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These are preliminary notes based on lectures given at the summer school ‘Buildings and affine
Grassmannians’ in Luminy, summer 2019. Comments are highly welcome!

1. Ind-schemes

Ind-schemes provide a suitable language to handle the infinite-dimensional spaces such as the
affine Grassmannians we encounter. Loosely speaking, an ind-scheme is a possibly infinite union
of schemes. The archetypical example is the infinite-dimensional affine space A∞ =

⋃
i≥0 Ai where

Ai ⊂ Ai+1 via the first i coordinates. We explain our conventions and point out a few properties.

Definition 1.1. A strict ind-scheme is a functor X : AffSchop → Sets from the category of affine
schemes which admits a presentation X ' colimi∈IXi as a filtered colimit of schemes where all
transition maps Xi → Xj , i ≤ j are closed immersions. The category of strict ind-schemes IndSch
is the full subcategory of functors AffSchop → Sets whose objects are strict ind-schemes.

Here we regard schemes via the Yoneda embedding as a full subcategory of functors AffSchop →
Sets, and colimits of such functors are computed termwise. All ind-schemes in this survey are strict
ind-schemes in the above sense, and we will usually drop the attribute ‘strict’. Also we identify
AffSchop = Rings with the category of (commutative, unital) rings whenever convenient.

Remark 1.2. Infact many ind-schemes of interest to us such as the affine Grassmannian admit a
presentation X ' colimi∈IXi as in Definition 1.1 where the index set I is countable. These ind-
schemes are called (strict) ℵ0-ind-schemes. Starting from a presentation X = colimi∈IXi with I
countable we can construct a linearly ordered presentation by taking finite unions of the Xi, i ∈ I.

Example 1.3. Let I be a set.

(1) The functor AIZ : AffSchop → Sets given by T 7→ ⊕i∈IΓ(T,OT ) is representable by the ind-
scheme colimJ⊂IAJZ where J ranges over the finite subsets of I ordered by inclusion and AJZ
denotes the affine space of dimension |J |.

(2) Let PIZ : AffSchop → Sets be the functor given by

T 7→ {(L, (si)i∈I)}/ ∼,

where L is a line bundle on T and si ∈ Γ(T,L), i ∈ I are sections which generate L
(cf. [StaPro, 01AM]) and such that si = 0 for almost all i ∈ I. Then the functor PIZ is
representable by the ind-scheme colimJ⊂IPJZ where J ranges over the finite subsets of I
ordered by inclusion and PJZ denotes the projective space of dimension |J |.
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Our definition of ind-schemes agrees with [BD, 7.11.1] except that we do not assume the schemes
in a presentation to be quasi-compact in order to make the category of schemes a full subcategory
of ind-schemes, cf. also Exercise 1.25 below. In contrast with [Zhu, 0.3.4], there is no consideration
of any Grothendieck topology in our definition. The reason is that the quasi-compactness of objects
in AffSch ensures the sheaf condition:

Lemma 1.4. Let X be an ind-scheme. For each scheme T and each fpqc covering (Tj → T )j, the
sequence of sets

HomIndSch(T,X)→
l

j

HomIndSch(Tj , X) ⇒
l

j,j′

HomIndSch(Tj ×T Tj′ , X)

is exact. In particular, every ind-scheme satisfies the sheaf condition for the fpqc topology on AffSch.

Proof. The quasi-compact open subschemes U of T form a filtered system. The resulting map
colimU⊂TU → T is an isomorphism of functors AffSchop → Sets because any map from an affine
scheme into T factors through some U . Using that limits (e.g. equalizers) commute with limits,
we may assume that T = U is quasi-compact. After possibly refining the cover we may assume
that all Tj are quasi-compact (e.g. affine), and that the cover (Tj → T )j is finite. Our claim is
now equivalent to the sheaf condition for the covering T ′ := tjTj → T where both schemes are
quasi-compact.

If X = colimiXi is an ind-scheme, then any map from a quasi-compact scheme into X factors
through some Xi for i >> 0 by Exercise 1.26. Now the lemma follows from the fact that maps
into each scheme Xi satisfy the fpqc sheaf condition [StaPro, 023Q], and that filtered colimits
commute with finite limits such as equalizers [StaPro, 002W]. In this last step, we use that the map
colimiHom(T ′ ×T T ′, Xi)→ Hom(T ′ ×T T ′, X) is injective (even if T ′ ×T T ′ is not quasi-compact)
because Xi → X is a monomorphism. �

Remark 1.5. More generally, the proof above works for colimits of schemes over filtered index cate-
gories (as opposed to index sets as assumed in Definition 1.1) with transition maps being monomor-
phisms. If we drop the condition on the transition maps, then the analogue of Lemma 1.4 is only
true for quasi-separated schemes T . Let us also point out that some of the objects appearing in
geometric Langlands such as the Ran space [Zhu, §3.3] are colimits over non-filtered index categories
(condition [StaPro, 002V (3)] does not hold). It seems not to be useful to include these functors
into the general framework of ind-schemes (e.g. the sheaf property fails).

Remark 1.6. For our purposes it is convenient to work with functors defined on affine schemes
as opposed to all schemes, e.g., for the definition of loop functors in §3.3.1 below. However, if
X is a Zariski sheaf on AffSch (e.g. an ind-scheme by Lemma 1.4), then we also consider the
sheafification XZar of the presheaf T 7→ Hom(T,X) on the big Zariski site of all schemes. The
resulting sheafification map X → XZar induces a bijection X(T ) → XZar(T ) for all affine schemes
T , i.e., X extends uniquely to a Zariski sheaf on the big Zariski site. In particular, if X is an
ind-scheme, then XZar is an fpqc sheaf in view of [StaPro, 03O1] and defines an ind-scheme in the
sense of [EG, 4.2.1].

The following result is used for example in Theorem 3.4 below in proving that the affine Grass-
mannian for general groups is representable by an ind-scheme.

Lemma 1.7. If X → Y is a map of functors AffSchop → Sets, then the following are equivalent:

(1) For all affine schemes T → Y , the fibre product X ×Y T is a scheme.
(2) For all schemes T → Y , the fibre product X ×Y T is a scheme.

In particular, if Y is an ind-scheme and (1) holds, then X is an ind-scheme.

Proof. Assume condition (1), and let T → Y be a scheme. After replacingX → Y by the base change
X ×Y T → T , we may assume T = Y is a scheme. In this case, we have to show that X is a scheme
as well. We claim that X is a Zariski sheaf on AffSch. Indeed, if T → X is an affine scheme, then
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X×Y T is a scheme by (1) and hence a Zariski sheaf. The equality HomY (T,X) = HomT (T,X×Y T )
implies that HomY (-, X) is a sheaf on the small Zariski site of T .

By Remark 1.6, the functor X extends to a Zariski sheaf XZar on the category of all schemes
such that the resulting sheafification map X → XZar induces X(T ) = XZar(T ) for all affine schemes
T . We need to show that XZar → Y is a scheme. Since sheafification commutes with fibre products,
we see that XZar ×Y T = (X ×Y T )Zar = X ×Y T for all affine schemes T → Y . Thus, taking any
affine open cover of Y , we get an open cover of XZar by schemes. As XZar is a Zariski sheaf on all
schemes, it must be a scheme by [GW10, Thm. 8.9]. �

Definition 1.8. A map of set valued functors on the category of affine schemes is called representable
by schemes if one of the equivalent conditions in Lemma 1.7 is satisfied.

Corollary 1.9. If X = colimi∈IXi is an ind-scheme, then for all i ∈ I the inclusion Xi ⊂ X is
representable by a closed immersion.

Proof. Let T → X be an affine scheme. Since I is filtered, we find some j ≥ i such that Xi ×X T =
Xi ×Xj

T which is a closed subscheme of T . �

The category of ind-schemes enjoys some nice categorical properties.

Lemma 1.10. The category of ind-schemes IndSch has the following properties:

(1) The final object is Spec(Z), and the category IndSch is closed under fibre products. In
particular, it admits all finite limits by [StaPro, 002O].

(2) The category IndSch is closed under directed limits with affine transition maps.
(3) The category IndSch admits arbitrary disjoint unions.

Proof. Part (2) is Exercise 1.27. We also refer to Exercises 1.28, 1.29 for infinite products and
colimits. For (3), if (Xj)j∈J is a family of ind-schemes and Xj = colimi∈IjXj,i are presentations,
then we define ⊔

j∈J
Xj

def
= colim(ij)j∈ujIj

( ⊔
j∈J

Xj,ij

)
where the set ujIj is equipped with the product order. One checks that this satisfies the property of
a coproduct in the category of ind-schemes. We also note that the inclusion Sch ⊂ IndSch preserves
disjoint unions. Finally for (1), it is clear that Spec(Z) is the final object of IndSch. We need to
show that IndSch admits fibre products.

Let X → S ← Y be ind-schemes. If X and Y are schemes, we claim that X ×S Y is a scheme
as well. Indeed, by Lemma 1.4 the ind-scheme S is a Zariski sheaf and so is the fibre product
X ×S Y . Covering X and Y by affine open subschemes induces an open covering of X ×S Y . We
reduce to the case where both X and Y are affine. Now if S = colimiSi is any presentation, then
X×S Y = X×Si Y for i >> 0 which is a scheme. In the general case, fix presentations X = colimiXi

and Y = colimjYj by schemes. Since filtered colimits of sets commute with fibre products [StaPro,
002W], we have as functors

X ×S Y = colimi,jXi ×S Yj ,
with transition maps being closed immersions. As each functor Xi ×S Yj is a scheme, we see that
X ×S Y is an ind-scheme. �

Every ind-scheme has a well behaved underlying topological space.

