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Abstract. The study of polygonal billiard tables with simple dynamics led

to a remarkable class of special subvarieties in the moduli of space of curves

called Teichmüller curves, since they are totally geodesic submanifolds for the
Teichmüller metric.

We survey the known methods to construct of Teichmüller curves and ex-

hibit structure theorems that might eventually lead towards the complete clas-
sification of Teichmüller curves.
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Introduction

The origin of the notion Teichmüller curve goes back to a remarkable discovery of
Veech [Vee89] who constructed billard tables where the trajectories of a bouncing
billiard ball have a remarkably simple dynamics, as simple as on a rectangular
table. An unfolding construction of the billiard table yields a flat surface, that is a
compact Riemann surface together with a flat metric and a finite number of cone-
type singularities. Shearing such a flat surface by elements in GL+2(R) provides a
whole family of flat surfaces. Only rarely is such an orbit closed in the moduli space
ΩMg parametrizing flat surfaces. In this case the image of the GL+2(R)-orbit in
the moduli space of curves Mg is an algebraic curve, called a Teichmüller curve.

The moduli space of curves is not a locally homogeneous space and thus does not
come naturally with a distinguished class of special algebraic subvarieties. Thanks
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to the GL+2(R)-action, the moduli space of flat surfaces ΩMg inherits quite a bit
of the properties of a homogeneous space. The special subvarieties there are affine
invariant submanifolds and the smallest of them are Teichmüller curves. Part of
the beauty of studying their geometry is reflected in the fact that Teichmüller
curves admit a variety of different characterizations that may roughly be phrased
as follows.

i) Teichmüller curves are immersed curves in the moduli space of curvesMg that
are totally geodesic for the Teichmüller metric.

ii) Teichmüller curves are the images inMg of closed GL+2(R)-orbits in the moduli
space ΩMg of flat surfaces.

iii) Teichmüller curves are curves inMg whose variation of Hodge structures con-
tains a rank two summand whose Kodaira-Spencer map is an isomorphism.

iv) Teichmüller curves are the images in Mg of two-dimensional subvarieties in
strata of ΩMg cut out by torsion and real multiplication.

In all likelihood, Teichmüller curves should not exist, maybe except for low genus
examples, and examples derived from them. The torsion and real multiplication
conditions are just too restrictive. And yet they do exist!

The goal of this survey is to explain the above characterizations of Teichmüller
curves and to summarize the current state of knowledge on the classification and
geometry of Teichmüller curves.

1. Dynamically optimal billiard tables and flat surfaces

We start with a rational polygonal billiard table, that is, a planar polygon P all
whose angles are rational multiples of π. The trajectories of a single ball bouncing
in such a P might exhibit various types of long-term behavior. (If the trajectory
hits a corner it just ends there and subsequently we disregard this measure zero
set of cases.) The trajectory could be periodic. Second, trajectory might be dense,
more precisely uniformly distributed all over the polygon, that is, visit every region
with frequency proportional to the volume of the region. Last, the trajectory might
be dense in some region strictly smaller than the whole polygon. For a rectangular
table, the last possibility does not occur. Moreover which of the two first cases
occurs depends on the initial direction only, not on the starting point. This simple
trajectory behavior that rectangular tables exhibit is called Veech dichotomy or
optimal dynamics. Polygons tiled by a rectangular table also exhibit this optimal
dynamics.

Understanding whether a billiard table has optimal dynamics is simplified by
performing the Katok-Zemlyakov unfolding construction [ZK75], as illustrated in
Figure 1. Instead of reflecting the trajectory at the boundary of the polygon we
reflect the polygon and continue the trajectory by a straight line. Since the polygon
is rational this process ends with a finite number of reflection copies. Gluing them
together gives a flat surface (X,ω), that is, a compact Riemann surface X together
with a holomorphic one-form ω that provides us with a flat metric ∣ω∣ outside a
finite number of cone-type singularities where the angle is a multiple of 2π. The
set of all flat surfaces fit into a moduli space ΩMg with a natural forgetful map to
the moduli space of curves Mg. This moduli space is decomposed into strata

ΩMg = ⋃
µ

ΩMg(µ) (µ = (m1, . . . ,mn)
n

∑
i=1
mi = 2g − 2) , (1)
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Figure 1. A (π/2, π/5,3π/10)-triangle unfolds to a double pentagon

according to the multiplicities µ of the zeros of ω.
In the example given in Figure 1 the surface has genus g(X) = 2 and one zero

of cone angle 6π at the point marked with a dot. It is a Veech surface in the
stratum ΩM2(2).

