesis. This implies that

. (pzk—3 ~ Xn, (p)pk_2) (1 _ p(2—k)(al(ij)+1))
<p2k73 _ 1) (1 _ p27k) ’

(1.3.9)  F(T},3 — k) ~ pTip)(2h=3

if j — oc.
We conclude the proof studying the asymptotic behavior of the ratios a5 (T][p S]) /a5 (Ty).
We compute these ratios via the local Siegel series and (1.3.9), deducing

[p°] [p°] .
ag(Tj ) _ Fp(Ty" 3 k) - p(3—2k)(a(Tj,p)_a(T}P Ipl—p
af(Ty) — Fp(Ty,3—k) 1 — plen TP+

(aa (T p)+1)(2—k)

when j — oo. Since a(T},p) = oz(Tj[pS],p) + s, the claim follows. O

Corollary 1.3.14. Let k > 4 be an even integer and let (T}) en be a sequence of reduced
nj 1j/2

/2 m ), where m is a

matrices in A;r of increasing determinant, of the form T; = (

fized positive integer. Suppose that a prime p is chosen such that p**|m for some positive
integer s. There exists a positive constant Cps such that if

k (lp°]
as (T
(1.3.10) % s Aps
as (T]) j—o0
for some Aps, then either \ps = 0, and this happens only when the entries rj are eventually

not divisible by p®, or Cps < .)\ps < 1. Furthermore, if A\ps is not a special limit in E?fm(ps),
the sequence of ratios aé(Tj[p ])/alg(TJ) is eventually constant equal to Aps.

PrROOF. By Lemma 1.3.5, the limit A, is non-negative. If eventually p® { r;, then the
numerators of the ratios in (1.3.10) are eventually zero, and \ps = 0. From now on, we
suppose that eventually p® divides ;.

The value of F),(T},3 — k) depends only on oy (7}, p), a(Tj,p) and the fundamental
discriminant D; such that —4detT; = chg. The value of D; influences F,(T},3 — k)
only via xp,(p), which can assume only three values. Also the values of a;(T},p) are
finite, because a1(Tj,p) = vp(ged(nj,rj,m)) with m fixed. Only (T}, p) can diverge
if j — oco. If a(Tj,p) does not diverge, then clearly there are only finitely many val-
ues that Fp(Tj[ps],Z% —k)/Fy(T;,3 — k) can assume, and they are strictly positive; see

Lemma 1.3.10. In this case, the sequence of ratios (ag(T][ps} /a5 (T}))jen is eventually
constant. If a(Tj,p) diverges, then the limit Aps is a special limit in £;° (p®) by Proposi-
tion 1.3.11. U

Definition 1.3.15. Let k and m be positive integers, with k > 4 even. For every positive

integer s and every prime p such that p?* divides m, we denote by Ly m(p®) the set of all
limits of ratios

as (1)

ak(T;)  j—oo

Aps,
arising as in Corollary 1.3.14.

We remark that Ei{’m(ps) C Lim(p®) C[0,1)NQ and that 0 € Ly, (p®). The following
result clarifies the structure of Ly, ., (p®).
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Proposition 1.3.16. Let k, s and m be positive integers, with k > 4 even. Let p be a
prime such that p** divides m. The set Ly.m(p®) is infinite, and splits into a disjoint union
as

(1.3.11)
k(lp°] )
Lim(p®) = {QQ(’“(T)) : T € A reduced with bottom-right entry m H Lr (p°).
a2 ’

In particular, the special limits in E?f,’m(ps) are not the values of ratios a(TW"1)/ak(T)
in Ly (p®) associated to reduced matrices T € AJ with bottom-right entry m.

PROOF. The proof is divided in two steps. With the former, we prove that Ly ,,(p®) is
infinite, and that the special limits in EZ{’m (p*) are never the value of a ratio a5 (T'P"1) /ak(T)
for any reduced matrix T in A; with bottom-right entry m. With the latter step, we prove
that the values of such ratios are the elements of Ly, (p°) \ LY (p®).

First step. The idea is to find a sequence of sequences of matrices

(1.3.12) ((Tj,o)jeN, (Tj1)jen, - (Tjz)jen, - - )

where the T}, are pairwise different reduced matrices of A; , such that for any fixed x the
sequence (7T} ;) en is of increasing determinant, with

a(T%,xap) = a(Tj,arap) and a(Tj,xap) i a(Tj,yap)v
for every i, j,z,y € N with = # y.

There exist infinitely many reduced matrices M, in A;r of increasing determinant

and with pairwise different values of a(M,,p). In fact, we may choose M, = (pzz SL)

Z’EN’

with « > zg, for some zg such that p?*0 > m, for which we have
—4det M, = —4mp*® = D(cp®)?,

where we decompose —4m = Dc? with D a fundamental discriminant. It is clear
that a(M,,p) = vp(c) + x assumes different values for different choices of z > xy. From
any such M, we construct the family of reduced matrices

Tje = <(p+ 132]1)% 7%) , where 5 € N.
Since Ty, = M, for every x > xg, we deduce that

—4det Tj, = —4det M, - (p+ 1)¥ = D(cp”(p +1)7)?
(1.3.13) (Tjzp) = vp(cp™(p + 1)7) = vy(cp”) = a(My, p)

a1(Tja,p) = vp(ged(P™ (p+ )%, m)) = v (ged(p*, m)) = a1 (My, p),

for every j € N and for every x > zg. Analogous equalities are satisfied with T][p; Vand MQEP ]

in place of T}, and M,, respectively. By Lemma 1.3.10, the equalities (1.3.13) imply that
the sequence of ratios

(@(ﬁ?)) B (Fp(T}yﬁ— k))
ak(Tj) / jeN Fp(T) 2,3 — k) / jen
is constant for every x > x. This implies that the ratio ag(Mngs])/ag(Mx) is an element
of Ly m(p®) for every x > x.

Since a(M,,p) — oo when z — oo, then by Proposition 1.3.16 we deduce that
a (M)
a’;(Mx)

(1.3.14)

(1.3.15) — Aps € L0, (1), if z — oo,
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that is, the value A,s is a special limit.

We are ready to prove that Ly, (p°) is infinite. Suppose that it is not. Then the
number of values assumed by the constant sequences (1.3.14) with x > ¢ is finite. We
deduce from (1.3.15) that there exist & > 2o and a special limit Ay € £}° (p®) such

that Fp(MJ[;pS],3 —k)/Fp(My,3 — k) = \ps for every o > Z. The rational number A,
as fraction in lowest terms, has denominator always divisible by p. In fact, we may
rewrite (1.3.7) as

p2) (1 (M .p)—ar (M) p)) p=2) (cr(MFp)41) 4

A = D G

This fraction, if reduced in lowest terms, has denominator divisible by p, since k > 4
and a1 (M,,p) — al(Mg[Cps},p) < 2s.

Since both F,(M,,3 — k) and Fp(Mg[Cps],B — k) are integers, the power of p dividing the
denominator of \ps, as fraction in lowest term, must eventually divide F},(M,,3 — k), for
every x > &. This is not possible, since Fj,(M,,3 — k) is not divisible by p. In fact, under
the hypothesis k£ > 4, we deduce via simple congruences modulo p that

(1.3.16) Fy(My,3 —k) =1—xp(p)p" >(1 = So.ar(0,p)) =1 mod p,

for every « > &. Hence Ly, ,,,(p®) must be infinite.

Since (1.3.16) is satisfied for every T' € A;r in place of M, we deduce that the special
limits in £}" (p*) can not be obtained as ratios a5 (Tys)/a5(T) for any T € A reduced
with bottom-right entry m.

Second step. Let T'= (;;2 T/f
reduced matrices (7});en, where T} is defined as

T — (n_j(f/; 4nm) r7{12>.

) be a reduced matrix in Aj. Consider the sequence of

We remark that Tp = T', and that det T} — oo when j — co. We decompose —4 detT" = De?,
where D is a fundamental discriminant and deduce that

(1.3.17) —4detTj = r* —dm(n — j(r* —4nm)) = (r* —4dnm)(4mj +1) = Dc*(4mj +1).

Let (T%). be the sub-sequence of (T}),en such that 4ma + 1 is a perfect square. We denote
the latter by ¢2, with ¢, positive. There are infinitely many natural numbers z satisfying
this condition. In fact, we may choose x = y(my + 1), where y is a positive integer, since
in this case

dma 41 =4dmy(my +1) +1 = 2my + 1)
We deduce from (1.3.17) that the matrices of the sequence (1), satisfy
—4det T, = D2 (4mzx + 1) = D(c - ¢;)?,
therefore
Oz(Tx,p) = VP(C : Cx) = Vp(c) = O‘(T07p),
since ¢2 = 4mx + 1 and p divides m.
We claim that aq (T, p) = a1(T,p). To prove it, we firstly remark that
a1 (Ty,p) = vp(ged(n — zDe®, r,m)) = min{v,(n — xDe®), vp(r), vp(m)}.

Clearly p*T'P)|Dc?. If a1 (T,p) = vp(n), then also ay(T,p) = vp(n — x2Dc?) for every
index x of the sub-sequence (T});. If a1 (T, p) # vp(n), then p®1(TP)|(n —xDc?) for every ,
hence a1 (T, p) = min{v,(n — zDc?), vy(r), vp(m)}. These imply what we claimed above.
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Since oy (Ta[gps],p) = ay(TP’], p) and oz(Tx[pS],p) = a(T""] p) for every z, the sequence
of ratios
(ag(ngp })> _ <Fp(T£p},3—k‘)>
as(Ty) /= Fp(Ty,3—k) /a

is constant. This implies that the value of the ratios a&(T°l) /a5 (T) is an element of Ly, ,,, (p®).
Since T" was chosen arbitrarily among the reduced matrices in A;r with m as bottom-right
entry, the proof is concluded. O

The remaining part of this section aims to generalize the previous results, replacing the
limits of ratios \ps by tuples of limits of ratios, indexed over the positive integers ¢ such
that t2 divides m.

nj r;/2

Corollary 1.3.17. Let k > 4 be an even integer and let (T] = (T_/2 -
J

of reduced matrices in A; of increasing determinant, where the bottom-right entries are
fized to a positive integer m. Let t be a positive integer such that t2|m and that

))jeN be a sequence

t
ST
a3(Ty) oo

for some ;. There exists a positive constant C, depending on t, such that either \y = 0,
and this happens only when the entries rj are eventually not divisible by t, or Cy < Ay < 1.
There exist also a sub-sequence (T;); of (Tj)jen and A0 € Ly m(p®) for every prime
divisor p of t, such that

vp (t)
as (")

(1.3.18) At and - N =[] A -

plt

Furthermore, if A v, is a non-special limit for every p, then the sequence (ag(ﬂ[t])/ag(ﬂ))i
1s eventually equal to A

PrOOF. It is a consequence of Lemma 1.3.10. The result follows as in Corollary 1.3.14,
working on each factor appearing on the right-hand side of (1.3.5) applied with T} in place
of T. O

Definition 1.3.18. Let m be a positive integer and let tg = 1 < t; < --- < tg be the
divisors of m such that t12|m for all ¢. We denote by Ly, the set of tuples of rational

numbers (Ay,, ..., Ar,) for which there exists a sequence of reduced matrices (7});en in A7,
with increasing determinant and bottom-right entry m, such that
ak (T-[m)
J — A\, for every i =1,...,d.

a§(Ty) oo
We say that a tuple (Ay,...,A,) in Ly, is a special tuple of limits (of weight k and
index m) if there exists a ¢ such that ¢; = p® for some prime p and some positive integer s,
and such that A\, is a special limit in EZI;m (p®). We denote by Eskf)m the set of these special
tuples of limits.

Let (Aty, ..., A,) be a tuple of limits in Ly . If ¢ is a divisor of m such that ¢*|m and
with prime decomposition ¢ = pi* - - - p5#, then both ¢ and the powers of primes of the prime
decomposition of ¢ appear among the t;’s. Moreover \; = H;?:l APSj by Corollary 1.3.17.

j

The tuples in Ly ,, will be used in Section 1.5 to index the accumulation rays of the
modular cone Cj, associated to sequences of matrices with bottom-right entries fixed to m.
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We conclude this section with the following generalization of Proposition 1.3.16, which
shows that the tuples of ratios of Siegel Eisenstein series associated to the same matrix
in Ag‘ lie in some Ly p, .

Corollary 1.3.19. Let k and m be positive integers, with k > 4 even. We denote by
=1<t <---<tq the divisors of m such that t?|m for all v. Ifd > 1, i.e. m s
non-squarefree, then the set Ly, is infinite, and splits into a disjoint union as

[t1] Tltd]
a a . .
Lim= { < Zé(T) ) Y ZZ“(T) )> : T € AJ reduced with bottom-right entry m} H Eskf)m
Furthermore, if m is divisible by the squares of two different primes, then also £Z{)m 1
nfinite.

PROOF. In the second step of the proof of Proposition 1.3.16, we proved that for
n r/2

every T' = (T/2 o

) in AJ, the sequence of reduced matrices with increasing determinant

_ (n—j(r?—4nm) r/2 +
(T] = ("7 2 m ))JEN C Ay
contains a sub-sequence (T}), such that (af(T; P S]) /a5(T,)), is a constant sequence. This
implied that the value a(T"1)/ak(T) lies in Ly (p°) for every reduced matrix T in AJ.

We remark that the definition of the matrices 7} does not depend on the chosen power
of prime p°. We recall that the matrices T, were chosen to be the ones in (7});en such
that 4mj + 1 is a perfect square. Also this choice does not depend on the power of
prime p°. This means that the sequence (a4 (Ta[cp 5}) /ak(T,)), is constant for every p*. By
Corollary 1.3.17, we deduce that the sequence of tuples

as (T ab (Tl
(s %)

is constant. This implies that
(1.3.19)

f(chrtn, et
T) A (T)

> T e A2+ reduced with bottom-right entry m} C Lim-

Since the number of values of the ratios af (7)) /a5 (T), with T in AJ reduced and
with bottom-right entry m, is infinite by Proposition 1.3.16, then also Ly, ,, is infinite.

Any tuple in EZ{’m has an entry which is a special limit A\ps in Ly ,,,(p®) associated to a
power of a prime p*® such that p?*|m. By Proposition 1.3.16, the limit Aps is not the value
of a ratio a§ (TP} /ak(T) for any reduced matrix T in AJ with bottom- right entry m. This
implies that the subset of Ly ,, appearing in (1.3.19) is dw]omt with £;7

We conclude the proof showing that if m is divisible by the squares of two different
primes, then also £}’ P ., is infinite. We suppose without loss of generality that ¢; and ¢3 are two
different primes. We follow the same idea of the first step in the proof of Proposition 1.3.16.
For every j and x in N, let T}, be the reduced matrix in A+ defined as

57430
Tjﬁ_( 0 m)’

The tuple

(1.3.20)




is an element of Ly, ,,, for every j,z € N, as we showed at the beginning of this proof. For
every choice of j, the limit
t
(7))
Aty,j = lim

=00 g (T‘j,x)
is a special limit in £3° (t1). We recall that aé(]}[t;})/ag(ﬂ,fc) = aé(]}[tg])/ag(ﬂjf) for
every z, ¥ large enough. This was actually proven using (1.3.13) in the proof of Proposi-
tion 1.3.16. Hence, there exist tuples in £;° = of the form

k T[t2]
(1.3.21) <At1,j,a2k(”),...)
a5 (Tja)

for some x large enough. By Proposition 1.3.16, the number of values assumed by the
second entry of (1.3.21), with j — oo, is infinite. In fact lim; oo aé(]}[ti])/a’;(ﬂx) is a
special limit in ﬁsk};’m(tg). This implies that there are infinitely many special tuples of limits
of the form (1.3.21) in £37 . O

1.3.3. Klingen Eisenstein series. Any elliptic modular form f € M} of even weight k
can be written in a unique way as the sum of a multiple of the Eisenstein series Ef , and
a cusp form g € S{“, that is, there exists a complex numbers a such that f = a,E{C + bg.
The same decomposition holds for the Fourier coefficients of f. Namely, we can decom-
pose c,(f) = a-cn(EF) + c,(g) for every natural number n. It is well-known that the
coefficients of E¥ grow faster than the coefficients of any cusp form, with respect to n — oco.
This means that if f is not a cusp form, then the relevant part for the growth of ¢, (f) is given
by its Eisenstein part. Such a clean decomposition is characteristic of elliptic modular forms,
and does not hold for Siegel modular forms. The main obstacles are the so-called Klingen
Eisenstein series, whose coefficient growths behave sometimes as for the Siegel Eisenstein
series E%’ and sometimes as for cusp forms, depending on the chosen sequences of matrices
of increasing determinant. In the recent paper [BD18|, Bocherer and Das have proposed an
extensive study of the growth of these coefficients. The aim of this section is to clarify the
previous issue and to recall from [BD18]| the necessary results for the purposes of this chapter.

We denote by Cy 1 the Klingen parabolic subgroup of Sp,(Z), defined as
Con ={v€Sps(Z) : v= (015 %) }-

Definition 1.3.20. Let k > 4 be an even integer. Given an elliptic cusp form f € Sf, the
Klingen FEisenstein series of weight k attached to f is defined as

E5\(f.Z)= ) = det(CZ+D)*f((v-2)"),
Y€C2,1\ Spy(Z)

where we denote by Z* the upper-left entry of Z € Hs, and where v = (é, g).

It is well-known that Klingen Eisenstein series are Siegel modular forms. We use the
special notation a¥(f,T) for the Fourier coefficient of E§1( f) associated to the matrix T

in A,. The subspace of Klingen Eisenstein series is denoted by Né“ . This subspace has
complex dimension equal to the one of S¥, and any basis is of the form E§1( fi),-- ., E§1( fe)

for some basis fi,..., f; of S¥. Moreover, if f € S¥(Q), then also Eé“l(f) has rational
Fourier coefficients.

Remark 1.3.21. Any Fourier coefficient of E§1( f) associated to a singular matrix in Ag
is equal to a coefficient of the elliptic cusp form f, as we briefly recall. If T € As is singular,
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then there exist u € GL2(Z) and n € N such that
W T (38).
By Remark 1.3.1, we deduce that

(1.3.22) a5(f.T) = a5 (£, (38))-
It is well-known that the coefficient appearing on the right-hand side of (1.3.22) equals ¢, (f);
see e.g. [K1i90, Section 5, Proposition 5].

The Structure Theorem for Siegel modular forms [K1i90, Theorem 2, p. 73| allows us to
decompose the space of Siegel modular forms in

(1.3.23) My = (E5)c © N5 @ S5,

with analogous decomposition of Mf (Q) over Q. We highlighted in Remark 1.3.6 some
bounds for the growth of the Fourier coefficients of E§ and the cusp forms in S5. We
provide now the missing bounds for the Klingen Eisenstein series in Nzk. The following
result is a first attempt in this direction; see [Kit79, Theorem p. 113, Corollary p. 120].

Proposition 1.3.22. Let k > 4 be an even integer and let (T;)jen be a sequence of
matrices in A;r of increasing determinant. For every elliptic cusp form f € ST, the Fourier
coefficients of the associated Klingen Eisenstein series Egl(f) satisfy the bound

ag(f,Tj):O(det( )k 3/2), for j — oo.

Proposition 1.3.22, jointly with Remark 1.3.6, ensures that the Fourier coefficients of
any Klingen Eisenstein series of weight k£ > 4 do not grow faster than the coefficients of the
Siegel Eisenstein series of the same weight. This is not enough for our purposes. In fact, we
need to know with respect to which sequences (7});en in A the coefficients a5 (f, T;) grow
with the same order of magnitude of a%(7}). We illustrate here a solution of this problem
following the wording of [BD18].

Let k > 4 be an even integer and let f € Sl We write the Fourier—Jacobi expansion
of E§71(f) as E§71(f, Z) =3, dm(r,2)e?™™ " where Z = (T %) € Hy. For every m, the
Fourier—Jacobi coefficient ¢,, decomposes as a sum of its Elsensteln and cuspidal parts,
respectively &, € JElS and ¢, € J,:;flp, that is,

(1.3.24) bm = Ekm + 0%,
This implies the decomposition of Fourier coeflicients
(1'3'25> aé(f: T)= Cn,r(gk,m) + Cn,r((bgw)a for every T' = <T72 7;{12) € As.

The idea is to deduce the growth of a5(f,T) from the growth of the two members
appearing on the right-hand side of (1.3.25). The next result connects the growth of the
Eisenstein part ¢y ;(Ek,m) with the one of the coeflicients of the Siegel Eisenstein series.

Proposition 1.3.23 (See [BD18, Theorem 6.8]). The Eisenstein part of a5(f,T) appearing
in (1.3.25) can be further decomposed as

Cn,r(gk,m) = <(12_k) Z m(t, f)-a < 72t ;//2;;)

t2|m

where we use the usual convention that a} <r72t ;//2:2) = 0 whenever t does not divide r,
and

02
(1.3.26) =3 ut/0)? 9(f,m/¢)

2 M
T gr(m/?)
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for which we defined the auziliary functions

g(fom) = 3 i)y (F),

(1.3.27) vl
ge(m) = p()or-1(m/y?) = m* [ +p7F).
y2|m plm

We conclude this section with a bound for the cuspidal part ¢, .(¢Y,).

Proposition 1.3.24 (See [BD18, Corollary 6.5]). For all sequences (T; = (" rj/2))jeN

7"]'/2 m;
of reduced matrices in A;r of increasing determinant, the cuspidal part of aé( f,T}) appearing
in (1.3.25) satisfies the bound

Cnyory (Fm;) = O(det(Ty)/2H/17E),

for every e > 0.

1.4. BACKGROUND ON CONES

In this section we introduce the cones of special cycles of codimension two on orthogonal
Shimura varieties associated to unimodular lattices, and the cone of coefficient extraction
functionals of Siegel modular forms. Eventually, we explain how to deduce geometric
properties of the former via the ones of the latter. To fix the notation, we briefly recall the
needed background on cones.

Let V' be a non-trivial finite-dimensional vector space over Q, and let G be a non-empty
subset of V. The (convez) cone generated by G is the smallest subset of V' that contains G
and is closed under linear combinations with non-negative coefficients. We denote it either
by Cg(G), or by (G)q.,- If there exists a finite subset G’ C G such that Cgp(G’) = Cop(G),
we say that the cone Cq(G) is polyhedral (or finitely generated). A cone is said to be pointed
if it contains no lines.

The convex hull of G is the smallest convex subset of V' containing G. It is denoted
by Coan(Q ), and coincides with the set of all convex combinations of elements of G, namely

Convg(G) = {ng~g : J C G is finite, ng =1landz, € Q>g}.

ged geJ

Analogous definitions holds over R.

For simplicity, from now on we suppose that Cg(G) is full-dimensional in V. The R-
closure of Cg(G) is the topological closure Cp(G) = Co(G) ®g R of Cg(G) in the vector
space V ® R endowed with the Euclidean topology. The boundary rays of Cg(G) are the

rays of C(G) lying on its boundary. An extremal ray of Cg(G) is a boundary ray of Cg(G)

that does not lie in the interior of any subcone of Cgp(G) of dimension higher than one. We
say that Cq(G) is a rational cone if all its extremal rays can be generated by vectors of V.

A ray r of V ®R is said to be an accumulation ray of Co(G) with respect to the set
of generators G if there exists a sequence of pairwise different generators (g;)jen in G

such that R>g - gj — r when j — oco. Clearly, all accumulation rays lie in Cg(G). The

accumulation cone of Co(G) with respect to G is defined as the subcone of Cg(G) generated
by the accumulation rays of Cg(G) with respect to G. If there is no accumulation ray, it is
defined as the trivial cone {0}.

Clearly, all previous definitions extend also to cones defined on real vector spaces.
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Example 1.4.1. Consider the subset of Q? defined as

Gi={(1,a) : a €]0,1]NQ},

Go={(1,a) : a €]0,1) N Q},

Gs={(1,a) : a € [0,7)NQ}.
The cone C(G1) is rational and polyhedral, with extremal rays R>q - (1,0) and R>¢ - (1,1).
The cone Cg(G2) is rational but non-polyhedral, and its R-closure Cp(Gz) is rational and

polyhedral. The cone Cqg(Gs) is neither rational nor polyhedral, while its R-closure is
polyhedral but non-rational.

In Section 1.7, we will study how infinitely many extremal rays of a cone could converge
towards an accumulation cone. Along this process, it is important to keep in mind that
even if a sequence of extremal rays converges, the boundary ray obtained as a limit does
not have to be extremal. This behavior, which can happen only in dimension higher than 3,
is illustrated in the following example.

Example 1.4.2. Let ¢ be the semicircle in R? defined as ¢ = {(cos#,sin6,0) : 0 € [0, 7]},
and let A = (1,0,1) and B = (1,0,—1). We define the convex hull G = Convgr(cU {4, B})
and the inclusion ¢: R® — R* by (z,y,2) — (2,9,2,1). The cone Cr(:(G)) is a full-
dimensional pointed cone in R?*, with extremal rays

RZO . L(A), RZO . L(B) and RZQ . L(P) forall P € ¢ — {(1,0,0)}.

In fact, every vector of the boundary ray R>¢ - ¢(1,0,0) is a non-negative combination of
some vectors lying on the two extremal rays given by ¢(A) and ¢(B). Let (0;);en be a
sequence of pairwise different elements in the interval (0, 7) converging to 0. The sequence
of extremal rays R>g - ¢(cos 0;,sin6;,0) converges to the boundary ray R>q - ¢(1,0,0), which
is non-extremal.

Let ¢: V. — W be a linear map of Q-vector spaces of finite dimensions. If a cone C C V'
is rational, resp. polyhedral, then also the cone ¥(C) C W is rational, resp. polyhedral.
Nevertheless, there are properties of C that may not be preserved by . In fact, as shown
in the following example, there are linear maps ¥ mapping a pointed cone C to a cone
that contains a line, and mapping the accumulation cone of C with respect to a set of
generators G, to a cone that is not the accumulation cone of ¢)(C) with respect to the set of
generators 1(G).

Example 1.4.3. Let P; = (1,1/t,0) € R3, for every positive integer j, and let
A=(1,0,0), B =(0,1,0), C =(0,0,1).
We define C as the cone in R? generated by the set
G={A,B,C}U{P,:t € Z=p}.

Let m: R? — R2, (2,9,2) = (z,2), and let II: R? — R be the projection to the line
generated by the vector (1,—1) in R2. We define the linear map v: R® — R as the
composition ITo . The cone C is pointed, but its image 1 (C) is not. The accumulation
cone of C with respect to G is given by the ray R>o - A, which maps to a non-trivial ray
via 1. However, since the set 1(G) is finite, the accumulation cone of ¥ (C) with respect
to (G) is trivial.

The following result provides a sufficient condition for the contraction of an accumulation
ray via a linear map. It will be used in Section 1.4.2 to show that many of the properties
of the cone of special cycles are inherited from the cones of coefficients of Siegel modular
forms; see Corollary 1.4.10.
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Lemma 1.4.4. Let ¥: V. — W be a linear map of FEuclidean vector spaces of finite
dimensions, and let (v;)jen be a sequence of pairwise different vectors in V. Suppose
that v; = rje +v;, for some rj € Ryg and e,v; € V, such that

Y

e L vy, Tj — 00, and — 0.

rj
If (w(vj))jeN is a constant sequence in W, then 1 (e) = 0. In particular, the accumulation
ray R>q - e arising from the sequence of vectors (vj;); is contracted by .

PROOF. Since ¢(v; —vg) = 0 for every j € N, we may divide both terms of such equality
by r;, and deduce that

(1.4.1) o:d,(M):@b(HﬂJr@)

T Tj Ty
Since both v;/r; and vy/r; tends to zero when j — oo by hypothesis, the right-hand side
of (1.4.1) tends to ¢(e), hence 1(e) = 0. O

1.4.1. Cones of special cycles of codimension 2. In this section, we define the cones
of special cycles associated to orthogonal Shimura varieties. We restrict the illustration to
cycles of codimension two on varieties associated to unimodular lattices. The relationship
with Siegel modular forms is provided in Section 1.4.2.

Let X be a normal irreducible complex space of dimension b. A cycle Z of codimension g
in X is a locally finite formal linear combination

Z=> nyY, ny€Z,

of distinct closed irreducible analytic subsets Y of codimension g in X. The support of
the cycle Z is the closed analytic subset supp(Z) = U, .o Y of pure codimension g. The
integer ny is the multiplicity of the irreducible component Y of supp(Z) in the cycle Z.

If X is a manifold, and I" is a group of biholomorphic transformations of X acting
properly discontinuously, we may consider the preimage 7*(Z) of a cycle Z of codimension g
on X/T" under the canonical projection m: X — X/T". For any irreducible component Y
of ﬂ_l(supp(Z )), the multiplicity ny of Y with respect to 7*(Z) equals the multiplicity
of 7(Y') with respect to Z. This implies that 7%(Z) is a I'-invariant cycle, meaning that
if #*(Z) = > _nyY, then

v(7*(Z)) = Z”YV(Y) equals 7°(Z), for every v € T.

Note that we do not take account of possible ramifications of the cover .

We now focus on orthogonal Shimura varieties associated to unimodular lattices. Let L
be an even non-degenerate unimodular lattice of signature (b,2). We denote by (-,-) the
bilinear form of L, and by ¢ the quadratic form defined as g(\) = (A, A)/2, for every A € L.
The b-dimensional complex manifold

Dy={2€ L®C\{0}: (2,2)=0and (2,2) < 0}/C* C P(L®C)

has two connected components. The action of the group of the isometries of L, denoted
by O(L), extends to an action on D,. We choose a connected component of Dj, and denote
it by D;. We define O"(L) as the subgroup of O(L) containing all isometries which
preserve D; .
Let T' a subgroup of finite index in O™ (L). The orthogonal Shimura variety associated
toI' is
Xr =I\Dj.
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By the Theorem of Baily and Borel, the analytic space Xr admits a unique algebraic
structure, which makes it a quasi-projective algebraic variety. Each of these varieties
inherits a line bundle from the restriction of the tautological line bundle O(—1) on P(L ® C)
to le. This is the so-called Hodge bundle, which we denote by w.

An attractive feature of this kind of varieties is that they have many algebraic cycles.
We recall here the construction of the so-called special cycles; see [Kud97] for further
information. They are a generalization of the Heegner divisors in higher codimension;
see [Bru02, Section 5| for a description of such divisors in a setting analogous to the one of
this thesis.

Recall that Ao, resp. A;r, is the set of symmetric half-integral positive semi-definite, resp.
positive definite, 2 x 2-matrices. If A = (A1, \2) € L?, the moment matriz of X is defined
as q(A) = £ ((\;, )‘j))m" where ((A;, )\j))m is the matrix given by the inner products of the

entries of A, while its orthogonal complement in Dg“ is AL = )\f NAy. For every T € A;r,
the codimension 2 cycle

> X
(1.4.2) AeL2
a(N)=T

is I'-invariant in D;r. Since the componentwise action of ' on the vectors A € L? of fixed
moment matrix T € A;r has finitely many orbits, the cycle (1.4.2) descends to a cycle of
codimension 2 on Xp, which we denote by Z(T') and call the special cycle associated to T
They are preserved via pullbacks of quotient maps 7: X — Xr, for every subgroup I"
of finite index in I'. This is the reason why we usually drop I' from the notation, writing
only Z(T') instead of Z(T)r.

Remark 1.4.5. An analogous construction works for matrices T' € Ag, where the associated
special cycles have codimension rk(T'). The divisors Z (% 9) of X, where n is a positive
integer, are the so-called Heegner divisors, usually denoted by H,,. These, together with w*,
are the special cycles of codimension one of X, and their classes generate the whole Pic(Xr),
as proved in |Ber+17, Corollary 3.8|.

If Z is a cycle of codimension r in X, we denote by {Z} its rational class in the Chow
group CH"(X7), and by [Z] its cohomology class in H™"(Xrt). By Poincaré duality, we
may consider [Z] as a linear functional on the cohomology space of compactly supported
closed (r,r)-forms on Xr; see e.g. [Ber+17, Section 8.1].

Eventually, we define the cones of special cycles we treat in this thesis.

Definition 1.4.6. Let Xt be an orthogonal Shimura variety associated to a non-degenerate
even unimodular lattice of signature (b,2), with b > 2. The cone of special cycles (of
codimension 2) on Xr is the cone in CH?*(XT) ® Q defined as

Cxr = ({Z(D)} : T € A3 )qss,
while the cone of rank one special cycles (of codimension 2) on Xt is
Cxr = {Z(T)} - {w"} : T € Ag and rk(T) = 1)q.,-

Whenever we refer to the accumulation cones of Cx,. and C’,., we implicitly consider
them with respect to the set of generators of Cx,. and C’x,. used in Definition 1.4.6.

Although it is still unclear whether CH?(X1) ® Q is finite-dimensional, it is known that
the span over Q of the special cycles of codimension two is of finite dimension; see [BWR15,
Corollary 6.3]. In particular, both Cx,. and C’x,. are of finite dimension.

The cone CS(F is pointed, rational, and polyhedral. We provide a proof based on the
main result of [BM19] at the end of this section. In Section 1.4.2, we will explain how to
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deduce these properties using the Fourier coefficients of Siegel modular forms associated
to singular matrices. The main property of C’x,. is that it has only one accumulation ray,
which is generated by an internal point of the R-closure of C’x,..

The geometry of Cx,. is more interesting, although more complicated. We prove in
Section 1.4.2 that the accumulation cone of Cx,. is pointed, rational, and polyhedral, deducing
the rationality of Cx,.. The explicit classification of all accumulation rays of Cx,. is provided
in Section 1.8.

The rational class {w*}? € CH?(Xr) does not appear neither in the set of generators
of Cx,. nor in the one of C’x,.. It will be clear at the end of Section 1.5 that it is contained
in the interior of Cx,.. The properties of Cx,. and C’, stated above are summarized in
Theorem 1.1.2.

As we explain in Section 1.4.2; the properties of the cones of special cycles appearing
in Theorem 1.1.2 are strictly connected with the analogous properties of certain cones of
coefficient extraction functionals of Siegel modular forms. While working with rational
classes of cycles on a variety is notoriously hard, the coefficient extraction functionals of
Siegel modular forms can be computed explicitly over a basis of MZIg In this chapter, we
use the arithmetic properties of such functionals to prove Theorem 1.1.2. We will see
also how the polyhedrality problem of Cx,. can be studied with Siegel modular forms via
Conjecture 1.

We conclude this section with the proof of the first part of our main result.

PROOF OF THEOREM 1.1.2 (3). The cone
C=({Z(T)} : T € Ay and 1k(T) = 1)q.,
is the cone in Pic(Xr) ® Q generated by the Heegner divisors {H,}. In fact, since
Z(T)=Z(u' - T-u) for every u € GLy(Z),

we deduce that for every T € Ag of rank one there exists a positive integer n such
that {Z(T)} is equal to {Z (2 §)}. The latter is the Heegner divisor H,; see Remark 1.4.5.
The intersection map

p: Pic(Xp) ® Q — CH*(Xp) ® Q, {Hp}— {Hn} - {0} ={Z (3 )} - {w"},

is linear and maps C to C’x,.. By [BM19, Theorem 3.4] the former cone is rational, polyhedral,
and of dimension dim M f Since p is linear, also CS(F is rational, polyhedral, and of dimension
at most dim M.

We conclude the proof showing that the dimension of C and its pointedness are preserved
via p. To do so, it is enough to show that p is injective. Consider the commutative diagram

Pic(X1) ® Q —— CH?*(Xp) ® Q

J,Cl 1 lCl 2

HY!(Xp,Q) —¥— H*?*(X1,Q)

where the vertical arrows are the cycle maps, and ¢ is the map induced by the exterior
product with —w. By [Ber+17, Corollary 3.8|, the map c¢l; is an isomorphism, and by the
Hard Lefschetz Theorem, the map o is injective, hence p is injective as well. We remark that
the Hard Lefschetz Theorem on the quasi-projective variety Xr can be deduced in terms of
its analogous [Max19, Corollary 9.2.3] for the intersection cohomology of the Baily—Borel
compactification Xp°" of Xr. In fact, the intersection cohomology group IH"(Xt"",C) is
isomorphic to H"(Xr, C) for every r < b— 1, as proved in [Loo88| [SS90|, and the Kéahler
class of X is identified with the Chern class of an ample line bundle in Xr"; see [Ber +17,
Sections 2.4 and 2.5] for further information. O
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1.4.2. Cones of coefficient extraction functionals and modularity. Let k£ > 4 be an
even integer. Recall that we denote by M5 (Q) the space of weight k Siegel modular forms
of genus 2 with rational Fourier coefficients, and by ¢ the coefficient extraction functional
associated to a matrix T' € Ag; see Section 1.3 for further information.

Definition 1.4.7. The modular cone of weight k is the cone in the dual space Mé‘“(@)*
defined as
Cr = <CT T e A;>@20’
while the rank one modular cone of weight k is
Ci = (cr : T € Ay and 1k(T) = 1)q.,-

Whenever we refer to the accumulation cones of Cj, and CJ;, we implicitly consider the
ones with respect to the set of generators of C, and C}, appearing in Definition 1.4.7.

The following proposition is the key result to relate the cones of functionals with the
cones of special cycles; see also [WR15, Corollary 1.8|.

Proposition 1.4.8. Let Xt be an orthogonal Shimura variety associated to a non-degenerate
even unimodular lattice of signature (b,2), with b > 2. The map

Yr: M21+b/2(Q)* — CH2(X7) ® Q, cp — {Z(T)} - {w*}? k(D)
1s well-defined and linear.

PRrROOF. The function over Hy defined as

— Z {Z(T)} . {w*}erk(T)e%ritr(TZ)
TeAs
is a Siegel modular form of weight 1 + b/2 with values in CH?(Xt) ® C. This follows from
the so-called Kudla’s Modularity Conjecture, proved for the case of genus 2 in [WR15],
and for general genus in [BWR15]. The previous compact formulation is equivalent to the
following one; see [WR15, Corollary 6.2]. For every linear functional f € (CH?(Xr) ® C)*,
the formal Fourier expansion

®F f Z f {Z }Q—rk(T))GQTritr(TZ)
TeA2
is a Siegel modular form of weight 1+ b/2.
Let {Tj}j:1 be a finite set of matrices in Ay. Suppose that there exist complex
numbers A; such that 3 ; Ajer; = 0 in (M21+b/2)*, or equivalently that » ; Ajer, (F) =0,
for every F' € M, /2 We deduce that

5" dver, (6r.) - ZAf({Z )} fwr k) (ZA{Z )} w2 =,
j=1

for every functlonal f. This implies that the complex extension of ¢ is a homomorphism.
Since the complex space M, 145/2 ydmits a basis of Siegel modular forms with rational

Fourier coefficients, the restriction ¥r over Q is well-defined. ([l

Theorem 1.4.9. Let k > 4 be an even integer such that k =2 mod 4.

(i) The rank one modular cone C}, is pointed, rational, polyhedral, and of the same
dimension as MY .
(ii) The accumulation cone of the modular cone Cy, is pointed, rational, polyhedral, and
of the same dimension as MY .
(i1i) The cone Cy is pointed, rational, and of the same dimension as Mé“
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(iv) The cones Cy and C} intersect only at the origin. Moreover, if the cone Cy is
enlarged with a non-zero element of Cy, the resulting cone is non-pointed.

Let ¢r be as in Proposition 1.4.8. The images via ¢r of the cones C,;/5 and C'1+b/2
are Cx,. and C’x,., respectively. Note that since the variety X is associated to a unimodular
lattice of signature (b,2), the weight 1+ b/2 is an even integer congruent to 2 mod 4.

By means of Lemma 1.4.4, we may deduce the following non-trivial properties of Cx,.
via the ones of Cy,.

Corollary 1.4.10. The accumulation cone of Cx, ts pointed, and every accumulation ray
of Cx, maps via Yr to an accumulation ray of Cx.. Moreover, the accumulation cones of Cy,
and Cx. have the same dimension.

PROOF. Let t: MF(R)* — MJ(R)*, be the embedding defined as ¢, + c(

every n € N. Consider the commutative diagram

88), for

Mf(R)* ———— M}(R)*

| Jor

Pic(Xt) ® R —— CH?**(X1) ® R

where p is the map given by the intersection with {w*}, and ¢} is the analogous of ¢r
for Heegner divisors in Xp, namely it maps ¢, — {H,}, for every positive integer n,
and ¢o — {w*}. As explained in [BM19, Section 4], the map #{. is an isomorphism. In
fact, also the composition of . with the cycle map is so. Since the map induced by p in
cohomology is injective by the Hard Lefschetz Theorem, we deduce that p is injective as
well.

We will see in Section 1.6 that the accumulation cone Ay of Cy, is pointed and contained
into the image of the embedding ¢. Since the diagram above is commutative, and p o ¢, is
injective, we deduce that ¢ embeds Ay, into CH*(XT) ® R, therefore ¥ (Ay) is pointed
and of dimension dim MF.

We conclude the proof by showing that every accumulation ray of C; maps to an
accumulation ray of Cx, via ¢r. Suppose this is not the case, namely there exists an
accumulation ray r of Cj such that ¢p(r) is not an accumulation ray of Cx. This means
that there exists a sequence (T7j);en of reduced matrices in AJ of increasing determinant,
such that the functionals cr; are pairwise different and R>¢ - cr; — 7, but such that the
sequence of cycles ({Z (T])})j N
ray r. We decompose cr; = rje + vj, for some r; € R and some v; orthogonal to e.
Since R>q - e1; — Rx - e, we deduce that r; is eventually positive, and that v;/r; — 0

is constant. Let e be a generator of the accumulation

when j — +o00. Moreover, since cr; (Eé“) — 00 by Lemma 1.3.5, we deduce that also r;
diverges. By Lemma 1.4.4, the map tr contracts the ray r. But this is not possible, since ¥
is injective on Ay, as proved at the beginning of this proof. O

Remark 1.4.11. The problem of the pointedness of the whole cone Cx,. is more subtle.
As shown in Theorem 1.4.9, the modular cone Cj, is pointed. However, the map r might
contract some of the rays of Cj, making Cx. non-pointed. This is not the case if e.g. ¢r
is injective. Such injectivity is a non-trivial open problem. It seems reasonable it may be
tackled proving the injectivity of the Kudla-Millson lift of genus 2, as explained in [Bru02]
for the counterpart of ¥r for elliptic modular forms. This open problem motivates Chapter 3
and Chapter 4 of the present work.

Since the rationality and the polyhedrality are geometric properties of cones which are
preserved by linear maps between vector spaces over Q, our main Theorem 1.1.2 follows
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from Theorem 1.4.9 and Corollary 1.4.10. We remark that the polyhedrality of the cone of
special cycles Cx,. is implied by Conjecture 1.

We conclude this section with the proof of Theorem 1.4.9 (i). The remaining points of
Theorem 1.4.9 are proven in the following sections.

PROOF OF THEOREM 1.4.9 (i). If the matrix T € A has rank one, then there ex-
ists u € GLo(Z) such that ' - T -u = (29), for some n € N. We denote the latter matrix
by M (n), by simplicity. Since ey = ¢, for every u € GLy(Z), we deduce that

C],€ = <{CM(n) ne Z>0}>Q20.
As basis of M¥(Q), we choose
Eg? Eé,l(fﬂ? s Eg,l(f@)u Fi, ... Fy,

where fi,..., fr is a basis of S¥(Q) and Fi,. .., Fy is a basis of S§(Q), on which we rewrite
the functionals cpz(,) as

(1.4.3) crrmy = (aF (), en(f)s - en(f0),0, ..., 0)" € QIO
Here we used the well-known fact that the Fourier coefficient of the Siegel Eisenstein
series B associated to M(n) is the n-th coefficient of the elliptic Eisenstein series EY.
Analogously, the coefficients of the Klingen Fisenstein series Eé“l( f) associated to the
matrix M (n) coincide with the coefficients ¢, (f), for all elliptic cusp forms f. In fact, the
images of Eé“ and Eé“’l(f) via the Siegel ®-operator are respectively E{“ and f; see e.g.
[K1i90, Section 5.

Let 5k be the cone of coefficient extraction functionals of elliptic modular forms defined as

Crh=1{cn:me Z>0)Qso C M (Q)*.

It is clear from (1.4.3) that the cone Cj is the embedding in QImM; of the cone Cy
written over the basis Ef, fi,..., fr. The latter is pointed, rational, polyhedral, and of
dimension dim M} by [BM19, Theorem 3.4]. Hence, also C}, satisfies the same properties. [

1.5. THE ACCUMULATION RAYS OF THE MODULAR CONE

We fix, once and for all, a weight k > 4 such that k =2 mod 4. The purpose of
this section is to classify the accumulation rays of the modular cone C. For simplicity, we
represent the functionals cr over a chosen basis of M§(Q) of the form

(151) E§7 E%,l(fl)? RN Eg,l(ff)a Fl? R Ff’a

where the Klingen Eisenstein series Eé“l( fj) are associated to a basis f1,..., f; of elliptic
cusp forms of S¥(Q), and FY,. .., Fy is a basis of Siegel cusp forms of S5(Q). With respect

to the basis (1.5.1), we may rewrite the functional ¢y as column vectors
i k
r = ((IIQC(T), ag(fl’T)a LRI ag(féaT)v CT(Fl), N ,CT(F@/))t & lemM2 .

Recall that we denote by a%(T") and a5(f;,T) the T-th Fourier coefficient associated to E§
and E§1( fj) respectively, in contrast with the coefficients ¢ (F;) of cusp forms.

By Proposition 1.3.23, if T' = (T72 Tr/f), the coefficients a%(f;,T) can be decomposed in
Eisenstein and cuspidal parts as
CA—k)

S b, £)a5 (1) + 00 ((65)°).

t2|m

ag(fjvT) = 2

The notation used in this decomposition is the same of Section 1.3. In particular, the
auxiliary function ayy, is defined as in (1.3.26), while we denote by ( f,{)o the cuspidal part
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of the m-th Fourier—Jacobi coeflicient associated to Egl( fj).- We recall that the matrix
denoted by T is constructed from T as defined in (1.3.4).

Since k = 2 mod 4, the first entry of ¢z is positive, namely a5(T) > 0, by Lemma 1.3.5.
This implies we can rewrite the ray R>q - cr, dividing the generator cr by ak(T), as

1
k Cn,'r' (((b'{r%)o)
¢ 22 pm aml(t, f1) 22 ok (T)
. — . a Cn,r((¢f7€)0)
(1.5.2) R>o-cr =Ry C- Zt2|m am/(t, fr) 2k(T) 2E 0T ,
er(F1)
af(T)
CT(.F‘Z’)
az(T)
where we simply write ¢ instead of the negative constant w

Definition 1.5.1. We denote by S the section of the modular cone C; obtained by
intersecting it with the hyperplane of points with first coordinate 1. Equivalently, it is the
convex subset in C, of functionals with value 1 on EX.

We present some basic properties of S and Ci in the following result.

Proposition 1.5.2. The section Sy is bounded and the modular cone Cy is pointed of
mazimal dimension.

PROOF. If Sy is unbounded, then there exists a sequence of matrices (7)) ey in A
such that one of the entries of the point S N Q>o - cr; diverges when j — co. This means
that either |ak(f,T};)/ak(T;)| — oo or ety (F )/ak(T;) — oo. Both cases are impossible, the
former by Proposition 1.3.22 and Lemma 1.3.5 (111) the latter by Remark 1.3.6.

The rays in Cj, associated to the generators cp intersect Si in exactly one point;
see (1.5.2). Since Sy, is compact, all rays of Cy intersect Sy, in one point. These observations
imply that C;, (hence C) is pointed.

We prove now that dimCj, = dim M¥. It is enough to show that the functionals cr
associated to matrices T € AJ generate ML over C. Suppose that this is false. Then, there
exists a non-zero F' € M¥ such that cp(F) = 0 for every T € AJ. Such Siegel modular
forms are called singular. It is well-known that, for £ > 4 even, there are no non-zero
singular modular forms; see e.g. [K1i90, Section 8, Theorem 2|. This implies the claim. [

We want to classify all possible accumulation rays of the modular cone Cy. We
recall that a ray r in Cj is an accumulation ray of Cp (with respect to the generators
appearing in Definition 1.4.7) if there exists a family of matrices (7});en in AJ such that
the functionals cr; are pairwise different, and the sequence of rays (R> - cr; )jeN converges
to r.

To classify the accumulation rays of Cy, we proceed as follows. Let (cr;)jen be a

sequence of pairwise different functionals associated to positive definite matrices T; € A; .