Definition 1.11. If X is an ind-scheme, then its underlying topological space is the set

|X| def
= colimkX(k)

where the colimit is taken over the category of fields k. The set |X| is equipped with the topology
defined by subfunctors which are representable by open immersions.

If X is a scheme, then |X| is the usual underlying topological space, cf. [StaPro, 01J9]. The topo-
logical space of an ind-scheme is nothing but the union of the topological spaces in any presentation:
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Lemma 1.12. Let X = colimiXi be an ind-scheme. Then the canonical map colimi|Xi| → |X| is
a homeomorphism where the source carries the colimit topology.

Proof. This map is clearly continuous and bijective. We show that it is open. Let U ′ ⊂ colimi|Xi|
be an open subset, i.e., each U ′ ∩ |Xi| ⊂ |Xi| is open. We define Ui ⊂ Xi to be the corresponding
open subscheme. For each j ≥ i, we have Ui = Xi ∩ Uj as subfunctors of X. Hence, the collection
(Ui)i forms a filtered system with closed transition morphisms, and we let U := colimiUi be the
corresponding ind-scheme. To check that U ⊂ X is representable by an open immersion, we note

U ∩Xi = colimj≥iUj ∩Xi = Ui.

as subfunctors of X. �

Definition 1.13. Let X be an ind-scheme. A sub-ind-scheme (resp. closed/open sub-ind-scheme)
of X is a subfunctor Z ⊂ X which is representable by an immersion (resp. closed/open immersion).
If Z is a scheme, it is called a (closed/open) subscheme of X.

Lemma 1.14. Let X = colimiXi be an ind-scheme.

(1) The map U 7→ |U | induces a bijection between open sub-ind-schemes of X and open subsets
of |X|.

(2) For a closed sub-ind-scheme Z ⊂ X, let IZ,i ⊂ OXi
denote the quasi-coherent ideal defined

by Z ∩Xi ⊂ Xi. The map Z 7→ {IZ,i}i induces a bijection between closed sub-ind-schemes
of X and families {Ii}i of quasi-coherent ideals Ii ⊂ OXi such that for all j ≥ i one has

Ij = ker
(
OXj → ti,j,∗OXi → ti,j,∗OXi/Ii

)
,

where ti,j : Xi → Xj denote the transition maps.

Proof. Part (1) is immediate from the proof of Lemma 1.12. Part (2) is left to the reader. �

We now discuss some properties of ind-schemes.

Definition 1.15. Let P be a local property of schemes [StaPro, 01OO]. An ind-scheme X is said
to have P if there exists a presentation X = colimiXi where each Xi has P.

Here are some examples of local properties of schemes we have in mind: reduced, locally Noe-
therian, Jacobson, normal. We need a consistency check that for local properties our convention is
unambiguous:

Lemma 1.16. A scheme X has P if and only if X viewed as an ind-scheme has P.

Proof. As P is a local property, we reduce to the case where X is affine. In this case, if X = colimiXi

is any presentation, then X = Xi for i >> 0 and the lemma is clear. �

Clearly, this lemma fails for global properties: for example consider the property ‘quasi-compact’
and a countably infinite disjoint union of points. As an example we discuss the property of being
reduced.

Lemma 1.17. For every ind-scheme X, there exists a unique reduced ind-scheme Xred together with
a monomorphism Xred ⊂ X such that for all reduced affine schemes T one has Xred(T ) = X(T ).

Proof. Uniqueness is clear. For existence, choose a presentation X = colimiXi. We define Xred =
colimiXi,red which is a reduced ind-scheme, and which is equipped with an inclusion Xred ⊂ X. If
T is a reduced affine scheme, then any map T → X factors through some Xi, i >> 0 and hence
through Xi,red. �

Note that the inclusion Xred ⊂ X is not representable by a closed immersion in general, i.e.,
Xred ⊂ X is in general not a closed sub-ind-scheme in the sense of Definition 1.13. As a partial
remedy see also Exercise 1.30.
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Remark 1.18 (Relation with formal schemes). The category of formal schemes FSch as defined in
[StaPro, 0AIM] (with property (2) replaced by ‘representable by schemes and an open immersion’)
embeds as a full subcategory into the category of all functors AffSchop → Sets. We denote by
FSch′ the full subcategory of strict ind-schemes X such that Xred is a scheme. Then there is a full
embedding FSch′ ⊂ FSch which is an equivalence on the subcategories of objects whose underlying
topological space is qcqs: First let X be an ind-scheme such that Xred is an affine scheme. If
X = colimiXi is any presentation, then Xi,red = Xred for i >> 0 so that each Xi is affine by
Chevalley’s criterion [GW10, Lem. 12.38]. Hence, X is an affine formal scheme (resp. affine formal
algebraic space) in the sense of [StaPro, 0AI7]. Now if X is any object in FSch′, then any affine
open cover of Xred induces an open cover of X by affine formal schemes. This shows FSch′ ⊂ FSch.
Finally, any qcqs formal scheme is an ind-scheme by [StaPro, 0AJE]. Let us also note that for ind-
schemes X in FSch′ the inclusion Xred ⊂ X is representable by a closed immersion, i.e., Xred is a
closed subscheme of X.

For morphisms of ind-schemes, we make a similar definition. First note that any morphism of
ind-schemes f : X → Y can be written as a system of morphism of schemes: for presentations
X = colimi∈IXi, Y = colimj∈JYj we get a new presentation X = colim(i,j)∈I×JXi ∩ f−1(Yj) for
the product order on I × J . Hence, after possibly changing the presentation of X the morphism f
can be written as a pro-ind-system of morphisms of schemes fi,j : Xi → Yj , i ∈ I, j ∈ J for suitable
filtered index sets.

Definition 1.19. Let P be a property of morphism of schemes which is stable under base change
and Zariski local on the target. A morphism f : X → Y of ind-schemes is said to be ind-P (resp. to
be P) if there exist a presentation fi,j : Xi → Yj where each morphism is P (resp. if f is representable
by schemes and is P).

We note that the property ind-P is stable under base change (by assumption on P). If P is
a property which is stable under composition with closed immersions (e.g., affine, proper, closed
immersion etc.), then ind-P is also stable under composition. In this case, if f : X → Y is ind-
P, then there is a single1 filtered index set I and a presentation fi : Xi → Yi, i ∈ I where each
morphism has P. Also note that by Exercise 1.33 below a map of ind-schemes is representable in
algebraic spaces if and only if it is representable in schemes (so there is no need to distinguish the
two notions). Further, if a map of schemes is P, then it is clearly ind-P. Conversely, we have:

Lemma 1.20. A quasi-compact map of schemes which is ind-P is also P.

Proof. As P is local on the target, we reduce to the case where the target is affine and hence
quasi-compact. Then the source is a quasi-compact scheme as well so that any presentation gets
eventually constant by Exercise 1.26 below. �

The notions ‘quasi-compact’ and ‘ind-(quasi-compact)’ obviously differ. Here are some examples
of properties of morphisms we have in mind: affine, (locally) of finite type, closed immersion, proper,
smooth. For further properties which are stable under base change and local on the target we refer
to [StaPro, 02WF, 02WH].

1.1. Base change. The preceding discussion translates to strict ind-schemes over any fixed base
scheme S as follows. Let AffSchS be the category of affine schemes T = Spec(R)→ S over the base
scheme. Then the category IndSchS of strict ind-schemes over S (i.e., the slice category) identifies
with the full subcategory of functors AffSchop

S → Sets admitting a presentation X ' colimi∈IXi

by S-schemes where transition morphisms are closed immersions over S. Note that AffSchS has
fibre products (but products only if S is separated) so that the notion of fpqc topology on AffSchS
makes sense. If S = Spec(R) is affine, we identify AffSchop

S = AlgR with the category of R-algebras
whenever convenient.

1Take the product I × J in the discussion above Definition 1.19.
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1.2. Ind-algebraic spaces. More generally, Definition 1.1 extends to define the category IndAlgSp
of strict ind-algebraic spaces. The proof of Lemma 1.4 works the same way by invoking the theorem
of Gabber [StaPro, 0APL] that algebraic spaces are fpqc sheaves. In Lemma 1.7 we work with the
étale topology as opposed to the Zariski topology. The rest of the preceding discussion extends
literally. In this way, the inclusion Sch ⊂ IndSch extends to an inclusion of full subcategories
AlgSp ⊂ IndAlgSp.

The following result is useful for proving that the projection from the affine flag variety to the
affine Grassmannian is representable.

Lemma 1.21. One has AlgSp ∩ IndSch = Sch, i.e., if a functor X : AffSchop → Sets is an ind-
scheme and an algebraic space, then X is a scheme.

Proof. Since the question is Zariski local on X, we may assume that X is quasi-compact, cf. [StaPro,
04NN]. Then there exists an étale surjective map T → X where T is an affine scheme. Writing
X = colimiXi as a filtered colimit of schemes, the map T → X factors as T → Xi ⊂ X for some
i >> 0. This implies that Xi ⊂ X is a surjection of étale sheaves, and hence Xi = X. �

1.3. Prestacks. It is sometimes useful to work with groupoid valued functors as opposed to set
valued functors. This is formalized by the notion of prestacks (in preparation).

1.4. Some topology of ind-schemes. We give a condition for the underlying reduced locus of an
ind-scheme to be a scheme, cf. Corollary 1.24 below.

We start with some point set topology. Recall that a topological space X is called Jacobson
if its subset X0 ⊂ X of closed points is very dense, i.e., for every closed subset Z ⊂ X one has
Z ∩X0 = Z, cf. [StaPro, 01P1] and [GW10, 3.34].

Lemma 1.22. Let X0 ⊂ X1 ⊂ . . . be a linearly ordered sequence of Jacobson spaces with transition
maps being closed embeddings. If the colimit X = colimi≥0Xi is quasi-compact, then this sequence
is stationary.

