Prof. Sabrina Pauli Prof. Timo Richarz Aaron Rauchfuß

Algebraic Geometry I

Exercise Sheet 7

Exercise 1:

Let X be a topological space and define \mathcal{F} by setting $\mathcal{F}(X) = 0, \mathcal{F}(\emptyset) = 0$ and $\mathcal{F}(U) = \mathbb{Z}$ for every other open subset. The restriction maps $\mathcal{F}(U) \to \mathcal{F}(V)$ equal to the identity if U and V are different from \emptyset and X and the zero map otherwise. Show that \mathcal{F} is a presheaf. Is \mathcal{F} a sheaf?

Exercise 2:

Let X be a topological space and $x \in X$. Denote $i : \{x\} \hookrightarrow X$ the inclusion. Let $\mathcal{F} = \mathbb{Z}_{\{x\}}$ be the constant sheaf on $\{x\}$. What is $i_*\mathcal{F}$?

Now let $p: X \to pt$ be the obvious map and let \mathcal{F} be the constant sheaf $\underline{\mathbb{Z}}_{pt}$ on pt. What is $p^*\mathcal{F}$ and $p^{-1}\mathcal{F}$?

Exercise 3:

Let $X = \{x, y, z\}$ and define the following topology on X: $\tau = \{\emptyset, \{x\}, \{x, y\}, \{x, z\}, X\}$. Further define a sheaf of rings \mathcal{O}_X on X by $\mathcal{O}_X(\{x\}) = \mathbb{Q}(t)$ and $\mathcal{O}(\{x, y\}) = \mathcal{O}(\{x, z\}) = \mathcal{O}_X(X) = \mathbb{Q}[t]_{(t)}$. Show that (X, \mathcal{O}_X) is a sheaf which is not isomorphic to an affine scheme.

Exercise 4:

Let X be a scheme of characteristic p. Show that there exists a unique morphism of schemes $(F, F^{\flat}) : X \to X$ such that on topological spaces, $F = \mathrm{id}_X$, and for open subsets $U \subseteq X$, F^{\flat} is the Frobenius endomorphism of $\Gamma(U, \mathcal{O}_X)$, $s \mapsto s^p$. This morphism is called the *absolute Frobenius* morphism of X.