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Organization. Here are the coordinates for the lecture:
• Tuesdays, 9:50–11:20 & Fridays, 11:40–13:20 in Room S215 401 and via

Zoom (Meeting-ID: 654 2542 5948, Password: Largest six digit number
divisible by 3.)

• First lecture: April 16, Last lecture: July 19
• A total of 28 lectures of 90 minutes each.
• Exam either oral or written depending on the number of participants.

Exercises. The exercises will be written in the present manuscript. Also, there
will be exercise sessions that provide room for discussing and solving the exercises
together other participants of the course. These will take place:

• Wednesdays, 11:40–13:20 in Room S215 401
• First session: April 24, Last session: July 17

Literature. The present lecture is based on handwritten notes by Torsten Wed-
horn. The authors thank him heartily for sharing them. Besides, there is a lot
of literature on the subject. Here is a selection that the author used (in part) to
prepare the lecture:

• The book of Kato–Kurokawa–Saito [KKS00] gives a motivated introduction
to elementary number theory with many historical comments. A must read!

• The book of Neukirch [Neu99] belongs to the classics. The content of the
lectures (very) roughly correspond to the material in Chapters I & II in
Neukirch’s book.
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• The second book of Kato–Kurokawa–Saito [KKS11] is great as well. The
lectures will work towards the contents of the book, but will probably not
cover much of it. However, the examples, especially in the beginning of the
book, are very instructive.

• Other excellent introductions to the topic include the books of Lang [Lan94],
Zagier [Zag81] and Cassels–Fröhlich [CF86] as well as the course notes of
Milne [Mil].

Comments. The present manuscript might not cover everything that will be dis-
cussed during the lecture and thus relevant for the final exam. However, it will
probably contain most of it.

Any comments regarding typos, mistakes, presentation of the material etc. are
highly welcome! Please talk to me during the lecture.

1. Introduction

Algebraic number theory, or from the author’s perspective, arithmetic algebraic
geometry is a branch of mathematics that deals with solution spaces of polynomial
equations. Solutions in the integers Z (or, the rational numbers Q) are of particular
interest. Here is a famous problem:

Problem 1.1. Find all x, y, z ∈ Z that satisfy the quadratic equation x2+y2 = z2.

Here are all triples, up to multiples, with 1 ≤ x, y, z ≤ 100:
(3, 4, 5) (5, 12, 13) (8, 15, 17) (7, 24, 25)

(20, 21, 29) (12, 35, 37) (9, 40, 41) (28, 45, 53)

(11, 60, 61) (16, 63, 65) (33, 56, 65) (48, 55, 73)

(13, 84, 85) (36, 77, 85) (39, 80, 89) (65, 72, 97)

For example, 32 + 42 = 52 and 52 + 122 = 132 and so on. Such triples are called
Pythagorean triples. Each corresponds to a right triangle with hypothenuse of
length z and the two other sides of length x and y respectively. We will see soon
that there are infinitely many Pythagorean triples and how to parametrize them.

Geometrically, the problem asks to find all lattice points lying on the yellow conic
depicted below. That is, put the standard lattice Z3 inside R3 and ask yourself at
which points does the yellow conic intersect the lattice points.

Before discussing the solution to Problem 1.1, let us look at another famous
problem. Namely, we enlarge the degree of the variables in the former equation:

Problem 1.2. Let n ≥ 3. Find all x, y, z ∈ Z that satisfy the equation xn+yn = zn.

The outcome is completely different: There are no triples with xyz ̸= 0. Pierre
de Fermat (17th century) wrote in his copy of Diophantus’s arithmetica that he
had a proof that was, however, too large to fit in the margin. Fermat’s notes of
the proof were never found. It took more than 350 years and the work of many
mathematicians until the proof was finally completed by Andrew Wiles in 1994.
That this particular problem, which goes under the name “Fermat’s last theorem”, is
so famous seems rather the result of many failed attempts to come up with solutions
but less the importance of this specific equation for number theory. However, by
trying to solve Problem 1.2 a lot of beautiful mathematics was developed during
the past centuries, some of which we will see during the lectures. Let us now come
back to studying quadratic equations in more detail.
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Conics. Let a, b, c ∈ Z. Consider the following equation:

(1.1) ax2 + by2 = c

Such equations are examples of conics, and you can go to WolframAlpha, for ex-
ample, to draw pictures in R2 for particular choices of a, b and c.

Question 1.3. Are there x, y ∈ Z (or, x, y ∈ Q) such that ax2 + bx2 = c?

Or, even better: Describe the solution sets {(x, y) | ax2 + bx2 = c} with (x, y) in
Z2 and in Q2 respectively. We will see that if a solution exists, then it is not hard
to describe the solution sets. However, the existence of a solution is more involved
as we will see soon. Let us consider the following cases:

(A) Unit circle and other conics with solutions. Assume a = b = c = 1. Then,
Equation (1.1) takes the form

(1.2) x2 + y2 = 1,

which describes the unit circle in R2. Solutions in Z2 are easily determined to be
{(0,±1), (±1, 0)}. Solutions in Q2 are more interesting:(

3

5

)2

+

(
4

5

)2

= 1 ⇐⇒ 32 + 42 = 52

Thus, by clearing denominators in x, y ∈ Q, we see that rational solutions of the
unit circle (1.2) correspond to the Pythagorean triples from Problem 1.1. Now, if
(x, y) ∈ Q2 lies on the unit circle (1.2) and if (x, y) ̸= (−1, 0), then the slope of the
line joining (−1, 0) and (x, y) is y

x+1 .

Exercise 1.4. Show that the map (x, y) 7→ y
x+1 induces a bijection{

(x, y) ∈ Q2 | x2 + y2 = 1
} 1:1−→ Q ∪ {∞}.

More generally, assume that abc ̸= 0 and that ax2 + by2 = c has some solution
P := (x0, y0) ∈ Q2. Then, one has the following bijection:{

Q = (x, y) ∈ Q2 | ax2 + by2 = c
} 1:1−→ (Q ∪ {∞})\{at most 2 elements}
Q 7−→ slope of line PQ joining P and Q

Here, for P = Q, the line PQ is the tangent line to the real conic {(x, y) ∈ R2 | ax2+
by2 = c}, and the slope is ∞ if PQ is parallel to the y-axis (as is the case for
(x, y) = (−1, 0) in Exercise 1.4). The phrase “at most 2 elements” means that we
remove ±

√
−ab from Q∪{∞} if −ab is a square of a rational number, otherwise we

remove nothing from Q ∪ {∞}. The reader is referred to [KKS00, Chapter 2] for
more on this subject.

So, we conclude that if a rational solution to (1.1) exists, then there are infinitely
many such solution and we can parametrize them explicitly. However, the existence
of a rational solution is more subtle as we will see now.

(B) Existence of solutions. Here we will only focus on special cases leaving the rest
to the curious reader. In the following, let p be an odd1 prime number.

Proposition 1.5. There exist (x, y) ∈ Z2 satisfying
(1) the equation x2 + y2 = p if and only if p ≡ 1 mod 4,

1We leave it to the reader to adjust the statements in the case p = 2.
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(2) the equation x2 + 2y2 = p if and only if p ≡ 1 or 3 mod 8,
(3) the equation x2 + 3y2 = p if and only if p ≡ 1 mod 3, and
(4) the equation x2 − 2y2 = p if and only if p ≡ 1 or 7 mod 8.

In each case, if there is no integral solution, then there is no rational solution as
well.

We will focus on Part (1) of the proposition. For a proof of Parts (2), (3)
and (4) the reader is referred to [KKS00, Chapter 4]. The conditions on p for
the existence of solutions are examples of so-called “reciprocity laws”. Arguably,
the most complete picture of such laws we have of today is given by a web of
theorems and conjectures going under the name of Langlands program, named after
the Canadian mathematician Robert Langlands (still alive). We refer to Emerton’s
survey for a great overview [Eme21].

Exercise 1.6. Let x, y ∈ Z. Show that if x2+y2 is an odd integer, then x2+y2 ≡ 1
mod 4, i.e., x2 + y2 = 4k + 1 for some k ∈ N.

The exercise solves the “only if” direction in Part (1). For the converse direction,
we consider the ring Z[i] = {x+iy ∈ C | x, y ∈ Z} where i ∈ C is a fixed square root
of −1. The ring, named after Carl-Friedrich Gauss, is called Gaussian integers. In
this ring, we have a factorization

x2 + y2 = (x+ iy)(x− iy)
for all x, y ∈ Z. Fortunately, factorizations in Z[i] are well-behaved. The follow-
ing lemma implies that Z[i] is a principal ideal domain, in particular, an unique
factorization domain:

Lemma 1.7. The ring Z[i] is euclidean.

Proof. The ring Z[i] is a domain as a subring of C. The square of the complex
absolute value induces a norm map N(−) := | − |2 : Z[i] → N, a + ib 7→ a2 + b2

that makes Z[i] into an euclidean ring: for a, b ∈ Z[i] with b ̸= 0 let q ∈ Z[i] such
that |ab − q| is minimal. Here we think about Z[i] ⊂ C as defining the vertices of
a grid in the complex plane with mesh size 1. Since the mesh size is 1, we have
|ab − q| ≤

√
2
2 = 1√

2
, and so N(ab − q) = |

a
b − q|

2 ≤ 1
2 . This implies

N(a− qb) ≤ N(b)

2
< N(b).

Hence, we reached the desired division with remainder a = qb+r with N(r) < N(b)
for r := a− qb. □

In particular, every element of Z[i] is a product of prime elements. Examples of
such prime factorizations are 5 = 22 + 12 = (2 + i)(2− i) and 13 = 32 + 22 = (3 +
2i)(3−2i). By the general theory of unique factorization domains, the factorizations
are unique up to multiplication by units.

Exercise 1.8. Show that Z[i]× = {±1,±i}. Deduce that an element a ∈ Z[i] is
prime if its norm N(a) is a prime number.

The exercise shows that if p = (x+ iy)(x− iy) for some x, y ∈ Z[i], then x± iy
are the prime factors of p in Z[i], i.e., p is not a prime element in the Gaussian
integers.

Lemma 1.9. Let Fp be the finite field with p elements. The following are equivalent:
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(1) There exist x, y ∈ Z such that p = (x+ iy)(x− iy) in Z[i].
(2) The element p is not prime in Z[i].
(3) The polynomial T 2 + 1 is not irreducible in Fp[T ].
(4) The element −1 is a square in Fp.

Proof. We leave the equivalence of (1) and (2) to the reader (Hint: For the impli-
cation (2) =⇒ (1), consider the prime factorization of p in Z[i] and use the norm
to conclude that p has exactly two prime factors.). For the equivalence of (2) and
(3) we note that there are ring isomorphisms

(1.3) Z[i]/pZ[i] i← [T
= Z[T ]/(T 2 + 1, p) = Fp[T ]/(T 2 + 1).

Thus, p is prime Z[i] if and only if the ideal pZ[i] is a prime ideal if and only if the
ring (1.3) is a domain if and only if T 2 + 1 is irreducible. Finally, condition (3) is
equivalent to (4) because a quadratic polynomial over a field is not irreducible if
and only if it has a zero. □

Thus, we are reduced to studying when −1 is a square in Fp.

Exercise 1.10. Show that the following sequence of abelian groups

1 −→ (F×p )2
inclusion−→ F×p

x 7→x
p−1
2−→ {±1} −→ 1

is exact where (F×p )2 = {x2 | x ∈ Fp}.

For an element x ∈ F×p , the Legendre symbol is defined as

(1.4)
(
x

p

)
:= x

p−1
2

1.10
=

{
1, if x is a square in Fp
−1, else.

Now, a calculation shows that (−1p ) = 1 if and only if p ≡ 1 mod 4, which finishes
the proof Proposition 1.5(1). More generally, the Legendre symbol (xp ) can be
calculated using the quadratic reciprocity law [KKS00, Chapter 2.2, Theorem 2.2]
proved by Gauss in 1796.

Upshot. Given a finite field extension K ⊃ Q, also called a number field, its ring
of integers is defined as

(1.5) OK = {a ∈ K | a integral over Z},

where an element a ∈ K is called integral if there exists a monic (i.e., the leading
coefficient is equal to 1) polynomial f ∈ Z[T ] with f(a) = 0. For example, for
K = Q[i] = {x+ iy | x, y ∈ Q}, one can show that OK = Z[i], which is the ring of
Gaussian integers that popped up while studying Proposition 1.5(1). Likewise, (2),
(3) and (4) in Proposition 1.5 naturally lead to the number fields Q[

√
−2], Q[

√
−3]

and Q[
√
2] respectively.

Thus, a major part of this course will consist in studying prime factorizations
in OK for general number fields K. A problem, to be addressed in the lecture, is
that the ring OK is usually not a unique factorization domain, in particular, not a
principal ideal domain and not euclidean. We have to understand how far OK is
from admitting unique factorizations into primes and develop the necessary theory
in order to deal with such rings.
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2. Dedekind domains

The number rings OK from (1.5) are examples of Dedekind domains, which are
generalizations of principal ideal domains. An important technical observation is
that their localizations at non-zero prime ideals are discrete valuation rings. In the
final subsection, we define the so-called fundamental exact sequence which measures
the failure of OK from being a principal ideal domain:

§2.1 Discrete valuation rings
§2.2 Dedekind domains
§2.3 Fundamental exact sequence

2.1. Discrete valuation rings. All rings are assumed to be unital and commu-
tative. Recall that every ring R ̸= 0 has a maximal ideal, and that R is called local
if it has exactly one maximal ideal. Further, a ring R is called a domain if (0) is
a prime ideal in R, i.e., ab = 0 implies a = 0 or b = 0 for all a, b ∈ R. Domains
are called principal ideal domains if, in addition, every ideal can be generated by a
single element. We note that a domain with exactly one prime ideal is a field.

Definition 2.1. A discrete valuation ring is a local principal ideal domain that is
not a field.

Remark 2.2. Let R be a discrete valuation ring. Any generator π ∈ R of the
maximal ideal is called a uniformizer. Then, π is, up to multiplication by units, the
unique prime element in R. Since R is a unique factorization domain, every non-zero
element a ∈ R can be written in the form a = uaπ

na for unique elements ua ∈ R×
and na ∈ Z≥0. In particular, we can define a multiplicative map v : R − {0} → Z
by v(a) := na. It can be extended to the fraction field K := Frac(R) by the rule
v(ab ) = v(a)− v(b) for non-zero a, b ∈ R, and then defines a group homomorphism
v : K× → Z such that v(a + b) ≥ min{v(a), v(b)} for all a, b ∈ K with a, b, a + b
non-zero. We have R− {0} = {a ∈ K× | v(a) ≥ 0}.

Definition 2.3. A valuation (of rank 1) on a field K is a group homomorphism
v : K× → R such that v(a + b) ≥ min{v(a), v(b)} for all a, b ∈ K with a, b, a + b
non-zero. It is discrete if v(K×) = αZ for some non-zero α ∈ R (⇐⇒ v(K×) ⊂ R
non-zero, discrete subgroup), and normalized if v(K×) = Z.

We extend the valuation v : K → R∪{∞} by setting v(0) :=∞. By convention,
∞ is bigger than all elements of R.

Proposition 2.4. Let K be a field, and v : K → R ∪ {∞} a valuation. Then,

OK := {a ∈ K | v(a) ≥ 0}

is a local subring with maximal ideal m = {a ∈ K | v(a) > 0} and unit group
O×K = {a ∈ K | v(a) = 0}. Further, for all a ∈ K× either a ∈ OK or a−1 ∈ OK
(or, both). If v is discrete, then OK is a discrete valuation ring.

Proof. Let a, b ∈ OK , i.e., a, b ∈ K and v(a), v(b) ≥ 0. Then, v(ab) = v(a)+v(b) ≥ 0
and v(a+b) ≥ min{v(a), v(b)} ≥ 0, so ab, a+b ∈ OK . As v(1) = v(1·1) = v(1)+v(1)
we see v(1) = 0 and so 1 ∈ OK . This shows that OK is a (necessarily commutative,
unital) subring of K, hence a domain.

The equality O×K = {a ∈ K | v(a) = 0} is checked using v(a−1) = −v(a) for
a ∈ K×. In particular, for every ideal I ⊂ OK , we have either I ⊂ m or I = OK
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(the latter happens if there exists a ∈ I with v(a) = 0, so a ∈ O×K by the description
of units). This shows that m is the unique maximal ideal in OK .

Next, if a ∈ K×, then v(a) ≥ 0 or v(a) ≤ 0. In the latter case, a ̸= 0 and
v(a−1) = −v(a) ≥ 0, i.e., a−1 ∈ OK . We also see K = Frac(OK).

Finally, assume v is discrete and choose α ∈ R>0 with V (K×) = αZ. Since
v(OK\{0}) = αZ≥0, the domain OK is not a field. Choose π ∈ m of minimal
valuation, i.e., v(π) = α. Let I ⊂ OK be an ideal. We claim that I = (πn) where
n ∈ Z≥0 is minimal such that nα ∈ v(I\{0}), the latter regarded as a subset of
αZ≥0. Indeed, if a ∈ I\{0}, then v(aπ−n) = v(a) − v(πn) = v(a) − nα ≥ 0, i.e.,
a = πnb for some b ∈ OK . This shows I ⊂ (πn). If a ∈ I\{0} is of minimal
valuation, then v(a) = nα = v(πn) by construction and so πn = ua for some
u ∈ O×K . This shows πn ∈ I. In particular, OK is a principal ideal domain. □

Example 2.5. (1) For a prime number p ∈ Z, the ring Z(p) = {ab ∈ Q | a, b ∈
Z, p ∤ b} is a discrete valuation ring with uniformizer p. The associated
valuation vp : Q → Z ∪ {∞} is called the p-adic valuation. We note that
Z(p) is the localization of Z at the prime ideal (p).

(2) Let k be a field. For an irreducible polynomial p ∈ k[T ], the ring k[T ](p) =
{ab ∈ k(T ) | a, b ∈ k[T ], p ∤ b} is a discrete valuation ring with uniformizer
p. It is the localization of k[T ] at the prime ideal (p).

The following exercise generalizes the examples:

Exercise 2.6. Let R be a principal ideal domain, and p ∈ R a prime element.
Show that R(p) = {ab ∈ Frac(R) | a, b ∈ R, p ∤ b} is a discrete valuation ring with
uniformizer p. It is the localization of R at the prime ideal (p).

Reminder 2.7. Some of the following properties might be known from algebra
lectures during the past semesters:

(1) A ring R is called noetherian if every ideal is finitely generated.
(2) The (Krull) dimension n ∈ N ∪ {∞} of a ring R is the supremum of the

length of strict chains of prime ideals p0 ⊂ p1 ⊂ . . . ⊂ pn. It is denoted
dim(R) := n.

(3) A domain R is called normal (or, integrally closed) if the inclusion

R ⊂ {a ∈ Frac(R) | ∃f ∈ R[T ] monic: f(a) = 0}
is an equality. A domain R is normal if and only if the localizations Rp are
normal for all prime ideals p ⊂ R if and only if the localizations Rm are
normal for all maximal ideals m ⊂ R, see [Sta18, 030B].

One has the following implications:

DVR =⇒ euclidean =⇒ PID =⇒ UFD =⇒ normal domain =⇒ domain

Here DVR:=“discrete valuation ring”, UFD:=“unique factorization domain” and
PID:=“principal ideal domain”. In addition, every principal ideal domain is noe-
therian of dimension ≤ 1.

Theorem 2.8. For a ring R, the following are equivalent:
(1) The ring R is a discrete valuation ring.
(2) The ring R is a domain, and there exists a discrete valuation v : Frac(R)→

R ∪ {∞} such that

R = {a ∈ Frac(R) | v(a) ≥ 0}.

https://stacks.math.columbia.edu/tag/030B
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(3) The ring R is noetherian, local, has dimension > 0 and its maximal ideal
is principal.

(4) The ring R is a noetherian, local, normal domain of dimension 1.

The proof is given below and uses the following result from commutative algebra.
We apply this result to local rings R, in which case the Jacobson radical Jac(R)
appearing below is the maximal ideal.

Lemma 2.9 (Krull’s intersection theorem). Let R be a noetherian ring and I ⊂
Jac(R). Then, for any finitely generated R-module M , one has⋂

n≥1

InM = {0}.

Proof. See [Sta18, 00IP, 00IQ] for details. □

Proof of Theorem 2.8. (1)⇐⇒ (2): Follows from Remark 2.2 and Proposition 2.4.
(1) =⇒ (3) & (1) =⇒ (4): Follows from Reminder 2.7.
(3) =⇒ (2): Let (π) ⊂ R be the maximal ideal. Then, π is not nilpotent: indeed,

if πn = 0 for some n ∈ Z≥1, then π is contained in every prime ideal and so is the
maximal ideal (π), which contradicts the assumption dim(R) > 0.

Now, for a ∈ R define

v(a) := sup{n ∈ N | a ∈ (πn)} ⊂ N ∪ {∞}.

Lemma 2.9 shows that a = 0 if and only if v(a) = ∞. Also, v(a) = n ∈ N if
and only if a = uπn for some u ∈ R\(π) = R×. Using this, one checks that R
is a domain, v(ab) = v(a) + v(b) and v(a + b) ≥ min{v(a), v(b)}. Then, v can be
extended to the fraction field Frac(R)× by the rule v(ab ) = v(a)− v(b) for non-zero
a, b ∈ R. It defines a discrete valuation such that R = {a ∈ Frac(R) | v(a) ≥ 0}.

(4) =⇒ (3): We need to show that the maximal ideal m ⊂ R is principal. Since
R is a domain with dim(R) = 1, the ideals (0) ⊊ m are the only prime ideals in R.
Hence, for any non-zero a ∈ m, we have√

(a) =
⋂
a∈p

p = m

where the intersection runs over all prime ideals p ⊂ R with a ∈ p. Since R is
noetherian, the ideal m is finitely generated. So, there exists n ≥ 1 such that
mn ⊂ (a). Assume n is minimal with the property, i.e., mn−1 ̸⊂ (a). Choose
b ∈ mn−1\(a) and set π := a

b ∈ K := Frac(R). We claim that m = (π). For this,
we observe the following properties:

(1) π−1m = b
am ⊂

1
am

n ⊂ R
(2) π−1 ̸∈ R (indeed, π−1 = b

a ∈ R =⇒ b ∈ (a) )
(3) π−1m ̸⊂ m (hence, π−1m = R by (1) and so m = (π))

Property (1) follows from the definition and (2) is proven above. For (3), assume
π−1m ⊂ m. Then, we have an endomorphism m→ m, x 7→ π−1x. Since m is finitely
generated, we can apply Cayley-Hamiliton. So, there exist r ∈ N and a1, . . . , ar ∈ R
with (π−1)r + a1(π

−1)r−1 + · · · + ar = 0, i.e., π−1 is integral over R. Since R is
assumed to be normal, we get π−1 ∈ R, which contradicts (2). Hence, (3) holds,
which shows the claim and finishes the proof. □

https://stacks.math.columbia.edu/tag/00IP
https://stacks.math.columbia.edu/tag/00IQ
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2.2. Dedekind domains.

Definition 2.10. A noetherian domain R is called Dedekind domain if for every
prime ideal p ̸= (0) the localization Rp is a discrete valuation ring.