Proof. Assume that the sequence X0 ⊂ X1 ⊂ . . . is strictly increasing. By assumption the subset of
closed points in each Xi is very dense. In particular, every non-empty locally closed subset of Xi

contains a closed point by [GW10, 3.34]. For each i ≥ 1, we pick a closed point xi ∈ Xi\Xi−1 and
let Y = {x1, x2 . . .} be their union. Now if Z ⊂ Y is any subset, then each Z ∩Xi is finite and hence
closed in Xi. This shows that Y is closed in X and that its subspace topology is discrete. However, if
X is quasi-compact, the closed subspace Y must be quasi-compact as well. As Y carries the discrete
topology, it must be finite. This is a contradiction and shows that the sequence X0 ⊂ X1 ⊂ . . . is
stationary. �

A scheme X is called Jacobson if its underlying topological space |X| is Jacobson. Examples
include all schemes which are locally of finite type over a field or the integers, cf. [GW10, 10.15].
Recall the underlying topological space of an ind-scheme, cf. Definition 1.11.

Lemma 1.23. Let X be ind-scheme which is Jacobson, i.e., there exists a presentation by Jacobson
schemes. Then the topological space |X| is Jacobson, and every subscheme of X is Jacobson as well.

Proof. This is immediate from the definition of the colimit topology (cf. Lemma 1.12) using that the
subset of closed points |X|0 ⊂ |X| is the union of all subsets of closed points in any presentation.
To see that every subscheme of X is Jacobson as well we note that every open/closed subset of
a Jacobson space is Jacobson as well: this follows from the different characterizations in [GW10,
3.34]. �

Corollary 1.24. If X is a Jacobson ℵ0-ind-scheme whose underlying topological space |X| is quasi-
compact, then Xred is a scheme.

Proof. Let ∅ 6= X0 ⊂ X1 ⊂ . . . be a linearly ordered presentation of X by schemes which are
necessarily Jacobson by Lemma 1.23. Then the sequence on topological spaces |X0| ⊂ |X1| ⊂ . . . is
stationary by Lemma 1.22. Hence, there exists i >> 0 such that for all j ≥ i the map Xi ⊂ Xj is a
Nil thickening so that Xred = Xi,red is a scheme. �
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1.5. Exercises. The following exercises deal with general properties of ind-schemes. More examples
are given in the following sections.

Exercise 1.25. Show that any ind-scheme can be written as a filtered colimit of quasi-compact
schemes with transition maps being monomorphisms. Also give an example of a scheme which,
when regarded as a strict ind-scheme, is not ind-(quasi-compact).

Exercise 1.26. Let X = colimi∈IXi be an ind-scheme. Show that for any scheme T the canonical
map colimiHom(T,Xi) → Hom(T,X) is injective, and that it is surjective (hence bijective) if T is
quasi-compact. Deduce the following statements:

(1) If Y = colimj∈JYj is a (not necessarily filtered) colimit of quasi-compact schemes, then
Hom(Y,X) = limj colimiHom(Yj , Xi).

(2) If X is a quasi-compact scheme, then X = Xi for some i >> 0.

Exercise 1.27. Let X = limiXi be a directed inverse limit of ind-schemes where all transition maps
are representable by affine morphisms. Show that for each 0 ∈ I the canonical map f : X → X0 is
representable by an affine morphism. Deduce that X is an ind-scheme.

Exercise 1.28. Let (Xi)i∈I be a (possibly infinite) family of ind-affine ind-schemes. Show that the
product ui∈IXi is representable by an ind-affine ind-scheme as well.

Exercise 1.29. Let (Xi)i∈I be a filtered system of ind-(quasi-compact) ind-schemes with transition
maps being ind-(closed immersions). Show that the colimit colimi∈I Xi is representable by an ind-
scheme.

Exercise 1.30. Let X be an ind-scheme. Show that the inclusion Xred ⊂ X from the underlying
reduced ind-scheme is representable by objects in FSch′ (cf. Remark 1.18), i.e., for any scheme
T → X the fibre product Xred ×X T is an object in FSch′. Give an example of an ind-scheme X
where the inclusion Xred ⊂ X is not representable by a closed immersion.

Exercise 1.31. LetX be an ind-scheme over a scheme S. Show that the diagonal ∆: X → X×SX is
representable by an immersion. Deduce that X → S is ind-separated if and only if ∆ is representable
by a closed immersion. In this case we call X → S separated.

Exercise 1.32. Let X be a scheme. Let (Ei)i∈I be a family of finite locally free OX -modules, and
let E := ⊕i∈IEi which is a quasi-coherent OX -module. Show that the following functor

AffSchop
X → Sets, T 7→ Γ(T, E|T )

is representable by an ind-scheme over X.

Exercise 1.33. Show that a map of ind-schemes is representable by algebraic spaces if and only if
it is representable by schemes.

The following exercises illustrate that formal smoothness is a weak notion for ind-schemes.

Exercise 1.34 (Communicated by M. Rapoport). Let k be an algebraically closed field. Let x, y
denote the coordinates on the affine plane A2

k. For [a : b] ∈ P1(k), let f[a:b] := ax+by ∈ k[x, y] which

is well-defined up to a non-zero scalar. For each finite subset S ⊂ P1(k), we define the polynomial
fS := u[a:b]∈Sfa,b in k[x, y]. We get a well-defined closed subscheme VS := {fS = 0} of A2

k.

(1) Show that X = colimSVS is a reduced ind-scheme of ind-(finite type) which is not ind-
smooth over k. Here S ranges over finite subsets of P1(k) ordered by inclusion.

(2) Show that X is formally smooth, i.e., that for each k-algebra A and each ideal I ⊂ A, I2 = 0
the canonical map X(A)→ X(A/I) is surjective.

What properties has the k-algebra limS k[x, y]/(fS)?

Exercise 1.35. For a ring R denote by R[$]× the units in the polynomial ring. Show that the
functor

X : Rings→ Sets, R 7→ R[$]×

is representable by an ind-scheme of ind-(finite type) over Spec(Z) which is formally smooth and
non-reduced.
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2. The affine Grassmannian for GLn

In this section we give an explicit account to the affine Grassmannian for the linear group. We
prefer to explain the theory over Z. Other base schemes such as the spectra of fields are obtained
by base change.

For any ring R, we denote by R[[$]] the ring of formal power series with coefficients in R, and by
R(($)) = R[[$]][$−1] its overring of Laurent series. Let n ≥ 1 be an integer.

Definition 2.1. The affine Grassmannian Gr = GrGLn
is the functor Rings→ Sets which associates

to a ring R the set of finite locally free R[[$]]-submodules Λ ⊂ R(($))n such that Λ[$−1] = R(($))n.

For any field k, the points Gr(k) parametrize k[[$]]-lattices inside the vector space k(($))n, and
we think about Gr as the moduli space of such lattices. We denote by Λ0 := Z[[$]]n ∈ Gr(Z) the
base lattice. Also note that for every ring R the (abstract) group GLn(R(($))) acts on Gr(R).

Let us now see why Gr defines an ind-scheme. For integers a, b ∈ Z, a ≤ b, we consider the
subfunctor

Gr[a,b](R)
def
=
{

Λ ∈ Gr(R) | $bΛ0,R ⊂ Λ ⊂ $aΛ0,R

}
,

where Λ0,R := R[[$]]n. Then Gr[a,b] ⊂ Gr, a ≤ b defines a filtered system of subfunctors. As
every finite locally free module over any ring is finitely generated, this system is exhaustive, i.e., as
functors

Gr = colima≤bGr[a,b].

The starting point is the following theorem.

Theorem 2.2. For each a, b ∈ Z, a ≤ b, the map Gr[a,b] → Spec(Z) is representable by a proper
scheme. In particular, Gr is an ind-proper ind-scheme over Spec(Z).

Proof. If each Gr[a,b] → Spec(Z) is proper, then all transition maps are proper monomorphisms,
and hence closed immersions, cf. [StaPro, 04XV]. In this case Gr defines an ind-scheme in the sense
of Definition 1.1 which is ind-proper.

For any finite free Z-module M , the classical Grassmannian

Grass(M)(R)
def
=
{
N ⊂M ⊗Z R | (M ⊗Z R)/N finite locally free R-module

}
,

is representable by a smooth proper scheme over Z, cf. [GW10, §8]. It is the finite disjoint union
over 0 ≤ k ≤ rank(M) of classical Grassmannians Grass(k,M) of rank dim(M)− k quotients.

For each a ≤ b, take M[a,b] := $aΛ0/$
bΛ0 ' Zn(b−a). Note that M[a,b] ⊗Z R = $aΛ0,R/$

bΛ0,R.

We claim that the map Gr[a,b] → Grass
(
M[a,b]

)
given on R-points by

Λ 7→ Λ/$bΛ0,R

is well-defined and representable by a closed immersion. The image are the $-stable subspaces in
Grass

(
M[a,b]

)
.

