ERRATUM TO “AFFINE GRASSMANNIANS AND GEOMETRIC SATAKE
EQUIVALENCES’

The references below refer to the authors work [ ]. We adress Lemma 2.17, Theorem 2.19 and
Definition 3.3.

0.1. On Lemma 2.17. This lemma is wrong, and should be replaced by Lemma 0.1 below. It is
only used in the proof of Lemma 2.20 to show the ind-finiteness of

(0.1) Gr(ResX/X(Gm),X) - X,

where X — X is a finite, flat surjection of quasi-compact, separated, smooth curves over k. Since
(0.1) is ind-quasi-finite, it is enough to show its ind-properness. More generally, let G — X be
any smooth, X-affine group scheme. We aim to relate the Beilinson-Drinfeld Grassmannian for
Resg, «(G) to the general set-up introduced in [I1R, §3] which is recalled in (0.2) below for con-
venience. Then the ind-properness of (0.1) follows from the comparison in Lemma 0.1 below, and
the representability result in [[TR, Lem. 3.7] applied with G = GLn, %, n = 1. More generally, the

ind-properness holds true whenever G = G x X where Gy is a reductive k-group, cf. [[R, Cor. 3.10
iii)].

Recall the set-up in [HR, §3]. Let S be a Noetherian scheme, and let Y — S be a scheme which
is quasi-compact, separated and smooth of pure relative dimension 1. Let D C Y be a relative
effective Cartier divisor which is finite and flat over S. Let G — Y be a smooth, Y-affine group
scheme. To (Y, G, D) we associate the functor Gr(y,g,p) on the category of S-schemes which assigns
to every T — S the set of isomorphism classes of pairs (€, ) with

0.2) { £ aG-torsoronY xg T,

a g|(Y\D)><ST i) gO‘(Y\D)XST a tI‘iViahZ&tiOl’l,
where & denotes the trivial torsor.

Lemma 0.1. Let X 5 X bea finite, flat surjection of quasi-compact, separated, smooth curves over
k, and let G — X be a smooth, X -affine group scheme. Then restriction of scalars along X — X
induces an isomorphism of functors over X,

Gr(y,g,p) = Gr(ReSX/X(C;), X),

where Y = X x5, X B X =: S is viewed as a relative curve, G := G Xz Y and D := X <Y s
viewed as a relative effective Cartier divisor over S.

Proof. Let T" — S be a scheme, and let (£,a) € Grey,g,p)(T). By definition, £ is a G-torsor on
Y xx T = X x;, T together with a trivialization a on (Y\D) xgT = X x; T\I' where T is defined
by the Cartesian diagram

I —— X x, T=: Xp

| !

T— X x, T = Xr.

Here the bottom arrow is the graph of T'— X which is a closed immersion because X is separated
over k. Thus, to (€, a) we can associate the pair

(&, a) € Gr(ReSX/X(Q),X)(T),
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where £ := Res Xr /X1 (&) and o is the trivialization corresponding to « under
Isom(&, &) (Xr\I') = Isom(E, EY)(Xr\T).
This gives the desired isomorphism, cf. | , Thm. 2.6.1] for details. O

The problem with the proof of Lemma 2.17 is that Resg (Gr(g, )N())(T) parametrizes torsors
on X Xg (X x x T') which is obviously different from X xp T.

0.2. On Theorem 2.19. Joao Lourenco observed that the statement of Theorem 2.19 is missing a
hypothesis if char(k) > 0. Namely, one has to add “Assume that the generic fibre of G is reductive.”.
As argued above, Lemma 0.1 applied with k& = ), X = A}C — (A}C)(p) =: X the relative Frobenius,
and G = Gy x5, X with Gy any reductive k-group gives examples where

Gr(Resg,y(G), X) = X

is ind-proper, but the generic fibre of Res ¢ /X (G) — X is not reductive.

