Summer 2025

Prof. Timo Richarz Aaron Rauchfuß

Algebraic Geometry I

Exercise Sheet 1

Let k be an algebraically closed field and denote by $\mathbb{A}^n(k) = k^n$ the affine n-space over k together with its Zariski topology.

Exercise 1:

- (1) Let $Z \subseteq \mathbb{A}^n(k)$ be a finite set. Prove that Z is Zariski closed in $\mathbb{A}^n(k)$.
- (2) Show that the Zariski topology on $\mathbb{A}^2(k)$ is not given by the product topology on $\mathbb{A}^1(k) \times \mathbb{A}^1(k)$.

Exercise 2:

Consider the following algebraic set $X := V(\mathfrak{a})$ in $\mathbb{A}^3(k)$ (with coordinates x, y, z), where $\mathfrak{a} := (xz - y^2, x^2 - y)$. Show that $X = V(x, y) \cup V(y - x^2, z - x^3)$ is the decomposition into irreducible components.

Exercise 3:

Let $X \subseteq \mathbb{A}^n(k)$ be an algebraic set with

 $I(X) := \{ f \in k[T_1, \dots, T_n] \mid f(x_1, \dots, x_n) = 0 \text{ for all } x = (x_1, \dots, x_n) \in X \}.$

and coordinate ring $A := \mathcal{O}(X) = k[T_1, \ldots, T_n]/I(X)$. Let $f \in A$ be any element. Prove that

$$D(f) := \{ x = (x_1, \dots, x_n) \in X \mid f(x_1, \dots, x_n) \neq 0 \}$$

is open in X. Show that

$$D(f) \subseteq \mathbb{A}^{n+1}(k), \quad x \mapsto (x_1, \dots, x_n, f(x_1, \dots, x_n)^{-1})$$

is again an algebraic set with coordinate ring $\mathcal{O}(D(f))$ given by the localisation $A[f^{-1}]$.

Exercise 4:

Identify the space $M_{2,2}(k)$ of 2×2 -matrices over k with $\mathbb{A}^4(k)$ (with coordinates a, b, c, d). Define ideals

$$\begin{aligned} \mathfrak{a} &:= (a^2 + bc, d^2 + bc, (a+d)b, (a+d)c) \subseteq k[a, b, c, d] \\ \mathfrak{b} &:= (ad - bc, a+d) \subseteq k[a, b, c, d] \end{aligned}$$

and denote their vanishing loci by $V(\mathfrak{a})$ and $V(\mathfrak{b})$ respectively. Prove that

$$X := V(\mathfrak{a}) = V(\mathfrak{b}) = \{A \in M_{2,2}(k) \mid A \text{ is nilpotent}\}$$

i.e., that a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is nilpotent if and only if $A^2 = 0$ if and only if the determinant and the trace of A are zero. Moreover, prove that rad $\mathfrak{a} = \mathfrak{b}$, but $\mathfrak{a} \neq \mathfrak{b}$. The affine algebraic set X is called the *nilpotent cone*.