The moduli space of flat surfaces ΩMg carries a natural action of GL+2(R) in-
duced by the linear action on planar polygons, see Figure 3. This action preserves
the stratification (1). Moreover, the straight line flow on (X,ω) is dynamically
optimal if and only if it is dynamically optimal on A ⋅ (X,ω) for any A ∈ GL+2(R).

The initial observation of Veech [Vee89], [Vee91] was that if the GL+2(R)-orbit of
(X,ω) is closed in its stratum ΩMg(µ), then (X,ω) has optimal dynamics. This
is to say that for each direction θ one of two cases happen: Either all trajectories
in the direction θ are uniformly distributed (hence dense) or the Veech surface is
foliated in direction θ by closed geodesics and saddle connections between the saddle
points, the zeros of ω. (The converse holds in low genus [McM05b], but it is false
in general [SW08].) Such a GL+2(R)-orbit is closed if there is a lattice Γ ⊂ SL2(R)

stabilizing (X,ω) and the converse also holds [SW04]. Since the rotation images
and the homothety images of (X,ω) are in the same fiber of the projection toMg,
the images in Mg of closed GL+2(R)-orbits are of the form C = Γ/H →Mg. They
are immersed algebraic (but non-complete) curves in the moduli space of curves.

The action of GL+2(R) extends to an action on the moduli space Qg that pa-
rameterizes half-translation surfaces (Y, q) consisting of a Riemann surface with a
quadratic differential q and the above statements about images of orbits in Mg

carry over verbatim. To summarize:

Definition 1.1. A flat surface (X,ω) or a half-translation surface (Y, q) with closed
GL+2(R)-orbit is called Veech surface and the image curve C →Mg of this orbit is
called a Teichmüller curve.

The name Teichmüller curve reflects that images of GL+2(R)-orbits in the Teich-
müller space Tg of any (Teichmüller-) marked half-translation surface (Y, q) are
Teichmüller discs, i.e. discs ∆ → Tg that are totally geodesic for the Teichmüller
metric. By Teichmüller’s fundamental theorems all such Teichmüller disc can be
obtained as the orbits of half-translation surfaces (Y, q).

In some sense it is not strictly necessary to discuss the case of half-translation
surfaces. Associated with any half-translation surface (Y, q) there is a canonical
GL+2(R)-equivariant double cover construction π ∶ X → Y on which the quadratic
differential π∗q = ω2 admits a square root. Consequently to each Teichmüller curve
C → Mg(Y ) generated by (Y, q) there is a Teichmüller curve C ′ → Mg(X) in a
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Figure 2. Veech surface with Veech group ∆(5,9,∞)

moduli space of somewhat larger genus, generated by a flat surface. Since most of
the classification of Teichmüller curves works using the cohomology of the Veech
surfaces and hence abelian differentials, we restrict ourselves from now on to Teich-
müller curves generated by flat Veech surfaces (X,ω). (The reader might then check
in each case at hand if the surface admits an involution that makes those surfaces
arise as double coverings.) Also the itemized characterizations in the introduction
are equivalent only on this subclass of Teichmüller curves.

The uniformizing group Γ is also called the Veech group of the Veech surface
(X,ω). It can be characterized as the group of orientation-preserving homeomor-
phisms of X that are affine when expressed in the flat charts of X ∖Z(ω) provided
by ω. An important invariant of Γ and thus of any Teichmüller curve is the trace
field K = Q[tr(γ), γ ∈ Γ].

2. The list of known examples

The known examples of Veech surfaces and Teichmüller curves consist of a short
list of series, up to a natural notion of primitivity. We present all these series and
come back in the subsequent sections to the ideas behind their discovery.

A Veech surface (X,ω) is called (geometrically) imprimitive if there is a (branched)
covering π ∶ X → Y such that ω = π∗η for some one-form η on Y . Otherwise
(X,ω) is called geometrically primitive. A Veech surface (X,ω) is called alge-
braically primitive if the trace field has degree g = [K ∶ Q]. Theorem 3.1 implies
that algebraically primitive implies geometrically primitive. All these properties
are GL+2(R)-equivariant and we abuse the corresponding notions also for the Teich-
müller curves the Veech surfaces generate.

The triangle group series. We currently know of a single series of primitive
Teichmüller curves generated by Veech surfaces of unbounded genera, containing
infinitely many algebraically primitive Teichmüller curves. This series is indexed
by two parameters m,n ∈ N ∪∞ and constructed so that the Veech groups are the
triangle groups ∆(m,n,∞). The family was discovered in [BM10b] and contains
the original examples of Veech (n = 2 and n = ∞) and those of his student Ward
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(n = 3, [War98]), see Figure 2 for the case m = 5 and n = 9. Other polygonal
presentations were given in the work of Hooper [Hoo13] and Wright [Wri13].