In the proof of Theorem 2.19, the following sentence on middle of page 3731 is wrong: “But
Gr(G, X)5 is the affine Grassmannian associated with the linear algebraic group Gz [...].”. By
Corollary 2.14, the fibre Gr(G, X); is canonically the affine Grassmannian associated with the group
scheme G ®x F[t;] where 7j = Spec(F), and Spec(F[t;]) — X xx § — X is the canonical map
given by completion along the tautological point on the curve X xj 77 — 7 with local parameter ts.
However, in general

Gox Flts] # Gy ®; Fts],
where Spec(F[tz]) — X x; 7 — 7] is the canonical map. In other words, G ® x F[t;] might not be a

constant family. The following lemma shows that this phenomenon does not arise when the generic
fibre of G — X is reductive:

Lemma 0.2. Let (A,m) be a Henselian local ring with residue field k := A/m. Assume that there
exists a section kK — A, i.e., A is a k-algebra, and the composition k — A — kK is the identity.
Then any (fibrewise connected) reductive group scheme G over A is constant, i.e., there exists an
isomorphism of A-group schemes

G ~ (G®ak)®, A

Remark 0.3. We apply the lemma to the pair (4,m) = (F[t],(¢)), and the reductive group
scheme G = G ®x F[t] where t = t, is a local coordinate of the tautological point of X X3 n — n,
1 = Spec(F). Since in | , 83ff.] the generic fibre of G — X is assumed to be reductive, the rest
of the manuscript is unaffected from the mistake.

Proof. As any reductive group scheme splits étale locally, and as A is Henselian, we claim that
there exists a finite Galois extension x’/k such that G splits over A’ := A ®, &/, i.e., one has
G4 A ~ Gy®, A" for some Chevalley group Gy over k. Indeed, take a finite type étale cover
A — B which splits G, cf. | , Lem. 5.1.3]. As A is Henselian, the A-algebra B is a finite direct
product of finite local A-algebras which are necessarily étale, cf. | , 03QH]. Let A’ be one of
the factors. By | , 09ZS] and the existence of kK — A, the A-algebra A’ is necessarily of the
form A’ ~ A ®, k' where «’ is the residue field of A’. Enlarging ' if necessary, we may assume
that x'/k is a finite Galois extension. The existence of Gy follows from the Isomorphism Theorem
[ , Thm. 6.1.17]. This shows the claim. Now the isomorphism class of G corresponds to a class
in the cohomology set
H' (A'/A, Aut(Go) ®, A).

We have Aut(Go) = Go,aa X Aut(R, A),; where Aut(R, A) is the abstract group of automorphisms
of some based root datum of (R, A) of Gy (cf. | , Thm. 7.1.9]). Since A’/A is a finite Galois
cover with group I' := Aut(x’/k), we have

H'(A'JA, Aut(R,A)4) = Homgps (L, Aut(R,A)) = H'(k'/k, Aut(R,A),),
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i.e., the quasi-split form G* of G is defined over k. Now the isomorphism class of G corresponds to
a class in the cohomology set

H! (A’/A, Gry A).
We claim that for any smooth affine xk-group H, the natural reduction map
(0.3) H'(A'JA, H®, A) — H'(x'/k, H)

is bijective. This claim applied to H = G}, implies the lemma. To prove the claim we observe
that the map is surjective because any torsor on Spec(k) can be extended constantly to a torsor
on Spec(A) using the section kK — A. To show that (0.3) is injective, it suffices (by the twisting
trick) to prove the triviality of the kernel. Let & — Spec(A) be an H-torsor, and suppose &|y
is trivial, equivalently £(k) is non-empty. As H is a smooth, affine k-group scheme, the torsor
& — Spec(A) is representable by a smooth affine scheme which follows from effectivity of descent for

affine maps, cf. | , 0246, 02VL]. Hence, the reduction map £(A) — £(k) is surjective because
A is Henselian, cf. [EGA IV, Thm. 18.5.17]. Thus, £(A) is non-empty, or equivalently £ is trivial.
This proves the claim. U

On the positive side, we have the following result. Let G be a smooth, affine F-group scheme.
We denote by Grg := Gr(G, X), the generic fibre where G — X denotes a smooth, affine model of G
(this exists after possibly shrinking X'). Then Grg is well-defined up to isomorphism independently
of the choice of the model (G, X), and representable by a separated F-ind-scheme of ind-finite type.

Recall from | , Def. B.2.1] that a smooth, connected, unipotent F-group U is called F-
wound if every map of F-schemes AL — U is a constant map to a point in U(F).

Lemma 0.4. Let G be a smooth, affine F-group. If Grg — Spec(F) is ind-proper, then the
neutral component G° is quasi-reductive in the sense of | , 1.1.12], i.e., the unipotent radical
U := Ry,(G°) is F-wound.