Since ¢, = cyt.1y. for every u € GLo (Z), we may suppose without loss of generality that
/_72 rgn/2) are reduced, i.e. the entries satisfy 0 < r; < m; < n; for
J J

every j; see Remark 1.3.1. For every fixed determinant d, there are finitely many reduced
matrices T in A; with detT" = d. Since the functionals cr; are pairwise different, the

matrices T have increasing determinant, i.e. detT; — oo when j — co. Suppose that the

the matrices T; = (
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sequence of rays (R> - cr; ); converges. We classify the accumulation rays arising from such
sequences with respect to the chosen family of reduced matrices (7)) en. In Section 1.5.1,
we treat the cases where the entries m; are eventually constant, equal to some positive m.
In Section 1.5.2, we treat the cases where m; are not eventually constant, bounded or not.
Along the way, we illustrate also some properties that the accumulation rays satisfy.
These are translated into properties of the points of intersection of Sy, with the accumulation
rays. In fact, by Proposition 1.5.2, also the accumulation rays intersect Sy, in one point.

1.5.1. The case of m fixed. We fix, once and for all, a positive integer m. Let (T});en be
a sequence of reduced matrices T = (;72 Tjré 2) in A;, of increasing determinant. Suppose
J

that the sequence of rays (R>q - cr;); is convergent. We rewrite these rays as in (1.5.2),
over the chosen basis (1.5.1). We already observed in Remark 1.3.6 that

CT; (FS)
a§(Ty) G-

9

for every s = 1,...,¢'. Since the matrices Tj are reduced, by Lemma 1.3.5 (iii) and
Proposition 1.3.24 we deduce that analogously

CLIQ{(T']) Jj—00 ’
for every s = 1,...,¢. Since the sequence (R>¢ - cr;)jen converges by assumption, up

to considering a sub-sequence of (7});jen, we may suppose that the ratios a5 (Tj[t]) /a5 (T)
converge for every square-divisor ¢ of m. In fact, these ratios are bounded between 0 and 1;
see Lemma 1.3.10. We denote by A; the associated limits of ratios.These observations imply
that

1
C'Et2|m Atam (t:fl)

(153) RZO : CT]' ‘—°_> REO : C'Zt2|m /\'tOém(t:fZ)
_]-)OO 0
0 )
€Sk,

Definition 1.5.3. Let 1 =#p <11 < --- < tg be the positive integers whose squares di-
vide m. We denote by Q, (s, ..., A¢,) the point of intersection of S, and the accumulation
ray obtained in (1.5.3). If m is squarefree, we simply write Q.

In the notation @, (¢, ..., A, ), there is no need to keep track neither of Ay = Ay, since
it is always equal to 1, nor of the chosen sequence of matrices (7}) jen. Note that (A, ..., As,)
is a tuple of limits in Ly, ,,, as studied in Section 1.3.2; see Definition 1.3.18 for more details.

In the remainder of this section, we explain the geometric properties of the accumulation
rays R>o - Qm(My, - -, At,) in Ck, via the ones of the points Qn (A, ..., A,) on Sg. We
firstly introduce a piece of notation.

Definition 1.5.4. For every positive integer s, we define the point V, € QdimM;

t
VS: (LC'Oés(l,f1),..-,C'&S(l,fg),(),...,()) .

as

The points V, are contained in S,. In fact, consider a sequence of reduced matri-
ces (T})jen in AJ with increasing determinant, such that the bottom-right entry is fixed
to m as above. If the entry 7; of T} is eventually non-divisible by any square-divisor of m
different from 1, then the sequence of rays (R>o - c7;)jen converges to the accumulation
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ray R>q - Qm(0,...,0). The point V,,, coincides exactly with @, (0, ...,0). Hence R>q-V;,
is always an accumulation ray of the modular cone Cy.

We remark that if m is non-squarefree, there are infinitely many A arising as limits of
ratios as above; see Proposition 1.3.16 and Corollary 1.3.19. We are going to prove that,
nevertheless, for every m, the points Qm(A¢,, ..., A,) are always contained in the convex
hull of finitely many Vs for some s < m; see Theorem 1.5.6. This is essential to prove that
the accumulation cone of C is rational polyhedral.

Lemma 1.5.5. Let A= (A, ..., \,) € Ly . The point Qu,(X) may be written as

(1.5.4) Qmw:Zdj( 3 u(f)Ati)‘vmﬁ;,
j=0 J

{tiztslts}
where p 1s the Mébius function.

PROOF. For every f € S]f, we may rewrite the defining sum (1.3.26) of the auxiliary
function «y,, to deduce that

fjxtjamaj, ZZ ( )At am/@u,f):fj( 3 M(Z)Ati)am/@(l,f).
§=0

J= Of ‘t 7=0 {ti:tj‘ti}
If evaluated in f = f;, the left-hand side of the previous formula gives the 7 4+ 1 entry of the
vector @, () up to the factor ¢. Since the value ( - am/tz(l, fi) is the i + 1 entry of V/ /i3
J
it remains to show that the sum of the coefficients multiplying the V, m/t2 ’s on the right- hand
side of (1.5.4) equals 1. This is an easy check, since

TORE YD ( ))\tl ZMZM< >—1+Z&z2u

5=0 {t; : 1;]t;} ot; =1 g
Here we used that if ¢ divides ?;, then £ = t; for some j < i, together with the well-known
formula -, p(a) = 6,1 O

Theorem 1.5.6. Let X = (N,,..., \t,) € Ly . The points Qm(X) lie in the convex hull
over R generated by the points Vine2 forj=0,...,d.
J

To make the previous result as clear as possible, in Section 1.10 we compute explicitly
the convex hull in Cj, generated by the points @y, (), for a few m; see Figures 1 and 2 as
examples of such convex hulls.

®
VT?L Vmp‘z

FIGURE 1. An idea of the convex hull generated by Vi and V2, where m
is a positive squarefree integer and p is a prime. The grey points represent
the infinitely many points Qpp2(Np). These points accumulate towards
some Qup2(N,), in red, where X, is a special limit in EZI?m(p). These are in
finite number by Remark 1.3.13; see Section 1.10 for further information.
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FIGURE 2. An idea of the convex hull generated by Vi, Vi, Vo and Vsg. The
grey points are some of the infinitely many points Q4(Xa, A3, Xg). The red
points are some of the points towards which the Q4(A2, A3, Ag) accumulate.
The number of these can be infinite, depending on the arrangement of the
vertexes of the convex hull; see Section 1.10 for further information.

PRrROOF. By Lemma 1.5.5, the points Q,,(\) are linear combinations of the points V, /22
for 7 =0,...,d. We check that the coefficients of these combinations fulfill the definition
of convex hull, i.e. their sum is one and they are non-negative; see the introduction of
Section 1.4. The fact that their sum equals 1 has already been checked in (1.5.5). We now
check the non-negativity. Decompose m = v?m, where m is squarefree. Let v = Pyt pZ”
be the prime decomposition of v. Choose a positive integer ¢ such that #?|m. This implies
that t|v and ¢ = pi* - - - p;® for some 0 < s; < a;, where j =1,...,b. We want to show that

b a;
— Tp—S
(1.5.6) DD T ) A 2 0.
j=lz;=s;
To verify this property, we prove the analogous inequality where
. k n r/2pytp,® / k( n 7“/2)
Apgflmpbb is replaced by a; <r/2pf1~-p§b m/pf“mpizb @2 m )
n r/2
r/2 m
coefficients as the latter, which are positive by Lemma 1.3.5 (i).
First of all, we note that p (pi'~* ---p;* *) = 0 whenever z; — s; > 2 for some j.
Without loss of generality, we may assume that s; < a; is a strict inequality for all j. Using

the notation 71! = (T/r;a: 7;//2;62 ), for every T' = (7' 7,) € A, we replace (1.5.6) by
u(1) (T + 37 (py) ab(T)) + 37 ppipy) ab(T1P73])+
p; Y pip; "

—_——
_)+1 ifbiseven
" 1-1 ifbisodd

where ( ) € A;r. In fact, the former is the limit of a sequence of ratios of Fourier
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Since k = 2 mod 4 by hypothesis, the coefficients of the Siegel Eisenstein series appearing
in (1.5.7), which are always evaluated on positive definite matrices, are either positive or
zero. The latter case happens only when the upper-right entry of the matrix T’ [tps1 - Pial ig
not half-integral, or equivalently whenever that entry is not divisible by tp;, ---p;,. We
conclude the proof by iteration as follows.

First step. Consider the first summand a%(T!) of (1.5.7). If the entry r of T is not
divisible by ¢, then alg(T [t]) =0, and so are also all the other summands appearing in (1.5.7).
Suppose instead that t|r. Then af(TH) > 0, since T is positive definite.

Second step. Consider the term of the second summand of (1.5.7) associated to the
prime pi, namely —alg(T[tpll). If tpy 1 r, then this term is zero. By Lemma 1.3.10, if tp|r,
then af(TI""1]) < af(TW). In fact F,(T') 3 — k) < E,(T",3 — k) for every prime p, as
shown in Section 1.3.2. Summarizing, for both cases we have

ay(T") — a5 (T1"]) > 0.
In the sequel, we need to be more precise and prove that via the Coefficient For-
mula (1.3.3), the decomposition of a& (TP} appears as a sub-sum of a§(TH). To simplify

the notation, we prove this for 7' and T instead of Tl and TP1]. We recall the formulas
for a¥(T) and af(T!), dropping the normalization constant:

4detT
as(T)= Y dk‘1H<k1,(§>,

d|(n,r,m)

ab (Tl = Z d1g <k —1, 4thT> )

) d2t2
d|(n,r/t,m/t?)

We may rewrite ak(7T) as
(1.5.8)
4detT 4detT
k k—1 k—1 bl
as(T)= Y d H(k—l, = >+ Y od H(kz—l, = )
d|(n,r,m) d|(n,r/t,m/t?)
df(n,r/t,;m/t?)

We prove that alg(T[t]) appears as a sub-sum of the second member on the right-hand
side of (1.5.8). Consider the H-functions as the sums given by Definition 1.3.3. We
show that H(k — 1,4 det T/d?*t?) appears as a sub-sum of H(k — 1,4 det T'/d?), for some d
dividing (n,r/t,m/t?). Rewrite 4det T'/d?t?> = —D¢? for some fundamental discriminant D,
then

H </<7 -1 4d§;T> =L(2—k,xp) Y 1n(y)xp¥)y" o3 (Cyt) =

ylet
_ ct
=L(2 =k, x0) > my)xp )y 023 <y> +o=
yle
_ C
=L(2—k,xp) >_ 1) xpW)y* o3 <y) +...,
yle .
=H (k1,447 )

where the last equality is obtained observing that oox_3(ct/y) contains og9r_3(t/y) as a
sub-sum.

Third step. Consider the term a(72)) in the second summand of (1.5.7) associated
to the prime py. As before, if py 1 r then —aé(T[tm]) = 0. Suppose that this is not the case,
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then af(TH) — ok (TP > 0 for j = 1,2, but a priori a§(TH) — ab(TtP1)) — ak(TlP2]) is
negative. In fact, as we saw above, the coefficients af(T1*1]) and af(T"2]) are sub-sums
of a’f (T[t]), but they may overlap on a common sub-sum. Following the same argument as

above, we see that the common overlap is the sub-sum given by aé(T“plp?]). This implies
that

(1.5.9) a5(T1) — a5(T) — a§(T1) 4 ab(TPP)) > 0.

Iteration. Consider the term af (T'*P3]) in the second summand of (1.5.7) associated
to the prime ps. Following the same argument of the previous steps, we deduce that the
coefficient ak(T"3]) appears as a sub-sum of a§(T"), and the overlaps with af (7))
and af(Tt2]) are af(TWP17sl) and af(T[2ps]) respectively. Also af(T!1P2]), o (TltP1rsl)
and af(TP2P3]) have a common overlap, which is af(TP1P2P3l). We deduce that

ag(T1) = 3 as (TU)) 4 a5 (TUP72]) 4 a (THP9]) - (T1P22]) — ag (TP 207]) > .
j=1

Iterate this process for all the other primes p; appearing in (1.5.7). d

Corollary 1.5.7. Let (R>q - cr;)jen be a convergent sequence of rays, where Tj € A; are
reduced, of increasing determinant and with the bottom-right entries eventually equal to
some positive m. The accumulation ray of the modular cone Cy obtained as limit of such
sequence is contained in the subcone (Vp, 2 : t2|m)r., of Ck, which is rational polyhedral.

PrROOF. The limit of R - c7; is as in (1.5.3), that is, it is generated by Qy,(A), for
some A € Ly, . By Theorem 1.5.6, this point is contained in the convex hull generated by
the V,,, 42, where ¢ runs among the positive integers whose squares divide m. The points V;
have rational entries for every s, because so are the values of as(1, f) for every f € S¥(Q).
The polyhedrality of the cone generated by the V,, 2 is trivial, since these points are in
finite number. ([l

1.5.2. The case of non-constant m. The aim of this section is to describe the geo-
metric properties of the accumulation rays of the modular cone Ci arising as limits of
sequences (R>q - cr;)jen, where Tj are reduced matrices in AJ of increasing determinant,
such that the bottom-right entry is not eventually equal to any positive integer m. For this
reason, this section may be considered as the complementary of Section 1.5.1, where the
bottom-right entries were fixed.

Suppose that the bottom-right entries m; of T} oscillate among a finite set of positive
integers, and that the sequence of rays (R - cr;)jen converges. Then, the accumulation
ray obtained as a limit for j — oo must be R>o - Qm( Ay, ..., Ar,) for some m, Ay, ..., Ay,
In fact, consider the sub-sequence (T;); of (T});jen where the matrices T; have the entry m;
fixed to one of the values appearing infinitely many time as bottom-right entry of 7}, say m.
We saw in Section 1.5.1 that the limit of R>q - gy, for ¢ — oo, must be generated by Qs ()
for some tuple of limits ALy, 7; see Corollary 1.5.7.

The only case we have not yet considered is when the bottom-right entries of the
matrices T} diverge. To treat this case, we need to introduce another piece of notation.

Definition 1.5.8. We define the point P,, € Q4™ M; s
Py = (1,0,...,0)%.
The point P lies in Sy, as follows from the next result.

Lemma 1.5.9. The points Vi € Si, converge to Py, when s — 0.
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PROOF. It is sufficient to prove that if s — oo, then ay(1, f) — 0 for every elliptic cusp
form f € SF. It is straightforward to check that

g(f,s) B ’Zd2|sﬂ(d)cs/d2(f)‘ < Zd2|s‘cs/d2(f)’ -
o) | L0 = St S

< 00(8) - maxi<y<s |ey(f)] _ 0, (S%>
= Gh—1 ’

.11 = |

for all € > 0. The last equality is deduced using the classical Hecke-bound for Fourier
coefficients of elliptic cusp forms and the well-known property og(s) = o(s%) for all € > 0.
Since k > 4, the claim follows. ]

Proposition 1.5.10. If k > 18, then the modular cone Cy has infinitely many accumulation
rays.

PROOF. Since k > 18, there exists a non-zero elliptic cusp form f in SF(Q). We may
suppose that f is a (normalized) Hecke eigenform. We firstly note that the point V4 on Sy
is different from P,. In fact, suppose that it is not, then ¢;(f;) =0 for every j =1,...,¢,
where fi,..., f¢ is the basis of S¥(Q) used to define (1.5.1). This means that c;(f) = 0, but
this is not possible since the Hecke form f is normalized with ¢;(f) = 1. Suppose that there
is only a finite number of accumulation rays of C. Since R> -V is an accumulation ray for
every positive integer s, also the number of points Vi must be finite. By Lemma 1.5.9, the
points Vy converge to P, when s — oo. This implies that there exists a positive integer sg
such that V; = P, for every s > sg. Suppose that s > sg is squarefree. We deduce from
the equality Vi = Py that c(f;) = 0 for every j, in particular

(1.5.10) cs(f) =0 for every s > sg squarefree.

It is known that the coefficients of a normalized Hecke eigenform satisfy

cp+1(f) = cp(f) - e (f) = pk_lcpv—l (f)s

for every prime p and every v > 1; see e.g. [Bru+08, Part I, Section 4.2]. Let p be a prime
number greater than sg. Since V2 coincides with P, then c,2(f) — c1(f) = 0 and

0=cp(f)—1=(c(f))*—p" " = 1.

We deduce that ¢, (f) is non-zero. Hence the relation (1.5.10) can not be satisfied by ¢,(f),
for any prime p > sg. This implies that there are infinitely many V5. O

The following result concludes the classification of all possible accumulation rays in Cj.

Proposition 1.5.11. Let (T})jen be a sequence of reduced matrices in A; of increasing
determinant, such that the bottom-right entries m; diverge when j — co. The sequence of
rays (R>o - c1;)jen converges to R>q - Poo.

PROOF. As usual, we consider every functional cr as a point in QU™ M2 writing it

with respect to the basis (1.5.1). It is enough to prove that cg, /a5(T}) — Pso, when j — oco.
Since the cuspidal parts of the entries of cr; grow slower than ak(T;) when j — oo, the
accumulation ray obtained as limit of R>¢ - ¢7; depends only on the Eisenstein parts of
the entries of cr;; see Remark 1.3.6 and Proposition 1.3.24. Analogously to the proof of

Lemma 1.5.9, we may compute

Gk (Tt
S anlt )| < 3l )] < o) sl 1.0 <

k
t2|m 2(T) t2|m [m
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g(f,m/s%)

gr(m/s?)

< og(m) - max <ao(t) - max
t2|m s|¢

oy (m“é_k) ,

for every f € Sf and every € > 0, when detT — oo. Here we used the well-known
property oo(s) = o(s®), for all ¢ > 0, the Hecke bound for elliptic cusp forms, and the
inequality

0 < ds(T")/db(T) <1,

for all positive integers ¢ whose squares divide m. Since k > 4, the claim follows. O

1.6. THE ACCUMULATION CONE OF THE MODULAR CONE IS RATIONAL AND POLYHEDRAL

We recall that a ray of the R-closure Cy, is an accumulation ray of the modular cone Cj,
(with respect to the set of generators appearing in Definition 1.4.7), if it is the limit of some
sequence of rays (R>q - cr;)jen, where T} € AJ are reduced and of increasing determinant;
see Section 1.4. The accumulation cone of Cy is the cone generated by the accumulation
rays of Ci. We denote it by Ajg.

By the classification of the accumulation rays of Ci given in Section 1.5, in particular
by Corollary 1.5.7 and Proposition 1.5.11, the cone A may be generated as

(1.6.1) A = (Pooy Vs 1 58 2 1)ro-
The goal of this section is to prove the following result.

Theorem 1.6.1. Ifk > 4 and k = 2 mod 4, then the accumulation cone Ay of the modular
cone Cy, is rational and polyhedral, of the same dimension as M{“

We firstly present some preparatory results. As in Section 1.5, we consider all coefficient
extraction functionals ¢ as vectors in QUM M2 | written over a fixed basis of M¥(Q) of the
form (1.5.1).

Definition 1.6.2. For every positive integer s, we define the point P, € Q4™ M; as
¢
P8:<1’<‘ CS(fl) ""7(’ CS(fZ) 70""’0>7
or—1(8) or—1(8)
¢(1-k)
5

where we write ( instead of the negative constant

We remark that whenever s is squarefree, the point Py coincides with the point Vs
defined in Section 1.5. The points Ps are contained in the section Sk, as showed by the
following result. Recall the auxiliary function g from 1.3.27.

Proposition 1.6.3. Let s be a positive integer. The point Ps satisfies the relation

(1.6.2) Po=>" W/(t?xg/tg.

t2|s Tk—-115
In particular, the point Py lies in the convex hull Convy ({Vs/t? :t2]s}).

To make Proposition 1.6.3 as clear as possible, we propose a direct check of (1.6.2) in
Section 1.10 for a few choices of m.

Proor. We show that for every positive integer ¢t whose square divides s, there ex-
ists y¢,s > 0 such that Zt2|s Yt,s = 1 and such that

Cs(f) k
1.6.3 = g sQg/2(1, f), for ever € ST.
( ) Tr_1(5) o M, /t2( f) very f 1
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Along the proof, we will make 7 s explicit, deducing (1.6.2).

The proof is by induction on the number sqdiv(s) of square-divisors of s. Suppose
that sqdiv(s) = 1, then s is squarefree and c,(f)/ox—1(s) = as(1, f). Hence, the only
coefficient needed for (1.6.3) is 71,5 = 1, and the desired relation is fulfilled.

Suppose now that sqdiv(s) > 1 and that (1.6.3) is satisfied for every positive integer §
such that sqdiv(§) < sqdiv(s). We want to construct ;s in such a way that (1.6.3) is
satisfied. We rewrite (1.6.3) as

Cs i ,S
o ( = 1 Z/‘ s/tQ(f) + Z 'Yt,sas/tQ(laf) =
i 1 tz‘ 1#t2|s
f)/l So-kfl(s) ’Yl s,u O’k 1(S/t ) Cs/t2
= ' : + sg/2(1
gk(s) Of— 1( ) gk( ) O'k_l(S/tQ) Z t, /t2 f)

1#£t2|s

1#£t2|s

In the right-hand side of the previous equation, the unique summand which contains ¢( f)
is the first one. This implies that v s = gk(s)/o'k_l(s) and that

() op— 1 8/t2) o2 (f
(1.6.4) > 2 + ) sty (L, f) =0.
o 1( op—1(s/t?) Vs

By induction we may rewrite (1.6.4) as

o s/t%)
Z Mkl(/ Z’Yts/ﬁas/tgﬁ 1 f + Z 'Ytsas/tQ 1 f) =0.

1#t2|s Tk-1 t2\ 1#£¢2|s

We gather all the coefficients multiplying o /tz(l, f) and impose them to be zero, obtaining
the following recursive definition of 7; 4, for ¢t > 1:

Z1¢d\t Yt/d,s/d? #(d)ak—1(8/d2)
kal(s) '
The value 7 s constructed in this way fulfills (1.6.3).
We prove (1.6.2) showing that v s = gk(s/tQ)/Jk_l(s), by induction on the number of

divisors div(t) of ¢. If div(¢) = 1, then ¢t = 1 and the claim is true by definition, for every s.
Suppose now that div(t) > 1, then

1
Vt,s = — Z M(d)o-k—l(s/d2)7t/d,s/d2 =
or-1(3) 1Ad|t

s/t2 /g2 2
B _1() Z M(@Makq(s/d% _ _gkls/tT) Z pu(d) = M7

Ok—1(S O’kfl(s/dQ) O’kfl(s) 17£d|t

1£d|¢
where we used induction on 7,4 /42, since div(t/d) < div(t) whenever d # 1.

To conclude the proof, we show that the coefficients 7, , satisfy the requirements
which make P a point of the convex hull Convg ({Vy/2 : t*|s}). Firstly, we prove
that th‘ sVt,s = 1 by induction on the number of square-divisors sqdiv(s) of s. This

Yt,s = —

is equivalent to prove that th‘s gr(s/t?) = ox_1(s). Suppose that sqdiv(s) = 1, then s is
squarefree and gr(s/t?) = gr(s) = op_1(s). If sqdiv(s) > 1, then

ng(s/tQ Z Z Y)og—1( s/t2 2 Zak 1 S/J: Zu = 0g—1(5).

t?]s t2]s y | x2|s d|z

Eventually, since gx(s) > 0 for every positive integer s, so is ;s for every ¢2|s.
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Since (1.6.3) is true for every elliptic cusp form of weight k, it is true also for the chosen
basis fi,..., fr of S¥(Q). The evaluation of (1.6.3) in f = f; verifies the (j + 1)-th entry
of the equality (1.6.3). The check for the remaining entries is trivial. O

Corollary 1.6.4. For every positive integer s, the ray R>q- Py lies in the rational polyhedral
subcone (V2 t2‘5>R20 of C.

ProoOF. The polyhedrality is a trivial consequence of Proposition 1.6.3. Since the
basis (1.5.1) is made of Siegel modular forms with rational Fourier coefficients, we deduce
that the subcone is rational. g

Corollary 1.6.5. The (real) dimension of Ay is equal to the (complex) dimension of M.

PROOF. The cone A; C Rdm My g generated by vectors where only the first 1 + £
entries can be different from zero, as we can see from (1.6.1). Since 1+ £ = dim M}, it
is clear that dim A < dim M{“ Let C~k be the cone generated over R by the coefficient
extraction functionals of MF, that is

Ek ={cs : sE Zzl>Rzo'

We consider the functionals ¢ as vectors in R4™ My , represented over the basis Ef, fi, oy fos
where E¥ is the normalized elliptic Eisenstein series of weight k, and f1, ..., f; is the basis
of S¥(Q) chosen in (1.5.1). The entries of cs/cs(EY) are the first 1 + ¢ entries of Ps. This
means that the linear map

i Cp — A, co/cs(BF) — Py
is an embedding. Hence, we have also dim A > dim M{“ . ]
Lemma 1.6.6. The point P, is internal in Ay.

PROOF. The idea is to rewrite P, as a linear combination with positive coefficients of
enough points P;, such that these generate a subcone of A with maximal dimension. By
Lemma 1.2.1, there exist a constant A and positive coefficients n; with 1 < j < A, such
that

A
Zﬁjcﬂs{w@) =0 inST(Q)"
7j=1

We recall that A can be chosen arbitrarily large.

The entries of P associated to the basis fi,..., fs of S{“(Q) are, up to multiplying by
the negative constant (/o;_1(s), the values of the functional ¢5 on fi, ..., fr. This implies
that

A A
> njok—1()Pj = Po Y _ njor-1(j)-
Jj=1 Jj=1
Since the points Py are contained in Aj;, by Proposition 1.6.3, also P is contained therein. By
Corollary 1.6.5, we may take A big enough such that the dimension of (P; : 1 < j < A)g_,
is the same as the one of A;. In this way, the point P, is internal in A; with respect to
the euclidean topology. ]

We are ready to illustrate the proof of the main result of this section.

PROOF OF THEOREM 1.6.1. Suppose that Aj is not polyhedral, that is, it has infinitely
many extremal rays. Since Ay, is generated by P, and the points V; with s positive, and
these points accumulate only towards P, by Lemma 1.5.9, there are infinitely many
extremal rays of the form R>¢ - Vi, for some s’ > 0. These extremal rays accumulate
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towards R>q - Py, hence the latter must be a boundary ray of Aj. But this is in contrast
with Lemma 1.6.6. Therefore, the cone Ay is polyhedral.

The extremal rays are generated by some of the points Vs, which have rational entries.
Hence, the cone is rational.

The statement about the dimension of Ay is Corollary 1.6.5. O

1.7. ADDITIONAL PROPERTIES OF THE MODULAR CONE

In this section, which is a focus on the geometric properties of the modular cone Cy, we
generalize some of the results used in Section 1.6 to prove that Aj is rational polyhedral.
The problem of the polyhedrality of Cy is more complicated. The issue is to understand
how a sequence of rays R> - cr; converges to an accumulation ray of Cy, depending on the
choice of the family of reduced matrices (T}) ey in AJ with increasing determinant. We
will translate the polyhedrality of Ci into a conjecture on Fourier coefficients of Jacobi cusp
forms.

We fix once and for all a weight k > 4 such that k = 2 mod 4, and consider the
functionals ¢7 as vectors in Q4™ M3 over the basis (1.5.1). We begin with the properties of
Ci. which are a direct consequence of the results in the previous sections. We remark that
these properties, together with Proposition 1.5.2, give the previously announced points (iii)
and (iv) of Theorem 1.4.9.

Proposition 1.7.1. The modular cone Cy, is rational, and intersects the rank 1 modular
cone Cj, only at the origin. Moreover, if the cone Cy, is enlarged with a non-zero vector of Cy,
the resulting cone is non-pointed.

PRrROOF. Since the generators cp are functionals over the space of Siegel modular forms
with rational Fourier coefficients, the rationality of Cj follows trivially by the rationality of
its accumulation cone, namely by Theorem 1.6.1.

If we rewrite the functionals with respect to the usual basis (1.5.1) of M¥(Q), we deduce
by Remark 1.3.21 that

for every positive integer s. Since k = 2 mod 4, the constant {(1 — k) is negative, hence
R>o - C(s0) = R>q - (=Ps).
00

The ray R>q - Ps is contained in Ci by Proposition 1.6.3. This implies that whenever we
enlarge the cone Cj, with one of the generators of Cj,, which are the functionals ¢y associated
to non-zero singular matrices, the resulting cone contains also R>q - (—Fs) for some s. Since
the whole line R - P; is contained in the enlarged cone, the latter is non-pointed. This is
sufficient to conclude the proof, since a rational cone in a finite-dimensional vector space
over QQ is pointed if and only if its R-closure is pointed. O

In Section 1.6 we proved that P, is internal in the accumulation cone Ay of Cy; see
Lemma 1.6.6. This played a key role for the proof of the polyhedrality of Ag. In the
following result, we prove that Py, lies in the interior of the R-closure Ci. Note that it does
not follow from Lemma 1.6.6, and it does not imply it. In fact, the cones Aj and C; may
have different dimensions.

Proposition 1.7.2. The point P, is internal in Cj,.
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We know that the dual space (M})* is generated over C by the functionals cr
with T € A;r. For the proof of Proposition 1.7.2, we need to restrict the set of these
generators to the ones indexed by an auxiliary subset of A; , as showed by the following
result. It follows from the noteworthy fact that Siegel modular forms are determined by
their Fundamental Fourier coefficients; see [Sah13] and [BD18, Section 7.2].

Lemma 1.7.3. Let Al be the subset of A}L containing all matrices with squarefree bottom-
right entry. The dual space (MXY)* is generated by the functionals cp with T € M.

PROOF OF LEMMA 1.7.3. We prove the result showing that if F € M\ {0}, then the
Fourier coefficient cp(F') is non-zero for an infinite number of matrices T' € A,. We follow
closely the proofs of [Sah13, Theorem 1] and [BD18, Proposition 7.7].

Cuspidal case: Suppose that F' is a Siegel cusp form. By [Sah13, Proposition 2.2],
there exists an odd prime p such that the p-th Fourier-Jacobi coefficient ¢, of F' is non-zero.
In fact, see [Sahl3, p. 369], the Jacobi cusp form ¢, has an infinite number of non-zero
Fourier coeflicients. More precisely, they are of the form ¢(py2) /4p, u(@p), where D and p are
integers, and D is odd and squarefree. Such coefficients equals the ones of F' corresponding
(D+u?)/4p p/2

/2 p

Non-cuspidal case: Suppose that F € M§ \ S§. By Lemma 1.3.5, the property of F
we want to prove is satisfied if F = E§ Therefore, without loss of generality, we may
suppose that the Siegel Eisenstein part of F' is trivial. This means we may rewrite F
as F'= E§,1(F) + G, for some f € S¥\ {0} and G € S§. As illustrated in [BD18, p. 369],

it is possible to construct a sequence of matrices in A; of the form T} = (1772 %2), for
J
some squarefree m; and of increasing determinant, with the property that cr, (F') diverges

when j — oo. (]

to the matrices ( ). which are contained in Aj.

PROOF OF PROPOSITION 1.7.2. The idea of the proof is the following. We rewrite P
as a linear combination with positive coeflicients of some Ps, as in the proof of Lemma 1.6.6.
Then, we rewrite some of those P; associated to squarefree indexes as linear combinations
with positive coefficients of some functionals cp. We will take these combinations in such a
way that the subcone generated by those cr has maximal dimension into the R-closure Cy.

As we have already shown in the proof of Lemma 1.6.6, by Lemma 1.2.1 there exist an
arbitrarily large constant A, and positive coefficients n,,, with 1 < m < A, such that

A
(1.7.1) P =Y 1P
m=1

By Lemma 1.2.2, for every positive m there exist an arbitrarily large constant B,, and
positive coefficients py',. such that

(1.7.2) DD Ml =0

1<n<Bm reZ
dnm—r2>0

We recall that ¢, | Jewp (@) Is the functional in Ji"P(Q)* which extracts the (n, r)-th Fourier

cusp

coefficient of Jacobi cusp forms in Ji'*(Q). Note that the sum appearing in (1.7.2) is
finite.

Suppose that m is fixed squarefree, and write for simplicity 77", instead of (T72 % 2 ) Via
the usual decomposition of the entries of crm, as explained at the beginning of Section 1.5,
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we deduce from (1.7.2) that
(1.7.3)

m o k(Tm 0
i 50 5 il (041)0)
n,r“n,
¢ akyil(lm) Zn Zr /“L:Ln,’r'aé (T,,T,,) e

Z Z ,unmchgjr = | ¢emun 5 :Zr um k(T + | 2.2 Mnm,rcn,r(w%)O) —
0

1<n<Bn,, rel op—1(m) nr 220 2o ey, (F1)
dnm—r2>0
0 2n 2 p‘mrcT,’ZfT (Fyr)
=0

=Pp - Z Z /’an,raé: (Tgfr‘)

1<n<Bn, reZ
dnm—r2>0

The matrices T} appearing in the previous equation are contained in A; , that is, they are

positive definite. We define

. Nm
n(m, B ) = 5
" Yi<n<n,, 2o rez  Hpnas(Tm)
Anm—r2>0

for every m squarefree. The value 7(m, By,) is positive by Lemma 1.3.5 (i). We can then
further decompose Py, from (1.7.1) into

Poo: Z 77um:

1<m<A
~ m
= E NP + § n(ma Bm) E § Hn €T -
1<m<A 1<m<A 1<n<Bpn, rEZ
m non-squarefree m squarefree dnm—r2>0

Up to choose A and B,, large enough, the functionals crm appearing in the previous

decomposition of P, generate over Q the whole M5 (Q)* by Lemma 1.7.3. This implies
that Ps lies in the interior of Sj. ]

We now focus on Conjecture 1, namely the problem of the polyhedrality of the R-
closure Ci. The cone C}, is polyhedral if and only if it has finitely many extremal rays, or
equivalently if its extremal rays do not accumulate anywhere. An accumulation ray arising
as limit of a sequence of extremal rays is a boundary ray of Ci, but not necessarily extremal;
see Example 1.4.2.

The first, although hopeless, idea to prove that the extremal rays of Ci do not accumulate,
is to show that all accumulation rays of Cj are generated by points lying in the interior
of Ci, as we did for the accumulation ray R>0 - Px in Proposition 1.7.2. We checked with
SageMath [Ste+18| that, for large weights, this is false, since some of the accumulation
rays R>o - Vs may lie in the boundary of Cj. The following example collects some of these
empirical observations. The computation of the coefficients of Siegel modular forms was
carried out with the package [Tak17].

Example 1.7.4. Suppose that k£ > 4 and k£ = 2 mod 4. We provide in the following table
some of the accumulation rays of the modular cone C; which lie in the boundary of Cy.

k | Some accumulation rays in the boundary of Cj,
18 RZO -
22,26, 30 || Ry - Vi, Ry - V2
34,38 | R>0- Vi, R>o - Vo, Ry - V3
42 RZO-Vl,R20~X/2, RZO'V&RZO'W
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With Example 1.7.4 in mind, we provide an alternative sufficient condition to deduce
Conjecture 1. This is exactly the hypothesis of the following result. The idea is that to
deduce the polyhedrality of Cp, it is enough to show that every accumulation ray of Cy is
generated by a point which lies in the interior of a subcone of Cj, and that this subcone
eventually contains the sequences of rays converging to the chosen accumulation ray.

Theorem 1.7.5. Suppose that for every accumulation ray R>q - Qm(X), with XA € Li m,
there exists a subcone Ry, (X) of Cx, which contains Qu(N) in its interior, and such that
any sequence of rays (R>o - er;)jen converging to R>g - Qm(X), where T; = (;}2 ri)iz) are
reduced in A;L and of increasing determinant, is eventually contained in Ry, (X). Then the
modular cone Cy, is polyhedral.

See Figure 3 for an idea of the (polyhedral) shape of the section Sy of Cp whenever the
hypothesis of Theorem 1.7.5 are fulfilled.

Vs

FIGURE 3. An idea of the section Sy, under the hypothesis of Theorem 1.7.5,
with highlighted the convez hull associated to m = 36.

The rest of this section is devoted to the proof of the previous result and to some
remarks on its hypothesis. More precisely, we prove the hypothesis of Theorem 1.7.5 for m
squarefree, and we translate that hypothesis for m non-squarefree into a conjecture on
Fourier coefficients of Jacobi cusp forms.

PROOF OF THEOREM 1.7.5. Let {R>( - an}nen be the set of extremal rays of Cy,
where a, € S;,. These rays can be only of the following two types.
(i) R>0 - an = R>q - cr, for a suitable coefficient extraction functional cr,, where T;,
is a reduced matrix in A; .
(ii) The ray R>g - a, is not of type (i), and there exists a sequence (7});en of reduced
matrices in A; with increasing determinant, such that R>q - or; = R>o - ayp
if j — oo.
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The idea is to show that the extremal rays of Cj are finitely many (hence Cj, is polyhedral)
and only of type (i) (hence Cy is polyhedral).

Let R>¢ - a, be an extremal ray of type (ii), arising from a sequence of matrices (7});en.
The bottom-right entries m; of the matrices T can not diverge when j — oo. In fact, if
they diverge, then a,, = P, by Proposition 1.5.11. Since P, is an internal point of S
by Proposition 1.7.2, the ray R>g - a,, is not a boundary ray. This is in contrast with the
hypothesis that R>g - a,, is an extremal ray, hence the entries m; must be bounded.

Let m be one of the values that the entries m; assume infinitely many times. Up to

considering a subsequence of (7});en, the ratios a5 (Tj[t]) /a5(T;) converge to some \; for

every integer ¢ such that 2 divides m. Here we use the notation Tj[t] as introduced in (1.3.4).
Denote by A the corresponding tuple of limits in Ly, ,,,. Following the same argument of
the introduction of Section 1.5.1, we deduce that

R>o - cr; —— R0 - Qm(N),
j—o0

in particular a,, = Q,,(\). By hypothesis, there exists a subcone R, () of C containing a,,
in its interior. If dimR,,(A) > 1, then R>q - a, can not be extremal by definition.
If dim R, (A) = 1, then R>g - ay, is of type (i). Hence, there are no extremal rays of Cj of
type (ii).

We conclude the proof showing that the extremal rays of type (i) are finitely many.
Suppose they are not, that is, there exists a sequence of pairwise different extremal
rays (R>o - er;)jen indexed over a family of reduced matrices (7)) en in AJ of increasing
determinant. We suppose without loss of generality that this sequence converges to a
boundary ray Rsqo - b for some b € S;. The limit does not have to be extremal; see
Example 1.4.2. Following the same argument as above, up to considering a subsequence
of (7)) jen, the bottom-right entries of these matrices are fixed to some positive integer m,
and b = Q;,(X) for some A € Ly ,,. By hypothesis, there exists a subcone R,,(A) of Cy
containing b in its interior, and such that the rays Rx>¢-cz; eventually lie in Rin(A).
Since Rx>q - c7; are pairwise different, the dimension of R, () is greater than 1. Since
these are extremal rays for C, they are extremal rays also for R,,(A). But this implies
they are boundary rays of R, (), hence they can not accumulate towards R>q - b, since b
is an internal point of R, (X). O

Lemma 1.7.6. The hypothesis of Theorem 1.7.5 for m squarefree is always satisfied. More
precisely, if m is a positive squarefree integer, the subcone R, associated to the accumulation
ray R>q -V, exists, and can be chosen as

(1.7.4) Rm = (er : T € AJ with m as bottom-right entry)g. -

PRrROOF. The points V,,, and P, coincide, since m is squarefree. We have already shown,
e.g. in (1.7.3), that Lemma 1.2.2 implies the existence of an arbitrarily large constant B,,
and positive constants py", such that

(1.7.5) Vin = Z Z PnarCTm, .
1<n<By, reZ
dnm—r2>0
We define the subcone R, of Cj, as the cone generated by the functionals ¢z with T' € A;,
not necessarily reduced, such that the bottom-right entry of T is m. Every such matrix T
appears in (1.7.5) if By, is taken sufficiently large. We may enlarge B,, such that the
matrices T} appearing in (1.7.5) generate over R a space of dimension equal to dim R,,.

In this way, the point V,,, is internal in R,,.
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If m is squarefree, the unique accumulation ray associated to a sequence of rays R>o-cry,

where T; = ( " TJT'){L 2) are reduced matrices in /\2+ with bottom-right entries fixed to m

/2
and of increasing determinant, is the ray R>q - Vj; see Section 1.5.1. All functionals cr,
are contained in R,, by definition. O

Lemma 1.7.6 verifies the hypothesis of Theorem 1.7.5 only for m squarefree. It is natural
to ask if the analogue statement of Lemma 1.7.6 holds also for m non-squarefree. The
following example collects some empirical observations deduced with SageMath. These
suggest that the subcone (1.7.4) computed for the squarefree cases can not be used to prove
the hypothesis of Theorem 1.7.5 for m non-squarefree.

Example 1.7.7. Choose 4 as non-squarefree integer. We define the subcone F; of C, as
(1.7.6) Fy = (cr : T € AJ with 4 as bottom-right entry)r. .,

in analogy with the subcone R,, constructed in Lemma 1.7.6 for squarefree integers m.
The following table shows that Vj is contained in JFy, but can lie in its boundary.

k || Is V4 contained in F4? | Is V4 internal in F4? | dim Fy | dim C
18 yes yes 4 4
22 yes yes 6 6
26 yes yes 7 7
30 yes yes 11 11
34 yes no 14 14
38 yes no 15 16
42 yes no 17 22

With Example 1.7.7 in mind, we conjecture here a property of Fourier coefficients of
Jacobi cusp forms sufficient to deduce a correct generalization of Lemma 1.7.6 for every m
non-squarefree. This conjecture is actually a refinement of Lemma 1.2.2.

To simplify the exposition, we consider for a moment the case m = 4, as in Example 1.7.7.
The subcone Fy of Cy, as defined in (1.7.6), may contain V4 in its boundary if the weight k
is large enough. If the cone R4(0) associated to Vj, as hypothesized in Theorem 1.7.5, exists,
then it must be a subcone of F of lower dimension. In fact, let (R>o-cr;);jen be a sequence of
n; ri/2
rj;2 J4/
the rays R>¢ - c7; lie in Fy for every j. We know that R>g - cr; — R>o - Vi, when j — oo,
if and only if r; is eventually non-divisible by 2. This follows from Corollary 1.3.14 applied
with p = 2 and Ay = 0, since Vj = @Q4(0). This means that R4 is a subcone of F4 which
eventually contains the functionals c7; as above, with r; non-divisible by 2.

The argument above generalizes to any m non-squarefree by Corollary 1.3.17. This
leads us to the following conjecture. In Proposition 1.7.8 we check that this conjecture
implies the existence of R, (), for every X € Ly, ..

rays associated to reduced matrices T = ( ) € A2+ of increasing determinant. Clearly,

We recall that if 7' is a matrix in A and t is a positive integer, we denote by T the
matrix arising as in (1.3.4).

Conjecture 2. Let k >4, k =2 mod 4. For every reduced matriz T in A with bottom-
right entry m, there exist an arbitrarily large integer A and positive rational numbers fu, ,
such that

(1.7.7) S D bl Jese(g) =0,

1<n<AreSm(n,T)

where the auziliary set Sy,(n,T) is defined as

- k(lts] k(lts]
_ LG nor2 v Lay(TY) ay(TYY)
Sm(n,T)—{TGZ.T—(T/Qm)EA2 and alg(TV) = oA (T) for]—l,...,d}.
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We remark that Conjecture 2 is analogous to Lemma 1.2.2; but with (1.2.4) restricted

to the indexes r lying in S,,(n, T). If m is squarefree, this conjecture coincides exactly with
n r/2
r/2 m
any divisor ¢ of m with t?|m, by Corollary 1.3.17 the auxiliary set S,,(n,T) simplifies to

Spn(n,T) = {r € Z : 4nm —r* > 0 and if t*|m with t # 1, then t { r}.

Lemma 1.2.2. If m is non-squarefree, and T = ( ) is such that r is not divisible by

Proposition 1.7.8. Let m be a non-squarefree positive integer. If Conjecture 2 holds, then
there exists a subcone Ry, (X) as hypothesized in Theorem 1.7.5, for every A € Ly, j.

PROOF. Let A = (A, ..., A,;) € Lk, and let ¢ty = 1. Suppose for simplicity that the
convex hull generated by the d 4- 1 points Vi, V,, 2., Vi, 2 is d-dimensional. This is
equivalent to

H = Coan({Vm/t? :j=0,...,d})

being a simplex, with the points V, /2 as vertexes. In a simplex, each point can be written
J

as a convex combination of the vertexes in a unique way. Hence, if we choose two different
tuples X and X' in Ly, also the associated points Qp,(A) and Qy, (') are different; see
Theorem 1.5.6 for further information.

The following two cases prove the result under the assumption that H is a simplex.
Eventually, we illustrate how to generalize the proof to the case where H is not a simplex.

First case. Suppose that A is a non-special tuple of limits, that is, there exists a
reduced matrix T in A5 such that af(TW%!)/ak(T) = At; for every j =1,...,d. We prove
the existence of R, (A) under this hypothesis. The idea is analogous to the one used to

prove Lemma 1.7.6. Let A and p, - be as in Conjecture 2. For simplicity, we denote by T, ,
the matrix ( n r/2
r/2 m

deduce that

E § :U’n,TCTn,T =

1<n<AreSm(n,T)

), with m fixed. Writing the functionals cr, , over the basis (1.5.1), we

1 0

300 Ay (b, 1) S o binrcih ()
_ k : fe _
= s (Tor) | 60 N am(t, +| oS et | =
0 2 Zn Z'r /J“n,.TCTn,r (Fl/)
:Qm()‘) =0

:Qm()‘) : Z Z ,U/n,rag(Tn,r)-

1<n<AreSy, (n,T)
Define

£(A) = 1/ Z Z ,Un,Talzc(Tn,r)-

1<n<AreSn (n,T)
We may rewrite @, (A) as a linear combination with positive coefficients of functionals as

(1.7.8) QnN = > > & ADpnrcr,,

1<n<AreSm(n,T)

We prove that we can choose the subcone R, (\) as

(1.7.9) Rin(A) = <cf T = (r72 %2) €AJ andr € Sm(n,T)>R
>0
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Since the value A in (1.7.8) can be chosen arbitrarily large, we may suppose that the
coefficient extraction functionals appearing in (1.7.8) generate a vector space over Q
with the same dimension as R,,(A). In this way, the point @, (A) is internal in R, ().
Let (R>o-c7;)jen be a sequence of rays which converges to R>g - Qm(A), where the reduced
matrices Tj in A; are of increasing determinant. Since A is a non-special tuple of limits
in L, ;n by hypothesis, by Corollary 1.3.14 and Corollary 1.3.17 the functionals cz; eventually
lie in Ry (N).

Second case. We prove the existence of the subcone R,,(\) associated to a special
tuple of limits X' = (X, , ..., \y,) € L3, as hypothesized in Theorem 1.7.5.

Since the d-dimensional convex hull H is a simplex, if )} ;=0 for some j, then Q,,(\)
lies on the boundary of H. In fact, the point Q,,(\’) lies in the interior of the convex
hull Convg(V, GE At, # 0); see Lemma 1.5.5 and Corollary 1.3.17.

m

Let Fpn (X)) be the subcone of the R-closure Cj defined as

F )\, B  Te A; with m as bottom-right entry and such that
m( ) =\ - if)\gj = 0 for some j, then ak(T!1)/ak(T) = 0 R>0'

Choose R, (X') to be the cone generated by F,, () and all V,, j2 such that A, # 0.

We prove that this subcone of Cj fulfills the properties hypothesized in Theorem 1.7.5.
Let (cr,)ien be a sequence of coefficient extraction functionals associated to reduced

matrices T, = (T:L/iz T;?) in A;r of increasing determinant. If R>g-cp, — R>q - Qum(X),
then the entries 7; must be eventually non-divisible by any ¢; such that )\Qj = 0 by

Corollary 1.3.17. This implies that the functionals c¢z; must eventually lie in F,(X').
Therefore, it is enough to prove that Q,,,(\) is internal in R,,(X\’). By Corollary 1.3.19 we
deduce that

_ S
(1710) ]:m(A/) — <Rm()\) . A= (>‘hv---7>\td) (S ['kﬂn \‘Ck,m a d> ’
Rx>o

such that if )\ij =0, then A\¢y; =0

with R, () defined as in (1.7.9). We recall that the latter cone contains @y, () as internal
point, by the first case of this proof. Since Q,,(\') is internal in Coan(Vm/tz : A;j #0),
J

we may choose a point Wy € Convg(V,,

,m
in (1.7.10), such that @Q,,(X) is internal in the segment joining @Q,,(A) with Wj. In fact,
also such @, () is contained in Coan(Vm/t? t Ay, # 0). In this way, the subcone of Rin(X)
generated by R, () and W) contains Q,,(X’) as internal point, for every X as above.