The Weierstraß family and the Prym family. The Weierstraß family is gener-
ated by (nearly) L-shaped flat surfaces in the stratum ΩM2(2) of genus two as in
Figure 3. The family was discovered independently by Calta [Cal04] and McMullen
[McM03]. Veech surfaces generating all the Teichmüller curves in this series are
given by side length parameters a = (0, λ), c = (λ,0), b = (t, h), c + d = (w,0) where

t ∈ N, w,h ∈ N>0 and where λ = (e+
√
D)/2 for D = e2+4wh is a quadratic irrational

number.

b

c d

b

d

a

c

a ( 1 1
0 1 )

b

c d

b

d

a

c

a

Figure 3. An L-shaped table ([Cal04], [McM03] and the GL+2(R)-action

The Prym family is generated by the S-shaped genus three surfaces and the
X-shaped genus four surfaces (in the strata ΩM3(4) and ΩM4(6)) in Figure 4,
discovered by McMullen in [McM06a]. The trace field has degree r = 2 in all cases.
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Figure 4. Veech surfaces in Prym family for g = 3 and g = 4 ([McM06a])

The Gothic family. This is an infinite family of primitive Teichmüller curves dis-
covered by McMullen, Mukamel and Wright [MMW17] in the stratum ΩM4(2,2,2).
It is generated by Veech surfaces that resemble Gothic cathedrals (see Figure 5),
again with trace field of degree r = 2. Another infinite series, generated by Veech
surfaces in the stratum ΩM4(3,3), has been announced by Eskin, McMullen,
Mukamel and Wright.

The sporadic examples. There are two sporadic examples of Teichmüller curves.
The Veech surfaces are constructed as the unfolding of the (2π/9, π/3,4π/9)-triangle
(in the stratum ΩM3(3,1), see [KS00]) and as the unfolding of the (π/3, π/5,7π/15)-
triangle (in the stratum ΩM4(6), see [Vor96]).
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h

e

e

a

b d

c

f

f

c

d

g

g

a

h

b

Figure 5. A Gothic Veech surface ([MMW17])

3. Teichmüller curves and variations of Hodge structures

This section reveals the algebro-geometric nature of Teichmüller curves by two
basic structure theorems. We also highlight similarities and differences to Shimura
curves.

Theorem 3.1 ([Möl06b]). If (X,ω) is a Veech surface, then the Jacobian Jac(X)

contains an abelian subvariety Jac(X,ω) of dimension r = [K ∶ Q] with real multi-
plication by the trace field K, i.e. the endomorphism ring of Jac(X,ω) is an order
in K.

Here Jac(X,ω) is the smallest abelian subvariety of Jac(X) whose tangent space
contains ω via the canonical identification TJac(X) ≅ Γ(X,Ω1

X).
For a Veech surface (X,ω) we let z1, . . . , zn be the zeros of ω, i.e. div(ω) = ∑mizi.

Theorem 3.2 ([Möl06a]). For any i, j the divisor [zi − zj] has finite order in
Jac(X,ω).

To sketch the proof of the two theorems we consider the Teichmüller curve C →
Mg generated by the Veech surface. After passing to a finite unramified (in the
orbifold sense) cover of C the universal curve over (a level cover of) Mg pulls
back to a family of curves f ∶ X → C that we may extend to a family of stable
curves f ∶ X → C over a complete curve C. The vector spaces H1(X,Q) glue to a
locally constant bundle VQ over C. The Hodge bundle, the vector bundle with fiber

H0(X,Ω1
X), is a subbundle of (the extension to C of) the vector bundle VC. This

vector bundle inclusion together with a polarization stemming from the symplectic
pairings on the fibers of f defines a weight one variation of Hodge structures (VHS).
The starting point for all theorems in this section is the decomposition (as variation
of Hodge structures)

VQ = WQ ⊕MQ, where WK = L1 ⊕⋯⊕Lr (2)

over any Teichmüller curve. Here L1 is the rank-two locally constant subbundle
generated by Re(ω) and Im(ω), the tautological plane, and the Li are the Galois
conjugates of L1 over K. This decomposition follows from Deligne’s semisimplicity
of VHS and since the tautological plane is a sub-VHS essentially by definition of a
Teichmüller curve as GL+2(R)-orbit.

A Q-decomposition of VQ defines a splitting of the family of Jacobian varieties.
Moreover, for any λ ∈ K the endomorphism ⊕σi(λ), with σi running over the
real embeddings of K, defines a rational endomorphism of the family of abelian
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subvarieties corresponding to WQ, which provides the real multiplication claimed
in Theorem 3.1.

