Algebraic Geometry II

3. Exercise sheet

Exercise 1:

Let $n \ge d \ge 0$ be integers. Prove that the functor sending a scheme X to the isomorphism classes of quotients $\mathcal{O}_X^n \twoheadrightarrow \mathcal{E}$ with \mathcal{E} locally free of rank n-d is representable by a scheme $\operatorname{Grass}_{n,d}$ over $\operatorname{Spec}\mathbb{Z}$, called the $\operatorname{Grassmannian}$.

Exercise 2:

Let $n \geq 0$ be an integer.

(i) Prove that the functor $Sch^{op} \rightarrow Sets$ given by

$$X \mapsto \{\mathcal{O}_X^n \xrightarrow{a} \mathcal{O}_X^n \mid a \text{ isomorphism of } \mathcal{O}_X\text{-modules}\}$$

is representable by a scheme, called GL_n , over $Spec\mathbb{Z}$.

(ii) Let \mathcal{E} be a vector bundle of rank n on a scheme S. Prove that the functor $(\operatorname{Sch}_{/S})^{\operatorname{op}} \to \operatorname{Sets}$ given by

$$(f: X \to S) \mapsto \{f^* \mathcal{E} \xrightarrow{a} f^* \mathcal{E} \mid a \text{ isomorphism of } \mathcal{O}_X\text{-modules}\}$$

is representable by a scheme, called $\operatorname{Aut}(\mathcal{E})$, over S, which is locally on S isomorphic to $\operatorname{GL}_n \times S$.

Exercise 3:

Consider a commutative diagram of abelian groups

$$A' \longrightarrow B' \longrightarrow C' \longrightarrow 0$$

$$f_A \downarrow \qquad f_B \downarrow \qquad f_C \downarrow$$

$$0 \longrightarrow A \longrightarrow B \longrightarrow C$$

such that both rows are exact.

- (i) Show that there is a natural map $\delta : \ker(f_C) \longrightarrow \operatorname{coker}(f_A)$ constructed by "diagram chasing".
- (ii) Prove that the induced sequence

$$\ker(f_A) \to \ker(f_B) \to \ker(f_C) \xrightarrow{\delta} \operatorname{coker}(f_A) \to \operatorname{coker}(f_B) \to \operatorname{coker}(f_C)$$

is exact.

Exercise 4:

Let X be a topological space and $\mathcal{U} = \{U_0, \dots, U_n\}$ be a finite open cover such that $U_i = X$ for some $i = 0, \dots, n$. Show that $H^p(\mathcal{U}, \mathcal{F}) = 0$ for all p > 0 and all sheaves of abelian groups \mathcal{F} .

Hint: We may assume i=0. The map $h_p\colon C^p(\mathcal{U},\mathcal{F})\to C^{p-1}(\mathcal{U},\mathcal{F})$ given by $h_p(\sigma)_{i_0,\dots,i_{p-1}}=\sigma_{0,i_0,\dots,i_{p-1}}$ if $i_0\neq 0$ and $h_p(\sigma)_{i_0,\dots,i_{p-1}}=0$ if $i_0=0$ defines a homotopy from the identity to the zero map.