Since the cone generated by the union of cones containing @Q,,,(\’) as internal point is a
cone that contains @Q,,(\') in its interior, we may deduce that @Q,,(\’) is an internal point
of Rn(XN).

7 not a simplex. If H is not a simplex, we might have that Q,,(A) = Q.,(pu) for
some different tuples of limits A = p € Ly, ,,,. When this happens, in each of the previous
cases one can substitute the subcone R,,(\) with the union of all R,,(p) constructed
therein such that @, (A) = Qm(p). O

2 )\Qj #0) for every X € Ly, \ L3°  appearing

1.8. THE ACCUMULATION RAYS OF THE CONE OF SPECIAL CYCLES

In the previous sections we classified all possible accumulation rays of the modular
cone Cj, writing the generators of these rays as linear combinations of certain points in Sj.
In this section, we use the classification above to deduce the accumulation rays of the cone
of special cycles Cx,. in CHQ(XF) ® Q. In particular, we show that these rays are generated
by linear combinations of (rational classes of) special cycles associated to singular matrices
in Ao. These special cycles are the intersection between Heegner divisors and the dual
class {w*} of the Hodge bundle. Eventually, we rewrite the accumulation rays of Cx,. in
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term of primitive Heegner divisors, which may be considered (up to a factor 2) as the
irreducible components of the classical Heegner divisors.

Let Xr be an orthogonal Shimura variety associated to a even unimodular lattice of
signature (b,2), where b > 2, and let k = 1 + b/2. Since the lattice is unimodular, the
value k is an integer satisfying the relations k£ > 4 and k = 2 mod 4. We know that there
exists a linear map

Yr: MF(Q)* — CH2(XT) ® Q, ¢ — {Z(T)} - {w*} 27D

which maps every functional ¢y to (the rational class of) the special cycle associated to the
matrix T'; see Section 1.4.2 for details. For simplicity, we denote by v also its extension
over R. As proven with Corollary 1.4.10, the accumulation rays of Cx. are images via ¢r

of accumulation rays of Cy.

As usual, we consider every functional in Méc (Q)* as a vector in Qdim M;

over a fixed basis of the form

E§7E§,1(f1)7‘ : '7E§,1(ff)7F17' . 'aFZ’;

see the beginning of Section 1.5 for further information.

We want to rewrite the images via ¢r of the points Ps, Vs and Qs(A¢,, ..., Ay, ), defined
in Section 1.5 and Section 1.6, as linear combinations of special cycles in CHQ(XF) R Q. In
fact, if a ray of the R-closure of Cx,. is an accumulation ray of Cx,., then it is generated
by wp( o), Yr(Vs) or Yr(Qs(Asy,- -, Ar,)), for some positive integer s and some tuple of
limits (A, ..., Ay;) € Lim, as in Definition 1.5.3. We want to make these images via 9r
explicit. Since we already know by Proposition 1.5.5 how to rewrite every Qs(As, ..., At,)
as a linear combination of points Vi, for some s’ > 0, we may restrict our attention only
to ¥r(Px) and ¢p(Vy). Recall that we denote by {Hs} the divisor class of the s-th Heegner
divisor; see Remark 1.4.5.

, writing it

Proposition 1.8.1. For every positive integer s, the image of the point Vi via vr is
¢1- x
(1.8.1) wr(Va) = ((ZM ohr (/) {Hy ) - {w').

2 )o
gr(8)ok—1( 2]

The image of the point Ps, via r is {w}?.
Corollary 1.8.2. For every positive integer s, the image of the ray R>q - Vs via ¢r is
R>o - 9r(Vs) = R - (ZM or—1(s/t*){H /t2}'{w}>'
t2|s
The image of the ray R>q - Poo via Yr is Rsg - {w}?.

PROOF OF COROLLARY 1.8.2. Since k = 2 mod 4, the value ((1 —k)/(2gx(s)ok—1(s))
is negative for every positive integer s. Moreover {w*} = —{w} in CH!(X1) = Pic(X7).
The claim follows directly from Proposition 1.8.1. U

PROOF OF PROPOSITION 1.8.1. First of all, we deduce the image via ¢r of the point P
defined in Section 1.6. Since cs(EY) = 20_1(s)/¢(1 — k) for every positive integer s, see
the Fourier expansion (1.2.1), by Remark 1.3.21 we deduce that

(1.8.2)



This implies that

m{z(og)}'{w }

As we recalled with Remark 1.4.5, the rational class {Z (§ )} is the Heegner divisor {H,}.

We explained in Proposition 1.6.3 how to rewrite every point Ps as a linear combination
of certain V, for some positive s’. The idea is to reverse that formula, writing V as a linear
combination of certain Py. This can be done simply rewriting a(1, f) as

0l f) = S O/ Lo

t2| or_1(s/t?)’

(18.3) Yr(Py) =

for every f € S¥, from which we deduce that

V, = <1, ql;k)as(l,fl), e C(12_k)as(1,fg),0, o ,0) =

ZM Jok—1(s/t*) Pyp2.

t2|

This, together with (1.8.3), implies (1.8.1).

Since the Siegel Eisenstein series E} is normalized, its Fourier coefficient associated
to the zero-matrix is 1. Moreover, the Fourier coefficient associated to the zero-matrix of
any other element of the chosen basis of Mé"’ is trivial; see Remark 1.3.21 for the cases of
Klingen Eisenstein series. This implies that

Py = )
‘(89
from which we deduce that ¥r(Ps) = {w}?. O

The Heegner divisors are in general reducible. If I' = O"(L), it is possible to write
every Heegner divisor as a sum of its irreducible components via the so-called primitive
Heegner divisors. The remaining part of this section aims to rewrite the generators of the
rays R>q-9r(Vs) given by Corollary 1.8.2 in terms of primitive Heegner divisors. Eventually,
we deduce that the accumulation cone of Cx,. is a subcone of the cone generated by the
intersections between primitive Heegner divisors and the Hodge class {w}.

From now on, we consider only orthogonal Shimura varieties Xr arising from I' = O% (L),
where L is a even unimodular lattice of signature (b,2), with b > 2.

We avoid to propose here a formal definition of the primitive Heegner divisors {HY™}
in Pic(XT), since the construction, using primitive lattice vectors of L, is similar to the
one of the special cycles given in Section 1.4.1. We refer instead to [BM19, Section 4| for
details.

Since L is unimodular and I' = O" (L), [BM19, Lemma 4.3] implies that every primitive
Heegner divisor is twice an irreducible orthogonal Shimura subvariety of X, and that {H}
decompose in primitive Heegner divisors as

(1.8.4) {H} = Z{Hf;gl : for every positive integer s.
t?|s

This is [BM19, Section 4, (17)].

Corollary 1.8.3. For every positive integer s, the image of the ray R>q - Vs via ¢r is
generated by a positive linear combination of primitive Heegner divisors intersected with
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the Hodge class w. More precisely

Ur(Rzo-Va) = Rzo- [ D (D alt)on-a(s/t) ) {HEE} - {w}

r2ls  t|r

PROOF. It is enough to decompose the generator of ¢r(R>g- V) given by Corollary 1.8.2
via (1.8.4), in fact

Y ok (s/PWHyp} - {wh = Y p)or-r(s/?) Y {HY S} - {w) =

t2|s t2|s r2|(s/t2)
=3 (X st)orals/t)) {HEE} {w}. O
r2ls  tr

1.9. FURTHER GENERALIZATIONS

In this section we explain how to use the same pattern of this chapter to investigate
the geometric properties of the cones of special cycles of higher codimension, via vector
valued Siegel modular forms.

Let X be an orthogonal Shimura variety associated to a unimodular lattice L of
signature (b, 2), as in Section 1.4.1. Some of the ideas of this chapter extend to the cases
of special cycles of codimension g > 3, as follows. With an analogous argument as in
Section 1.4.2, the rational polyhedrality of the cones in CHY(X) ® Q generated by the
special cycles {Z(T)}, associated to symmetric half-integral positive semi-definite g x ¢
matrices T of fixed rank, is implied by the analogous statement on cones of functionals cp
of genus g Siegel modular forms with weight £k =1+ b/2.

Let Mgf (Q) (resp. Sg (Q)) be the space of Siegel modular forms (resp. Siegel cusp forms)
of genus ¢g and weight k. It is well-known that M ;‘3(@) splits in a direct sum between Sg (Q),
the space generated by the Siegel Eisenstein series E!; of genus g, and the spaces of Klingen
Eisenstein series associated to Siegel cusp forms of lower genus; see [K1i90, p. 73, Theorem 2|.

To the best of our knowledge, a clear growth of the coefficients of Klingen Eisenstein
series, as in [BD18| for genus 2, is not available in literature. For this reason, a generalization
of this chapter in genus g > 3 seems not yet possible.

Nevertheless, we remark that the cones generated by the functionals ¢ in M;(Q)*
with kT =1 (or rk T = 2) can be deduced via the results of this notes, following the same
idea of the proof of Theorem 1.4.9 (i).

Another interesting problem is to deduce the geometric properties of the cones of special
cycles on orthogonal Shimura varieties X associated to lattices which are non-unimodular.

Since Kudla’s modularity conjecture is proved in [BWR15] in full generality, Proposi-
tion 1.4.8 may be generalized for coefficient extraction functionals associated to vector valued
Siegel modular forms of genus g, with respect to the so-called Weil representation py, g4;
see [Bru02, Section 1.1| and |Zha09, Section 2.1] for the definition of pr 4.

The main obstacle to this approach are the properties of the Fourier coefficients of such
vector valued modular forms. In fact, to the best of out knowledge, not only the growths of
the coefficients of the Siegel Eisenstein series and the Klingen Eisenstein series are not yet
clear, but also an explicit “Coefficient Formula” to compute them is missing, even in the
case of genus 2.

For certain non-degenerate quadratic spaces over totally real fields of finite degree, an
analogous construction of orthogonal Shimura varieties (and of special cycles) holds; see
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e.g. [Mael9, Section 1.1]. Kudla’s modularity conjecture has been recently proved also for
these generalizations, assuming the Beilinson—Bloch conjecture; see [Mael9, Theorem 1.6]
and [Kud19, Theorem 1.1]. In this setting, the generating series of special cycles is a
Hilbert-Siegel modular form, with values in the Chow ring. Since Proposition 1.4.8 may
generalize to these kind of modular forms, it might be interesting to study also cones of
coefficient extraction functionals associated to Hilbert—Siegel modular forms.

1.10. EXAMPLES OF CONVEX HULLS IN Cj FOR FIXED m

Let k£ be an integer such that k > 4 and k¥ = 2 mod 4. To make Theorem 1.5.6 and
Proposition 1.6.3 as clear as possible, in this section we compute explicitly the convex
hull in Cj generated by the points @, (X), where X € L,,x, for m = 4 and 36. As
usual, see Section 1.5, we represent t}ie coeflicient extraction functionals ¢y associated to
Qdim M

matrices T € AJ as vectors in over a basis of the form

Engg,l(fl)r . '7E§,1(f€)aF17~ s P

1.10.1. Case m = 4. Let (R> - cr; )jen be a sequence of rays in C;. associated to reduced
nj r;/2
r;/2 4
entry fixed to m = 4. As we observed in Section 1.5.1, all accumulation rays in Cj, arising
from such sequences are of the form Rx>g - Q4(A2), where

matrices in AJ of the form T; = ( ), with increasing determinant and bottom-right

1
C-aa(l,f1)+¢-A2aa(2,f1)

Qi(N2) = | Cas(l,fo)+¢H20a(2f0) | 5 for some Ay € Ly 4,
0

0
where we abbreviate ( = ((1 — k)/2. As usual, we may suppose that the sequence of

ratios ag(T][Q]) /ak(T}) is convergent, and we denote its limit by A2. With the same notation
of Proposition 1.3.23, we compute

_a(f) —alf)

a4(17f) - Uk—1(4) 1

044(2, f) = Cl(f) - 044(]., f)a

044(1, f) + )\2054(27 f) = (]- - )\2)0[4(1, f) + AQCl(f)a

for every cusp form f € S¥.

t
Recall that Vi = (1,( ~as(1, f1), ..., C-as(l, fe),0,. .. ,0) for every positive integer s.

We deduce from (1.10.1) that the points Qa(\2) lie on the segment connecting Vi with Vj.
This verifies Theorem 1.5.6 for m = 4, since the segment above is the convex hull over R
generated by V7 and V4. More explicitly, these points satisfy the formula

Qi(A2) = (1 — Xo) Vi + A V7.

By Corollary 1.3.14 and Proposition 1.3.16, whenever V; and Vj are different, there
are infinitely many points Q4(\2), which accumulate towards some Q4(),), where X, is a
special limit in £;*,(2). The number of such accumulation points is finite; see Remark 1.3.13.
Figure 1 represen"cs the general case of such arrangement of points.

t
We recall that P = <1,( ~es(f1)/ok—1(s),...,C - cs(fr)/ok—-1(s),0,... ,0) , for every
positive integer s. If s is squarefree, the points P; and Vi coincide. The point Py is

(1.10.1)
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internal in the segment generated by V; and Vj. In fact, it is easy to see via (1.10.1) that
if \=1/0j_1(4), then
ca(f)
Ok

(1= Nau(1, f) + Aer(f) = @)

This is a direct check of Proposition 1.6.3 for s = 4.

for every f € Sf.

1.10.2. Case m = 36. Since this example is similar to the previous one, we omit some
details. Consider all accumulation rays given by sequences of reduced matrices (7});en of
increasing determinant and bottom-right entries fixed to m = 36. These rays are generated
by

1
C-aze(1,f1)+CAaas6(2,f1)+CAza36(3, 1)+ A6 ase(6,f1)

Q36(A2, A3, Ag) = C‘a36(17f£)+C‘)\20536(27fé)+§‘>\30136(37fé)+4‘)\60436(67f2) )

o
for some (A2, A3, A¢) € Ly 36. Via simple computations we deduce that

c36(f) —co(f) —ca(f) +cr(f)

ass(L, f) = 05-1(36) —0_1(9) —op_1(4) + 1’
as6(2, f) = ag(1, f) — ase(1, f),
ase(3, f) = au(l, f) — ase(1, f),
as6(6, f) = c1(f) — aa(1, f) — ao(1, f) + aze(1, f),
ase(1, f) + Aaase(2, f) + Azase(3, f) + Aeaze(6, f) =
= (1= 20 = 2g+ 26 Jass(1, ) + (A2 = A )ag (1, £) + (As = A )au(L, f) + Aser (F),

for every f € S¥. Hence, it is clear that

Q36(A2, A3, Ag) = (1 — A — A3+ >\6>V36 + ()\2 - >\6)V9 + (A3 - >\6>V4 + AgV1.
By Lemma 1.3.10 and Corollary 1.3.17, it follows that
Az, Ao <1 and Ag < Az, Ao

The inequality 1 — Ag — A3 + Ag > 0 is less trivial, but was proved in (1.5.9) via common
overlaps of a5(T:) and af(T3) as sub-sums of a5(T), for every T € AJ. This implies
that Qs6(A2, A3, Ag) is contained in the convex hull generated by Vi, Vi, Vo and V.

Remark 1.10.1. Suppose that the convex hull generated by Vi, Vi, Vo and Vg is
a 3-dimensional simplex. Since every point in a simplex can be written as a convex
sum of the vertexes of the simplex in a unique way, we deduce that for different val-
ues (A2, A3,X6) € Ly, we have different points Qz6(A2, A3, A¢). Under this hypothesis,
Corollary 1.3.19 implies that the points Q3g(A2, A3, A¢) accumulate towards infinitely many
points of Convg({V1, Vi, Vo, Vag}).

The point P3¢ lie in the convex hull given by Vi, V4, Vg and Vig. In fact, it is easy to
check that

Pyg = (1= X=X+ 2 )V + (A= XV + (X = N ) Vi + X'V,

with A = 1/0-1(4), N = 1/0x-1(9) and X" = 1/0j_1(36). This is a direct check of
Proposition 1.6.3 for s = 36.
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CHAPTER 2

ORTHOGONAL SHIMURA SUBVARIETIES AND
EQUIDISTRIBUTION

ABSTRACT

Let X be an orthogonal Shimura variety, and let (Z;);en be a sequence of pairwise
different orthogonal Shimura subvarieties of fixed dimension r > 3. We prove that there
exists a subsequence (Zs)s, and an orthogonal Shimura subvariety Z of X, such that the Z
equidistribute in Z. We then compute the limits of the sequence of normalized cohomology
classes [Z,]/ Vol(Z,). Eventually, we explain a strategy to compute the accumulation rays of
the cones generated by special cycles on X via the previous results.

2.1. INTRODUCTION

It is a general fact that the cone of effective divisors on a (quasi-)projective variety
encodes geometric properties of the variety itself. Although in the literature there are
several results on cones generated by families of effective divisors, for example [KM98,
Section 3] [Mull7] [BM19], a little is known for cones generated by algebraic subvarieties, or
more generally cycles, in codimension greater than 1. In Chapter 1, we shed some light in
this direction, in the case of cones generated by codimension 2 special cycles on orthogonal
Shimura varieties. We deduced properties of such cones by means of Fourier coefficients of
Siegel modular forms. For instance, we computed all associated accumulation rays, and we
proved that the cone generated by them is rational and polyhedral.

The purpose of this chapter is to provide a strategy to compute the accumulation rays of
such cones with a different method, namely by means of equidistribution of the probability
measures arising from the irreducible components of special cycles.

To state our results, we need to introduce some notation. Let (V) be an indefinite
rational quadratic space of signature (n,2). We denote by G the linear algebraic group
of isometries SO(V, q). For every congruence (or arithmetic) lattice I' C G(Q), and every
maximal compact subgroup K of G(R), we consider the orbifold X = I''G(R)/K. It
admits a unique structure of algebraic variety by the Theorem of Baily and Borel. Such
double quotient varieties are usually referred as orthogonal Shimura varieties. One of the
interesting features of such varieties is that they admit many algebraic cycles, which may
be constructed by immersion in X of Shimura varieties of smaller dimension; see [Kud97].

Let (V’/,¢') be an indefinite rational quadratic subspace of signature (r,2) in (V, q), and
let H be the Q-subgroup SO(V’,¢) of G. We say that the subvariety Z = T\T'H(R)K /K
of X is an orthogonal Shimura subvariety. It is the immersion in X of the orthogonal
Shimura variety arising from H.

Let w be a G(R)-invariant Kahler form of the Hermitian symmetric domain G(R)/K.
The associated Kéahler metric induces probability measures vx and vz, respectively on X
and on any orthogonal Shimura subvariety Z. Let (Z;);en be a sequence of orthogonal
Shimura subvarieties of dimension fixed to » > 3. There exists an orthogonal Shimura
subvariety Z of X and a subsequence (Zs)s, such that the subvarieties Z4 equidistribute
in Z, i.e. the sequence of probability measures vz, weakly converges to vz. That result is a
special case of Proposition 2.5.1.
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Theorem 2.1.1. Let X be a smooth orthogonal Shimura variety of dimension n, and
let (Z;)jen be a sequence of pairwise different orthogonal Shimura subvarieties in X of
dimension r > 3. If such subvarieties equidistribute in an orthogonal Shimura subvariety Z
of dimension v’ > r, then

[Z] 7! ' —r [Z]
vol(jzj) v Vol(Z)

In this chapter, we prove Theorem 2.1.1, together with its generalization to the case
of singular X. The idea is to rewrite the convergence of normalized de Rham cohomology
classes (2.1.1) in terms of cohomology of currents. The latter are functionals defined as
integrals over the subvarieties Z; of X. We “lift” such currents to integrals defined on
the characteristic bundle S(Z;) of Z;, on which we may compute the limit of such lifted
functionals using the weak convergence of the probability measures vz;. Such limit can
be then rewritten as (a cohomology class of) a current on X, which is equivalent to the
cohomology class appearing on the right-hand side of (2.1.1).

Theorem 2.1.1 has the same flavour as some results of [KM18| and [TT21]. We explain
the differences with the cited references in Remark 2.6.2 and Remark 2.6.3.

Theorem 2.1.1 may be applied to compute the limit of sequences of rays generated
by (cohomology classes of) subvarieties, or more generally, cycles. In Section 2.7, we provide
examples of results in this direction, focusing on sequences of rays generated by Heegner
divisors and special cycles of codimension 2 on X. As previously announced, this lay the
foundation of a strategy to double check the results of Chapter 1 in terms of cohomology,
together with a possible generalization to cycles of higher codimension.

in H*"=)(X, Q)N H" """ (X).

(2.1.1)

2.2. ORTHOGONAL SHIMURA VARIETIES AND SPECIAL SUBVARIETIES

Throughout this chapter, we denote by G the linear algebraic group of isometries SO(V/, q)
associated to some rational quadratic space (V,q) of signature (n,2), with n > 1. The
Hermitian symmetric domain associated to G is the Kahler manifold arising as the quo-
tient X = G(R)/K, for some maximal compact subgroup K of G(R). Up to isomorphism,
the choice of K does not affect X. For this reason, we may suppose K to be the standard
maximal compact subgroup S(O(n) x O(2)). It is well-known that such domain can be
realized as the Grassmannian Gr(V') of negative definite 2-panes in V' ® R. We will recall
how to identify X with a connected bounded open subset of C™ in Section 2.3.

An arithmetic subgroup T of G(Q) is a subgroup of G(Q) N G(R)™, where G(R)™ is the
connected component of the identity of G(R) with respect to the Euclidean topology, such
that I' N1 G(Z) is of finite index in G(Z) and T'.

Definition 2.2.1. A (connected) orthogonal Shimura variety is a n-dimensional complex
variety X = I'\G(R)/K arising from some arithmetic lattice I' of G(Q).

Remark 2.2.2. In the literature, an orthogonal Shimura variety is usually defined with
respect to congruence subgroups. Since the results on equidistribution we are going to use
in this chapter work for more general arithmetic subgroups as well, we do not require I" to
be of congruence.

By the Theorem of Baily and Borel, there exists a unique algebraic structure on any
such quotient X = I'\G(R)/K. With such structure, the variety X is either projective or
quasi-projective. The former case can happen only when n < 3.

Along this chapter, we will deal with certain subvarieties of orthogonal Shimura varieties,
the so-called special ones, defined below. The terminology comes from the fact that these
subvarieties can be considered as immersions in X of Shimura varieties of smaller dimension;
see e.g. [ULl07, Section 3.3].
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Definition 2.2.3. Let X = I'\G(R)/K be an orthogonal Shimura variety. If H is a Q-
algebraic subgroup of G which induces an inclusion of Hermitian symmetric domains

Y = HR)/(K N H(R)) = G(R)/K.

we say that the immersion of (I' N H(R))\Y in X is a special subvariety.

If a special subvariety Y of X arises from a Q-subgroup H of G such that H = SO(V’, ¢'),
for some rational quadratic subspace (V’,¢’) of signature (n’,2) in (V, q), where n’ > 1, we
say that Y is an orthogonal Shimura subvariety.

In general, there are other special subvarieties of X arising from orthogonal Q-subgroups
H of G, where H is not the group of isometries of a rational quadratic subspace of (Vq).
We refer to them as special subvarieties of orthogonal type.

Remark 2.2.4. By [Fiol§], all Shimura subvarieties of orthogonal type in X arise from a Q-
subgroup H of G of the form H = Resgq SO(U, qu), for some quadratic space (U, qr) de-
fined over a totally real extension F' of Q, of signature (¢, 2) at one place and positive definite
at all other places. By [Fiol8, Construction 3.5], the inclusion of groups H < G = SO(V, q)
factors trough base change to R as follows, with surjective projection onto the first fac-
tor SO(Y, 2).

H(R) » SO(n, 2)

\/

SO(£,2) x SO(£+2) x -+ x SO(L +2)

The orthogonal Shimura subvarieties of Definition 2.2.3 are the special subvarieties of
orthogonal type as above, with F' = Q.

Remark 2.2.5. In general, there are special subvarieties of X which are not of orthogonal
type. These arise from unitary subgroups of G; see |Fiol8]| for a complete classification. The
Hermitian symmetric domain arising from SU(m, 1) is the complex hyperbolic m-space B™.
Since all Hermitian symmetric domains contained in B™ are complex hyperbolic subspaces,
see e.g. |[Bad+20, Proposition 2.3], the special subvarieties of orthogonal type in X are the
only special subvarieties which may contain other special subvarieties of orthogonal type.

Lemma 2.2.6. Let X = I'\G(R)/K be an orthogonal Shimura variety, and let H be the
group of isometries SO(W, qw ) of some rational quadratic subspace (W, qw) of signature (r,2)
in (V,q), with 1 <r <n. Every orthogonal Shimura subvariety of X of dimension r is of
the form T\I'gH(R)K /K for some g € G(R).

PROOF. Let X = G(R)/K be the Hermitian symmetric domain attached to G. We
realize X as the Grassmannian Gr(V) of negative definite 2-planes in V @ R. Let Z
be an orthogonal Shimura subvariety of X of dimension r, and let H = SO(V’,¢’) be
the Q-algebraic subgroup of G such that Z is the immersion in X of I'y/\H'(R)/ Ky,
where 'y =T'N H'(R), Ky = KN H'(R), and (V’,¢) is a rational quadratic subspace
of signature (r,2) in (V,q). The Hermitian symmetric domain Z = H'(R) /Ky associated
to H' embeds into X, and it may be realized as the Grassmannian Gr(V”).

The real quadratic subspaces W @ R and V' ® R of V ® R have the same dimen-
sion and signature, hence there exists an isometry f: W — V’. By Witt’s Theorem, the
isometry f extends to an isometry g € O(V ® R) such that gl = f. Up to compos-
ing g with a reflection with respect to a hyperplane of V' ® R containing W ® R, we may
suppose that g € G(R). Since g acts on Gr(V) mapping Gr(W) to Gr(V’), we deduce
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that gH(R)/Ky = H'(R)/Kg:. If we consider the immersion in X of gH(R)/Ky, we
deduce that
N\IgH(R)K/K = D\[H'(R)K/K = Z. O

Following the wording of [CU05|, we introduce the following terminology.

Definition 2.2.7. A special subvariety of an orthogonal Shimura variety is said to be
strongly special if it arises from a semisimple Q-subgroup H that is not contained in any
proper parabolic Q-subgroup of G.

Remark 2.2.8. The latter condition of Definition 2.2.7 is equivalent to the compactness
of 7(Zgwy(H(R))), where 7: G(R) — I'\G(R) is the quotient map and Zg ) (H(R)) is
the center of H(R) in G(R); see [EMS97, Remark 1.2].

We conclude this section by proving that every orthogonal Shimura subvariety of positive
dimension is strongly special.

Proposition 2.2.9. Let X be an orthogonal Shimura variety. Every orthogonal Shimura
subvariety of X s strongly special.

PRrROOF. Let (V,q) be a rational quadratic space of signature (n,2) such that G
equals SO(V,q), and such that X = I'\G(R)/K for some arithmetic subgroup I' of G.
Let Z be an orthogonal Shimura subvariety of X of dimension r > 0. By definition, it
arises from a subgroup H = SO(V’,¢’) of G, for some rational quadratic subspace (V',¢’)
of signature (r,2) in (V, q). We may consider H as a subgroup of G via the inclusion

SO(V',¢') — SO(V,q),

given by extending every isometry in SO(V’,¢') as the identity over V'+. Equivalently,
the group H is identified with the pointwise stabilizer of V' with respect to the action
of SO(V, q).

Since dim(V') > 3, the parabolic Q-subgroups of G are stabilizer subgroups of isotropic
flags in V, as explained e.g. in [CF, Theorem T.3.9]. We recall that a flag F in V is an
increasing chain of non-zero proper subspaces of V', denoted as

F={F &G-S Fy}, forsomem >0.

A flag F' is said to be isotropic if each Fj is totally isotropic in V. We say that a subgroup
of G stabilizes the flag F' if it preserves every subspace Fj, for j =1,...,m.

Suppose that Z is not strongly special. This means that there exists a parabolic Q-
subgroup P < G such that H < P. As previously remarked, every parabolic subgroup of G
is the stabilizer of an isotropic flag of V. We denote by F' the isotropic flag stabilized by P.
Since the Witt index of (V,¢q) is at most 2, the maximal isotropic subspaces of V' have
dimension at most 2. Therefore, the isotropic flag F is either of the form F = {F| & F»},
or F' = {F} with dim(F}) =1,2.

It is enough to prove that H does not stabilize any totally isotropic subspace F} C V
of dimension 1 or 2. We may suppose that any such F; does not intersect V'. In fact, the
orbits of the proper isotropic subspaces of V' of fixed dimension with respect to the action
of SO(V’,q’) are finite. They are actually either at most 2 by [CF, Proposition T.3.7].
Since whenever (V’,¢’) is isotropic, there is an infinite number of proper isotropic subspaces
of V', we may assume that F; N V' = ().

We begin with the case of dim(F}) = 1. Let u be a basis vector of F;, and let my-
(resp. my1) be the projection on the first (resp. second) factor arising from the orthogonal
decomposition V = V' @ V'+. Since u = 7y (u) + 7o (u) and q(u) = 0, then

0=q(u) = q(wvz(u)) + q(ﬂ'vu (u))
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The orthogonal complement (V” L qly+1) is a rational quadratic subspace of V' of positive sig-
nature. Since we suppose u ¢ V', then my1 (u) # 0 and g(my/1 (u)) > 0, hence g(my(u)) < 0.
Since there exists h € H such that h(my/(u)) is not a scalar multiple of my/(u), as one can
show using reflections by suitable vectors which are not orthogonal to my/(u), we deduce
that

h(u) = h(my(u) + h(mye(w) = by (u)) + Ty (u),
hence h(u) is not a scalar multiple of w. That is, h(u) ¢ F}.
The case dim(F}) = 2 is analogous. Every u € F} is such that my/(u) lies in a negative

definite quadratic subspace W of V' of dimension at most 2. Let h € H be such that
it maps W to a different negative-definite subspace of V’. Then some u € Fj is such

that h(u) ¢ F. O

2.3. CHARACTERISTIC BUNDLES

The characteristic bundle S()N() is a subbundle of the projective tangent bundle of X.

In this section we recall the explicit construction of S ()~( ) as a homogeneous space. To avoid
the characteristic bundle to be degenerate, we suppose that G is the group of isometries of
a rational quadratic space of signature (n,2), where n > 3.

2.3.1. Bounded domains of type IV. The homogeneous space X=a (R)/K is said to
be of type IV, see [Mok89, p. 75]. As a bounded symmetric domain, it is usually identified
with the connected bounded open subset DIV C C" defined as

n 2
(2.3.1) DY = {z = (21,00 2) €C7 = [l2)2 <2, (|2 < 1+ |2 22)/2] }

We quickly recall how to identify DLV with the quotient G(R)/K. The linear action
of G(R) on C"*2, obtained by extension of scalar of the standard one on R"*2, induces an
action on P"*! by projectivisation. The latter action restricts to the projective quadric Q"
given by the equation

2 2 2 2 _
w1+"'+wn_wn+1_wn+2_07

where we denote by w; the coordinates with respect to the standard basis eq,...,en42
of C"*2. We denote by Q0 the subset of such quadric defined as
n
Qb = {(w1 Dol Wpao) € Q" Z lwj|? < |wpga|? + !wn+2|2},
=1

that is, the subset of @™ on which the associated Hermitian symmetric form is negative
definite.

The open subset Q0 has two connected components. The bounded symmetric do-
main DIV may be identified with a connected component of Q¥ as follows. Define the new

basis €/,...,€), o of C"*2 as e;.:ej if j=1,...,n, and

ent1 = (ent1+ ient)/ V2, enya = (ent1 — ient2)/ V2,

and denote by z; the associated coordinates. From now on, all coordinates are with respect
to this basis. We denote by €, the connected component of Q¥ containing the point

(2.3.2) P=0:---:0:1:0).

We identify Q, with DIV mapping the point (z; : -~ : 2, : 1 : > i1 212-/2) of Q,
to (#1,...,2n) € C™.

The action of G(R) on P"*! restricts to a transitive action on Q2. We denote
by SO (n,2) the connected component of G(R) containing the identity, with respect
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to the Euclidean topology, i.e. considering G(R) as a Lie group. The action of SO™ (n,2) is
transitive on the connected component €2, of Q¥. It is well-known that

(2.3.3) Stabso+(n72)(P) =50(n) x SO(2) = Stabg ) (P).
This implies that we may identify €2,, resp. 22, with the quotient
SO (n,2)/SO(n) x SO(2), resp. G(R)/SO(n) x SO(2).

We now show that to rewrite the connected component €2, in terms of G(R), we need
to enlarge the subgroup SO(n) x SO(2) to the maximal compact K = S(O(n) x O(2)).
Any element of G(R) mapping €, to its complement in 0 is said to be a reflection. We
consider the reflection r defined as

(2.3.4) r= <_1 I ) € SO~ (n) x SO~ (2),
1

with respect to the coordinates wq, ..., wy12, where we denote by SO~ (m) the complement
of SO(m) in O(m), for every positive integer m. If we represent such reflection with respect
to the coordinates z1, ..., znp+2, then it becomes of the form

—1
— In—l
r = _1 .
—1

Using the latter representation, we deduce that r maps the point P € Q,, defined as
in (2.3.2) to the point (0:---:0:0: 1) of the other connected component Q9 \ Q,, of Q.
We remark that we may use the reflection r to split K as

K =8(0(n) x 0(2)) =(80(n) x SO(2)) [ (SO~ (n) x SO™(2)) =

(2.3.5)
=(50(n) x S0(2)) [T 7 - (SO(n) x SO(2))

Since r switches the two connected components of QY we deduce that Q0 /(r) = Q,,. It is
then enough to enlarge the group SO(n) x SO(2) by r, obtaining K as shown by (2.3.5), to
deduce that G(R)/K may be identified with £2,,.

We now make the actions of SO(n) x SO(2) on €, and on its projectivised tangent
bundle more explicit. We follow the wording of [Mok89, Section 4.2 (2.5), p. 77|. Here we
write the formulas with respect to the model D!V, since they are easier to describe.

If pp € SO(2) is the rotation of an angle § and T' € SO(n), then
(2.3.6) (T, pg) -z = €Tz,

for every z = (21,...,2,) € DIV.
Since X is identified with the open subset D}lv C C™, its tangent bundle and projectivized
tangent bundle are trivial:

(2.3.7) TX =XxC"—X, PIX=XxP"! X,

The action of SO*(n,2) on X = Q,, lifts to an action on TX by differentiation. Since
the action of the subgroup SO(n) x SO(2) is linear on €y, see (2.3.6), then the lifted action
on the tangent bundle and on the projectivized tangent bundle are simply

(T, pg) - (z,0) = (T2, e Tv) for every (z,v) € Q, x C",
(T, p9) - (2 [t]) = (€T, [Te]) for every (2, [v]) € O x B,
This implies that

(2.3.9) Stabso(n)xso(2) (0, [v]) = Stabgo(n) (0, [v]) x SO(2),

for every [v] € P 1.

(2.3.8)
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2.3.2. Characteristic bundle. We provide here an explicit definition of the characteristic
bundle of Q,, following the wording of [Mok89, p. 101, Examples|, constructing it as a
homogeneous space with respect to the action of the connected Lie group SO (n, 2). We will
illustrate how to identify such bundle as a quotient of the connected algebraic group SO(n, 2)
at the end of this section.

Definition 2.3.1. The characteristic bundle of €2,, is the subbundle
S(Q) =0, x Sy € Qp, x P
where Sy is the SO(n)-orbit of the point (1:i:0:---:0) € P*~1.

Let R,, C P"~! be the quadric defined by the equation v + - -- + v2 = 0, containing
the point [0]) = (1:4:0:---:0). It is well-known that the action of SO(n) is transitive
over R, with stabilizer Stabgo(,,)([0]) = SO(n — 2) x SO(2). This implies that

(2.3.10) So =R, =S0(n)/SO(n —2) x SO(2).
Proposition 2.3.2. Let n > 3. The characteristic bundle of)z is a complex manifold

which is homogeneous with respect to the action of SO*(n,2). It can be identified with a
quotient of Lie groups as

S(X) = 80%(n,2)/(SO(n — 2) x SO(2) x SO(2)).
PROOF. We identify X with €,. The Lie group SOT(n,2) acts on S(Q,) = Q,, x S
transitively. In fact, it acts transitively on €2,, and by construction the stabilizer of the

point P=(0:---:0:1:0) € Q, acts transitively on Sp.
Consider the point on the characteristic bundle defined as

(P,[T)]):((O:---:0:1:0),(1:1’:0:---:0))GQnXSO.

We may identify S(€2,) with the quotient SO (n, 2)/ Stabgo+ (, 2) ((P,[0])). By (2.3.3)
and (2.3.9), we deduce that

Stabgo (n,2) (P, [0])) =Stabstabg, ., (P) (P [0])) = Stabso(m)xso) (P, [0])) =
=S0(n — 2) x SO(2) x SO(2). O
Corollary 2.3.3. Let n > 3. The characteristic bundle of)N( s homogeneous with respect
to the action of G(R). It can be identified with the quotient
S(X) = G(R)/K',

where K' is the compact subgroup of G(R) generated by SO(n — 2) x SO(2) x SO(2) and
the reflection r defined in (2.3.4).

PROOF. The group G(R) is generated by SO™(n,2) and the reflection r, in fact
G(R) =S0*(n,2) []r-SO*(n,2).
For simplicity, we denote SO(n — 2) x SO(2) x SO(2) by K”. We may rewrite
(2.3.11) K'=K'][[r K"
We prove that the map
SO*(n,2)/K" — SO(n,2)/K’, gK" — gK’

is actually a bijection. Let gK’ € SO(n,2)/K’. Up to multiplying by r, we may suppose
that g € SO (n,2). Suppose that gK’ = gK' for some § € SO™(n,2). This implies there
exists k1 € K’ such that g = gk;. By (2.3.11), we deduce that k; lies in K" O
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2.4. MEASURE THEORY

This section provides the background on Measure Theory needed for the equidistribution
results of Section 2.5. We fix a group of isometry G = SO(V, ¢) for some rational quadratic
space (V, q) of signature (n,2), where n > 3, a compact maximal subgroup K of G(R), and
an arithmetic lattice I' in G(Q).

We illustrate here how to construct normalized Borel measures associated to the
Hermitian symmetric domain X = G(R)/K, its characteristic bundle S(X') and the special
subvarieties of X = '"\G(R)/K.

2.4.1. The measures vy and vx. Any G(R)-invariant Kihler metric on the symmetric

domain X = G(R)/K is a constant multiple of the metric arising from the Killing form
of the Lie algebra of G(R). We choose one of those metrics, denote by vol the associated
volume form, and by w its induced Kéhler form. By Wirtinger’s Theorem, the volume
form w™ is such that vol = w"/n!. Let F5 be a fundamental domain of X with respect to
the action of T'.

The restriction vol |£_ induces a G(R)-invariant Kihler metric on X such that Vol(Fy)

is finite. We denote by the normalized measure on X induced by the volume form

Vx

vol wn

VOI(J—")}) a n' VOI(.F)’E) ’

and by vx the probability measure induced on X by restriction to Fx.

2.4.2. The measures vx g/. Let = = I'\G(R). It is well-known that there exists a
unique G(R)-invariant measure on = up to a positive scalar; see [PR94, Chapter 3, Theo-
rem 3.17]. Endowed with this measure, Z is of finite volume. We denote by vz the G(R)-
invariant probability measure on = obtained by normalization. Fix z € G(R)/K and define
the projection
et E— X = \G(R)/K,
I'g+— T'gx.

The G(R)-invariant probability measure obtained as the push-forward of the measure v=
via 7, does not depend on the choice of z and coincides with the measure vy defined
in Section 2.4.1. We denote by vx g+ the G-invariant probability measure obtained via
push-forward as above, replacing K with any closed subgroup K’ < K.

2.4.3. An explicit measure vx g+ for the characteristic bundle. In Section 2.3 we
constructed the characteristic bundle S(X) 2 X x Sy — X as a holomorphic sub-bundle
of PTX = X x P*~ !, The factor Sp can be identified with the quadric R, C P*~! of
equation v + -+ + 02 = 0.

The bundle S(X) inherits an action of G(R). By Corollary 2.3.3, it is homogeneous
with respect to such action, and it can be identified as a quotient G(R)/K’ for some
closed subgroup K’ of K. For this reason, we may associate to S(X) the G(R)-invariant
probability measure vx g, as illustrated in Section 2.4.2.

We denote by vpg the probability measure on Sp induced by the Fubini-Study metric
of P"~1 namely

1
VRS ] volps |R.,,

~ Volps(Rn

where volpg is the volume form on P*~! induced by the Fubini-Study metric.

Lemma 2.4.1. The measure vy x vps on S(X) is G(R)-invariant.

X
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PROOF. Let r be the reflection defined in (2.3.4). Since such reflection acts trivially
on the quotient S(X) = G(R)/K’, it is enough to prove the G(R)*-invariance of Vs,
where G(R)™ is the connected component of the identity of G(R) with respect to the
euclidean topology.

Since v is G(R)"-invariant over X, it is enough to prove that vpg|g, is Stabg(r)+(P)-
invariant over the fiber { P} x R,, of the characteristic bundle, where P € ,, is as in (2.3.2).
We recall from (2.3.3) that under the identification of X with €2, we have

Stabg(R)+(P) = SO(n) X 80(2)

The Fubini-Study measure on P"~! is invariant with respect to the linear action induced
by U(n). Since in Stabgg)+(P) the factor SO(2) acts trivially by (2.3.9), and the remaining
factor SO(n) is contained into U(n), we deduce that vgg|r, is a SO(n) x SO(2)-invariant
measure on R.,,. ]

Definition 2.4.2. The characteristic bundle S(X) over a smooth orthogonal Shimura
variety X is the fiber bundle defined as S(X) = I'\S(X).

Let F S(%) be a fundamental domain of § ()Z' ) with respect to the action of I'. We may
choose such a fundamental domain as F. S(X) = F5 X FRr,, where Fgr,, is a fundamental
domain of R,, with respect to the action of I' N Stabgg)(P). In fact, recall that the action
of G(R) on X induces by differentiation an action of Stabg(gr)(Q) on the fibers {Q} X R,
for every @ € X. Since S ()Z' ) is homogeneous, it is enough to consider a fundamental
domain of the action of I'N Stabg(r) (P) on the fiber { P} X R;,, where P is as in (2.3.2), to
reach all points on the fibers of the form {v-P} xR, where v € I". An analogous description
holds also for any other point @ in the fundamental domain Fg, since if g € G(R) is such
that g: P — Q, then Stabgr)(Q) = g - Stabgr) (P) g %

Since X is homogeneous, it is enough to consider only the action of Stabgg)(P) over
the fiber {P} x R,,, where P is as in (2.3.2), to determine a fundamental domain in R,,.

Lemma 2.4.3. The measure vx g of S(X) is induced by restriction to ]:3()?) of the

. Vg XVFS
normalized measure ——X~—=—.
(g xves)(Fgx))

Proor. For simplicity, we denote by u the latter normalized measure. Since vx g’

is G(R)-invariant, it is the restriction of a G(R)-invariant measure v on S(X) to a funda-
mental domain F, S(X) normalized such that the volume of such fundamental domain is

one. By Lemma 2.4.1, also p comes from a G(R)-invariant measure on S ()Af ) normalized
in the same way. Since there exists a unique non-zero G(R)-invariant measure on S(X)
up to positive scalar, see [PR94, Chapter 3, Theorem 3.17|, the previous two measures
coincide. 0

2.4.4. Measures on orthogonal Shimura subvarieties. Let Z be an orthogonal Shimura
subvariety of X of dimension r > 3. We want to define G(R)-invariant probability mea-
sures vz and vz g on X and S(X) respectively, in analogy to the ones defined above.

Let H = SO(V’,¢’) be the subgroup of G associated to some subspace (V',¢’) of (V,q),
such that Z is the immersion in X of the orthogonal Shimura variety Z’ = I'y\H(R)/Kg,
where 'y = 'NH(R) and Ky = KN H(R). We may rewrite such r-dimensional immersion
as Z=D\lHR)K/K.

Let vz be the probability measure of Z’ constructed as in Section 2.4.1. We denote
by vz the push-forward of the measure vz via the immersion map 2/ — X.
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To define vz g, we follow an analogous procedure. The characteristic bundle on Z’
is S(Z') = Ty\H(R)/K};, where K}, = K' N H(R). It is endowed with a probability
measure Vg r . We denote by vz i/ the measure obtained as push-forward of v K, via
the immersion S(Z') — S(X).

2.5. EQUIDISTRIBUTION RESULTS

The last tool we need for the proof of Theorem 2.1.1 is a generalization of [MT15,
Proposition 2.2] to higher dimensions. Namely, we want to “lift” any weak convergence of
measures vz, — vz on X = ['\G(R)/K to a weak convergence of measures on = = I'\G(R).
This is provided by the following result, that may be considered as a refinement of [CUO05,
Théoreme 1.2| in the case of orthogonal Shimura varieties. We recall that the orthogonal
Shimura subvarieties of X are always strongly special, as we proved in Proposition 2.2.9.

Proposition 2.5.1. Let X = '\G(R)/K be an orthogonal Shimura variety, and let (Zy,)m
be a sequence of orthogonal Shimura subvarieties of fixed dimension in X. Suppose
that K' is a closed subgroup of K. The sequence of probability measures (vz,, r')m
on X =T\G(R)/K" contains a subsequence (vz, k+); which weakly converges to the
probability measure vz i associated to some orthogonal Shimura subvariety Z of X. The
subvarieties Z; are eventually contained in Z.

For the sake of brevity, whenever a sequence (Z;); is such that the associated probability
measures weakly converge to the one of a subvariety Z, as in Proposition 2.5.1, we say that
the subvarieties Z; equidistribute in Z.

PROOF. Let e be the neutral element of G. We firstly prove that the result with K’ = {e}
implies the result for any other closed K’ < K. Let K’ be an arbitrary closed subgroup,
and let 7: T\G(R) — I'\G(R)/K’ be the quotient map. As explained in Section 2.4.4, we
have

I/ij(/ = W*(VZm,{e}) and VZ,K’ = F*(VZ,{e})‘
Since 7 is continuous and vz, (. weakly converges to vz, when j — oo on Xy,
also Vz, K' = VZK' weakly.

We now prove the result for K’ = {e}. We recall that G = SO(V, ¢) for some rational
quadratic space (V, q) of signature (n, 2), where n is the dimension of X, and K is a maximal
compact subgroup of G(R) isomorphic to S(O(n) x O(2)). By Lemma 2.2.6, there exists
a Q-subgroup H = SO(V’,¢’) of G, for some subspace (V',¢’) of signature (r,2) with r > 0,
and ¢, € G(R) such that Z,, can be rewritten as

Zm =T\I'gn HR)K/K C X, for every m € N.

Since G and H are semisimple and defined over QQ, they admit no non-trivial characters
defined over Q. Since the subvarieties Z,, are strongly special by Proposition 2.2.9, the sub-
group H is such that 7(Zg(H)) is compact; see Remark 2.2.8. As explained e.g. in [BHC62,
Section 8|, since G and H are semisimple, they admit no non-trivial characters defined
over Q. By virtue of the previous properties of H, we may apply [EMS97, Theorem 1.1],
deducing that there exists a subsequence of {vy,, (.} }m which weakly converges to a mea-
sure v on I'\G (the subsequence does not “escape to infinity”). We denote this subsequence
by {vz, (e} };- Since H is Q-simple, we can apply [EO06, Proposition 2.1|, deducing the
existence of a closed connected (real) subgroup L of G(R) containing H(R) such that:

(1) v is a L-invariant measure supported on I'\I'cL(R) for some ¢ € G(R).

(2) cLc ' NT is a (Zariski dense) lattice in cLc™!, hence cLe™! is defined over Q.

(3) there exist jo € N and a sequence {z; € I'g; H(R)}; converging to ¢ such that cLc¢™?
contains the subgroup generated by {x;H (R)xj_l 2 J > Jo}
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The variety Z := I'\I'cLK /K is a special subvariety of X. By [Fiol8|, it must be of
orthogonal type; see also Remark 2.2.5. We conclude the proof showing that cLc™! = E(R),
where E = SO(W, qw) for some rational quadratic subspace (W, qw ) of signature (r/,2)
in (V,q), where ' > r, or equivalently that Z is an orthogonal Shimura subvariety of X of
dimension r’ > r.

Since the subvarieties Z; equidistribute in Z, the latter is the minimal special subvariety
of X containing Z; for all j > jo. That is, if Y is a special subvariety of X containing Z;
for all j > jg, then Y contains also Z.