The locally constant subbundle L1 is special, since by construction its mon-
odromy representation is the standard representation of the uniformizing Fuchsian
group Γ of C. As a consequence, the period map from the universal cover of C
to the upper half plane, the period domain for such a rank two subsheaf, is an
isomorphism. In particular, if we let L be the (1,0)-part of (the Deligne extension

to C of) L1 then the Higgs field (also known as the Kodaira-Spencer map), that is
the derivative

τ ∶ L → L−1 ⊗Ω1
C
(∆), (∆ = C ∖C) (3)

of the period map, is an isomorphism. Those subbundles are called maximal Higgs,
since for those subbundles the degree of L attains its maximum value 1

2
deg Ω1

C
(∆).

The above translation can also be read backwards: maximal Higgs subbundles have
period maps that are isomorphisms. Consequently, suppressing the omnipresent
passages to finite unramified covers, we can summarize the discussion by the fol-
lowing characterization of Teichmüller curves in the language of complex geometry.

Proposition 3.3. A Teichmüller curve is a curve C →Mg such that the VHS of
the family f ∶ X → C contains a rank two summand that is maximal Higgs. This
maximal Higgs summand is unique.

To illustrate the idea behind Theorem 3.2 note that the zeros z1, . . . , zn on an
individual Veech surface can be transported along the whole family f ∶ X → C
without colliding, again by definition of GL+2(R)-action. Passing to an unramified
cover of C we may assume that they are the images of sections zi ∶ C → X . Using
the theory of Néron models one can show that a finite index subgroup of the group
of sections extends to the family of Jacobians. We may then project these sections
to the family A → C of the abelian subvarieties whose fibers are Jac(X,ω). But this
family does not have any non-zero sections. In fact, by the uniformization of the
family A → C, sections can be identified with elements of H1(C,WQ). This coho-
mology group naturally has a weight two Hodge structure and the sections provide
elements of type (1,1). The maximal Higgs direct summand of WQ prohibits the
existence of such non-zero elements.

The two theorems can be recast to characterize Teichmüller curves purely using
terms from algebraic geometry, as observed by Alex Wright.

Proposition 3.4. A Teichmüller curve is the image in Mg of a two-dimensional
suborbifold M of a stratum ΩMg(µ) such that for each point [(X,ω)] ∈ M the
abelian variety Jac(X,ω) has real multiplication by an order in a field of degree
dim(Jac(X,ω)) and such that for any two zeros z1, z2 of ω the difference z1 − z2 is
torsion in Jac(X,ω).

Shimura curves are also defined as totally geodesic curves, but in the moduli
space of Abelian varieties Ag (instead of Mg) and for the Bergman-Siegel metric
(instead of the Kobayashi metric). Usually Shimura curves are moreover required
to have a CM point, and sometimes they are referred to as Kuga curves with
this conditions relaxed. Shimura curves can also be defined as stemming from a
homomorphism of a Q-algebraic group into the symplectic group by quotienting the
corresponding real groups by maximal compact subgroups and a lattice. Since Ag is
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a locally homogeneous space and since Shimura curves are defined by group theory,
there are plenty of Shimura curves. However, since the Torelli-image of Mg in Ag
is of large codimension for g → ∞, most of the Shimura curves don’t intersect the
Torelli-image. The classification of Shimura curve in (the Torelli-image of) Mg is
an open problem that is morally similar to the classification of Teichmüller curves,
see e.g. [LZ14] for one of the latest results.

Shimura curves can also be characterized by a decomposition of the VHS like
in (2), but now the bundle MQ has to have unitary monodromy and now all the
bundles Li have to be maximal Higgs (rather than just one of them), but they are
not necessarily all Galois conjugates.

4. Constructing Veech surfaces and computing the Veech group

We revisit the known examples of primitive Teichmüller curves in the light of
the previous structure results and sketch their method of construction.

Veech’s and Ward’s original examples were constructed by exhibiting two ele-
ments in the Veech group that jointly generate a Fuchsian triangle group. In the
example of the double pentagon in Figure 1 this is the triangle group generated by

the rotation (
cos 2π/5 sin2π/5
− sin 2π/5 cos 2π/5 ) and the vertical shear (

1 0
2 cotπ/5 1 ). The latter ele-

ment belongs to the Veech group since the straight line flow in the vertical direction
is periodic and the periodic orbits come in two homotopy classes, each sweeping out
a cylinder bounded by saddle connections. Both cylinders have the same modulus
equal to 2 cotπ/5.