To check that the map is well-defined we need to show that the R-module $aΛ0,R/Λ is finite
locally free. It is clearly finite. After localizing on R, we may assume by Exercise 2.14 that
Λ is a free R[[$]]-module. Then R(($))n/Λ is a free R-module because Λ[$−1] = R(($))n and

Λ[$−1]/Λ
'← ⊕i≥1$

−iRn. It is now immediate that $aΛ0,R/Λ is locally free as well.
Next consider the subfunctor of $-stable subspaces

Grass$
(
M[a,b]

)
(R)

def
=
{
N ∈ Grass

(
M[a,b]

)
(R) | $ ·N ⊂ N

}
where we view $ as a Z-linear nilpotent operator on M[a,b]. This defines a closed subfunctor of

Grass
(
M[a,b]

)
. Explicitly, if (e1, . . . , en) denotes the standard Z[[$]]-basis of Λ0, then in the induced

Z-basis

(2.1) ($ae1, $
a+1e1, . . . , $

b−1e1, $
ae2, . . .)

of M[a,b] the nilpotent operator $ has n Jordan blocks of length (b−a). Now covering Grass
(
M[a,b]

)
by open affine subsets (e.g. as in [GW10, §8]) one obtains explicit equations.
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Clearly, the map Gr[a,b] → Grass
(
M[a,b]

)
factors through this subfunctor, and we claim

(2.2) Gr[a,b]
'−→ Grass$

(
M[a,b]

)
, Λ 7−→ Λ/$bΛ0,R,

which finishes the proof. It is clear that (2.2) is injective on R-points. For the surjectivity, let
N ∈ Grass$

(
M[a,b]

)
(R) and define

Λ := ker
(
$aΛ0,R → $aΛ0,R/$

bΛ0,R = M[a,b] ⊗Z R→ (M[a,b] ⊗Z R)/N
)
.

Since $bΛ0,R ⊂ Λ ⊂ $aΛ0,R by definition, it is clear that Λ[$−1] = R(($))n. We need to check
that Λ is a finite locally free R[[$]]-module. There are (at least) two different proofs [Go, Def. 2.8,
Lem. 2.11] and [Zhu, Lem. 1.1.5]. We follow the latter argument. Write R as an increasing union
of finitely generated Z-subalgebras. Since Grass$

(
M[a,b]

)
→ Spec(Z) is of finite type, it commutes

with filtered colimits of rings [StaPro, 01ZC] and hence N is already defined over some finitely
generated Z-algebra. In order to prove the surjectivity of (2.2), we may therefore assume that R is
Noetherian. In this case, the map R[$]→ R[[$]] is flat2. Hence, the R[$]-module

(2.3) Λf := ker
(
$aR[$]n → $aR[$]n/$bR[$]n = M[a,b] ⊗Z R→ (M[a,b] ⊗Z R)/N

)
.

satisfies Λf⊗R[$]R[[$]] = Λ and it is enough to show that Λf is finite locally free over R[$]. We may
assume that R is a local ring. Using the flatness of R ⊂ R[$] and some form of Nakayama’s Lemma
[StaPro, 00MH] it is enough to show that Λf ⊗R R/m is finite locally free. Since (M[a,b] ⊗Z R)/N
is R-flat, we see that Λf ⊗R R/m is an (R/m)[$]-submodule of $a(R/m)[$]n and therefore $-
torsionfree. However, the ring (R/m)[$] is a principal ideal domain which implies that Λf ⊗R R/m
is finite free. �

As a corollary we obtain a special case of the Beauville-Laszlo gluing theorem [BL95].

Corollary 2.3. For any ring R, the map Λf 7→ Λf ⊗R[$]R[[$]] identifies the set of finite locally free

R[$]-submodules Λf ⊂ R[$,$−1]n such that Λf [$
−1] = R[$,$−1]n with the set Gr(R).

Proof. For a ≤ b in Z, the set of those Λf with $bR[$]n ⊂ Λf ⊂ $aR[$]n is identified similarly
to (2.2) with Grass$

(
M[a,b]

)
(R): again injectivity is immediate and surjectivity follows from (2.3).

This implies the corollary. �

2.1. The standard open cover. We now construct an ind-affine open cover of Gr = GrGLn which
is induced from the standard open affine covering of classical Grassmannians as in [GW10, §8]. This
gives a method to write down local equations for each Gr[a,b].

For each µ = (µ1, . . . , µn) ∈ Z, denote by $µ the diagonal matrix diag($µ1 , . . . , $µn) in
GLn(Z(($))). For a ring R, let Λ−µ,R := $µ · ($−1R[$−1]n) considered as an R[$−1]-submodule of

R(($))n. We define the subfunctor

(2.4) Uµ(R)
def
=
{

Λ ∈ Gr(R) | Λ−µ,R ⊕ Λ
'−→ R(($))n as R-modules

}
.

For µ = 0, the subfunctor U0 contains the base lattice Λ0 = Z[[$]]n. For general µ ∈ Zn, each Uµ
is the $µ translate of U0 under the action of GLn(Z(($))) on Gr. Loosely speaking, the next result
means that Gr is “homogenously” covered by open sub-ind-schemes isomorphic to U0.

Proposition 2.4. There is an ind-affine open covering

(2.5) Gr =
⋃
µ∈Zn

Uµ.

More precisely, the inclusion Uµ ⊂ Gr is representable by a quasi-compact open immersion, each Uµ
is an ind-affine ind-scheme, and their union covers Gr.

2This fails for general non-Noetherian rings [StaPro, 0ALC].

9



Proof. The idea is that the intersections Uµ ∩Gr[a,b] are the pullback of the standard open covering
of the classical Grassmannian under (2.2):

Consider the standard basis of M[a,b] := $aZ[[$]]n/$bZ[[$]] ' Zn(b−a) given by B = ($iej)i,j
for i = a, . . . , b− 1, j = 1, . . . , n ordered as in (2.1). For every subset J ⊂ B, let 〈J〉 ⊂M[a,b] be the
free Z-submodule generated by the elements in J . Then the subfunctor

VJ
def
=
{
N ∈ Grass(M[a,b]) | N ⊕ 〈J〉 = M[a,b]

}
defines an open affine subscheme of (a connected component of) Grass(M[a,b]) isomorphic to some
affine space [GW10, Cor. 8.15].

For µ = (µ1, . . . , µn) in [a, b]n ∩ Zn, we let J(µ) ⊂ B be the subset given by ($iej)i,j for
i = a, . . . , µj − 1, j = 1, . . . , n. Then (2.2) gives an isomorphism

(2.6) Uµ ∩Gr[a,b]
'−→ VJ(µ) ∩Grass$

(
M[a,b]

)
.

This already implies that the inclusion Uµ ⊂ Gr is representable by a qc open immersion. Further,
the target of (2.6) is a closed subscheme of VJ(µ) and therefore affine. This shows that each Uµ =
colima≤bUµ ∩Gr[a,b] is ind-affine. To show that the family (Uµ)µ is covering, we need to show

Grass$
(
M[a,b]

)
⊂
⋃
µ

VJ(µ)

where µ runs through [a, b]n ∩ Zn. This is a topological question, and by Definition 1.11 it suffices
to check this on k-points for all fields k. After translation by $−a we may assume (for simplicity of
notation) that a = 0. Thus, given a $-stable k-vector subspace N ⊂M[a,b]⊗Z k = k[[$]]n/$bk[[$]]n

we have to show that there exists some µ ∈ [0, b]n ∩ Zn such that N ⊕ 〈J(µ)〉 = k[[$]]n/$bk[[$]]n.
We start by choosing a subset J0 ⊂ {1, . . . , n} such that 〈ej ; j ∈ J0〉 is a complement for N +
$k[[$]]n inside k[[$]]n/$k[[$]]n. Now the $-stability of N + $2k[[$]]n implies that there exists
some subset of indices J1 ⊂ J0 such that 〈(ej)j∈J0 , ($ej)j∈J1〉 is a complement for N + $2k[[$]]n

inside k[[$]]n/$2k[[$]]n. In this way, we find successively J0 ⊃ J1 ⊃ J2 ⊃ . . . ⊃ Jb−1 such that
〈$iej ; j ∈ Ji〉i=0,...,b−1 is a complement for N in k[[$]]n/$bk[[$]]n. This complement is the span of

J(µ) for µ = (µ1, . . . , µn) with µj ∈ [0, b] being the number of subset Ji, i = 0, . . . , b− 1 such that
j ∈ Ji. �

For an element µ ∈ Zn, µ = (µ1, . . . , µn) we denote the sum over all coordinates by

(2.7) |µ| = µ1 + . . .+ µn.

Corollary 2.5. For λ, µ ∈ Zn, the intersection Uµ ∩ Uλ is non-empty if and only if |µ| = |λ|. In
this case, all fibers of Uµ ∩ Uλ → Spec(Z) are non-empty.

Proof. If µ ∈ [a, b]n∩Zn, then (2.6) shows that Uµ∩Gr[a,b] is contained in the connected component of

Grass
(
M[a,b]

)
parametrizing rank |µ|−na quotients. Thus, the intersection Uµ∩Uλ is non-empty only

if |µ| = |λ|. Conversely, assume r := |µ| = |λ|. Choose a ≤ b in Z such that λ, µ ∈ [a, b]n∩Zn. Then
the standard open subsets VJ(µ) and VJ(λ) are contained in the connected component of Grass

(
M[a,b]

)
parametrizing rank r−na quotients. Each connected component has geometrically irreducible fibers
over Spec(Z). In particular, for every algebraically closed field k the intersection VJ(µ)(k)∩VJ(µ)(k)
is non-empty. We need to show that this intersection contains a $-stable subspace. However, as |a|
grows the dimension of M[a,b] ⊗Z k grows as well whereas the number of equations imposed by the
$-stability stays constant. Thus for |a| >> 0 the intersection VJ(µ)(k) ∩ VJ(µ)(k) is non-empty. �

2.2. Local equations. The open cover (2.5) can be used to give explicit local equations for the
affine Grassmannian. Before doing so it is convenient to give a group theoretical description of the
open sub-ind-scheme U0 ⊂ GrGLn .

Definition 2.6. The functor L−−GLn : Rings → Groups is given on a ring R by the kernel of the
map GLn(R[$−1])→ GLn(R), $−1 7→ 0.
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Lemma 2.7. The map L−−GLn → Gr of functors given on a ring R by g 7→ g · Λ0,R induces an
isomorphism L−−GLn ' U0.