Let E; = SO(Wj, qw,) be the group of isometries of some rational quadratic subspace
of signature (r,2) in (V, q), such that E;(R) = :ch(R)x;l. Such subspaces (Wj, qw,) exist,
since z; € I'g; H(R) and ng(R)gj_l = H;(R), where H; = SO(V}, g;) is the Q-subgroup
of G that gives rise to the orthogonal Shimura subvarieties Z;. In fact, the previous
conditions imply that there exists «; € I' such that

v Hi(R)y; ' =z H(R)z; !,

so that we may choose W; :=+V; and qw, = q|w;,.

Let W be the rational subspace of V' generated by all W; with j > jo, and let qi = ¢|w .
We prove that cLe™! = E(R), where E = SO(W, qi). Denote by M the Q-subgroup of G
such that cLe™! = M(R), and consider the orthogonal Shimura subvariety

Y =T\T'E(R)K/K.

By construction, we know that Z; C Z C Y, and that E; is a Q-subgroup of both F and M,
for every j > jg. Therefore M is a Q-subgroup of E.

The inclusion of Q-groups M < FE gives rise to an immersion of Shimura varieties. By
Remark 2.2.4, there exists a quadratic space (U, qr) over a totally real field extension F'
of Q such that M = Resp/q SO(U, qu). Up to base change to R, the inclusion M — FE
factors trough

(2.5.1) M(R) — SO(4,2) x SO(¢ +2) x --- x SO(¢ + 2),

for some ¢ < 7/, and the projection to the first factor SO(¢,2) is surjective.

If ¢ = 7/, then there must be no compact factor SO(¢ + 2) in (2.5.1) by dimension
issues, that is, F' = Q. Since the projection of M(R) to SO(¥,2) is surjective, the inclu-
sion M (R) — E(R) is onto, hence M = E.

We conclude by proving that ¢ can not be less than r'. We know that M (R) contains
the group of isometries E;(R) = SO(r,2), for every j > jo. The composition of the
inclusion E;(R) < M (R) composed with (2.5.1) can only land in the first factor SO(¢, 2)
of the right-hand side of (2.5.1). In fact, suppose that it does not. Then, projecting to
one of the factors SO(¢ + 2) in (2.5.1), there exists a non-trivial homomorphism of real
algebraic groups ¢ : E;(R) — SO(£ + 2). Since ker(¢) is normal in F;(R) and the latter is
simple, the map ¢ must be injective. This implies that E;(R) is isomorphic to a closed
subgroup in SO(¢ + 2), hence it is compact, but it is well-known that E;(R) is not.

Since F)j(R) is the group of isometries of the real quadratic subspace W; @ R of W ® R,
then SO(¥,2) must be the group of isometries of a real quadratic space containing all
such W; ® R. This implies that (¢,2) must be the signature of a quadratic space containing
all W;. Since W ® R has been chosen to be the span of the subspaces W; @ R, then (¢, 2)
must be at least the signature of W®R, and the latter is (r/,2). This implies that £ =7/. O

2.6. SEQUENCES OF ORTHOGONAL SHIMURA SUBVARIETIES IN COHOMOLOGY

The goal of this section is to prove Theorem 2.1.1, which we restate here for simplicity.
Recall that we denote by w the Kéhler form associated to any G(R)-invariant Riemann
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metric on G(R)/K, as well as the induced form on any smooth orthogonal Shimura variety
arising from G.

Theorem 2.6.1. Let X be a smooth orthogonal Shimura variety of dimension n > 3, and
let (Z;)jen be a sequence of pairwise different orthogonal Shimura subvarieties in X of
dimension r > 3. If such subvarieties equidistribute in an orthogonal Shimura subvariety Z
of dimension r' > r, then

2] r! 2]

(261) VOI(ZJ) Jj—o0 7/l VO](Z)

The idea is to prove the equivalent convergence statement on cohomology of currents
of X, as in [MT15]. To show such convergence, we will “lift” certain integrals on Z; to
integrals on the characteristic bundle associated to Z;. Since the latter degenerates when
the dimension of Z; is less than 3, we impose the condition r > 3.

In what follows, we firstly introduce the fundamental notation and the necessary
background. The proof of Theorem 2.1.1 is given in Section 2.6.4.

3%

n H2(n—r) (X, Q) ol 2 (X)

Remark 2.6.2. Theorem 2.1.1 is similar in spirit but slightly more general than [KM18,
Corollary 1.5], when applied to orthogonal Shimura varieties. We illustrate here the
differences between such results.

In the present notes, we deal with orthogonal Shimura varieties of dimension at least 3,
which are quasi-projective, hence non-compact. In [KM18]|, the authors are interested in
Shimura varieties arising from ball-quotients. For this reason, the varieties considered
in [KM18, Corollary 1.5] are chosen to be compact. Although their result is stated under
the hypothesis of compactness, it seems reasonable that the approach of [KM18] can be
extended to the non-compact case.

The sequence (Yj);cn of subvarieties of X appearing in [KM18, Corollary 1.5] is such
that no subsequence is contained in a proper subvariety of X. In Theorem 2.1.1 we do
not request such property. In fact, the sequence (Z;),cn may equidistribute, and hence be
contained, in a proper subvariety of X.

The proofs of Theorem 2.1.1 and [KM18, Corollary 1.5] are both based on the same
idea of “lifting” integrals from X to certain homogeneous bundles over X. However, such
bundles are different in the two proofs. In the former, we will use the characteristic bundle
of X, while for the latter the authors use the Grassmann bundle of X.

Remark 2.6.3. The recent paper [T'T21] contains results on equidistribution of subva-
rieties in orthogonal Shimura varieties, with an application to special cycles; see [TT21,
Proposition 1.14]. As in [KM18|, the subvarieties considered therein do not equidistribute
in proper subvarieties. Therefore, Theorem 2.1.1 is does not follow from [TT21].

2.6.1. Some results from Kéahler geometry. On a complex manifold M there is a priori
no canonical choice of distance and volume, since there is no canonical choice of a metric.
Whenever M is Kéahler, both the previous concepts are referred to the chosen Kéhler metric
of M. Along this section, we fix a Kéhler manifold M of complex dimension m with K&hler
form w, and we denote by vol the canonical volume form of M induced by the Kahler
metric. For any 1 < ¢ < m, we denote by A%‘(X,R) the space of real (¢, £)-forms on M.

For every submanifold Y of M, the restriction w|y gives a natural structure of Kéhler
manifold to Y. The Wirtinger Theorem enables us to compute the volume of Y via w|y.
Namely, if dimY = s, then
(2.6.2) Vol(y) = — / W

sl Jy

To introduce some of the needed notation, we recall here how to prove (2.6.2). We
firstly consider the volume of the whole M. There exist local coordinates z1, ..., z, of M
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such that the volume form induced by the K&hler metric can be written as
vol = (V—1/2)"dzy NdZT N\ -+ - Ndzm A dZm,

and w = (v/—1/2)dz1 ANdz1 + -+ + dzim A dZ,. The Wirtinger Theorem follows from the
fact that

—1\?
(2.6.3) wP = p! <2> Zdzl Ndzr, for every 1 <p < m,
I
where I = (i1 < --- < i) is a set of different p indexes among 1,...,m, and where

dzr = dz;; A -+ N\ dz;,, analogously for dzy. This means that w™ is a volume form of M, but
differs from the one induced by the Kéhler metric by a factor m!. This implies (2.6.2) in the
case of Y = M. If Y is a submanifold of M of dimension s, we can choose the previous local
coordinates z1, ..., 2y, such that Y is locally given by the zero locus 2541 =+ = 2, = 0.
The previous argument specialized to the first s local coordinates gives (2.6.2) in full
generality.

2.6.2. The function ¢, and its properties. Let M be a K&hler manifold of dimension m
with Kéhler form w. The purpose of this section is to introduce the auxiliary function ¢,
associated to a real (¢, ¢)-form o on M. Such function is the direct generalization of its
homonym in [MT15, Section 3, p. 908], and will be useful to prove Theorem 2.1.1.

Definition 2.6.4. Let o € A%“(M,R), for some 1 < £ < m. We denote by ¢, the smooth

function
—L Y 0_
v—1 A
¢a: PTM — R, [v] — () oy (W) ,
2 Do Hie[ |vi]

for every [v] € PT, M and every p € M, where I = (i < --- < iy) varies among the sets of
different ¢ indexes taken from 1,...,m.

The definition of ¢, does not depend on the choice of the representative v. We check
here that ¢, is real-valued for every o € AY*(M,R).

Let z1,..., zm be local coordinates of M in a neighborhood a point p € M. We rewrite
locally a as

¢
v—1
(2.6.4) a = <2) Zaudz] ANdzg,
I,J

where dz; = dz;, \--- Adz;,, analogous for dzy, and oy is a locally defined complex-valued
smooth function. The form « is real, i.e. & = @, hence

¢ ¢
V-1 v—1
(2> Za[szl/\dZ: (—2> Z@@Adzjz
L,Jg 1,J
VI e I /s | -
:(_2 (—1) Za[JdZJ/\dZ[: T Za]JdZJ/\dZ].
L,J I,J
This implies that a;; = a7 for all I and J, and in particular that a;; = ag7, that is, the
function ajy is real-valued for every I.

We now compute ¢, with respect to these local coordinates. Let [v] € PT,M, and rewrite
the representative v with respect to the dual basis of dz1,...,dzy, as v =>_", v;(9/0z)]p.
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We deduce that

Pa([v]) - (Z 11 ‘Ui’2> => au@[[o]]w=
1,J

(265) I el el jed
=Y o) [[10il* +>_a) [ [[ 75
I i€l I#J el jeJ

We checked above that ajy is a local real-valued function, hence the first term of the right-
hand side in (2.6.5) is a real number for every v € T,M. We also checked that a;; = @y,
therefore the second term of the right-hand side in (2.6.5) simplifies to

> 2R |au [Ju]]w

{1,J}, I#J iel  jeJ

which is a real number.

We conclude this section with some remarks on the auxiliary function ¢, associated to
a top-degree form o € A"™"™(M,R). It is well-known that there exists a real-valued smooth
function v, : M — R such that
Ya

(2.6.6) a =1y -vol = —-w",
m!

where vol is the volume form of M induced by the Kéhler metric. For top-degree forms,
the function ¢, defined in Subsection 2.6.2 is trivial, as proved with the following result.

Lemma 2.6.5. The value of po: PT'M — R is constant along the fibers, namely

va([v]) = Ya(p), for every [v] € PT,M.

PrROOF. We choose suitable local coordinates around p such that the volume form can be
locally written as vol = (v/—1/2)"dzy Adz1 A+ - - ANdzm A dZ,,. Writing any representative v
asv =Y . v;(0/0z)|p, we deduce that

I villis,w
=1 =1
2
H?; |vi]

2.6.3. Lift of integrals. The following technical result is a generalization of [MT15,
Lemma 3.3] to Kéhler manifolds of dimension greater than two. We will use this result
along the proof of Theorem 2.1.1 to “lift” integrals on orthogonal Shimura subvarieties to
integrals over their associated characteristic bundles. We use the notation of the previous
sections.

alle) = ) ) =valp). O

Proposition 2.6.6. Let Y be a submanifold of M of dimension s. Choose a 2(s—1)-form n
on PTY that restricts to the normalized Fubini—Study volume form n, on the fiber PT,Y
for everyy € Y. Then

f!(a‘y /\W|§/_£)y = (/IP’T y @a”y) ' (Wﬁf)y?
y

for all real forms a € AY(M,R) with £ < s, and for all y € Y. In particular, we deduce

the global equality
Z!/a/\ws_ez/ van N w’.
Y PTY
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PRrOOF. Fix y € Y once and for all. We choose local coordinates zi,...,zy, of M
around y such that the submanifold Y is locally given by 2541 = -+ = 25, = 0. In this
way 21, ..., 2s are local coordinates of Y. We may choose these coordinates in such a way
that w*~¢|y can be written locally as in (2.6.3) over Y, that is,

s—{
v—1
w|§;f =(s—12)! <2> ZdzI Ndzg,
I

where I = (i1,...,is—¢) is a set of pairwise different indexes among 1, ..., s. Using the local
writing for a|y, analogous to (2.6.4) on Y, we deduce that

E'-a]y/\ws_z\y = /! (2_1> '(s—ﬁ)!(ZaH)dzl/\dzﬁ/\---/\dzs/\dzs—
2.6.7
(2.6.7) (s 0!
Zan wly-

We compute now the integral over the fiber PT,Y = P!, For every [v] € PT,Y,
we write any representative as v = . _; v;(0/9z;)|p, with respect to the chosen local

coordinates of Y. Using the explicit formula of ¢, given by (2.6.5), we deduce that
(2.6.8)

frrn= [ () ol SR

_ o [Lics |UZ| [Licsvi H]eJ Uj
zI: ) Ps—1 ZLHA€L|UA‘2ny+ Z / < )ZLH,\GLW\’ )

(1,0}, I#J
where I, J, L are sets of ¢ pairwise indexes among 1,...,s.
The two involutions
(2.6.9) Ligr (Uit vttt = (U T e T ),
Lit (v oot ug) (Vg et — e Ug),

are isometries of P*~! with respect to the Fubini-Study metric induced on PT,)Y = ps—1
by the volume form 7,. For every integrand of one of the integrals appearing in the second
term of the right-hand side of (2.6.8), there exists an involution of P*~!, of the form u;,
which maps that integrand in its negative. Hence, the second term of the right-hand side
of (2.6.8) is zero, and we deduce that

12
(2610) / Pally = Z Oé]](y) Hie[ ‘U7,|

2y
PT,Y T po-1 Y or [aer [val

The integrands on the right-hand side of (2.6.10) are interchanged by the isometries
of the form ¢; ;. Therefore, the associated integrals are equal. Since the sum of all such
integrands equals one, and since 7, is normalized to give volume one to P~ the sum
of the integrals on the right-hand side of (2.6.10) is equal to one. Since the number of
integrals appearing there is (Z), we deduce that

l(s—¢
Pally = OéU
Lo =" 8

The comparison of this with (2.6.7) concludes the proof of the local equality of the statement.
This, together with Fubini’s theorem, imply the global equality of the statement. O

We need a slight generalization of the previous result to certain subbundles of the
projective bundle PTY — Y, as stated in the following result.
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Corollary 2.6.7. With the same notation as Proposition 2.6.6, let N — 'Y be a projective
subbundle of PTY — Y of rank r. Choose n to be a 2r-form on N which restricts to the
normalized volume form n, of Ny, with respect to the metric of N, given by the restriction
of the Fubini-Study metric of PT,)Y, for every y € Y. If the fibers N, are isometric to a
subset of PT,Y = P51 such that the isometries (2.6.9) restrict to isometries on Ny, then

Z!/a/\ws_zz/ Yo N w®.
Y N

PROOF. One can check that the only place in the proof of Proposition 2.6.7 where we
used the geometry of the fibers PT,Y" is where we simplified (2.6.8) using the isometries ¢; ;
and ¢;. Whenever these maps are well-defined on the fibers N, C PT,Y", the whole proof of
Proposition 2.6.7 is valid even if we replace PTY with its subbundle N. O

2.6.4. The proof of Theorem 2.1.1. We finally illustrate the proof of the main result of
Section 2.6.

PROOF OF THEOREM 2.1.1. Let X = G(R)/K be the universal cover of X. By
Corollary 2.3.3, there exists a closed subgroup K " of K such that we may rewrite the
characteristic bundle of X as S(X) = G(R)/K’; see Section 2.3.2 for details. We will prove
that

(2.6.11)

r! 1 /
/ o — — . /a/\wr ", for every a € A" (X,R),
Z; z

1
Vol(Z;) r'l Vol(Z)

where by A" (X, R) we mean the space of real (r,r)-forms of compact support on X. Since
the classical de Rham cohomology of X is equivalent to the cohomology of currents, the
convergence of (2.6.11) implies (2.1.1); see |[GH78, Chapter 3, Section 1].

Let Zj be the Hermitian symmetric domain associated to Z;. By Lemma 2.2.6, there
exists a Q-subgroup H = SO(W, qi) of G, for some rational quadratic subspace (W, qy)
of signature (r,2) in (V, ¢), and g; € G(R), such that

Zj =g;HR)/Ky and Z; =T\I'g;HR)K/K,

for every j. We denote by F; a fundamental domain of Zj with respect to the action
of ngng_l. We deduce that

7 ], vz )
— o= ——— o,
Vol(Zy) Jz, " T Vol(Z)) I,

where for simplicity we denote by « also its pull-back on Zj-
Recall that we denote by w a G(R)-invariant Kéahler form on X, as well as its induced

form on X. Since a|r; is a top-degree form of type (r,7) on F; < X, there exists a smooth
function 1, : F; — R such that

’!’|]__
alr; = Ya- ,
as we explained in (2.6.6). This imphes that
1 T\ 7
-0. SYRTL ) o T T advz,;,
(2.6.12) Vol(Z;) /Zj “= Vol / v / g,

where the last equality follows directly from the construction of vy, and vz, illustrated in
Section 2.4. B

Let PTF; = F; X P"~! be the restriction of the projective tangent bundle PTZ; to Fj.
By Lemma 2.6.5, since a7, is a top-degree form, the real-valued function gpa\pT]:j coincides

with 1, |7, along the fibers of the bundle PTF;. Let F, S(Z,) be a fundamental domain with
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respect to the action of ng‘gj_1 on the characteristic bundle S(Zj) = g;HR)/K},. We

recall that S(Zj) = Zj X R, where R, is the quadric in P"~! of equation 27 + - - - + 22 = 0.
As explained in Section 2.4.3, we may suppose that FS(Z )= = Fj x Fr,. By Lemma 2.4.3
and Fubini’s Theorem, we deduce that

(2.6.13)

/ . / d(l/-Zv]_ X VRS) / / dvps
PallVz, K = Pa =
5(2)) ! Foz, Wz, xvEs)(Fgz, Fr, 2; 7) ves(Fr,)

s(Z;)
d
/ Yo dvy / _ s / Yadvz,.
]—'R vrs(Fr,)

—
Since vz, i+ has support S(Z;) in S(X), we deduce from (2.6.12) and (2.6.13) that

2.6.14 / (padyz.7K/ = / (padl/ZA,K/.
( ) V01 5(2)) ’ S(X) !

Since the measures vz, s converge weakly to vz g+ when j — oo by Proposition 2.5.1, we
deduce from (2.6.14) that

1
2.6.15 / « / Vadvy K1, for all o € A"(X,R).

By Lemma 2.4.3 and Corollary 2.6.7, we may compute the right-hand side of (2.6.15) as

/ dv _/ dy~& _
soo " ) T AN oles (R

S(2)

/ w"’ . volrs rl 1 / T
= =— . . —— [ aAw
FyxFr, PONol(Z) 1 Nol(Fr,,) 1 Vol(Z) ’

where volpg is the volume form of P"'~1 induced by the Fubini-Study metric. We applied
Corollary 2.6.7 with 7 = volps / Vol(Fr ,), which is a form that restricts to the volume

form on the fibers of the trivial bundle F S(Z) = Fz x Fr,, over Fz. We also remark that

the quadric R, is a subset of P~ preserved by the involutions (2.6.9). U

2.6.5. A generalization of Theorem 2.1.1 to singular orthogonal Shimura vari-
eties. In this section, we explain how to extend Theorem 2.1.1 to the case of singular
orthogonal Shimura varieties. We first recall some well-known properties satisfied by the
cohomology groups of such varieties, then we illustrate the main result.

Let Xr = T'\G(R)/K an orthogonal Shimura variety associated to some arithmetic
lattice T' of G(Q). If X is smooth, then the singular cohomology group H"(Xp,C) is
isomorphic to the de Rham cohomology group Hjy(Xr,C), for every » > 0. If Xy is
singular, it is possible to find a finite index subgroup I'" < I" small enough (e.g. a neat
subgroup), such that X is smooth, and the projection map

e - Xp/ — Xr
is a finite cover of Xp. It is well known that the cohomology H"(Xp,C) is isomorphic to
the I\ -invariant subspace H" (X, C)''\I' of H" (X1, C), for every r > 0.

Corollary 2.6.8. The statement of Theorem 2.1.1 is true also if Xr is singular. Namely,
if Xr is a singular orthogonal Shimura variety of dimension n > 3, and if (Z;)jen is a
sequence of pairwise different orthogonal Shimura subvarieties in Xt of dimension r > 3,
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such that they equidistribute in an orthogonal Shimura subvariety Z of dimension r' > r,
then
[ZJ] r!

— ]7"/—7"

[Z]
VO](Z]') Jj—00 7'

Vol(Z)

(2.6.16) in H2"=")(Xp, Q) N H" """ (Xp).

PRrROOF. We denote by Z} = 71 (Z;) (vesp. Z' = 7f,(Z)) the cycle obtained by pullback
of Z; (resp. of Z) with respect to mp/. If Z = T\T'H(R)K/K for some H = SO(V’,¢)
associated to a rational quadratic subspace of signature (r/,2) in (V, ¢), then the pullback Z’
is the cycle given by

(2.6.17) AR Z Z['W], with support supp(Z') = T"\'H(R)K /K,
irred. comp.

va] of 7'

where Z, [/ﬂ =I"\I"vyH(R)K /K. Note that none of the irreducible components Z [/ﬂ appearing

as summands on the right-hand side of (2.6.17) may repeat, even in case of ramification
of the cover mpv; see [Bru02, Chapter 5]. We denote by n(,)(Z’) the number of repetitions

of Z! . in the sum
[v]
4
Z Z ]
~eI"\I'

Note that
(2.6.18) > n(Z)=[:T

irred. comp.

Z[/,y] of Z'

is the degree of the cover 7. Since Vol(Z[’,”) =np(Z') - Vol(Z), we may rewrite

&8l 1 4, L /
(2.6.19) Z VOI(;/ :VOI(Z) Z nM(’YZ’):VOl(Z) Z [ZM],

[y]er\I M) [y]er’\I' irred. comp.
Zl ot Z'

in H2=") (X1, Q).

Analogous remarks work with the pullback ZJ’- of Z; in place of Z’'. We will denote
by Z]'.M the irreducible component I"\I"vH;(R)K/K of Z}, where H; = SO(V}, ¢;) is the
group of isometries giving rise to the Hermitian symmetric domain of dimension r associated
to Zj. The index of ramification of ZJQM is denoted by n; (,)(Z7).

Since the pairwise different orthogonal Shimura subvarieties (Z;) en equidistribute in Z,
then Z is the minimal subvariety of X1 containing all Z;. For fixed [y] € I"\T', we consider
the sequence of orthogonal Shimura subvarieties (ZJ,}[V]) jeNn. Since the Z; = Wp/(Z;.h]) are
pairwise-different, so are Z ]’.7[7]. By Proposition 2.5.1, there exists a subsequence (Z;[,Y]) s and
an orthogonal Shimura subvariety Y” of Xt such that the Z7 I equidistribute in Y”. Since
also the subsequence (Z;)s equidistribute in Z, we deduce that 7w/ (Y’) = Z, therefore Y’
is one of the irreducible components of Z’. Summarizing, it is possible to split the
sequence (ZJ,}["Y]) jeN in a finite number of subsequences, each of them equidistributing in
some irreducible component of Z’. Since for large j we may assume that H; is a Q-subgroup
of H, we deduce that

Z]’.M =TI"\I"7H; R)K/K — TI'\I'YHR)K/K = Z['V],
therefore the whole sequence of subvarieties (ZJ’ M) jen equidistribute in Z[lv]'
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We may apply Theorem 2.1.1 to deduce that

(2.6.20)
[Zj/ [7]] r! / [Z[/’y]}
\ =T I 0 . HQ(n—’I“) X , H”_Tyn—r X ).
Vol (ZJ,',M) g 1! M : Vol (Z[,v]) . . @N (Xr)

Since we may identify the cohomology class [Z;] € Hz(”_r)(Xp,Q) with its pull-
back [75(Z;)] € H*™") (X, Q)7'\I' defined above, then we may also identify

Z;] : [t (Z5)] 1 ,
VOI(JZJ‘) with Vgl(zjj) = Vol(Z;) 2. Gl

irred. comp.
Z . of Z
357

We may rewrite the right-hand side above as
(2.6.21)

[(Z)] _ 1 : 1 Zim)
Vol(Z;) — Vol(Z;) >, [Znl= Vol(Z;) >, Vol M)Vol(Z'H)_

1rred comp. 1rred comp.

[ on on
7] [7]
1z ] [z ]
_ / phl 3,01
= 2 @z 5= 2 Noiz, )
irred. comp. 4[] [y]e"\I" 5[]

!
25

where we used Vol(Z M) j1y(Z5) - Vol(Z;). We now apply (2.6.20) to the right-hand
side of (2.6.21) and deduce that

of Z’.

(2.6.22)
[WF’(ZJ)] 1 Z [ / r -r ["/]
N = , i) —>Oo ) Y =
Vol(Z;)  Vol(Z;) med . j—oo 1!l HIETAT Vo ( L })
of Z}
Z, (]
r! r'—r [Zfﬂ] 1 r! r'—r /
=l w20 - Vol(Z) ~ Volz) 1 WA >, 2=
[y]er’\l (] irred. comp.
Z[’A/] of Z'
T! ) ’ A [WF/(Z)]

= Vol(Z)
Summarizing, we deduced that
[WF/(ZJ)] . r! [w]rl_r A [WF/(Z)]
VOI(Z]) Jj—00 ’f‘/' VOI(Z) '
The Kéhler class w of G(R)/K is G(R)-invariant, hence it descends to a cohomology class
in HY1 (X, Q) which is I"\I-invariant. Since the wedge product of I'"\I'-invariant forms

on X is I'"\I'-invariant as well, we deduce that all cohomology classes appearing in (2.6.23)
are in fact I"\I-invariant. Hence, the sequence (2.6.23) is actually in H?"(Xp, Q)V'\[. [

(2.6.23)

2.7. CONES GENERATED BY SPECIAL CYCLES

In this section we illustrate a strategy to use Theorem 2.1.1 and Corollary 2.6.8 to study
the limits of sequences of rays in the cones generated by special cycles of codimension two
on orthogonal Shimura varieties, in the same spirit of Chapter 1 but via equidistribution,
as well as some generalization for special cycles in higher codimension. In this sense, this
section could be regarded as a way to double check Chapter 1 in cohomology from a different
point of view.
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Let X be a normal irreducible complex space of dimension n. A cycle Z of codimension r
in X is a locally finite formal linear combination

Z:ZnyY, ny € Z,

of distinct closed irreducible analytic subsets Y of codimension 7 in X. The support of
the cycle Z is the closed analytic subset supp(Z) = {J,,,, 40 Y of pure codimension r. The
integer ny is the multiplicity of the irreducible component Y of supp(Z) in the cycle Z.

If X is a manifold, and I" is a group of biholomorphic transformations of X acting
properly discontinuously, we may consider the preimage 7*(Z) of a cycle Z of codimension r
on X/T" under the canonical projection m: X — X/T". For any irreducible component Y
of ﬂfl(supp(Z )), the multiplicity ny of Y with respect to 7*(Z) equals the multiplicity
of 7(Y) with respect to Z. This implies that 7%(Z) is a '-invariant cycle, meaning that
if 7(Z) = > _nyY, then

v(7*(Z)) = Znyy(Y) equals 7*(Z), for every v € I.

Note that we do not take account of possible ramifications of the cover .

We now focus on orthogonal Shimura varieties associated to unimodular lattices. Let L
be an even unimodular lattice of signature (n,2). We denote by (-,-) the bilinear form of L,
and by ¢ the quadratic form defined as ¢(-) = (+,-)/2. The n-dimensional complex manifold

D,={2€ L&C\ {0} : (2,2) =0and (z,2) < 0}/C* C P(L®C)

has two connected components. The action of the group of the isometries of L, denoted
by O(L), extends to an action on D,,. We choose a connected component of D,, and denote
it by D;f. The manifold D; is a model of G(R)/K, where G = SO(L ® Q) and K is
a compact maximal subgroup of G(R). We define O" (L) as the subgroup of O(L) that
contains all isometries which preserve D;f.

From now on, we choose I' to be the orthogonal group O* (L) or a subgroup of finite
index. We denote by Xt the orthogonal Shimura variety I'\D;", and by 7: D;} — X the
canonical projection. An attractive feature of these kind of varieties is that they have
many algebraic cycles. We recall here the construction of the so-called special cycles;
see [Kud97]. They are a generalization of the Heegner divisors in higher codimension;
see [Bru02, Section 5] for a description of such divisors in a setting analogous to this thesis.

We denote by Ay (resp. A:{) the set of symmetric half-integral positive semi-definite
(resp. positive definite) d x d-matrices. If X = (\1,...,\g) € L% for some d < n, the
moment matriz of X is defined as g(X) = £ ((\;, ’\ﬂ'))m" while its orthogonal complement

. + .
in D is

IfT e A;r, then

2. M

AeLd
qg(N)=T

(2.7.1)

is a T-invariant cycle of codimension d in D;". Since the componentwise action of " on the
vectors A € L% of fixed moment matrix T € A(‘; has finitely many orbits, the cycle (2.7.1)
descends to a cycle of codimension d on X1, which we denote by Z(T') and call the special
cycle associated to T. The special cycles of codimension one are usually called Heegner
divisors.
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Remark 2.7.1. The group GL4(Z) acts on Ay via the action T' + u!-T-u, where u € GLg(Z)
and T € Ay, preserving A, Since g(u-A") = u-g(X) - u! for every u € GL4(Z) and A € L?
with ¢(A) € A}, it is easy to see that Z(T) = Z(u! - T - u).

In Chapter 1, we were interested in the cone generated by the (rational classes of)
codimension 2 special cycles in CH?(Xt) ® R, namely

CXF = <{Z(T)} T e A;>R20’

where we denote by {Z(T)} the rational class of Z(T) in the Chow group CH?(Xr) of
codimension 2 cycles on Xt. Note that here we consider the cone of cycles as generated over R
instead of Q for simplicity, since its rationality has already been proven in Theorem 1.1.2.
The purpose of Chapter 1 was to illustrate some geometric properties of Cx,. using the ones
of the so called modular cone, that is, the cone generated by certain coefficient extraction
functionals of Siegel modular forms of genus 2 and weight 1+mn/2. This was a generalization
of the results on cones of Heegner divisors appearing in [BM19], deduced with Siegel modular
forms of genus 2 instead of elliptic modular forms.

In Section 1.8, we computed the limits of sequences of rays (R>g - {Z(T})})jen gen-
erated by the special cycles associated to matrices T} € A; of increasing determinant.
Let c2: CH?*(Xr) ® R — H*(X1,R) be the cycle map. In what follows we illustrate a
strategy to double-check the results of Section 1.8 in cohomology with a completely differ-
ent method, namely instead of sequences (R>q - {Z(T})});jen we deal with the associated
sequences (R>o - [Z(T})])jen in cohomology, obtained applying the cycle map cp, in terms
of equidistribution of the irreducible components of Z(7;). We will restrict to the case
of I' = O"(L), so that we may study the irreducible components of Heegner divisors rather
explicitly, as illustrated in [BM19, Section 4].

From now on I' = O*(L). If m is a positive integer, we denote by HPM'™ the m-th
primitive Heegner divisor, that is, the divisor of Xt descending from the I'-invariant divisor
of DT defined as

(2.7.2) >k

A€ L primitive
q(A)=m
Remark 2.7.2 (See [BM19, (17)]). If m is squarefree, then the Heegner divisor Hy, is
the same as the primitive Heegner divisor H5 ™. If m is non-squarefree, then H,, may be

written as
o prim
Hy= > HY it
teZ>o
t2|m
We gather in the following result some basic properties of the irreducible components
of Heegner divisors and codimension 2 special cycles.

Lemma 2.7.3. Let I = O (L), for some even unimodular lattice L of signature (n,?2)
such that n > 2.

(i) All irreducible components of Z(T), where T € AT, are orthogonal Shimura
subvarieties of codimension d in Xr, and all orthogonal Shimura subvarieties of
codimension d in Xt arise in this way, .

(ii) For every positive integer m, we have Hpy' " = 2-T\I'\Y, where A € L is any
primitive lattice vector such that q(\) = m. Equivalently, HY, m s the orthogonal
Shimura subvariety T\I'A\*+ of Xt counted twice.
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(iii) Let T = (my;)i; € A be such that m;; is squarefree, for some j = 1,...,d.
All irreducible components of Z(T') are subvarieties of the irreducible component
of Hp ;-

PROOF. We begin with (i). It is easy to see that every irreducible component of Z(T')
is by definition the immersion in Xt of the orthogonal Shimura variety associated to the Q-
subgroup H = SO({A4, ..., )\d>6) of G = SO(L®Q), and to the arithmetic group I' N H(Q).
In fact, the quadratic subspace (Ag, ..., )‘d>6 of L ® Q is of signature (n — d,2), since T is
non-singular. Conversely, if Z is an orthogonal Shimura subvariety of codimension d in Xr,
then it arises from a rational quadratic subspace (V’,¢’) of signature (n — d,2) in (V,q),
where V = L ® Q. Let S be the orthogonal complement of (V’,¢’) in (V, q). It is a rational
quadratic space of signature (d,0). Let vq,...,vg be a basis of S. Up to multiplying by
suitable integers, we may suppose that such basis is made by lattice vectors of L. This
implies that Z is an irreducible component of the special cycles Z(q(vy,...,vq)).

Point (ii) is [BM19, Lemma 4.3|, we briefly recall the proof. Since g(A) = ¢q(—\)
and A = (=\)*, we see that in (2.7.2) every subvariety A*, such that A is primitive with
norm ¢(A\) = m, is counted twice. In fact, the only primitive lattice vectors of norm m
generating the line R- A € L ® R are A and —\. By [FH00, Lemma 4.4], any two
primitive lattice vectors in L with the same norm lie in the same O (L)-orbit. This implies
that TAL = T'\L, for every primitive A\, \ € L of norm m.

We conclude the proof showing (iii). Let A = (A1,...,\q) € L be such that g(A\) = T.
If m;; is squarefree, then the entry A; is a primitive lattice vector of L. By (ii), we deduce
that F\F)\jL is the irreducible component of the Heegner divisor H,},)f;r;l on Xr. Since At is

a subvariety of )\jl7 also T\I'A* is a subvariety of F\F/\]-L. O

We now focus on the cone cy (CXF), that is, the cone in H*(Xt,R) generated by the
cohomology classes of codimension 2 special cycles. We are under the usual condition
that T' = O" (L), so that we may decompose every Heegner divisor in irreducible components
as in Remark 2.7.2 and Lemma 2.7.3 (ii).

The following results, which illustrates the behavior of sequences of rays generated by
irreducible components of special cycles, are proven via the results provided in Section 2.6.
The idea is to use the generalization of Theorem 2.1.1 to non-singular orthogonal Shimura
varieties, that is, Corollary 2.6.8. In fact, the orthogonal group I' = O" (L) has torsion in
general, hence Xt may be singular.

The next proposition is [BM19, Proposition 4.5|, therein proved in terms of modular
forms, using the modularity of Kudla’s generating series of Heegner divisors. We provide
here a different proof in terms of equidistribution.

Proposition 2.7.4 (Bruinier—Moller). Let Xt be the orthogonal Shimura variety associated
toT = OT (L), for some even unimodular lattice L of signature (n,2), where n > 3. Then

(2.7.3) Rsq - [HP™] —— R [w] in H%*(Xp,R).

PROOF. As illustrated in Lemma 2.7.3 (ii), the primitive Heegner divisor HPM™ s twice
an orthogonal Shimura variety of the form I'\I'\*, for some primitive lattice vector A € L
such that ¢(\) = m. Since any lattice vector can be written uniquely as a positive multiple
of a primitive lattice vector, so that the only primitive lattice vectors in L generating
the line R- A C L®R are A and —A, we deduce that the irreducible components of the
divisors in the sequence (Hp, " )men are pairwise different. By Proposition 2.5.1, there
is no subsequence of (Hp ' )men Without convergent subsequences. Since the H5 ™ are
pairwise different of codimension 1 in X, we deduce that the only subvariety of Xr in which
the Hpy, ™ can equidistribute is Xp itself. We then deduce (2.7.3) from Corollary 2.6.8. O
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From now on, we focus on the irreducible components of special cycles of codimension
greater than 1.

Proposition 2.7.5. Let Xt be the orthogonal Shimura variety associated to T' = O1 (L),
for some even unimodular lattice L of signature (n,2), where n > 2. Let (T})en be a
n; r;/2
T'j;2 z’)’L
a sequence of pairwise different subvarieties of Xr, chosen such that Z; is one of the
irreducible components of the special cycle Z(T}), for every j.

sequence of matrices T = ( ) in A; of increasing determinant. Let (Z;)jen be

(i) If m is squarefree, then
Rso-[Z;] —— Rso - [Hn) Aw]  in HY(X1,R).
j—00
(i1) If m is non-squarefree, then there exists a square divisor t of m, and a subse-
quence (Zs)s, such that
R0 - [Zs] —— R>o- [Hy el Alw]in HY(Xr,R).

PROOF. We begin with (i). By Proposition 2.5.1, there exists a subsequence (Z;)s
of (Z;);jen, and an orthogonal Shimura subvariety Z of dimension 7’ > n — 2 in X, such
that the Z; equidistribute in Z, in particular Z; C Z for every s large enough. By
Lemma 2.7.3 (iii), all Z, are subvarieties (of codimension 1) of the irreducible component of

the Heegner divisor H,,. This implies that Z is such irreducible component, and ' = n — 1.
By Corollary 2.6.8, we deduce that

[ZS] (TL — 2)' [w]r’f(n72) A [Z]
Vol(Zs) s—o0 r! Vol(Z)
We know from Lemma 2.7.3 (ii) that H,, = 2Z. Since the volume of a subvariety is

non-negative, we deduce that the sequence of rays in co (C Xr) generated by the cohomology
classes appearing in (2.7.4) is such that

(2.7.5) R>0[Zs] —— Ryo [Hm] Alw]  in H*(Xr,R).

(2.7.4) in H4(Xr,R).

Note that [Hy,] A [w] = [w] A [Hp], since w is a (1, 1)-form. By Proposition 2.5.1 there is no
subsequence of (Z;);jen without equidistributing subsequences. Since the Z; are pairwise
different, and since Z is the only subvariety of Xr in which any subsequence of (Z;);en
can equidistribute, we deduce that (2.7.5) is satisfied by the whole (Z;);en.

We now prove (ii). By Proposition 2.5.1, there exists a subsequence (Zs)s as above, and
an orthogonal Shimura subvariety Z in which the Z; equidistribute. By construction, all
irreducible components of the special cycles Z(T}) are contained in F\F)\jl, for some \; € L
such that g(\;) = m. Let t; € Z~o be such that \; := \;/t} is a primitive lattice vector

in L, so that t;2 divides m. By Lemma 2.7.3 (ii), we deduce that F\F/\j- = F\F)\y- is the

irreducible component of Hf:/l?,lg. Since the number of such primitive Heegner divisors
i

is finite, there exists a square divisor ¢ of m such that, up to extracting a subsequence,

all Z, are subvarieties of HE;?; Since the Z, have codimension 1 in Hs;/lg, then the latter

is the only subvariety in which the Z; can equidistribute. This means that Z = Hs/u;;
Corollary 2.6.8 concludes the proof.

Remark 2.7.6. In Proposition 2.7.5, the hypothesis that the subvarieties Z; are pairwise
different can not be dropped. In fact, as illustrated in Example 2.7.7, it is possible to
n; r;/2
T‘j;2 ?ﬂl
common irreducible component, for every positive m.

construct a sequence of matrices T; = ( ) such that all special cycles Z(T;) have a
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Example 2.7.7. Let m be a positive integer, and let L be a unimodular lattice of signa-
ture (n,2) such that n > 3, as usual. Choose A1, A2 € L to be orthogonal lattice vectors
such that ¢(A1) > 0 and ¢(A2) = m, and consider the matrices T; = (jz'qé)‘l) T?L) € AJ, for
every j € N. Up to taking off the very first matrices of the sequence (Tj);ecn, we may
suppose that T} are all reduced.

All special cycles Z(T;) have the subvariety ¥ = I\I'AL as common irreducible
component, where X := (A1, A2). In fact, if we choose A; = (jA1,\2) € L? for every j,
then ¢(X\;) = T}, and since At = )\j‘ as subspaces in L ® C, we deduce that Y is common
to every Z(T}).

In [BM19], the convergence of (2.7.3) in Proposition 2.7.4 is proven to be true also if the
primitive Heegner divisors H}, " are replaced by the Heegner divisors H,,. Proposition 2.5.1
and Corollary 2.6.8 do not immediately imply such result. In fact, since H,, has, for non-
squarefree m, many different irreducible components which are primitive Heegner divisors
associated to smaller indexes, in the sequence (H,,)mnmen the divisors have many irreducible
components which repeatedly appear. To deduce the generalization of [BM19| explained
above, one should prove that such repeated components does not play any role in the
convergence of the sequence (Rsq - [Hp])men, more precisely that

(2.7.6) > [H}j{}?;] 0 in H*(Xr,R)
. . m r, R).
= Vol(Hp™) m—ee
t>1

In Section 1.8 , we explained that sequences of rays generated by special cycles of
codimension 2 associated to reduced matrices of increasing determinant may have many

different accumulation rays, and we computed all of them. For instance, if we choose T}
n; r;/2

ri/2 m ) € A; is reduced with m squarefree, then

as in Proposition 2.7.5 (i), i.e. T} = (
Corollary 1.8.3 implies that
(2.7.7) R>0 - [Z(T))] —— Rxo - [Hin] A [w].

J—00
This was proved in Chapter 1 using coefficients of Siegel modular forms. As for the case of
Heegner divisors, Proposition 2.5.1 and Corollary 2.6.8 do not immediately imply (2.7.7),
since in the sequence of cycles (Z(T}));en there are in general many irreducible components
which repeatedly appear; see Remark 2.7.6. As above, to deduce (2.7.7) one should
prove that such repeated components does not play any role in the convergence of the
sequence (Rxq - [Z(T})])jen-
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CHAPTER 3

UNFOLDING AND INJECTIVITY OF THE KUDLA—MILLSON LIFT
OF GENUS 1

ABSTRACT

‘We unfold the defining integrals of the Kudla—Millson lift of genus 1, associated to even
lattices of signature (b,2), where b > 2. This enables us to compute the Fourier expansion of
such defining integrals. As application, we prove the injectivity of the Kudla—Millson lift.
Although this was already proved in [BF10], our procedure has the advantage of paving the
ground for a strategy that could work for the case of genus greater than 1.

3.1. INTRODUCTION

We consider the Kudla—Millson lift as a linear map from a space of elliptic cusp forms
to the space of closed 2-forms on some orthogonal Shimura varieties. Starting from the
foundational work of Kudla an Millson [KM86] [KM87] [KM90], such lift has attracted much
interest. In fact, it provides a way to study the geometry of orthogonal Shimura varieties
by means of modular forms; see for instance [Bru02] [BM19]| and Chapter 1. Moreover,
it is dual to Borcherds’ singular theta lift, as proved in [BF04]. Also the problem of its
injectivity is of interest, as remarked in [BF10].

In this chapter, we apply Borcherds’ formalism [Bor98| to unfold the defining integrals of
the Kudla—Millson lift. As application, we compute the Fourier expansion of such integrals,
and prove that the Kudla—Millson lift is injective in the case of orthogonal Shimura varieties
arising from lattices that split off two hyperbolic planes. These are analogous to [Bru02,
Theorem 0.7] and [BF10, Corollary 1.2], but proved in a different way. The procedure
illustrated in this chapter has the advantage of paving the ground for a strategy that could
work for the case of genus higher than 1. It is the purpose of Chapter 4 to unfold the
Kudla—Millson lift of genus 2.

We now explain the results of this chapter in more details. Let L be a non-degenerate
even lattice of signature (b,2), where b > 2. To simplify the exposition, we assume L to be
unimodular, an return to the general case in Section 3.7. We define k = 1 + b/2, which is
an even integer, as one can easily deduce from the well-known classification of unimodular
lattices.

Let V = L ® R. The Hermitian symmetric domain D associated to the linear alge-
braic group G = SO(V) may be realized as the Grassmannian Gr(L) of negative definite
planes in V. We denote by O (V) the connected component of the identity of O(V).
Let Xr = I'\D be the orthogonal Shimura variety arising from a subgroup I' of finite index
in O (L) = 0" (V)N O(L).

Kudla and Millson constructed a G-invariant Schwartz function pky on V' with values
in the space Z2(D) of closed differential 2-forms on D. We provide an explicit formula for
such a Schwartz function in Section 3.2. Let ws, be the Schréodinger model of the Weil
representation of SLa(R), acting on the space S(V') of Schwartz functions on V', associated
to the standard additive character; see Definition 3.2.1 for details.
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Definition 3.1.1. The Kudla—Millson theta form is defined as

9(7-7 2, SOKM) = yik/2 Z (Woo (gT)SOKM) ()\7 Z),
AeL

for every 7 = x + iy € H and z € Gr(L), where g. = (} %) <\/0§ \/@0,1> is the standard

element of SLo(R) mapping 7 € H to 7.

In the variable 7, this function transforms like a (non-holomorphic) modular form of
weight k& = 1 + b/2 with respect to SLa(Z). In the variable z, it defines a closed 2-form
on Xp. Let Sf be the space of weight k elliptic cusp forms with respect to the full modular
group SLo(Z).

Definition 3.1.2. The Kudla—Millson lift of genus 1 is the map
dx dy

(B11) ARM:SF L Z2(Xp), s ARM(f) = / o ()00 2 ) Y
SL2(Z)\H Yy

where dzzdy is the standard SLg(Z)-invariant volume element of H.

In Section 3.3 we compute explicitly O(, z, pkm), and rewrite it in terms of Siegel theta
functions ©, attached to certain homogeneous polynomials P, ) of degree (2,0) defined
on the standard quadratic space R??: see (3.2.11) for the definition of such polynomials.
The Siegel theta functions ©1, were introduced by Borcherds in [Bor98|.

As explained in Section 3.5, is it possible to rewrite the lift AXM(f) as

— _dxd
(3.1.2) AKM(p) / ’““f (1)OL(T, 9, Pras) g
SLy(Z Yy

7B 1

)®9* (Wapr1Awab+2),

= a,ﬂ(g)

where g € G is any isometry mapping z to a fixed base point zy of D, and g* (wa,b_l'_l A w57b+2)
is a vector of /\2 T7D. Remark 3.2.6 contains details on its construction.

We refer to the integral functions Z, g: G — C appearing in (3.1.2) as the defining
integrals of the Kudla—Millson lift. The idea of this chapter is to apply Borcherds’ formal-
ism [Bor98| to unfold the defining integrals of AXM(f), rewriting them over the simpler
unfolded domain I's\H, where I'y, is the subgroup of translations in SLy(Z). More pre-
cisely, we will choose a splitting L = L1 @ U, for some Lorentzian sublattice Lo and
hyperbolic plane U, and unfold Z,, g as follows. We do not recall here the definitions of i
and P, g) g# n+ 0, Which come from [Bor98]|, and instead refer to Section 3.3.2.

Theorem 3.1.3. Let u,u’ be the standard generators of the hyperbolic plane U. For
every g € G, we denote by z € Gr(L) the plane mapping to the base point zy via g. The
defining integrals L, g of the Kudla—Millson lift AKM(F) may be unfolded as

k41/2
y f(r dxdy

(3.1.3) Iaﬂ(g):/ y ) OLoe (T, 97, Plag) g#.00) — 5+
SL:(@\H  [2u? |

2
k+1/2f (2iy) —ht Rt (_ mr )
g E Y) " exp 5 | X
/FOO\H . 2yu?,
dx dy

Oy, (7,711, 0, g% s Plo,B),g% h+ 0) 2

where p = —u' + 1 /2u? 4 u./2ul.
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If a complex valued function defined over G is invariant with respect to some Lorentzian
sublattice of L, then it admits a Fourier expansion. Although this general principle is
classical in the literature, for the sake of completeness we provide an overview of it in
Section 3.4. This is based on an explicit Iwasawa decomposition of G.

In Section 3.5 we use the unfolding (3.1.3) to compute the Fourier expansion of the
defining integrals of AXM(f), as illustrated in Theorem 3.5.4. In particular, we will show
that the first summand of the right-hand side of (3.1.3) is actually the constant term of the
Fourier expansion of Z,, g. As application of such expansions, in Section 3.6 we illustrate
how to deduce the injectivity of AXM from them. The idea is as follows. The lift AXM(f)
of a cusp form f equals zero if and only if all defining integrals 7, g are zero, which implies
that all Fourier coefficients of Z,, g are trivial. From the explicit formulas of such coefficients
provided by Theorem 3.5.4, we then deduce that if Z, g = 0, then all Fourier coefficients
of f equal zero, therefore f is trivial.

