Algebraic Geometry II

2. Exercise sheet

Exercise 1:

Let (X, \mathcal{O}_X) be a ringed space, and let \mathcal{F} be an \mathcal{O}_X -module. The support of \mathcal{F} is defined as

$$\operatorname{Supp}(\mathcal{F}) = \{ x \in X \mid \mathcal{F}_x \neq 0 \}.$$

Assume furthermore that (X, \mathcal{O}_X) is a *locally* ringed space in parts ii), iii), and iv) below.

- i) If \mathcal{F} is of finite type, show that $Supp(\mathcal{F})$ is a closed subset of X.
- ii) Show that

$$\operatorname{Supp}(\mathcal{F}) = \{ x \in X \mid \mathcal{F}(x) \neq 0 \},\$$

where $\mathcal{F}(x) := \mathcal{F}_x \otimes_{\mathcal{O}_{X,x}} \kappa(x)$. Hint: Use Nakayama's lemma.

ii) If \mathcal{G} is another \mathcal{O}_X -module of finite type, show that

$$\operatorname{Supp}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}) = \operatorname{Supp}(\mathcal{F}) \cap \operatorname{Supp}(\mathcal{G}).$$

iii) Let $f:(X',\mathcal{O}_{X'})\to (X,\mathcal{O}_X)$ be a morphism of locally ringed spaces. Show that

$$\operatorname{Supp}(f^*\mathcal{F}) = f^{-1}(\operatorname{Supp}(\mathcal{F})).$$

Exercise 2:

Let (X, \mathcal{O}_X) be a ringed space and let \mathcal{F} be an \mathcal{O}_X -module of finite presentation.

i) Fix an integer $r \geq 0$. Show that

$$Y_r := \{x \in X \mid \mathcal{F}_x \text{ is a free } \mathcal{O}_{X,x} \text{ -module of rank } r\}$$

is an open subset of X and that $\mathcal{F}|_{Y_r}$ is a locally free \mathcal{O}_{Y_r} -module of rank r.

ii) Now let X be an integral scheme and let \mathcal{F} be an \mathcal{O}_X -module of finite presentation. Show that there exists an open dense subset $U \subset X$ and an integer $n \geq 0$ such that $\mathcal{F}|_U \cong \mathcal{O}_U^n$.

Exercise 3:

Let X be a locally noetherian scheme. Show that

$$\{x \in X \mid \mathcal{O}_{X,x} \text{ is reduced}\}$$

is an open subset of X.

Hint: Use that the nilradical of X is an \mathcal{O}_X -module of finite type.

Exercise 4:

Let $f \colon X \to Y$ and $g \colon Y \to Z$ be morphisms of ringed spaces.

- i) Show that the functors $g_* \circ f_*$ and $(g \circ f)_*$ from \mathcal{O}_X -modules to \mathcal{O}_Z -modules are equal.
- ii) Show that the functors $f^* \circ g^*$ and $(g \circ f)^*$ from \mathcal{O}_Z -modules to \mathcal{O}_X -modules are canonically isomorphic.