Expanding on the previous remark we note that Teichmüller curves are never
compact since any direction on the Veech surface admitting a saddle connection
provides a parabolic element in the Veech group that has this direction as an eigen-
vector. However, the Veech groups are in general not generated by elliptic and
parabolic elements, as we will prove in Section 7. In fact, none of the series of
Teichmüller curves besides the original examples of Veech and Ward was detected
by computing the Veech group! Only recently Mukamel [Muk17] gave an algorithm
to compute the Veech group for a general Veech surface. His basic idea is to asso-
ciate to each Veech surface over a Teichmüller curve the number of girth directions
that contain a shortest saddle connection. This number provides a stratification of
the GL+2(R)-orbit of a Veech surface, since the generic number of girth directions
is one. The algorithm proceeds by tracing along the spine of this stratification
(consisting of surfaces with two girth directions) and testing if the Veech surfaces
at vertices of the stratification are scissors congruent to each other.

The construction of the triangle group series started with the observation that
families of cyclic coverings have rank two summands in their cohomology whose
monodromy groups are triangle groups. However, these summands are not maximal
Higgs in the sense of (3). The problem is that at the points where the monodromy
has finite order the family of curves degenerates, but the period map can be con-
tinued over these points (after passing to a finite cover). Luckily, if we consider
triangle groups (m,n,∞), say with m,n odd and coprime for simplicity, the group
(Z/2)2 acts on the family of cyclic covers. The quotient family still has the rank
two summand in cohomology. Moreover, the fibers over the orbifold points are now
smooth and Proposition 3.3 applies.

The Weierstraß series consists of surfaces (X,ω) ∈ ΩM2(2) whose cohomology
admits a self-adjoint endomorphism φ ∈ End(H1(X,Z)) such that φ∗ω = λω for
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some λ generating a fixed real quadratic extension K of Q. Such a map φ defines
an endomorphism of Jac(X), since it preserves the period lattice and it induces
a consistent map on the tangent space of Jac(X) as it preserves the line C ⋅ ω by
definition and another complex line by self-adjointness. The existence of such an
endomorphism involves only the periods of ω and can thus be checked to hold for
surfaces of the form in Figure 3 with the explicitly given parameters of the saddle
connection vectors on the boundary. In the minimal stratum the torsion condition
is void and thus Proposition 3.4 implies that such (X,ω) are Veech surfaces.

For the Prym series the crucial observation is that the same argument as for the
Weierstraß series can be made for a four-dimensional part of cohomology that is
(anti-)invariant by an involution rather than for the whole H1(X,Z).

For the Gothic series this observation is refined to work for endomorphisms
acting on an even smaller part of H1(X,Z), the kernel of two projections to the
first cohomology of smaller genus curves, provided that the ambient variety without
imposing the real multiplication endomorphism behaves like the stratum ΩM2(2)
in a sense made precise in the next section.

5. Affine invariant manifolds

Recall that Teichmüller curves are images of closed GL+2(R)-orbits. The ground-
breaking results of Eskin-Mirzakhani [EM13] and Eskin-Mirzakhani-Mohammadi
[EMM15] imply that all the non-closed GL+2(R)-orbits have very nice closures:
They are manifolds, affine and R-linear in a natural ’period’ coordinate system,
and more precisely quasi-projective varieties by Filip’s results [Fil16]. These orbit
closures are thus called affine invariant manifolds (AIM). Their classification is
a very interesting question that created a lot of recent activity. We refer e.g. to
[Api15], [AN16] and [EFW] for some of the latest results and highlight here only
the aspects connected with the classification of Teichmüller curves.

Suppose some stratum ΩMg(µ) contains an infinite number of algebraically
primitive Teichmüller curves Ci for i ∈ N. The closure of their union is an AIM M
by [EMM15]. The main observation of Matheus-Wright [MW15] is that it is pos-
sible to spread out the decomposition information (2) from the union of the Ci to
all of M. Namely, they define a Hodge-Teichmüller plane over the moduli point
of (X.ω) to be a C-rank-two subspace L ⊂H1(X,C) defined over R such that all its
GL+2(R)-translates intersect the (1,0)-part of the cohomology in a one-dimensional
subspace. By (2) each point over each Ci has g orthogonal Hodge-Teichmüller
planes and by a limiting argument each point of M has them. This leads to an
immediate contradiction in many cases, e.g. when the monodromy representation
on H1(X,C) over Teichmüller curves generated by Veech surfaces that are torus
covers can be shown to not have that many Hodge-Teichmüller planes.

This idea was subsequently refined (by working with relative cohomology and by
computing the algebraic hull of GL+2(R)-cocycle for general AIM, hence in particular
for those containing an infinite number of Teichmüller curves) to yield the following
optimal (though ineffective) finiteness result.

Theorem 5.1 ([EFW]). Each stratum ΩMg(µ) contains only a finite number of
Teichmüller curves with trace field of degree r > 2.

In each stratum ΩMg(µ) there are only a finite number of AIMs Mi ’like
ΩM2(2)’ such that all primitive Teichmüller curves with r = 2 are contained in
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one of these Mi. Conversely, any such AIM ’like ΩM2(2)’ contains infinitely
many Teichmüller curves with r = 2.