The previous results are illustrated in the case of even unimodular lattices L of signa-
ture (b,2), where b > 2. In Section 3.7 we quickly explain what needs to be changed to
deal with non-unimodular lattices, generalizing Theorem 3.1.3. We provide also a proof of
the injectivity of AXM in this setting.

Theorem 3.1.4. Let L be an even lattice of signature (b,2), with b > 2, that splits off two
orthogonal hyperbolic planes. The Kudla—Millson theta lift A{(M associated to L is injective.

3.2. THE KUuDLA-MILLSON SCHWARTZ FUNCTION.

Let V be a real vector space endowed with a symmetric bilinear form (-,-) of signa-
ture (b,2), where b > 2. Its associated quadratic form is defined as ¢(-) = (+,-)/2. In
this section, we provide an explicit formula of the Kudla—Millson Schwartz function ¢k
attached to V, following the exposition of [BF04, Section 2 and Section 4| and [Kud97,
Section 7).

Let (ej); be an orthogonal basis of V' such that (eq,eq) = 1 for every a = 1,...,0,
and (ey,e,) = —1 for 4 =b+ 1,0+ 2. We denote the corresponding coordinate functions
by x, and x,. The choice of the basis (ej); is equivalent to the choice of an isome-
try go: V. — R?»2, where R%? is the real space R**? endowed with the standard quadratic
form of signature (b,2) defined as

b
QO((ﬂfl, e 7$b+2)t) = fo - chﬂ - x§+27 for every (z1,...,zp12)" € R,
j=1

The Grassmannian associated to V is the set of negative definite planes in V', namely
Gr(V)={zCV:dimz=2and (-,-)], < 0}.
The plane zy spanned by epy1 and e, 2 is the base point of Gr(V). The Hermitian symmetric
space arising as the quotient D = G/K, where G = SO(V) = SO(b, 2) and K is the maximal
compact subgroup of G stabilizing zy, may be identified with Gr(V); see [Bru+08, Part 2,
Section 2.4|. From now on, we write D and Gr(V') interchangeably.
For every z € D, we define the standard majorant (-,-), as

(3.2.1) (v,0) = (V1,01 ) — (vz,05),
where v = v,4v,1 € V isrewritten with respect to the orthogonal decomposition V' = 2@zt
Let g be the Lie algebra of G, and let g = p + ¢ be its Cartan decomposition. It is

well-known that p = g/¢ is isomorphic to the tangent space of D at the base point zy. With
respect to the basis of V' chosen above, we have

(3.2.2) p={(&7)IX eMatyo(R)} = Maty(R).
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We may assume that the chosen isomorphism is such that the complex structure on p is
given as the right-multiplication by J = (% §) € GL2(R) on Mat,o(R).

To simplify the notation, we put e(t) = exp(2wit), for every ¢ € C, and denote
by v/t = t'/? the principal branch of the square root, so that arg(v/t) € (—n/2,7/2].
If s € C, we define t* = e5Log(®) where Log(t) is the principal branch of the logarithm.

Definition 3.2.1. We denote by ws, the Schrédinger model of (the restriction of) the Weil
representation of Mp,(R) x O(V) acting on the space S(V') of Schwartz functions on V.
The action of O(V) is defined as
weo(9)p(v) = ¢(g7' (v)),
for every ¢ € S(V) and g € O(V'). The action of Mp,(R) is given by
woo (1) ¢(v) = e(zq(v))p(v), for every z € R,
(3.2.3) woo (& ,21) o(v) = aP*22p(av),  for every a > 0,

wao(S)p(v) = Vi B(—v),

where S = ((Y '), v/7), and §(¢) = [, ©(v)e?™ (€ dy is the Fourier transform of .
The standard Gaussian of R%? is defined as

3022
wo(z1,...,Tp40) =€ ”Zz:lxﬂ, for every (x1,...,2p10)" € ROH2.

The standard Gaussian of V is the Schwartz function g o gg, where gg is the isometry
arising from the choice of the basis (e;); of V. It is K-invariant with respect to the action
given by the Schrédinger model, namely

(3.2.4)

woo (k)0 (90(v)) = o (go (/{_l(v))) = ¢0(g0(v)), for every k € K and v € V.

We denote by S(V)X the space of K-invariant Schwartz functions on V', and remark
that
G

(3.2.5) SWMK = [s(V)eCc=(D)]",
where the isomorphism is given by evaluation at the base point zy € D = Gr(V).

Remark 3.2.2 (See e.g. [Kud04, (3.3)], [Liv, p. 23]). We denote the action of G on V' given
by evaluation of the isometries in G on V by g: v +— g(v). There is also a natural action
of G on D, given by left translations by elements of G, i.e. g: 2+ g - 2z, for every g € G

and z € D. These actions induce by pullback an action on S(V') and on C*°(D), respectively.
Let ¢ € S(V) ® C*°(D) be G-invariant, that is

(3.2.6) g o (g(v)) = ¢(v), for every v € V,

where g*¢(v) is the pullback of p(v) € C*°(D) induced by the action of g on D. Since K is
the stabilizer of zg € D, then (k*¢(v))(20) = ¢(v, 29) for every v € V. This shows that if
we evaluate  on the base point zp € D, we obtain a K-invariant Schwartz function on V'
by (3.2.6). This explains (3.2.5).

Example 3.2.3. The function corresponding to the standard Gaussian ¢g o go € S(V)¥
via the isomorphism (3.2.5) is o(v, z) = e~ (%)= where (-,), is the standard majorant

defined in (3.2.1).

We now define the Kudla-Millson Schwartz function pgy € [S(V) ® Z2 (D)]G, where
we denote by Z2%(D) the space of closed 2-forms on D.
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Remark 3.2.4. The action of G on Z%(D) is given simply by pullback of 2-forms via
elements of G. We say that ¢ € S(V) ® Z%(D) is G-invariant if

g*gp(g(v)) = ¢(v), for every v € V,
where g*p(v) is the pullback of p(v) € Z2(D) induced by the action of g on D.

We remark that
(3.2.7) sy 22(0))7 = [s(V) & \'(

where the isomorphism is given by the evaluation at the base point zy of D. Therefore, we can

define a G-invariant element ¢ € S(V) ® Z%(D) firstly as an element of [S(V) ® /\2(p*)]K
and then spread it to the whole D via the action of G. We follow this idea to define pgr.

Definition 3.2.5. We denote by X, ,, with 1 <a <band b+ 1 < < b+ 2, the basis
elements of Maty, 2(R) given by matrices with 1 at the (a, ;1 — b)-th entry and zero otherwise.
These elements give a basis of p via the isomorphism (3.2.2). Let wq , be the element of
the dual basis which extracts the («, pt — b)-th coordinate of elements in p, and let A, , be
the left multiplication by wq, . The function @k is defined applying the operator

=5 11 [ (o) Ao

,u a=1

to the standard Gaussian (¢ o go) ® 1 € [S(V) ® /\O(p*)]K, namely

erm = D"*((po 0 go) ® 1).

1

We remark that the evaluation of the operator 7 (xa - L2 ) on a Schwartz func-

21 Oza
tion ¢ € S(V) is simply

70 man)e = (e g )

Note the analogy of such operator with the ones of the Rodrigues’ formula for the compu-
tation of the Hermite polynomials.

We now compute gy explicitly. We may rewrite
(3.2.8)

e = D" ((po 0 go) ®1) =

33 (o= ) S Aes] [ (o0 ) s (e om o) =

B
= 2[ii ( (xa - g@) ®Aa,b+1) . ((xﬂ - 2::1'62) ®A57b+2)} ((‘PO 0 go) ® 1).
M (+)

Note that product denoted simply by - in (3.2.8), between the operators (1) and (1) is made
componentwise. Namely, the result of such product is an operator made as the product of
the two operators on S(V) tensor the wedge product of the two operators on A'(p)*.
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We may proceed with the computation of (3.2.8) as
(3.2.9)

5 (s )~ ) © (s o) om0 -

p=1
b
—223(:1: SNV WR TR P
- a=1 5*12 : 27 O, p 27‘(8336 ¥0 © go a,b+1 B,b+2-

(*)

We compute the term (x) as

1 1 0 1 9
2 (70 = ) (78 = 3775 ) (w0 o 90) =(a 3= 5 (@5l o) =
2xap(p oogo) if o # 3,
(222 — 5-)(poo g0) if a=4.
Summarizing, we may rewrite gy € [S (V)® p* ]K over the base point zp € D as
b
(3.2.10) wrm(v, 20) = Z (Q(a,5)<ﬂ0> (90(v)) ® wapt1 Awapia,
a,f=1
where
(3.2.11)
Plas)(90(v)), if o # B,
= ' d P = 22,73,
Fe (e {m,g) (0) ~ &, othorwise, ™4 Pl (@) = 2rams

for every v € V with go(v) = (1, ..., 2p42) € R®2. Tt is easy to check that

lH (ma)Hl(.T ) jfa;é/@,
_ )2t p
Q(a,ﬂ (QO(U)) = {;THQ(\/%I'O&) otherwise,

where H,(t) is the n-th Hermite polynomial. This formula is a special case of what is
illustrated in [BF04, p. 65].

Remark 3.2.6. In (3.2.10), we provide a formula for gy, considering the latter as
a K-invariant function in S(V)® A%(p*). To construct a global G-invariant function
in S(V) ® Z2(D), we may spread (3.2.10) on the whole G by means of (3.2.7), as follows.
Let z € D, and let g € G be such that g: z — z9. By Remark 3.2.4, we may deduce that
(3.2.12)

erm(v, 2) = g"prm (9 Z Z < a,B) @0) 900 9(v)) ® g"(Wabt1 Awppr2)-
a=1 =1

Since we spread a function defined at the base point zy which is K-invariant, we deduce
that the value pgnm(v, z) given by (3.2.12) does not depend on the choice of ¢ mapping z
to 2p.

We conclude this section with the following result from [KM86].

Lemma 3.2.7. The Kudla—Millson Schwartz function oxm is an eigenfunction for the
action of SO(2) wia the Schrodinger model ws,. More precisely

(3.2.13) Woo (Re) oM = ™ i, for every Ry = ( cos Sine) € S0(2).

—sinf cos@
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3.3. THE KuDLA-MILLSON THETA FORM

This section gathers all properties about the Kudla—Millson theta form ©(7, z, oxn) we
need. We firstly illustrate some well-known results, and then we deduce an explicit formula
of ©(7, z, pxMm) via the one of gxy computed in Section 3.2. After a brief introduction of
Borcherds’ formalism [Bor98|, we show how to rewrite the Kudla-Millson theta form in
terms of Siegel theta functions.

Let (L, (-,-)) be a unimodular lattice of signature (b,2), where b > 2. We fix once and
for all an integer & = 14 b/2 and an orthogonal basis (e;); of V = L ® R such that e? =1,
for every j =1,...,b, and e%_H = e§+2 = —1. The choice of such a basis is equivalent to the
choice of an isometry go: V — R»2. We denote the Grassmannian Gr(V) also by Gr(L).

3.3.1. Fundamentals on the Kudla—Millson theta form. Let A} be the space of
analytic functions on H satisfying the weight k& modular transformation property with
respect to SLa(Z). Via Lemma 3.2.7, one can show that the theta form ©(7, z, pxnm) is a
non-holomorphic modular form with respect to the variable 7 € H, and a closed 2-form
with respect to the variable z € Gr(L), in short O(7, z, pxm) € AY ® Z2(D). In fact, the
Kudla—Millson theta form is I'-invariant, for every subgroup I' of finite index in O (L),
as shown by the following result. This implies that O(7, z, pxm) descends to an element
of A¥ ® Z%(X7).

Lemma 3.3.1. For fized 7 € H, the (1,1)-form O(r,z,oxm) is I'-invariant on D, for
every subgroup T of finite index in OT(L).

PROOF. The idea is analogous to the one to prove the modularity of Eisenstein series.
We are going to prove that v*O(7,v - 2, oxm) = O(7, 2, pkm), for every v € O (L).
Let g € G be such that g: z — 29. By (3.2.12), we may compute

b
(T, - 2, prcnt) = 7*( 3 [y—k/2 3 (woo(gT)(Q(aﬁ)%)) (g0090 7_1@))} o
a,8=1 AeL
®(’771)* og* (wa’bJ’»l A w57b+2)> =
b

= > [y_k/z > (WOO(QT)(Q(a,ﬁ)‘PO)> (googo 7_1()\))] ® 9" (Wabt1 AWspi2),

o,f=1 A€L

which equals ©(T, z, pkm), since «y preserves the lattice L. O

Kudla and Millson showed in [KM90] that the n-th Fourier coefficient of O(r, z, vxm)
is a Poincaré dual form for the Heegner divisor H,. Moreover, they proved that the
cohomology class [O(T, z, oxm)] is a holomorphic modular form of weight k with values
in HY1(Xr), and coincides with Kudla’s generating series of Heegner divisors; see [KM90]
and [Kud04, Theorem 3.1].

Using the spread (3.2.12) of ¢k, we may rewrite the Kudla—Millson theta form as
(3.3.1)

O(r, z, ) =y /2> (woo(gT)SOKM) (A 2) =

AEL

b
= Z y k2 Z (woo(gT)(Q(a,ﬁ)(PO)) (90 0 9(N)) ®g" (Wapr1 A wspr2),

a,f=1 A€L

= a,,@(‘r’g)
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where g € G is any isometry of V' = L ® R mapping z to 2o, and Q(, g) is the polynomial
defined in (3.2.11). Since the Kudla—Millson Schwartz function @k is the spread to the
whole D = Gr(L) of an element of S(V) ® A*(p*) which is K-invariant, the definition
of O(T, z, pxm) does not depend on the choice of g mapping z to zg. One of the goals of
Section 3.3.2 is to rewrite the auxiliary functions Fy, g(7, g) arising as in (3.3.1) in terms of
Siegel theta functions.

3.3.2. The Kudla—Millson theta form in terms of Siegel theta functions. In this
section, following the wording of [Bor98, Section 4|, we rewrite the Kudla—Millson theta
form O(7, z, pxm) in terms of Siegel theta functions. We then recall how to rewrite the
latter with respect to a splitting L = Ly, @ U, for some Lorentzian lattice L1, and some
hyperbolic plane U.

Since the lattice L has been chosen to be unimodular of signature (b, 2), we may assume
up to isomorphisms that L is an orthogonal direct sum of the form

(3.3.2) L=FEs®---dEsdpUU,
:LLor

where FEjg is the 8-th root lattice and U is the hyperbolic lattice of rank 2. Let Ly, be the
unimodular sublattice of L defined as the orthogonal complement of the last U appearing
in (3.3.2). We may assume that the orthogonal basis (e;); of L ® R chosen above is such
that Lo @ R is generated by ey, ..., ep—1,ep+1, and that U @R is generated by e and epio.

Let u,u’ be a basis of U such that (u,u) = (v/,u) = 0 and (u,u’) = 1. We may suppose
that

(3.3.3)

€p 1 €ept2 ) €h— €py2
= —= and U = ——-.
V2 V2

In this way, we may rewrite L as the orthogonal direct sum of Ly, with Zu @ Zu'.
We now introduce Siegel theta functions as in [Bor98, Section 4]. For every z € Gr(L)
and v € L ® R we denote the projections of v to z and z* respectively by v, and Uyl

Definition 3.3.2. Let P be a homogeneous polynomial on R»2 of degree (m™,m™), i.e.
homogeneous of degree m™ in the first b variables, and homogeneous of degree m™ in the
last two variables. The Siegel theta function ©j, is defined as

®L(7_7 5» V,g,’P) = Z eXp(—A/SWy)(P) (90 o g()\ + y)) X
(3.3.4) AEL
><e<Tq(()\ +v),1) +Tq(A+v):) — (A +v/2, 5))7

for every T =z +iy € H, 6,v € L®R, and g € G, where the Laplacian A on R?? and its
exponential are the operators defined respectively as

d2 A 1 A \m
ASY P wa ew(- A) oy (A
|
7 dx i 8Ty = m! 8Ty
If 6 = v =0, we drop them from the notation, writing only O (7, g, P).

Remark 3.3.3. If the polynomial P is harmonic, i.e. AP = 0, then exp (—A/Swy) (P)="P.
This is the case of P, g), if @ # 5. Instead, the polynomial P, o) is homogeneous but
non-harmonic, for any «; see (3.2.11).

In the remaining part of this section, we focus on the auxiliary functions F,, g appearing
in (3.3.1). We recall that the base point zy of Gr(L) is defined as the negative definite
plane in V' generated by e;11 and €10, or equivalently zo = g, 1(R0’2), considering R%? as
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a quadratic subspace of R®2. Therefore the orthogonal complement z3- = gy ' (R??) is the
span of e1,...,ep in L @ R.

Lemma 3.3.4. For every index o, 3, we may rewrite Fy, g in terms of Siegel theta functions
as

(335> Fa,B(Tv g) =Yy GL(T797 P(a,ﬁ))a
where T =x +1iy € H and g € G.

PROOF. Suppose that a # 5. Let g, = ((1) ff) <‘6§ \/;_1> be the standard element
of SLa(R) mapping i to 7 = x + dy. Since the polynomial Q, 3) = P(4,g) is homogeneous
of degree (2,0) on R*2, we may use (3.2.3) to compute that
1/2 ) _

1/2 ) =

(3.3.6) Woo(gr) (P(a,B)SOO) (90 o 9(”)) = yk/z * Woo ( (P(aﬁ)wo) (90 °g(y
= "% e(2q(v)) - (Plag)%0) (90 0 9(y
= y"H2 e (2q(0)) - Prag) (90 © 9(v)) - po(g0 © 9(y"/20)).

Since g (go o g(yl/%)) = e ™)z we may deduce that

e(rq(v.e) +7q(v2)) = e(wq(v)) - e ™= = e(q(v)) - o (g0 © g(y'/*v)),
for every 7 € H. This, together with (3.3.6), implies that

Woo(9r) (Pagy0) (90 © g(v)) = 42 - P, 5y (90 0 9(v)) - e(Tq(v,1) + Tq(v2)),

which we may insert into the formula defining F,, g, obtaining that

Fap(m,9) =y > Plap(go0og(N) - e(TQ(AZL) + ?q(Az))-
AEL

It is enough to compare this with (3.3.4), to deduce (3.3.5). In fact, the polynomial P, g
is harmonic; see Remark 3.3.3.
The case a = 3 is analogous. The only difference is that

Q(ava) (90 0 9(y?0)) =y - exp (= A/87Y) (Plaay) (90 © g(v))- O

We now rewrite F,, g with respect to the splitting L = Ly,o; @ U, illustrated in (3.3.2),
following the same idea of Borcherds.

Definition 3.3.5. Let z € Gr(L), and let g € G be such that g: z — zy. we denote by w

the orthogonal complement of u, in z, and by w™ the orthogonal complement of u,. in z*.

We denote by g7 : L ® R — L ® R the linear map defined as g% (v) = g(v,. + vw).
By construction, ¢7 is an isometry from w*@w to its image, and vanishes on Ru,1 ®Ru,.

Definition 3.3.6. Let z € Gr(L), and let g € G be such that g maps z to zy. For every
homogeneous polynomial P of degree (m™, m™) on R»2, we define the homogeneous polyno-
mials Py# j,+ -, of degrees respectively (mT —ht,m™ —h7) on ggog”(L®R) = R-LL
by
+ —
(3.3.7) Pgoog@®) = > (wu)" - (0,u)" - Pys i p- (g0 0 g7 (v)).
ht h—
For the sake of completeness, we clarify with the following result how to check that

the auxiliary polynomials Pg# j,+ 5~ are still homogeneous. This is implicitly assumed in
Definition 3.3.6 as well as in [Bor98]

Lemma 3.3.7. The auziliary polynomials Py ,+ ~ appearing in Definition 5.5.6 are
homogeneous of degree (m* —hT,m™ —h™) on goo g" (L @ R).
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Proor. We may rewrite

73(90 Og(v)) = Z (U’uzJ-)h+ : (Uauz)h

h+,h—

) ’Pg#,hﬂh* (90 o 9#(0)) =
(3.3.8)

=3 (9),g(u )" - (90), g(w))" - Pyt - (g0 © g (0)).

h+ h—
We may rewrite g = k - g, for some k € K = Stabg(zp) = SO(b) x SO(2) and some g € G
mapping z to zg and stabilizing the line Ru; we will make § more explicit in Section 3.4.2.
Since ¢ is an isometry, we deduce that

1 uzoL Uy Uzg

, and g

This, together with (3.3.8), implies that

og(v)) = lus [NBT  Jus] NPT N Wt RN
(3.3.9) Plaoog(v)) (|uz¢0) (|uzO|> h;}; (9(v),hlu))” - (9(v), Kluz)) ™ x

X Pyt it n- (90 0 g7 (v)).
Since the polynomial P(go(v)) is homogeneous of degree (m™, m™) on R»? with respect
to the variables z; = (v, e;), where j =1,...,b+ 2, then P(go o g(v)) is homogeneous of
the same degree with respect to the variables (g(v), e;). The same is true if we apply a
change of variables of the form

(9(v),e5) — (g(v), K(e;)), for some k € K.

In fact » stabilizes the spaces zg- = (e1, ..., ep)r and 2o = (ep11, €pro)r. Since UL = e/ V2
and uz, = ep12/v/2, we deduce that Py ,+ 5 is homogencous of degree (m* —h*, m=—h")
on go o g (L @ R) from (3.3.9). O
Remark 3.3.8. The polynomials P, g) are homogeneous of degree (2,0), hence we may
simplify (3.3.7) as

2

(3.3.10) Plas) (900 9(0)) = D (v,u,.)"
ht=0

: ’ P(a’ﬁ)ag#7h+,0 (go © g#(v))

The following result provides a formula to compute Pa,8),g%# 1+ 0"

Lemma 3.3.9. For every z € Gr(L) and g € G such that g maps z to zy, the polyno-
mial P gy g# n+,0 arising from the decomposition (3.3.10) of P(a,p) may be computed as

Plag).g# n+0(g0 0 g7 (v)) =

2 U), ey u),eg), iRt = 7

(3.3.11) at (9(0), €a) (9(u), e5) =2
= U?L (Q(u), ea) (g#(v), 65) + ugL (g(u), eﬂ) (g#(v), ea), ’Lf Lt = 1’

200 0)00) (0, I

PRrROOF. For every v € L ® R, we denote by z; the coordinate of v with respect to the
standard basis e, ..., epro of L ® R. We recall that

Pa,p) (90(v)) = 22025 = 2(v, €q)(v, €5).

If g € G = SO(L ®R), then P, (g0 0 g(v)) = 2(v, 97 (ea)) (v,97 " (eg)). To rewrite the
latter polynomial as in (3.3.10), we rewrite (v, g~ '(e;)) in terms of (v,u,1), for j = o, 3.
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The negative definite plane z = g~1(2¢) is generated by g~ !(ep,1) and g~ '(epi2), while
the positive definite b-dimensional subspace z* is generated by g~'(e1), ..., 9 (ep). Hence,
the vectors g~!(e,) and g~!(eg) lie in 2t. Recall that w (resp. w™) is the orthogonal
complement of u, (resp. u,1) in z (resp. z1). We may decompose

(3.3.12) g_l(ej) = sju,1 + v;, for j = a, 3,

for some s; € R, where v} is the orthogonal projection of gfl(ej) to w.

We use (3.3.12) to rewrite Py g)(g0 © g(v)) as
(3.3.13)

Pla,g) (90 o g(v)) = 2(U,UZL)2SOCS,3 + (v, u 1) [250(1),1/5) + 285(1),1)&)] + 2(1),7/&)(1),7)23).
Comparing (3.3.13) with (3.3.10), we deduce that

25458, if hT =2,
P(a75)79#,h+,0 (90 © g#(v)) = 2804(7)7 v/ﬂ) + 235(7)7 ’U&), if ht = 1,
2(v,v4) (v, v3), if ht =0.

Since u,. is orthogonal to w by construction, it follows that

C (uagMe)  (g(u)eg)
S5 = w2 T2 )
z1 z1

for j = a, S.

Moreover, since e; is orthogonal to g(vy,) for every j < b, we may rewrite
(U,’U;) = (vwivgil(ej)) = (g#(v),ej). U

The modular transformation formula of ©y, is provided by [Bor98, Theorem 4.1]. We
recall it in the more general setting of indefinite unimodular lattices of signature (b*,57).

Theorem 3.3.10 (Borcherds). Let M be a unimodular lattice of signature (b*,07). If P
is a homogeneous polynomial of degree (m™*,m™) on ]RbJr’If, then

Ou (v 7, ad + bv,ed + dv, g, P) = (et +d) 2 (e7 + d)P /T Our(1,8,1, 9, P),
for every v = (‘; Z) € SLy(Z).

Recall that we fixed £ = 1 4 b/2 once and for all.

Corollary 3.3.11. Let g € G, and let f € S¥. The function y*f(7)Fa5(r,9) on H
is SLo(Z)-invariant, for every «, 5. In particular, the integral

— _dxd
/ V(1) Fap (7, 9) s
SL2(Z)\H y

1s well-defined, and can be computed over any fundamental domain of H with respect to the
action of SLa(Z).

PROOF. Let v = (%) € SLy(Z). By Lemma 3.3.4 and Theorem 3.3.10, we deduce
that

SOy - (-1 Fap(v-1,9) = S0y - )" f (v 1)OL(Y 7.9 Plag) =

%(T)kJrl k+1( .= k+1 O (- D N —(\k E Y
= W(CT +d)" T (eT +d)" T f(T)OL(T, 9, Pla,p)) = S(7)" f(T) Fa5(7, 9),
for every 7 € H. O

The following result illustrates how to decompose the Siegel theta function attached
to the polynomial P, g) with respect to the splitting L = Ly © U chosen in (3.3.2). Tt
is [Bor98, Theorem 5.2|, rewritten with respect to a unimodular lattice L.
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Theorem 3.3.12 (Borcherds). Let L = Lio. ®U be a unimodular lattice of signature (b,2),
and let p € (Lior @ R) @ Ru be the vector defined as

p=—u +u,/2ul + . /2ul.

We have
GL(Tvgvp(a,,B)) =
1 1 2
. _pt
= 729&“(77Q#ap(a,ﬁ),g#,o,o)+72 > 2D (i) x
(3.3.14) \/ 2yus, 2yul,  cdez  r>1p+=0

ged(e,d)=1
r2ler + d|?

™ (e7 + d)t -e( —
42yuzL

) : @LLor (7—7 ’I"d/.L, —rcu, 9#7 P(Q,B),g#,th,O) .
Remark 3.3.13. When we use ©r,  in Theorem 3.3.12, we should write as argu-
ment pur, , namely the orthogonal projection of p to Ly ® R, instead of . However,
since pr, .. = i — (u,u')u, we have

Hw = (Ilj’LLor)w = _uw?

/
IU”LUJ‘ = (IU’LLOr)’LUJ‘ = _u'wi-’

(N’u) = (IU’LLor7 u)

This explain why we may use such abuse of notation. Note also that the orthogonal
projection L ® R — L1 ® R induces an isometric isomorphism wt P w— wﬁor @ Wror =
Lior ® R. This implies that we may identify w with wr., and consider w as an element

of Gr(Lror); see [Bru02, p. 42]. Analogously, we may regard g#|;, or as an element
of SO(Lyor ® R).

Corollary 3.3.14. For every «, 3, we may rewrite the auziliary function F, g(T,g) with
respect to the splitting L = L1,o; ® U as
(3.3.15)

Vi Vi :
. _ht +
@LLor (7_7 g#v P(a,ﬂ),g#,O,O) + Z Z Z (—223/) 4 rh X

Fa,ﬁ (7_7 g) =
\/2uls U7, cdeZ  r>1ht=0

ged(e,d)=1

[\

777“2]07—}— d|2

x(ci'—l-d)th'exp(— 5
2yus,

) “OLo (T, rdp, —reqp, g#, P(a,,@),g#,h+,0)'
PRrROOF. It is a direct consequence of Lemma 3.3.4 and Theorem 3.3.12. U

3.4. FOURIER EXPANSIONS OF Lo ~-INVARIANT FUNCTIONS

In this section, we recall two different models of Gr(L), namely the projective model Dgr
in P(L ® C), and the tube domain model Hy, in Ly, ® C. We then explain how to identify
the group of isometries G = SO(L ® R) with the Cartesian product K x Hp, and recall how
to use such identification to construct Fourier expansions of L q-invariant functions defined
over (G. This will be relevant in Section 3.5.2, where we will compute Fourier expansions of
certain Ly q-invariant functions arising from a decomposition of the Kudla—Millson theta
lift; see Theorem 3.5.4.

We use the notation of the previous sections, in particular we denote by (e;); the
standard basis of L ® R, and by u and v’ the isotropic vectors defined as in (3.3.3). As
usual, the lattice L is unimodular. The main references are [Bru02, Section 3.2] and [Bor98,
Section 13].
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3.4.1. Models of the symmetric space associated to G. We denote by D, the open
subset of a quadric defined as

Dy = {[ZL] S P(L@(C) : (ZL,ZL) =0 and (ZL,ZL) < 0}.

It is well-known that Dy, is a complex manifold of dimension b with two connected components.
We choose the connected component of D, containing [Z9], where Z9 := [ey11 +iepia], and
denote it by D;. Such component is identified with Gr(L) as follows, explaining why D;
is usually referred as the projective model of Gr(L).

If [Z1] € D:, then the decomposition in real and imaginary parts of the representa-
tive Zy, = X, +4Yy, is such that

(3.4.1) X, LY, and X7=Y?<0,

hence the plane z = (X1,Y7z)r in L ® R is negative definite, or equivalently, it is an
element of Gr(L). Clearly, the construction of z above does not depend on the choice of
the representative of [Z]. Conversely, if z € Gr(L), then we may choose a basis X, Y7,
satisfying (3.4.1) such that [X[ +iY7] € D} .

Recall that the base point zy € Gr(L) is the negative definite plane in L ® R generated
by epi1 and eyyo. Clearly zg maps to [Z9] € D; via the previous identification.

We now recall the tube domain model of Gr(L). If Z;, € L®C, then Zp, = Z + au' 4+ bu
for some Z € Lo ® C and some a,b € C. We write Z;, = (Z,a,b) in short. The tube
domain model Hp is defined as the connected component of

{Z=X+iV € L ®C : Y? <0},
mapping to D;‘ via the map
Hy—Df, 2 (2] = [(Z1.—q(2).

Such map is biholomorphic. In fact, since (Zp,u) # 0 for every [Z1] € D;r, one can
prove that is it possible to choose a unique representative Z; = (Z,1,—q(%)), for
some Z = X +1Y € Hp, such that

(3.4.2) Xp=(X,1,q(Y)—q(X)) and Y= (Y,0,—(X,Y)).

Such representative, or equivalently such choice of the basis Xy, Y7 of z, clearly depends
on the choice of the isotropic vectors u and u’.

We remark that the representative of the form (Zy, 1, —¢(Zo)) of the base point in Dj
is the one such that Zy = Xg + 1Yy, with X = 0 and Yy = \/561,_,_1.

We identified Gr(L) with D, and Hy,. Via such identifications, the base point zy € Gr(L)
is respectively identified with

20— [Z)] = [_\/§€b+2 + i\/ﬁebﬂ] — Zo = iV 2epp1.

The following result can be regarded as a dictionary to rewrite functions defined on
one of the previous models as functions on the remaining ones. In Section 3.5.3, it will
be useful to rewrite certain series arising from the Kudla—Millson lift in terms of the tube
domain model.

Lemma 3.4.1. Let w (resp. w) be the orthogonal complement of u, (resp. u,.) in z
(resp. 2+ ), and let = —u'+uzL/2uzL+uz/2ug, If Z = X+iY € Hy corresponds to z via the
previous identifications, and if the representative of the corresponding point [Z1] = X1 +iY7]
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m le is chosen such that (3.4.2) is satisfied, then

X2 =y2=Y? u, = Xp)Y?
(3.4.3) u? = —ul=-1/Y? Pl = X,
Aw = <)‘7Y)Y/Y27 ()‘7 )\)w =\ - 2()‘7Y)2/Y2’

where X is any vector of Lior @ R, and pp, . is the orthogonal projection of p to Lo @ R.

PROOF. See e.g. [Bor98, p. 543| or [Bru02, pp. 79, 80|, paying attention that the lattice L
in this thesis has signature (b,2), and not (2,b) as in the cited references. O

3.4.2. The identification of K X H; with G. Let z € Gr(L), and let Z = X +1Y € H,
and [Z7] € D;r be the corresponding points in the tube domain model and in the projective
model, respectively. From now on, we suppose that Zy, = Xy +¢Y7, is the only representative
of [Z1] such that (3.4.2) is fulfilled. Recall that we denote by K the compact maximal
subgroup of G that stabilizes the base point zp € Gr(L).

We want to fix once and for all an identification of K x H; with G, i.e. a diffeomorphism

(3.4.4) t: K xHpy — G.

The number of such possible identifications is clearly infinite. In fact, for every z € Gr(L),
there are infinitely many isometries of G mapping z to zg, since if g is one of them, then so
is k- g, for every k € K.

For the purposes of this chapter, we need to choose an identification ¢ fulfilling the
properties illustrated in the following result. The reason, which will become clear with
Theorem 3.5.4, is that we need to use such properties to prove that some series defined
over (&, arising from the Kudla—-Millson lift, are actually Fourier series.

We recall that if g € G is such that it maps the negative definite plane z to the base
point zg € Gr(L), then we denote by g% : L ®R — L ® R the linear map defined as

g7 (v) = gvyr +vy).
Lemma 3.4.2. There exists a diffeomorphism v: K X Hy — G such that
Uk, Z)=kr-1(1,2), (1,2): z— zp, and  1(1,Z): Ru+— Ru,

and also such that the associated function u(1, Z)#\LLM@R does not depend on the real part
of Z, or equivalently

(3.4.5) W1, 2)* () = (1, Z + X')#(v), for every v, X' € Lyoy ® R.

Remark 3.4.3. The fact that the identification ¢ of Lemma 3.4.2 is such that the isome-
try ¢(1, Z) maps z to zp and preserves the isotropic line Ru implies that

1(1,Z): Ruy — Ruy,, 1(1,Z): Ruyi — Ru, .,

(3.4.6) N L
(1, 7): wr— wy, (1, 2): w — wy.

In fact, since ¢(1, Z)(u) = ¢ - u for some ¢ € R, it follows that

(1, Z2)(uy) = (1, Z)(U)L(LZ)(Z) = C- Uy,

hence the line Ru, maps to Ru,,. The remaining results appearing in (3.4.6) can be deduced
analogously.

The proof of Lemma 3.4.2, which is rather technical, is postponed to Section 3.4.4. It
is based on an explicit Iwasawa decomposition G = K AN, and on a diffeomorphism from
the tube domain model to the AN factor of such decomposition.
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3.4.3. Fourier expansions. We fix once and for all a diffeomorphism ¢ identifying K x H,,
with G. In this section we introduce Fourier expansions of Lj--invariant complex valued
functions defined over G.

We recall that the sublattice Ly, is unimodular. If F': H, — C is a Ly -invariant
function, i.e. F(Z + \) = F(Z) for every A € Ly, then it admits a Fourier expansion of
the form

F(Z)= > cN)-e((\2)= D e\Y)-e((\ X)),

)\ELLor )\ELLor

where we denote by ¢(\), resp. ¢(\,Y), the Fourier coefficient associated to A, resp. A
and Y.

It is possible to consider Fourier expansions of Lyq-invariant functions defined over G
instead of Hp, as we are going to illustrate.

If F: G — C is a function defined over GG, we may use the identification ¢ as in
Section 3.4.2 to rewrite I’ as a function of the form F': K x H; — C, which we denote with
the same letter. Suppose that F'is L-invariant, i.e.

F(k,Z+ X =F(k,2), for every Z € Hp, A € Loy and K € K,

then F' admits a Fourier expansion

(3.4.7) F(g)=F(k,2) = Z c(\ k) -e((N\2)) = Z c(\ K, Y) - e((X X)),

)\GLLor >\€LLor

where g € G is identified with (k, Z) € Hp x K via ¢, and where ¢(), k) and ¢(\, k,Y) are
called the Fourier coefficients (with respect to ¢) of F.

3.4.4. An explicit identification of K X Hp with G. In this section we provide an
example of an identification ¢: K x Hp, — G satisfying the properties illustrated in Sec-
tion 3.4.2. The idea is to construct ¢ from a standard explicit Iwasawa decomposition
of G = SO(L ® R).

We choose a basis of L ® R which differs both from the orthonormal one used to
construct the Kudla-Millson Schwartz function, that we denoted by (e;);, and from the
one used in [Bru02, Section 4.1| to give coordinates of H;. The reason of such new choice is
that it enables us to rewrite the factors A and N of the Iwasawa decomposition G = K AN
as groups of matrices with an easy description, namely as diagonal matrices for the former,
and upper triangular for the latter.

The new basis we choose is the one given by

(3.4.8) u, d, d3,... ,db,d’,u’,
where d; = e;_2 for 3 < j < b, while

ep—1 + € ep—1 — €
b—1 b+1 nd d = b—1 b+1

\/i a. = \@

are the standard generators of the hyperbolic plane U split off orthogonally by Lr;, such
that Lio = LT @ U for some unimodular lattice LT.
In this section, if v € L ® R, then we write it with respect to the basis above as

d =

b
v = v1u + vod + E vid; + Vpp1d + vpyott,
Jj=3
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or in short as a column vector in R?*2 with the v;’s as entries. With this notation, we may
represent the quadratic form of L @ R as
1
q(v) = V1Up12 + V2VB41 + 3 Z UJZ-.
7=3
As illustrated e.g. in [MOO04, Section 5.1| and [Liv, Section 2.3|, we may realize the
Iwasawa decomposition of G = SO(L ® R) over the basis (3.4.8) as G = K AN, where K is

the stabilizer of the base point zp = (u — u/,d — d')g, which is the same we chose in the
previous sections, while

(3.4.9) A= {diag(ml,mg, 1,..., 1,m2_1,m1_1) 1My, Mo € R>0}
is a group of diagonal matrices with non-negative entries, and
(3.4.10)
1 ¢ a+3oy n—3zyt—soyyt —¢n—saat+ L éPyyt
1y 3y’ —n—zzy'+ 5oyt _
N = 1d fyt 7‘2,L.t+%¢:;t .7, € R and z,y € R*~2
1 —¢

1

is a group of upper triangular matrices, where z,y € R*~2 appearing in the definition are
row vectors.

If Z=X+41Y € Lo, ® C, we may rewrite it with respect to the basis (3.4.8) as the
column vector Z = (0, Za, ..., Zy11,0)", for some Z; € C, and analogously for the real
and imaginary parts of Z. We recall from [Bru02, Section 4.1|, read with respect to the
basis (3.4.8), that we may rewrite the tube domain model #; as

Hb = {Z S LLor®(C : Y})—&-l < 0 and q(Y) < 0}

The action of G on the projective model ’Dj is the natural one, obtained by restriction
from P(L ® C). We recalled how to identify the model D: with Hp in Section 3.4.1. Using
such identification, one can explicitly deduce how G acts on H;, and prove the following
result.

Lemma 3.4.4. Let X' € L1, ® R, and let M(X') € N be the matriz defined as

I =X, X3 - X5 —X5 —q(X')
1 0 o0 X}
M(X/>: . ,
o X
1 Xb+1
1

where we denote by X]'- € R the j-th coordinate of X' with respect to the basis (3.4.8). The
action of M(X") on Hy is given by the translation Z — Z + X'.

PROOF. If we rewrite Z over the basis (3.4.8) as Z = (0, Za, ..., Zp11,0)%, its corre-
sponding point in the projective model D; is [Z1], where Z; = (—q(Z), Zs, ..., Zpy1, 1)t
We may then rewrite the translation on H; given by

Z = (07227"'>Zb+170)t — Z+X/ = (07ZQ+X5>"'7Z17+1 +Xl,)+170)t
on the projective model as
[(_Q<Z)7 VAR Zb+17 1)t] — [(_Q<Z + Xl)? Zy + Xéa EER) Zb+1 + XllH-la 1)t]
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Such map is the one induced via multiplication by M (X'), since
!/ / !/ / 1 d /
(7 + X') = —4(2) — a(X') = X}y — Zyr Xp— 5 32X, O
j=3

The base point zy € Gr(L) corresponds to [Z9] € le in the projective model, and
to Zo € Hp in the tube domain model. The representative Z9 = X% + iYLO may be written
over the basis (3.4.8) with

X% =(-1,0,...,0,1) and Y2 =(0,1,0,...,0,—1,0),
while Zy = Xo + 1Yy with
Xo=0 and Yo =(1,0,...,0,-1).
We recall that AN acts on Gr(L) bijectively, that is, for every z € Gr(L) there exists
only one a € A and n € N such that an: zg — z. We use this property to provide an

identification ¢: K X H, — G as in Section 3.4.2, and then we prove that it satisfies the
properties illustrated in Lemma 3.4.2.

Definition 3.4.5. Let G = KAN be the Iwasawa decomposition of G = SO(L ® R)
constructed above. If Z € H,; corresponds to the negative definite plane z € Gr(L), then
we define (1, Z) := (an)~!, where a € A and n € N are chosen such that an maps 2 to z.
We also set t(k, Z) = k- 1(1, Z), for every k € K.

PROOF OF LEMMA 3.4.2. We rewrite ¢~ ! and n~! as general elements of A and N
over the basis (3.4.8), as in (3.4.9) and (3.4.10) respectively. That is, the isometry a~! is
represented as a diagonal matrix depending on some my, mg € Ry, and n~! is an upper
triangular matrix depending on some 7,¢ € R and some row vectors z,y € R'"2. We
denote by y; the j-th entry of y.

We rewrite the isotropic vector u with respect to the basis (3.4.8) as u = (1,0,...,0)".
It is easy to see that

(1, 2)(w) =n"t-at-(1,0,...,00 =n7t . (my,0,...,0) = (m1,0,...,0)! = mu,

hence «(1, Z) preserves the isotropic line Ru.
We conclude the proof by showing (3.4.5). Since (1, Z) maps w' @ w to wy @ wo by
Remark 3.4.3, we deduce that

(3.4.11) W1, 2)*(v) = (L(1,Z)(U))

for every v € L1,y ® R. Let v be rewritten with respect to the basis (3.4.8) as a column

wg Bwo

vector v = (0,vs,...,vp41,0) € RY2. Tt is easy to compute that
0 *
Vg Do
(3.4.12) (1L, Z)(w)=n"t-a"t | = : ,
Up+1 Dy11
0 0
where Dy = mavy + y - (v3,..., )" — v";left, D; = vj — % for 3 <5 <b+1,

and Dypiq = % Since the first entry of the right-hand side of (3.4.12) will not be relevant,
we do not provide a formula for it, and instead we write *. Since zg = (u — u',d — d'), it is
easy to see that Ru,, = R(u — u') and Ru,1 = R(u + u'). Since wy @ wy is orthogonal to
the plane Ru., ® Ru_1 = (u,u)r, we deduce from (3.4.11) that

(1, 2)#(v) = (0, Da, ..., Dyi1,0).
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By Lemma 3.4.4, the only map of AN that induces the translation Z — Z + X’ on H,
is the one induced by M(X’) € N. This implies that «(1,Z + X') = (1, Z) - M(—X"). An
easy computation shows that

(3.4.13)
0 (X', v) ok
V2 V2 Dy
(L2 X)) =i, 2) Mx)- | s =t | =] ]
Up+1 Up+1 Dyiq
0 0 0

where D; are as in (3.4.12). We avoid to give a formula for the first entry of the right-hand
side of (3.4.13), and simply denote it by **. Such entry is in general different from the first
one of the right-hand side of (3.4.12). Summarizing, we eventually deduce that

* 0 *ok
Do Dy Dy
(1L2*w) = | = =] ¢ = 1,7+ X)* (),
Dy Dip11 D11
0 ) st 0 0 ) i o
which concludes the proof of (3.4.5). O

3.5. THE UNFOLDING OF THE KUDLA—MILLSON LIFT

In this section we unfold the defining integrals of the genus 1 Kudla—Millson theta
lift ARM: ¥ — Z2(X[). Such lift was introduced with Definition 3.1.2. By Lemma 3.3.1,
it produces I'-invariant 2-forms on D, which descend to 2-forms on the orthogonal Shimura
variety Xp. Via (3.3.1), we may rewrite AXM more explicitly as

—  dxd
ARM(f) = / o ()80 7 o) Y
SLo(Z)\H Yy

(3.5.1)

- i </s y’“f(ﬂmdx dy> ®g"* (wa,b+1 N wﬁ,b+2>7

a,f=1 L2(Z)\H y2

for every cusp form f € S¥, and for every g € G mapping z to zg. The value of AXM(f) on z
does not depend on the choice of such g. We refer to the integrals appearing as coefficients
in (3.5.1), namely

— dxd
(3.5.2) / o () P (7 9) Y.
SL2(Z)\H Yy

as the defining integrals of AXM(f). The goal of this section is to compute such integrals
via the unfolding trick.

The classical unfolding trick is recalled in Section 3.5.1. We apply it to the defining
integrals of the Kudla—Millson lift in Section 3.5.2, while in Section 3.5.3 we compute the
Fourier expansion of such unfolded integrals.

3.5.1. The classical unfolding trick. We briefly recall the Rankin—Selberg method,
usually called unfolding trick.

Let I'ss be the index 2 subgroup {(}}) : n € Z} of the group of translations in SLy(Z).
The unfolding trick enables us to simplify an integral of the form

dzx d
(3.5.3) /ﬁ H(r) =,
SLo(Z)\H Y
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where H: H — C is a SLy(Z)-invariant function, in the case where H can be rewritten as
an absolutely convergent series of the form

(3.5.4) H(r)= > h{y-7),
Y€l s\ SL2(Z)

for some I'wo-invariant map h. The sum (3.5.4) is analogous to the one used to define
Poincaré series.

The unfolding trick aims to rewrite the integral (3.5.3) as an integral of h over the
unfolded domain I'o\H, more precisely as

(3.5.5) / H(T)dg”jy _ 2/ h(T)dxjy.
SL2(Z)\H Yy oo \H Y

Since we can choose the vertical strip

S={r=zs+iyecH: 0<x <1}

as fundamental domain of the action of ', on H, the integral on the right-hand side
of (3.5.5) is easier to compute with respect to the one on the left-hand side.

Let F be the standard fundamental domain of the action of SLa(Z) on H. The
equality (3.5.5) can be easily checked as

dm dy / dx dy / dx dy
h(y-T =
/SLQ(Z)\H Z ( ) y? Z

7er \ SL2(7Z) V€l \ SL2(Z

_ Z / d:vdy 2/ h(q_)d:n;iy,
Too\H

~€T 00\ SLa(Z) Y

where the factor 2 arises because the quotient classes of (§9) and (' %) in I's\ SLa(Z)
are different.

3.5.2. The unfolding of AXM. To unfold the defining integrals (3.5.2) of the Kudla—
Millson lift via the procedure illustrated in Section 3.5.1, we need to find I'o-invariant
functions hq g(7,g) such that

(3.5.6)

yEf(T)Fap(r.g) =

k+1/2
y e f(r
( )@LLor(T’g#’P(aﬂ) g#OO) + } hmﬁ(ﬁ/‘ﬂg),

2 b b "y
\/@ 7= (* )T\ SLn ()

for every g € G and z € Gr(L) such that g: z — zp. The first summand on the right-hand
side of (3.5.6) arises from the error term associated to ¢ = d = 0 appearing on the right-hand
side of (3.3.15). Such term will become relevant in the computation of the constant term
of the Fourier expansion of the defining integrals of AXM(f).

Proposition 3.5.1. Such Foo-functions exist. They can be chosen as

y* 12 f(7) S
hap(T,9) = Z Z 2iy) X
\/Tzl r>1 h+=0
2
wr
X exp ( - 272) : @LLor (7—7 T, ng#vp(a,ﬁ),g#,h+,0)'
yu, .

PROOF. The definition of h, g above corresponds to the product of y* f(7) with the
conjugate of the term of (3.3.15) associated to the values ¢ = 0 and d = 1. Such function
is Too-invariant, since so is also O, (,7u,0, g%, Pla,B),g% b+ h-)-
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We compute hq g(7 - 7,g) for every v = (1 ) € '\ SL2(Z), showing that such value
equals the term of y* f (1)Fa (T, g) corresponding to the coprime values ¢, d € Z appearing
when replacing F, g(7, g) by (3.3.15).