Proof. This is proven in [Fal03, Lem. 2] (see also [dHL18, 3.8.4]): We may view g ∈ L−−GLn(R)
as an R(($))-linear automorphism of R(($))n which preserves Λ−0,R. From Λ−0,R ⊕ Λ0,R = R(($))n

we obtain Λ−0,R ⊕ gΛ0,R = R(($))n, i.e., gΛ0,R ∈ U0(R). Hence, we get a map L−−GLn → U0

which is a monomorphism. To see that this is also surjective on R-points, let Λ ∈ U0(R) so
that Λ−0,R ⊕ Λ = R(($))n. Let (e1, . . . , en) be the standard basis of R(($))n. We write each basis

vector as ei = hi + fi with hi ∈ Λ−0,R = $−1R[$−1]n and fi ∈ Λ viewed as column vectors. Let

h = (h1, . . . , hn) viewed as n × n-matrix with coefficients in $−1R[$−1]n, and define g := 1 − h.
Then gei = ei − hi = fi ∈ Λ which shows gΛ0,R ⊂ Λ. One checks that gΛ0,R = Λ, i.e., that the fi
generate Λ as an R[[$]]-module. �

Example 2.8. Let n = 1. If R is any ring, the units in R[$−1] are those polynomials g =
a0 +a1$

−1 + . . . with a0 invertible and ai, i ≥ 1 nilpotent. Hence, L−−GL1(R) are such polynomials
with a0 = 1 and ai, i ≥ 1 nilpotent. This gives an isomorphism of ind-schemes

L−−GL1 ' colimi≥0Spec
(
Z[T1, . . . , Ti]/(T

i
1, . . . , T

i
i )
)

by sending an invertible polynomial g = 1 + a1$
−1 + a2$

−2 + . . . to its vector of coefficients
(a1, a2, . . .). In particular, L−−GL1 is non-reduced and (L−−GL1)red = Spec(Z) for its underlying
reduced ind-scheme.

Each element g ∈ L−−GLn(R) can be written as g = 1 +A1$
−1 +A2$

−2 + . . . with Ai ∈ Rn×n.
The index of the highest non-vanishing coefficient is called the pole order.

Corollary 2.9. For each a, b ∈ Z, a ≤ b, the closed subscheme U0 ∩ Gr[a,b] of U0 maps under

Lemma 2.7 isomorphically onto the closed subscheme of L−−GLn parametrizing for a ring R those
elements g ∈ L−−GLn(R) such that the pole order of g is ≤ |a| and the pole order of g−1 is ≤ |b|.

Proof. We have gΛ0,R ⊂ $aΛ0,R if and only if the pole order of g is ≤ |a|. Likewise, one has
$bΛ0,R ⊂ gΛ0,R if and only if g−1Λ0,R ⊂ $−bΛ0,R. �

Example 2.10. The scheme U0 ∩Gr[−1,1] parametrizes those matrices A ∈ Rn×n which satisfy the
equation

(1 +$−1A) · (1 +$−1B) = 1 ⇐⇒ A+B = 0, AB = 0

for some B ∈ Rn×n. This is equivalent to the single equation A2 = 0. For n = 2, we see that
U0 ∩ Gr[−1,1] is non-reduced with underlying reduced ind-scheme isomorphic to the singular cone

{xy + z2 = 0} inside A3
Z.

As the preceding discussion shows the affine Grassmannian Gr = GrGLn is highly non-reduced.
Let us denote by L−−SLn the subfunctor of L−−GLn given by matrices with determinant equal 1.
The following theorem is proven in [BL94, Prop. 6.1] over C and in [Fal03, Thm. 8] over Z:

Theorem 2.11. The isomorphism L−−GLn ' U0 from Lemma 2.7 restricts to an isomorphism
L−−SLn ' U0,red on reduced ind-schemes.

2.3. Connected components. The $-valuation of the determinant defines a discrete invariant
of the affine Grassmannian Gr = GrGLn and decomposes the space into connected components as
follows. The determinant induces a morphism

(2.8) GrGLn
→ GrGL1

,

given on R-points by Λ 7→ detR[[$]](Λ), i.e., its highest exterior power. Combining Proposition 2.4
with Example 2.8 we get a disjoint union into connected components

GrGL1 =
⊔
d∈Z

Gr
(d)
GL1

,
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where the underlying reduced ind-scheme of each Gr
(d)
GL1
' L−−GL1 is equal Spec(Z). Taking the

preimage of these connected components under (2.8) gives a disjoint union

GrGLn =
⊔
d∈Z

Gr
(d)
GLn

,

i.e., Gr
(d)
GLn

is the locus where the $-valuation of the determinant is equal to d.

Lemma 2.12. For each d ∈ Z, the ind-scheme Gr
(d)
GLn

→ Spec(Z) has geometrically connected
fibers, and the open cover (2.5) restricts to an open cover

(2.9) Gr
(d)
GLn

=
⋃
µ

Uµ

parametrized by those µ ∈ Zn with |µ| = d, see (2.7) for notation.

Proof. For any ring R, any R(($))-linear automorphism g of R(($))n and any lattice Λ ∈ Gr(R), we
have

(2.10) detR[[$]]

(
gΛ
)

= det(g) · detR[[$]]

(
Λ
)
.

Further, if R is reduced and g ∈ L−−GLn(R), then det(g) = 1 by Example 2.8. This shows that
the image of each Uµ under (2.8) is contained in a single connected component of GrGL1

. Hence,
the covering (2.9) is immediate from (2.10) and Proposition 2.4. By Corollary 2.5, the intersection
Uµ ∩ Uλ → Spec(Z) is fiberwise non-empty for any two λ, µ ∈ Zn with |µ| = |λ| = d. Since
Uµ ' U0 ' L−−GLn by Lemma 2.7, it remains to show that L−−GLn → Spec(Z) is geometrically
connected. Let k be any field. If g ∈ L−−GLn(k) viewed as a functions of $−1, then the map
pg : A1

k → L−−GLn,k, x 7→ g(x ·$−1) is well-defined and satisfies pg(0) = 1 and pg(1) = g. Since
A1
k is geometrically connected, the map L−−GLn → Spec(Z) has geometrically connected fibers as

well. �

2.4. The Plücker embedding. The proof of Theorem 2.2 also shows that Gr = GrGLn
is naturally

equipped with an ample line bundle as follows.
Let BGm : Rings → Gpds be the groupoid valued functor given on a ring R by the groupoid of

line bundles on R, i.e., BGm is the classifying space of the multiplicative group Gm = GL1. One
checks that giving a map X → BGm of functors where X = colimiXi is an ind-scheme (or any
colimit of schemes) is the same as giving a system of line bundles Xi compatible with pullback along
the transitions maps.

In the case of the affine Grassmannian, we have the determinant line bundle

O(1) : Gr→ BGm, Λ 7→ detR
(
$aΛ0,R/Λ

)
,

which is a well-defined map independently of the choice of a >> 0. This line bundle is the pullback
of the tautological line on the infinite dimensional projective space P∞Z = colimi≥0PiZ under the
Plücker embedding.

2.5. Base change. The affine Grassmannian over any base scheme (e.g. over the spectrum of a
field) is obtained by base change. The following result is an immediate consequence of Theorem 2.2.

Corollary 2.13. Let S be any scheme, and let AffSchS be the category of affine schemes equipped
with a map to S, cf. Remark 1.1. Then the functor GrGln,S : AffSchop

S → Sets given by

T = Spec(R) 7→ GrGln,Z(R)

is representable by the ind-proper ind-scheme GrGln ×Spec(Z) S → S.

Proof. The functor GrGln,S is the restriction of GrGln,Z from all affine schemes AffSch to the category
AffSchS . This restriction is representable by the base change GrGln,Z ×Spec(Z) S which in turn
identifies with colima≤bGr[a,b] ×Spec(Z) S. Now Theorem 2.2 implies the corollary. �

The rest of the discussion in §§2.1-2.4 extends literally.
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2.6. Exercises. In the following, let n ≥ 1 and denote by Gr = GrGLn
the affine Grassmannian

together with its presentation Gr = colima≤bGr[a,b]. Let R be a (commutative, unital) ring.

Exercise 2.14. Let Λ be a locally free R[[$]]-module.

(1) Show that Λ is locally on R free, i.e., there exists a finite cover Spec(R) = ∪iD(fi) by
principal open subsets such that each module Λ⊗R[[$]] (R[f−1

i ])[[$]] is free.
(2) Show that Λ is free if M ⊗R[[$]],$ 7→0 R is free.

Exercise 2.15. For µ ∈ Zn, consider the open subscheme Uµ ⊂ Gr defined in (2.4). Show that
Uµ → Spec(Z) has geometrically connected fibers.

Exercise 2.16. Give explicit equations for Gr[a,b] ∩ U0 and its underlying reduced locus for small
values of a, b ∈ Z and n ≥ 1. When is Gr[a,b] ∩ U0 non-empty?

Exercise 2.17. Show that the ind-scheme Gr is formally smooth (see also Exercises 1.34, 1.35).

3. The affine Grassmannian for general groups

In this section we show that affine Grassmannians for more general groups are representable by
ind-schemes and admit a uniformization as a quotient of loop groups in case the group is smooth.

Let k be any ring, and let G → Spec(k[[$]]) be a flat affine group scheme of finite presentation.
For a k-agebra R, we denote DR := Spec(R[[$]]), resp. D∗R := DR\{$ = 0} = Spec(R(($))) which
we picture as an R-family of discs, resp. an R-family of punctured discs.

Definition 3.1. The affine Grassmannian for G is the functor GrG : Algk → Sets which associates
to a k-algebra R the isomorphism classes of pairs (E , α) where E → DR is a (left) fppf G-torsor and
α ∈ E(D∗R) is a section.