To give a precise definition of an AIM ’like ΩM2(2)’ we recall that the tan-
gent space of a stratum ΩMg(m1, . . . ,mn) at (X,ω) is modelled on the rela-
tive cohomology H1(X,Z(ω),C), where Z(ω) = {z1, . . . , zn} is the zero set of ω.
The tangent space to an AIM M is by [EM13] and [Wri15] a linear subspace
TM ⊆ H1(X,Z(ω),C), defined over a real number field K that generalizes the
notion of the trace field. The rank of M is the integer 1

2
dimp(TM) where p ∶

H1(X,Z(ω),C) → H1(X,C). It measures (half of) the number of moduli of M
discounting those that stem from moving the zeros relative to each other. An AIM
is ’like ΩM2(2)’ if it is rank two and K = Q.

The quest for the classification of primitive Teichmüller curves is thus reduced
to detecting the cases with exceptionally large trace field r > 2 (like most examples
of the triangle series) and the AIMs ’like ΩM2(2)’. Currently, we only know of the
few examples mentioned in the previous section.

6. Finiteness and classification results

All presently known finiteness and classification results for Teichmüller curves
are based on the study of their cusps.

The classification of Teichmüller curves in the Weierstraß series and the Prym
series starts with listing all possible cusps, which amounts to a finite list of possible
combinatorics for the saddle connections and a list of possible length data com-
patible with real multiplication by the order of a given discriminant D. The main
problem is to detect when two cusps lie on the same Teichmüller curve. Sometimes
it is possible to spot this, like for the cusps belonging to the horizontal and vertical
direction in Figure 4. Spotting enough of those direction changes to connect any
pair of cusps is the tedious step in the proof of the following theorem.

Theorem 6.1 ([McM05a],[LN14]). In ΩM2(2) there is a unique primitive Teich-
müller curve WD with real multiplication by the order of discriminant D for each
D ≠ 1 mod 8 and two such Teichmüller curves W ±

D for each D ≡ 1 mod 8.
The Prym series in g = 3 consists of a unique primitive Teichmüller curve WD(4)

with real multiplication by the order of discriminant D for each D ≡ 0,4 mod 8, it
has two components W ±

D(4) for D ≡ 1 mod 8 and is empty for D ≡ 5 mod 8.

A similar result for the g = 4-series is known in some cases [LN14] and the
classification is open for Gothic curves. It would be very interesting to find a
more conceptual argument for the classification of connected components. This
classification is currently the only property of Teichmüller curves not accessible
through the viewpoint of modular forms, see Section 7 below.

Around the time of discovery, it was puzzling that ΩM2(2) contains infinitely
many primitive Teichmüller curves, while in ΩM2(1,1) there was only a single
such curve known, the decagon in Veech’s original family. Given Theorem 3.2 this
should no longer come as a surprise: Finding two points z1 and z2 on a Riemann
surface X whose difference is torsion is a very rare pick. It is equivalent to finding
a map p ∶X → P1 with p−1(0) = {z1} and p−1(∞) = {z2}. Pushing this condition to
the cusp of a primitive Teichmüller curve in ΩM2(1,1) amounts to detecting when
ratios of sines at rational multiples of π belong to a quadratic number field. There
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are only finitely many possibilities and examining these cases, McMullen showed in
[McM06b] that the decagon is indeed the only example in ΩM2(1,1).

Even if there are no torsion constraints, i.e. in the minimal strata ΩMg(2g − 2),
there are many other constraints imposed by cusps on the existence of a primitive
Teichmüller curve. We illustrate this in the smallest interesting case, the hyperel-
liptic connected component of the stratum ΩM3(4). The fiber over the cusp of an
algebraically primitive Teichmüller curve is a projective line (by the real multiplica-
tion condition) and the limit of the generating one-form is a stable differential ω∞
that we may normalize due to the hyperelliptic involution to have simple poles at
±xi for i = 1,2,3 with residues ±ri and a four-fold zero at zero. This amounts to
the conditions

3

∑
i=1
rixi+1xi+2 = 0 and

3

∑
i=1
rixi(x

2
i+1 + x

2
i+2) = 0 , (4)

where indices have to be read mod 3. We can moreover normalize r1 = 1 and
x1 = 1. Algebraically primitive implies that the ri are a Q-basis of a totally real
cubic number field K ⊂ R and we denote the two other real embeddings of K by σ
and τ .