Let v = (‘; 3) € I'so\ SL2(Z), for some coprime integers ¢,d € Z, and let g € G. We
use the modular transformation properties of y, f(7) and ©r,_, where the automorphic
factor of the latter is given by Theorem 3.3.10 with Lyor and P, gy g# p+ 0 in place of L
and P, respectively. We deduce

(3.5.7)
1 yk+1/2 N 2 o
hap(y-7,9) = 5 T + d[2k+1 (e +d)" - f(7) Z (2iy) X
QZLZJ_ ht=0

2 d 2
X |er +d|?h" - Zr’ﬁ ~exp<— %)x
>1 QyU’ZL

x (e + d)(b—l)/2+2_h+(CT n d)1/29LLor(T7 M, N, g#,p(amg#ﬁto),

where M, N € L1, ® R are such that aM + bN = ryp and cM + dN = 0. The solutions
of the latter system of equations are M = rdy and N = —rcpu, respectively. We replace
them in (3.5.7), and simplify the factors given by powers of (¢7 + d) and their conjugates,
deducing that

k+1/2 2 it
hoz,,@(fY'T?g) = f(T)Z Z (Q’Ly)_ X
2u?, r>1ht+=0

mr2ler + d|?

X (e + al)h+ - exp ( 5
2yu’,

>@LLOr (7'7 rdu, —rcu, 9#7 P(a,ﬁ),g#,h+,o)-

By Corollary 3.3.14, the formula above for hqy g(7y - 7, g) coincides with the (¢, d)-summand

of y* f(7)F, (7, g) that arises when rewriting F, 5(7,g) as in (3.3.15). That is, (3.5.6) is
satisfied. O

We may then unfold the defining integrals (3.5.2) of the Kudla—Millson lift as
(3.5.8)
dedy

/ yF f(T)Fa5(T,9)—
SL2(Z)\H Yy

dx dy

k+1/2

y f(r

:/ ( )@LLor(T7g#’P(a,ﬁ),g#,O,O) 2 +2/ ha,ﬁ(ﬂQ)
SL2(Z)\H 2u?, Yy Foo\H

dx dy
y?

3.5.3. Fourier series of unfolded integrals. In this section we compute the Fourier
expansion of the defining integral (3.5.2) of AXM for every a,3. To do so, we begin
rewriting the last term of the right-hand side of (3.5.8) via Proposition 3.5.1 as

dx d too 1\ /oyk=3/2 ¢ (1 2 LN
2 [ttt = [ [ S i
Too\H Y 0 0 u;

(3.5.9) hr=0

2
+ mwr
xy ot ‘eXP(— W) - OL (7,718, 0, 9%, Pio ) g# i+ 0) A dy.
=1 yu’ .,
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We are going to replace in (3.5.9) the cusp form f with its Fourier expansion, and the Siegel
theta function O,  with its defining series. We denote the Fourier expansion of f by

(3.5.10) £ =3 ealPle(nr) = 3 ealf) exp(—2mny)e(n).
n>0 n>0
Recall that we denote by (-,-),, the standard majorant of Li, ® R with respect
to w € Gr(Lyer), that is (v,v)y = (Vy1, V1) — (Vw,vw), for every v € Lio ® R We
rewrite the defining series of ©, = with respect to the decomposition 7 = x + iy in real

and imaginary part as
(3.5.11)

@LLor (Ta ru, O) g#) P(a,ﬂ),g#,th,O) = Z eXp(_A/STFy) (P(a’ﬁ),g#Jﬁ‘,o) (90 o g#()‘)) X
AeLLor

xexp (= my(\, Aw) - e(zq(N)) - e(— (A, p)).

Remark 3.5.2. Even if P, g) is harmonic, when we rewrite it as a linear combination
of products of polynomials on subspaces, see Remark 3.3.8, the polynomials Pa,8),g# 0
are not always harmonic. In fact, if h* = 1,2, then they are of degree respectively 0
and 1, so they are harmonic. But the harmonicity of the one associated to h™ = 0
depends on the choice of g, as illustrated in the following example. This explains why the
operator exp(—A/8my) appearing in (3.5.11) can not be in general dropped.

Example 3.5.3. We are going to construct an isometry g € G = SO(L ® R) such that the
polynomial P, 3) s# o0 is non-harmonic.
Suppose that a # 8 and that a, 5 < b. Let g € G be the isometry defined as
g:e r—>ea+€ﬁ ebr—>ea_€6
- V2 V2
and fixing the remaining vectors of the standard basis of L ® R. We remark that such
isometry lies in the maximal compact subgroup K of GG, that is, the stabilizer of the base
point zy € Gr(L).
We have P, g) (go(v)) = 2z,78, for every v = Z?i? zje; € L @ R. For the special
choice of the isometry g as above, we may also deduce that

(3.5.12) Plag) (900 9(v)) = a2 — a3,

since

€3 > €p,

To + T To — T
9(”)=$1€1+'”+< = b>6a+"‘+( = b)%"’"'+3356b+"'+33b+26b+2-

V2 V2
We are now ready to compute the polynomials P, gy g# 5+ ¢ arising as in Remark 3.3.8.
Since u = (ep+epy2)/v/2 by definition, we deduce that Uyl = ey/V/2, hence (v, uzd_) = x/V/2.
By comparing (3.5.12) with the decomposition of Remark 3.3.8, or directly by Lemma 3.3.9,
we then deduce that

22, if hT =0,
Plag)gtn+olgoogh(v) =50, ifht =1,
-2, if At =2.

In particular, the polynomial P, g) 4# 0,0 is non-harmonic.
We are now ready to prove the main result of this section.

Theorem 3.5.4. Let f € S¥ be an elliptic cusp form. We identify G with K x Hy, via a
diffeomorphism v as in Lemma 3.4.2, such that every g € G may be rewritten as t(k, Z),
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for a unique (k,Z) € K x Hy. The defining integrals o, g: G — C of the Kudla—Millson
lift AXM(f), namely

——dx dy
Zap(g) = / ykf(T)Fa,B(T’g) 2
SL2(Z)\H Yy

have a Fourier expansion of the form
(3.5.13) Top(9) = Tap((s, 2)) = Y e(A kK Y) e((X X)),
AGLLor

where Z = X +1iY.
The Fourier coefficient of L, g associated to A\ € Lior, such that q(X) >0, is

V2 s oo s
c(\K,Y) = PCORED th%q(wﬁ(f)/o yF T 32

(3 5 14) \/U; ht=0 t>1, t|\

27ry)\2 7rt2
2wl— - D) ) : eXp(—A/Sﬂ'y) (P(a,ﬁ),g#,th,O) (90 o g#()‘/t))dy’
t 2yuzL

xexp(—

where we say that an integer t > 1 divides X € Lyoy, in short t|\, if and only if A/t is still
a lattice vector in Lior.

The Fourier coefficient of L, g associated to A = 0, i.e. the constant term of the Fourier
series, 1S

k+1/2

Y f(7) dx dy
COaH7Y _/ 7’@[/ or Tag#vpa # .
(3.5.15) ( ) @ o, Lo ( (@8).5#.00) 72

In all remaining cases, the Fourier coefficients are trivial.

Implicit in (3.5.14) and (3.5.15) is that the right-hand sides do not depend on X. This
is shown in the proof of Theorem 3.5.4 using the following result. We suggest the reader to
recall the construction of the polynomials Py ,+ ,~ from Definition 3.3.6.

Lemma 3.5.5. Let P be a homogeneous polynomial of degree (m*™,m™) on R»2. We
identify K x Hp with G via a diffeomorphism v as Lemma 3.4.2. The value of the function

Pg#,hﬂh* (90 o 9#()\))

with respect to the variable g = 1(k, Z) € G does not depend on the real part X of Z, for
any X\ € Lior @ R and any h*, h™.

PROOF OF LEMMA 3.5.5. As usual, we denote by z; = (v, e;) the coordinate of any
vector v € L ® R with respect to the standard basis vector e;, and by go: LR — R"2 the
isometry defined as go(v) = (1, ...,Tp12). If Z € H;, we denote by z its corresponding
point on the Grassmannian Gr(L).

By Lemma 3.4.2, the isometry ¢(1, Z) preserves the isotropic line Ru, for every Z € H,,.
This means that there exists a function ¢: Hp — R\ {0} such that (1, Z)(u) = ¢(Z) - u.
Since ¢ is a diffeomorphism, the function ¢ is smooth. Moreover, since ¢(1, Zy) is the identity
by construction, and hence ¢(Zy) = 1 where Zj is the point of the tube domain identified
with the base point zg € Gr(L), then ¢(Z) > 0 for every Z € H;. The vector u./|u,| has
norm 1. This implies that also

4(1,2)( Uz ) 2.,

is a norm 1 vector, from which we deduce that ¢(Z) = |u,|/|uz,| = ‘UZL|/"LLZOL|.
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For every g € G, we rewrite gil(ej) with respect to the decomposition
LR =Ru,. ®Ru, dw' dw
as

(3.5.16) 97M(ej) = Aj(9) st + Bylg) -z + g7 (et e

where A;, B;: G — R are the auxiliary functions defined as

-1 €5), Uyl -1 e;), U,
ag = D) g g - ),

and where g71(€;)y1q, is the orthogonal projection of g71(e;) on wl & w. Suppose
that g = u(k, Z), for some k € K and Z € H;,. We may compute

o A2 (e (K.LSQ, LZ)(u))zOL) _ (ej,c<z>;2(j<u>)z3) _ &“‘“(Tu )?

Since |u, 1| =1/|Y| by Lemma 3.4.1, we deduce that the value of the function A; does not
depend on X. The same procedure, with z in place of 2z, shows that also the value of B;
does not depend on X.

The polynomial P(go(v)) has z; = (v, e;) as variables, hence P(goog(v)) is a polynomial
of variables (U, gfl(ej)), for every g € G. To construct the polynomials Py# 5+ j,—, we need
to split g~ *(e;) as in (3.5.16), replace these in the variables of P (goog(v)), and gather all fac-
tors of the form (v,u,1) and (v,u.). In this way, we may deduce that Pz + ;- (go o g7 (v))
is a function of A;(g), Bj(g) and (v, g '(€j)y1ay), where j runs from 1 to b+ 2.

We want to prove that Pyx p+ 5 (gg ) g#()\)) does not depend on the real part X, for
every A € Ly ® R, where we identify g = «(k, Z). We already proved that A; and B; does

not depend on X. Since
(3.5.18)

(Mg e on) = (Murow971) = (90uew)res) = (510, 275N ¢5).

the right-hand side of (3.5.18) does not depend on X by Lemma 3.4.2. This concludes the
proof. O

PRrROOF OF THEOREM 3.5.4. We consider the unfolding (3.5.8) of Z,, 3. The first sum-
mand of the right-hand side of (3.5.8) is part of the constant term of the Fourier expansion
of Z, g, since it does not depend on X. In fact, by Lemma 3.4.1, we may rewrite it with
respect to the identification of G with K x H; as

k41/2

yF2 1 (1) dx dy

/ =00, (T, 9%, Plag)g#00) 3 =
SLa(D\E  [2u2, Yy

(3.5.19) :/ y @Y exp(— /875 (P s 0.00) (g0 0. 5H () x
SL»(Z)\H V2 Aengor (Pla,),9%,00) ( )

xel( = aq(n) - exp (= mp¥? + 2my (0, Y)Y Y

Lemma 3.5.5 implies that such value does not depend on X.

As we are going to show soon, all other non-zero Fourier coefficients arising from the
remaining summand frm\H ha (T, g)% of (3.5.8) correspond to some A\ € Ly, of positive
norm, so that e(r(\, X)) is not a constant function. This implies that (3.5.19) is exactly
the constant term of the Fourier expansion of Z, g.
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We now begin the computation of the Fourier expansion of the second summand
appearing on the right-hand side of (3.5.8). First of all, we compute the series expansion

with respect to 7 = x + iy € H of f(7) - O, (7, ru,O,g#,P(a75)7g#7h+70). To do so, we
replace f and O, with respectively (3.5.10) and (3.5.11), deducing that such product is

(ch f) exp( 27my)6(nx)> : ( > exp(=A/87Y) (Plag) g%+ 0) (90 0 g7 (V) x

n>0 /\ELLor

X exp ( — my (A, )\)w) . e( — xq()\)) . e(r()\,u))) =
=> ( > cnlf) - exp(—2mny) - exp(—A/81Y) (Pa,g),g# 4+0) (90 © g7 (N)) x

meZ ~n>0,AEL1,or
n—q(\)=m

<exp (=m0 A () ) - ema).

We insert the previous formula in the defining formula of h, g provided by Proposi-
tion 3.5.1, deducing that

drd \/§ + +
2/Fw\Hha,g<T,g> ygy—ﬁz SIS S ()%

ht r>1 mMEZ n>0,AEL1,or
n—q(A)=m
2

Foo r
xe(r()\, M)) /0 yk—h+_3/2 exp ( —2mny — 7y(A, A)w — 23/7) X
ZJ‘

1
x exp(—A/8my) (P(a75)7g#7h+70) (go o g#()\))dy/o e(mzx)dz.

(3.5.20)

The last integral appearing on the right-hand side of (3.5.20) may be computed as

1 .
1 ifm=0
/ e(mz)dx = e 7
0 0 otherwise.

We simplify (3.5.20) choosing only the terms with m = 0, obtaining that
(3.5.21)

dz d V2 ey (f) _
2/F . hes(r, ) 222 . y _ 3 q(2) Z h+z h+/ —ht 32,
[e%S) 1/uZJ‘

AELor ht=0 r>1

7T7'2
72) - exp(—A/87Y) (P(a,5).g% 1+0) (90 © g7 (N))dy - e(r(X, ).

X exp ( - 27ry/\ful — Sy
ZJ‘

Using that e((X, 1)) = e((X, X)) by Lemma 3.4.1, we rewrite (3.5.21) in the same shape
of (3.5.13), i.e. we gather the terms multiplying e(()\, ,u)), for every A. This can be done
simply replacing the sum »_ -, with ZtZLtI/\’ and the lattice vector A with A/¢t. In this
way, we obtain that

(3.5.22) 2
dz dy V2 too
2 [ it = 3 S S e [
oo \H y NeLpor \/U2L hi=0 t>1, tA 0
27ry)\i) 2
XeXp(_ o _2yu2l) - exp(—A/81Y) (Pla,p) g# 1+ 0) (90 0 g7 (/1)) dy - e((A, ).
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This is the Fourier expansion of 2 fFoo\H has(T,9) d”;gl Y. In fact, if we identify G with K x H,,
via ¢, and write g = t(k, Z), then we may deduce via Lemma 3.4.1 that (3.5.22) can be

rewritten as

(3.5.23)

dx dy
2/ ha’ 7,9 =
. (7, 9) )2
2

+o0 2
V2V DT N o) Y. (2i)h+th+/ y I exp ( - 27;92)\ )X

AELpor t > 1, t|A h+=0 0

2wry(\Y)?  m2Y?
X exp ( migyz ) + W2y ) - exp(—A/87Y) (Pra.py g# 1+ 0) (90 © g7 (A1) dy - e((A, X)),

and that the coefficient associated to A in (3.5.23) does not depend on X by Lemma 3.5.5. O

3.6. THE INJECTIVITY OF THE KUDLA—MILLSON THETA LIFT OF GENUS 1

This section is devoted to the proof of the injectivity of the Kudla-Millson theta lift AXM
of genus 1, associated to unimodular lattices of signature (b,2). Although such result has
already been proved in [Bru02| and [BF10], the procedure here proposed differs from the
previous ones, and has the advantage of paving the ground for a strategy that could work
for the case of genus higher than 1. The case of non-unimodular lattices is carried out in
Section 3.7.

Theorem 3.6.1. Let L be a unimodular lattice of signature (b,2), with b > 2. The
Kudla—Millson theta lift AXM associated to L is injective.

To prove such theorem, we need the following technical results.

Lemma 3.6.2. Let A € Lio ® R be such that q(\) > 0. There exist two different
indexes a, f € {1,...,b— 1}, and g € G, such that

Pa,p),g#,1,0 (900 9#()\)) > 0.

PROOF OF LEMMA 3.6.2. We recall from Section 3.3.2 that we may use the standard
basis vectors of L ® R to construct a basis of the subspace L1, @ R as e1,...,ep_1,€p11.
The lattice vector A may be rewritten with respect to such basis as

b—1
A= Z/\jej + Apr1€p11,
j=1
for some real coefficients A;, A\p41. Since
b—1
20(N) = (AN = YN = AR,
j=1
and since ¢(A) > 0 by assumption, there exists an index 5 € {1,...,b — 1} such that
the B-th coordinate Ag of A is positive.
Let o € {1,...,b— 1} be such that « # (3. For every vector v = ZHZ zje; € L®R,

j=1
the polynomial P, g) is such that
(3.6.1) 'P(aﬁ) (go(v)) = 2$axg

by construction; see (3.2.11).
We define g € G to be the isometry interchanging e, with ey, and ep 1 with ey, o, fixing
the remaining standard basis vectors. We remark that g is an element of the stabilizer K of
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the base point zp € Gr(L). For this choice of g, we deduce that P, gy(go © g(v)) = 2274,
since

b+2

g9(v) = ijg(ej) =T1€1 + -+ Tpla o+ Talh o+ Thyp2€pi1 + Tp1Ch2-
j=1

We write P(q,5) as in Remark 3.3.8, for some homogeneous polynomials P, gy g# n+ 0
of degree respectively (2 — h*,0) on the vector spaces go o g (L @ R) = Rb~11. Since we
may rewrite u with respect to the standard basis of L ® R as

_ & + €ep42
V2

and since the base point zy of Gr(L), stabilized by g, is defined as the negative definite
plane in L ® R generated by ep11 and ep12, we deduce that U= ey/+/2. This implies that

b+2
(v,u0) =Y wjlej ) /V2 =/ V2,
j=1
hence, we deduce that
(3.6.2) P(a,,@) (90 ] g(v)) = (’U, ’U,ZOL) : 2\/5375.

If we compare (3.6.2) with the formula provided by Remark 3.3.8, or directly using
Lemma 3.3.9, we see that for this special choice of g we have

2V2xg, ifht =1,

P #(v) =
(0.8).9% +.0(90 © 97 () {0, otherwise.

Since we chose (8 such that the p-th coordinate of A is positive, we than conclude
that P(a,),g#,1,0(90 © g% (1)) > 0. O

We are now ready to prove the main result of this section.

PROOF OF THEOREM 3.6.1. Let f € St be such that AXM(f) = 0. We want to prove
that this implies f = 0. Recall that we may compute AXM(f) as

b
— dxdy
3.6.3 AKM(f) = / kt(T)F, 5(T, Qg (w Aw ,
(3.63)  AM(p) BZ( oy T TS = 50) @07 (waiis Awiira)

for every z € Gr(L), and every g € G such that g maps z to zp; see (3.5.1). Since the
elements wq p+1 A wgpr2, Where o, 3 = 1,...,b, are linearly independent in /\2(13)*7 we
deduce from (3.6.3) that AXM(f) = 0 if and only if all defining integrals of the Kudla-Millson

lift are zero, that is

———dzd
(3.6.4) / ykf(T)Fayﬁ(T,g)# =0, for every a, 8 and for every g € G.
SLo(Z)\H )

As a complex valued function on G, the defining integral (3.6.4) of the Kudla-Millson
lift admits a Fourier expansion in the sense of Section 3.4. By Theorem 3.5.4, the Fourier
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expansion of such defining integral is

(3.6.5)
dedy

ykf(T)Fa,,B(Ta g) 2

SL2(Z)\H Yy

k+1/2 2

Y J(r dx dy V2 o+

:/ ( )@LLor(Tvg#vp(a,ﬁ),g#,o,(]) 2 + E E (QZ) & X
SLy(Z)\H

2 2
2’U’ZL y AELLor A/ U1 h+=0

+oo B B 27l'yA2 7Tt2
x o " 'Cqm/tz(f)/o i 3/2exp(— w )><

12 o
t>1,¢|A yuz.

X exp(—A/87Y) (Pla,p).g# 1t+0) (90 0 g7 (A1) dy - e((A, ).

The first summand of the right-hand side of (3.6.5) is the constant term of the Fourier
expansion. We deduce from (3.6.4) that the Fourier coefficients of the Fourier expan-
sion (3.6.5) are all zero. We want to use this to show that ¢,(f) = 0 for every positive
integer n, that is, the cusp form f is zero.

We work by induction on the divisibility of all A € Ly, such that ¢(\) > 0. Suppose
that such A is primitive, that is, the only integer ¢ > 1 dividing A is ¢t = 1. Then the fact
that the Fourier coefficient of (3.6.5) associated to A equals zero is equivalent to

2 2 oo
M Z (21')_’1+ / yk_h+_3/2 - exp ( — 27Ty)\121}L - LQ) X
2yus,

(3.6.6) u?, pr—o 0

x exp(—A/87Y) (P(a).4% 1+ 0) (90 0 g7 (V) dy = 0.

Note that the integral appearing in (3.6.6) is a real number.

We are going to prove that there exist two different indexes o, 5 € {1,...,b— 1} and an
isometry g € G, such that the sum over ht appearing in (3.6.6) is non-zero. This implies
that cg(\)(f) = 0, concluding the first step of the induction.

By Lemma 3.6.2, there exist two different indexes «, 8, and an isometry g, such
that P(q 8).6# 1,0 (9o o g#()\)) # 0. This implies that, for such choice of «, 5 and g, the sum
over ht appearing in (3.6.6) is a non-zero complex number. In fact, its imaginary part is

1 T s 2 ™
(3.6.7) —573(%5)79#,1,0(90 o g* (X)) / y" 52 - exp ( — 2wy, — Sy )dy,

0 oL

and the integral appearing in (3.6.7) is a positive real number. We remark that in (3.6.7)
we do not display the operator exp(—A/8my) acting on P, gy g# 1,0, since the latter is a
polynomial of degree one, hence harmonic.

We now use induction. Suppose that c,y)(f) = 0 for every ' € Ly, divisible by
at most s positive integers. Let A € Lo be such that it is divisible by s + 1 inte-
gers 1 < dj < -+ < ds. Since cq(/\/dj)(f) =0 for every j = 1,...,s by inductive hypothesis,
we may simplify the formula of the Fourier coefficient associated to A of the Fourier ex-
pansion (3.6.5) again to (3.6.6), where this time A is non-primitive. Since the primitivity
of A does not play any role in Lemma 3.6.2, we may deduce cqy)(f) = 0 with the same
procedure used for the case of A primitive.

To conclude the proof, it is enough to show that for every positive integer n, there
exists A € Ly such that n = g(\), and hence ¢, (f) = 0 by the previous inductive argument.
Equivalently, we want to prove that the quadratic form of the lattice L1, represents every
positive integer. This is ensured from the unimodularity of Ly, since then Ly, splits
off (orthogonally) an hyperbolic plane. In fact, it is well-known that the quadratic form of
an hyperbolic plane represents all positive integers. ]
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3.7. THE CASE OF NON-UNIMODULAR LATTICES

In this section we describe what one needs to change in the previous sections to deal with
non-unimodular lattices. We will provide also a sketch of the injectivity of the Kudla—Millson
lift AXM in the case of lattices that split off (orthogonally) two orthogonal hyperbolic planes.

Throughout this section we denote by L a (not necessarily unimodular) even lattice
of signature (b,2), where b > 2, and we set k = 1+ b/2 € %Z. The discriminant group
associated to L is the quotient L'/L, where L’ is the dual of L. The quadratic form ¢ of L
induces a Q/Z-valued quadratic form on L’/L, which we still denote by ¢, by modulo 1
reduction.

We denote by (ex)pers /1, the standard basis of the group algebra C[L'/L], and by (-,-)
the standard scalar product of C[L'/L], defined as

< Z Aneh, Z Hh€h> = Z An B

heL'/L heL'/L heLl'/L

Let pr be the Weil representation of the metaplectic group Mpy(Z) on C[L'/L];
see |Bru02, Section 1.1] for details. A (genus 1) modular form of weight k with respect to py,
and Mpy(Z) is a function f: H — C[L’/L] which is holomorphic on H and at the cusp oo,
and satisfies the modularity law

foy-m) = ¢(1)* - pr(v,0) - f(7),
for every (v, ) € Mpy(Z) and every 7 € H. Such modular forms admit a Fourier expansion,
which we write as

Z Z n(fr)e(nT)en, = Z Z n(fn) exp(—2mny)e(nx)ep,

heL'/LneZ+q(h heL’ /L neZ+q(h)
n>0 n>0

where ¢, (fp,) is the n-th Fourier coefficient of fj, or equivalently the n-th Fourier coefficient
of index h of f. If all ¢o(f;) vanish, then f is called a cusp form. We denote by Mf’L,

resp. Sf 1, the space of modular forms, resp. cusp forms, of weight k£ with respect to pr,

and Mpy(Z).
In this setting, we may rewrite the Kudla—Millson theta form explicitly as
(3.7.1)

O(r,z,oxm) =y 7 > > <Woo(gT)SOKM>()\73)eh:

heL' /L AeL+h

b
= >y Ny Ny (Woo(gT)(Q(a,ﬁ)‘pO)> (900 9(N)) e, ®©g* (Waps1 A wapr2),

a,B=1 heL!/L \eL+h

= a,ﬁ(T7g)

where g € G is an isometry mapping z € Gr(L) to the base point zg, and Q(, g) is the
polynomial on R®? defined in (3.2.11). The auxiliary function F, s highlighted in (3.7.1)
can be rewritten in terms of the vector-valued Siegel theta function O = ZheL,/L Or+nen
as

Fas(rg) =y > D exp(=A/87y)(Pas) (g0 9(N) - e(ra(rs) + 7a(s) Jen =
hel’'/L AeL+h
=Yy ®L(7797P(a,,3))'

We suggest the reader to recall such vector valued theta function, together with their
modular transformation properties, from [Bor98, Section 4].

101



Using the notation above, the Kudla-Millson lift AXM: Sf ; — Z?(Xr) is defined as

(3.7.2) f s AN () = / <f<r>,@<m,goKM>>y'de§y,

SLy(Z)\H

where dz;iy is the standard SLy(Z)-invariant volume element of H. Such lift may be

rewritten via (3.7.1) as

pdz dy
) ®g (wa,b+1 A Wﬂ,b+2>-

(3.7.3)  AKM(f) /SL  Fop(m,9))9"
a,f=1 2(

We refer to the integrals appearing on the right-hand side of (3.7.3) as the defining
integrals of the lift AXM(f). We want to compute them via the unfolding trick. To do this,
we need to introduce another piece of notation, following the wording of [Bru02, pp. 41-42|.
Recall that we do not assume that L splits off any hyperbolic plane, for now.

Let u be a primitive norm 0 vector of L, and let v’ € L' be such that (u,u') = 1.
Define Lyo; = (LNut)/Zu, and write N for the smallest positive value of the inner product
of u with something in L, so that |L'/L| = N2|L}  /Lie|. Let L{, be the sublattice of L’
defined as

Ly={ e L' : (\u)=0mod N}.

We consider the projection p: Ly — Lj,, constructed in [Bru02, (2.7)]. This map is
such that p(L) = Lior, and induces a surjective map Ly/L — L /L1 which we also
denote by p. We recall that Lj/L ={A € L'/L : (A, u) =0 mod N}. With this notation,
by [Bor98, Theorem 5.2] we may rewrite the integrand of the integral appearing on the
right-hand side of (3.7.3) as

ykt1/2

N

k+1/2 2 dI2
S X ) ey e - T
diyu? |

0%, cdez  r>1ht—0
ged(e,d)=1

X <]CLLO,r (7_; _Tdv T’C), GLLor (Ta rd/”” —rcu, 9#7 P(a,ﬁ),g#,h+,0)>7

<f(7'),Fa,5(7', g)>yk = <fLLor 7;0,0), @LLor(T g P(a B),g%, 00)>+

Y

—+

where fr, (7;r,t) is the function arising from f € Sf’L constructed as in [Bru02, (2.12)].
To apply the unfolding trick, we need to rewrite

k+1/2
(f(7), Fap(r, )y = 2

,/2u§L

<fLLor (Ta 0, 0)7 @LLor (T7 9#7 7)(05,6),9?‘7*,070»"_

+ > has(7 - 7,9),

1=} §)erac\SLa(2)
for some I'yo-invariant function h, g. We may choose such function as
yk+1/2 2

+ pt wr
hapg(T,9) = \/275 E (2iy) =" exp(—m>><
z

UL r>1 ht=0

x <fLLor (7_; =, 0)> 6LLOr (T’ ru, 0, g#v P(a,ﬁ),g#,h+,0)>v

as one can show following the same idea of the proof of Proposition 3.5.1, together
with [Bru02, Theorem 2.6|. Proceeding with the unfolding as in (3.5.8), one deduces that
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the Fourier coefficient of fSLQ(Z)\H<f(T)’ F, 5(T, g))yk% associated to A € Lo + Aror,

for some hior € L7 ./L1or and such that g(A\) > 0, is
(3.7.4)

2 .
V2 @) Y Y e(t(hvul))'%(%)/ﬁ(fh)/o yF T8/

[2,2
W1 ht=0 t€Zx0 heL{/L
t|x

p(h)=hror/t

X exp ( T e T 2yui> - exp(—A/87Y) (Pla,p)g# 1+ 0) (90 © g7 (A/1))dy,

where we say that a positive integer ¢ divides A € Ly + hpor, in short ¢|A, if and only
if A/t is a lattice vector of Lo + R/, for some h' € L} /Lt

Theorem 3.7.1. Let L be an even lattice of signature (b,2), with b > 2, that splits off two
orthogonal hyperbolic planes. The Kudla—Millson theta lift A?M associated to L 1is injective.

Since a large part of the proof of Theorem 3.7.1 is essentially the same as the one of
Theorem 3.6.1, we provide only a sketch of it.

SKETCH OF THE PROOF. Let f € S} be such that AfM(f) = 0. This is equivalent to

(3.7.5) / YR (f (1), Faﬁ(T,g»dxgy =0, for every a, 5 and for every g € G.
SLo(Z)\H )

We want to show that this implies f = 0.

The Fourier coefficient of the left-hand side of (3.7.5) associated to A € Lyor + hror,
for some hror € Li,./Lior and such that g(A) > 0, is (3.7.4). We work by induction
on the divisibility of all such A\. Suppose that A is primitive. The fact that the Fourier
coefficient (3.7.4) associated to A equals zero is equivalent to

2 o0
ﬂ( Z 6((h,u’))'cq(>\)(fh)> Z(2z’)*h+ /+ it =312

(37.6) VUil hery/L h+=0 0

p(h):hLor
) - exp(—A/87Y) (P(a).4%n+0) (90 0 g7 (V) dy = 0.

xexp| —2 2
Since L splits off a hyperbolic plane, we may choose u and u’ to be the standard
generators of such hyperbolic plane, i.e. L = L1, @ U and N = 1. It is easy to see
that L'/L = Ly/L = L} ./Lior, that the map p is an isomorphism, and is actually the
standard orthogonal projection L'/L — Lior /Ltors h+ L — hr, .. + Lio. In particular,
for every hror € Li,,/Ltior, the only h € Lj/L such that p(h) = hre is h = hyor + L.
Since Ly, is orthogonal to u/, an analogous argument on (3.7.6) as in the unimodular
case shows that cg(y) (fhpo,+1) = 0 for every primitive A € Lyor +hior. This can be extended
to every (not necessarily primitive) A by an easy inductive argument. We then deduce that

(3.7.7) g\ (frporr) =0, for every A € Lior + hLor.
To conclude the proof, we show that (3.7.7) implies that
(3.7.8) cq(n)(fn) =0, for every A € L+ h.

Note that (3.7.8) implies that ¢, (fr) = 0 for every positive n € Z + ¢(h), since L splits off
a hyperbolic plane.

The lattice L splits off two orthogonal hyperbolic planes, say L = D @& U @ U for some
sublattice D of Ly, of signature (b — 2,0). We proceed with the same idea of the last part

of the proof of [Bru02, Theorem 5.12]. Let O(L) be the discriminant kernel of O(L), that
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is, the kernel of the natural homomorphism O(L) — Aut(L'/L). To prove (3.7.8), we show

that for every A € L + h, there exists an isometry o € I'(L) :== O" (L ® R) N O(L) such
that o(\) € L7 .. This implies that

cq) () = cqio(0)) (fo(n));
hence we may deduce (3.7.8) from (3.7.7).

It is well-known that there is an isomorphism between U & U and the lattice Maty(Z) of
integral 2 x 2 matrices, such that the quadratic form of U U corresponds to the determinant
on Maty(Z). The action of SLa(Z) on Maty(Z) by multiplication on the right-hand and
left-hand sides gives rise to a homomorphism

SLa(Z) x SLa(Z) —s O (U @ U).

The existence of o follows by the theorem of elementary divisors for SLa(Z). O

3.8. FURTHER GENERALIZATIONS

In this section we explain how to use the same pattern of this chapter to investigate
further properties that may be deduced unfolding the defining integrals of the Kudla—Millson
lift.

Theorem 3.5.4 provides the Fourier expansion of the defining integrals of the Kudla—
Millson lift. As shown by Lemma 3.3.1, the Kudla—Millson lift produces I'-invariant 2-forms
on D, for every subgroup I of finite index in O" (L), hence they admit a Fourier expansion
as well. It would be interesting to compute such expansion in terms of the one given
by Theorem 3.5.4, deducing a result analogous to [Bru02, Theorem 5.9]. This may be
achieved computing explicitly the terms of the form ¢*(wq p+1 Awgsp+2) appearing in (3.5.1),
choosing g such that it correspond to a point Z = X +1¢Y € H;, via an identification ¢
as in Section 3.4.2, and rewriting wq p41 and wgpyo in terms of 9/0.X; and 0/0Y; via the
isomorphism A?(p*) = A\*T5H,.

The works of Kudla and Millson are carried out in much greater generality with respect
to the case considered in this thesis.

In fact, they covered also the case of indefinite quadratic spaces of signature (p, q), where
neither p nor g equals 2. Although the associated symmetric domain D is not Hermitian any
more, it is possible to construct a Schwartz function ¢43;, analogous to the one appearing
in Section 3.2, with values in the space Z9(D) of closed g-forms on D. It seems reasonable
to find polynomials defined on RP¢ that may replace Q(, g in an explicit formula of YR,
similar to (3.2.10). It might be interesting to rewrite the Kudla—Millson lift under these
hypothesis, and check whether Borcherds’ formalism can be still applied to unfold the lift
and prove its injectivity. This would generalize [BF10, Corollary 1.2|, which is stated only
for unimodular lattices.

As already announced, the strategy here illustrated may be applied also to unfold the
defining integrals of the Kudla—Millson lift in higher genus. This goes beyond the purpose
of this chapter, and is postponed to Chapter 4.
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CHAPTER 4

UNFOLDING OF THE KUDLA—MILLSON LIFT OF GENUS 2

ABSTRACT

We unfold the defining integrals of the Kudla—Millson lift of genus 2, under the condition
that the latter is associated to some even unimodular lattice of signature (b,2), where b > 2.
This is achieved by applying the strategy of Chapter 3, but in genus 2. We explain why
this unfolding is not enough to prove the injectivity of the lift, showing why an additional
unfolding of integrals over I'/\H x C seems necessary.

4.1. INTRODUCTION

We consider the Kudla—Millson lift of genus 2 as a linear map from a space of Siegel
cusp forms of genus 2 to the space of closed 4-forms on some orthogonal Shimura variety.
This chapter begins the study of the injectivity of the Kudla—Millson lift of genus 2, and is
motivated by the study of the cone of codimension 2 special cycles. The idea is to follow the
unfolding strategy explained in Chapter 3, therein used only to study the Kudla—Millson
lift of elliptic cusp forms. We apply it to the defining integrals appearing in the genus 2
case. To do so, we first provide a generalization of Borcherds’ formalism [Bor98, Sections 4
and 5| to Siegel theta functions of genus 2.

There are various instances in the literature where the Kudla—Millson lifts are used to
deduce geometric properties of Shimura varieties by means of modular forms, e.g. [Bru02],
[BF10] and [BM19]. As illustrated in Chapter 1, it is possible to deduce properties of the
cone of codimension 2 special cycles on such varieties in terms of the modular cone, where
the latter is generated by coefficient extraction functionals on spaces of Siegel modular
forms of genus 2. Such relationship is provided by the linear map r introduced in
Proposition 1.4.8, which maps the modular cone to the cone of special cycles. As remarked
in Section 1.4.2, some of the properties of the cone of special cycles may not be inherited
from the modular cone if ¢r is non-injective. For instance, although the modular cone is
pointed by Theorem 1.4.9, the same property might be lost when passing to the cone of
special cycles, since a priori ¢r could contract a ray of the modular cone. It is then of
interest to understand whether v is injective.

The map analogous to ¢r but in genus 1, namely [BM19, (16)], is known to be injective
in many cases. This follows from the injectivity of the Kudla—Millson lift of genus 1, as
explained in [Bru02|. It is then expected that the injectivity of the lift of genus 2 implies
the injectivity of the map . This serves as motivation of the present chapter.

We now explain the results of this work in more detail. Note that we present the topics
with the same order of Chapter 3, hoping this may help the reader to quickly find the
analogies and differences between the cases of genus 1 and 2.

Let L be a unimodular lattice of signature (b, 2), where b > 2. We define k =1+ b/2,
which is an even integer, as one can easily deduce from the well-known classification of
unimodular lattices, and V' = L ® R. The Hermitian symmetric domain D associated to the
linear algebraic group G = SO(V') may be realized as the Grassmannian Gr(L) of negative
definite planes in V. Let Xp = I'\D be the orthogonal Shimura variety arising from a
subgroup T of finite index in OT (L) := O (V) N O(L).
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Kudla and Millson [KM86] [KM87] [KM90] constructed a G-invariant Schwartz func-
tion @km2 on V? with values in the space Z4(D) of closed 4-forms on D. An explicit
formula of such Schwartz function is provided in Section 3.2. Let w2 be the Schrodinger
model of the Weil representation of Sp,(IR), acting on the space S(V2) of Schwartz functions
on V2, associated to the standard additive character; see Definition 4.2.1 for details.

Definition 4.1.1. The Kudla—Millson theta form of genus 2 is defined as

O(7, z, pxm,2) = (det y) M2 Z (woo,2(gr)erM,2) (A, 2),
Ael?
yl/2 0

for every 7 = = + iy € Hy and z € Gr(L), where g, = (} %) ( 0 (112

_t) is the standard
element of Sp,(R) mapping i € Hy to 7.

In the variable 7, this function transforms like a (non-holomorphic) Siegel modular form
of weight £ = 1 + b/2 with respect to Sp,(Z). In the variable z, it defines a closed 4-form

on Xr. Let S5 be the space of weight k Siegel cusp forms of genus 2 with respect to the
full modular group Sp4(Z).

Definition 4.1.2. The Kudla-Millson lift of genus 2 is the map AXM: S& — Z4(Xy)
defined via theta integral as

- dxd
(4.1.1) P A = [ dety )BT 2 prona) e
Spa(2)\Ha dety
where dz dy = [[;<,dzk e dyke is the Euclidean volume element, and éi:tiyg is the stan-

dard Sp,(Z)-invariant volume element of Hp.

In Section 4.3 we generalize the Siegel theta functions appearing in [Bor98, Section 4|
to the genus 2 case, following the analogous construction of the theta functions introduced
in [Roe21]. In Section 4.5 we rewrite O(7, 2, prm,2) in terms of genus 2 Siegel theta
functions ©y 2 arising from certain very homogeneous polynomials P(q. g ,5) of degree (2,0)

on the standard quadratic space (Rb’z)Q, the latter property meaning that
Plapord) (@ - N) = det N Po 5.5 (),

for every N € R?*? and z € (R»?)? = R(O+2)*2 We refer to Proposition 4.2.3 for details
on such polynomials. To simplify the notation, we will frequently replace (a, 8,7, 9) by a
vector of indexes a.

As explained in Section 4.6, it is possible to rewrite the lift AKM(f) as

b b

——dxd
AgM(f) - Z Z (/ detykf(T)Fa(Tvg)ﬁ%>X
(4.1.2) aq=18,6=1 Spa(Z)\H2 ety
o a<ly  B<é

=Ta(9)
xg* (wa,b+1 AN wgpt2 A Wy pt1 A W&,b+2)a

where g € G is any isometry mapping z to a fixed base point zg of Gr(L), and Fy is an
auxiliary function which may be written in terms of a Siegel theta function of genus 2
attached to the polynomial P, whenever a # 8 and v # §. In fact, under such hypothesis,
we have

Fo(1,9) =dety-Opo(7, 9, Pa)-

The term ¢* (wapt1 A+ Awspto) appearing in (4.1.2) is a vector of A T(D). Tt de-
scends from the spreading of the Kudla—Millson Schwartz function to the whole D; see
Corollary 4.2.5.
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We refer to the integral functions Zo: G — C appearing in (4.1.2) as the defining
integrals of the genus 2 Kudla—Millson lift. The idea of this chapter is to generalize
Borcherds’ formalism [Bor98, Section 5|, and apply it to unfold the defining integrals
of AXM(f), rewriting them over the simpler unfolded domain Cy; \Hz, where Cq is the
Klingen parabolic subgroup of Sp,(Z). More precisely, we choose a splitting L = Ly @ U,
for some Lorentzian sublattice Lo and hyperbolic plane U, and unfold Z, under the
hypothesis that o # 3 and 7 # ¢ as follows. We do not provide here the definitions of ¢
and P g% T and instead refer to Section 4.4, where the generalization of Borcherds’

formalism is carried out.

Theorem 4.1.3. Suppose that o # 3 and v # 0. Let u,u’ be the standard generators of
the hyperbolic plane U. For every g € G, we denote by z € Gr(L) the plane mapping to the
base point zy via g. The defining integrals To of the Kudla—Millson lift ASM(f) may be
unfolded as

det y*+1/2 (1) dx dy
7, (9):/ —— O, 27, 9%, Pagr00) 75t
o Spa(Z)\H> 2u2L L @,97,0,0/ et Y3
det yF+1/2 _ 7P +hy
(4.1.3) +2/ dety ” ~(r) Zexp (-5 [y Bo) 30 (5) X
0271 \H2 2uzj‘ h+ th t
10'%2
_19hT ¢ 17k dx dy
X[y ]2,11 ) [y ]22 C—)LLor, ( T, (Ovrﬂ)vovg#vpa,g#,hf,h;) W’
where = —u' 4+ u_1 /2u?, 4+ u./2u2, and where we denote by [My, y the (m,n)-th entry

of any matriz M .

The cases where either o = 8 or v = § are not treated in this work. We hope to come
back to such cases in the future.

Since the polynomials P, are very homogeneous, the associated genus 2 Siegel theta
functions ©r (7, g, Pa) behave as (non-holomorphic) Siegel modular forms with respect
to the action of Spy(Z) on Hy. An unexpected fact is that many of the genus 2 theta
functions ©r, . 2 (T, (0,71),0, g7, Pa,g#,hf,hg) appearing in (4.1.3) loose their modularity.
This is a consequence of the fact that the decomposition of Py in higher genus, introduced
in Section 4.4, is such that the polynomials 770“ g# ht g are not any more very homogeneous,
in general. Anyway, the unfolding process can be completed even with non-modular theta
functions.

If a complex valued function defined over G is invariant with respect to some Lorentzian
sublattice of L, then it admits a Fourier expansion; see Section 3.4 for details. In Section 4.6.3
we use the unfolding (4.1.3) to compute the Fourier expansion of the defining integrals
of AgM( f). The Fourier coefficients are computed in Theorem 4.6.7. In particular, we will
show that the first summand of the right-hand side of (4.1.3) is actually the constant term
of the Fourier expansion of Z,,.

We now illustrate why the unfolding (4.1.3) seems to be not enough to prove the
injectivity of AKM. The lift AXM(f) of a Siegel cusp form f is zero if and only if all
defining integrals Z,, are zero, which in turn happens only if all Fourier coefficients of Z,, are
trivial. In the elliptic case, it was easy to see that all such Fourier coefficients are zero only
when f = 0. This was deduced from an explicit decomposition of such coefficients in real
and imaginary parts. In genus 2, the Fourier coefficients of Z,, are integrals over I'/\H x C,
where I'Y is the full Jacobi group, and the integrands contain certain Fourier—Jacobi
coeflicients of f. It is then non-trivial to prove that such integrals are zero only if f = 0.
It may be necessary to apply another unfolding, rewriting the integrals over I'/\H x C as
integrals over easier domains. Such problem is not tackled in this thesis.
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We conclude by remarking that in this chapter we do not treat the case of non-
unimodular lattices. In fact, if L is non-unimodular, then AXM is a lift of Siegel cusp forms
that are vector-valued with respect to the Weil representation attached to L. We prefer to
postpone such more general approach to a future work.

4.2. THE KUDLA—MILLSON SCHWARTZ FUNCTION

Let V be a real vector space endowed with a symmetric bilinear form (-,-) of signa-
ture (b,2), where b > 2. Its associated quadratic form is defined as ¢(-) = (-,-)/2. In
this section we provide an explicit formula of the Kudla-Millson Schwartz function @i 2
attached to V2, following the wording of [KM90, Section 5| and [FM06, Section 5.2].

Let (ej); be an orthogonal basis of V' such that (eq,eq) = 1 for every a = 1,...,b,
and (ey,e,) = —1 for p = b+ 1,b+ 2. For every v = (v1,v2) € V?, we denote by w;
the coordinate of v; with respect to e;, where j = 1,2 and i =1,...,b+ 2. Note that we
consider the elements of V2 as row vectors.

We denote by go: L ® R — R?? the standard isometry induced by the choice of the
basis (e;);, and by G the isometry group SO(V'). By a slight abuse of notation, we denote
by go also the isometry applied componentwise on V2 as go: (v1,v2) + (go(v1), go(v2)). We
use the same notation also for the isometries g € G acting on V2. We consider the image
of v € V? via gg as a (b+ 2) x 2-matrix, writing it as

(4.2.1) go(v) = ( 11 12 ) e (R?)2,

Tp4+2,1 Tp42,2

The Grassmannian associated to V' is the set of negative definite planes in V', namely
Gr(V)={zCV:dimz=2and (-,-)], < 0}.

The subspace zg spanned by ey and €19 is the base point of Gr(V). The Hermitian
symmetric space D attached to V may be identified with Gr(V'); see |[Bru+08, Part 2,
Section 2.4]. From now on, we write D and Gr(V') interchangeably.

For every v = (v1,v2) € V2, we define the projection of v with respect to z € Gr(V) by

UV, = ((Ul)za (UQ)Z)a

that is, the projection is considered componentwise. Moreover, we write
2
2 _ ([ v (v1,v2)
v = (IU, U) - 2
(Ula 1}2) U3

to denote the matriz of inner products of the entries of v, and analogously ¢(v) = %02.

The standard majorant (-,-), of V2 with respect to z € Gr(L) is defined as
(4.2.2) (v,v), = (v,1,v,1) — (v;,vs), for every v € V2.

Let g be the Lie algebra of GG, and let g = p + ¢ be its Cartan decomposition. It is
well-known that p = g/ is isomorphic to the tangent space of D at the base point zy. With
respect to the basis of V' chosen above, we have

(4.2.3) p={(27)IX €Maty2(R)} = Mat,2(R).
We may assume that the chosen isomorphism is such that the complex structure on p is
given as the right-multiplication by J = (% §) € GL2(R) on Mat,o(R).

To simplify the notation, we put e(t) = exp(2wit), for every ¢ € C, and denote
by v/t = /2 the principal branch of the square root, so that arg(vt) € (—m/2,7/2].
If s € C, we define t* = 58" where Log(t) is the principal branch of the logarithm.
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If M is a matrix, we denote by M? its transpose, and whenever M is invertible, we denote
by M~ the inverse of M®.
We recall from e.g. [FM02, Section 4] or [FM06, Section 7] the Schrédinger model we 2.

Definition 4.2.1. The Schridinger model w2 provides an action of Spy(R) x O(V') on
the space S(V2) of Schwartz functions on V as follows. The action of O(V) is given by

woo,2(9)(v) = ¢ (g7 (v)),
for every p € S(V?2) and g € O(V). The action of Spy(R) is given by
woo,g(‘g AL )e(v) = (det A)F220(p A), for every A € SLa(R),
(4.2.4) weo,2(§ §)p(v) = exp (i tr(Bv?))p(v), for every B € Sym,(R),
woo,2( % §)p(v) = x@(v), for some root of unity ¥,
where @ is the Fourier transform of .

The standard Gaussian g9 of (R*2)? is defined as

b+2 2
o 2(x) = exp ( — WZ Zx%), for every @ = (z1,x2) € (R*?)?,
i=1 j=1
where z; = (z1,...,2Tp12,)" € R>2. The standard Gaussian of V2 is the composi-

tion ¢ 2 © go, where gg is as in (4.2.1). It is K invariant with respect to the action given
by the Schrodinger model, where K is the standard compact maximal of G stabilizing the
base point zg € Gr(V).

