Summer 2025

Algebraic Geometry I Exercise Sheet 4

Exercise 1:

Let k be an algebraically closed field.

- (1) Determine all open subsets of $\operatorname{Spec} k[T]$ in the Zariski topology.
- (2) If k is countable (e.g., $k = \overline{\mathbb{F}_p}$ or $k = \overline{\mathbb{Q}}$), show there exists a homeomorphism Spec $k[T] \cong$ Spec \mathbb{Z} , but no isomorphism of rings between k[T] and \mathbb{Z} .

Exercise 2:

Let $\varphi : A \to B$ be a ring homomorphism, and let $f : \operatorname{Spec} B \to \operatorname{Spec} A$ denote the map attached to φ .

(1) Let $\mathfrak{b} \subseteq B$ be an ideal. Prove that

$$\overline{f(V(\mathfrak{b}))} = V(\varphi^{-1}(\mathfrak{b})),$$

where $\overline{(-)}$ denotes the topological closure.

- (2) Assume that φ is surjective. Prove that f induces a homomorphism from Spec B onto $V(\ker(\varphi))$.
- (3) Prove that the image of f is dense in Spec A if and only if every element of ker(φ) is nilpotent.

Exercise 3:

Let (I, \leq) be a partially ordered set. An *inductive system* of sets indexed by I is a family of sets $X_i, i \in I$, together with maps $\varphi_{ji} : X_i \to X_j$ for all pairs $i, j \in I$ with $i \leq j$, such that

$$\varphi_{ii} = \mathrm{id}_{X_i}, \qquad \varphi_{kj} \circ \varphi_{ji} = \varphi_{ki}$$

for all $i \leq j \leq k$ in *I*. (In other words, this is just a functor from the *category* (I, \leq) to the category of sets, Set.)

A set C together with maps $\psi_i : X_i \to C$ such that $\psi_j \circ \varphi_{ji} = \psi_i$ for all $i \leq j$ (a cocone aka inductive cone for the system) is called a colimit (or inductive limit) if it satisfies the following universal property: For every set T together with maps $\xi_i : X_i \to T$ such that $\xi_j \circ \varphi_{ji} = \xi_i$ for all $i \leq j$ (i.e., another cocone), there exists a unique map $\chi : C \to T$ such that $\chi \circ \psi_i = \xi_i$ for all $i \in I$. The colimit is also denoted by $\operatorname{colim}_{i \in I} X_i$ or by $\varinjlim_{i \in I} X_i$. (The maps φ_{ji} and ψ_i are thus usually elided.) (1) Suppose that I is *directed* (also called *filtered*), i.e., for all $i, j \in I$, there exists $k \in I$ with $i, j \leq k$. Let (X_i, φ_{ji}) be an inductive system of sets, let U be the disjoint union

$$U = \bigsqcup_{i \in I} X_i$$

and consider the following relation on U: For $x, y \in U$, say $x \in X_i, y \in X_j$, we set $x \sim y$ if and only if there exists $k \geq i, j$ with $\varphi_{ki}(x) = \varphi_{kj}(y)$. Prove that \sim is an equivalence relation and that the set U/\sim of equivalence classes together with the natural maps $X_i \to U/\sim$ is a colimit of the system (X_i, φ_{ji}) . (We say that the colimit is a directed/filtered colimit.)

(2) Suppose again that I is directed, and additionally that each X_i is a subset of the set X, that $i \leq j$ if and only if $X_i \subseteq X_j$, and that in this case the map φ_{ji} is the inclusion map. Prove that the union $C := \bigcup_{i \in I} X_i$ with the inclusion maps $X_i \hookrightarrow C$ is a colimit of the X_i .

Exercise 4:

Let I be a partially ordered set.

- (1) Define the notion of *colimit* with index set I in the category of abelian groups, Ab.
- (2) Suppose that I is directed. Prove that all colimits over I in Ab exist. (In fact, any functor $X : I \to Ab$, where I is a small category has a colimit, but you don't need to prove this, though you're welcome to do so.)
- (3) Suppose that I is directed. Prove that the functor colim_i is exact on abelian groups, i.e.: Let $(A_i, \varphi_{ji}), (B_i, \psi_{ji}), (C_i, \xi_{ji})$ be inductive systems of abelian groups indexed by I. Suppose that for each $i \in I$, we are given short exact sequences

$$0 \to A_i \to B_i \to C_i \to 0$$

that are compatible with the maps $\varphi_{ji}, \psi_{ji}, \xi_{ji}$ in the sense that the obvious squares commute. Prove that these sequences induce a sequence

$$0 \to \operatorname{colim}_i A_i \to \operatorname{colim}_i B_i \to \operatorname{colim}_i C_i \to 0$$

that is again exact.

(4) Give an example that shows that colim_i is not exact on abelian groups, if I is the poset $(1 \ge 0 \le 2)$ (i.e., 1 and 2 are incomparable).