We now hint at two additional constraints. First, since the cusps lie on the
boundary of Hilbert modular threefolds, whose boundary has been computed in
terms of cross-ratios in [BM12], the cross-ratio equation

Rb123R
b2
13R

b3
23 = 1 , (Rij = (

xi + xj

xi − xj
)

2

) (5)

holds, where bi are integers such that ∑
3
i=1 bi/si = 0, where {s1, s2, s3} is the Q-basis

of K trace dual to {r1, r2, r3}. Note that it is already a very restrictive property for
a Q-basis of K that the reciprocals of dual basis are Q-linearly dependent. Second,
considerations of the Harder-Narasimhan filtration of the Hodge bundle over the
Teichmüller curve imply that one of the two Galois conjugate forms also has to
have a double zero in common with ω. This implies

3

∑
i=1
rσi xi+1xi+2 = 0 . (6)

We strongly suspect that the solution stemming from Veech’s 7-gon

r2 = v
2
+ v − 2, r3 = v

2
− 2, x2 = −v

2
− v + 1, x3 = v

2
+ v − 2 , (v = 2 cos(2π/7))

is the unique solution in some K up to permutation of variables of the equa-
tions (4), (5). and (6). However, the fact that equations are not algebraic, but
involve Galois conjugates, makes the geometry of the solution set more interesting.
Currently, we can only show that the set of solutions is finite. This is part of the
following version of Theorem 5.1 for g = 3, that has the advantage to be at least in
theory algorithmically implementable.

Theorem 6.2 ([BHM16]). There are finitely many algebraically primitive Teich-
müller curves in genus three.

The proof in the minimal stratum uses a variant of the theory of just likely
intersections. The rough statement of the main theorem of this theory is that all
intersection points of an algebraic subvariety Y of a multiplicative torus Gnm with all
subtori of dimension n−dim(Y )−1 have bounded height, except for the anomalous
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locus Y an ⊆ Y consisting of the subvarieties that intersect a translate of a subtorus
of Gnm in a larger subvariety than expected from the naive dimension count. The
subtori this theory is applied to are those defined in (5), but the variant in [BHM16]
uses coupled equations in Gnm and the additive group Gna .

7. Modular forms and Euler characteristics

The locus of abelian surfaces with real multiplication by an order of discrimi-
nant D is the Hilbert modular surface XD = H2/(SL(oD ⊕ o∨D). By Theorem 3.1
the Torelli image of a Teichmüller curve with quadratic trace field lands in XD. We
can thus use modular forms and other tools from number theory to approach the
geometry of Teichmüller curves, e.g. in the Weierstraß, Prym and Gothic series.

The vanishing locus of a Hilbert modular form of weight (k, `) descends to an
algebraic curve in XD. Not all curves on a Hilbert modular surface are the vanishing
locus of a Hilbert modular form, not even linearly equivalent to such a vanishing
locus. However, all the Teichmüller curves in the Weierstraß and the Prym series
can be described using Hilbert modular forms. Concretely, let θ(m,m′)(z,u) be
the restriction of the classical Riemann theta function with characteristic m,m′ ∈
1
2
Z2/Z2 to z = (z1, z2) ∈ H2, let u = (u1, u2) be coordinates of C2 that correspond

to eigendirections of real multiplication, and let D2θ(m,m′) = ∂
∂u2

θ(m,m′)(z,u).

Theorem 7.1 ([Bai07],[MZ16]). The image of the Weierstraß Teichmüller curve WD

in XD is the vanishing locus of the Hilbert modular form

Dθ(z) = ∏
(m,m′) odd

D2θ(m,m′)(z) (7)

of weight (3,9). The orbifold Euler characteristic of WD is χ(WD) = − 9
2
χ(XD).

The Euler characteristic of Hilbert modular surfaces is explicitly computable, for
fundamental discriminants D it is simply χ(XD) = ζQ(√D)(−1).

Note that the weight of the modular form Dθ is non-parallel, while in the lit-
erature almost exclusively modular forms of parallel weight (k, k) appear. The
reason for this can be explained as follows. Teichmüller curves are geodesic for
the Teichmüller metric on Tg, which is the same as the Kobayashi metric. Images
of Teichmüller curves are still geodesic for the Kobayashi metric on the Hilbert
modular surface XD and in fact also on the moduli space of abelian surfaces A2.
On XD, the Kobayashi metric is the supremum of the Poincaré metrics on the two
factors. In each point of the Teichmüller curve this supremum is attained precisely
for the first factor of H2. This is a restatement of the fact that the maximal Higgs
summand in Proposition 3.3 is unique.

The proof of Theorem 7.1 recasts in terms of modular forms the fact that the
Abel-Jacobi map based at a Weierstrass point embeds the Veech surface in its
Jacobian as the vanishing locus of a translate of the theta divisor. Consequently,
the eigenform for real multiplication has a zero at the Weierstrass point (i.e. the
Veech surface belongs to the stratum ΩM2(2)) if and only if the theta divisor has
a tangent in an eigendirection for real multiplication. This is expressed by the right
hand side of (7).