Remark 2.11. If R is a Dedekind domain, then dim(R) ≤ 1. In this case,
dim(R) = 0 if and only if R is a field. If dim(R) = 1, then the prime ideals
p ̸= 0 are exactly the maximal ideals of R. Further, Exercise 2.6 shows that all
principal ideal domains are Dedekind domains.

Theorem 2.12. Let R be a Dedekind domain and M a finitely generated R-module.
Then, the following are equivalent:

(1) The module M is torsion free, i.e., for all a ∈ R, 0 ̸= m ∈M with am = 0
one has a = 0.

(2) The module M is projective.
(3) The localization Mp is a free Rp-module for all prime ideals p ⊂ R.

In this case, the number rankRp
(Mp) in (3) is independent of p and equal to

dimK(M ⊗R K) where K = Frac(R) is the fraction field.

For the proof we use the following result from commutative algebra:

Lemma 2.13. Let R be a noetherian ring and M a finitely generated R-module.
Then, the following are equivalent:

(1) The R-module M is projective.
(2) The localization Mp is a free Rp-module for all prime ideals p ⊂ R.
(3) The localization Mm is a free Rm-module for all maximal ideals m ⊂ R.

Moreover, if there exists no idempotent e (i.e., e2 = e) with e ̸= 0, 1, then the map
{prime ideals} → N, p 7→ rankRp

(Mp) is constant. It is called the rank of M .

Proof. See [Sta18, 00NX] for details. Note that over noetherian rings any finitely
generated module is finitely presented. So, the conditions in loc. cit. are satisfied.

□

Exercise 2.14. Let R domain, K = Frac(R) and M an R-module. Show the
following statements:

(1) The module M is torsion free if and only if M → M ⊗R K,m 7→ m ⊗ 1 is
injective.

(2) If M torsion free and S ⊂ R\{0} multiplicative subset (i.e., 1 ∈ S and S
closed under multiplication), then M [S−1] is a torsion free R[S−1]-module.

(3) The module M is torsion free if and only if Mp is a torsion free Rp-module
for all prime ideals p ⊂ R if and only if Mm is a torsion free Rm-module for
all maximal ideals m ⊂ R.

Proof of Theorem 2.12. The final statement on the rank follows from Lemma 2.13
and the fact that the fraction field K is the localization of R at the prime ideal (0),
i.e., K = R(0).

(2)⇐⇒ (3): Follows from Lemma 2.13.
(1) ⇐⇒ (3): Using Exercise 2.14, we can pass to Rp for p ⊂ R prime ideal and

assume without loss of generality that R is a principal ideal domain. In this case, M
is torsion free if and only if M is free is well-known from “Introduction to Algebra”,
see also [Sta18, 0AUW] for details. □

https://stacks.math.columbia.edu/tag/00NX
https://stacks.math.columbia.edu/tag/0AUW
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Definition 2.15. Let R domain and K := Frac(R).
(1) A fractional ideal of R is a finitely generated R-submodule I of K such that

I ̸= 0.
(2) For a fractional I of R, set

I−1 = {a ∈ K | aI ⊂ R}.
Then, I is called invertible if I−1I = R.

The name “fractional ideal” is justified by the following observation: For any
fractional ideal I, there exists some x ∈ R such that xI ⊂ R. Indeed, if I generated
by a1

b1
, . . . , anbn with ai, bi ∈ R, bi ̸= 0, then we can take x := b1 · . . . · bn. In fact, we

have I = x−1a where a = xI is an ideal in R.

Example 2.16. Let R be a discrete valuation ring and π ∈ R a uniformizer.
Then, the fractional ideals are πnR for n ∈ Z. One has (πnR)−1 = π−nR and
every fractional ideal is invertible.

Exercise 2.17. Let I be an invertible fractional ideal of a Dedekind domain R.
Then, I is a projective R-module and of rank 1.

Theorem 2.18. Let R be a domain. Then, the following are equivalent:
(1) The ring R is a Dedekind domain.
(2) The ring R is noetherian, normal and of dimension ≤ 1.
(3) Every fractional ideal is invertible.
(4) Every non-zero ideal of R is a finite product of maximal ideals.

Moreover, the factorization in (4) is unique up to order.

We only use and prove the following impliciations:

(2.1) (1) ⇐⇒ (2) =⇒ (3) and (1) =⇒ (4) + uniqueness

For the other implications, the reader is referred to [Mat80, Theorem 11.6].

Proof of (1) ⇐⇒ (2) =⇒ (3). (1) ⇐⇒ (2): Since a domain of dimension 0 is
field, we may assume dim(R) = 1. Then, we can replace R by Rm for a maximal
ideal m (being normal can be tested on localizations by Reminder 2.7(1)). In this
case, the equivalence of (1) and (2) follows from Theorem 2.8.

(2) =⇒ (3): Let I ⊂ R be a fractional ideal. Then, I−1I ⊂ R by definition and
equality can be checked after localization. So, we may assume R to be either a field
or a discrete valuation ring, where the equality is clear. □

To prove “(1) =⇒ (4) + uniqueness”, the following definition is useful:

Definition 2.19. Let R be a Dedekind domain, K := Frac(R) and p ̸= 0 a prime
ideal.

(1) The p-adic valuation vp on K is the normalized valuation defined by the
discrete valuation ring Rp.

(2) For a fractional ideal I on R, one defines

vp(I) := vp(xp) ∈ Z,
where Ip = xpRp for some xp ∈ K×.

Proposition 2.20. Let R be a Dedekind domain . Then, for fractional ideals I, J
and prime ideals p ̸= 0 in R, the following hold:
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(1) vp(IJ) = vp(I) + vp(J)
(2) vp(I + J) ≥ min{vp(I), vp(J)}
(3) vp(xR) = vp(x) for all x ∈ K×

In addition, one has vp(I) ̸= 0 for only finitely many prime ideals p ̸= 0 in R.

Proof. Parts (1), (2) and (3) are left to the reader. For the final statement, write
I = x−1a for some x ∈ R and some ideal a ⊂ R. Using (1) and (3), we may assume
that I is an ideal in R. The proposition follows from Lemma 2.21 below. □

Lemma 2.21. Let R be a Dedekind domain, and 0 ̸= a ⊂ R an ideal. Then, there
exist only finitely many prime ideals containing a.

Proof. The map I 7→ I−1 induces a bijection

{I ⊂ R ideal | a ⊂ I} 1:1−→ {I fractional ideal of R | R ⊂ I ⊂ a−1}.

Since a−1 is a noetherian R-module and the bijection reverses inclusions, every
descending chain of ideals of R containing a becomes stationary. Now assume
a ⊂ p1, p2, . . . for pairwise distinct prime ideals 0 ̸= pi ⊂ R. Then, the sequence

p1 ⊃ p1 ∩ p2 ⊃ . . . ⊃ p1 ∩ . . . ∩ pr ⊃ . . .

becomes stationary, i.e, for r >> 0 we have pr+1 ⊃ p1 ∩ . . . ∩ pr ⊃ p1 · . . . · pr.
Since all pi are prime ideals, there exists some j ∈ {1, . . . , r} such that pj ⊂ pr+1.
As dim(R) = 1 and both ideals are ̸= 0, they must be maximal and hence, pj =
pr+1 . □

The next result finishes the proof of (2.1). It is a generalization of the funda-
mental theorem of arithmetic (i.e., every number can be written as a product of
prime numbers) to Dedekind domains:

Corollary 2.22. Let R be a Dedekind domain. Every fractional I of R can be
written uniquely in the form

I =
∏
p̸=0

pvp(I)

where the product runs over non-zero prime ideals in R.

Proof. First off, the product is finite by Proposition 2.20. So, I ′ :=
∏

p̸=0 p
vp(I) is a

well-defined fractional ideal. Since Ip = I ′p for all prime ideals p ⊂ R by construc-
tion, we have I = I ′. (Hint: (I + I ′)/I is an R-module all whose localizations are
zero, so it is zero [Sta18, 00HN].) □

2.3. Fundamental exact sequence.

Definition 2.23. Let R be a Dedekind domain. Then, the divisor group of R is
the set

Div(R) := {I fractional ideal of R}.

Lemma 2.24. Let R be a Dedekind domain. Then, Div(R) has the structure of an
abelian group under multiplication. It is canonically isomorphic to the free abelian
group with basis {p | 0 ̸= p ⊂ R prime ideal}.

Proof. This follows from Theorem 2.18 and Corollary 2.22. □

Definition 2.25. Let R be a Dedekind domain with fraction field K.

https://stacks.math.columbia.edu/tag/00HN
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(1) A fractional ideal I ∈ Div(R) is called principal if it is of the form xR for
some x ∈ K×, i.e., if it lies in the image of the group homomorphism

δ : K× → Div(R), x 7→ xR.

Set PrincDiv(R) := Im(δ) ⊂ Div(R) the subgroup of principal fractional
ideals.

(2) The (divisor) class group of R is the quotient Cl(R) := Div(R)/PrincDiv(R),
i.e., the cokernel of δ.

Exercise 2.26. For those who have attended the algebraic geometry lectures: Show
that Cl(R) agrees with the Picard group of R.

Theorem 2.27. Let R be a Dedekind domain with fraction field K. Then, the
sequence

1→ R× → K×
δ→ Div(R)→ Cl(R)→ 0

is exact. It is called the fundamental exact sequence.

Proof. This follows from the definition. □

Proposition 2.28. Let R be a Dedekind domain. Then, the following are equiva-
lent:

(1) One has Cl(R) = 0.
(2) The ring R is a principal ideal domain.
(3) The ring R is a unique factorization domain.

Proof. (1) ⇐⇒ (2): This follows because every fractional ideal I is of the form xa
for some x ∈ Frac(R)× and some ideal a ⊂ R.

(2) =⇒ (3): A fact from the algebra lectures during the past semesters.
(3) =⇒ (2): See [Bourbaki, Comm. Alg., VII, §3.2, Theorem 1] for details. □

Example 2.29. We will see later that R = Z[
√
−5] is a Dedekind domain. The

ideal m = (2, 1 +
√
−5) in R is maximal: indeed, under X =

√
−5 one has R/m ∼=

Z[X]/(X2+5, 2, 1+X), which is the field with 2 elements. On the other hand m is
not principal: indeed, if m = (a +

√
−5b) for some a, b ∈ Z, then by taking norms

(compare with the proof of Lemma 1.7) we get equalities of ideals in Z:

2Z = (22, 12 + 5)Z = (a2 + 5b2)Z
Since the equation ±2 = a2 + 5b2 has no solutions with (a, b) ∈ Z, we get a
contradiction and m cannot be principal. Also, one computes m2 = 2Z. Hence,
m defines a non-trivial, 2-torsion element of Cl(R). In fact, one can show that
Z/2Z ∼= Cl(R), 1 7→ m. So, the failure of R to be a principal ideal domain is
–informally speaking– as small as possible.

Example 2.30. Here is a more geometric example: One can check that R =
R[X,Y ]/(X2 + Y 2 − 1) is a 1-dimensional normal noetherian domain, hence a
Dedekind domain. The ideal m = (x − 1, y) in R is maximal because R/m = R
is a field. One can show that m is not principal (in fact, as a projective rank 1
module it defines a line bundle on the real unit circle, which is the Möbius stripe)
and that m2 = (X − 1). Hence, m defines a non-trivial, 2-torsion element of Cl(R).
In particular, Cl(R) ̸= 0.

On the other hand, R ⊗R C = C[X,Y ](X2 + Y 2 − 1) ∼= C[U, V ]/(UV − 1) =
C[U ][U−1] with U = X + iY and V = X − iY , which is a principal ideal domain
because it is a localization of C[U ]. Hence, Cl(R⊗R C) = 0.
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3. Extensions

Starting from a finite field extension K ⊂ Q, we aim to show that its ring of
integers OK defined in (1.5) is a Dedekind domain. This leads to the following
commutative diagram of subrings:

K OK

Q Z.

The inclusion Z ⊂ OK is an example of an integral ring map, which are defined and
studied in §3.1. We apply this in §3.2 to show that OK is a Dedekind domain, see
Example 3.20. The subsections §§3.3–3.5 study how prime numbers in Z decompose
as products of prime ideals in OK :

§3.1 Integral ring homomorphisms
§3.2 Finiteness properties of integral closures
§3.3 Ramification index and inertia degree
§3.4 Discriminant
§3.5 Galois extensions

3.1. Integral ring homomorphisms.

Definition 3.1. Let φ : A→ B be a ring homomorphism. Then, φ is called
(1) of finite type if B is a finitely generated A-algebra (via φ), i.e., if there

exists a surjective A-algebra map A[T1, . . . , Tn]→ B for some n ∈ N.
(2) finite if B is a finitely generated A-module (via φ).
(3) integral if every b ∈ B is integral over A, i.e., there exists a1, . . . , an such

that bn + φ(a1)b
n−1 + . . .+ φ(an) = 0.

Exercise 3.2. Let φ : A → B and ψ : B → C be ring homomorphisms. Show the
following properties:

(1) φ,ψ of finite type =⇒ ψ ◦ φ of finite type
(2) φ,ψ finite =⇒ ψ ◦ φ finite
(3) φ,ψ integral =⇒ ψ ◦ φ integral

Hint: For (3.2) use Proposition 3.3 below.

Proposition 3.3. Let φ : A → B be a ring homomorphism. Then, φ is finite if
and only if it is integral and of finite type.

Proof. Assume φ is finite. Then, it is of finite type and we need to show it is
integral. Let b ∈ B and consider the A-module morphism B → B, x 7→ bx. Since
B is a finitely generated A-module, Cayley–Hamilton implies that there exists an
integrality equation for b.

For the converse direction, let B = A[b1, . . . , bm] with bi ∈ B integral over A.
By induction (using that finite morphisms are integral as already shown), we may
and do assume m = 1, i.e., B = A[b] for some b ∈ B integral over A. Then, there
exist a1, . . . , an ∈ A such that bn+r = −(φ(a1)bn−1+r + . . .+φ(an)b

r) for all r ∈ N
(take an integrality equation and multiply it by br). Inductively, we see that bi
is contained in the A-submodule of B generated by 1, b, . . . , bn−1. Hence, A[b] is
generated as an A-module by 1, b, . . . , bn−1. □

Definition 3.4. Let φ : A→ B be a ring homomorphism.
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(1) The subring

C := {b ∈ B | b integral over A} ⊂ B

is called the integral closure of A in B (with respect to φ).
(2) The ring A is called integrally closed in B (with respect to φ) if C = φ(A).

Remark 3.5. Let A be a domain. Then, A is normal if and only if A is integrally
closed in its fraction field Frac(A) (with respect to the inclusion).

Exercise 3.6. Let φ : A→ B be a ring homomorphism and S ⊂ A a multiplicative
subset. Show the following statements:

(1) Let C be the integral closure of A in B. Then, C[S−1] is the integral closure
of A[S−1] in B[S−1].

(2) Assume φ is integral. Then, B[S−1] is integral over A[S−1].

Proposition 3.7. Let B be a domain and φ : A→ B be an injective, integral ring
homomorphism. Then, A is a field if and only if B is a field.

Proof. Since φ is injective, we may replace A by φ(A) and assume that A ⊂ B is a
subring.

First, assume that A is a field. Let 0 ̸= y ∈ B and choose a1, . . . , an ∈ A with
n ∈ N minimal such that

(3.1) yn + a1y
n−1 + . . .+ an = 0.

Since B is a domain, we have an ̸= 0 by minimality of n. So, an ∈ A − {0} = A×

as A is a field. Multiplying (3.1) by a−1n , we get

1 = −y(yn−1 + a1y
n−2 + . . .+ an−1),

which shows y ∈ B×. So, B − {0} = B×, and B is a field.
Conversely, assume that B is a field. Let 0 ̸= x ∈ A. Then, x−1 ∈ B is integral

over A. Let a1, . . . , an ∈ A such that x−n + a1x
−n+1 + . . . + an = 0. Multiplying

this equation by xn−1 shows x−1 ∈ A as desired. □

Corollary 3.8. Let φ : A → B be an integral ring homomorphism, q ⊂ B be a
prime ideal and p = φ−1(q) ⊂ A. Then, q is maximal if and only if p is maximal.

Proof. The map φ induces an injective, integral ring homomorphism A/p → B/q.
So, the corollary follows from Proposition 3.7. □

Proposition 3.9. Let φ : A → B be an integral ring homomorphism, q ⊂ q′ ⊂ B
prime ideals with φ−1(q) = φ−1(q′). Then, q = q′. In particular, dim(B) ≤
dim(A).

Proof. Set p = φ−1(q). Then, φ induces an integral ring map ψ = φp : Ap → Bp by
Exercise 3.6. Let m := pAp be the maximal ideal of Ap, and n := qBp ⊂ n′ := q′Bp

prime ideals of Bp. So, ψ−1(n) = ψ−1(n′) = m by assumption. Corollary 3.8 implies
that n and n′ are maximal, hence they are equal. This implies q = q′. □

Proposition 3.10. Let φ : A → B be an injective, integral ring homomorphism,
and p ⊂ A a prime ideal. Then, there exists a prime ideal q ⊂ B with φ−1(q) = p.
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Proof. Consider the commutative diagram of rings

A B

Ap Bp.

φ

1A 1B

ψ=φp

Since φ is injective, so is ψ and thus Bp ̸= 0. Choose a maximal ideal n ⊂ Bp.
Then, ψ−1(n) = pAp by Corollary 3.8. Set q := 1−1B (n) ⊂ B, which is a prime ideal.
Then, φ−1(q) = 1−1A (pAp) = p as desired. □

3.2. Finiteness properties of integral closures.

Situation 3.11. Let A be a normal domain with fraction field K. Let L ⊃ K be an
algebraic field extension. Denote by B := {x ∈ L | x integral over A} the integral
closure of A in L. This gives the following commutative diagram of injective ring
maps

(3.2)
L B

K A.

such that B ∩K = A.

Proposition 3.12. In Situation 3.11, set S := A−{0}. Then, the following hold:
(1) The ring B is a normal domain with Frac(B) = B[S−1] = L. In particular,

the left column in (3.2) is the localization at S of the right one.
(2) Let x ∈ L and let

µK,x = Tm + ã1T
m−1 + . . .+ ãm ∈ K[T ]

be its minimal polynomial. Let a ⊂ A be an ideal with
√
a = a (e.g., a

prime ideal or a = A). Then, ã1, . . . , ãm ∈ a if and only if x satisfies an
integrality equation

(3.3) xn + a1x
n−1 + . . .+ an = 0

with a1, . . . , an ∈ a.
(3) For x ∈ L, one has x ∈ B if and only if µK,x ∈ A[T ].

Proof. (1): By construction, B is a normal domain. One has the inclusionsB[S−1] ⊂
Frac(B) ⊂ L. By Exercise 3.6, B[S−1] is the integral closure of A[S−1] = K in
L. Since L ⊃ K is algebraic (i.e., the inclusion is an integral ring map), we have
B[S−1] = L.

(2): Assume x ∈ L satisfies (3.3) with a1, . . . , an ∈ a. Let Ω be an algebraic
closure of L and write µK,x = (T −x1) · . . . ·(T −xm) with xi ∈ Ω. Then, xi = σi(x)
for some K-embedding σi : L→ Ω. Hence, (3.3) shows

(3.4) xni + a1x
n−1
i + . . .+ an = σi(x

n + a1x
n−1 + . . .+ an) = 0.

So, all xi are integral over A. Set B′ := A[x1, . . . , xm], which is a finite A-algebra.
Let p ⊂ A be a prime ideal containing a. By Proposition 3.10, there exists some
prime ideal q′ ⊂ B′ with q′ ∩ A = p. From (3.4) we get xni ∈ aB′ ⊂ pB′ ⊂ q′, thus
xi ∈ q′ for all i = 1, . . . ,m. Since the coefficients ãj of µK,x are polynomials in the
xi, we see that

• ãj ∈ q′ ⊂ B′, and
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• ãj is integral over A, so ãj ∈ B ∩K = A

for all j = 1, . . . ,m. This shows ãj ∈ ∩p⊃ap =
√
a = a for all j = 1, . . . ,m.

(3): Follows from (2) with a = A. □

Example 3.13. In Situation 3.11, we assume char(K) ̸= 2 and L := K[
√
d] for

some d ∈ K×\(K×)2. Then, L ⊃ K is a Galois extension of degree 2. Denote
Gal(L/K) = {id, σ} with σ(

√
d) = −

√
d. Let x = a +

√
db ∈ L with b ̸= 0, i.e.,

x ∈ L\K. Then,

µK,x = (T − x)(T − σ(x)) = T 2 − 2aT + (a2 − b2d).
Hence, Proposition 3.12 shows

B = {x ∈ L | x integral over A}

= {a+ b
√
d ∈ L | a ∈ A, b = 0 or 2a, a2 − b2d ∈ A}

= {a+ b
√
d ∈ L | 2a, a2 − b2d ∈ A}.

Exercise 3.14. Let B be the integral closure of Z in Q[
√
d] for some d ∈ Z square

free. Show that B = Z[θ] with

θ :=

{√
d if d ≡ 2, 3 mod 4,

1+
√
d

2 if d ≡ 1 mod 4.

Situation 3.15. Let A be a Dedekind domain with fraction field K. Let L ⊃ K
be a finite field extension. Then, B := {x ∈ L | x integral over A} = {x ∈
L | µK,x ∈ A[T ]} and L = { ba | b ∈ B, a ∈ A−{0}} = Frac(B) by Proposition 3.12.

Hypothesis 3.16. In Situation 3.15, the ring B is a finite A-algebra.

Theorem 3.17. In Situation 3.15 assume Hypothesis 3.16. Then, the following
hold:

(1) The ring B is a Dedekind domain. It is a field if and only if A is so.
(2) The ring B is a finitely generated, projective A-module of rank [L : K]. It

is free of rank [L : K] if A is a principal ideal domain.

Remark 3.18. Theorem 3.17(1) holds without Hypothesis 3.16, see [Sta18, 00PG].

Proof of Theorem 3.17. (1): The ring B is a normal domain by definition and
dim(B) ≤ dim(A) ≤ 1 by Proposition 3.9. Then, Hypothesis 3.16 implies that
B is Noetherian and hence a Dedekind domain by Theorem 2.18. Finally, B is a
field if and only if A is so by Corollary 3.7.

(2): The A-module B is torsion free because B ⊂ L. Since it is finitely generated
by Hypothesis 3.16, Theorem 2.12 implies that it is projective of rank dimK(B ⊗A
K) = [L : K]. □

Proposition 3.19. In Situation 3.15, Hypothesis 3.16 is satisfied in each of the
following cases:

(1) The extension L ⊃ K is separable (e.g., if char(K) = 0).
(2) The ring A is a finitely generated k-algebra for some field k.
(3) The ring A is a complete, discrete valuation ring.

Proof. See later. □

At this point, we have established the basic structural properties of number rings:

https://stacks.math.columbia.edu/tag/00PG
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Example 3.20. For a finite field extension K ⊃ Q, the preceding discussion shows
that OK := {x ∈ K | x integral over Z} is a 1-dimensional Dedekind ring that
is free of rank [K : Q] as a Z-module. In particular, we have seen that every
(fractional) ideal of OK admits a unique decomposition into prime ideals.

