Summer 2025

Prof. Sabrina Pauli Prof. Timo Richarz Aaron Rauchfuß

Algebraic Geometry I Exercise Sheet 8

Exercise 1:

Let $X = \mathbb{Z}[x, y]/(x^2 + y^2 - 1).$

- 1. Describe $X(\mathbb{Z})$ and $X(\mathbb{R})$.
- 2. A Pythagorian triple consists of three relatively prime integers a, b, c, satisfying $a^2 + b^2 = c^2$. Relate Pythogorian triples to $X(\mathbb{Q})$.
- 3. Find all Pythagorian triples using geometry: Show that any line in the plane through (-1,0) except the vertical line intersects the unit circle (that is the zero locus of $x^2 + y^2 1$) in a second point with rational coordinates.

Exercise 2:

Let p be a prime number, let \mathbb{F}_p be the field with p elements, and let $\iota_p : \operatorname{Spec} \mathbb{F}_p \to \operatorname{Spec} \mathbb{Z}$ be the canonical morphism. We say that a ring A has characteristic p if $p \cdot 1 = 0$ in A. Let X be a scheme. Prove that the following conditions are equivalent:

- (i) The ring $\Gamma(X, \mathcal{O}_X)$ has characteristic p.
- (ii) For every open subset $U \subseteq X$, the ring $\Gamma(U, \mathcal{O}_X)$ has characteristic p.
- (iii) The unique scheme morphism $X \to \operatorname{Spec} \mathbb{Z}$ factors through ι_p .

If the conditions are satisfied, we say that X has characteristic p. Show that in this case the morphism $X \to \operatorname{Spec} \mathbb{F}_p$ is unique.

Are these conditions equivalent to

(iv) For all $x \in X$ the residue field k(x) has characteristic p.

Exercise 3:

- 1. Is $\operatorname{Spec} \mathbb{Q} \to \operatorname{Spec} \mathbb{Z}$ a closed embedding?
- 2. Show that $\mathbb{A}^1_{\mathbb{C}}$ is a closed subscheme of $\mathbb{A}^2_{\mathbb{R}}$. Can $\mathbb{A}^1_{\mathbb{R}}$ be a closed subscheme of $\mathbb{A}^n_{\mathbb{C}}$ for some n?
- 3. Let $f: X \to Y$ and $g: Y \to Z$ be closed embeddings. Show that $g \circ f: X \to Z$ is a closed embedding.

Exercise 4:

Let k be an algebraically closed field, $Z := V(T_1, \ldots, T_n) \subset \mathbb{A}_k^n$. Determine for which $n \ge 1$ the open subscheme $X := \mathbb{A}_k^n \setminus Z$ is affine.