Prof. Sabrina Pauli Prof. Timo Richarz Aaron Rauchfuß

Algebraic Geometry I Exercise Sheet 6

Exercise 1:

Let X be a topological space and let \mathcal{F} be the presheaf

 $U \mapsto \{f \colon U \to \mathbb{R} \mid f \text{ continuous and bounded } \}$

on X. Describe the sheafification $\tilde{\mathcal{F}}$ of \mathcal{F} .

Exercise 2:

Let $X \subseteq \mathbb{C}$ be an open subset.

- 1. Show that sending $U \subseteq X$ open to $\mathcal{O}_X(U) := \{f : U \to \mathbb{C} \text{ holomorphic}\}$ defines a sheaf on X.
- 2. For a holomorphic function $f: U \to \mathbb{C}$ let f' be its derivative. Show that $f \mapsto f'$ defines a surjective morphism $D: \mathcal{O}_X \to \mathcal{O}_X$ of sheaves. Give an example of an open set $X \subseteq \mathbb{C}$ such that $D: \mathcal{O}_X(X) \to \mathcal{O}_X(X)$ is not surjective.

Exercise 3:

Given two presheaves \mathcal{F} and \mathcal{G} on a topological space X, one may form a presheaf $\mathcal{H}om(\mathcal{F},\mathcal{G})$ by letting the sections over an open set U be given by

$$\mathcal{H}om(\mathcal{F},\mathcal{G})(U) := \operatorname{Hom}_{\operatorname{PSh}(X)}(\mathcal{F}|_U,\mathcal{G}|_U),$$

where $\mathcal{F}|_U$ and $\mathcal{G}|_U$ denote the restrictions of \mathcal{F} and \mathcal{G} to U, and $\operatorname{Hom}_{PSh(X)}$ denotes morphisms of presheaves of sets on U. If $V \subset U$, the restriction map sends $\varphi : \mathcal{F}|_U \to \mathcal{G}|_U$ to the restriction $\varphi|_V : \mathcal{F}|_V \to \mathcal{G}|_V$. Show that $\mathcal{Hom}(\mathcal{F}, \mathcal{G})$ is a sheaf whenever \mathcal{G} is a sheaf.

Exercise 4:

Let X be a topological space and let $(U_i)_i$ be an open covering of X. For all i, let \mathcal{F}_i be a sheaf on U_i . Assume that for each pair i, j of indices we are given isomorphisms $\varphi_{ij} : \mathcal{F}_{j|U_i \cap U_j} \to \mathcal{F}_{i|U_i \cap U_j}$ satisfying for all i, j, k the "cocycle condition"

$$\varphi_{ik} = \varphi_{ij} \circ \varphi_{jk}$$
 on $U_i \cap U_j \cap U_k$.

Show that there exists a sheaf \mathcal{F} on X together with isomorphisms $\psi_i : \mathcal{F} \xrightarrow{\sim} \mathcal{F}_{|U_i}$ for all i, such that $\psi_i \circ \varphi_{ij} = \psi_j$ on $U_i \cap U_j$ for all i, j. Show that \mathcal{F} and the ψ_i are determined up to unique isomorphism by these conditions.

Remark: We say that the sheaf \mathcal{F} is obtained by gluing the \mathcal{F}_i via the gluing data φ_{ij} , and that the sheaves on X form a *stack*.