The Kudla—Millson Schwartz function ka2 is a G-invariant element of S(V?2) ® Z24(D),
where Z4(D) is the space of closed 4-forms on D. We refer to Remark 3.2.2 and Remark 3.2.4
for the meaning of G-invariance on such tensor product of spaces. Recall that

[5(V?) @ 24D)]“ = [S(V?) ®/\

where the isomorphism is given by evaluatlng at the base point zy of D. We may then
define pxp 2 firstly as an element of [S(V?) ® A*(p*)]¥, and then spread it to the whole D
via the action of G.

Definition 4.2.2. We denote by X, ,, with 1 <a <band b+ 1 < < b+ 2, the basis
elements of Maty, 2(R) given by matrices with 1 at the (a, ;1 —b)-th entry and zero otherwise.
These elements give a basis of p via the isomorphism (4.2.3). Let wq , be the element of
the dual basis which extracts the («, p1 — b)-th coordinate of elements in p, and let A, , be
the left multiplication by wq, . The function @k 2 is defined applying the operator

2 b2

Il (3 (s ) @A)

=1p=b+1 a=1

to the standard Gaussian (pg2 0 go) ® 1 € [S(V2) @ A*(p*)]¥, namely
PKM,2 = DS’Q((%,Q o0 go) ®1).

The following result provides an explicit formula of ¢xn 2. The idea of the proof is
analogous to the one used in Section 3.2, where we illustrated how to rewrite the Kudla—
Millson Schwartz function of genus 1 in terms of the polynomials Q(, g). Recall that the

latter are defined on R??2 as

Pla,p) (®), if a # B,
4.2.5 o = ' h Pia =2 ,
( ) Llas)@) {P(aﬁ)(x) — 5, otherwise, where (0,8 (2) Lalp
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for every x = (21,...,Tp0)" € R®2.

Proposition 4.2.3. The Kudla—Millson Schwartz function gxmz2 € [S(V?) ® /\4(p*)]K
may be rewritten as

b b
(4.2.6) orm2(v,20) = > Y (Qaygns) ©02) (90(V)) Bwa b1 AWs by2 Awr, b1 AW b2,

where Q4 3..5) 18 the polynomial on (R*2)2 defined as
Qaprsy(@ = > sgn(0)sgn(0')Qa(a)or(8) (1) - Qot).or(s)) (£2),
o,0'€Ss
and where we denote by o, resp. o', a permutation of the indexes {«,~}, resp. {3,9}.
To simplify the notation, we will frequently replace («, 3,7, 9) by a vector of indexes c.

Remark 4.2.4. From (4.2.5), we may rewrite the product of polynomials appearing in the
summand of the defining sum of Q, more explicitly as

ATa,1 - TR0 - Ty 2 - T2, if a # 8 and v # 9,
2001 - T (2:5 217r) if « # (8 and v =4,
(2021 — 95) " 2292 - 252, if o= and v #4,

(2221 — 37) (2035 — 37), ifa=pandy=4.

Qa,p) (1) - Q(y,6)(w2) =

1

1 _9
2m 0%, 5 for

PROOF OF PROPOSITION 4.2.3. For simplicity, we write Fo; = Taj —
every j = 1,2 and a = 1,...,b. We may use such operators to rewrite

prm2 = Dy (w020 90) ® 1) Z Z ]:a 1F81F5,2F52(¢0,2 © 90)®
(4.2.7) ay=1B,6= 4
aFy  P#S

OWa,br1 A Wg b2 N Wy b1 A Wspio,
where we deleted all summands associated to wedge products containing two functionals
which are equal. We may compute

1

1
Zfa,lfﬁ,lf’y,2f672(800,2 °go) = Z]:a,l]:ﬁ,l]: 2(2xs,2002 0 g0) =

4.2.8 :

“28) _ ) 5FanFs1 (22022526002 © 90), if v # 9,
%fa,l}_ﬁ,l((%?yQ — 5-)02090), ify=4.

Since the entries x; and zg of go(v) are independent to each others, we may repeat an

analogous procedure to compute the action of the operator %]—"1704.7-"1,5 on the right-hand
side of (4.2.8), to deduce that

erM,2(; 20) Z Z (Q(aﬂ (90(v1)) - Qr.6) (90(v2)) '900,2(.90(’0))>®
(4.2.9) a';é—l /3/8;61
azy

RWabr1 N WE b2 N Wy b1 N Wspio.

The wedge products appearing on the right-hand side of (4.2.9) are linearly dependent in
the vector space /\4(p*). A set of linearly independent wedge products, with respect to
which we can write all the ones appearing in (4.2.9), is

{Wapt1 Awgpia Awypi1 Awspia @ such that o <y and < 6}
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If we rewrite (4.2.9) with respect to such set, taking into account permutations of the
indexes {«,~v} and {3,J}, then we obtain (4.2.6). O

Corollary 4.2.5. The spread of prm,2 € [S(V2)®/\4(p*)]K to the whole D may be written
as

wrm,2(v, 2) Z Z (Qa - ©0,2) (90 © 9(V)) @ g (Wabt1 A W b2 AWy pp1 AWspta),

o,y=13,6=1
aly  fB<é

where g € G is any isometry that maps z € D to the base point zy.

ProOOF. The idea is the same as for the spread of the genus 1 Kudla—Millson Schwartz
function, that is, Remark 3.2.6. In fact, we have

SOKM,Q(Ua z) = 9*<PKM,2 (9(”), Zo)~

Hence, it is enough to replace @k 2 (g('v), zo) above with the formula provided by Proposi-
tion 4.2.3. O

Analogously to what we did in (3.2.11) for the genus 1 case, we define additional
auxiliary polynomials Pq on (RP2)? as

(4.2.10) =4 Z sgn(o) sgn(o’)x To(a)1 " To!(B),1 * To(),2 * To'(5),29
o,0'€Ss

for every = (z;;)i; € (R®?)2, where o and ¢’ are permutations of respectively {a,~}
and {3,7}. Note that if & # § and v # §, then Qn = Pn. The polynomials P, will play a
key role in the upcoming sections, thanks to the following result.

Lemma 4.2.6. The polynomials Pq satisfy the homogeneity property
Po(x - N) = (det N)? - Py (),
for every ® € (R»2)2 and N € C**2.
PROOF. In what follows, the index 4 runs from 1 to b + 2, while j € {1, 2}.
Let @ = (z;;);; € (R®?)2. If N = (5} ny3 ) is a matrix in C?*2, then we may compute
Poa(x - N) =Py ((n1,1$i,1 +n21xi2 n12%i1 + n2,237i,2)i> =
(4.211) = > 4sgn(0)sgn(0”) (nm1,1%0()1 + n2,1%0(a) 2) (M1,1701(8) 1 + 12,1%41(5) 2) X
0,0’ €S2
X (11,9% 4 ()1 + 12,2%0(1),2) (11,280 (5)1 + 12,2207 (5),2)
A somewhat lengthy but trivial computation shows that (4.2.11) simplifies to

Palw - N) =ni nj, Z 4s5gn(0) sgn(0')To(),1%0(8),1%0 () 2% 0" (5),2F
o,0'€Ss

+nianigngangs Y 4sgn(o)sgn(o’) [%m),19%'(/3),29%@),2%'(5»1+
(4.2.12) 0177€ S
o (a)2T0/(8)1%a(v),1 %0’ (5),2| T
tniond; > 4sgn(o) sgn(0))Te(a) 20/ (8) 20 (r),1 ot (8),1-
0,0’ €Sy

The first and third sums over Se appearing on the right-hand side of (4.2.12) are equal.
The remaining sum equals —2 times the first. Hence, we may continue the computation as

Polz-N) = (n%lngz + niﬂ%,l — 2n11n1,2n2,1M2,2) Pa(z) = (det N)*Po (). O
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4.3. SOME GENERALIZATIONS OF SIEGEL THETA FUNCTIONS

Let L be an even unimodular lattice of signature (b,2), with b > 2. In this section we
introduce certain genus 2 Siegel theta functions Oy, 9 attached to L, which generalize the
Siegel theta functions Oy, introduced by Borcherds in [Bor98, Section 4]. We will use such
genus 2 theta functions in Section 4.5 to rewrite the genus 2 Kudla—Millson theta form,
analogously with what we did in Section 3.3.2 for the genus 1 Kudla—Millson theta form. A
similar construction of ©r, 9 is made in [Roe21]|, which introduces theta functions of general
genus associated to indefinite quadratic spaces.

Let V' = L®R. As in the previous section, we fix once and for all an orthogonal basis (e;);
of V such that (ej,e;) =1, for every j = 1,...,b, and (ej,e;) = —1 for j =b+1,b+ 2.
Such basis induces an isometry go: V2 — (R»2)2. We denote the Grassmannian Gr(V) also
by Gr(L).

4.3.1. The genus 2 Siegel theta function @ 2. The standard Laplacian A on (R2)2
is defined as

¢
(4.3.1) A= <8> -ﬁ, where 8:< 0 > .
ox Ox oz Oij ) 1<i<hio1<j<2
We consider
(4.3.2)
b+2 2 o) _
52 1 . 1 /—tr(Ay~1)\m

for any symmetric positive definite matrix y € R?*?, as operators acting on the space of
smooth C-valued functions on (R»2?)2. We say that a smooth function f: (R»?)? — R is
harmonic if tr Af = 0.

We now illustrate the notion of homogeneity for polynomials defined on (R»2)?, needed
to obtain Siegel theta functions with a modular behavior. To do so, we need to intro-
duce another piece of notation. Let (go(e;)); be the standard basis of the quadratic

space R»2. For every vector z = Z?’j z;go(e;) € R¥2, we define 2t = 2?:1 xjgo(e;)
and =~ = Z;’-izﬂ zigo(e;). For every z = (z1,22) € (R®?)2, we define t = (2], 27)
and 7 = (27,25 ).
Definition 4.3.1. We say that a polynomial P: (R»?)2 — C is very homogeneous of
degree (m™, m™) if it splits as a product of two polynomials P(x) = Py(z+)Ps(x~) such
that
Pyt N) = (det N)™ Py(zt)  and  Pa(z™N) = (det N)™ Pyl ),

for every N € C2*2.

This homogeneity property is the same as the one introduced in [Roe21|. Very homoge-
neous polynomials are a (not necessarily harmonic) generalization to indefinite quadratic
spaces of what Freitag [Fre83, Definition 3.5] and Maass [Maa59| call “harmonic forms”. To

avoid confusion with the harmonic forms on the Hermitian domain D, we prefer to refer to
such polynomials with a completely different terminology.

Example 4.3.2. The polynomials Py, introduced in (4.2.10) are such that
P(a,ﬁ,’y,&) (.’B) = ,P(a,,B,’y,(S) (:1:+)7

for every & € (R%2)2. In fact, by Lemma 4.2.6 they are very homogeneous of degree (2,0).
If o # B and v # 4, then Py, is also harmonic.
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Remark 4.3.3. Let P be a very homogeneous polynomial on (R»2)2 of degree (m™,m™),
and let N = (3 9), for some A € R\ {0}. For every & = (21, 22) € (R*?)?, we have

Po(Az ™) =Py (2 N) = (det N)™ Pyat) = X" Py(x).

The case of Po(x™) is analogous. We have just shown that the polynomials P, and P; are ho-
mogeneous of even degree in the classical sense, if considered as polynomials on (R*?)? =2 R?
and (R%2)% =2 R* respectively.

We define a generalization of Borcherds’ theta function Oy following the analogous
construction provided in [Roe21|, as follows.

Definition 4.3.4. Let P be a very homogeneous polynomial of degree (m*,m~) on (R??)2.
For every 8,v € V2, we define
(4.3.3)

Ora(r,8,v,9,P) = ) exp ( - 8% tf(Ay*1)> (P) (90 © g(A +v))x
AeL?

e(tr (g(A+2v),0)7) +tr (g(A+v).)T) — tr(A+v/2, 6)),

for every 7 € Hy, g € G, and z € Gr(L) such that g maps z to z9. If §, v = 0, we drop
them from the notation, and simply write Oy, »(7, g, P).
Remark 4.3.5. If a very homogeneous polynomial P is harmonic, then AP = 0, namely

b+2

82
277):0, for every 1 < p, & < 2;
= 0w ,0xj ¢

see e.g. |Fre83, Bemerkung 3.3]. This implies that

exp ( - % tr(Ay_1)> (P)="P.

This is analogous to the case of homogeneous harmonic polynomials in the genus 1 case;
see Remark 3.3.3.

To study the behavior of Oy, » with respect to the action of Sp,(Z) on Hy, we need to
provide more information regarding the Fourier transforms of functions defined on V2.

4.3.2. On Fourier transforms. Let W be a real vector space endowed with a non-
degenerate symmetric bilinear form (-,-), and let f: W?2 — C be a L'-function. The Fourier

transform f: W?2 — C of f is defined as

F(&) = /€W2 F(v) - e(tr(€,v))dv.

The integral defining the Fourier transform can be studied also for complex values of the
argument €. Depending on f, such integral might not converge for some &€ € W2 @ C. In
this section, we assume that f admits an extension of its Fourier transform to the whole
complexification of W.
The following results collect all properties of Fourier transforms needed for the purposes

of this chapter.
Lemma 4.3.6. Let vg € W2.

(1) The Fourier transform of f(v — vg) is e( tr(vo,v)) - f(v)

(2) The Fourier transform of f(v) - e( tr(vo,v)) is f(v + vp).

PROOF. These properties are well-known. O
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The next lemma provides a generalization in genus 2 of the main results of [Bor98,
Section 3|.

Lemma 4.3.7.
(i) Let B € C**'. The Fourier transform of f(v) - e(tr(Bv)) is f(v + B').

(ii) Let T € Hy, and let P be a polynomial on the space R™*2, endowed with the
standard bilinear product. The Fourier transform of

P(v) - e( tr(v'vr)/2)
18
i) exp (L (A1 oY ef - L ir(otor!
det(—iT) exp (47r tr(AT )) (P)(—vr ™) e( 5 tr(v'or ))
(iii) Let P be a polynomial on RY*2 where the latter is endowed with the standard

bilinear product (x,y) = x1y1 + T2y, and let A € Hy, B € C**!, C € C. The
Fourier transform of

P(v) - e( tr(Av'v) + tr(Bv) + O)
18
o AV—1/2 L -1 1 ey Rty 41
det(—2iA) exp (87r tr(AA ))(P)(2( v— BY)A )x
1 tyq—1y _ L 1 tg-1
xe( 4tr(v vATY) 2tr(BvA ) 4tr(BBA )—i—C).
(iv) Let T € Ha, and let P be a polynomial on R™*2 endowed with the standard bilinear
product. The Fourier transform of
1 . 1,
(4.3.4) exp ( ~ % tr(Ay )) (P)(v) - e<§ tr(v v7)>
18
1 1
i \—m/2 L 20 —1y—1 O N t,, —1
det(—iT) exp ( o tr (AT 72S(=771) ))(73)( vT ) e( 5 tr(v'vr )),

which is equal to

det(—ir) ™ - det(r) ~*exp ( - 8% r (AS(—r ) ™) ) (P)() e - %tr(vtm’_l))
if P is very homogeneous of degree s.

(v) Suppose that P is a polynomial defined on (2T @ 27)%, where 2% (resp. 2~ ) is a
positive definite (resp. negative definite) subspace of Rb2. Denote by d* and d~
the dimensions of 2T and 2z~ respectively. If the value of P(v) depends only on the
projection v+, that is, P is of degree zero on (27)?, then the Fourier transform of

exp ( — % tr(Ay‘l)) (P)(v) - e(tr (q(v,+)7) + tr (q(v,)f))
det(—iT) =4 /2 det(i7) "¢ /2 exp ( - % tr (AT_2%(—T_1)_1)) (P)(—vr 1) x

xe( —tr (q(vz+)7'_1) —tr (q(’vz_)f_l)>.

(vi) Let P be a very homogeneous polynomial of degree (m*,m~) on (27 @ 27)3?,
where 2zt (resp. 2~ ) is a positive definite (resp. negative definite) subspace of Rb2.
Denote by dT and d~ the dimensions of zT and 2z~ respectively. The Fourier
transform of

exp (= gz (A ™)) (P)(w) -t (afv:0)7) + tr (a(o2)7))
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det(—ir) "4 /2 det(r) ™" - det(iT) "4 /2 - det(7) ™ x
1 —1y—1 -1 -1
xexp (=t (AS(=r) 7)) (P)(©) - e — tr (o)) = tr ((v2)7 7).

PRrROOF. Part (i) is well known. Part (ii) is [Roe21, Lemma 4.5]. Part (iii) follows
from (ii) applied with 7 = 2A, and from (i).

To prove Part (iv), we apply (ii) with exp (— g= tr(Ay~!))(P) in place of P, deducing
that the Fourier transform of (4.3.4) is

(4.3.5) det(—ir) "2 exp (ﬁ tlf(AT’l)—%r tr(Ayfl)) (P)(—vr 1) -e(—tr(v'vr1)/2),

where we decompose 7 = x + iy € Hy. We rewrite the exponential operator appearing

in (4.3.5) as

exp (f (A7) — 8% tr(Ay ™)) = exp (- (A 2ir)) =

T 8

= exp ( — 8%7 tr (ATflyfl(T — Qiy))> = exp < — 8i7r tr (ATflyfli_))

(4.3.6)

It is well-known that

(C7+ D)!S(M - 7)(C7 + D) = (1), for every M = (4 B) € Spy(Z).
If we specialize it with M = < 102 7012 ), we may rewrite it as
(=N =7(r) 7

We use such relation to rewrite the right-hand side of (4.3.6) as
exp ( _ 1 tr (AT_ly_li')> = exp < _ 1 tr (A7_2%(—7’_1)_1)>.
8T 0

If we assume P to be very homogeneous of degree m, then by |[Roe21, Lemma 4.4 (4.5)] we
deduce that

o (= g7t (A7) )P er ) =

= exp ( — 8i7r tr (A%(—771)71)> (77(—1)7-*1) =
—exp (= Lt (AT ) (detl—r) - Plo) =

= det(—7) " exp ( — é tr (A%(—T_l)_l)) (P)(v).

To prove Part (v) and Part (vi), it is enough to apply (iv) to 2™ and z~. Since the
idea is analogous, we provide only the proof of Part (vi). Since P is a very homogeneous
polynomial of degree (m™*, m™), there exist two polynomials P, and P_ defined respectively
on z* and 27, such that P(v) = Py (v,+) - P_(v,-), and such that

Pr(v,-N)=(det N)™ - Py(v,+) and  P_(v,— - N)=(det N)™ -P_(v,-),
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for every N € R?*2 and v € (27 @ 27)2. We may then rewrite
1 _1 _
exp ( ~ & tr(Ay )) (P)(v) - e(tr (q('vz+)7') + tr (q('vz_)T)) =

= exp ( L tr(Ay_1)>(77+)('vz+) : e(tr (q(’vz+)7')> X

8 s
e é r(Ay ™)) (P)(w.-) et (a(0.)7))
e (o)

The Fourier transform of the left-hand side of (4.3.7) is the product of the Fourier transforms
of f1 and f7, since the latter two functions do not depend on common variables. Since the
quadratic form g|,« on 27 is positive definite, we may apply (iv) to compute the Fourier
transform of f1 as

FE(EL4) =det(/i) 0" /2 - det(r) ™" x

(4.3.8)
xexp (= ot (A ) ) ) (P 6 el — trla(e)r ).

—

Since the quadratic form ¢|,- on 2z~ is negative definite, before applying (iv) we rewrite fr
as

()= / fr(x)-e((€ x))dx =
) T
= [ e (— g @)@ et (—at@) - (7)) (- (&2

where we denote by (-,-) the bilinear form associated to ¢|,-. The right-hand side of (4.3.9)
is now the evaluation on —& of the Fourier transform of the function

exp ( - 8i7r tr(Ay71)> (P_)(v,-) - e(tr (—q(v,-)- (—7")))

with respect to the positive definite quadratic space (27, —q|,~). Since S(771) = (—771),
we may apply (iv) and deduce that (4.3.9) equals

det(~7/1) /2 - det(r) ™ -exp (— o tr(AS(-r ) (P)(~€)x
xe( — tr (q(—&)i‘_l)).

(4.3.9

(4.3.10)

Since P is very homogeneous, we deduce that

exp (= - Ay ™)) (PL)(~€) = exp ( — o tr(Ay ™)) (PL)(@)

for every positive definite y € R?*2. It is enough to insert (4.3.8) and (4.3.10) in (4.3.7) to
conclude the proof. O

Corollary 4.3.8 (Roehrig). Let v € (L ® R)?, where L is a unimodular lattice of signa-
ture (b,2), and let P be a very homogeneous polynomial of degree (m*,m™) on (R»2)2. We
define

fr.g(v) = exp ( — 8i7r tr(Ay*1)> (P) (go o g(v)) . e(tr (q(sz)T) + tr (q(vz)i')>,

for every 7 € Hy and g € G, where z € Gr(L) is such that g maps z to zg. The Fourier
transform of fr 4 1s

(4.3.11) Fro@) = (det7)~27" (det 7)1 f_ 1y (w).
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PROOF. It is a trivial consequence of Lemma 4.3.7 (vi). In fact, since L is a unimodular
lattice of signature (b,2), it is well known that b 4+ 2 = 4 mod 8, hence

det(7/i)7%? - det(i7) ™" = (=1)"+D/2(det 7)72(det 7) 7' = (det 7) "2 (det 7) L
Alternatively, it can be deduced following the wording of [Roe21, Lemma 4.9| O

4.3.3. Modularity of ©r >. We are now ready to prove the modular transformation
property of the Siegel theta function Oy o associated to very homogeneous polynomials.

Theorem 4.3.9. Let P be a very homogeneous polynomial of degree (m™,m™) on (R®2)?,
and let §,v € V2. We have

( ) @LQ(")/-T,(SAt—i-I/Bt,(sCt-i-VDt,g,,P) ==
4.3.12 _
= det(CT + D)b/%mJr det(CT + D)1+m Or2(1,6,v,9,P),
for every v = (é }_’3) € Spy(Z).

PROOF. It is enough to check such transformation property on a set of generators
of Sp4(Z). We may choose

Tg = (I()?IBQ),whereB:BtGZQXZ, and S:<102_012),
as set of generators. If v = Tz, then (4.3.12) simplifies to

@L’Q(T—’—B,J—’—UB,V,‘Q,P) = @L}Q(T,(s,l/?g,,])),
which can be checked easily. If v =5, then (4.3.12) becomes

(4.3.13) Ora(—771 =1, 8,9, P) = det(r)?/>T" det(7) 1™ O 5(7, 8,1, 9, P).
We prove (4.3.13) applying the Poisson summation formula for unimodular lattices, i.e.
(4.3.14) Z fA) = Z N, for every function f € L*(V?),

AeL? AeL?

and Lemma 4.3.6. We begin by rewriting O, as

(4.3.15) OLa(r,6,1,9,P) = e(tr(1,6/2)) D hesug(N),
AelL?

where hr 5, g(A) = frg(A+v) - e( —tr(A + v, 5)), and fr 4 is the function introduced in
Corollary 4.3.8. The idea is to apply the Poisson summation formula to the right-hand side
of (4.3.15). To do so, we compute the Fourier transform of h, s, 4 using the properties
illustrated in Lemma 4.3.6 as

o —

hrswgA) = frg(A—8)-e( —tr(A,v)).

We now apply the Poisson summation formula to (4.3.15) and the formula of ﬁ; given by
Corollary 4.3.8, obtaining

Or2(1,0,v,9,P) =
= e(t0(,8/2) Y hrowgA) = Y FrgA—8)-e(—tr(A—6/2,1)) =

AeL? AeL?
= det(r) "D/ det(7) 712 Y " exp ( - % tr(A%(—T_l)_1)>(P)(go 0 g(A—8))x
AeL?

xe(tr (q((A=8),) (=) + tr (g(A = 8)) (=7 1)) — tr(A— 8/2, 1/)).
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In the sum over L? above, we replace XA with —\, deducing that
@L,2(7—7 57 v,g, P) = det(T)_(b/2+m+) det(%)_(1+m7)6L,2(_T_17 -V, 67 9, P)a

that is equivalent to (4.3.13). We remark that we used the homogeneity of P, more precisely
that

P(go og(—A— 6)) = det(—Ig)m++m_’P(go og(A+ 5)) = P(gg og(A+ 5)) ]
4.4. THE SPLITTING OF ©f, 9 WITH RESPECT TO L = L1, U

In Chapter 3, we explained how to unfold the defining integrals of the genus 1 Kudla—
Millson lift. The idea was to apply Borcherds’ formalism [Bor98, Section 5| to rewrite the
genus 1 theta function ©f with respect to the splitting of a hyperbolic plane in L. In this
chapter, we explain how to generalize the previous idea to the genus 2 Kudla—Millson lift.
Many difficulties arise in such generalization. One of those is the lack of results on how to
rewrite the genus 2 theta function ©p, o with respect to the splitting L = L1, @ U. In fact,
Borcherds’ work [Bor98] covers only the genus 1 case. The goal of the current section is to
fill this gap.

In Section 4.4.1, we illustrate how to rewrite Py, for the indexes a = (v, 3,7, d) such
that o # f and v # §, with respect to polynomials defined on the subspaces gg og((wJ-EBw)Z),
and study their homogeneity. In particular, we will see that they are not always very
homogeneous; see Lemma 4.4.4. This implies that the associated genus 2 theta functions
are not always modular, in contrast with the analogous construction in genus 1. Such
unexpected behavior will be further investigated in Section 4.5 using Lemma 4.4.5, which
provides the Fourier transforms of the general summands of such theta functions. Eventually,
we illustrate in Section 4.4.2 how to rewrite Oy (7, g, Po) in terms of the theta functions
attached to the polynomials constructed in Section 4.4.1. The main result is Theorem 4.4.7,
which may be considered as the generalization of [Bor98, Theorem 5.2| to the genus 2 case.

Since this section is rather technical, we suggest the reader to skip it during a first
reading.

4.4.1. On auxiliary polynomials defined on subspaces. Since the lattice L has been
chosen to be unimodular of signature (b,2), we may assume up to isomorphisms that L is
an orthogonal direct sum of the form

(4.4.1) L=FEs®---dEspUU,
=Lyor

where Ejg is the 8-th root lattice and U is the hyperbolic lattice of rank 2. Let Lo, be the
unimodular sublattice of L defined as the orthogonal complement of the last U appearing
in (4.4.1). Without loss of generality we may assume that the orthogonal basis (e;); of L&R
is such that Ly, ® R is generated by eq,...,ep—1, €p+1, and that the remaining U ® R is
generated by e, and epio.

Let u, v’ be a basis of U such that (u,u) = (v/,u) = 0 and (u,u’) = 1. We may suppose
that

(4.4.2) yo Gt G G

V2 V2
In this way, we may rewrite L as the orthogonal direct sum of Ly, with Zu & Zu/'.
The following definition recall some of the objects introduced in [Bor98, Section 5|. We
use a different notation with respect to the cited reference.

Definition 4.4.1. Let z € Gr(L), and let g € G be such that g: z — zp. We denote by w
the orthogonal complement of u, in z, and by w™ the orthogonal complement of u,. in zt.

The linear map g7: L ® R — L ® R is defined as g7 (v) = g(v,r + vu).
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We now define certain polynomials on subspaces of (Rb’2)2, to be considered as the
analogue in genus 2 of the polynomials (3.3.7) defined by Borcherds in [Bor98|. Since
the very homogeneous polynomials on (R??)2 we will work with in the next sections,
namely Py, are of degree (2,0), we restrict our attention to very homogeneous polynomials
of degree (m™,0).

Definition 4.4.2. Let z € Gr(L), and let g € G be such that g maps z to zy. For every very
homogeneous polynomial P of degree (m™,0) on (R»?)2, we define the polynomials P o# bt b
on go o g7 (L @ R)? = (RP~1L1)2 by
+ +
(4.4.3) Plgoog(®)) = Y (v, u) (v2,u.0)" - Py v e (g0 0 g% (v)),
r RS
where v = (v1,v2) € (R®?)2.

Although P is very homogeneous, the auxiliary polynomials Pg# Bt hg May be not.

This will be shown in the case of P = P, in Lemma 4.4.4.
The following result provides an explicit formula for P, o# T b where the latter are

the auxiliary polynomials arising as in Definition 4.4.2 with P = P,.

Lemma 4.4.3. Let z € Gr(L) and g € G such that g maps z to zy. For every v = (v, v2)
in V2, the value P, g# bt (90 © g7 (v)) may be computed as follows.

o If hj =0 and hgr_j =2, where j = 1,2, then
4
Pognt i (90097 () = > ——sgn(o)sgn(o”)x
0,0’ €S2 zt
X (g(u)’ea(a)) ' (g(u)’ea’(ﬂ)) : (9#(vj))€a('y)) : (g#(vj)7eo’(§))-
o Ifhi = h; =1, then

4
73oth?‘?&,l,l(goOQ#(U)) = g e sgn(o) sgn(o’)x
0,0’ €S2 Zl

X |:(g(u)7ecr(a)) : (g(u)vea’(5)) : (.g#(vl)?ecf’(ﬂ)) : (g#(v2)vea('y))+

+(g(w), en(y)) - (9(w), e0rg)) - (97 (v1), €0(a)) -+ (97 (v2), €01(5)) |-
o If h;' =1 and hg‘_j =0, where 7 = 1,2, then

4
Pyttt (0087 (0)) = Y - szm(o) sem(e') ¢
o,0'€Ss Zl

X [(g(u)7ea(a)) : (g#(vj)aea’(ﬁ)) + (g(u)vea’(ﬁ)) : (g#(vj)aeo(oc))] X
< (97 (V3-5), €a () * (97 (V35 €0 (5))-
° ]fh+:h§L =0, then
P 79#00(90 og" Z 4sgn (o) sgn(o’)x

0,0'€S2
X (g7 (01), e0()) - (97 (1), €0r()) * (97 (V2), €0(r)) + (97 (02), €0(s5))-
e In all remaining cases, we have Pa,g#,hf,lq =0.
If the polynomial Pa,g#,hf,hj differs from zero, then it is very homogeneous only when
both hf and h; are zero.
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PROOF. We deduce from (4.2.10) that
(4.4.4)

Pal(go o g(v)) =4 Z sgn(o) sgn(o’) x

o,0' €S2

X (V1,9 (€o(e) (V1,97 (ewr(5))) (V2,9 (€0(m))) (V2,97 (€0r(5)))

where o (resp. o) acts as a permutation of the indexes {«,~} (resp. {3,d}). We decom-

pose g1 (v;) = sju,1 +U§-, with s; € R and v;- = (g_l(vj))wL7 for every j, and replace
such decomposition in (4.4.4) to deduce that

Palgoog(v)) =4 Z sgn(o) sgn(o”) [(UbuzL)QSa(a)Sa/(ﬁ) + (v1,u 1)

o,0'€Ss
X <Sa(a) (1)1, v/g’(ﬁ)) + So’(B) (Ul’ ,Utlf(a))> + (Ul’ Ula(oz))(vh Ug’(ﬁ)):| ’ [(’02? U,L )280("/) 50’(5)+
o (v2,50) (300) (02, Vpr(5) + 50706y (02, 0)) ) + (U2, ) (02, V).

We gather all factors of the form (v1,u,.1 )’ (va,u,1)?, deducing that

(4.4.5)

Pa(go 0 g(v)) =
= (v1,u,0)%(v2,u,0)% Y 45gn(0) $81(07)S0(a) 5o (8) S0 () S0 (8)+
+ (UI’UZL)Z(UQ,UZL)ZZLSgn o) sgn(0")s4(a)567(8) [50 (v2,v 0,(5 + 30/(5)(1)2,1}:7(7))]4—
+ (Ul,uzL)(Ug,uzl)QZlegn( )sgn(o U(’Y |: So(a) (v1,v o )—i—SJ/(ﬁ)(’Ul,’U;(a))]

7}1, ZL Z4Sgn sgn )U(a)sgl(ﬁ)(vg,U;(,y))<’l)2,'l)la/(5))+

(U (02, 0,0) D Asgn() sen(0”) [ o) (01, V1(5)) + 80703 (01, U)X

o,0’

X [sam (v2, U (5)) + Sov(5) (V25 “frm)} +

(v2,u,1) Z 45g0(0) 581(0")85.(1) S07(8) (V1 Vo (0)) (V1 Vo (5) )+
(v1,u,1) Z4sgn o) sgn(o’) [sg(a) (vy, vfy,(ﬁ)) + 847(8) (v1, vg(a))} (v2, v;(w))(vg, v:,,((;))—k
(v, u,1) Z 4sgn(o)sgn(o’) {30(7) (v, ”U:,/((;)) + 567(5)(v2, v;(v))} (v, v;(a))(vl, v:,/(ﬁ))—&-

+Z4Sgn o) sgn(o )(UluUé(a))(vlvUé/(ﬂ))(v%vé(y))(“%“:7'(5))-

It is clear that the sum over o and ¢ multiplying (v, u,1)%(v2,u,1)? equals zero. It
is easy to see that this is the case also for the sums multiplying (vi,u,.)?(ve,u,1)
and (v, u,1)(v2,u,1)% An analogous procedure works also for some of the summands
multiplying (vi,u,1)(ve, w1 ). With such simplification, and a reordering of the summands,
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we may rewrite (4.4.5) as

(4.4.6)
Pa (go 0 g(v)) =
(01, u,1)% ) 4sgn(0) sgn(0”)50 () 5o (8) (V2, V() (U2, Vs (5))+

o0’

+ (1, ) (v, u,1) Y Asgn(o) sgn(0”) | () Ser(s) (V1 Uyr(g)) (V2, V1)) +

+ So()50(8) (V1 Uﬁr(a))(“% “;/(5)) +

UQ, ZL Z4sgn sgn )o(a)sgl(ﬁ)(vl,vg(,}l))(vl,/U;./(é))—i_
(v1,u 1) Z4sgn o) sgn(o ){SU(Q)(Ul,U;/(ﬁ))+Sa-l(ﬁ)('l]17'l};,(a)):|(/UQ,U;(,Y))(UQ,U;./((;))"F

v27 zt Z 4 Sgl’l Sgn ) |:80'(o¢) (UQa U;—’(ﬁ)) + So'(B) (U27 U;—(a)):| (’Ula ’U;(,y))(Ul, U(/j-/((S))—I_

o0’

+Z4Sgn o) sgn(o )(vlavér(a))(yhU;’(IB))(U27U¢/7(7))(UQ’UZT’(S))'

Since s; = (g(u), e])/u . and (v,v5) = (9% (v),e;), for j = a, B, as we have shown in

Lemma 3.3.9 for the genus 1 case, we deduce the formulas in the statement comparing (4.4.6)
with (4.4.3).

To prove that the polynomial P, g (go og” (v)) is very homogeneous, one can follow
the same wording of Lemma 4.2.6. It is an easy exercise to see that the remaining non-trivial
polynomials are non-very homogeneous. We will actually provide more information on their
behavior in Lemma 4.4.4. ]

Although the auxiliary polynomials P, g# bt onf Are in general non-very homogeneous,
they satisfy the property

_pt_pt
(44.7) Pogt it ng (900 97 () = XD (g0 © 97 (v),

for every A € C, or equivalently, they are homogeneous of degree 4 — hf — h; in the classical
sense.
The following result illustrates the transformation property of P g# ht i induced by

the right-multiplication of its argument by a matrix of Hbs.
Lemma 4.4.4. Let 7 = (7} 72) € Hs.
e Ifh =0 and h; =2, then
Pag# 0.2 (90 © 9#(U)T) =i - Pog#,02 (90 °© 9#(U)) + 722 “Poug# 2,0 (90 °© 9#(U))_
—T1-T2" Pa,g#,1,1(90 o g#(’v)).
o Ifh =hi =1, then
Pag#.1,1(90 0 67 (0)T) = =217 - Py g 02 (90 © g7 (v)) = 27273 - Py g 20(90 0 9 ( ))+

+(7-17—3 + T2) ’ Pa,g#,l,l(go © g )
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o Ifhi =2 and h; =0, then
Pa,g#,Q,O (90 o 9#(U)T) = 7'22 : Pa,g#,0,2 (90 © 9#(’0)) + 7'?? : Pa,g#,Q,O (90 © 9#(7’))—
~7y - T3 Pogt 1.1(90 0 g7 (V).
o Ifhi =0 and h;r =1, then
Pog# 0.1 (go ) g#(v)T) =Tridet 7Py g# 01 (go o g#(v)) —1odet 7 Py g# 10 (go ) g#(v)).
° Ifhl+ =1 and h;r =0, then
Pog#.1.0 (go o g#(v)T) = —mpdet 7 - Py g# 01 (go o g#(v)) +73det 7Py 410 (go o g#(v)).
Proor. We rewrite
Pog# nt i (90 0 g (v)7) = Pov.gh bt g (g0 o g™ (1 -v1 + 72 v2, T2 v1 + 73 - 12)),

where v = (v1,v2) € (L®R)?, and use Lemma 4.4.3 to prove the formulas of the statement,
for every hf and h;. Since the computations are all similar, we illustrate only the case
of h = 0 and hy = 2. We may compute

Pavgt 020000 6 (0)7) = 3~ 1 s8(0)s80(0) (90} o) (00, )
(4.4.8) oo 2t
<[nle* ) o) + Ta(g#meom)] 716 (00): o) + 0% (22)s o)

We rewrite the product of the square brackets appearing in (4 4. 8) as
2 (9% (1), €0(m)) (97 (V1), €0r(5)) + 172 {(9#(7)1) o) (97 (v2), €0r(5) )+

+(g#(211), 60’(5)) (g#(UQ)’ eU(’Y)):| + T22 (g#(v2)7 ecr("/)) (g#(’Ug), ea’(é)),
to deduce that

Pogt, 02(9009#( )T) =
= 22 N sgn(0) sgn(0”) (9(u), eo(a)) - (9(u), €or(p) - (97 (01); €or)) - (97 (01), €0r(5)) +

0'0'

+T17T2 Z 4 Sgn( )Sgn(al) (g(u)aeo(a)) . (g(u)vea’(ﬂ)) : [(g#(vl)aea('y)) . (g#(UQ)veU’(é))+

o,0’ ZJ‘

+(g™ (1), er(s)) - (97 (v2), €0(7)) |+

+Tzz 4L sgn(o) sgn(0') (9(u), eo(a)) - (9(w), €or(s)) - (97 (v2)s €0(7)) - (97 (v2), €01(5) )

It is then enough to compare this with the formulas of P, o# Wt provided by Lemma 4.4.3.
O

The following result will be relevant to compute the transformation property of the
theta function ©p,, » attached to P, g# hE b with respect to the action of Sp,(Z).

Lemma 4.4.5. Let
1 —1
Frogt e i @) = &0 (= 2= 5 (8y™)) (P g g) (90 97 (0) %

xe(tr (q(vy1)7) + tr (q(v)T) )
where v € (Lpor ® R)? and 7= (7, 2) € Hy.
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e Ifh{ =0 and hi = 2, then the Fourier transform of Jrg#.02 18
Frg# 02(€) = det(r) =022 det(7) 2 [ F_ s s 0(€)+
7o [ gr11(8) + 75 f—f—ag#,z,o(ﬁ)]-
o Ifhi = h; =1, then the Fourier transform of f, s 1,1 s
f%l(g) = det ()~ (0=1D/2-2 qeg(7)~1/2 [27273 frt g 02(E)F
(13 4 73) St g 11 (6) 27172 s o 20(6)]-

e Ifh =2 and h =0, then the Fourier transform of Jrg#.20 18

frog# 20(€) = det(r) D22 det(7) V2|72 f_s g 02(€)+
+7T1T2 f—T—l,g#,l,l(E) + 7—12 ’ f—'r—17g#,2,0(£)] .

o Ifhi =0 and h;r =1, then the Fourier transform of [, s#1 1S

f%l(é) == det(T)i(bil)/272 ’ det(?)il/Q [7-3 ’ f—T—l,g#,O,l(E) + T2 f—T—l,g#,l,O(é)] :

o Ifhi =1 and h;r =0, then the Fourier transform of f, 10 1S

f%O(E) = det(T)i(bil)/272 ) det(?)il/Q [7—2 ’ f—T—l,g#,O,l(g) + 7 f—T—l,g#,l,O(f)] :

o Ifh = h; = 0, then the Fourier transform of f, s o s

Frg#00(€) = det(r)"O"D272 det(7) T2 F 4 00(€).

Proor. Case hi" = h;’ = 0: By Lemma 4.4.4 the polynomial Py, % o is very ho-
mogeneous of degree (2,0), hence we may apply Lemma 4.3.7 (vi) to deduce that

—

Fror 0@ = 0772 det(r) =0/ dot(7) 1 2e (— tr (a(€un)T ) — tr (a(€0)7)) X
X exp ( - 8i7r tr (A%(—T*1)71)> (Pa,g#,O,O)(go o g#(E)).

Since the lattice L is unimodular, we have b — 2 = 0 mod 8. This implies that the
factor i(®=2)/2 above simplifies to 1.
Case hf = 0 and h; = 2: By Lemma 4.4.4, the polynomial Py ,# oo is non-very

homogeneous. We apply Lemma 4.3.7 (v) to deduce that f%z(ﬁ) equals

det(T/i)_(b_l)/2 det(ii‘)_l/Qe( —tr (q(&wJ_)T_l) —tr (q(ﬁw)?_l)) X
1

xoxp (= gt (A ?S(=77)7) ) (Pagr2)(— 900 gF(€)7).

By [Roe21, Lemma 4.4 (4.5)], we rewrite the exponential operator applied to Py s# 2
appearing in (4.4.9) as

(4.4.9)

exp ( - % tr (Ar—%(—r—l)—l)) (Pag#02)(—go0g®(€)771) =

= exp ( — % tr (A%(—T_l)_1)> <73a7g#,072( —gogo g#(5)7_1)>.

(4.4.10)
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Since if 7 = (7, 2) € Hy, then —7' = — (77 2, ), we deduce by Lemma 4.4.4 that

det T T2 —T1

2
_ T
Peag#02(—g00g7 (€771 = F?’TQ + Pag02(g0 0 97 (€))+

2
Jr% ’ 7Doz,g#,l,l (90 © g#(g)) + # : Pa7g#72’0 (go o g#(E))
Replacing this in (4.4.10), we deduce that

Frae €)= dtts i) et (e — o 0617

T2 1 L
<[5 exp (= o tr (AS(-7) 7)) (P 02) (00 0 6#(6) +

1 — —
D exp (= o tr (AS(=77))) Pagr 1) (90 0 6#(€))+
Ty 1 AG(—r~H1 # _
e (= - (A=) 7)) (Pags 20) (90097 (9))| =

= i72/2 det (1)~ ~D/272 det(7) 1/2 [732 fort g 02(€)+

+T2T3 f—‘r—l,g#,l,l(E) + 7—22 ) f*T_l,g#,Q,O(E):| :

Since the lattice L is unimodular, we have b — 2 = 0 mod 8. This implies that the
factor i(®=2)/2 above simplifies to 1.
All remaining cases: The proof is analogous. We skip it. U

4.4.2. The splitting of the Siegel series @y, ». In this section we explain how to rewrite
the theta function Oy, o, introduced in Section 4.3, with respect to the splitting L = L1, ®U.

Lemma 4.4.6. Let P be a very homogeneous polynomial of degree (m™,0) on (R®2)2. We
have
(4.4.11)

®L,2 (7—7 g, P) =

1 [(n+ (u, A7)y~ } 1+[(n—i—(u,)\)%)y*l]h2+
22, ety 2. 22 (20 +3 o

AE(LporPZu')2 neZl*2 h+ h+

X exXp ( - % tr(Ay_l)) (Pg#,hf,h;) (900 g#()\)) : e(tr (q(Apr)T) +tr (q()\w)?)) X

tr (n+ (u, /\)T)t(n + (u, A7)y — % tr (A, w0 — uz)n)>,

2uZ, uy

xexp(—

where we denote by [-]; the extraction of the j-th entry.

PrROOF. We follow the wording of [Bor98, Proof of Lemma 5.1|, that is, we apply
the Poisson summation formula on Oy, (7, g, P) with respect to an isotropic line in each
subspace V = L ® R of V2.

We may rewrite any element of L? as X + nu, for some X € (Lpor ® Zu')? and some
row-vector n € Z*2. To simplify the notation, we write (A + nu), instead of g((X +nu),),
and the same for z* in place of z. We define the auxiliary function f(X, g;n) as

FOugim) = exp (= o tr(dy™)) (P) (g0 0 9(A + muw) x

(4.4.12)
xe(tr (g(X +nu),i7) + tr (g(A + nu). )
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for every A € (Lo ® Zu')?, g € G, and n € RY™™2, where 2 = g~ !(29). We may then
rewrite Oy, o using the Poisson summation formula as

(44.13) Ora(rgP)= > > fgm= > > f(

AE(Ly,orDZu’)2 neZl1*2 AE(Lyor®Zu’ )2 neZl*2

where f()\,g; n) is the Fourier transform of f with respect to the vector n.
Let A = (A1, A2) € (Lpor @ Zu')%, n = (n1,n2) € RY>2 and 7 = (7L 2) € Hy, with
analogous notation for the real part x and imaginary part y of 7. It is easy to see that

gA+nu), = q(X;) + (A, nuy) + g(nuy) and a(X.) = g Aw) + (N u) (N uy)t /202,
same with z1 in place of z. We use such relations to rewrite f(\, g;n) as
fxgin) =
1 1 _

(1414) —exp (- g Ay ))(P)(90 0 g+ nw)) - e tr (a(A.)7) + tr (a(A2)7) x

xe(tr (A, nu,)7) + tr (g(nu,)7) + tr (A2, nus)7) + tr (q(nuz)?)>
The second factor on the right-hand side of (4.4.14) may be computed as

e(tr (g(A,0)7) +tr (q()\z)?> = e(tr (g(Ap)7) +tr (g(A ))
Xe(‘cr (A uy ) (A ug)ir) N tr (A, uz) (A, uz) 7‘))

2 2
2uz, 2u%

Let h(A, g;n) be the auxiliary function defined as the product between the first and the last
factor on the right-hand side of (4.4.14), that is, the part of f(X\, g;n) which depends on

. . . ¢ n? ning
the entries ny and ny of n. Using the relation g(u,.) + q(u,) =0 and n’ - n = (mnz 2 ),
2

it is easy to see that
1 _
B, gim) = exp (= o tr(Ay ™)) (P) (90 0 g(A + nu)) x

xe(tr ([rX\w) + iy A, u e — uz)n) +iul, tr (yntn)>.
We then rewrite (4.4.13) as
O©r2(7,9,P) = Z e(tr (q(AwL)T) + tr (q()\w)?)> X
AE(LLoreaZ'U/)2

Xe(tr(()\,uzl)()\,uzl)%) _tr(()\,uz (A, u)'T *) Z h gin

2uzL 2u? |

(4.4.15)

(4.4.16)

zt nez1x2

The remaining part of the proof is devoted to the computation of h()\, g;n). To simplify
the notation, we define

(4.4.17) A=iu’y and B =z u)+iyA u —uy) =7(Auun) + 7(A uy),

so that we may rewrite h as
1
(4.4.18) h(A,g;n) = exp ( ~ % tr(Ay‘l)) (P) (g0 0 g(A +un)) - e(tr(Antn) + tr(Bn)).

We want to make the dependence of exp ( — g= tr(Ay~))(P)(go © g(A + un)) from the
variables n; and ne explicit. Recall that we split the polynomial P as

+ +
(4.4.19) Pgoog(®)) = Y (vrua) - (v2,u.0) - Py v e (g0 0 g% (v)),
ni g

125



and that the operator —tr(Ay~!)/87 may be rewritten as
b2 o b+2 b+2

(A1 2
(4.4.20) _ Ay ): ! ( 26 y12za 1890]2 Z/nzaa )

87 8mdety Y22
Since the three factors appearing as the summand on the right-hand side of (4.4.19) are
defined on linearly independent subspaces of (R»2)?, we deduce! that

exp ( - é tr(Ay_1)> (P) (go o g(X+ nu)) =

(1.421) = 3 e (g A (P ) (90 0 9F (V) x

h)_

Wy

1
X exXp ( ~ % tr(Ay_1)> (()\1 + nqu, uzi)hf(/\g + nou, u,1 )
s
By (4.4.20), we may rewrite the summands of the right-hand side of (4.4.21) as

exp (- 8% tr(AY ™)) (P s ) (90 0 g% (X)) x

X ox ( 1 ( 0* o 0 N d? ))
P 8mu?, dety y2’28n1 y128 gy y118n2

(()\1 +nu, UZL)hl ()\2 + nou, uZL)h;) .
We may then rewrite h as
1 _
h(X, g,n) = Z exp ( ~ tr(Ay 1)) <Pg#,h1+,h2+)(90 o g*(N)) - e(tr(Antn) + tr(Bn)) X
hiohy
1 0? 0 0?
2
87ruldety(y2’28n1 ym@m@n +y116 2>>X

X |:(A1 + niu, UZL) 1 (>\2 + nau, uzl)h;:| .

xexp(

We compute the Fourier transform of h, as a function of n, via Lemma 4.3.7 (iii). In fact, if
we denote by N; the j-th entry of (—n — BY)A™!/2, we may compute

(4.4.22)

~ o 1 _
h(A, g,n) = det(—2i4)"% >~ exp ( — 5 tr(Ay 1)) (P pr ) (90 0 9% (X))
hihy

1 ( 0? 0o 0 0?