Here a pair (E , α) is isomorphic to (E ′, α′) if there exists a morphisms of G-torsors π : E → E ′
(necessarily an isomorphism) such that π ◦ α = α′. Note also that every automorphisms of such
pairs (E , α) is trivial. Furthermore, the datum of a section α ∈ E(D∗R) is equivalent to the datum of
an isomorphism of G-torsors

(3.1) E0|D∗R
'−→ E|D∗R , g 7−→ g · α

where E0 := G viewed as the trivial G-torsor.

Remark 3.2. Here are a few observations:

(1) The affine Grassmannian GrG has a k-rational base point given by the class e := [(E0, id)].
(2) The group G(R(($))) acts from the left on GrG(R) via g · [(E , α)] := [(E , g ·α)]. This will be

upgraded to an action of the loop group LG in the next section.
(3) By effectivity of descent for (quasi-)affine morphisms every fppf (or even fpqc) G-torsor
E → DR is representable by an affine morphism of finite presentation [StaPro, 0247, 02L0].
If additionally G is smooth over k, then every fppf G-torsor is smooth as well [StaPro,
02VL], and hence admits sections étale locally which is immediate from [StaPro, 039Q]. In
this case we can work in the étale topology as opposed to the fppf topology.

(4) The formation of affine Grassmannians is functorial in the group: If ρ : G→ H is any map
of group schemes (which are flat affine of finite presentation over k[[$]]), then there is the
map of functors

GrG −→ GrH , [(E , α)] 7−→ [(ρ∗E , ρ∗α)],

where ρ∗E = H ×G E denotes the push out of torsors and ρ∗α = (1, α) in this description.
(5) The formation of affine Grassmannians is functorial in the base ring: If k → K is a ring

map, then GrG ×Spec(k) Spec(K) = GrG⊗k[[$]]K[[$]].

Remark 3.3. Let us make the connection to the affine Grassmannian for the linear group, cf. Defi-
nition 2.1. If G = GLn, then a G-bundle on E → DR is the same as a rank n vector bundle Ẽ → DR,
i.e., a rank n locally free R[[$]]-module E. The trivialization α induces an isomorphism of R(($))-
modules E[$−1] ' R(($))n. By taking the image of E ⊂ E[$−1] under this isomorphism, we obtain
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a well defined finite locally free R[[$]]-module Λ = Λ(E,α) ⊂ R(($))n such that Λ[$−1] = R(($))n.
Note that Λ depends only on the class of (E , α). The map [(E , α)] 7→ Λ = Λ(E,α) defines an isomor-
phism of functors between the affine Grassmannian for G = GLn in the sense of Definition 3.1 and
the affine Grassmannian in the sense of Definition 2.1.

Theorem 3.4. Let k be a field, and let G be a flat affine group scheme of finite type over k[[$]].

(1) The affine Grassmannian GrG → Spec(k) is representable by a separated (cf. Exercise 1.31)
ind-scheme of ind-(finite type) over k. In particular, the functor GrG defines an fpqc sheaf
on Algk and commutes with filtered colimits.

(2) If G is reductive, then the map GrG → Spec(k) is ind-proper.

Remark 3.5. If k is an excellent regular ring of Krull dimension 1 (e.g. k = Z) and G is a smooth
affine group scheme with connected fibers over k[[$]], then the conclusion of Theorem 3.4 still holds
by [PZ13, App. A] (1) combined with Proposition 3.6 below.

In §3.1 below we study the case of constant group schemes more closely, i.e., the case where G
arises from base change over k.

The idea of the proof of Theorem 3.4 is easy: embed G ↪→ GLn suitably and prove that the
resulting map on affine Grassmannians is representable by an immersion, resp. in (2) by a closed
immersion. The key observation is the following result:

Proposition 3.6. Let k be a ring, and let G ↪→ H be a closed immersion of flat affine group schemes
of finite presentation over k[[$]] such that the fppf quotient H/G is representable by a quasi-affine
scheme (resp. by an affine scheme). Then the induced map GrG → GrH is representable by a
quasi-compact immersion (resp. by a closed immersion).

Proof. If additionally k is a field and both G, H are smooth, then the proof is explained in [Zhu,
Prop. 1.2.6]. However, the argument given in loc. cit. does not use the additional assumptions and
translates literally to prove the more general statement. �

Next we need to ensure the existence of sufficiently nice embeddings into the linear group. Some
of the following material is treated in [PR08, §1]. For results in the case of regular base schemes of
dimension 2, we refer to [SGA3, VIB , §13] and [PZ13, App. A].

Lemma 3.7. Let A be a regular local ring of dimension ≤ 1 (i.e., either a field or a discrete
valuation ring). If G ↪→ H is a closed immersion of flat affine group schemes of finite presentation
over A, then the fppf quotient H/G is representable by a quasi-projective scheme over A. If H is
smooth, so is H/G.

Proof. This is classical [Ana73]. We find it useful to explain the method following [PZ13, App. A].
First observe that H/G is an algebraic space by [StaPro, 04U0], and that the map H → H/G is
faithfully flat of finite type. In particular, H/G is of finite type over A [StaPro, 02KZ, 040Y], and
also is smooth if H is smooth [StaPro, 02VL, 03ZF].

It remains to show that H/G is a quasi-projective scheme. By e.g. [CGP10, Prop. A.2.4] for
fields and [HdS, Lem. 6.17] for discrete valuation rings, there exists a finite free A-module V , a
closed immersion H ↪→ GL(V ) of group schemes and an A-point L ∈ P(V ) (i.e., a free 1-dimensional
submodule L ⊂ V ) such that G is the scheme theoretic stabilizer of L for the action H on P(V ). Then
the orbit map H/G→ P(V ), [h] 7→ h · L is a monomorphism of finite type of algebraic spaces, and
in particular separated and quasi-finite [StaPro, 0463]. Hence, H/G is a scheme by [StaPro, 03XX].
Finally, Zariski’s Main Theorem [StaPro, 05K0] implies that H/G → P(V ) is an open immersion
followed by a finite morphism and in particular is quasi-affine (hence quasi-projective). �

Corollary 3.8. Let A be a regular local ring of Krull dimension ≤ 1. Let G be a flat affine group
scheme of finite type over A. Then there exists an n ≥ 1 and a closed immersion G ↪→ GLn,A of
A-group schemes such that the fppf quotient GLn,A/G is quasi-affine. Furthermore, this quotient is
affine if G is reductive.
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Proof. The last statement is [A14, Cor. 9.7.7]. Choose any closed immersion ρ : G ↪→ GLm,A of
group schemes. Next choose GLm,A ↪→ GL(V ) together with a line L ⊂ V as in the proof of Lemma
3.7 so that we obtain a quasi-affine morphism GLm,A/G → P(V ), [h] 7→ h · L. Choose a basis
0 6= v ∈ L, and consider the induced character χ : G → AutA(L) = GL1,A. We obtain a closed
immersions of group schemes

G ↪→ (GLm,A ⊗A GL1,A) =: H ↪→ GLm+1,A =: GLn,A,

where the first map is given by g 7→ (ρ(g), χ(g)) and the second is the diagonal embedding. We claim
that GLn,A/G is quasi-affine. Consider the orbit map H → V(V ) ' Ark, r := dimA(V ) through
v ∈ L given by (h, a) 7→ a · h · v. By construction G is the scheme theoretic stabilizer of this map
so that we obtain a monomorphism of fppf sheaves H/G → ArA. Again this map is quasi-affine
by Zariski’s Main Theorem, and hence H/G is quasi-affine. This also implies that the composition
GLn,A/G → GLn,A/H → Spec(A) is quasi-affine: the first map is an fppf locally on the target
trivial fibration in H/G (hence representable by a quasi-affine morphism) and the second map is
affine by [A14, Cor. 9.7.7] because H is reductive. �

Proof of Theorem 3.4. For (1), take A := k[[$]] and choose a closed immersion G ↪→ GLn,A of
group schemes such that the fppf quotient GLn,A/G is quasi-affine, cf. Corollary 3.8. By Proposi-
tion 3.6 the induced map GrG → GrGLn,A

= GrGLn,Spec(k) is representable by an immersion. Since
GrGLn,Spec(k) → Spec(k) is ind-proper by Theorem 2.2, resp. Corollary 2.13, we obtain the repre-
sentability of GrG as stated in (1). Here we use Lemma 1.7 in order to see that GrG indeed admits
a global presentation by schemes. The sheaf property for the fpqc topology follows from Lemma
1.4. The commutation with filtered colimits is immediate from [StaPro, 05N0] because the affine
Grassmannian is of ind-(finite type).

For (2), we note that if G is reductive, then GLn,A/G is affine by Corollary 3.8 so that GrG →
GrGLn,Spec(k) is a closed immersion by Lemma 3.6. �

Remark 3.9. It would be interesting to give an intrinsic proof of the representability of GrG without
a reference to an embedding of G into the linear group.

3.1. Constant groups. If G is already defined over k, then we can improve on Theorem 3.4,
cf. Proposition 3.13.

Definition 3.10. A group scheme G over k[[$]] is called constant if G ' G0 ⊗k k[[$]] where G0 :=
G⊗k[[$]],$ 7→0 k is the special fiber.

Remark 3.11. Every reductive group scheme over k[[$]] is automatically constant by [Ri19, Lem. 0.2].

Example 3.12. Let k = Z in this example.

(1) The affine Grassmannian for the multiplicative group Gm = GL1 is given by

GrGm
=
⊔
d∈Z

Gr
(d)
Gm
,

where each Gr
(d)
Gm

is non-reduced with underlying reduced ind-scheme Spec(Z), cf. Lemma
2.12 and Example 2.8.

