Algebraic Geometry II

4. Exercise sheet

Exercise 1:

Let $X = \mathbb{P}^2_k - \{(0:0:1)\}$ with k a field. Determine the cohomology groups $H^p(X, \mathcal{O}_X)$ for p = 0, 1.

Hint: Use the open affine covering $\mathcal{U} = \{D_+(x_0), D_+(x_1)\}.$

Exercise 2:

Let $f: X \to Y$ be an affine morphism of Noetherian, separated schemes. Show that there is a canonical isomorphism

$$H^p(X, \mathcal{F}) = H^p(Y, f_*\mathcal{F})$$

for all quasi-coherent sheaves \mathcal{F} on X and all $p \in \mathbb{Z}_{\geq 0}$.

Exercise 3:

Let $f \in k[x_0, x_1, x_2]$ be a homogeneous polynomial of degree $d \in \mathbb{Z}_{\geq 1}$ over a field k. Let $X = V_+(f)$ be the plane curve in \mathbb{P}^2_k defined by f = 0. Determine the cohomology groups $H^p(X, \mathcal{O}_X)$ for all $p \in \mathbb{Z}_{\geq 0}$.

Hint: If $i: X \to \mathbb{P}^2_k$ is the inclusion, then there is an exact sequence $0 \to \mathcal{I}_X \to \mathcal{O}_{\mathbb{P}^2_k} \to i_*\mathcal{O}_X \to 0$ and an isomorphism $\mathcal{I}_X \cong \mathcal{O}(-d)$.

Exercise 4:

Let X and Y be separated schemes of finite type over a field k. Let \mathcal{F} and \mathcal{G} be two finite type quasi-coherent sheaves on X and Y respectively. Show that there is a canonical isomorphism

$$H^n(X \times_k Y, p_1^* \mathcal{F} \otimes p_2^* \mathcal{G}) = \bigoplus_{p+q=n} H^p(X, \mathcal{F}) \otimes_k H^q(Y, \mathcal{G}).$$

Hint: Use a Čech complex using products of affine opens.