3.3. Ramification index and inertia degree. In Situation 3.15 and under Hy-
pothesis 3.16, we use without further mentioning the results of the previous sec-
tion: namely, B is a Dedekind domain that is a finitely generated, projective A-
module of rank [L : K]. Further, for a prime ideal 0 ̸= p ⊂ A we denote by
κ(p) = Ap/pAp = A/p the residue field, where the last equality holds by maximal-
ity of p.

Definition 3.21. In Situation 3.15 assume Hypothesis 3.16. For a prime ideal
0 ̸= p ⊂ A one writes pB = qe11 · . . . ·qerr with prime ideals 0 ̸= qi ⊂ B and all ei ≥ 1
as in Corollary 2.22. The prime ideals q1, . . . , qr are called divisors of p in B. One
writes qi | p for i = 1, . . . , r and also says that qi lies above p. Further, one calls

(1) ei = eqi
the ramification index of qi, and

(2) fi = fqi
= [B/qi : A/p] the inertia degree of qi.

Remark 3.22. For all prime ideals q ⊂ B, one has:

q | p ⇐⇒ pB ⊂ q ⇐⇒ p = q ∩A

Remark 3.23. For the reader familiar with some algebraic geometry: The inclusion
A ⊂ B induces a map f : Spec(B)→ Spec(A) on spectra. For some 0 ̸= p ∈ Spec(A)
its preimage f−1(p) consists exactly of the prime ideals q ∈ Spec(B) lying above p,
i.e., q | p. In the following we will study the geometry of the map f . The reader
knowing how to translate between rings and affine schemes should think about f
when appropriate.

Theorem 3.24. In Situation 3.15 assume Hypothesis 3.16. Let 0 ̸= p ⊂ A be a
prime ideal. Then, one has the following equality of numbers:

(3.5)
∑
q|p

eqfq = [L : K]

It is called the fundamental equality.

Proof. By Theorem 2.12, Bp = B⊗AAp is a free Ap-module of rank [L : K]. Hence,
Bp ⊗Ap

κ(p) = B/pB is a κ(p)-vector space of rank [L : K]. It remains to identify
dimκ(p)(B/pB) with the left hand side in (3.5).

Since all prime ideals q | p are maximal in B, we get qep + q̃eq̃ = B for all q ̸= q̃
dividing p. Thus, the Chinese remainder theorem implies B/pB =

∏
q|pB/q

eq . It
remains to show dimκ(p)(B/q

eq) = eqfq for all q | p.
So, fix a prime ideal q ⊂ B with q | p. We proceed by induction on eq. For

eq = 1, we have dimκ(p)(B/q) = fq by definition. For eq > 1, we have an exact
sequence of κ(p)-vector spaces

0→ qB/qeq → B/qeq → B/q→ 0.

Since q is invertible, multiplication by a uniformizer of Bq induces an isomorphism
B/qeq−1 ∼= qB/qeq . Thus, we can conclude by induction. This finishes the proof of
the theorem. □



18

Corollary 3.25. In Situation 3.15 assume Hypothesis 3.16. Let 0 ̸= p ⊂ A be a
prime ideal. Then, there are at most [L : K]-many prime ideals q ⊂ B with q | p.

Definition 3.26. In Situation 3.15 assume Hypothesis 3.16. A prime ideal 0 ̸=
p ⊂ A is called

(1) unramified (in L) if for all prime ideals q ⊂ B with q | p one has eq = 1
and κ(q) ⊃ κ(p) is separable.

(2) ramified (in L) if it is not unramified in L.
(3) totally split (in L) if eq = fq = 1 for all prime ideals q ⊂ B with q | p.

Remark 3.27. Later κ(p) is often a finite field. In this case, the separability
condition in Definition 3.26(1) is automatic. Further, we have:

(1) The prime ideal p is unramified if and only if B/pB is a finite product of
finite separable field extensions of κ(p), i.e., B/pB is an étale κ(p)-algebra.

(2) The prime p is totally split if and only if #{q | p} = [L : K] if and only if
B/pB ≃ κ(p)× . . .× κ(p).

Remark 3.28. In Situation 3.15 assume Hypothesis 3.16. The decomposition
behavior of p in B is completely controlled by the κ(p)-algebra B/pB as follows:

(1) One has dimκ(p)(B/pB) = [L : K].
(2) The Chinese remainder theorem induces a ring isomorphism

B/pB ∼= (B/pB)q1
× . . .× (B/pB)q1

where q1, . . . , qr ⊂ B are the pairwise distinct prime ideals lying above p
and q1, . . . , qr their images in B/pB.

(3) Each ring Bi := (B/pB)qi
is a 0-dimensional local ring with maximal ideal

mi = qiBi and residue field Bi/mi = κ(qi). Then, one has eqi
= min{e ≥

1 | mei = 0} and fqi
= [Bi/mi : κ(p)].

Hence, passing to the localization in p does not change the decomposition behavior.
More precisely, replacing A by Ap, p by pAp and B by Bp and q by qBp for all q | p
does not change K, L and B/pB, so does not change κ(p), κ(q), eq and fq.

Proposition 3.29. In Situation 3.15 assume Hypothesis 3.16. In addition, assume
that L ⊃ K is finite separable, and let θ ∈ B such that L = K[θ] (note that θ
always exists by the theorem of the primitive element [Sta18, 09HZ]). Let c := {x ∈
B | xB ⊂ A[θ]} ⊂ B ideal, and let 0 ̸= p ⊂ A prime ideal with pB + c = B
(if B = A[θ], then c = B and so pB + c = B holds for all prime ideals). Let
f := µK,θ ∈ A[T ] be the minimal polynomial of θ, and let f̄ = f mod p ∈ (A/p)[T ].
Let f̄ = f̄e11 · . . . · f̄err be the decomposition into irreducible factors with f̄i pairwise
prime to each other. Choose monic polynomials fi ∈ A[T ] with f̄i ≡ fi mod p.
Then, the ideals

qi := pB + fi(θ)B, i = 1, . . . , r

are precisely the prime ideals of B lying above p and eqi
= ei, fqi

= deg(f̄i) for all
i = 1, . . . , r.

Example 3.30. Let L = Q[
√
d] with d ∈ Z be square free and d ≡ 2, 3 mod 4.

Then, B = Z[
√
d] by Exercise 3.14. Apply Proposition 3.29 to f = µQ,

√
d = X2− d

and some prime number p ∈ Z. So, consider f̄ = T 2 − d̄ ∈ Fp[T ]. There are three
cases:

https://stacks.math.columbia.edu/tag/09HZ
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(1) Assume p | d or p = 2. Then, f̄ = (T − d̄)2. There exists a unique
prime ideal q ⊂ Z[

√
d] over (p) and eq = 2, fq = 1. More precisely, for

p | d one has f̄ = T 2 and q = (p,
√
d). For p = 2 and d odd, one has

f̄ = T 2 − 1 = (T − 1)2 and q = (p,
√
d− 1).

(2) Assume p ∤ 2d and (dp ) = 1 (i.e., d̄ = δ̄2 for δ̄ ∈ Fp). Then, f̄ = (T −
δ̄)(T + δ̄). Choose lift δ ∈ Z of δ̄. Then, there exist two prime ideals q+,
q− in Z[

√
d] over (p). One has q± = (p,

√
d± δ) and eq± = fq± = 1.

(3) Assume p ∤ 2d and (dp ) = −1. Then, f̄ irreducible and there exists a unique
q lying above (p). One has q = pB and eq = 1, fq = 2.

Hence, p ramified in Q[
√
d] if and only if p | 2d, which happens only for finitely

many primes. The other two possible cases happen “equally often”, in particular
infinitely many times.

Exercise 3.31. (1) Do Example 3.30 for square free d ∈ Z with d ≡ 1 mod 4,
compare with Exercise 3.14. Note that for d = 5 the decomposition behav-
ior only depends on p mod 5.

(2) Let ζ5 be a primitive 5th root of unity, A = Z, K = Q and L = Q[ζ5].
Show the following properties:
(a) µQ,ζ5 = T 4 + T 3 + T 2 + T + 1
(b) B = Z[ζ5]
(c) Determine the decomposition behavior and ramification behavior for

all prime numbers p ∈ Z. Note that this depends only on p mod 5.
Hint: It can be helpful to note that Q[

√
5] ⊂ Q[ζ5] because (ζ5 − ζ25 − ζ35 +

ζ45 )
2 = 5.

Proof of Proposition 3.29. Set B′ := A[θ] ⊂ B. First off, we prove that the inclu-
sion B′ ⊂ B induces B′/pB′ ∼= B/pB. Indeed, the composition φ : B′ ↪→ B →
B/pB is surjective because c + pB = B. Hence, the desired isomorphism follows
from

pB′ ⊂ pB ∩B′ = ker(φ) = (pB + c)(pB ∩B′) ⊂ pB′,

where we use cB ⊂ B′ for the last inclusion.
Next, we observe that the map T 7→ θ induces a ring isomorphism A[T ]/(f) ∼=

A[θ] =: B′. This gives ring isomorphisms

B′/pB′ = B′ ⊗A A/p = A[T ]/((f) + p) = κ(p)[T ]/(f̄) =

r∏
i=1

κ(p)[T ]/(f̄eii ),

which implies the proposition. □

3.4. Discriminant.

Reminder 3.32 (On trace and norm). (1) Let K be a field and A a finite
K-algebra of dimension n ∈ N. For a ∈ A, consider the K-linear map
ma : A→ A, x 7→ ax and its characteristic polynomial

χA/K,a = Tn − tr(ma)X
n−1 + . . .+ (−1)ndet(ma) ∈ K[T ].

The norm of a with respect to A/K is defined as NA/K(a) := det(ma) and
the trace of a with respect to A/K is defined as TrA/K(a) := tr(ma). Then,
TrA/K : A→ K is K-linear and one has NA/K(ab) = NA/K(a)NA/K(b) for
all a, b ∈ A. In particular, NA/K : A× → K× is a group homomorphism.
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Furthermore, for an algebraic closure Ω of K, the following are equivalent
[Sta18, 0BIE]:
(a) One has A ≃ K1×. . .×Kr for separable, finite field extensionsKi ⊃ K.
(b) One has A⊗K Ω ≃ Ω× . . .× Ω.
(c) The trace pairing A×A→ K, (a, b) 7→ TrA/K(ab) is non-degenerate.

If A = L ⊃ K is a finite field extension, then these properties are equivalent
to TrL/K ̸= 0.

(2) Let L ⊃ K be a finite field extension, and choose an algebraic closure Ω
of K. Let {σ1, . . . , σs} be the set of K-embeddings of L in Ω (recall that
[L : K] = sq where s is the separability degree of L/K, e.g., q = 1 if
char(K) = 0, otherwise q is a power of char(K)). Then, for all a ∈ L we
have the following equalities:

NL/K(a) =

(
r∏
i=1

σi(a)

)q

TrL/K(a) = q

r∑
i=1

σi(a)

Furthermore, if M ⊃ L ⊃ K are finite field extensions, then NM/K =
NL/K ◦NM/L and TrM/K = TrL/K ◦ TrM/L.

Remark 3.33. In Situation 3.15, one has NL/K(b),TrL/K(b) ∈ A for all b ∈ B.
Indeed, we have µK,b ∈ A[T ] by Proposition 3.12(3), which implies χL/K,b ∈ A[T ]
(e.g., using Cayley–Hamilton to see that χL/K,b is a power of µK,b).

We can now give the proof of Proposition 3.19(1), saying that in Situation 3.15
the Hypothesis 3.16 (i.e., that B is a finitely generated A-module) holds if L ⊃ K
is a separable field extension.

Proof of Proposition 3.19(1). For an A-submodule M ⊂ L, set

M∨ = {x ∈ L | TrL/K(xy) ∈ A for all y ∈M},
which is called the dual A-submodule of L with respect to the trace pairing. Note
that B ⊂ B∨ by Remark 3.33. Let (e1, . . . , en) be a K-basis of L with all ei ∈ B.
Consider the A-submodule of B generated by e1, . . . , en. Then, V ⊂ B ⊂ B∨ ⊂
V ∨ and V ∨ generated by the dual basis of (e1, . . . , en) with respect to the non-
degenerate trace pairing. Since A is noetherian, the finitely generated A-module
V ∨ is noetherian and so is its submodule B. This shows that B is a finitely
generated A-module. □

Remark 3.34. The preceding proof shows that B∨ is a finitely generated A-
module, hence a finitely generated generatedB-module. In particular, B∨ ∈ Div(B)
is a fractional ideal and its inverse DB/A := (B∨)−1 ∈ Div(B) is called the different
of B over A.

Definition 3.35. In Situation 3.15 assume that L ⊂ K is separable. The norm of
divisors is the group homomorphismNL/K : Div(B)→ Div(A) defined byNL/K(q) :=

(q ∩A)fq .

Exercise 3.36. In Situation 3.15 assume that K ⊂ L is separable. Then, the
following properties hold:

(1) For 0 ̸= a ∈ L, one has NL/K((a)) = NL/K(a)A as elements of Div(A).

https://stacks.math.columbia.edu/tag/0BIE
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(2) Let I be a fractional ideal of A. Then, IB is a fractional ideal of B and
NL/K(IB) = I [L:K].

Definition 3.37. In Situation 3.15 assume that L ⊂ K is separable.
(1) Let x1, . . . , xn ∈ L and form the matrix (TrL/K(xixj))i,j ∈ Matn×n(K).

Then, its determinant

∆(x1, . . . , xn) := det((TrL/K(xixj))i,j)

is called the discriminant of B over A.
(2) Let ∆B/A ⊂ A be the ideal generated by ∆(x1, . . . , xn) where (x1, . . . , xn)

runs through all K-basis of L with x1, . . . , xn ∈ B. The ideal ∆B/A is called
the discriminant of B over A.

Remark 3.38. The analogue of the preceding definition for inseparable field ex-
tensions L ⊃ K is not useful since TrL/K = 0 in this case. Furthermore, let us
point out the following properties in the context of Definition 3.37:

(1) If (x1, . . . , xn) is a K-basis of L, then ∆(x1, . . . , xn) ̸= 0 since TrL/K is
non-degenerate.

(2) For (x1, . . . , xn) is a K-basis of L and x′1, . . . , x′n ∈ L, let u : L→ L be the
K-linear map with u(xi) = x′i. Then, one has

∆(x′1, . . . , x
′
n) = det(u)2∆(x1, . . . , xn).

(3) Assume B is a free A-module (e.g., this holds if A is a principal ideal
domain). Choose an A-basis (x1, . . . , xn) of B. Then, one has ∆B/A =
(∆(x1, . . . , xn)) by (2).

Example 3.39. Let L = Q[
√
d] for a square free d ∈ Z and B the integral closure

of Z in L. Assume d ≡ 1 mod 4. Then, B = Z[ 1+
√
d

2 ] by Exercise 3.14, which is a
free Z-module with ordered basis 1, 1+

√
d

2 . The associated trace matrix is given by(
2 1
1 1+d

2

)
.

Thus, we compute ∆(1, 1+
√
d

2 ) = d for its determinant. By Remark 3.38(3), we get
∆B/Z = (d).

Exercise 3.40. In the situation of Example 3.39, show that ∆B/A = (4d) if d ≡ 2, 3
mod 4.

Exercise 3.41. In Situation 3.15 assume A = Z. Define dL := ∆(x1, . . . , xn) ∈ Z
where (x1, . . . , xn) is a Z-basis of B. Show that dL is independent of the choice of
(x1, . . . , xn). (Hence, we can consider the discriminant as a number rather than as
an ideal in this case.)

Lemma 3.42. Let L ⊃ K be a separable, finite field extension. Let Ω be an
algebraic closure of K and let σ1, . . . , σn : L → Ω be the K-embeddings with n =
[L : K].

(1) For every K-basis x1, . . . , xn of L one has ∆(x1, . . . , xn) = det(σi(xj)i,j)
2.

(2) Let θ ∈ L with L = K[θ]. Then, one has

∆(1, θ, θ2, . . . , θn−1) =
∏

1≤i<j≤n

(θi − θj)2 = (−1)
n(n−1)

2

n∏
i=1

µ′K,θ(θi)
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where θi := σi(θ) for all i = 1, . . . , n and µ′K,θ denotes the first derivative
of µK,θ.

Proof. (1): Using Reminder 3.32(2), we compute

TrL/K(xixj) =

n∑
k=1

σk(xixj) =

n∑
k=1

σk(xi)σk(xj).

Hence, we get a factorization of matrices (TrL/K(xixj))i,j =
t(σk(xi))k,i(σk(xj))k,j .

This implies (1) by taking determinants.
(2): Part (1) implies

∆(1, θ, θ2, . . . , θn−1) = det

1 θ1 . . . θn−11
...

...
...

1 θn . . . θn−1n


2

,

which is equal to
∏
i<j(θi − θj)2 by linear algebra (use induction on n). This can

be rewritten as

(−1)
n(n−1)

2

∏
i ̸=j

(θi − θj) = (−1)
n(n−1)

2

n∏
i=1

µ′K,θ(θi),

noting that µK,θ =
∏n
i=1(T − θi). □

Example 3.43. Let L = Q[θ] with θ = 3
√
2. Then, µK,θ = X3−2 and µ′K,θ = 3X2.

Further, θi = ζi3θ for i = 0, 1, 2 with ζ3 a primitive 3rd root of unity. Lemma 3.42(2)
implies

∆(1,
3
√
2,

3
√
4) = (−1)327ζ33 (

3
√
2
2
)3 = −2233.

In fact, one can show B = Z[ 3
√
2] and so ∆B/Z = (2233), see [Con].

Lemma 3.44. In Situation 3.15 let 0 ̸∈ S ⊂ A be a multiplicative subset. Then,
one has ∆B[S−1]/A[S−1] = ∆B/A[S

−1] as ideals in A[S−1].

Proof. First off, A[S−1] is a Dedekind ring and B[S−1] is the integral closure of
A[S−1] in L, see Exercise 3.6. So, the left hand side of the equality is well-defined to
begin with. Now, let x1, . . . , xn ∈ B be a K-basis of L. Since x1, . . . , xn ∈ B[S−1]
we get ∆B/A ⊂ ∆B[S−1]/A[S−1] and so ∆B/A[S

−1] ⊂ ∆B[S−1]/A[S−1]. Conversely,
let x1, . . . , xn ∈ B[S−1] be a K-basis of L. Choose s ∈ S with sx1, . . . , sxn ∈ B,
which is still a K-basis of L. Then, we have

∆(sx1, . . . , sxn) = det(TrL/K(sxisxj)i,j) = s2n∆(x1, . . . , xn).

In particular, ∆(x1, . . . , xn) =
1
s2n∆(sx1, . . . , sxn) ∈ ∆B/A[S

−1]. □

Theorem 3.45. In Situation 3.15 assume L ⊃ K is separable. For a prime ideal
0 ̸= p ⊂ A, the following are equivalent:

(1) The prime ideal p is unramified in B.
(2) One has p ∤ ∆B/A.

In particular, there exist only finitely many prime ideals of A that are ramified in
B.
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Proof. By Remark 3.28 and Lemma 3.44 we may and do replace A by Ap, so
assume without loss of generality that A is a discrete valuation ring. In this case,
B is a free A-module of rank [L : K]. Let x1, . . . , xn be an A-basis of B. So,
∆B/A = (∆(x1, . . . , xn)) by Remark 3.38(3). Denote by B → B/pB =: B̄, x 7→ x̄
the reduction map. Then, p ∤ ∆B/A if and only if ∆(x1, . . . , xn) ̸∈ p if and only if

0 ̸= ∆(x1, . . . , xn) = det(TrL/K(xixj)i,j) = det(TrB̄/κ(p)(x̄ix̄j)i,j)

if and only if the pairing B̄ × B̄ → κ(p), (x̄, ȳ) 7→ TrB̄/κ(p)(x̄ȳ) is non-degenerate if
and only if B̄ is a finite product of separable, finite field extensions of κ(p) if and
only if p is unramified in B, see Reminder 3.32(1). □

Exercise 3.46. In Situation 3.15 assume that L ⊂ K is separable. Let DB/A be
the different defined in Remark 3.34. Show that NL/K(DB/A) = ∆B/A.

3.5. Galois extensions. In this subsection, we assume we are in Situation 3.15
with L ⊃ K a Galois extension, i.e., a separable and normal extension. We denote
by

G := Gal(L/K) := AutK-alg(L)

its Galois group, i.e., the K-algebra automorphisms of L. Recall that G is a finite
group of order [L : K], and that the mapH 7→ LH := {x ∈ L | σ(x) = x for all σ ∈ H}
induces a bijection between subgroups of G and intermediate field extensions of
L ⊃ K by Galois theory [Sta18, 09DW].

Proposition 3.47. For each prime ideal 0 ̸= p ⊂ A, the map

Gal(L/K)×
{

q ⊂ B prime
ideal with q | p

}
→
{

q ⊂ B prime
ideal with q | p

}
(σ, q) 7→ σ(q)

is well-defined and transitive.

Proof. First off, for σ ∈ G = Gal(L/K) one has σ(B) = B: Indeed, we have

x ∈ B ⇐⇒ x integral over A ⇐⇒ σ(x) integral over A ⇐⇒ σ(x) ∈ B
for all x ∈ L. In particular, we can form the fixed points

BG := {b ∈ B | σ(b) = b for all σ ∈ G},
which is equal to B ∩K = A by Galois theory. So, the action is well-defined.

Let q, q′ ⊂ B be prime ideals lying above p. Assume that σ(q) ̸= q′ for all
σ ∈ G. By the Chinese remainder theorem, there exists x ∈ B such that x ≡ 0
mod q′ (i.e., x ∈ q′) and x ≡ 1 mod σ(q) (i.e., x ̸∈ σ(q)) for all σ ∈ G. The first
congruence implies NL/K(x) =

∏
σ∈G σ(x) ∈ q′ ∩ A = p. The second congruence

implies σ(x) ̸∈ q for all σ ∈ G, so NL/K(x) ̸∈ q as q is a prime ideal  . □

Corollary 3.48. Let 0 ̸= p ⊂ A be a prime ideal and q, q′ ⊂ B prime ideals
lying above p. Then, one has eq = eq′ =: e and fq = fq′ =: f . In particular,
pB = (q1 · · · qr)e with r = #{q | p} and [L : K] = ref .

Proof. By Remark 3.28(2), the numbers eq, fq are determined by (B/pB)q. By
Proposition 3.47 there exists some σ ∈ Gal(L/K) with σ(q) = q′. Since σ is a
ring automorphism of B which fixes p, it induces a ring isomorphism (B/pB)q ∼=
(B/pB)q′ . The corollary follows. □

https://stacks.math.columbia.edu/tag/09DW
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Definition 3.49. Let 0 ̸= p ⊂ A, q ⊂ B be prime ideals with q | p. Then, the
group

Gq := {σ ∈ G | σ(q) = q} = StabG(q)
is called the decomposition group of q. The corresponding fixed field Zq is called
the decomposition field of q.

Remark 3.50. With the notation of Definition 3.49 we have:
(1) For σ ∈ G, one has Gσ(q) = σGqσ

−1 as subgroups of G.
(2) The map σ 7→ σ(q) induces a bijection

G/Gq
1:1−→

{
q ⊂ B prime

ideal with q | p

}
.