X -2 )
eXP (87rugL dety 2 Y12 ON1 ONy Ty 8N22

Y22 8]\71

)
2 2
P ( B 87ruzj det y <y2’2 G?VIQ ~ 22 aiﬁ 3?\72 Ty 8?\722))

[(/\1 + N, UZL)hir (A2 + Nou, uzL)hﬂ X

xe( - imnn%l) ~ %tr(BnA”) - itr(BBtA”)) =

o 1 _
= det(—2i4)7* Y~ exp ( — 5 tr(Ay 1))(Pg#,h1+,h2+)(go 0 g#(A)) - (A1 + Nyu, w1 )M x

Lyf f and g are smooth maps defined on R?'9, such that the variables of dependence of f are pairwise differ-
ent to the ones of g, then A(fg) = A(f)g+fA(g). This implies that exp(A)(fg) = [exp(A)(f)] - [exp(A)(g)].
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1 1 1
XQQ+AQmuﬁYJ~e(—thmfA”)—§mdBnA4)—thBBUr5).
We may compute (\j + Nju,u, 1), for j = 1,2, as the j-th entry of the vector
1
(uyr, A) + (NQ) uiL = (uyr,A) — Z(n—l— (Uyr, A)T + (uz,)\)q’-)yfl —

= —%(n + (u, Nz —i(u, )\)y)yfl) _ —%(n ()]

We replace the values of A and B into (4.4.22) using that det A = —u‘zlL dety, and then
replace ?L()\, g;m) in (4.4.16). The resulting formula may be further simplified rewriting

tr ((ntny_l) + 2\ w)nzy 4+ (A w) (X w)iz?y ™+ (A u) (X, u)ty> =
= tr (n + (u, )\)T)t(n + (u, A)i’)y_l,
to eventually obtain (4.4.11). O
Theorem 4.4.7. Let pp € (Lpor @ R) ® Ru be the vector
p=—u 4 u,i /2ul 4 u,/2ul.
The theta function O, 2(7 g, P) satisfies

@Lg(T,g,P)— \/cF Z Zexp( 5 tr(CT—I—d) (07_-+d)y_1)><

deZl X2 th th

C77'+dy_1 hl cT +d h
X [( ) (_]Ql)h[l(_,_% ) }2 Or,.,.2(T, nd, —pe, g"*, P e h+)

In Theorem 4.4.7, the theta functions ©p, , » are attached to some polynomials P, g

which may be non-very homogeneous. Such theta functions are considered as in Defini-
tion 4.3.4. They are absolutely convergent, as illustrated in [Roe21, p. 2|.

Remark 4.4.8. When we use O, o in Theorem 4.4.7, we should write as argument ur, ,
namely the projection of u to Lio ® R, instead of u. However, since ur, . = p — (p, u')u,

we have ,

tw = (BLpoJw = —Uy,
Moyt = (:U’LLor)wl = _U;UJ-’

(N’u) = (IU’LLor7 u)
This explain why we may use such abuse of notation. Note also that the orthogonal
projection L ® R — L1 ® R induces an isometric isomorphism wtew— wﬁor @ Wror =
Lo ® R. This implies that we may identify w with wro, and consider w as an element

of Gr(Lror); see [Bru02, p. 42]. Analogously, we may regard g#|., or as an element
of SO(Lror ® R).

PROOF OF THEOREM 4.4.7. Every A € (Lpo:®Zu')? can be rewritten as A = Apor + cu/
in a unique way, where Ay € Lior and ¢ € Z'*2. Using that u and v/ are orthogonal
to Lior by construction, we may rewrite the formula provided by Lemma 4.4.6 as

®L,2(T7 g, 7)) =

1
= 202, Jdoty Z Z Z exP(

c,deZ1x2 h* h* ALor€L?

tr (CT + d) (cf + d)y_1> X

Lor

et +d)y " C7i+d)y_1 h g
% [( ) (_}212.)}1[15-”1; ]2 - exp ( - E tr (()\Lor + Cu’, Uyl — Uz)d)> X
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1
xexp (= - (A ) (Pt g) (90 © 9% vor = en))
xe(tr (q()\LOr — cu)wu') + tr (Q()\Lor - Cﬂ)uf)>a

where we denote by [-]; the extraction of the j-th entry, and we write ¢(v),, instead
of ¢((v)y), for every v € (L ® R)?, same for w™ in place of w. To conclude the proof, it is
enough to check that

exp ( — L tr ((ALor +cu' u, — uz)d)> = e( — tr(ApLor — pe/2, ud)).

u? L
This may be proved as in [Bor98, End of the proof of Theorem 5.2|. O

The following results illustrate how to rewrite the formula provided by Theorem 4.4.7
in terms of vectors in Z'*? with coprime entries, as well as in terms of the the Klingen
parabolic subgroup of Sp,(Z).

Corollary 4.4.9. The theta function ©r (T, g, P) satisfies
(4.4.23)

1
®L,2 (7—7 g, P) =

2u§L dety

1 hi+hy B _11ht N _11hF
I — E cr+d)y 7 [(eF +d)y X
ZUzJ_ Vv det dezl><2 ; h%—% ( ) |:( ) ]1 [( ) ]2

gcd(cd) 1
2
X exp ( - % tr (er + d)t(c% + d)y_l)@Lng(T, rud, —rpc, g%, P o# )

2L

@LLor, ( P g7 .0, 0)

PRrOOF. This is a direct consequence of Theorem 4.4.7. The first summand on the
right-hand side of (4.4.23) arises from the couple (¢,d) = (0,0), which is not taken into
account in the second summand on the right-hand side of (4.4.23). O

Definition 4.4.10. The Klingen parabolic subgroup Cs; is the subgroup of matrices
in Sp,(Z) whose last row equals (000 1), namely

Co1 = {(015%) €Sps(Z)} .

Corollary 4.4.11. The theta function Op, 2(T, g, P) satisfies
(4.4.24)

1
@L,Q (Ta g, P) -

2u2L dety

hi+hi N
> > > L(er+d)y ) [(er + d)y 1] x
”det (% %)eCar \Spa(2) 721 At h+( 2 i
2

r t 1
SR tr (et +d) (7 +d)y )@LLONQ(T, rud, —ruc, g7, Pg#,hf,h;)’
z

6LLOI‘7 ( P # 0 0)

xexp(—

where (¢ d) is the last row of (1 }) € Ca.1\ Sp4(Z).

PROOF. It is well-known that the function mapping a matrix in Sp,(Z) to its last row
induces a bijection between Ca ;1\ Sp,(Z) and the set of vectors in Z* with coprime entries.
We may use such result to rewrite the formula provided by Corollary 4.4.9 as in (4.4.24). O
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4.5. THE KUDLA-—MILLSON THETA FORM

This section gathers all properties about the Kudla-Millson theta form O(, z, pxrum,2)
of genus 2 we need for the purposes of this chapter. Such theta form was introduced with
Definition 4.1.1. We follow the same pattern of Section 3.3, that is, after a brief recall
of some well-known properties, we deduce an explicit formula for ©(7, z, ok, 2) via the
formula of ¢k 2 provided by Proposition 4.2.3. Eventually, we rewrite O(7, z, okm 2) with
respect to the Siegel theta functions ©y, 2 introduced in Section 4.3, and then with respect
to the splitting L = Ly, & U.

As in the previous section, the even lattice L is unimodular of signature (b, 2), where b > 2.
We fix once and for all an even integer k = 1+b/2. If T is a finite index subgroup of O" (L),
we denote by Xt the orthogonal Shimura variety arising from I'.

Given 7 = x + iy € Hy, we denote by g, € Sp,(R) the standard element which moves
the base point ¢ € Hy to 7, that is

(4.5.1) g-=(}%) (8 (at())—1> , for some a € SLy(R) such that y = a(a’) ™"

Usually, we consider g to be the standard element with a = y*/? in (4.5.1). In fact, the
imaginary part y of 7 is a real positive definite symmetric matrix, and such matrices admit
a unique square root matrix which is positive definite.

4.5.1. Fundamentals on the Kudla—Millson theta form. Let A% be the space of
analytic functions on Hy satisfying the weight k Siegel modular transformation property with
respect to Spy(Z). The theta form O(7, z, pkm 2) is a non-holomorphic modular form with
respect to the variable 7 € Hy, and a closed 4-form with respect to the variable z € Gr(L),
in short ©(, 2, pm2) € As ® Z4(D). In fact, the Kudla-Millson theta form is T-invariant
for every subgroup I of finite index in O"(L). This can be proven as in e.g. Lemma 3.3.1.
Therefore O(7, 2, xm,2) descends to an element of A5 ® Z4(Xr).

Kudla and Millson showed in [KM90| that the T-th Fourier coefficient of ©(7, z, ok 2)
is a Poincaré dual form for the special cycle Z(T), for every T' € AQL. Moreover, they proved
that the cohomology class [O(, 2, prm,2)] is a holomorphic modular form with values
in H*2(Xp), and coincides with Kudla’s generating series of special cycles; see [Kud04,
Theorem 3.1].

By Corollary 4.2.5, namely the spread of ¢kwm,2 to the whole D, we may rewrite the
Kudla—Millson theta form as

boob
O(r, z, pxma) = > Y (dety) ™ /2> (woo,z(gr)(QaSDOQ)) (g009(N) ®
(4.5.2) Vo s el -
=Fa(T,9)

®g* (wa,b+1 AN wgp+2 N Wy pt1 A W&,b+2)a

where g € G is any isometry of V = L ® R mapping z to the base point zy of Gr(L), and
where Qg is the polynomial computed in Proposition 4.2.3. Recall that for simplicity we
write a instead of the vector of indexes (a, 3,7,6). Since the Kudla—Millson Schwartz
function is the spread to the whole D = Gr(L) of an element of S(V?2) ® A*(p*) which
is K-invariant, we deduce that (4.5.2) does not depend on the choice of g mapping z to 2.

One of the goals of Section 4.5.2 is to rewrite the auxiliary functions Fy, arising as
in (4.5.2) in terms of Siegel theta functions of genus 2. This is achieved under the assumption
that o # 8 and v # 9.

4.5.2. The Kudla—Millson theta form in terms of Siegel theta functions. In this
section, we rewrite the Kudla—Millson theta form O(7, z, okm,2) in terms of Siegel theta
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functions of genus 2. The latter are introduced in Section 4.3. We then rewrite the theta
form with respect to a splitting L = Ly @ U, applying the results of Section 4.4.

The following result is the generalization of Lemma 3.3.4 in genus 2. We suggest the
reader to recall the construction of the very homogeneous polynomials Py, from (4.2.10).

Lemma 4.5.1. Let a = («, 3,7,0) be such that a # 5 and v # 6. We may rewrite the
auxiliary function Fg as

(4.5.3) Fo(1,9) =dety-Op (7,9, Pa),
where T = x + 1y € Hy and g € G.
PROOF. We recall that if a # 8 and v # §, then Q4 = Po. We use (4.2.4) to compute

Woo,2(97) (Pato,2) (90 0 g(v)) = weo2 (§F) <det yk/zpawoz) (900 g(v\/y)) =

= dety*/? . Pq (90 0 g(vy/y)) - e(trzq(v)) - vo.2(g90 © g(vV/Y)),

where v € (R»2)2. Recall that we denote by (-,-), the standard majorant (4.2.2) associated
to z. We may rewrite the product of the last two factors appearing in the right-hand side
of (4.5.4) as

e(tr(asq('v)) 0,2 (go o g('v\/@) = e(tr (q(v)aj)) - exp ( — mtr (('v, ’U)Zy)) =
(4.5.5) = e(tr (q(v,1)x) + tr (q(vz)x)) . e(i tr (g(v,1)y) —itr (q(vz)y)) =
= e(tr (q(v,)7) +tr (q(’vz)?)).

This, together with the very homogeneity of the polynomial P, which is of degree (2,0)
by Lemma 4.2.6, implies that

Fa(r,g) =dety- 3 Pa(goog(N) e tra(r)r +trg(x.)7).
AeL?

(4.5.4)

As already remarked in Example 4.3.2, the polynomial P, is harmonic. This and Re-
mark 4.3.5 imply (4.5.3). O

We recall that dx dy = szgz dxy ¢ dyy e is the Euclidean volume element of Hy, and
that g;‘;% is the standard Sp,(Z)-invariant volume element of Hy; see [K1i90, p. 10| for
further information. Using the modularity of the genus 2 Siegel theta functions associated

to very homogeneous polynomials, namely Theorem 4.3.9, we deduce the following result.

Lemma 4.5.2. Let a = (o, 3,7,9) be such that a # 8 and v # 0, and let g € G. The
function det y* f(1)Fa (T, g) is Spy(Z)-invariant on Hy. In particular, the integral

——dxdy
4.5.6 / det y* f(7)Fo (T, ¢) —=
(4.5.6) S f(T)Fa(T,9) dot 43

is well-defined, and can be computed over any fundamental domain of Hy with respect to
the action of Spy(Z).

PROOF. Let M = (& B) € Spy(Z). It is well-known that
(CT+ D)'S(M - 7)(CT + D) = (1),

where 7 = z+iy € Hy. In particular det(3(M 7)) = det y/| det(C7+D)[?. By Lemma 4.5.1,
together with the modular transformation of f and the one of ©r, 2, namely Theorem 4.3.9,
it is trivial to check the stated Sp,(Z)-invariance. O
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We conclude this section with the following result, which will be useful to unfold some
of the defining integrals of the genus 2 Kudla—Millson lift.

Corollary 4.5.3. Let o = («a, 3,7,0) be such that o # B and v # §. We may rewrite the
auziliary function Fe (T, g) with respect to the splitting L = Li,oy ® U as

(4.5.7)
vdety
Fo(r,9) = W@LLOJW g7, Pag#,0,0)+
2L

\/m r h++h+ - ot ) -
* S N (D) T e ) (e a1
(% 5)€C2,1\Sp4(z) 21 f hf

2
r t .
X exp ( "5 tr (et +d) (7 + d)y 1)@LL0“2(7, rud, —rpc, g7, Pa,g#,hf,h;r)-
2L

PrROOF. It is a direct consequence of Lemma 4.5.1 and Corollary 4.4.11. O

4.6. THE UNFOLDING OF THE KUDLA—MILLSON LIFT

In this section we unfold the defining integrals of the genus 2 Kudla—Millson theta
lift AKM: S5 — Z4(D) associated to indexes a = (a, 3,7, 8) such that a # 3 and v # 0.

The lift AKM was introduced with Definition 4.1.2. Via the rewriting (4.5.2) of the
Kudla-Millson theta form, we may rewrite AX™ more explicitly as

b b
—dxd
A= 3 ([ def ) Fatm g gy ) ¢
(4.6.1) a,y=1 3,6=1 Spy(Z)\Hz Yy
a<y  B<é

%
X g* (Wapr1 A W pt2 A Wyl AWspe2),

for every Siegel cusp form f € S5, and for every g € G = SO(L ® R) mapping z to 29. The
value of AXM(f) on 2z does not depend on the choice of such g. We refer to the integrals
appearing as coefficients in (4.6.1), namely

(4.6.2) / det ykf(T)Fa(T,g)%,

Sp4(Z)\Hz ety
as the defining integrals of AXM(f). The goal of this section is to apply the unfolding trick
to such integrals.

The unfolding trick of genus 2 is recalled in Section 4.6.1. We apply it to the defining
integrals of AgM in Section 4.6.2, while in Section 4.6.3 we compute the Fourier expansion
of such defining integrals.

Although this unfolding is analogous to the one achieved in Chapter 3, the behavior
of the Siegel theta functions Oy, o(7, g*, P py hj,h‘;) appearing in the unfolded integrals
differs from the one of their counterparts in genus 1. In fact, we will see that such theta
functions of genus 2 are not always modular; see Remark 4.6.4.

4.6.1. The unfolding trick in genus 2. We recall here the unfolding trick of genus 2.
The classical unfolding trick of genus 1 is illustrated in Section 3.5.1.
The unfolding trick enables us to simplify an integral of the form

(4.6.3) / )L dyg,
Sp4(Z)\Hz dety
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where H: Hy — C is a Sp,(Z)-invariant function, in the case where H can be written as
an absolutely convergent series of the form

(4.6.4) H(t) = > h(M -T),

MeCa,1\ Spy(Z)

for some Cj j-invariant map h, where Cy; is the Klingen parabolic subgroup of Sp,(Z).
The unfolding trick aims to rewrite the integral (4.6.3) as an integral of h over the unfolded
domain Cy; \Hp, more precisely as

ded ded
(4.6.5) / H(r) =Y 2/ h(r)
Spa(Z)\Hz det y3 Ca.1 \Ha dety

Let I'Y = SLy(Z) x Z? be the Jacobi modular group, and let 7; = x,+iy; for every 1 < j < 3.
Since we can choose

(4.6.6) S = {7’ €Hy : (11,m2) € F‘]\Hl x C, y3 > y%/yl, x3 € [0, 1]},

as fundamental domain of the action of Cg; on Hp, as explained for instance in [BD18S,
p. 370], the integral on the right-hand side of (4.6.5) is easier to compute with respect to
the one on the left-hand side.

Let F be a fundamental domain of the action of Sp,(Z) on Hs. The equality (4.6.5)
can be easily checked as

/ d:z: dy / h(M ndzdy dx dy
Sp4(Z)\1HIz ety v o JF MG \ o (Z det
= 2 / (M -7) jmtd% N / (;lxtdy N
MeCa 1\ Spy(Z Y M6021\8p4 M-7 ¢ 3/

drd
—2 / h(r) =22
0271\H2 dety

where the factor 2 arises because the classes of (102 g) and (7 L _02) in Co 1 \ Spy(Z) are
different.

4.6.2. The unfolding of AXM. To unfold the defining integrals (4.6.2) of the Kudla—
Millson lift via the procedure illustrated in Section 4.6.1, we need to find Cg j-invariant
functions hq (7, g) such that

(4.6.7)

det g f(r)Falr,g) = SV I

@LLth(T’ g#7 Pa,g#,O,O) + Z ha(M . T? g)?
MeCa 1 \Sp4(Z)

for every g € G and z € Gr(L) such that g maps z to the base point zg. The first summand
on the right-hand side of (4.6.7) arises from the error term associated to ¢ = d = 0 appearing
on the right-hand side of (4.5.7). As we will see, such summand is the constant term of the
Fourier expansion of the defining integral (4.6.2).

We provide results in this direction under the assumption that o # B and v # 6. In fact,
we know that in this case Qo = Pq is very homogeneous. It is still an open problem to
understand the behavior of Q, outside these hypotheses, and will be hopefully investigated
in a future work.
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Theorem 4.6.1. If a # 8 and v # §, then such function he exists. It can be chosen as

’f+1/2 ot
ha(r.g) = IO Zexp( [y‘lb,z) > (5"
(4.6.8) hihy

RV S
X[y 1]2,11 : [y 1]22 @LLor, ( 7(07Tu)vovg#vpa7g#,hi*‘7h;‘)'
To prove Theorem 4.6.1, we need to introduce the following auxiliary functions.

Definition 4.6.2. We define the auxiliary function x,+ as

5 #\ . E: flhfl ,1h§'.@ 5 # P
Xh+(7—7 Vs g )'* [Ty ]2,1 [Ty ]2,2 LLoraz(T7 Vs, g™, a,g#,hf,h;r)’
ri by
hf+hd=nt

for every 7 =z + iy € Ha, 6,v € (Lpoy ®R)%2, 0 < hT <2, and g € G.

Since if I(r) =y = (§ §3), then y~ ' = 7 (2%, ) and

TY

-1 _ 1 YsTi — Y272 Y172 — Y271
dety \YsTe — Y273 Y173 — Y272

we deduce that

- Y3T2 — Y273 —1 Y173 — Y272
4.6.9 o =22 22 d — 1B T 272
This implies that we may rewrite y,+ as
L (hFapt + +
Xt (1, 8,0,0%) = Y dety M) (yamy — goms)T - (y17s — yama)"2 X
ni A
(4.6.10) Wt +hd —h+

XeLLor72(T7 6’ V’ g#’ Pa,g#,hi",h;')

For future use, we compute here also [Ty_lﬂ 21 and [Ty 17'] . Since
ryF = L (ysIn? — yoremt + pilme? — yomim2 ysmiTs — yz\Tzl + Y1773 — Y2T1T3
dety \ Y371 — Y2371 + y17372 — Y2 m2|?  ys|T2|? — yorsTe + yi1|m3)? — yoraTs
we have
_1.1_ Y3TOT1 — YoT3TI + Y1732 — yo|Tol?
[Ty 7}2 17 J
) dety
(4.6.11) ) - ) B
1o y3|m|® — T 4y |3|T — e s
[Ty 7}2 2 :
, dety

Theorem 4.6.3. For every 0 < h™ < 2, the auxiliary function x,+ is such that

Xh+ (7_7 57 v, g#) = (det T)_l/Q(det 7_'>_(b_1)/2_2 X
+ +

hy hg
(4.6.12) x> Iyl [y Y O (FT L 1, 8. g7, Pyt -
ni kT
hf+hd=nt

Remark 4.6.4. Along the proof of Theorem 4.6.3, we will prove that the Siegel theta
function Oy,  2(7,9, v, ¥, Pa7g#7h1+’h2+) is non-modular whenever either h] or hy differs
from zero. This is a consequence of their behavior with respect to the action of the symplectic
matrix § = (102 7012) on Hly, which is illustrated in (4.6.14), (4.6.15) and (4.6.16).
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PRrROOF. Case ht = 2: We begin by rewriting the Siegel theta function associated
t0 Py g#0,2 a8

(4.6.13) @LLONQ(T,(S,V,Q s Pog#.02) = e tr (v 6/2 Z By s w.g# (A

2
AELLor

where h, 5, #(X) = foo# 02X+ V)" e( — tr(A +v,4)), and fr.g# 0,2 is the function
introduced in Lemma 4.4.5. The idea is to apply the Poisson summation formula to the
right-hand side of (4.6.13). To do so, we compute the Fourier transform of 5, .+ using
the properties illustrated in Lemma 4.3.6. We have

hT,é,u,g# ()‘) = fT,g#70’2(>\ — 5) : 6( — tl"()\, I/))

We now apply the Poisson summation formula and, using the formula of f;;:w provided
by Lemma 4.4.5, deduce that

@LLor (T5 V7g# 7) 9#02):
=e((,8/2) Y hig, N = > frgroaA—0)-e( —tr(A—5/2,v)) =

2 2
A€Li . AeLf .

=det(7) V""" “odet(T) T3 J =1 o# —0)+
d (b—1)/2—2 d 1/2 ?? f g% .02 A S
XeL? .

+7273 - f*ﬂ'—l,g#,l,l(A - 5) + 7-22 ’ ff‘r—l,g#,Q,O()‘ - 6):| 6( - tI‘(A - 6/27 V))

In the sum over L} . above, we replace A with —A. Since all polynomials Pa7g#7h1+’h2+
satisfying h{ + hj =2 are such that Pt it it (90 0 g(—€)) = Peg# 1t mf (90 © 9(€))
by (4.4.7), we deduce that
OL102(T, 8,1, 9% Py g#02) =
(4.6.14) = det(r) D22 det(7) 2 [ 01, 0(—7 7, 1,8, 6%, P 02)+
7273 Op 2 (—T =1, 8,97 Py e 11)+
+75 - QL 2(—7 1 —v, 8, g7, ,Pa,g#,Z,O)i| :
With the same procedure, one can show also that
OL102(T, 8,0, 9% Py gt 11) =
(4.6.15) - det(T)_(b_l)/Q_Q det(f)_l/Q ' [27—27_3 ' ®LLor72(_7'_1’ -v,9, g#’ 73&79#70’2)%-
(i3 4+ 73) - Op, . o(—7 L v, 8, g7, Pag#11)+
+27173 - O, (-7, —v, 8,97, ,Pa7g#,2,0):| .
and that
OLy.2(T,0,v, 9#> Pa,g#,2,0) =
(4.6.16) = det(r) V22 det(7) V2 |75 Op,, 02— =1, 8,07, P g# 00)+
+7o7m1 - Opy 2(—T7 1, —v, 679#77Da7g#,1,1)+
71 OLp g 2(—7 7 v, 8,97, Pa,g#ﬂ,ﬂ)]
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We replace (4.6.14), (4.6.15) and (4.6.16) in (4.6.10), rewriting xo(7,d, v, g") as
(4.6.17)
x2(7, 8, v, g%) = det y 2 det(7) "2 det(7) " b=1/272

X [((3/173 —yom2)? 732 + 2(y3m2 — Y273) (Y173 — Y212)TaTs + (Y372 — y273)2?22) X

_l’_

X @LLor72(_7__17 _V7 67 g#7 Pa7g#7072)
+((y173 — 4272) 27573 + (Y372 — yor3) (Y173 — Yo7o) (AT3 + 72°2) + (y372 — szsVW) X

XOLy o 2(=771 =, 8,9%, Pogr 1)+

+((les - 9272)2ﬁ2 + 2(y3mo — yo73) (Y173 — Y2T2) T2 + (Y372 — y273)2ﬁ2) X

The factor appearing in front of O,  o(—7"1, -1, 8, g#, Pag#,02) in (4.6.17) equals

(4.6.18) yilms* + 2y1ys|mP msl? + 203 | P msl® + g3l + 205 R(r375°) —
- — Ay | TP R(173) — dyoys| P R(TeT3).

1

We verify that it equals [Ty~ 7"]%72 -det y2. We compute the latter via (4.6.11) as

Y37t + 2y1ys|m2)? 7] + v3 |t — dyaye|ms PR (meTs) —
—dyays|m2 PR (1o73) + 493 (R(r372))
Recall that if a,b € C, then 2(§R(ab))2 = R(a®b?) + |a|?|b|?>. This implies that

Ay R(1372) = 2y3|m2l|ms3]* + 203 R(13757),
and hence that (4.6.19) equals (4.6.18).
We skip the computation of the factors in front of O,  2(=771, =1, 8, 9%, Py g% 1 1)

(4.6.19)

and O,  o(—7"1, -1, 4, g7, Pag#.2,0) appearing in (4.6.17), as well as the check that such
quantities are equal to respectively [7y~'7]a 1 - [Ty~ 7]22 - det y? and [ry~?
fact, the procedure is analogous to the previous one.
Case hT = 1: It is analogous to the case h™ = 2. For this reason, we skip it.
Case hT = 0: It is enough to check that

O L1 2(T, 0,1, 9% Py g# 00) = (det 7) /2 (det ) ~(0=1/272x
X@LLorv2(_T_1? ) da g#a Pa,g#,O,O)‘

7]31 - dety?. In

This can be done using the Poisson summation formula, as we did above for the case h™ = 2,
together with Lemma 4.4.5. In fact, since the polynomial Py g% o is very homogeneous of
degree (2,0) by Lemma 4.4.3, such theta function is modular; cf. Theorem 4.3.9. O

We are now ready to prove Theorem 4.6.1.

PROOF OF THEOREM 4.6.1. By Corollary 4.5.3, it is enough to prove that

ha(M * T, g) =
_ det yk+1/2f hi+hg —17hT —17h3
[(em+d)y™ )M [(er + d)y']52 x
(4.6.20) ;iﬁzh:* ( ) 1 2
2
X exp ( _ 27:; tr (07- + d)t(ci' + d)y’l)@LLor,g(T, rud, —rpc, g#, Pa,g#,hf,h;)a
ZJ_
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for every M = (& ) € Ca1\ Spy(Z), where ¢ (resp. d) is the last row of C' (resp. D).
Since P g% b b is very homogeneous only when h+ = h; = 0 by Lemma 4.4.3,
if we compute P, » nt g (9o 0 g (v - N)) for some N € C?*?, we do not obtain a
multiple of P g% b b (gg o g7 (v )) in general. In fact, the result is a linear combination
of polynomials Pa,g#,h’1+,h/2+ (gg o g* (v)) such that h"™ + h5" = h{ + h3, where the linear
coefficients depend on the entries of the matrix IV; see Lemma 4.4.4. This remark leads

us to gather all summands of ho appearing in (4.6.8) that have the same sum hy + ho,
defining an auxiliary function 7+ as

_1hT o =
me(rg®) = > w'hbhly 1]22 O Lpor2(7, (0,714), 0, %, Py g ot 1t )-
hy hy
hf+hd=n*

In this way, we may rewrite hqy as
det y*+t1/2f(7) e _ r\r*
ha(r0) = L D S ey (= Tl 1) 30 (5) e ().
2u”, 2u” | 1
z r>1 z ht

Therefore, we have

det (S(M - 7)) T2 p(M - 1) y

ha(M'Tag) - 2u2
L
— — r h+

X Zexp ( tr(er +d)'(c7 + d)y 1) E (27) e (M -7 g7) =

r>1 h

k+1/2 2
—f“ e (= 2 e+ e + )

2uzJ- r>1 Yt

Rt
X Z ( ) det(CT+ D)~ 1/2 det(CT —I—D)_k_1/277h+(M . T,g#)-

We prove (4.6.20) by showing that
(4.6.21)
Mt (M -7, g7) = det(C1 + D)2 det(C7 + D)F+1/2x

-1 h?_ 2
x> ler+dy T - [lem + d)y Ty Orpa 2 (7o rid, —re, gF Py gt 45
ni kT
hi+h3=h*

for every 0 < ht < 2. Since Sp4(Z) is generated by the matrices of the form

T = (IOQI ), where B = B e 72%2, and S = (102 7012),

it is enough to check (4.6.21) for such generators. For T, this is implied by the trivial
identity
eLLth(T + B7 6 + VBv v, g#7 Pa,g#,hf,hg) = @LLonQ (T7 67 v, 9#7 ,Pa,g#,hir,h;r);

which holds for every §,v € (Lpo ® R)?, even if P, ,g# bt T is non-very homogeneous.

We conclude the proof by showing (4.6.21) when we replace M by S. Such equation
becomes

(4.6.22) e (=771 g%) = (det 7)M2(det 7)1 x0 (1,0, = (0, 7p2), g7,
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where x;+ is the auxiliary function of Definition 4.6.2. Since the identity

(C7+ D)'S(MT)(CT + D) = 3(7),

1)—1 _ -1

read with M = S, may be rewritten as $(—7~ = 7y~ 17, we may compute nj,+ (—7 1, g7)

as
Mt (-7 %) =
= Sy AR O a (o7 L (0,70), 0, g7, P
- ) T2 TY T22 Lior,2 7( '), Y, g7, a,g#7hr7h2+)‘
i hT
hf+1h2+2=h+

Hence, the identity we want to prove, namely (4.6.22), can be now rewritten as

11— hIL 11— h; 1 Z
Z [Ty 7]2,1 ’ [Ty 7]2,2 ’ @LLor72(_T ) (07 rlu)v 07 g ’,Pa,g#,hf,h;) =
h+,h+
h1++1h;2:h+
= (det 7)"/*(det 7)1/ 24 (7,0, = (0,71, 7).
Theorem 4.6.3 concludes the proof. O

We may then unfold the defining integrals (4.6.2) of the genus 2 Kudla—Millson lift as
(4.6.23)
dx dy

det y* f(T)Fa (T, 9)—s =
/ o Y O g

det y*+1/2 £ (1) dx dy dx dy
— —G)L o2 7—79#773 # +2/ ha 7,9 )
/Sp4 (Z)\Ha 2U§L L ( o,g 70,0) det y3 Co 1 \Ha ( ) det y3

4.6.3. Fourier series of unfolded integrals. In this section we compute the Fourier
expansion of the defining integrals (4.6.2) of the Kudla—Millson lift AXM | for every vector
of indexes a = (a, 3,7, d) such that o # 8 and 7 # §. The case of all remaining « is not
treated in this work, and is left for future investigation.

By Theorem 4.6.1, using the fundamental domain (4.6.6) of Hy with respect to the
action of Cy 1, we may rewrite the last term of the right-hand side of (4.6.23) as
(4.6.24)

drd
2 ha(r,g) Y =
021\H2 dety
det k+1/2 h +h + +
:/ / / dety™ 7/(7) Z > ( ) 5k - v Yah
T1,7‘2 EF‘]\HXC Y= yg/y1 r>1 h+ th
2
e dx dy
X exXp ( - 2uzl [y ]2,2) @LLOr,Q(Tv (O’T:U’)’O’g#’lpa,g#,hr,h;)det y3’

where 7 = (71 72) € Ha, with analogous notation for the real part x and the imaginary

part y. Recall from Section 3.3.2 that p is the vector in (Lo ® R) @ Ru defined as
p=—u 4 u, /2 4 u,/2ul.

We are going to replace in (4.6.24) the Siegel cusp form f € S§ with its Fourier-Jacobi
expansion, and the genus 2 Siegel theta function O o with its defining series.
We denote the Fourier—Jacobi expansion of f by

(4.6.25)  f(1) =Y ¢m(m1,72) - e(m73) = > dm(71,72) - exp(—2mmys) - e(mas).

m>0 m>0
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To compute the Fourier coefficients of the defining integrals, we need to rewrite the
Siegel theta functions O, o with respect to the entry 73 of 7. To simplify the notation,
we introduce what we call “Jacobi-like theta functions”. We explain the choice of such name
in Remark 4.6.6.

Definition 4.6.5. The Jacobi-like theta function associated to Lio, and P, g# h g is
defined as

1 .
61, (r.v.p.g% . P) = Y exp (= - tr(Ay™)) (P)goo g% (A +1,0) x
)‘GLLOY

xe(r-q(A+ 1)) + 71 g(A+)u) +72- A+ v p) +75- A+ 1) ) X
xe(— (A +v/2,0)),

for every 0,v € Lior ® R, and p € Lo, where 7 = (72 2) € Hy. If 6, = 0, then we drop
them from the notation.

(4.6.26)

The Jacobi-like theta functions arise naturally from the genus 2 Siegel theta functions.
In fact, it is easy to see that
(4.6.27)

# — J #
@LLor72 (7—767’/79 7,Pa,g#,hir,h;r) - eLLor (T7 617”17)‘+ V2,9 7,Pa7g#7h;r,h;r)><
AEL1or

><e<7'3q(()\ + VQ)wL) + ?3(](()\ + I/g)w) — ()\ + V2/2, (52)),

where & = (61,02) and v = (v1,12) are vectors in (Lpo: ® R)2. In particular, since Or,.,.2
is absolutely convergent, we deduce that also GiLor is so.

Remark 4.6.6. It is well-known that it is possible to construct Jacobi theta functions
arising from even unimodular positive definite lattices. This is illustrated e.g. in [EZS85,
Section 7|. The Jacobi-like theta functions defined above are a wild generalization of the
ones just recalled, explaining why we use the term “Jacobi-like” and denote them with a
superscript J. Such generalization seems wild for various aspects. First, the Jacobi-like
theta functions are defined on an indefinite lattice, and are attached to polynomials which
are not even very homogeneous. Moreover, it appears to be strange that they are not
defined on H x C, but instead on the whole Hy. In fact, the dependence from 73 of the
argument of the exp-operator appearing in (4.6.26) can not be dropped.

In any case, in this work we define them only to simplify the notation. We do not
investigate their properties.

We are now ready to illustrate the main result of this section. Its counterpart of genus 1
is Theorem 3.5.4. As for the latter, we need to choose an identification ¢ of K x H; with G,
where K is the stabilizer of the base point zp € Gr(L), and H,;, is the tube domain model
of the Hermitian symmetric domain D; see Section 3.4 for further information.

Theorem 4.6.7. Let a = (a, 3,7,8) be such that o # B and v # 6, and let f € S5 be
a Siegel cusp form of genus 2. We identify G with K X Hy via a diffeomorphism v as
in Lemma 8.4.2, such that every g € G may be rewritten as v(k,Z), for a unique (k,Z)
in K x Hy. The defining integral Io,: G — C of the Kudla—Millson lift ASM(f), namely

——dx dy
Zalg :/ det ¥ f(1)Fa (T, g) —=,

o) $p4(Z)\Hz (DFaln9) gopys
has a Fourier expansion of the form

(4.6.28) Za(9) = Za(u(k, 2)) = Z e\ K, Y)-e((X X)),
AELLor
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where Z = X +1iY.
The Fourier coefficient of Lo, associated to X\ € Lyo, such that g(\) > 0, is

o0 det ykﬁr’/%hf*hZ+ t \ P g
C()\, K, Y) = 5 (5) X
J —2 U ]
t217t\>\ (7'177'2)6F \HXC y3fy2/y1 hf,h; 2L

(4.6.29)

2mysA2 | T2y, )

h+ h+
X (=y2)™" (y1)"2 dg(r) 2 (11, T2) - exp ( e 2u?, dety

x@iLor (1, \/t, g7, ng#,h;r,h;)du’ﬂl dzo dyy dya dys,

where we say that an integer t > 1 divides A, in short t|\, if and only if N/t is still a lattice
vector in Lior.

The Fourier coefficient of Lo associated to X = 0, i.e. the constant term of the Fourier
series, 18

det yk+1/2f(7_)

dzd
(4.6.30) c(o,n,Y)Z/ ———5——"01,,.2(7, 9%, Pag#.00) e
Spa(Z)\H2  2UjL o

det y3"
In all remaining cases, the Fourier coefficients are trivial.

Implicit in (4.6.29) and (4.6.30) is that the right-hand sides do not depend on X. This
is shown in the proof of Theorem 4.6.7 using the following result. We suggest the reader to
recall the construction of the polynomials Pg# Wt h from Definition 4.4.2.

Lemma 4.6.8. Let P be a very homogeneous polynomial of degree (m™,0) on (R»2)2. We
identify K X Hy with G via a diffeomorphism v as in Lemma 3.4.2. The value of the function

Pyt et ni (90 0 47 (X))

with respect to the variable g = 1(k, Z) € G does not depend on the real part X of Z, for
any A € (Lror ® R)? and any hf, h;r,

PRrROOF OF LEMMA 4.6.8. Since the proof is analogous to the one of Lemma 3.5.5, we
provide only a quick outline. As in the previous sections, we denote by z;; = (e;,v;)
the coordinate of the j-th entry of any vector v = (vy,v2) € (L ® R)? with respect to the
standard basis vector e;, and by go the isometry defined as go(v) = (24,)i;. If Z € Hy, we
write z to denote its correspondent point of the Grassmannian Gr(L).

Let g = 1(k,Z) € G. 1t is possible to rewrite

(4.6.31) g (ei) = Ailg) - u.1 + Bi(g) -u. + gil(ei)wLGBwv

where A; and B; are auxiliary functions that do not depend on the real part X of Z; see
e.g. (3.5.17).

The polynomial ’P(go('v)) has x; ; = (e;,v;) as variables, hence P(go og(’u)) is a polyno-
mial of variables (g‘l(ei), vj), for every g € G. To construct the polynomials Pg#,hj,h? we
split g~ 1(e;) as in (4.6.31), replace these in the variables of P(go o g(v)), and gather all fac-
tors of the form (v;,u,1) and (vj, u;). In this way, we may deduce that Pyt ntng (goog™ (v))
is a function of 4;(g), Bi(g) and (vj, 97 (€i)yLew), where i =1,...,b+2 and j = 1,2.

In fact, since P is very homogeneous of degree (m™,0), in particular m~ = 0, the
auxiliary polynomials depend on A;(g) and (’Uj,g_l(ei)wj_) only. This can be shown
rewriting

(Uj,uz) = (g(vj)7g(uz)) = \/i(g(vj)ﬂ K(eb+2))a
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from which we deduce that (v;,u;) can not appear as a variable of P(go o g(v)), since P is
such that P(x) = P(x1) and K is the stabilizer of the base point 29 = (ep11, €pr2)r. The
same is true for (vj, g7 (e;)w).

To prove that the value Pg#,hf,h; (go o g()\)) does not depend on X, for any vec-

tor XA € (Lpor ® R)? and any hf, h; , it is enough to prove such property for

()‘]ﬁgil(ei)wl@w)v
where j = 1,2. This follows from (3.4.5), as we have already seen with (3.5.18). O

PRrROOF OF THEOREM 4.6.7. We follow the wording of Theorem 3.5.4, that is, the
counterpart of Theorem 4.6.7 in genus 1.

We consider the unfolding (4.6.23) of the defining integrals Z. The first summand on
the right-hand side of (4.6.23) is part of the constant term of the Fourier expansion of Z,
since it does not depend on X. In fact, by Lemma 3.4.1, we may rewrite it with respect to
the identification ¢ of G with K x H as

det y*+1/2f (1) dx dy
Qo g (. % Pagr 00) Y _
/Sp4 (Z)\H2 LLor,2( g 7g#,O,O) det y3

——1/ detka/Z-f(T)'sz
(4.6.32) 2 Jspa(@)\H2

1
< 3 exp (= o tr(Ay ™) (Pagr00) (90 0 97 (V) x
Xel? |

xe( —tr (q(A)x)) - exp ( — mtr(A%y) 4 2w tr (A Y)(, Y)ty)/YQ).

Lemma 4.6.8 implies that such value does not depend on X.

We are going to show that all other non-zero Fourier coefficients arising from the
éigt—‘j% of (4.6.23) correspond to some A\ € Ly, of
positive norm, therefore the exponential e(r(\, X)) appearing in the Fourier expansion
of Ty, is a non-constant function. This implies that (4.6.32) is exactly the constant term of
the Fourier expansion of Z,.

We begin the computation of the Fourier expansion of the second summand appearing
on the right-hand side of (4.6.23). First of all, we compute the series expansion of the prod-

remaining summand fcm\HQ ha(T,9)

uct f-Or; o (7', (0,7w), 0,9#,77a g# bt h;) with respect to the third entry 75 = x3 + iy3
of 7 € Hy. To do so, we replace f and Op, o with respectively (4.6.25) and (4.6.27). Such
product is

f(T) ’ ®LLor72 (7-7 (07 TM)? 0, 9#7 ,Pa’g#ﬁ'lhh;) = E E gbm(Tla T2) X
LeEZ m>0,NAE Ly or
m—q(\)=¢

X eXP(—QﬂmyS - 7Ty3()‘? )‘)w) ’ GiLor(Tﬂ >‘7 g#v ,Pa,g#,hf,h;) : 6(7’()\, M) + £$3)

We replace the previous formula in the defining formula of hq provided by Theorem 4.6.1,
deducing that

(4.6.33)
drdy

00 det yk—s/z—hj—h;
o[ hatrg il [ Ty
C2,1 \Hg ) (Tl,TQ)EFJ\HX(C yszyg/yl r>1 hi_ hé‘_ u: |

z
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Yo+
X (%)hl +h3 (—y2 )lfr (yl)h;r exp < ZT dy;t y) Z Z Om (71, T2) exp(—2mwmys) X

LeZ m>0,\E L1,or
m—q(\)=¢

1

X exp ( — my3 (A, )\)w) . @iLor(T, A, g7, Pa’g#’hih;) . e(r()\, u)) /1‘30 e(ﬁxg)d:n dy.

The last integral appearing on the right-hand side of (4.6.33) may be computed as

! 1 ife=
/ e(fz3)drs = ' Q’
2£3=0 0 otherwise.

We may simplify (4.6.33) extracting only the terms with ¢ = 0, obtaining that
(4.6.34)

9 / h ( dx dy Z / /OO Z det yk75/27hrih;— «
2
C2,1 \Hz dety AL or r>1 ¥ (T1,72) ENTNHXC Jys=y3 /y1 ot Uzt

r\ i +ha + + oyl
() M ) e (- gt 2w ) ¢

X Pq(x)(T1,T2) - @iLor (1, \, g7, Pa7g#7h1+’h3-)dx1 dxo dyy dys dys - e(r()\, ,u))

Using that e(r(X, 1)) = e(r(A, X)) by Lemma 3.4.1, we rewrite (4.6.34) in the same
shape of (4.6.28), i.e. we gather the terms multiplying e(()\, M)), for every A. This can be
done simply replacing the sum } -, with thu‘)\, and the lattice vector A with A/¢t. In
this way, we obtain that

(4.6.35)

JRCT- R ol ol (Y WD D
3
C2,1 \Ha dety NELpor t>1t|x " (TH72) ENNHXC Tys=y3 [y1 =y Yl
t \hi +h3 nt hT ( 7Tt2y1 27Ty3/\3)¢>
x| — _ 1 2 .e — — X
(2i) (=y2)™ (1) - exp 2u%, dety 12

X(ﬁq 2)/t2 (7‘1, 7'2) @iLor (7‘, )\/t, g#, Pa,g# h+ h+)d£€1 dxg dy1 dyg dy3 . e(()\, M)) .
This is the Fourier expansion of 2 [ i Pa(T9) g;dy In fact, using the identifica-

tion ¢: K X Hp — G, we may rewrite the right-hand side of (4.6.35) as

N B A LT

AeLpor t> 12|37 (TH72)ETNEXC Jys=y3 /41 hi,hy 2
Wt nt at?Y2y  2mysA? 2mys3(\,Y)?
X(=y2)" (y1)"2 - e P( 2 det y T2 2y? ) “ Pg(ny ez (T1, T2) X
1 _
> exp ( - 5 Ay 1)) (P g nt p) (90 © g7 (0, ) - e — z14(p) — 2(p, X)) %
peLLor
2my1(p, Y)? | Amya(p, Y)(N, Y

X exp ( —2my1q9(p) — 2mwya(p, \) + y1}(/pz ) + QQ(PY2)( ))dxl dzo dy; dya dys

xe(()\, X)),
from which we see that the coefficient associated to A does not depend on X by Lemma 4.6.8.
0
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4.7. FURTHER GENERALIZATIONS

In this section we explain how to use the same strategy illustrated in this chapter to
investigate further properties that may be deduced unfolding the defining integrals of the
genus 2 Kudla—Millson lift.

As already announce, it this work we do not show that AXM is injective. In fact, to
prove such injectivity one should show that if all Fourier coefficients of AXM(f) computed
in Theorem 4.6.7 are zero, then all Fourier coefficients of f are zero. Such implication seems
to be more complicated with respect to its counterpart in genus 1, since in genus 2 the
Fourier coefficients are integrals over I'/\H x C of functions containing the Fourier—Jacobi
coefficients of f. It might be necessary to apply another unfolding, rewriting the integrals
over ' \H x C as integrals over easier domains.

Theorem 4.6.7 provides the Fourier expansion of the defining integrals Z,, of the Kudla—
Millson lift, under the assumption that o # 8 and =y # §. It is of interest to understand
what happens if such assumption is not satisfied. Moreover, since the Kudla—Millson lift
produces [-invariant 4-forms on D, for every subgroup I of finite index in O* (L), such
forms admit a Fourier expansion as well. It would be interesting to compute such expansion
in terms of the one given by Theorem 4.6.7, generalizing [Bru02, Theorem 5.9] to the
genus 2 case. This may be achieved computing explicitly the terms of the form

*
9 (Wapt1 A wppr2 AWy b1 AWspra)

appearing in (4.6.1), choosing g such that it correspond to a point Z = X + 1Y € H,; via
an identification ¢ as in Section 3.4.2, and rewriting all terms of the form w,; by means
of 3/0X; and 8/dY; via the isomorphism A*(p*) = A*T5H,.

The works of Kudla and Millson are carried out in much greater generality with respect
to the case considered in this thesis. In fact, they covered also the case of indefinite quadratic
spaces of signature (p, q), where neither p nor g equals 2. Although the associated symmetric
domain D is not Hermitian any more, it is possible to construct a Schwartz function gofégm,
analogous to the one appearing in Section 3.2, with values in the space Z29(D) of closed 2¢-
forms on D. It seems reasonable to find polynomials defined on (RP:9)? that may replace Qg
in an explicit formula of ¢4, , similar to the one provided by Proposition 4.2.3. It might
be interesting to rewrite the Kudla—Millson lift under these hypothesis, and check whether
Borcherds’ formalism can be still generalized as in Section 4.4 to unfold the lift.
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