(2) The affine Grassmannian for the additive group Ga is given by

GrGa
= colimi≥1 AiZ

where the transition maps AiZ → AjZ, j ≥ i are given by the inclusion of the first i coor-
dinates. Indeed, if [(E , α)] ∈ GrGa

(R) then E → DR is trivial because H1
fppf(DR,Ga) =

H1
Zar(DR,Ga) = 0 by [StaPro, 03P6, 01XB]. Hence, the class α defines an element in the

additive quotient R(($))/R[[$]] and therefore admits a representative α̇ = 1+a1$
−1 + . . . ∈

R[$−1] for unique ai ∈ R. Mapping the class [(E , α)] to the vector of coefficients (ai)i≥1

gives the identification above.
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Proposition 3.13. Under the hypothesis of Theorem 3.4, assume G ' G0 ⊗k k[[$]] is constant.
Fix an algebraically closed overfield k̄/k, and consider the reduced neutral component of the base
change Hk̄ := (G0,k̄)◦red which is a smooth affine connected group scheme over k̄. Then the structure
morphism GrG → Spec(k) is

(1) ind-proper if and only if Hk̄ is reductive, and it is
(2) ind-affine if and only if the maximal reductive quotient of Hk̄ is a torus.

In particular, GrG → Spec(k) is ind-finite if and only if Hk̄ is a torus.

Proof. We fix G ' G0 ⊗k k[[$]]. Throughout this proof we change notation and view G = G0 to be
defined over k in which case GrG denotes the affine Grassmannian associated with G⊗k k[[$]].

We first reduce (1) and (2) to the case where G is a smooth affine connected group scheme over
an algebraically closed field as follows. We may reduce to the case where k = k̄ is algebraically
closed because (ind-)properness and (ind-)affineness is stable under base change and fpqc local on
the base [StaPro, 01W4, 02L1]. In this case Gred ⊂ G is a closed subgroup scheme by [StaPro,
047R] which is smooth by [StaPro, 047N, 047P]. By Lemma 3.7, the quotient G/Gred is a scheme.
Since the underlying topological space is a single point, this quotient is affine and so is G/Gred.
Now Proposition 3.6 implies that GrGred

↪→ GrG is a closed immersion. We claim that this induces
an isomorphism (GrGred

)red = (GrG)red on the underlying reduced ind-schemes (hence GrGred
→

Spec(k) is ind-proper/ind-affine if and only if GrG → Spec(k) is ind-proper/ind-affine). If R is any
reduced k-algebra, it is enough to check that GrGred

(R) → GrG(R) is surjective. Let [(E , α)] ∈
GrG(R). Since R(($)) is reduced as well, the inclusion Ered(R(($))) ⊂ E(R(($))) is a bijection, and
we denote by αred the element corresponding to α. Also the reducedness of R[[$]] and the constancy
of G implies that Ered → Spec(R[[$]]) is a torsor under Gred⊗kR[[$]] = (G⊗kR[[$]])red, cf. [StaPro,
034N]. Since Ered ⊂ E is equivariant for Gred ⊂ G, we obtain a map of torsors

GR[[$]] ×(Gred)R[[$]] Ered
'−→ E ,

which must be an isomorphism. This shows that [(Ered, αred)] 7→ [(E , α)] and hence that (GrGred
)red =

(GrG)red. We may reduce to the case where G = Gred is smooth affine over k. In this case, there
is a sequence 1 → G◦ → G → G/G◦ → 1 where G/G◦ is finite étale. Choose a finite set of
representatives G(k) = tττG◦(k). We claim that the canonical map⊔

τ

τGrGo −→ GrG

is an isomorphism where G(k) ⊂ G(k(($))) acts on GrG via Remark 3.2 (2). This claim is left to
the reader. Hence, we may reduce to the case where G = G◦ is a connected smooth affine group
scheme over an algebraically closed field k.

For (1), now if G is reductive, then GrG → Spec(k) is ind-proper by Theorem 3.4. Conversely,
assume that GrG → Spec(k) is ind-proper. There is a short exact sequence of group schemes
1 → U → G → Ḡ → 1 where U is the unipotent radical of G and Ḡ is reductive. This induces a
map of ind-proper ind-schemes GrG → GrḠ, and hence its fibre over the base point GrU → Spec(k) is
ind-proper as well. However, since k is algebraically closed, the group scheme U has a decomposition
series with successive quotients being Ga’s. Then Example 3.12 shows that GrU → Spec(k) is ind-
affine and of strictly positive dimension if U is non-trivial. Now the ind-properness of GrU → Spec(k)
implies U = {1} so that G = Ḡ is reductive.

Part (2) is similar which finishes the proof of the proposition. �

3.2. Beauville-Laszlo gluing. Let k be a field. Let X → Spec(k) be a scheme. Let x ∈ X(k) be
a point such that the local ring OX,x is regular of dimension 1. Let G → X be a flat affine group
scheme of finite presentation.

Definition 3.14. The affine Grassmannian for G and (X,x) is the functor GrG,x : Algk → Sets
which associates to a k-algebra R the isomorphism classes of pairs (E , α) where E → XR is a (left)
fppf G-torsor and α : (X\x)R → E is a section.
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Here for a k-algebra R we denote by XR the base change X ×Spec(k) Spec(R), and likewise for
(X\x)R. Let us make the connection to the affine Grassmannian from Definition 3.1.

Since OX,x is regular of dimension 1, it is a discrete valuation ring whose maximal ideal mx is
generated by a single non-zero divisor $x, cf. [StaPro, 00PD]. Let Ox be the completion of OX,x
at mx, i.e., Ox ' k[[$x]]. The base change Gx := G ×X Spec(Ox) → Spec(Ox) is a flat affine
group scheme of finite type, and we get the affine Grassmannian GrGx

→ Spec(k) as in the previous
section3. Furthermore, for any k-algebra R, the canonical map Spf(R[[$x]]) → Spf(k[[$x]]) → X
induced by the infinitesimal neighborhoods of x in X extends to Dx,R := Spec(R[[$x]]) → XR.
Therefore, we obtain a canonical restriction map GrG,x → GrGx

given by

(3.2) [(E , α)] 7−→ [(E|Dx,R
, α|D∗x,R

)].

Theorem 3.15. The map (3.2) induces an isomorphism GrG,x ' GrGx
.

3.3. Loop groups. In case G → Spec(k[[$]]) is a smooth affine group scheme, we show that the
affine Grassmannian admits a presentation GrG = LG/L+G as a quotients of loop groups.

3.3.1. Loop functors. Let k be any ring. If X : Algk(($)) → Sets is a functor, then the loop functor
LX is the functor Algk → Sets given on a k-algebra R by

(3.3) LX(R)
def
= X(R(($))).

If X : Algk[[$]] → Sets is a functor, then the positive loop functor L+X (or arc functor, or jet functor)
is the functor Algk → Sets given by

(3.4) L+X(R)
def
= X(R[[$]]).

If X : Algk[$]/($i+1) → Sets for some i ≥ 0 is a functor, then the functor of i-jets L+
i X is the functor

Algk → Sets given by

(3.5) L+
i X(R)

def
= X

(
R[$]/($i+1)

)
.

Remark 3.16. Pictorally we think about elements of LX(R) as families of “algebraic loops” in X
parametrized by R, i.e., maps from the punctured disc D∗R → X. Elements in L+X(R) correspond
to families of contractible loops in LX, i.e., those families D∗R → X which extend to the full disc
DR. For a connection to topological loop groups we refer the reader to [Zhu, §1.6] and the references
cited there. See also Bachmann [Bac] for a view on affine Grassmannians via A1-homotopy theory.

In case (3.4) there is a canonical map L+X → LX given by the inclusion R[[$]] ⊂ R(($)). Note
that L+X ⊂ LX is naturally a subfunctor if X is a scheme. Furthermore, the family (L+

i X)i≥0

forms an inverse system of functors with transition maps L+Xj → L+
i X, j ≥ i given by x 7→ x

mod $i+1. This gives a canonical map

(3.6) L+X −→ lim
i≥0

L+
i X.

Lemma 3.17. Let X be a scheme.

(1) If X → Spec(k(($))) is affine, then LX → Spec(k) is representable by an ind-affine ind-
scheme. In particular, LX is an fpqc sheaf on Algk.

(2) If X → Spec(k[[$]]) is qcqs, then (3.6) is an isomorphism and each projection L+X → L+
i X,

i ≥ 0 is representable by an affine morphism. If X → Spec(k[[$]]) is affine of finite type,
then L+X ⊂ LX is representable by a closed immersion.

(3) If i ≥ 0 and X → Spec
(
k[$]/($i+1)

)
is a scheme (resp. of (locally) finite type, quasi-

compact, (quasi-)separated, quasi-projective, affine, smooth), so is L+
i X → Spec(k). Fur-

thermore, each reduction map L+
i X → L+

j X, j ≤ i is representable by an affine morphism.

3Infact, GrGx is independent of the choice of uniformizer $x. For this we note that R[[$x]] is the completion of

R⊗k OX,x for the 1⊗ mx-adic topology, and that R(($x)) is given by tensoring this ring with Frac(Ox) over Ox.
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Proof. For (1), fix a presentation X = Spec(k(($))[Ti]i∈I/(fj)j∈J) for some index sets I, J and
elements fj ∈ k(($))[Ti]i∈I . Equivalently, we have a presentation as an equalizer of affine schemes

X = equalizer
(
AIk(($))

f

⇒
0
AJk(($))

)
,

where f = (fj)j∈J is the induced map, and 0 denotes the composition AIk(($)) → Spec(k)
0→ AJk(($)).