Both sets are finite of cardinality [Zq : K] by Galois theory.
(3) One has Gq = 1 if and only if Zq = L if and only if p is completely

decomposed (or, totally split) in L, i.e., eq = fq = 1 for all prime ideals
q ⊂ B with q | p.

(4) One has Gq = G if and only if Zq = K if and only if pB = qe for some
prime ideal q ⊂ B with q | p.

(5) In general, p totally decomposes in Zq and q is the unique prime ideal lying
above q ∩ Zq. One has eq∩Zq

= fq∩Zq
= 1 for q ∩ Zq lying above p and

eL/Zq,q = eq, fL/Zq,q = fq for q lying above q ∩ Zq.

Proposition 3.51. With the notation of Definition 3.49 let κ(p) = A/p and κ(q) =
B/q. Then, κ(q) ⊃ κ(p) is a normal field extension and one has a surjective group
homomorphism

Gq → Gal(κ(q)/κ(p)) := Autκ(p)-alg(κ(q))
σ 7→ σ|B mod q.

Proof. Let Zq be the decomposition field of q. By Remark 3.50(5), we have fq∩Zq
=

1, so κ(q ∩ Zq) = κ(p) on residue fields. Hence, we may and do assume Zq = K,
equivalentlyG = Gq by Remark 3.50(4). Note that L ⊃ K is still a Galois extension.

Next, we show that κ(q) ⊃ κ(p) is normal: Let θ̄ ∈ κ(q) and choose a lift θ ∈ B.
Then, the minimal polynomial µκ(p),θ̄ ∈ κ(p)[T ] divides the reduction µK,θ := µK,θ
mod p of the minimal polynomial µK,θ ∈ K[T ], which has coefficients in A by
Proposition 3.12(3). Since L ⊃ K is normal, the polynomial µK,θ decomposes in
L[T ] in linear factors, which we may assume to be monic and hence automatically
lie in B[T ]. Thus, µK,θ decomposes in κ(q)[T ] into linear factors and so does its
divisor µκ(p),θ̄. As this holds for all elements θ̄ ∈ κ(q), we see that κ(q) ⊃ κ(p) is
normal.

In order to show that the map σ 7→ σ|B mod q is surjective, let κ(q)sep be
the maximal subfield in κ(q) that is separable over κ(p). Then, κ(q)sep ⊃ κ(p)
is a Galois extension [Sta18, 0EXM] and Gal(κ(q)/κ(p)) = Gal(κ(p)[θ̄]/κ(p)) by
[Sta18, 09HS]. Choose a primitive element θ̄ ∈ κ(q)sep, i.e., κ(p)[θ̄] = κ(q)sep,
see [Sta18, 030N] for the existence of such elements. Let σ̄ ∈ Gal(κ(q)/κ(p)) =
Gal(κ(p)[θ̄]/κ(p)) any element. Choose a lift θ ∈ B of θ̄. Then, µκ(p),θ̄(σ̄(θ̄)) = 0

implies µK,θ(σ̄(θ̄)) = 0. Since µK,θ decomposes in B[T ] into linear factors, there
exists some θ′ ∈ B with µK,θ(θ′) = 0 and θ′ ≡ σ̄(θ̄) mod q. By normality of L ⊃ K
there exists some σ ∈ Gal(L/K) with θ′ = σ(θ) and (σ|B mod q)(θ̄) = σ̄(θ̄). This
shows (σ|B mod q) = σ̄ and finishes the proof. □

https://stacks.math.columbia.edu/tag/0EXM
https://stacks.math.columbia.edu/tag/09HS
https://stacks.math.columbia.edu/tag/030N
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Definition 3.52. With the notation of Proposition 3.51, the kernel

Iq := ker
(
Gq → Gal(κ(q)/κ(p))

)
is called the inertia group of q.

Remark 3.53. The inertia group sits in an exact sequence of groups

1→ Iq → Gq → Gal(κ(q)/κ(p))→ 1

by Proposition 3.51.

Remark 3.54. Let e := eq, f := fq and r = #{q | p}. Then, one has #G = ref
and #Gq = ef . In addition, #Iq = e and #Gal(κ(q)/κ(p)) = f if κ(q) ⊃ κ(p) is
separable, e.g., κ(p) perfect.

Corollary 3.55. Let 0 ̸= p ⊂ A, q ⊂ B be prime ideals with q | p. Assume
that p unramified in L. Then, κ(q) ⊃ κ(p) is a Galois extension and the map
Gq → Gal(κ(q)/κ(p)) from Proposition 3.51 is an isomorphism.

Proof. The field extension is separable by unramifiedness and normal by Proposi-
tion 3.51, hence it is Galois. Further, we have #Iq = eq = 1 by Remark 3.54 and
unramifiedness, i.e., Iq = 1. So, the corollary follows from Remark 3.53. □

The corollary allows to define the so-called Frobenius substitution:

Remark 3.56. Let 0 ̸= p ⊂ A, q ⊂ B be prime ideals with q | p. Assume that
p unramified in L and that κ(p) is a finite field. Then, Gal(κ(q)/κ(p)) is cyclic
generated by the automorphism x 7→ x#κ(p). By Corollary 3.55, it has a unique
preimage Frobp,q ∈ Gq ⊂ Gal(L/K), called the Frobenius substitution.

For q, q′ lying above p, there exists σ ∈ Gal(L/K) such that σ(q) = q′. Then,
Frobp,q′ = σFrobp,qσ

−1 by Remark 3.50(1). We define the set

Frobp,L = Frobp := {σFrobp,qσ
−1 | σ ∈ G},

which is called the Frobenius conjugacy class of p (in L). If L ⊃ K is abelian (i.e.,
Gal(L/K) is an abelian group), then the set Frobp,L has a single element. So, we
can consider Frobp,L as an element of Gal(L/K).

Exercise 3.57. In the situation of Remark 3.56, show the following properties:
(1) One has Frobp,L = {1} if and only if p is completely decomposed.
(2) Let q ⊂ B be a prime ideal above p. Then, one has

#

{
q ⊂ B prime

ideal with q | p

}
=

[L : K]

ord(Frobp,q)

where ord(Frobp,q) denotes the order of Frobp,q in Gal(L/K).
(3) Let L ⊃ L′ ⊃ K be an intermediate field extension with L′/K Galois. Then,

the map Gal(L/K)→ Gal(L′/K), σ 7→ σ|L′ sends Frobp,L to Frobp,L′ .

Exercise 3.58. Let L = Q[
√
d] for a square free d ∈ Z with d ≡ 2, 3 mod 4,

and Gal(L/K) = {1, σ} with σ(
√
d) = −

√
d. For all p ∈ Z, determine when

Frobp ∈ Gal(L/K) is defined and what it is in this case (i.e., either Frobp = 1 or
Frobp = σ).



26

4. Cyclotomic fields

In this section, we discuss the theory developed so far in some important special
cases, namely cyclotomic fields and quadratic fields:

§4.1 Linearly disjoint extensions
§4.2 Cyclotomic fields
§4.3 Quadratic fields

4.1. Linearly disjoint extensions. Let Ω ⊃ L1, L2 ⊃ K be field extensions.
Then, the composition of L1 and L2 is the subfield L1L2 ⊂ Ω generated by x1x2
for all x1 ∈ L1, x2 ∈ L2. In particular, we have the homomorphism of K-algebras

(4.1) L1 ⊗K L2 → L1L2, x1 ⊗ x2 7→ x1x2,

which is surjective.

Definition 4.1. Let Ω ⊃ L1, L2 ⊃ K be field extensions. Then, L1, L2 are linearly
disjoint over K if (4.1) is an isomorphism.

Remark 4.2. The subfields L1, L2 are linearly disjoint if and only if every K-basis
of L1 is an L2-basis of L1L2. Furthermore, the following properties hold:

(1) If L1, L2 are linearly disjoint, then L1 ∩ L2 = K.
(2) Conversely, if L1 ∩ L2 = K, then L1, L2 are linearly disjoint whenever

L1, L2 ⊃ K are finite Galois extensions. In this case, L1L2 ⊃ K is a finite
Galois extension of degree [L1 : K] · [L2 : K], and the map Gal(L1L2/K)→
Gal(L1/K)×Gal(L2/K), σ 7→ (σ|L1

, σ|L2
) is an isomorphism (the map is

injective and hence an isomorphism by comparing cardinalities).

Proposition 4.3. Let A be a Dedekind domain with fraction field K. Let L1, L2 ⊃
K be finite, separable field extensions that are linearly disjoint (with respect to some
fixed embeddings in an algebraic closure of K). Let Bi for i = 1, 2 be the integral
closure of A in Li, and C the integral closure of A in L1L2. Let B1B2 be the
smallest subring of L1L2 that contains B1 and B2. Then, the following hold:

(1) For i = 1, 2, one has ∆Bi/AC ⊂ B1B2.
(2) Assume that ∆B1/A +∆B2/A = A. Then, one has C = B1B2 and

∆C/A = ∆
[L2:K]
B1/A

∆
[L1:K]
B2/A

as ideals of A.

Proof. (1):
(2): Since all elements of B1B2 are integral over A we have B1B2 ⊂ C. Hence,

C = (∆B1/A +∆B2/A)C = ∆B1/AC +∆B2/AC ⊂ B1B2 by Part (1). In particular,
the isomorphism L1 ⊗K L2

∼→ L1L2, x1 ⊗ x2 7→ x1x2 induces an isomorphism
B1 ⊗A B2

∼= C. Thus, ∆C/A is generated by ∆(x1,ix2,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m)
where (xk,1, . . . , xk,n) is a K-basis of Lk contained in Bk for k = 1, 2. Interpreting
the trace matrix (Tr(xk,ixk,j))i,j as an endomorphism of Bk... the claim follows
from Lemma 4.4 below. □

Lemma 4.4. Let K be a field and V1, V2 finite dimensional K-vector spaces. Then,
for all endomorphisms fi : Vi → Vi, i = 1, 2, one has the following equality:

(4.2) det(f1 ⊗ f2) = det(f1)
dim(V2) · det(f2)dim(V1)
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Proof. Choose an algebraic closure Ω ⊃ K. Then, det(f) = det(f ⊗K Ω) for any
endomorphism f of some finite dimensional K-vector space. So, we may and do
assume that K = Ω is algebraically closed. Further, one computes that (4.2) holds
for fi = f ′i ⊕ f ′′i whenever its analogue for f ′i and f ′′i holds for i = 1, 2. Using the
Jordan decomposition we may therefore assume that each fi consists of a single
Jordan block in a suitable basis of Vi. In this case, (4.2) follows from a calculation.
This finishes the proof. □

4.2. Cyclotomic fields. Let m ∈ N with m ≥ 2. Set Q(m) := Q[ζm] where ζm is
a primitive m-th root of unity.

Reminder 4.5. Let m = pe11 · . . . perr with p1, . . . , pr being pairwise distinct prime
numbers.

(1) One has Q(m) = Q(pe11 ) · · ·Q(perr ) and Q(pe11 ), . . . ,Q(perr ) are pairwise lin-
early disjoint.

(2) The field extension Q(m) ⊃ Q is finite Galois with Galois group

(Z/m)
×
=

r∏
i=1

(Z/peii )
×
.

In particular, [Q(m) : Q] = φ(m) =
∏r
i=1 φ(p

ei
i ) and φ(pe) = pe − pe−1 for

all prime numbers p and e ≥ 1.
(3) Let ϕm := µQ,ζm be the minimal polynomial. Then, one has ϕm =

∏r
i=1 ϕpeii

and

ϕpe =
T p

e − 1

T pe−1 − 1
= τp−1 + τp−2 + . . .+ 1

with τ := T p
e−1

for all prime numbers p and e ≥ 1.

Lemma 4.6. Let m = pe for some prime number p and some e ∈ N. Then, for
ζ = ζm, one has

∆(1, ζ, . . . , ζφ(p
e)−1) = ϵps

for some ϵ ∈ {±1} and s = pe−1(ep− e− 1).

Proof. By direct calculation, using Lemma 3.42(2), we get

∆(1, ζ, . . . , ζφ(p
e)−1) = NQ(pe)/Q(ϕ

′
pe(ζ)).

Further, (T p
e−1 − 1)ϕpe = T p

e − 1. Taking derivatives and evaluating in ζ gives

(4.3) (ζp
e−1

− 1)ϕ′pe(ζ) = peζp
e−1 = peζ−1.

Using the multiplicativity of norms we need to calculate both sides.
We start with the term ζp

e−1 − 1 on the left hand side of (4.3). Put ξ := ζp
e−1

,
which is a primitive p-th root of unity. We calculate

NQ(p)/Q(ξ − 1) =

p−1∏
j=1

(ξj − 1) = (−1)p−1
p−1∏
j=1

(1− ξj),

which is the same as = (−1)p−1ϕp(1) = (−1)p−1p because ξj , j = 1, . . . , p−1 are the
zeros of ϕp (use that p is a prime number). Using NQ(pe)/Q = NQ(p)/Q ◦NQ(pe)/Q(p),
this implies

(4.4) NQ(pe)/Q(ξ − 1) = NQ(p)/Q(ξ − 1)t = (−1)(p−1)tpt,
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where t := [Q(pe) : Q(p)] = φ(pe)(p− 1)−1.
Now, we consider the right hand side of (4.3). We calculate

(4.5) NQ(pe)/Q(p
eζ−1) = peφ(p

e)NQ(pe)/Q(ζ
−1),

and NQ(pe)/Q(ζ
−1) ∈ {±1}. Resubstituting Equations (4.4) and (4.5) in Equa-

tion (4.3) implies the lemma. □

Remark 4.7. From s = pe−1(ep − e − 1) ≥ 0 in Lemma 4.6, we see that s = 0 if
and only if p = 2 and e = 1.

Proposition 4.8. Let m = pe for some prime number p and some e ∈ N. Let
ζ = ζm be a primitive m-th root of unity. Let B be the integral closure of Z in
Q(pe). Then, one has

(4.6) pB = (λ)φ(p
e)

where λ := 1− ζ ∈ B. In particular, (λ) is a prime ideal in B with f(λ) = 1.

Proof. First off, we note that

(4.7) p = ϕpe(1) =
∏

σ∈(Z/pe)×
(1− ζσ).

For σ ∈ (Z/pe)×, set ϵσ := 1−ζσ
1−ζ = 1+ ζ + . . .+ ζσ−1 ∈ B. Then, for σ′ := σ−1, we

have

ϵ−1σ =
1− ζ
1− ζσ

=
1− (ζσ)σ

′

1− ζσ
= 1 + ζσ + . . .+ (ζσ)σ

′−1 ∈ B.

This implies ϵσ ∈ B×. Hence, (4.7) gives

pB =
∏

σ∈(Z/pe)×
(1− ζσ)B =

∏
σ∈(Z/pe)×

(1− ζ)B = (λ)φ(p
e),

which implies the proposition. □

Theorem 4.9. For m ∈ Z≥2, let ζ := ζm be a primitive m-th root of unity. Then,
the following hold:

(1) The ring Z[ζ] is the integral closure of Z in Q(m).
(2) A prime number p ∈ Z is ramified in Q(m) if and only if either p | m for

p ̸= 2 or p2 | m for p = 2.

Proof. (1): Let B be the integral closure of Z in Q(m). Abbreviate d := φ(m).
Special case. Let m = pe for some prime number p ∈ Z. By Lemma 4.6, there

exists some s ≥ 0 such that

psB = ∆(1, ζ, . . . , ζd−1)B ⊂ ∆(1, ζ, . . . , ζd−1)B∨ ⊂ Z[ζ],

where the final inclusion follows from the proof of Proposition 3.19(1) using B∨ ⊂
Z[ζ]∨. Set λ := 1−ζ. So, B/λB ∼= Z/pZ by Proposition 4.8 and hence, Z+λB = B.
This implies Z[ζ] + λB = B and by induction Z[ζ] + λtB = λB for all t ≥ 0
(multiply previous equation by λ and substitute). Choosing t = φ(pe)s and using
Proposition 4.8 gives

B = Z[ζ] + λtB = Z[ζ] + psB = Z[ζ].

General case. Let m = pe11 · . . . · perr for pairwise distinct prime numbers pi ∈ Z.
Set ζi := ζpeii

for i = 1, . . . , r. Since the subfields Q(peii ) are pairwise linearly
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disjoint in Q and the ideals ∆Z[ζi]/Z = (psii ) for some si ≥ 0 are pairwise coprime,
Proposition 4.3(2) implies that

B = Z[ζ1] · . . . · Z[ζr] = Z[ζ1, . . . ζr] = Z[ζ1 · . . . · ζr] = Z[ζ].
(2): By Theorem 3.45, the prime p is ramified in Q(m) if and only if p | ∆Z[ζ]/Z

if and only if p | ∆Z[ζi]/Z, by Proposition 4.3(2), for some i = 1, . . . , r. Finally,
Remark 4.7 finishes the proof. □

Exercise 4.10. Let B = Z[ζ] where ζ = ζℓn is a primitive ℓn-th root of unity for
some prime number p ∈ Z and some n ∈ N. For a prime number p ∈ Z define the
natural numbers ep := eq, fp := fq for some prime ideal q ⊂ B with q | (p) and

rp := #

{
q ⊂ B prime

ideal with q | p

}
.

Show the following properties:
(1) One has

ep =

{
1 if p ̸= ℓ,
φ(ℓn) if p = ℓ.

(2) One has

fp =

{
min{f ≥ 1 | pf ≡ 1 mod ℓn} if p ̸= ℓ,
1 if p = ℓ.

(3) One has

rp =

{
φ(ℓn)
fp

if p ̸= ℓ,
1 if p = ℓ.

4.3. Quadratic fields.

Proposition 4.11. Let ℓ ∈ N be an odd prime number, ℓ♭ := (−1) ℓ−1
2 ℓ and ζ = ζℓ

a primitive ℓ-th root of unity. Then, there exists a unique intermediate field

Q[ζ] ⊃ K ⊃ Q

with [K : Q] = 2. Furthermore, one has K = Q[
√
ℓ♭].

Proof. The field extension Q[ζ] ⊃ Q is Galois with Galois group Z/(ℓ− 1)Z, which
has a unique subgroup H of index 2. Galois theory [Sta18, 09DW] implies that the
fixed field K = Q[ζ]H is the unique intermediate extension with of degree 2 over Q.

It remains to show K = Q[
√
ℓ♭]. Since K ⊃ Q is quadratic, there exists a square

free integer d ∈ Z such that K = Q[
√
d] (use quadratic substitution to modify the

minimal polynomial of some element in K\Q). Then, a prime number p ∈ Z is
ramified in K if and only if

p divides

{
4d if d ≡ 2, 3 mod 4,
d if d ≡ 1 mod 4.

by Example 3.39 and Exercise 3.40. Further, if p is ramified in K, then it is ramified
in Q[ζ] and so p | ℓ by Theorem 4.9(2). This gives the conditions d = ±ℓ and d ≡ 1

mod 4, which imply d = (−1) ℓ−1
2 ℓ = ℓ♭. □

Proposition 4.12. Let p, ℓ ∈ N be distinct prime numbers with ℓ odd, ℓ♭ :=

(−1) ℓ−1
2 ℓ and ζ := ζℓ. Then, the following are equivalent:

https://stacks.math.columbia.edu/tag/09DW
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(1) The prime p is completely decomposed in Q[
√
ℓ♭].

(2) The number

rp := #

{
q ⊂ Z[ζ] prime
ideal with q | p

}
.

is even.
(3) One has (pℓ ) = 1 for the Legendre symbol, i.e., p ∈ Fℓ is a square.

Furthermore, if p is odd, then (1), (2) and (3) are equivalent to the following:

(4) One has ( ℓ
♭

p ) = 1.

Proof. Write K := Q[
√
ℓ♭] ⊂ Q[ζ] =: L. Let A and B be the integral closure of Z

in K and L respectively. Then, B is the integral closure of A in L and we have
Z ⊂ A ⊂ B = Z[ζ] where the last equality holds by Theorem 4.9(1). Let p ⊂ A and
q ⊂ B be prime ideals with (p) ⊂ p ⊂ q.

(1)⇐⇒ (2): The number rp agrees with the index of Gal(L/Q)q in Gal(L/Q) ∼=
Z/(ℓ−1)Z, and is even if and only if Gal(L/Q)q is contained in the unique subgroup
Gal(Q[ζ]/K) of index 2. Equivalently, for each σ ∈ Gal(L/Q) with σ(q) = q one
has σ|K = idK . As Gal(L/Q) → Gal(K/Q) is surjective this is equivalent to
Gal(K/Q)p = 1, which is equivalent to (p) being completely decomposed in K.

(2)⇐⇒ (3): The number rp is even if and only if ℓ−1
f is so where f = min{f ≥

1 | pf ≡ 1 mod ℓ} by Exercise 4.10(2). Equivalently, f | ℓ−12 , which holds if and
only if p

ℓ−1
2 ≡ 1 mod ℓ, i.e., (pℓ ) = 1.

(1) ⇐⇒ (4.12): One has ℓ♭ ≡ 1 mod 4 for all odd prime numbers ℓ ∈ N. We
conclude using Exercise 3.31(1). □

Theorem 4.13 (Quadratic reciprocity law). Let p, ℓ ∈ N be distinct, odd prime
numbers. Then, the following hold:

(1) One has (pℓ )(
ℓ
p ) = (−1)

p−1
2

ℓ−1
2 , i.e.,

(p
ℓ

)
=

{
−
(
ℓ
p

)
if p ≡ ℓ ≡ 3 mod 4,(

ℓ
p

)
otherwise.

(2) One has (
2

ℓ

)
= (−1)

ℓ2−1
8 .

Proof. (1): One has (pℓ ) = ( ℓ
♭

p ) by Proposition 4.12. This is equal to

(
−1
p

) ℓ−1
2
(
ℓ

p

)
= (−1)

p−1
2

ℓ−1
2

(
ℓ

p

)
.

(2): One has ( 2ℓ ) = 1 if and only if (2) splits in Q[
√
ℓ♭] if and only if ℓ♭ ≡ 1

mod 8 if and only if ℓ ≡ ±1 mod 8, which is equivalent to ℓ2−1
8 being even. □

Exercise 4.14. Show that 7600 is not a square modulo 4049.
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5. Completions

The notion of completion may be familiar from basic analysis. One common
construction of the real numbers is to complete the rationals Q. One considers the
space of all Cauchy sequences in Q (up to equivalence), and obtains a complete
metric space, which is the real line R. In this section, we discuss the general notion
of completion. To any (pseudo-)metric space X you can attach a space X̂ in which
every Cauchy sequence converges. Discrete valuations give rise to absolute values
on fields, and the construction of R from Q is a special case of completing a valued
field with respect to a given absolute value. For example, the discrete valuation vp
on Q gives rise to the p-adic absolute value | · |p on Q, and the completion is Qp,
the field of p-adic numbers. Here is a quick overview of the topics.

§5.1 Topological groups, rings and fields
§5.2 Absolute values
§5.3 Completion
§5.4 Complete discrete valuation rings
§5.5 Extensions of henselian discrete valuation rings
§5.6 Local-global principles

5.1. Topological groups, rings and fields.

Definition 5.1. (1) A topological group G is a topological space which is a
group with operation · and for which

G×G→ G, (x, y) 7→ x · y
and

inv : G→ G, x 7→ x−1

are continuous.
(2) A topological ring R is a topological space which is a ring and for which

addition and multiplication are continuous. Note that this is implies (R,+)
is a topological group, as −x = x · (−1).