There is an analogous theorem that expresses the Teichmüller curves in the
Prym series as the vanishing locus of a determinantal expression in derivatives of
theta functions [Möl14]. It also yields an expression of the Euler characteristics
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χ(WD(4)) and χ(WD(6)) as a multiple (depending only on D mod 8) of χ(XD).
The proof refines the above argument, using that the Prym-Abel-Jacobi image of
a Veech surface (X,ω) in the Prym series is immersed in Jac(X,ω).

8. Orbifold points and other connections to arithmetic geometry

Orbifold points of Teichmüller curves are, besides cusps and the Euler character-
istic, the last missing piece in determining their topology. Orbifold points provide
an additional automorphism of the Jacobian, besides the real multiplication on
Jac(X,ω). Consequently, orbifold points give points of complex multiplication (in
the general sense, allowing endomorphism rings that are matrix rings). Recall that
by proven versions of the André-Oort conjecture (see [Edi01]) Shimura curves in
Hilbert modular surfaces are characterized by having infinitely many CM points.
On the other hand, a Teichmüller curve is a Shimura curve at most for those gen-
erated by some torus covering Veech surfaces in genus three and four. We will thus
find only finitely many CM points and hence finitely many orbifold points on a
primitive Teichmüller curve.

Orbifold points are loosely connected to billiards. The unfolding construction
(Figure 1) exhibits a Veech surface (X,ω) arising from a dynamically optimal bil-
liard table P as X = ∪g∈GgP for some finite group G generated by reflections. The
index two subgroup G′ ⊂ G that preserves the orientation belongs to the Veech
group of (X,ω). However, if the billiard table has right angles only, this group G′

might just consist of an involution. E.g. for L-shaped billiard tables it gives the
hyperelliptic involution, common to all Veech surfaces in genus two rather than to
special orbifold points. The locus of unfoldings of billiard tables is a real codimen-
sion one submanifold of the Teichmüller curves in this case.

Orbifold points on all but the most recently discovered series of Teichmüller
curves have been determined by Mukamel and by Torres-Teigell and Zachhuber.

Theorem 8.1 ([Muk14], [TZ15], [TZ16]). The orbifold points on the Weierstraß

Teichmüller curve WD are a point of order five on W5 and h̃(−D) points of order
two.

The orbifold points on the Prym Teichmüller curve WD(4) for D > 12 are H2(D)

points of order two and H3(D) points of order three.

Here h̃(−D) are generalized class numbers, e.g. h̃(−D) = h(−4D)/∣o∗−4D ∣ for odd
discriminants D and H2(D) and H3(D) are representation number for D by qua-
dratic forms, with H2(D) = 0 if D is odd. For D ≤ 12 there are a finite number of
exceptional cases with orbifold points. A similar statement also holds for the Prym
Teichmüller curves WD(6), see [TZ16].

We conclude this survey by addressing various aspects that emphasize the arith-
metic nature of Teichmüller curves. They are defined over number fields, since the
existence of the maximal Higgs subbundle L1 implies rigidity ([MV10], [McM09]).
Since maximal Higgs is a numerical condition, the Galois conjugate of a Teich-
müller curve is again a Teichmüller curve. This allows to search for natural integral
models over number rings for Teichmüller curves and to study the primes of bad
reduction of these models. Such models were computed in [BM10a] and many more
in [KM14], providing an interesting conjectural picture of the bad primes.

Since Teichmüller curves are characterized by their uniformization, there is a
natural notion of modular forms for the Veech group. Since the universal covering
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of the map C → XD of a Teichmüller curve to the Hilbert modular surface can
be written as z ↦ (z,ϕ(z)) for some holomorphic map ϕ, there is, besides the
usual automorphy factor (cz +d) also the twisted automorphy factor (cσϕ(z)+dσ)
where σ is a generator of Gal(K/Q). This leads to a theory of twisted modular
forms, studied in [MZ16]. However, since the Veech group of a primitive Teich-
müller curve is not arithmetic there is no theory of Hecke operators on twisted
modular forms. It is an open problem if there is any replacement of the pivotal role
usually played by Hecke eigenforms in this context.

Acknowledgements: Considerable part of the work presented in this survey
was obtained in collaboration. The author thanks his collaborators for the pleasure
to work jointly. The author is grateful to C. Salzmann for her help in the preparation
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[BM10b] I. Bouw and M. Möller. “Teichmüller curves, triangle groups, and Lya-
punov exponents”. In: Ann. of Math. (2) 172.1 (2010), pp. 139–185.
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