It is easy to check that taking loop groups, viewed as a functor L : AffSchk(($)) → Fun(Algk,Sets),
commutes with limits. As finite limits of ind-schemes are ind-schemes by Lemma 1.10, we are
reduced to show that for any index set I the product uILA1

k(($)) is an ind-affine ind-scheme over k.

By Exercise 1.28, we are reduced to show that LA1
k(($)) is an ind-affine ind-scheme. In this case, one

has

LA1
k(($))(R) = R(($)) = colimi≥0$

−iR[[$]] = colimi≥0

( ∞l

j=−i
A1
k

)
(R),

where the last map is given by sending a series
∑∞
j=−i aj$

j to the vector of its coefficients (aj)
∞
j=−i.

For (3), note that L+
i X identifies with the Weil restriction of scalars of X along k → k[$]/($i+1).

Then the desired properties are proven in [NS10, §2]. We give the argument for convenience. First
note that L+

i X identifies with the Weil restriction of scalars of X along k → k[$]/($i+1). Therefore,
if X is affine, then L+

i X is representable by an affine scheme as well, cf. [BLR90, §7.6, Thm. 4]. For
general X, we show that the reduction L+

i X → Xk is representable by an affine morphism. Note
that |Xk| = |X| on topological spaces. If Uk ⊂ Xk is an open subscheme, we denote by U ⊂ X
the unique open subscheme with |Uk| = |U |. We claim that for any open subscheme Uk ⊂ Xk the
canonical morphism L+

i U → Uk ×Xk
L+
i X is an isomorphism. Indeed, given any x ∈ L+

i X(R) with
x mod $ in Uk(R) = U(R) then the infinitesimal lifting criterion gives

U Spec(R)

X Spec
(
R[$]/($i+1)

)
,

x mod $

x
∃!

which shows the claim. Using that L+
i X is a Zariski sheaf, we may reduce to the case where X = U

with Xk affine. By Chevalley’s criterion [GW10, Lem. 12.38] the scheme X is affine as well. In
this case L+

i X → Xk is a morphism between affine schemes which is therefore affine. The same
reasoning also shows that each map L+

i X → L+
j X, j ≤ i is affine. All properties are immediate

from [BLR90, §7.6, Prop. 5].
For (2), it is easy to see that (3.6) is an isomorphism if X is affine. The general case follows from

the algebraization results in [Bha16, Cor. 1.2]. This implies that L+X is an inverse limit of schemes
along transition morphisms which are affine by (2), and hence that each projection L+X → L+

i X
is affine [StaPro, 01YX]. �

3.3.2. Uniformization of the affine Grassmannian. In case G = X is a group functor, the loop
functors naturally are group valued functors. Now let k be any ring, and let G → Spec(k[[$]]) be
a flat affine group scheme of finite presentation. Then LG is an ind-affine group ind-scheme4 over
k and L+G ⊂ LG defines a closed subgroup scheme. Furthermore, the loop group LG acts on the
affine Grassmannian via the map of functors

(3.7) LG×Spec(k) GrG −→ GrG,
(
g, [(E , α)]

)
7−→ [(E , g · α)],

induced from the action given in Remark 3.2.

4The term group ind-scheme means a group valued functor representable by an ind-scheme, i.e., the schemes

appearing in a presentation need not be group schemes.
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Proposition 3.18. If G→ Spec(k[[$]]) is a smooth affine group scheme, then the orbit map through
the base point LG→ GrG, g 7→ g · e = [(E0, g)] induces an isomorphism of étale sheaves(

LG/L+G
)

ét

'−→ GrG.

In particular, the étale quotient
(
LG/L+G

)
ét

is an fpqc sheaf on Algk.

Proof. By Lemma 3.17, resp. Theorem 3.4 (1) the orbit map LG→ GrG is a map of étale (or even
fpqc) sheaves, and we first show that it is a surjection of sheaves. Let R be a k-algebra, and let
[(E , α)] ∈ GrG(R). We first show that there exists an étale cover R → R′ such that E|DR′ is the
trivial G-torsor, equivalently there exists a section DR′ → E over DR. Let E|$=0 → Spec(R) denote
the restriction of E → DR along the zero section Spec(R) = {$ = 0} ⊂ DR. Since G→ Spec(k[[$]])
is smooth affine, so is E|$=0 → Spec(R) by Remark 3.2 (3). Hence, there exists an étale cover
R → R′ together with a section Spec(R′) → E|$=0 ⊂ E over R. Since E → DR is smooth, this
extends by the infinitesimal lifting criterion to compatible family of sections

colimi≥1Spec
(
R′[$]/($i)

)
→ E

over DR. As E is affine as well, this family gives the desired section DR′ = Spec(R′[[$]]) → E over
DR. Hence, we reduce to the case where R = R′ and E = E0 is trivial. Then the section α defines
an element

α ∈ Aut
(
E0|D∗R

)
= LG(R)

which is the desired lift. This shows that the orbit map LG → GrG, g 7→ g · e is a surjection of
étale sheaves. It remains to identify the stabilizer at the base point e = [(E0, id)] as the subgroup
L+G ⊂ LG. If g ∈ LG(R), then g · e = e if and only if (E0, g) ' (E0, id) if and only if g extends to
a section DR → G, i.e., g ∈ L+G(R). �

Remark 3.19. If G→ Spec(k[[$]]) is any flat affine group scheme of finite presentation, then almost
tautologically LG(R) parametrizes isomorphism classes of triples (E , α, β) where (E , α) defines a
point in GrG(R) and β ∈ E(DR) is a section. Indeed, by (3.1) we may view α as an isomorphism
E0|D∗R ' E|D∗R and β as an isomorphism E0|DR

' E|DR
. Now if [(E , α, β)] is any class, then β : E0 ' E

induces an isomorphism (E0, g, id) ' (E , α, β) where g is the composition

E0|D∗R
β|D∗

R−→ E|D∗R
α−1

−→ E0|D∗R
viewed as an element of Aut(E0|D∗R) = LG(R). In this description the orbit map LG → GrG
through the base point is given by the forgetful map [(E , α, β)] 7→ [(E , α)]. Hence, there still exists
a monomorphism of fppf sheaves (

LG/L+G
)

fppf
↪→ GrG

with image being those pairs [(E , α)] such that E → DR is fppf locally on R trivial. However, I do
not know whether the map LG/L+G ↪→ GrG has any nice properties in general if G→ Spec(k[[$]])
is not smooth.

Lemma 3.20. Let G→ Spec(k[[$]]) be a smooth affine group scheme.

(1) In the presentation L+G = limi≥0 L
+
i G from (3.6) each L+

i G → Spec(k) is smooth affine
and all transition maps L+

j G→ L+
i G, j ≥ i are smooth surjective. If G→ Spec(k[[$]]) has

connected fibers, so has L+G → Spec(k) in which case both have geometrically connected
fibers.

(2) For each i ≥ 0, the kernel ker(L+
i+1G→ L+

i G) is a vector group over k.

Proof. Since each L+
i G is of finite type by Lemma 3.17 (2), the smoothness of L+

i G→ Spec(k) and
of the maps L+

j G → L+
i G follows from the infinitesimal lifting criterion [StaPro, 02H6]: to check

this criterion we use the (formal) smoothness of G → Spec(k[[$]]). This is left to the reader. This
also implies the surjectivity of each L+

j G → L+
i G. For the other statements we refer the reader to

[RS, §A.4]. �
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The following result shows that in forming quotients by an infinite dimensional group like L+G
it is still enough to sheafify for the étale topology:

Corollary 3.21. Let G→ Spec(k[[$]]) be a smooth affine group scheme, and let S be a k-scheme.
Then every fpqc L+G-torsor on S admits sections étale locally.

Proof. This is a consequence of Lemma 3.20 (2). For details we refer the reader to [RS, Cor. A.4.8].
�

Corollary 3.22. Let G→ Spec(k[[$]]) be a smooth affine group scheme. Assume either that k is a
separably closed field, or that k is a finite field and G→ Spec(k[[$]]) has connected fibers. Then the
isomorphism in Proposition 3.18 induces

GrG(k) = G(k(($)))/G(k[[$]]).

Proof. We show that H1
ét(k, L

+G) is trivial. If k is separably closed, this is clear. Now assume that
k is a finite field and that G → Spec(k[[$]]) has connected fibers. There is an exact sequence of
pointed sets

{∗} → lim1
i≥0 L

+
i G(k)→ H1

ét(k, L
+G)→ limi≥0H

1
ét(k, L

+
i G)→ {∗}.

Since each L+
i G is a smooth affine connected group over k, each H1

ét(k, L
+
i G) is trivial by Lang’s

Lemma. Further, Lemma 3.20 (2) implies that the maps L+
i+1G(k) → L+

i G(k) are surjective, and

hence lim1
i L

+
i G(k) is trivial as well. For details, we refer the reader to [RS, A.4]. �
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[BLR90] S. Bosch, W. Lütkebohmert, M. Raynaud: Néron models, Ergebnisse der Mathematik und ihrer Grenzge-
biete 21 (1990), Berlin, New York: Springer-Verlag. 18

[BT84] F. Bruhat, J. Tits: Groupes réductifs sur un corps local II. Schéma en groupes. Existence d’une donnée

radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197-376.

[CGP10] B. Conrad, O. Gabber and G. Prasad: Pseudo-reductive groups, Cambridge University Press, 2010. 14
[dHL18] M. A. de Cataldo, T. Haines, and L. Li: Frobenius semisimplicity for convolution morphisms,

Math. Zeitschrift 289 (2018), 119-169. 11

[EG] M. Emerton and T. Gee, “Scheme-theoretic images” of morphisms of stacks, preprint (2015),
arXiv:1506.06146. 2

[Fal03] G. Faltings: Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. (JEMS) 5 (2003), no. 1,
41-68. 11
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