(3) A topological field K is a topological space which is a field, and such that
K is a topological ring, and K× → K×, x 7→ x−1 is continuous for the
subspace topology on K×.

Example 5.2. (1) The real numbers R with the usual topology form a topo-
logical field for the usual addition and multiplication.

(2) Similarly, C is a topological field
(3) Let G = (R,+), but we endow R with the topology generated by half-open

invervals [a, b). This is called the Sorgenfrey line, and is not a topological
group. The addition map is continuous, but inversion is not.

(4) LetX be a topological space, and C(X) the set of continuous mapsX → R.
Then, C(X) is a ring via pointwise addition and multiplication. We can
define a topology on C(X) as follows. We take the unique topology in which
convergent nets are those nets which converge pointwise. In particular, a
sequence (fn)n in C(X) is convergent if it converges pointwise. Here, (fn)
converges pointwise to f ∈ C(X) if for all x ∈ X, limn→∞ fn(x) = f(x).

Remark 5.3. Let G be a group with neutral element e ∈ G. Let U be a set of
subset of G such that the following holds.
a) We have e ∈ U for all U ∈ U .
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b) If U, V ∈ U , then U ∩ V ∈ U .
c) For all U ∈ U exists a V ∈ U such that V · V := {vv′ | v, v′ ∈ V } ⊂ U .
d) For all U ∈ U exists a V ∈ U such that V −1 := {v−1 | v ∈ V } ⊂ U .
e) For all U ∈ U and g ∈ G, there exists a V ∈ U such that gV g−1 ⊂ U .

Then there exists a unique topology on G making it into a topological group such
that U is a neighborhood basis of e. This means e ∈ W ⊂ G is a neighborhood of
e if and only if there is a U ∈ U with U ⊂ W . Here, recall that a neighborhood of
e is any subset of G containing an open neighborhood of e (an open set containing
e).

Indeed, for any g ∈ G we can translate U to obtain a collection Ug satisfying
appropriate axioms as above. We obtain a map g 7→ Ug. It is a general fact that a
topology on a set can be given by assigning a neighborhood basis to each point. You
can then check that multiplication and inversion are continuous for this topology.

Moreover, if H is another topological group and φ : H → G is a group homo-
morphisms, then φ is continuous if and only if φ−1(U) is a neighborhood of e ∈ H
for all U ∈ U .

Example 5.4. Let (G,+) be an abelian group, and let G ⊃ G0 ⊃ G1 ⊃ ... ⊃
Gn ⊃ ... be a descending chain of subgroups. There is a unique topology on G
making it a topological group such that U := {Gn | n ≥ 0} is a neighborhood basis
of e. Moreover, all Gn are open subgroups. Indeed, we can find an open U with
e ∈ U ⊂ Gn, and hence

⋃
g∈Gn

gU = Gn is open.

Definition 5.5. A pseudo-metric d on a set X is a map d : X × X → R≥0 such
that

a) d(x, x) = 0 for all x ∈ X,
b) d(x, y) = d(x, y) for all x, y ∈ X, and
c) d(x, z) ≤ d(x, y) + d(x, z) for all x, y, z ∈ X.

A pseudo-metric on X induces a topology generated by open balls Br(x) = {y ∈
X | d(y, x) < r} ⊂ X, where r ∈ R>0 (any set which is a union of open balls is
open). A pseudo-metric is a metric if d(x, y) = 0 implies x = y.

We can define a pseudo-metric on G as follows. Let c ∈ R with 0 < c < 1, and
let d(g, h) = cn, where

n = sup{n ≥ 0 | g − h ∈ Gn} ∈ Z≥0 ∪ {±∞}.

Here, sup(∅) = −∞, and we define c−∞ := 1, c∞ := 0. Then, the topology induced
by d agrees with the topology induced by the collection U as before. Moreover, note
that for g, h ∈ G we have d(g, h) = 0 if and only if g − h ∈

⋂
n≥0Gn. Therefore,

d is a metric if and only if
⋂
n≥0Gn = {0}, and this happens if and only if G is

Hausdorff.

Example-Definition 5.6. Let A be a ring, and I ⊂ A and ideal. Endow (A,+)
with the topology induced by I0 = A ⊃ I ⊃ I2 ⊃ .... This makes A a topological
ring, and this topology is called the I-adic topology on A. Note that A with the
I-adic topology is Hausdorff if and only if

⋂
n≥0 In = {0}. For example, if A is

noetherian, if I is contained in the Jacobson radical this condition holds, cf. 2.9. If
A is Noetherian and local, then this automatically holds for any ideal.
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5.2. Absolute values.

Definition 5.7. Let K be a field. An absolute value on K is a map | · | : K → R≥0
such that
a) |x| = 0 if and only if x = 0,
b) |xy| = |x||y| for all x, y ∈ K, and
c) |x+ y| ≤ |x|+ |y| for all x, y ∈ K.
The last condition is called the triangle inequality. We call | · | non-archimedean if
the stronger condition
c’) |x+ y| ≤ max{|x|, |y|} for all x, y ∈ K
holds.

Remark 5.8. (1) By a) and b), the map | · | : K× → R>0 is a group homo-
morphism.

(2) If ζ ∈ K is a root of unity, then by the first remark we have |ζ| = 1. This
implies | − 1| = 1, and hence | − x| = |x| for all x ∈ K.

Example 5.9. (1) The usual absolute values on R and C.
(2) Let L be a field with absolute value | · |L, and σ : K ↪→ L an embedding of

fields. Then we obtain an absolute value on K by defining |x|K,σ := |σ(x)|L
for all x ∈ K.

(3) Let K be a field with a valuation v : K → R ∪ {∞}. Let 0 < c < 1 be a
real number. Then, x 7→ |x|v := cv(x) is a non-archimedean absolute value.
Conversely, let | · | : K → R≥0 be a non-archimedean absolute value. Then,

v : K → R ∪ {∞}
x 7→ logc |x|

is a valuation. Moreover, v is a discrete valuation if and only if |K×|v ⊂ R×
is a non-trivial discrete subgroup.

(4) The trivial absolute value is defined as follows. Let K be a field and put

|x| =

{
0, x = 0

1, x ̸= 0.

For example, if K is finite, then there is only the trivial absolute value.

Remark 5.10. Let K be a field with absolute value | · |. Then, we can define a
metric on K by putting d(x, y) = |x− y| for all x, y ∈ K. This induces a Hausdorff
topology, and turns K into a topological field (exercise).

Proposition 5.11. Let K be a field with non-trivial absolute values | · |1, | · |2. The
following are equivalent

(i) The absolute values | · |1 and | · |2 induce the same topology on K.
(ii) For all x ∈ K, we have |x|1 < 1 if and only if |x|2 < 1.
(iii) There is a real number a > 0 such that | · |2 = | · |a1.
If any of these conditions hold we call | · |1 and | · |2 equivalent.

Proof. (i) implies (ii): Let x ∈ K. A sequence (xn) in K converges to x ∈ K (with
respect to | · |1) if for all ε > 0 there is an N > 0 such that |xn − x|1 < ε for
every n ≥ N . Topologically, this can be reformulated as follows. For every open
neighborhood U of x there exists an N > 0 such that xn ∈ U for all n > N . Note
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that since K is Hausdorff, limit points are unique. Because | · |1 and | · |2 induce the
same topology, convergence with respect to | · |1 and with respect to | · |2 agrees.

We apply this to the sequence (xn), so we find that lim |xn|1 = 0 if and only if
lim |xn|2 = 0. This implies |x|1 < 1 if and only if |x|2 < 1.

(ii) implies (iii): Let y ∈ K with |y|1 > 1. Then by (ii) for y−1 we find |y|2 > 1.
Hence there is an a > 0 with |y|2 = |y|a1 (let a = log |y|2

log |y|1 > 0). Now let x ∈ K× be
arbitrary. Then we can find b ∈ R with |x|1 = |y|b1 (take a logarithm again, which
is not necessarily b > 0 now).

We claim that |x|2 = |y|b2. Assume this claim is proven. Then |x|2 = |y|b2 =
|y|ab1 = |x|a1 proving (ii) implies (iii). So it remains to prove the claim.

Let m
n > b with m,n ∈ Z and n > 0. Then we have |x|1 < |y|m/n1 , implying

|xn/ym|1 < 1. By (ii) we find that |xn/ym|2 < 1, which is equivalent to |x|2 <
|y|m/n2 . We can take a limit of rational numbers converging to b from above to
conclude |x|2 ≤ |y|b2.

On the other hand, we can repeat this argument with m
n < b converging to b

from below. This shows |x|2 ≥ |y|b2, proving the claim.
(iii) implies (i): This is clear now, because the set of open balls in K agrees when

(iii) holds. □

Proposition 5.12. Let K be a field, |·| an absolute value on K. Then the following
are equivalent.

(i) The absolute value | · | is non-archimedean,
(ii) the set {|m · 1| | m ∈ Z} ⊂ R≥0 is bounded, and
(iii) for all s > 0, | · |s is an absolute value.

Exercise 5.13. Prove the above proposition.

The following is immediate.

Corollary 5.14. Fields of positive characteristic have only non-archimedean abso-
lute values.

Exercise 5.15. Let K be a field with non-archimedean absolute value | · |. Recall
that a sequence (xn) ⊂ K is a Cauchy sequence if the following holds. For all ε > 0
there is an N > 0 such that for all n,m > N we have |xn − xm| < ε.

(1) Let (xn) be a sequence in K. Show that (xn) is Cauchy if and only if ε > 0
there is an N > 0 such that for all n > N we have |xn − xn+1| < ε. Show
moreover that (

∑n
m=1 xm)n is Cauchy if and only if (xn) converges to 0 in

K. Note that this is in stark contrast to the archimedean situation: the
sequence 1/n goes to 0 in R with respect to usual absolute value, but the
corresponding series is divergent.

(2) Let x, y ∈ K, and show that if |x| ≠ |y|, then |x+ y| = max{|x|, |y|}.
Example-Definition 5.16. Let K = Q, and define absolute valies on Q as follows.

(1) We let | · |∞ be the usual absolute value on Q.
(2) For a prime p we define |x|p := p−vp(x) where x = ±pvp(x)pe11 · ... · perr with

pi ̸= p is the prime decomposition of x ∈ Q. We call | · |p the p-adic absolute
value on Q.

Theorem 5.17 (Ostrowski). (1) Let | · | be a non-trivial absolute value on Q.
Then if |·| is archimedean, it is equivalent to |·|∞. If |·| is non-archimedean,
there is a unique prime p such that | · | is equivalent to | · |p.
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(2) Let (K, | · |) be a complete valued field (i.e. every Cauchy sequence in K
converges), and assume | · | is archimedean. Then there exists an isomor-
phism of fields σ : K ∼= R or σ : K ∼= C such that |σ(x)|∞ = |x|s for some
real number 0 < s < 1.

Proof. The proofs can be found in [Bou98], Chapter VI, §6.3. Prop. 9 and Chapter
VI, §6.4., Theorem 2. □

Exercise 5.18. Show that the sequence (an) = (3, 34, 334, 3334, ...) of integers
converges to 2/3 in Q with respect to the 5-adic absolute value | · |5. Hint: Show
3an − 2 converges to 0.

Theorem 5.19 (Product formula). For all x ∈ Q× one has∏
v prime or v=∞

|x|v = 1.

Proof. First note that only finitey many v have |x|v ̸= 1 for any given x ∈ Q×.
Indeed, only when a prime p divides the numerator or denominator in the reduced
expression for x do we have |x|v ̸= 1.

Absolute values are multiplicative, so by the prime decomposition the claim
reduces to x = −1 or x = p for a prime p. In these cases it is clear. □

The next theorem will play a role later when we discuss local-global principles.
Applied to p-adic absolute values, it allows for the selection of an element with
specified divisibility properties.

Theorem 5.20 (Weak approximation). Let K be a field, and | · |1, ..., | · |n be non-
trivial and pair-wise inequivalent absolute values. Moreover, let a1, ..., an ∈ K.
Then, for all ε > 0 there exists an x ∈ K such that |x− ai|i < ε for all i = 1, .., n.

Proof. We proceed in three steps.
i) Claim: There exists a ∈ K such that |a|1 > 1, and |a|i < 1 for i = 2, ..., n.

We prove this by induction on n. We start with n = 2. Then, since | · |1, | · |2 are
inequivalent, there exist b, c ∈ K such that |b|1 < 1, |b|2 ≥ 1 and |c|1 ≥ 1, |c|2 < 1.
Then a = c

b satisfies the claim for n = 2.
Now assume n ≥ 3. By induction hypothesis there exists b ∈ K such that |b|1 > 1

and |b|i < 1 for i = 2, ..., n− 1. Moreover, by the argument for n = 2 above we can
find c ∈ K such that |c|1 > 1 and |c|n < 1. Now there are three cases.

If |b|n < 1, we can put a = b and we are done.
If |b|n = 1, since |b|i < 1 for i = 2, ..., n − 1, we can find a large r such that

|cbr|i < 1 for i = 2, ..., n − 1. We let a = cbr for such a large r. Moreover, since
|c|n < 1, we have |cbr|n < 1 as well.

If |b|n > 1, observe that br

1+br converges to 0 if |b|i < 1 and to 1 if |b|i > 1. We
can therefore define a := c br

1+br for a large enough r.
ii) Claim: for all ε > 0 exists a b ∈ K such that |b − 1|1 < ε and |b|i < ε for

i = 2, ..., n− 1.
We choose a as in i) and define br := ar

1+ar . Note that for any x ∈ K and any
absolute value | · | we have |x| − 1 = |x + 1 − 1| − 1 ≤ |x + 1| by the triangle
inequality. If |x| − 1 > 0, this is equivalent to 1

|x+1| ≤
1
|x|−1 . We apply this to

x = ar and | · | = | · |1, and find that

|br − 1| =
1

|1 + ar|1
≤ 1

|a|r1 − 1
.
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The latter converges to 0.
For i = 2, ..., n we have |a|i < 1 and we conclude similarly that

|br|i =
|a|ri

|1 + ar|i
≤ |a|ri

1− |a|ri
,

which converges to 0 as well. We can therefore choose r large enough so that it
satisfies the requirement of the claim for a given ε.

iii) We now prove the Theorem. Let ε > 0. Assume that all ai are non-zero.
When some ai vanishes, the following argument needs only slight modification, and
we leave it to the reader. By ii) we can choose b1, ..., bn such that |bi− 1|i < ε

n|ai|i ,
and such that |bi|j < ε

n|aj |i if i ̸= j. We then define x := a1b1 + ... + anbn. Then
by the triangle inequality we find that

|x− ai|i ≤ |aibi − ai|i +
∑
j ̸=i

|ajbj |i

≤ |ai|i|bi − 1|i +
∑
j ̸=i

|aj |i |bj |i

< ε.

This proves the claim. □

5.3. Completion. We define completions in a general setting, but we omit some
of the proofs. Recall the following.

Definition 5.21. Let X and Y be sets endowed with pseudo-metrics dX and dY
(hence also with topologies). We call X and Y pseudo-metric spaces. A map
f : X → Y is called uniformly continuous if for all ε > 0 there exists a δ > 0 such
that for all x, x′ ∈ X with dX(x, x′) < δ we have dY (i(x), i(x′)) < ε.

Theorem 5.22 (Completion of pseudo-metric spaces). Let X be a set with a
pseudo-metric d : X ×X → R≥0, and endow it with the induced topology.

(1) A sequence (xn) in X is called a Cauchy sequence if and only if for all ε > 0
there exists an N > 0 such that for all n,m > N we have d(xn, xm) < ε.
We call (X, d) complete if X is Hausdorff and every Cauchy sequence in X
converges.

(2) There exists a complete Hausdorff metric space (X̂, d̂) and a uniformly
continuous map i : X → X̂ such that given any uniformly continous map
f : X → Y to a complete metric space Y there exists a unique uniformly
continous map f̂ : X̂ → Y making the diagram

X
f

��

i // X̂

f̂

��
Y

commute.
(3) The pair (X̂, i) is unique up to unique isomorphism and is called the com-

pletion of X.
(4) For all x, y ∈ X one has d(x, y) = d̂(i(x), i(y)). In particular, i(x) = i(y)

if and only if d(x, y) = 0. Therefore X is Hausdorff if and only if i is
injective.
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(5) The subspace i(X) ⊂ X̂ is dense and X carries the inverse image topology,
i.e. open subsets of X are of the form i−1(V ) for V ⊂ X̂ open.

(6) Let X,Y be pseudo-metric spaces, and f : X → X ′ be uniformly continuous.
Then there exists a unique uniformly continuous map f̂ : X̂ → Ŷ making
the diagram

X
f //

iX
��

Y

iY
��

X̂
f̂ // Ŷ

commute.
(7) Let X,Y be pseudo-metric spaces. Then (X × Y )∧ ∼= X̂ × Ŷ .

Proof. The proof is omitted, we refer to [Bou95, Chapter II, §3.7]. □

Theorem 5.23 (Completion of topological rings). Let A be a ring, not necessarily
commutative, endowed with a pseudo-metric which makes A a topological ring. Then
addition and multiplication A × A → A are continuous and induce on Â the
structure of a topological ring such that i : A → Â is a ring homomorphism. We
call Â the completion of A. Moreover, the following holds.

(1) If A is commutative, so is its completion Â.
(2) Let K be a topological field, and assume that for all Cauchy sequences (xn)

with xn ̸= 0 for all n and for which 0 is not an accumulation point, the
sequence (x−1n ) is also Cauchy. Then, K̂ is a complete topological field and
K̂× with the induced metric is is a complete topological group.

Proof. The reference is [Bou95, Chapter III, §6.5, §6.8]. □

Example 5.24 (Main Example I). Let K be a field and | · | an absolute value on
K. We call (K, | · |) a valued field. There exists a complete valued field (K̂, | · |) and
a uniformly continuous injection i : K → K̂ such that |i(x)| = |x| for all x ∈ K and
such that i(K) ⊂ K̂ dense.

Proof. We only need to show that K̂ is a field. Let (xn) be a Cauchy sequence in
K with xn ̸= 0 such that 0 is not an accumulation point of xn. Then, by definition
there exists a real number c > 0 such that |xn| > c for all n. Let ε > 0 and N > 0
such that |xn − xm| < ε for all n,m ≥ N . Then

|x−1n − x−1m | = |x−1n (xn − xm)x−1m | = |xn − xm||xn|−1|xm|−1 <
ε

c2

for all n,m ≥ N . This implies that (x−1n ) is a Cauchy sequence. □

Moreover, the absolute value | · | on K is non-archimedean if and only if the
absolute value | · | on K̂ is non-archimedean. In this case the following holds.

(1) The map | · | : K× → R>0 is continuous for the discrete topology on R>0.

Proof. We need to show that every fiber (i.e. preimage of a point) of | · | is
open. Let x0 ∈ K×, and let ε := |x0| > 0. Then x ∈ Bε(x0) if and only if
|x− x0| < |x0|. By Exercise 5.15, (2), this implies |x| = |x0|. This implies
that the fiber of | · | over ε contains an open ball around each of its points,
hence it is open. □
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(2) We have |K×| = |K̂×| ⊂ R>0. In particular, | · | on K is discrete if and
only if | · | on K̂ is discrete.

Proof. Let x ∈ K̂×, then we can find a Cauchy sequence (xn) in K× con-
verging to x. Since | · | is continuous for the discrete topology on R>0, we
have limn |xn| = |x|. A convergent sequence in the discrete topology even-
tually stabilizes, so there is a large k >> 0 such that |x| = |xk| ∈ |K×|. □

(3) The subring OK := {x ∈ K | |x| ≤ 1} is an open and closed local subring,
and ÔK := {x ∈ K̂ | |x| ≤ 1} is the closure of OK in K̂. Moreover, m :=

{x ∈ K | |x| < 1} is the maximal ideal of OK , and m̂ := {x ∈ K̂ | |x| < 1}
is the closure of m in K̂. We have that O/m ∼= Ô/m̂.

Proof. We prove the isomorphism. Injectivity of O/m→ Ô/m̂ follows from
injectivity of O → Ô. We prove the map is surjective. For that, we need
to show that ÔK = OK + m. Let x ∈ ÔK , and choose y ∈ OK with
|x − y| < 1. This is possible since OK ⊂ ÔK is dense. Then we have get
x = y + (x− y) and x− y ∈ m̂. □

Example 5.25 (Main Example II). Let A be a ring and I ⊂ A a finitely generated
ideal. Endow A with the I-adic topology, i.e. the unique topology making A into
a topological ring such that (In)n ≥1 is a neighborhood basis of 0 in A. Note that
every In is open in this topology. In this case, Â can be described as follows.
Consider the inverse system

. . .
π−→ A/In+1 π−→ A/In

π−→ . . .
π−→ A/I

where the maps are the natural projections. Recall that the inverse limit of the
above inverse system is

lim
n

A/In := {(an)n≥1 | an ∈ A/In, π(an+1) = an for all n ≥ 1}

This limit carries the subspace topology for the inclusion limn A/In ⊂
∏
n≥1A/I

n,
where each A/In carries the discrete topology, and the product carries the product
topology.

Proposition 5.26. In this situation, there is a natural isomorphism Â ∼= limn A/In.
In addition, the ring A is I-adically complete (i.e. complete with respect to the I-
adic topology) if and only if A ∼= limn≥1A/I

n.

Proof. We sketch a proof. The completion of A is the set of all Cauchy sequences
in A. Denote this set by C(A). Moreover, denote by C0(A) the set of all Cauchy
sequences converging to 0. The set of Cauchy sequences is a ring, and C0(A) is an
ideal in this ring. Then the completion is Â = C(A)/C0(A). In the I-adic topology,
a sequence (xn) in A is Cauchy if and only if for all k ∈ Z≥0 there is an N > 0 such
that for all n,m ≥ N we have xn − xm ∈ Ik.

We want to define a map C(A)/C0(A)→ limA/In. In order to do so, we give a
map C(A)/C0(A)→ A/Ik for every k. These maps are constructed as follows. Let
k ≥ 0, and let (xn) be a Cauchy sequence in A. By definition, for this k we find an
N such that xn − xm ∈ Ik for n,m > N . In other words, the image of xn − xm in
A/Ik vanishes, hence the residues of xn and xm agree for all n,m > N . Denote this
common value by yk ∈ A/Ik, which defines a map C(A)/C0(A)→ A/Ik. It is easy
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to check that π(yk+1) = yk, so that the maps C(A)/C0(A)→ A/Ik together give a
map C(A)/C0(A)→ limA/In. It remains to check that this map is an isomorphism
of topological rings. We leave this to the reader. □

Remark 5.27. One needs to be careful when I is not finitely generated. In that
case, it may happen that limn≥1A/I

n is complete for the limit topology, but not
for the I-adic topology. For finitely generated ideals, both topologies agree. We
refer to [Sta18, Tags 00M9 & 05JA] for a detailed discussion of completion and
some counter-examples.

Definition 5.28. A local ring A is called complete if it is m-adically complete for
the unique maximal ideal m ⊂ A.

