Summer 2025

Prof. Sabrina Pauli Prof. Timo Richarz Aaron Rauchfuß

Algebraic Geometry I Exercise Sheet 9

Exercise 1:

Let p_1, \ldots, p_r be prime numbers and let $X_i = \operatorname{Spec} \mathbb{Z}_{(p_i)}$. Call η_i the generic point of X_i for $i = 1, \ldots, r$. Let X be the scheme you obtain from gluing the X_i along the η_i .

- 1. Show that $\mathcal{O}_X(X) = \bigcap_{i=1}^r \mathbb{Z}_{(p_i)}$.
- 2. Show that X is affine by showing that $X \to \operatorname{Spec} \mathcal{O}_X(X)$ is an isomorphism.

Exercise 2:

Show that $A[x_0, x_1, x_2] \to A[y_0, y_1]$ defined by $x_0 \mapsto y_0^2$, $x_1 \mapsto y_0 y_1$, $x_2 \mapsto y_1^2$ defines a morphism $i : \mathbb{P}^1_A \to \mathbb{P}^2_A$. Show that this is a closed embedding and find a homogeneous ideal $\mathfrak{a} \subset A[x_0, x_1, x_2]$ such that the image of i is $V_+(\mathfrak{a})$.

Exercise 3: Let $N = \mathbb{Z}^2$ be a lattice and $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^2$. We consider *toric varieties* constructed by gluing affine schemes associated to a combinatorial object called a *fan*. A strongly convex rational polyhedral cone in $N_{\mathbb{R}}$ is a subset

$$\sigma = \mathbb{R}_{>0} \cdot u + \mathbb{R}_{>0} \cdot v =: \operatorname{Cone}(u, v),$$

where $u, v \in N$ and $\sigma \cap (-\sigma) = \{0\}$. In this case (in dimension 2) the *faces* of such a cone are $\{0\}$, $\mathbb{R}_{\geq 0} \cdot u$, $\mathbb{R}_{\geq 0} \cdot v$ and σ .

A fan Σ in \mathbb{R}^2 is a finite collection of strongly convex rational polyhedral cones satisfying:

- Every face of a cone in Σ is also in Σ .
- The intersection of any two cones in Σ is a face of each.

Let $M = \text{Hom}(N, \mathbb{Z}) \cong \mathbb{Z}^2$. Given a cone $\sigma \subset N_{\mathbb{R}}$, its dual cone is

$$\sigma^{\vee} = \{ m \in M_{\mathbb{R}} \mid \langle m, n \rangle \ge 0 \text{ for all } n \in \sigma \}.$$

We define:

$$S_{\sigma} := \sigma^{\vee} \cap M, \quad U_{\sigma} := \operatorname{Spec} \mathbb{C}[S_{\sigma}]$$

where $\mathbb{C}[S_{\sigma}]$ is the monoid algebra (the powers of the variables are the elements in S_{σ} e.g. if $(a,b) \in S_{\sigma}$, then $x^a y^b \in \mathbb{C}[S_{\sigma}]$).

1. If σ and τ share a face $\theta = \sigma \cap \tau$, show that $\sigma^{\vee} \cup \tau^{\vee} = \theta^{\vee}$.

2. Show that

$$U_{\theta} \hookrightarrow U_{\sigma}, \quad U_{\theta} \hookrightarrow U_{\tau}$$

are open embeddings. This allows us to glue U_{σ} and U_{τ} along U_{θ} . Call the scheme you get from a fan Σ like this X_{Σ} .

3. Show that X_{Σ} has an open subscheme of the form $\operatorname{Spec} \mathbb{C}[x^{\pm 1}, y^{\pm 1}]$. This is an *algebraic* torus and this is the reason X_{Σ} is called a *toric variety*.

Exercise 4:

- 1. Let Σ_1 be the fan with 0-dimensional cone $\{0\}$, with rays (1-dimensional cones) generated by $u_1 = (1,0)$, $u_2 = (0,1)$ and $u_3 = (-1,-1)$ and 2-dimensional cones $\sigma_1 = \text{Cone}(u_1, u_2)$, $\sigma_2 = \text{Cone}(u_2, u_3)$ and $\sigma_3 = \text{Cone}(u_3, u_1)$. Let Σ_2 be the fan with with 0-dimensional cone $\{0\}$, with rays generated by $v_1 = (1,0)$, $v_2 = (0,1)$ and $v_3 = (-1,-2)$ and 2-dimensional cones $\tau_1 = \text{Cone}(v_1, v_2)$, $\tau_2 = \text{Cone}(v_2, v_3)$ and $\tau_3 = \text{Cone}(v_3, v_1)$. Draw the fans in \mathbb{R}^2 and convince yourself that they are fans.
- 2. Compute the U_{σ_i} and U_{τ_i} .
- 3. Compute the $U_{\sigma_i \cap \sigma_j}$ and conclude that $X_{\Sigma_1} \cong \mathbb{P}^2_{\mathbb{C}}$.
- 4. Show that $U_{\tau_1} \cong \mathbb{A}^2_{\mathbb{C}}, U_{\tau_2} \cong \mathbb{A}^2_{\mathbb{C}}$ and $U_{\tau_3} \cong \operatorname{Spec} \mathbb{C}[x, y, z]/(xz y^2)$.
- 5. Extra exercise: Show that $X_{\Sigma_2} \cong V_+(x_1x_3 x_2) \subset \mathbb{P}^3_{\mathbb{C}}$.