Remark 0.5. Lemma 0.4 shows that for characteristic zero fields F' the unipotent radical R, (G°) is
trivial, so that G° is indeed reductive. If F is of positive characteristic (and hence non-perfect), then
by Example 0.6 below ind-properness of Grg — Spec(F') does not imply that G° is pseudo-reductive
in the sense of | , Def. 1.1.1], i.e., the unipotent radical U needs not to be trivial. It would be
interesting to see whether the converse of Lemma 0.4 holds, i.e., whether quasi-reductive F-groups
G are characterized by the property that Grg — Spec(F) is ind-proper.

Proof. We use the following principle: If H C G is an F-smooth, closed, normal subgroup, and if
Grg — Spec(F) is ind-proper, then Gry — Spec(F) is ind-proper as well. Indeed, the fppf (or
étale) quotient G/H is an affine scheme', and therefore Gry — Grg is representable by a closed
immersion, cf. [[IR, Prop. 3.9]. The principle shows that if Grg — Spec(F) is ind-proper, then
Gry — Spec(F) is ind-proper as well. Now by Tits’ structure theory for unipotent groups | ,
App. B] there exists a short exact sequence 1 — Us — U — U/Us — 1 where Uy is an F-split,
connected, unipotent, normal subgroup of U, and the quotient U/Us is an F-wound, unipotent

group, cf. | , Thm. B.3.4]. Note that Grg, , ~ colim,>¢ A% is an infinite-dimensional affine
space, so in particular not ind-proper. Hence, if Gry — Spec(F) is ind-proper, then our principle
implies that Uy is trivial, so that U is F-wound. O

Example 0.6. The following example is due to J. Lourenco. Let F = F,(¢) and consider the
inseparable field extension F = Fp(t%). Define the smooth, affine, connected F-group G by the
exact sequence

1= Gu,r = Resp (G, 7)) = G — 1.

Unfact, G/H is representable by a smooth, affine F-group scheme, cf. [ , §II, Thm. 6.8] (see [ ,
Def. A.1.11] for a discussion of the different notion of quotients).
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Then G is commutative, unipotent of dimension p—1 > 0 (cf. | , Exam. 1.1.3]), and therefore
not pseudo-reductive. However, since H}, (K ((2)), G,,) vanishes for any field extension K/F, it is
easy to see that the map of ind-schemes

GrResF//F(Gm‘p) — GrG

is surjective. As the source of this map is ind-proper over F and the target is separated, we see that
Grg — Spec(F) is ind-proper as well.

0.3. On Definition 3.3. In this definition, the Beilinson-Drinfeld affine Grassmannian Grg is de-
fined for any smooth, affine group scheme G over k[t] with (connected) reductive generic fibre.
The definition uses a spreading Gx of G over some smooth, affine, pointed k-curve (X, x), i.e., one
has @X,I ~ k[t] on completed local rings, and Gx — X is a smooth, X-affine group scheme with
Gx ®x (’A)Xym ~ G. A direct way of defining Grg — Spec(k[t]) without using a spreading Gx is as
follows.

We define Grg to be the functor on the category of k[t]-algebras R given by the isomorphism
classes of tuples (€, a) with

£ a G @y R[[z — t]-torsor on Spec(R[z — t]),

(0.4) o
a: 8|Spec(R((z—t))) ~ SO‘Spec(R((zft))) a trivialization,

where &, denotes the trivial torsor. Here z is an additional formal variable, and the map k[t] —
R[]z — t] is the unique k-algebra map with the property ¢ — z: the existence of this map is verified
by writing a power series in z as

Zaizi = Z bi(z—1)" € R[z—1],

i>0 i>0
where a; € k are some coefficients, and b; = b;({a;},t) € R are power series in ¢ determined by the
equation. The functor (0.4) agrees with Definition 3.3 defined using a spreading of G over some curve,
and is therefore representable by an ind-projective ind-scheme over k[[t]. The generic fibre of Grg is
canonically the affine Grassmannian for the reductive group scheme GRypy Fz — t] ~ Gop F[z — t]
(cf. Lemma 0.2) where I := k((t)) and G := G @[y F. Its special fibre is canonically the twisted
affine flag variety for G over k[t] in the sense of | .
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