Example-Definition 5.29 (Main example in number theory). LetA be a Dedekind
domain with field of fractions K = Frac(A), and let 0 ̸= p ⊂ A a prime ideal. Write
R := Ap which is a discrete valuation ring with maximal ideal m := pAp. Let
v : K → Z ∪ {∞} ⊂ R ∪ {∞} be the normalized discrete valuation of K with
respect to R. Recall that this means if m = (π) ⊂ R, then v(x) = n if x = uπn

where u ∈ R× is a unit, and n ∈ Z.
Fix c ∈ (0, 1) ⊂ R. Then |x|v = cv(x) defines a non-archimedean absolute

value | · |v : K → R≥0 on K. We then have R = {x ∈ K | |x|v ≤ 1}, and
mn = {x ∈ K | |x|v ≤ cn } for any n ≥ 0. Therefore the topology induced by | · |v
on R is the m-adic topology.

We let (Kv, | · |v) be the completion of K with respect to | · |v. Then

Rv = {x ∈ Kv | |x|v ≤ 1} = lim
n

R/mn

is the m-adic completion of R, and is a complete DVR with maximal ideal

mv = {x ∈ Kv | |x|v < 1}.

Lemma 5.30. In the notation of 5.29, we have

R/mn ∼= Rv/m
n
v

Proof. The proof is the same as in 5.24. □

Example 5.31 (p-adic numbers). Let A = Z, K = Q, and p a prime number.
Then R = Z(p) is a DVR with p-adic valuation vp and associated p-adic absolute
value | · |p = p−v(·). We write Qp for the completion of Q with respect to | · |p and
call it the field of p-adic numbers. Moreover, we let

Zp := {x ∈ Qp | |x|p ≤ 1 } = limZ/pnZ,

which is called the ring of p-adic integers.

With this new language, we give a reformulation of the Weak Approximation
Theorem 5.20.

Corollary 5.32. Let K be a field and let | · |1, ..., | · |n be non-trivial and pair-wise
inequivalent absolute values. For i = 1, ..., n let Ki be the completion of K with
respect to | · |i. Then the natural map K →

∏n
i=1Ki has dense image.
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5.4. Complete discrete valuation rings. In this section, we let R be a complete
DVR with maximal ideal m = (π), so that R = limn R/(πn). We let v be the
normalized discrete valuation on K = Frac(R) and we fix c ∈ (0, 1) ⊂ R to obtain
an absolute value |x| = cv(x). Then (K, | · |) is a complete valued field.

Proposition 5.33 (π-adic expansion). Let Z ⊂ R be a set of representatives of
R/(π) (the residue field of R). Then every x ∈ K can be written uniquely as

x =
∑

i∈Z,i≥n
aiπ

i

for some n ∈ Z where ai ∈ Z. One has v(x) = inf{i | ai ̸= 0}.

Proof. Note that aiπi converges to 0 as i goes to ∞. Thus, by Exercise 5.15, the
sequence of partial sums corresponding to the above series is a Cauchy sequence.
As K is complete, it converges in K.

Let x ∈ K× and write x = uπn with u ∈ R× and n ∈ Z. Without loss of
generality we may assume that n = 0, hence x ∈ R× (otherwise prove the statement
for u and multiply by πn).

First, we have a bijection Z ∼= R/(π), and can therefore write x = a0 + πb1 with
0 ̸= a0 ∈ Z and b1 ∈ R uniquely determined.

Assume we had found unique a0, ..., ai−1 ∈ Z and bi ∈ R with

x = a0 + πa1 + ...+ πi−1ai−1 + πibi.

Then as before we can write bi = ai + πbi+1 with ai ∈ Z and bi+1 ∈ R uniquely
determined, and such that

x = a0 + πa1 + ...+ πi−1ai−1 + πiai + πi+1bi+1.

This inductively defines the coefficients of
∑
i≥0 aiπ

i, which converges to x. □

Example 5.34. Let p be a prime number, K = Qp, R = Zp, π = p. Then
Zp/pZp ∼= Z/pZ = Fp, the field with p elements. Therefore we can choose Z =
{0, ..., p− 1}. Then, every x ∈ Qp has a unique representation

x =
∑
i≥n

aip
i

with ai ∈ {0, ..., p− 1}, such that vp(x) = inf{i ∈ Z | ai ̸= 0} ∈ Z∪ {∞}. Here is
an example.

We have
m∑
i=0

(p− 1)pi = (p− 1)
pm+1 − 1

p− 1
= pm+1 − 1

and the latter converges to −1 for the p-adic absolute value | · |p (as pm+1 goes to
0). Therefore, the series expansion of −1 is

−1 = (p− 1) + p(p− 1) + p2(p− 1) + ...

Definition 5.35. Let A be a ring, and I ⊂ A and ideal. The pair (A, I) is called
Henselian pair if the following holds.
a) The ideal I is contained in the Jacobson radical of A.
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b) For every monic polynomial f ∈ A[T ] with image f ∈ (A/I)[T ], and every
factorization f = g0h0 in (A/I)[T ] with g0, h0 ∈ (A/I)[T ] monic such that
(g0) + (h0) = (A/I)[T ], there exist monic g, h ∈ A[T ] with f = gh, g = g0, and
h = h0. A local ring A with maximal ideal m is called Henselian if (A,m) is a
Henselian pair.

Lemma 5.36. Given g, h ∈ A[T ] with (g)+ (h) = (A/I)[T ], and g monic, we have
(1) (g) + (h) = A[T ], and
(2) g and h are uniquely determined.

Proof. (1) Since g is monic, A[T ]/(g) is a finite free A-module. Therefore M :=
A[T ]/(g, h) is a finiteA-module withM/IM = (A/I)[T ]/(g, h) = 0. By Nakayama’s
lemma there exists r ∈ R with rM = 0 and r − 1 ∈ I. Since I is in the Jacobson
radical, so is r − 1, hence r ∈ R×. This implies M = 0.

(2) Write f = g1h1 = g2h2 with gi monic and g1 = g2, as well as h1 = h2. By
(1) we have (g1) + (h2) = A[T ], so we can find r, s ∈ A[T ] with rg1 + sh2 = 1.
Hence g2 = rg1g2 + sg2h2 = g1(rg2 + sh1), which implies g1 | g2. Since g1 and g2
are monic of the same degree, this implies g1 = g2. Moreover, monic polynomials
in A[T ] are not zero divisors, so we get h1 = h2. □

Remark 5.37. Here is an immediate consequence. Let A be a local Henselian ring
with residue field k. Let f ∈ A[T ] monic such that f ∈ k[T ] has a simple root
a ∈ k. Then there exists a unique a ∈ R with image a such that f(a) = 0. In other
words, a simple root of f over k can be lifted to a root over A.

Theorem 5.38 (Hensel’s Lemma). Let A be a ring and I ⊂ A an ideal such that
A is I-adically complete. Then (A, I) is a Henselian pair.

The proof can be found in [Sta18], Tag 0ALJ.

Corollary 5.39. Let (K, | · |) be a complete valued field with non-archimedean
absolute value | · |. Then OK = {x ∈ K | |x| ≤ 1} is a Henselian DVR.

Example 5.40. The ring of p-adic integers contains all (p − 1)-th roots of unity.
Indeed, the polynomial Xp−1 − 1 ∈ Zp[X] decomposes mod p into distinct lin-
ear factors. Since Zp is complete, by Hensel’s Lemma the polynomial Xp−1 − 1
decomposes into p− 1 distinct linear factors.

Proposition 5.41. Let R be a Henselian DVR with maximal ideal m and residue
field k, K = Frac(R), and | · | an absolute value corresponding to R (i.e. R = {x ∈
K | |x| ≤ 1}). Moreover, let f ∈ K[X] be an irreducible polynomial, and write
f = a0X

n + a1X
n−1 + ...+ an. Then

max{|a0|, |a1|, ..., |an|} = max{|a0|, |an|}.
In particular, if a0, an ∈ R, then f ∈ R[X].

Proof. After multiplication with some element in K× we may assume that

max{|a0|, |a1|, ..., |an|} = 1.

In other words we may assume f ∈ R[X]. Let r = max{i | |ai| = 1}, then aj ∈ m for
all j > r. Hence f ≡ Xn−r(ar+ar−1X+...) ∈ k[X]. Now assume max{|a0|, |an|} <
1. This implies 0 < r < n, and f has a decomposition into coprime polynomials
(since ai ̸= 0 by assumption). Since R is Henselian, this factorization lifts to R,
contradicting irreducibility of f . We conclude that max{|a0|, |an|} = 1, proving the
claim. □
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5.5. Extensions of Henselian discrete valuation rings.

Proposition 5.42. Assume we have A,B,K,L as in Situation 3.15 (i.e. A is a
Dedekind domain and B is its integral closure in L), with B a finite A-algebra (Hy-
pothesis 3.16). Recall this implies B is also a Dedekind domain. Let p ∈ Spec A
be a non-zero prime ideal, and vp be the associated discrete valuation, R = Ap =
{x ∈ K | vp(x) ≥ 0} the associated DVR, and |x|p = cvp(x) the associated non-
archimedean absolute value (for some fixed c). Then, there are bijective correspon-
dences between the following finite sets:

{q ∈ Spec B | q ∩A = p} 1:1←−→ {w discrete valuation on L with w|K = vp }
1:1←−→ {| · | absolute value on L with | · ||K = | · |p }.

The first map is given by q 7→ 1
eq

vq where vq is the non-trivial discrete valuation
given by Bq, and eq is the ramification index of q, and the second map is given by
w 7→ cw(·).

Proof. By Corollary 3.25 there are only finitely many primes q lying above p. The
second bijection is clear, so we only prove the first one.

We first check that 1
eq
vq extends vp. It suffices to show this for prime ideals in

A. We have 1
eq
(pB) = 1

eq
eq = 1 by definition of eq. For p ̸= p′ ∈ Spec A a non-zero

prime ideal, we have vq(p′B) = 0 = vp(p
′) (if it were positive, then q would lie over

p′ implying p = p′).
Let us check injectivity. Let q, q′ be distinct primes above p. Then there exists

x ∈ q \ q′. For this x we have vq(x) > 0 ≥ vq′(x). This implies vq ̸= vq′ .
For surjectivity let S := {x ∈ L | w(x) ≥ 0} ⊂ L, which is a DVR. Denote its

maximal ideal by m. Since w|K = v, we have w|A ≥ 0 and w|p > 0. Therefore
A ⊂ S, and p = m ∩ A. Since S is a DVR, it is integrally closed in L. Indeed,
assume x ∈ L satisfies an equation xn+an−1xn−1+ ...+a1x+a0 with ai ∈ S. Now
Frac(S) = L, and x ∈ S or x−1 ∈ S. In the first case, we are done. If x−1 ∈ L, we
have

−x = an−1 + an−2x
−1 + ...+ a1x

−n+2 + a0x
−n+1.

Now S being integrally closed implies B ⊂ S. We define q := m ∩B ⊂ B, which is
now a prime ideal with q ∩A = p. This proves the proposition. □

Theorem 5.43. Let A be a Henselian DVR with field of fractions K = Frac(R),
| · | a corresponding absolute value, L ⊃ K a finite extension, B = {x ∈ L |
x integral over A the integral closure of A in L. Let n = [L : K]. Then the
following holds.

(1) We have B = {x ∈ L | NL/K(x) ∈ A}.
(2) The absolute value | · | has a unique extension to L. This extension is given

by
x 7→ n

√
|NL/K(x)|.

(3) The ring B is a DVR.

Proof. (1) The inclusion B ⊂ {x ∈ L | NL/K(x) ∈ A} follows from Remark 3.33.
So assume we are given x ∈ L× with NL/K(x) ∈ A. We need to show that x is
integral over A. Let

µx = Xd + a1X
d−1 + ...+ ad ∈ K[X]
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be its minimal polynomial over K. The Norm is up to a sign the constant term
of the characteristic polynomial χx of x. Now by Cayley-Hamilton (using the fact
that µx is irreducible), χx is a power of µx. We find that NL/K(x) = ±amd ∈ A
for some m > 0. This implies ad ∈ A. We apply Proposition 5.41 to conclude that
µx ∈ A[X], so x is integral over A, i.e. x ∈ B.

(2) We first prove that α(x) = n
√
|NL/K(x)| is a discrete non-archimedean abso-

lute value on L extending |·| on K. Let x ∈ K. Then, n
√
|NL/K(x)| = n

√
|x|n = |x|,

so α extends | · |. We check the properties of an absolute value.
First, it is clear that α(x) = 0 if and only if x = 0. Multiplicativity follows

from multiplicativity of the norm NL/K . It remains to prove the strong triangle
inequality α(x+ y) ≤ max{α(x), α(y)}. Without loss of generality we may assume
α(x) ≥ α(y) and x ̸= 0.

It is enough to show that α(1+ y/x) ≤ max{1, α(y/x)} (we can simply multiply
this by α(x)). Let z := y/x, then α(z) ≤ 1 and max{1, α(z)} = 1. Therefore, we
only need to show α(1 + z) ≤ 1. Recall that A = {x′ ∈ K | |x′| ≤ 1}. Since
n
√
|NL/K(z)| = α(z) ≤ 1, we have |NL/K(z)| ≤ 1, so by (1) we have z ∈ B. This

implies z + 1 ∈ B, and again by (1) this implies α(z + 1) ≤ 1.
Before proving uniqueness of α, we prove (3). We can write B = {x ∈ L | α(x) ≤

1}, and since α is an absolute value, we find that B is a DVR. Therefore, B has
a unique non-zero prime ideal which is maximal and by Proposition 5.42 α is the
unique extension of | · | (extensions are in bijection with prime ideals in B lying
over the corresponding prime in A). □

Corollary 5.44. Let (K, | · |) be a complete valued field, | · | discrete, L ⊃ K an
algebraic extension. Then there exists a unique extension ∥·∥ of | · | to L. If L ⊃ K
is finite, then ∥·∥ is discrete and (L, ∥·∥) is complete.

Proof. Every algebraic extension is a union of its finite subextension. Therefore we
may assume L ⊃ K is finite. By Theorem 5.43 there exists a unique ∥·∥ which is
discrete. Now K is complete, and L is a finite-dimensional vector space over K.
It is a standard fact that a finite-dimensional vector space over a complete field is
complete. □

Example 5.45. Let A = Zp,K = Qp. Consider the extension L = Qp(
√
p). Let

| · |p be the p-adic absolute value on Qp, and B the integral closure of A in L. Let
vp : Qp → Z ∪ {∞} the normalized p-adic valuation. Note that √p /∈ Qp, for
otherwise vp(

√
p) = 1

2vp(p) = 1/2, which is a contradiction.
Now Zp is complete, so by Theorem 5.43 and Corollary 5.44 the ring B is a

complete DVR. We have pB = (
√
p)2, so (

√
p) lies over pA. Since [L : K] = 2,

(
√
p) ⊂ B has to be the unique prime ideal, and e√p = 2, f√p = 1. In fact, we can

conclude that B = Zp[
√
p] by the description B = {x ∈ L | NL/K ∈ Zp}.

Exercise 5.46. Let Qp be an algebraic closure of Qp, and n ≥ 1. Moreover, let ζ
be a primitive (pn − 1)-th root of unity, and L = Qp[ζ]. Show the following.

(1) We have [L : K] = n, and (p) is unramified.
(2) The integral closure of Zp in L is Zp[ζ].

We remark that if L ⊃ K is finite of degree n, and (p) is unramified in L, then
L ∼= Qp[ζ].
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5.6. Local-global principles. Assume we are again in Situation 3.15. Moreover,
let Kp be the completion of K with respect to | · |p, and denote the extension of
| · |p to Kp by the same symbol | · |p. Recall that |Kp|p = |K|p and similarly for vp.

Then Âp := {x ∈ Kp | |x|p ≤ 1 } = limnA/p
n is a complete DVR with

Frac(Âp) = Kp. Let p̂ = πÂp = {x ∈ Kp | |x|p < 1} be the maximal ideal of Âp.
For n ≥ 1 we have pnÂp = p̂nÂp and moreover A/pn = Ap /p

nAp
∼= Âp / p̂nÂp.

Theorem 5.47. In the above notation, let L ⊃ K be a finite separable field exten-
sion, and let B be the integral closure of A in L. Then the following holds.

(1) For q ∈ Spec B lying over p we have eq = eq̂, fq = fq̂, and
(2) we have L⊗K Kp =

∏
q|p Lq.

Proof. (1) Let e := eq. By Remark 3.28 we have pBq = (qBq)
e. Then p̂B̂q =

(̂qBq)
e
= q̂eB̂q. This implies eq̂ = e. Moreover, fq = [B/q : A/p] = [B̂q/q̂ :

Âp/p̂Âp ] = fq̂.
(2) By the fundamental equality in Theorem 3.24, we have

dimKp
(L⊗K Kp) = dimK(L) =

∑
q|p

eq fq.

On the other hand, the right hand side of (2) has dimension
∑

q|p dimKp
(Lq). By

(1), we have dimKp
(Lq) = eqfq. We find that both sides of (2) are finite-dimensional

Kp-vector spaces of the same dimension. Consider the Kp-linear map

ϕ : L⊗K Kp →
∏
q|p

Lq

x⊗ 1 7→ (x, ..., x).

By the Weak Approximation Theorem 5.32, ϕ has dense image. Note that the image
of ϕ is a finite-dimensional Kp-subvector space. Such a subspace is automatically
closed by Lemma 5.48 below, hence ϕ is surjective. Therefore ϕ is a surjective map
of finite-dimensional vector spaces, and as such is bijective. □

Lemma 5.48. Let (K, | · |) be a complete valued field, V and W finite-dimensional
normed vector spaces. Then every linear map V →W is continuous. Moreover:

(1) Let V be a finite dimensional K-vector space, then all norms on V are
equivalent. This means there is a unique topology on V coming from a
norm with respect to | · | on K.

(2) Subvector spaces of finite dimensional vector spaces are closed.

Proof. Reference is Bourbaki, Topological Vector Spaces, Chapter I, §2.3. □

Corollary 5.49. Let A,K,B and L as in Theorem 5.47. Write L = K(θ) (this
is possible since L ⊃ K is finite and separable). Denote by f := µθ,K the minimal
polynomial of θ. Let p ∈ Spec A be a non-zero prime ideal and let f = f1·...·fr be the
decomposition of f into monic irreducible factors over Kp. Then the qi ∈ Spec B
lying above p correspond bijectively to the fi and we have Lqi

∼= Kp[T ]/(fi). In
particular, deg(fi) = [Lqi

: Kp] = eqi
fqi

.

Proof. Since f is separable, all fi are distinct. Hence∏
q|p

Lq
∼= L⊗K Kp

∼= K[T ]/(f)⊗K Kp = Kp[T ]/(f).
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By the chinese remainder theorem, Kp[T ]/(f) ∼=
∏r
i=1Kp[T ]/(fi). The theorem

follows from the Lemma below. □

Lemma 5.50. Let K1, ...,Kn be fields. Any ideal I ⊂
∏n
i=1Ki is a subproduct

of
∏n
i=1Ki. Moreover, any surjective homomorphism ϕ :

∏n
i=1Ki → B can be

identified with the projection onto a subproduct.

Proof. The projection pj :
∏n
i=1Ki → Kj is a surjective ring homomorphism onto

Kj . Therefore, pj(I) ⊂ Kj is an ideal and as such it is either 0 or Kj . Thus I is the
product ofKj for which pj(I) ⊂ Kj ̸= 0. For the second statement, note that ker(ϕ)
is an ideal, so it is a subproduct of

∏n
i=1Ki. Therefore

∏n
i=1Ki = kerϕ × im(ϕ)

and im(ϕ) = B is a subproduct. □

Corollary 5.51. Let A,K,B and L and p as in Theorem 5.47. Let x ∈ L, then
we have

(1) NL/K(x) =
∏

q|pNLq|Kp
(x), and

(2) TrL/K(x) =
∑

q|p TrLq/Kp
(x).

Exercise 5.52. Prove the above Corollary.

6. Local and global fields

§6.1 Locally compact groups
§6.2 Local fields
§6.3 Global fields

6.1. Locally compact groups.

Definition 6.1. A topological space X is locally compact if it is Hausdorff and
every point of X has a compact neighborhood.

Theorem 6.2 (Topological facts). (1) Let (K, | · |) be a complete valued field,
and let V be a normed space over K. Assume that some neighborhood of
0 ∈ V is precompact (i.e. its closure is compact). Then K and V are locally
compact and V is finite dimensional.

(2) Let (G,+) be an abelian group with a metric d such that d(g, g′) = d(g +
h, g′ + h) for all g, g′, h ∈ G. If G is locally compact, then G is complete.

Proof. The reference is [Bou02, Chapter I, § 2.4., Theorem 3] and [Bou95, Chapter
III, § 3.3, Corollary 1 of Proposition 4]. □

In the following we study some integration theory on locally compact spaces.

Definition 6.3. Let X be locally compact, and B its Borel σ-algebra. Recall that
this is the σ-algebra generated by open subsets ofX. A measure µ : B → R≥0 ∪{∞}
is called Radon measure if
(a) µ(C) <∞ for every compact C, and
(b) for all A ∈ B we have µ(A) = sup{µ(C) | C ⊂ A compact} (we say the measure

is inner regular).
Let G be a locally compact topological group. A left Haar measure µ on G is
a non-zero Radon measure on G such that µ(gZ) = µ(Z) for all g ∈ G and all
measurable sets Z.
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Remark 6.4. In the above situation, we call a Radon measure µ regular, if µ is
in addition outer regular, which means that µ(A) = inf{µ(U) | U ⊃ A open}. It
can be shown that for σ-compact spaces, any Radon measure is regular. Here,
σ-compact means that in addition to being locally compact, X can be written as
countable union of compact sets. In the cases we are interested in, this will always
be satisfied (such as non-discrete locally compact fields for example).

Theorem 6.5. Let G be a locally compact topological group. Then, a Haar measure
µ on G exists. Moreover, if µ′ is another Haar measure, then there exists a positive
real number α ∈ R>0 such that µ′ = αµ.

Proof. This is [Bou04, Chapter II, § 1.2., Theorem 1]. □

Remark 6.6. Let G be a locally compact group, α : G→ G an automorphism of
G (which means α is a group homomorphism and a homeomorphism). Choose a
Haar measure µ on G. Then the map

Z 7→ µ(α(Z))

for every measurable set Z is again a Haar measure. Indeed, µ(α(gZ)) = µ(α(g)α(Z)) =
µ(α(Z)). Therefore there is a unique |α|G ∈ R>0 satisfying

µ(α(Z)) = |α|Gµ(Z)
for every measurable set Z. It is easy to check that |α|G is independent of the chosen
Haar measure µ. Indeed, let µ′ be another Haar measure. Then µ′ = λµ for some
λ ∈ R>0. Assume Z is measurable with µ(Z) > 0. Then |α|G = µ(α(Z))

µ(Z) = µ′(α(Z))
µ′(Z) .

Moreover, if β : G→ G is an automorphism of G, then for every measurable set
Z we have

µ(α(β(Z))) = |α|Gµ(β(Z)) = |α|G |β|Gµ(Z).
Therefore, the map Aut(G)→ R>0 given by α 7→ |α|G is a group homomorphism.

Definition 6.7. The real number |α|G is called the modulus of α.

We need a few more facts and properties about locally compact groups and Haar
measures which we state without proofs.

Theorem 6.8. Let G be an abelian locally compact topological group, and H ⊂ G
a closed subgroup.

(1) Then H and G/H are locally compact abelian groups.
(2) Let µG be a Haar measure on G, µH a Haar measure on H. Note that this

is not necessarily the restriction of µG to B(H). Then there exists a unique
Radon measure µG/H on G/H satisfying∫

G

f(x)dµG(x) =

∫
G/H

(∫
H

f(gh)dµH(h)

)
dµG/H(gH),

for every continuous real-valued function f on G. In addition, the measure
µG/H is a Haar measure on G/H. For compact C ⊂ G, the above equation
implies

µG(C) =

∫
G/H

fC(gH)dµG/H(gH)

where fC : G/H → R is defined by

fC(gH) = µH({h ∈ H | gh ∈ C }) = µH(H ∩ g−1C).
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(3) Let α ∈ Aut(G) satisfying α(H) = H. Then, we have an induced automor-
phisms α ∈ Aut(G/H). The modulus satisfies

|α|G = |α|H |α|G/H .

Proof. The reference is [Bou04, Chapter VII, § 2]. □

Remark 6.9. Suppose H ⊂ G is a discrete subgroup, and let µH be the counting
measure on H. Then fC(gH) = #(H ∩ g−1C) = #(gH ∩ C). Suppose that the
restriction of the natural projection π : G→ G/H to C is injective. Then fC(gH)
is the characteristic function of π(C) ⊂ G/H, and µG(C) =

∫
G/H

fCdµG/H =

µG/H(π(C)).

Example 6.10. Let G a compact topological group. Then G is locally compact
and carries a Haar measure µ′. Since G is compact, and µ′ is a Radon measure, we
have 0 < µ′(G) < ∞. Haar measures are unique up to scaling by a positive real
number, so there exists a unique Haar measure µ on G with µ(G) = 1. We call this
the normalized Haar measure of G. Note that for any automorphism α ∈ Aut(G)
we have |α|G = 1. Indeed, we have

1 = µ(G) = µ(α(G)) = |α|Gµ(G) = |α|G.

Exercise 6.11. Let G be a discrete topological group. Show the following.
(1) The group G is locally compact, and the Borel σ-algebra on G is the power

set of G.
(2) The counting measure which assigns to Z ⊂ G its number of elements if Z

is finite, or ∞ if Z is infinite, is a Haar measure on G.
(3) For every automorphism α ∈ Aut(G) we have |α|G = 1.

6.2. Local fields.

Theorem 6.12 (Classification of non-discrete locally compact fields). Let K be a
non-discrete topological field. The following are equivalent.

(i) The field K is locally compact.
(ii) There exists an absolute value | · | on K inducing the given topology on K such

that (K, | · |) is a complete valued field and
(a) either | · | is archimedean, or
(b) | · | is discrete and R/m is a finite field, where R = {x ∈ K | |x| ≤ 1}

and m = {x ∈ K | |x| < 1|}.
(iii) We are in one of the following cases.

(a) Archimedean case. We have K = R or K = C,
(b) Non-archimedean, char(K) = 0. The field K is a finite extension of Qp

endowed with the unique topology as a finite dimensional normed Qp-
vector space for some prime number p (with respect to the p-adic absolute
value).

(c) Non-archimedean, char(K) > 0. We have K = Frac(Fq[[t]]) for some
prime power q = pr with topology induced by the discrete valuation

v : Fq[[t]]→ Z ∪ {∞},∑
i≥0

ait
i 7→ inf{m ≥ 0 | am ̸= 0}.

In any of these cases the field K is called a local field.
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Proof. We will not need every statement of this theorem, only the ones involving
characteristic 0 fields. We prove only some statements, and refer to [Wei95, Chapter
I] for the rest.

Equivalence of (ii)(a) and (iii)(a) is part of Ostrowski’s Theorem 5.17. It is clear
that R and C are locally compact and non-discrete, so (iii)(a) implies (i).

We show that (iii)(b) implies (ii)(b), and that this implies (i). For the first
implication, let K ⊃ Qp be a finite extension. By Corollary 5.44 the p-adic absolute
value extends uniquely to an absolute value ∥·∥ on K, which makes K a normed
vector space over Qp. By Lemma 5.48 all norms are equivalent, and it is a standard
fact that K is complete with respect to any of these norms (since Qp is complete).
The residue field of K is a finite extension of Fp, hence finite.

We prove that (ii)(b) implies (i). Note that the topology is non-discrete, since
the absolute value is non-trivial. We need to show that K is locally compact, i.e.
every point x ∈ K has a compact neighborhood. We show that actually every point
has a compact open neighborhood. For this, we check that the ring R = {x ∈ K |
|x| ≤ 1} is open in K. Recall that | · | : K× → R>0 is continuous for the discrete
topology on R>0. This implies R× = {x ∈ K | |x| = 1} is open. Moreover, m is
defined by |x| < 1, so it is clearly open, and so is R = R× ∪m. Now it suffices to
check that R is compact (because in that case, x + R is a compact neighborhood
of x ∈ K for any K). Since R is complete, we have R = limnR/m

n ⊂
∏
nR/m

n.
Here, every R/mn carries the discrete topology, so in particular it is Hausdorff,
and the inverse limit is closed in the product. It therefore suffices to prove that∏
nR/m

n is compact. This follows from Tychonoff’s theorem once we know that
each R/mn is compact (which in the discrete case is equivalent to being finite).
Thus, we need to show that R/mn is finite for every n. We prove it by induction
on n. Let m = (π). We have an exact sequence

0→ mn/mn+1 → R/mn+1 → R/mn → 0,

where mn/mn+1 ∼= R/m as R-modules via multiplication with π−n. By induction
hypothesis, R/mn is finite, and by assumption, R/m is finite. We omit the proofs
of all other implications. □

Remark 6.13. The above proof implies that #R/mn = qn where q = #R/m.

Definition 6.14. Let K be a local field and a ∈ K×. Then the map x 7→ ax
is a group automorphism of (K,+). Denote by |a|K ∈ R>0 its modulus. Recall
that this means for any Haar measure µ on K and any measurable set Z we have
µ(aZ) = |a|Kµ(Z).

In addition, define |0|K := 0 (note that then µ(aZ) = |a|K µ(Z) for all a ∈ K
and all measurable Z). We call |a|K the modulus of a. Note that the modulus is
multiplicative, i.e. |ab|K = |a|K |b|K .

Proposition 6.15. (1) For K = R the modulus | · |R is the usual absolute
value.

(2) For K = C the modulus | · |C is the square of the usual absolute value.
In particular, since it does not satisfy the triangle inequality, it is not an
absolute value on C.

(3) Let K be non-archimedean with corresponding DVR R ⊂ K and finite
residue field k. Let v be the normalized discrete valuation for R. Then
for any a ∈ K we have |a|K = q−v(a), where q = #k.
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Proof. Let a ∈ K×.
(1) The Lebesgue measure on R is a Haar measure. It is normalized such that

µ([0, 1]) = 1. We use it to compute the modulus. Let | · | be the usual
absolute value on R and C = [0, 1]. We have µ(aC) = |a| = |a|µ(C).

(2) We again use the Lebesgue measure on C = R⊕Ri to compute the modulus.
Let C = [0, 1] × [0, i], then µ(C) = 1. The effect of scaling C by a ∈ C× is
rotation by the argument of a and dilation by |a|. Therefore

µ(aC) = µ([0, |a|]× [0, |a|i]) = |a|2 = |a|2µ(C).

(3) Write a = b
c for b, c ∈ R \ {0}. Then |a|K = |b|K

|c|K . Thus, it suffices to show
|a|K = q−v(a) for all a ∈ R. Write n = v(a) ≥ 0. Then #R/aR = qn. This
means we can write R as a disjoint union of qn subsets of the formaR+ b.
This means

µ(R) =
∑

µ(aR+ b) =
∑

µ(aR) = qnµ(aR),

where the second equality follows since µ is a Haar measure, hence trans-
lation invariant. This implies |a|K = q−n, proving the claim.

□

6.3. Global fields.

Definition 6.16. Let K be a field. The equivalence class of a non-trivial absolute
value on K is called a place of K.

Example 6.17. By Ostrowski’s Theorem 5.17, the places of Q are the p-adic
absolute values | · |p and the archimedean absolute value | · |∞.

Definition 6.18. A number field K is a finite extension of Q. We define OK :=
{x ∈ K | x integral over Z}, which is a Dedekind domain.

Proposition 6.19. Let K be a number field, |·| a place of K, and K̂ the completion
of K with respect to | · |. There are two cases.

(1) If | · | is archimedean, then K̂ = R or K̂ = C, and there is a Q-linear
embedding τ : K ↪→ C such that |·| is equivalent to |·|τ . Here, |x|τ := |τ(x)|
for the usual absolute value on C. Moreover, | · |τ is equivalent to | · |τ ′ if
and only if τ = τ ′ or τ ′ = τ (the pointwise complex conjugate).

(2) If | · | is non-archimedean, there exists a non-zero prime ideal q ⊂ OK such
that | · | is equivalent to | · |q. Moreover, K̂ is a finite extension of Qp where
p is the prime number generating q ∩ Z.

In both of these cases, K̂ is a local field.

Proof. (1): Ostrowski’s Theorem 5.17 (2) implies that K̂ = R or K̂ = C. Let τ be
the composition

K
ι
↪−→ K̂ ↪→ C

where ι is the natural embedding into the completion. For x ∈ K we have

|x| = |ι(x)| = |τ(x)|s

for some s > 0 (because the extension of the absolute value on K̂ to C is equivalent
to the usual absolute value).
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If τ ′ = τ it is clear that | · |τ = | · |τ ′. Vice versa, if | · |τ ∼ | · |τ ′ , there exists a
positive real number such that | · |τ ′ = | · |sτ . However, | · |τ and | · |τ ′ agree on Q,
so s = 1.

In addition, completing K with respect to | · |τ and with respect to | · |τ ′ yields
the same completion K̂. By the universal property of completion, τ and τ ′ extend
to τ̂ , τ̂ ′ : K̂ → C.

If K̂ = R, then since Q ⊂ R is dense, we have τ̂ = τ̂ ′, implying τ = τ ′.
If K̂ = C, then define α := τ̂ ◦ (τ̂ ′)−1. By the above argument, this is a field

automorphism of C fixing R. This implies α = id or α is complex conjugation.
(2) By Ostrowski’s Theorem 5.17 (1), the restriction of | · | to Q is equivalent to

| · |p for a unique p. By Proposition 5.42, | · | is the q-adic absolute value for some
prime ideal q ⊂ OK lying over (p). This implies K̂ = Kq, which is a finite extension
of Qp. □

Definition 6.20. Let K be a number field, v a place of K, and Kv the completion
of K with respect to v.

(1) Let v be archimedean with corresponding Q-embedding τ : K ↪→ C. We
call τ real if τ(K) ⊂ R (which holds if and only if Kv = R), and we call τ
complex if τ(K) ̸⊂ R (which holds if and only if Kv = C). We define

|x|v :=

{
|τ(x)|R, τ real
|τ(x)|C, τ complex.

Note that |·|C denotes the modulus, which is the square of the usual absolute
value on C.

(2) Let v be non-archimedean corresponding to the prime ideal p ⊂ OK . Then
we define | · |v to be the modulus on Kv. Recall that for p̂ = pOv this means
|x|v = q−vp̂(x) for q = #OK/p = pfv . Here fv = fp = [OK/p : Fp], and
the valuation vp̂ is the normalized discrete valuation on Ov. Moreover, we
denote by ev = ep the ramification index of p, i.e. ev is the largest integer
such that pev divides pOK .

Lemma 6.21. Let K be a number field, v a place of K, and let | · |p = v|Q (this
means p is a prime number or p =∞). Then |x|v = |NKv/ Qp

(x)|p.

Exercise 6.22. Prove the above lemma.

Theorem 6.23 (Product formula). Let K be a number field, and let x ∈ K×.
Then |x|v = 1 for almost all places v of K and∏

v place of K

|x|v = 1.

Proof. The number of archimedean places is bounded by

#HomQ(K,C) = [K : Q] <∞.

Indeed, by the primitive element theorem K = Q(α) = Q[T ]/(f) for some α ∈ K
with minimal polynomial f . The polynomial f has n = [K : Q] distinct roots
α1, ..., αn, and the distinct embeddings Q[T ]/(f) ↪→ C are given by T 7→ αj for
some j (the image of T has to be a root of f). For a non-archimedean place v
corresponding to q ⊂ OK we have |x|v ̸= 1 if and only if q occurs in the prime ideal
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factorization of the fractional ideal xOK . So we find that |x|v = 1 for almost all
places v.

We claim that if p is a prime number, or if p = ∞, we have NK/Q(x) =∏
v|pNKv/Qp

(x). Here, we write v|∞ to mean that v is archimedean. For finite
places we have seen this in Corollary 5.51. For p =∞, we have

NK/Q(x) =
∏

τ∈HomQ(K,C)

τ(x)

=
∏
τ real

τ(x) ·
∏

τ complex

τ(x)

=
∏
Kv=R

x ·
∏
Kv=C

xx

=
∏
v|∞

NKv/R(x),

since for every complex embedding τ , its conjugate τ also appears.
Now we prove the product formula. By Lemma 6.21 we get∏

v place of K

|x|v =
∏

p place of Q

∏
v|p

|x|v =
∏

p place of Q

∏
v|p

|NKv/Qp
(x)|p.

By what we proved above we find∏
p place of Q

∏
v|p

|NKv/Qp
(x)|p =

∏
p place of Q

|NK/Q(x)|p = 1,

using the product formula for Q. □

Definition 6.24. A global field is a field K together with a set of places satisfying
the following conditions.
(a) There exist representatives | · |v of the given places such that for all x ∈ K× we

have |x|v = 1 for almost all places v, and the product formula is satisfied, i.e.∏
v

|x|v = 1.

(b) There exists a place v such that Kv is a local field.

Corollary 6.25. Number fields are global fields.

Remark 6.26. One can show that if K is a global field, there are two cases.
(1) Either char(K) = 0, and K is a number field, or
(2) char(K) = p > 0, and K is a finite extension of Fp(T ).

The fields in case (2) arise as function fields of curves over finite fields.

For the proof of this fact we refer to [AW45].

7. Adeles and ideles

§7.1 Restricted products
§7.2 Adeles and ideles
§7.3 Dirichlet’s unit theorem
§7.4 Finiteness of the class group
§7.5 Proof of the main theorems
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In this section, we introduce the notion of adeles and ideles. They give a convenient
way of considering all completions of a global field at once, and allow us to study
number theory using topological and analytic methods. After introducing adeles
and ideles, we will use these objects to prove two classic results in algebraic number
theory. For that, recall the fundamental exact sequence

1→ O×K → K× → Div(OK)→ Cl(OK)→ 1

for a number field K (recall that Div(OK) is the group of fractional ideals of OK).
We will prove Dirichlet’s unit theorem, which says that O×K is finitely generated,
and the number of generators is explicit in terms of real and complex embeddings
of K. After that, we will prove finiteness of the class group Cl(K).

We will often use the terminology almost all, meaning all but finitely many.

7.1. Restricted product.

Definition 7.1. Let (Xi)i∈I be a family of topological spaces. For almost all i ∈ I
let Oi ⊂ Xi be an open subspace. Define

X :=
∏
i∈I

′
:= {(xi) ∈

∏
i∈I

Xi | xi ∈ Oi for almost all i}.

We endow X with a topology by giving a basis for it. The basis consists of those
sets

∏
i∈I Ui with Ui ⊂ X open, for which Ui = Oi for almost all i ∈ I. We call X

with this topology the restricted product of the Xi with respect to the Oi. Often,
the Oi will be implicit, and we simply refer to X as the restricted product.

Define If := {i ∈ I | There exists an Oi ⊂ Xi}, and I∞ = I \ If (which is a
finite set). For a finite subset S ⊂ I with S ⊃ I∞ define moreover

XS :=
∏
i∈S

Xi ×
∏
i∈I\S

Oi ⊂ X,

which is an open subspace in X. For two finite subsets S ⊂ S′ ⊂ I with I∞ ⊂ S ⊂
S′ we have XS ⊂ XS′ and

X =
⋃

S⊂Ifinite
S⊃I∞

XS .

Proposition 7.2. Let Xi and Oi be as above. Assume every Xi is locally compact,
and every Oi is compact. Then, the restricted product

∏′
i∈I Xi is locally compact.

Proof. For any finite S ⊃ I∞, the spaceXS is locally compact. This follows from the
fact that finite products of locally compact spaces are locally compact. Moreover,
every XS ⊂ X is open, and ranging over finite S, the XS cover X. □

Remark 7.3. Let Xi and Oi be as in Proposition 7.2. For each i ∈ I, let µi be
a Radon measure on Xi, such that for every i ∈ If , the measure is normalized by
µi(Oi) = 1. We can endow X =

∏′
i∈I Xi with the product measure µ. This works

as follows. The Borel σ-algebra on the product is generated by subsets
∏
i∈IMi

where Mi ⊂ Xi is compact and Mi = Oi for almost all i ∈ I. Then,

µ(
∏
i∈I

Mi) =
∏
i∈I

µi(Mi),

which is well-defined since µ(Mi) = µ(Oi) = 1 for almost all i ∈ I. Note that the
restriction of µ to

∏
i ∈If Oi is the product probability measure.
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Remark 7.4 (Modulus). Suppose Xi = Gi is a locally compact topological group,
Oi ⊂ Gi is an open compact subgroup for i ∈ If . Moreover, for each i ∈ I,
let αi : Gi

∼−→ Gi be an automorphism of topological groups which induces an
automorphism

αi : Oi
∼−→ Oi

for almost all i ∈ If . Let G :=
∏′
i∈I Gi. Then,

α : G→ G

(gi)i∈I 7→ (αi(gi))i∈I

is an automorphism of topological groups. If αi(Oi) = Oi, then |αi|Gi
= 1 (since

µi(Oi) = µi(αi(Oi)) = |αi|Gi
µi(Oi)), and moreover |α|G =

∏
i∈I |αi|Gi

. Indeed,
let Ci ∈ Gi be a compact neighborhood of e, and assume Ci = Oi for i ∈ If . Then,
we have

µ(α(
∏
i

Ci)) = µ(
∏
i

αi(Ci)) =
∏
i

µi(αi(Ci))

=
∏
i

|αi|Gi µi(Ci) =

(∏
i∈I
|αi|Gi

)
µ(
∏
i

Ci).

7.2. Adeles and ideles.

Definition 7.5. Let K be a number field, V := VK its set of places. For v ∈ V we
let Kv be the completion of K with respect to v. Moreover, we let Vf be the set of
non-archimedean (also called finite) places, and V∞ the set of archimedean places.
For each v ∈ Vf let Ov ⊂ Kv be the corresponding complete DVR. The ring of
adeles of K is the restricted product

AK :=
∏
v∈V

′
Kv

with respect to the Ov. It is a topological ring with respect to componentwise
addition and multiplication. Moreover, we let

AK,f =
∏
v∈Vf

′
Kv

be the ring of finite adeles. Note that AK = AK,f ×
∏
v ∈V∞

Kv, and that AK is
locally compact.

Exercise 7.6. Prove the following isomorphisms. We have

AQ,f ∼= (
∏

p prime

Zp)⊗Z Q, and

AQ /(R×
∏

p prime

Zp) ∼=
⊕

p prime

Qp /Zp ∼=
⊕
p

Z[1/p]/Z ∼= Q/Z.

Remark 7.7. Let K be a number field. Then the map K → AK , x 7→ (x, x, ...)
is a well-defined injective ring homomorphism. Indeed, we have to show that for
x ∈ K× we have x ∈ Ov for almost all v ∈ Vf . Now xOK is a fractional ideal, so
in its prime ideal decomposition only finitely many different prime ideals appear.
This implies |x|v = 1 for almost all v ∈ Vf . For these v we even have x ∈ O×v .
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The following is one of the most important properties of the adele ring. It is the
one of the main results of this chapter.

Theorem 7.8. Let K be a number field. Then K ⊂ AK is discrete, and the
quotient group AK /K is compact. In fact, AK/K is the Pontryagin dual of (K,+)
endowed with the discrete topology.

We will postpone the proof until the end of this chapter, and first reap some
consequences.

Remark 7.9. Removing even a single place makes the situation completely differ-
ent. This is the content of the next theorem, for which we introduce some notation
first.

Definition 7.10. For x = (xv) ∈ AK , we will write |x|v = |xv|v, where | · |v
denotes the modulus on Kv. We define a group homomorphism | · | : A×K → R>0 by
(xv)v ∈VK

7→
∏
v ∈VK

|x|v. Note that almost all |xv|v = 1. Let A1
K := ker(| · |) =

{x ∈ A×K | |x| = 1}.
We will also write |x| =

∏
v∈VK

|x|v for any x ∈ AK for the adelic norm.

Remark 7.11. For x ∈ AK , the adelic norm |x| converges to zero unless |x|v = 1
for almost all places v ∈ VK . In this case |x| is essentially a finite product. This
can be seen as follows. First note that |x|v ≤ 1 for almost all v. Moreover, for
an infinite product

∏∞
n=1 xn of real numbers 0 < xn < 1 one has

∏∞
n=1 xn > 0

only if the sequence (xn) converges to 1. However, when v is non-archimedean, and
|x|v < 1, then |x|v is bounded by 1/2, because |x|v is of the form p−fv for some
prime number p. So if |x|v < 1 for infinitely many v, then |x| converges to 0 (as
the corresponding sequence cannot converge to 1).

Theorem 7.12 (Strong approximation). Let K be a number field, and let VK be
its set of places. Fix a decomposition VK = S ∪ T ∪ {w}, where S is finite, and the
union is disjoint. Given av ∈ Kv and εv ∈ R>0 for v ∈ S, there exists an x ∈ K
with |x− av|v < εv for all v ∈ S, and |x|v ≤ 1 for all v ∈ T .

We will need the following result for the proof.

Lemma 7.13 (Adelic Blichfeldt-Minkowsi lemma). Let K be a number field. Then
there is a constant B ∈ R>0 depending only on K, such that for all a ∈ AK with
|a| > B there exists a non-zero x ∈ K ⊂ AK with |x|v ≤ |a|v for all v ∈ VK .

Proof. Denote by µ the product measure on AK normalized with respect to each
Ov. Let b0 be the measure of a fundamental region for K in AK . Since AK/K is
compact, b0 <∞. Moreover, define

b1 = µ({z ∈ AK | |z|v ≤ 1 for all v, |z|v ≤
1

4
for archimedean v }).

Note that b1 ̸= 0, since there are only finitely many archimedean places (if not, the
measure may converge to zero). Define B := b0/b1, and assume a ∈ K satisfies
|a| > B. We know that |a| ≤ 1 for almost all places ν, so |a| > BK implies
|a|v = 1 for almost all ν.

Define M := {z ∈ AK | |z|v ≤ |a|v for all v, |z|v ≤ 1
4 |a|v for archimedean v }.

Then
µ(M) = b1|a| > b1B = b0,
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because µ is the normalized product measure. Now µ(M) > b0, which implies that
M is not contained in any fundamental region for K ⊂ AK . This means, there
exist z1, z2 ∈M with z1 ̸= z2, and with the same image in AK /K. In other words,
x = z1 − z2 ∈ K× ⊂ K ⊂ AK .

Now, we use the triangle inequalities (strong for non-archimedean places), to
conclude that

|x|v ≤


max{|z1|v, |z2|v} ≤ |a|v, v non-archimedean,
|z1|v + |z2|v ≤ 2 · 14 |x|v ≤

1
2 |a|v, v real,

(|z1 − z2|1/2v )2 ≤ (|z1|1/2v + |z2|1/2v )2 ≤ (2 · 12 |a|
1/2
v )2 = |a|v, v complex.

Here, note that for v complex, the square-root of the modulus is the usual absolute
value on C. Altogether we find |x|v ≤ |a|v for all v ∈ VK . □

Proof of the strong approximation theorem. LetW = {z ∈ AK | |z|v ≤ 1 for all v ∈
VK }. When we prove compactness of AK/K we will see a slightly more refined
statement. Namely, W contains a complete set of representatives for K ⊂ AK
(actually we will see a slight variant, but it is not difficult to conclude the desired
statement).

This implies AK = K +W , and even more, if u ∈ K ⊂ AK is non-zero, then
AK = K + uW . Indeed, given c ∈ AK , we can write u−1c ∈ AK as u−1c = a + b
with a ∈ K and b ∈W . This implies c = ua+ ub with ua ∈ K, and ub ∈ uW .

Let B be as in the Blichfeldt-Minkowski lemma, and choose z ∈ AK satisfying
the following properties.

(i) For all v ∈ S, we have 0 < |z|v < εv,
(ii) for all v ∈ T we have 0 < |z|v ≤ 1,
(iii) and |z|w > B

∏
v ̸=w .|z|−1v .

This is clearly possible (simply choose each component of z in a suitable way). Note
that at this point, you do not have control over the size of |z|w anymore. This is
the reason we need to remove at least a single place from VK .

Then |z| > B, and we can apply the above Lemma, to find a non-zero u ∈ K ⊂
AK with |u|v ≤ |z|v for all v ∈ VK . Now we finish the proof. Let a = (av) ∈ AK
with av = 0 for v /∈ S, and av given by the hypothesis of the theorem for v ∈ S.
We will find an x ∈ K satisfying the desired properties.

Note that AK = K + uW , for the u we just found. Therefore a = x + y with
x ∈ K and y ∈ uW . We claim that this x is the one we are looking for. Indeed,
since u−1y ∈W , we have |u−1y| ≤ 1, and we get

|x− av|v = |y|v ≤ |u|v ≤ |z|v ≤

{
εv, v ∈ S
1, v ∈ T.

This proves the claim. □

Corollary 7.14. Let K be a number field, and let w be any place of K. Then
K ⊂

∏′
v∈VK\{w} Kv is dense.

Exercise 7.15. The strong approximation theorem is a direct generalization of the
Chinese remainder theorem for the ring of integers OK of K. Deduce the Chinese
remainder theorem from it.

Definition 7.16. LetK be a number field. The restricted product A×K :=
∏′
v∈VK

K×v
is called the idele group of K.
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Remark 7.17. The topology on A×K is the one coming from its structure as re-
stricted product. Even though A×K is the group of units of AK , the topology on it
is not the subspace topology.

Exercise 7.18. For n ≥ 1 define an ∈ A×Q as follows. Its R-component is 1, and
its Qp-component is n! + 1 for every prime number p. Show that (an)n converges
to 1 in AQ, but in A×Q it does not converge to 1.

Proposition 7.19. There is a well-defined injective group homomorphism K× 7→
A1
K , defined by x 7→ (x, x, ...).

Proof. This follows from the product formula for K. □

Here is the second main theorem of this chapter, whose proof we also postpone.

Theorem 7.20. The subspace K× ⊂ A1
K is discrete, and A1

K /K× is compact.

Definition 7.21. Let S ⊂ VK be a finite set of places containing V∞. The ring of
S-integers is

OS = {x ∈ K | x ∈ Ov for all v /∈ S} = ∩v∈VK\SOK,qv ,

with unit group O×S = {x ∈ K× | x ∈ O×v for all v /∈ S}.

Example 7.22. (1) Let S = V∞, then OS = OK .
(2) Let K = Q, S = {∞, p1, ..., pr} for some prime numbers pi. In this case,

OS = Z
[
p−11 , ..., p−1r

]
.

Note that this is the set of all as with a ∈ Z, and s ∈ Z\{0} where the only
prime divisors allowed for s are the pi.

Consider the map RS : O×S →
∏
v∈S R, x 7→ (log(|x|v))v∈S , which is a group

homomorphism. For x ∈ O×S we have |x|v = 1 for all v /∈ S, so by the product
formula, we have

∏
v∈S |x|v = 1.

Therefore, defining
(∏

v∈S R
)◦

:= {(cv)v∈S ∈
∏
v∈S R |

∑
v∈S cv = 0}, we find

that Im(RS) ⊂
(∏

v∈S R
)◦.

Proposition 7.23. In the above situation, we have that RS(O×S ) ⊂
(∏

v∈S R
)◦ is

discrete, ker(RS) is finite, and the quotient
(∏

v∈S R
)◦
/RS(O

×
S ) is compact.

Proof. We omit this proof and refer to [Lan94, Chapter VII, §3]. □

7.3. Dirichlet’s unit theorem. Assuming the main properties of adeles and ideles
in Theorem 7.8, Theorem 7.20, and Proposition 7.23, we can derive Dirichlet’s unit
theorem without too much work. First, we need a preparatory result.

Lemma 7.24. Let V be an n-dimensional real vector space, and Γ ⊂ V a discrete
subgroup such that V/Γ is compact. Then, there exists a basis e1, ..., en of V such
that Γ =

⊕n
i=1 Zei.

Proof. Let V ′ be the subvector space of V generated by Γ. Then we have a surjective
continuous homomorphism V/Γ → V/V ′. Since V/Γ is compact, so is V/V ′. This
can only happen if V = V ′. Therefore, Γ contains a basis e1, ..., en of V . Define
Γ′ :=

⊕n
i=1 Zei ⊂ Γ. Then, V/Γ′ =

⊕n
i=1 R/Z is compact. Note that

Γ/Γ′ = ker(V/Γ′ → V/Γ) ⊂ V/Γ′
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is closed in V/Γ′, so Γ/Γ′ is compact. Since Γ is discrete, the quotient Γ/Γ′ has
to be finite. This means there exists an integer m ≥ 1 such that Γ ⊂ 1

m Γ′. The
claim now follows from the elementary divisor theorem (it implies submodules of
free modules over principal ideal domains are free). □

Theorem 7.25. Let K be a number field, S a finite set of places containing V∞.
Moreover, let r := #S − 1. Then we have

O×S
∼= Zr ⊕ µ(K),

where µ(K) = {ζ ∈ K | there exists n ≥ 1 : ζn = 1} is a finite group.

Proof. Consider the exact sequence

1→ ker(RS)→ O×S
RS−−→ Im(RS)→ 0.

By Proposition 7.23, the subspace Im(RS) ⊂
(∏

v∈S R
)◦ is discrete with compact

quotient, and ker(RS) is finite. Therefore we can apply Lemma 7.24 to conclude
that Im(RS) ∼= Zr is free (note that r = dim

(∏
v∈S R

)◦). This implies that the
above exact sequence splits, so O×S ∼= Zr ⊕ ker(RS). It only remains to show that
ker(RS) = µ(K). For this, we check that µ(K) ⊂ ker(RS). Indeed, µ(K) ⊂ O×K ⊂
O×S is clear. If ζ ∈ µ(K) with ζn = 1, then we have

0 = RS(ζ
n) = nRS(ζ)

inside a real vector space, implying RS(ζ) = 0. Vice versa, z ∈ ker(RS) if and only
if |z|v = 1 for all v ∈ S. So for any integer m, if z ∈ ker(RS), we have zm ∈ ker(RS).
Since ker(RS) is finite, there exists an m with zm = 1. □

Corollary 7.26 (Dirichlet’s unit theorem). Let K be a number field. Then

O×K
∼= Zm ⊕ µ(K),

where m = #V∞ − 1 = r + s − 1 with r equal to the number of real embeddings
K ↪→ C, and s equal to half the number of complex embeddings K ↪→ C, and µ(K)
is a finite group of units in K.

Example 7.27. (1) We have Z× = µ(Q) = {±1}.
(2) Let K = Q[

√
d] for d ∈ Z square-free. Then we have two cases.

(a) If d > 0, then the Q-embeddings K → C given by
√
d 7→ ±

√
d are real.

Therefore, K has two archimedean places, given by |x|1 = |a + b
√
d| and

|x|2 = |a− b
√
d|. This implies O×K = Z⊕ µ(K).

(b) If d < 0, then the Q-embeddings K → C are complex. Therefore K has a
single archimedean place, and O×K is finite. E.g. Z[i]× = {±1,±i}.

(3) Let K = Q, S = {∞, p} for a prime number p. In this case, we have OS = Z[ 1p ],
and O×S = {±pn | n ∈ Z} ∼= Z⊕ µ(K).

Exercise 7.28. (1) Let K be a number field. Show

O×K = {x ∈ OK | NK/Q(x) ∈ {±1} = Z×}.

(2) Give an elementary proof that O×K is finite for K = Q[
√
d] with d ∈ Z, d < 0

square-free.
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7.4. Finiteness of the class group.

Definition 7.29. LetK be a number field. The group Cl(K) = Div(OK)/PrincDiv(OK)
is called the class group of K. The number hK := #Pic(OK) is called the class
number of K.

Remark 7.30. Recall that hK = 1 if and only if OK is a principal ideal domain.
Since OK is a Dedekind domain, this is also equivalent to OK being a unique
factorization domain.

Before proving finiteness of the class number hK , let us explain the relation to
ideles. Let K be a number field, and consider the open subspace

U =
∏
v∈V∞

K×v ×
∏
v∈Vf

O×v ⊂ A×K .

The normalized valuation on Kv induces an isomorphism K×v /O
×
v

∼−→ Z. This
gives an isomorphism

A×K /U =
⊕
v∈Vf

K×v /O
×
v
∼=
⊕
v∈Vf

Z ∼= Div(OK).

Definition 7.31. We call CK := A×K/K× be the idele class group.

Remark 7.32. We now have

Cl(K) = coker(K× → Div(OK)) ∼= coker(K× → A×K/U)

∼= A×K/(U ·K
×) ∼= CK/U,

where U is the image of U in CK . Let I be a fractional ideal. We describe its
image in CK/U under the above isomomorphism. For each v ∈ Vf , let xv be a
generator of Iv = I ⊗OK

Ov, which is a fractional ideal of Ov. For v ∈ V∞, choose
xv arbitrary. Then I is mapped to the class of (xv) ∈ A×K .

Theorem 7.33. Let K be a number field. The class group Cl(K) is finite.

Proof. Since Cl(K) ∼= CK/U , it suffices to show that the latter is discrete and
compact.

First we show that CK/U is discrete. For this recall the following general facts.

Lemma 7.34. Let G be a topological group, and H ⊂ G a subgroup. Then the
projection G → G/H is open, and H ⊂ G is open if and only if G/H is discrete.
Moreover, G/H is Hausdorff if and only if H is closed in G.

Projections being open maps implies that U ⊂ CK is open (since U ⊂ A×K is
open). Further, U ⊂ CK being open implies that the quotient is discrete.

Now we show that CK/U is compact. By Theorem 7.20, the quotient A1
K/K

×

is compact. Therefore it suffices to show that the map

f : A1
K/K

× ↪→ CK ↠ CK/U = A×K/(K
×U)

is surjective (because in that case CK/U is the image of a compact space under a
continuous map). For this we need to show that UA1

K = A×K .
Let v be an archimedean place of K. For a ∈ A×K choose b ∈ K×v with |b|Kv

=

|a| ∈ R>0. You can think of b as an element of A×K with v′-component equal to 1
for every v′ ̸= v. Then |b| = |a| and b ∈ U . Thus, a = (ab−1)b with ab−1 ∈ A1

K and
b ∈ U . □
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Remark 7.35. Note that in the above proof we had to choose an archimedean
place of K. We could only do this because K is number field. For a global field of
positive characteristic, i.e. a finite extension of Fp(T ) we could not have found an
archimedean place.

Remark 7.36. Class numbers are still not well understood. Here is a selection of
open problems.

(1) Do there exist infinitely many square-free d > 1 with µQ[
√
d] = 1? Conjec-

turally, the answer is yes, and about 75% of them should have class number
equal to 1. This sometimes goes by the name Cohen-Lenstra heuristics, see
[CL84].

(2) Do there exist infinitely many primes p such that p ∤ hQ[ζp], where ζp =
exp(2πi/p) is a primitive p-th root of unity? Such a prime is sometimes
called a regular prime.

7.5. Proof of the main theorems. In the previous sections, we saw that the
main input in proving the Dirichlet unit theorem, and finiteness of the class group,
were Theorem 7.8, Theorem 7.20, and Proposition 7.23. In this section, we will
prove this results.

Proof of Theorem 7.8. The rough idea is to prove the theorem first for K = Q,
and deduce it for general K from this version. So assume K = Q. We prove that
Q ⊂ AQ is discrete. For this, it suffices to find an open neighborhood U ⊂ AQ of 0
for which U ∩Q = {0} (in that case, 0 is open in Q, and we can translate to prove
the same for every x ∈ Q).

Consider the open subspace U = (−1/2, 1/2)×
∏
p prime Zp ⊂ AQ. If x ∈ Q∩U ,

then considered as element in Qp we have x ∈ Zp for every prime. This means no
prime appears with a negative exponent in the prime decomposition of x, hence
x ∈ Z. But since x ∈ (−1/2, 1/2) we need to have x = 0.

We now prove that AQ/Q is compact. Let J := [−1/2, 1/2] ⊂ R. We claim that
in AQ we have J × ∏

p prime

Zp

+Q = AQ,

where Q is diagonally embedded. From Exercise 7.6 we know that

AQ/(R×
∏
p

Zp) = Q/Z.

This implies Q + (R ×
∏
p Zp) = AQ. So let x ∈ AQ with x = (q + r, (yp + q)p)

for some q ∈ Q, r ∈ R, yp ∈ Zp. We can choose n ∈ Z with r − n ∈ J . Then
x = ((q+n)+ (r−n), (yp−n+ q+n)p), where q+n ∈ Q, r−n ∈ J , yp−n ∈ Zp,
and q + n ∈ Q.

We go on to prove the claim for a general number field K. We will use the
following statement.

Proposition 7.37. Let L ⊃ K be an extension of number fields. Then the map
defined by

AK ⊗K L→ AL
(xv)⊗ y 7→ (zw)

with zw = xvy for w | v is an isomorphism of topological rings.
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Proof. We have

AK ⊗K L ∼=
∏′

v∈VK

(Kv ⊗K L)

where the restricted product is taken with respect to the compact open subgroups
Ov ⊗OK

OL, and the map is given by (xv) ⊗ y 7→ (xv ⊗ y). Moreover, we have
AL =

∏′
w∈VL

Lw, taken with respect to the open compact subgroups Ow.
We have seen in Theorem 5.47 thatKv⊗K L ∼=

∏
w|v Lw for each non-archimedean

place v. For an archimedean place v this follows from Proposition 6.19. Therefore,
the proof follows from the next result. □

Proposition 7.38. Let A be a Dedekind domain, p ∈ Spec A a non-zero prime
ideal, L ⊃ K = Frac(A) a finite separable extension, B the integral closure of A in
L. Then, we have an isomorphism

Âp ⊗A B ∼=
∏
q|p

B̂q.

Proof. Let n = [L : K], then B is a finitely generated projective A-module of rank
n. This implies that after extension of scalars, Âp ⊗AB is a finitely generated free
Âp-module of rank n (since Âp is a principal ideal domain, projective implies free).

We have seen before that n =
∑

q|p[Lq : Kp], so that
∏

q|p B̂q is a free Âp-module
of rank n. It therefore suffices to show that the natural map Âp ⊗A B →

∏
q|p B̂q

is surjective.
Applying Nakayama’s lemma to the cokernel of this map (if it vanishes modulo

the maximal ideal, then it is zero), it suffices to prove this after modding out the
maximal ideal p̂ ⊂ Âp. This puts us in the following situation. Since Âp/p̂ = A/p,
we have

Âp/p̂ ⊗Âp
Âp ⊗A B = A/p⊗A B = B/pB.

Morever, we also have by the Chinese remainder theorem that

B/pB =
∏
q|p

B/qeq =
∏
q|p

B̂q/q̂
eq̂ =

∏
q|p

B̂q/p̂B̂q = Âp/p̂ ⊗Âp

∏
q|p

B̂q.

This proves the claim. □

With this in hand, we can prove that AK/K is compact. Let m := [K : Q].
By Proposition 7.37, we find that AmQ ∼= AK as topological AQ-modules, where the
isomorphism restricts to the identification Qm ∼= K. We conclude that

AK/K ∼= (AQ/Q)m.

Since we know that AQ/Q is compact by the first part of the proof, we conclude
that AK/K is compact. □

Remark 7.39. We can now give an alternative and very short proof of the product
formula for the number field K. Let a ∈ K×. Then multiplication with a is an
isomorphism AK

∼−→ AK which induces an isomorphism K
∼−→ K. Therefore, by

Remark 7.4 we have ∏
v∈VK

|a|ν = |a|AK
= |a|K |a|AK/K = 1,
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where the second equality follows from Theorem 6.8, |a|AK/K = 1, because the
quotient is compact (see Example 6.10), and |a|K = 1, because K ⊂ AK is discrete
(see Exercise 6.11)

The next goal is to prove Theorem 7.20, which says that A1
K/K

× is compact,
and K× ⊂ A1

K is discrete.

Lemma 7.40. Let K be a number field, b, c ∈ R>0 with b ≥ c > 0. Then the
following holds.

(1) The subspace {x ∈ A×K | |x| ≥ c} ⊂ A×K is closed in AK , and the subspace
topologies as a subset of AK and as a subset of A×K coincide.

(2) The subspace {x ∈ A×K | b ≥ |x| ≥ c} is closed in AK .

Proof. First we show that (1) implies (2). The modulus A×K → R>0, mapping
x → |x| is continuous. This is a general fact for locally compact groups. Note
however that AK → R≥0, x 7→ |x| ist not continuous, only the map x 7→ |xv|v is
continuous for all v ∈ VK .

This immediately implies that {x ∈ A×K | b ≥ |x| ≥ c} = | · |−1([b, c]) ⊂ A×K
is closed. Note that |x| ≥ b−1 if and only if |x−1| ≤ b, so the subspace topology
for {x ∈ A×K | b ≥ |x| ≥ c} as subsets of AK and of A×K agrees. This implies
{x ∈ A×K | b ≥ |x| ≥ c} is closed in AK .

We now prove (1). First we check that {x ∈ A×K | |x| ≥ c} is closed in AK by
proving that its complement is open. Let a = (av)v∈VK

∈ AK with |a| < c. We
need to find an open neighborhood U ⊂ AK of a with |x| < c for all x ∈ U .

Let S ⊂ VK be a finite subset such that V∞ ⊂ S, for all v /∈ S we have av ∈ Ov
and moreover

∏
v∈S |av|v < c (this works because |a|v = 1 for all v /∈ S). Then,

since

AK → R≥0

x 7→
∏
v∈S
|x|v

is continuous, the preimage U ′ of [0, a) is open. Letting U be the intersection of
U ′ and the open set

∏
v∈S Kν ×

∏
v/∈S Ov, by construction we have a ∈ U , and

for all x ∈ U we have
∏
v∈S |x|v < c, and xv ∈ Ov for all v /∈ S. This implies

|x| ≤
∏
v∈S < c, as required.

Now we check that AK and A×K induce the same topology on {x ∈ A×K | |x| ≥ c}.
For this we need to check that for any open subset W ′ of {x ∈ A×K | |x| ≥ c},
there is an open subset W of AK with W ′ = {x ∈ A×K | |x| ≥ c} ∩W . Here, W ′

is open for the subspace topology induced from A×K . Let S ⊂ V be a finite set of
places containing V∞. Then the space

G(S) =
∏
v∈S

K×v ×
∏
v/∈S

O×v

carries the product topology as subset of AK but also as subset of A×K (because S
is finite). Therefore it suffices to show the following. For any a ∈ A×K with |a| ≥ c
there exists an neighborhood U ⊂ AK of a such that we have

{x ∈ A×K | |x| ≥ c} ∩ U ⊂ G(S)

for some finite set of places as above.
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First, let S′ = V∞ ∪ {v ∈ Vf | av /∈ Ov}. Choose a real number r satsifying
r >

∏
v∈S′ |a|v and let U be an open neighborhood of a in AK such that for all

x ∈ U we have
∏
v∈S′ |x|v < r, and xv ∈ Ov for v /∈ S′.

Define S := S′ ∪ {v ∈ Vf | pfv < rc−1, p prime with qv | (p) }. Note that this
is a finite set, since there are only finitely many primes p for which pfv is bounded
by a given number.

We now show that U and S do the job. Let x ∈ A×K ∩ U with |x| ≥ c, and let
v /∈ S (this means that p−fv ≤ cr−1). We need to prove that x ∈ O×v .

Note that

c ≤ |x| ≤ |x|v
∏
v′∈S′

|x|v′ < |x|vr.

Since xv ∈ Ov, this implies that 1 ≥ |x|v > cr−1 ≥ p−fv = |πv|v where πv ∈ Ov
is a uniformizer. Since |πv|v is the largest value below 1 that | · |v can attain, we
conclude |x|v = 1, so xv ∈ O×v . □

Proof of Theorem 7.20. First we prove that K× ⊂ A1
K is discrete. By Lemma 7.40,

the topologies induced on A1
K by A×K and AK agrees. Since K ⊂ AK is discrete, so

is K× ⊂ A1
K .

Next we check that A1
K/K

× is compact. It suffices to find a compact subset
C ⊂ A1

K for which the natural projection C → A1/K× is surjective. This is
equivalent to asking that CK× = A1

K .
Let µ′ be the quotient Haar measure on AK/K with respect to the counting

measure on the discrete subspace K. Since AK/K is compact, µ′(AK/K) is finite.
On the other hand, AK is not compact. We will use the following basic fact on
Haar measures.

Lemma 7.41. Let G be a locally compact, but not compact, topological group,
c ∈ R, and µ a Haar measure on G. Then there exists a compact C ⊂ G such that
µ(C) > c.

Proof. We refer to [Bou04, Chapter VII]. □

We apply this result to G = AK and c = µ′(AK/K). We can therefore find a
compact subset C0 ⊂ AK with µ(C0) > c = µ′(AK/K). Define C1 := {y−z | y, z ∈
C0} and let C := C1 ∩ A1

K . We claim that C is the set we are looking for.
First we check that CK× = A1

K . So let x ∈ A1
K . Then µ(x−1C0) = |x|−1 µ(C0) =

µ(C0) > µ′(AK/K). Let Y be the image of x−1C0 in AK/K. Recall that by
Remark 6.9, the measure µ′ satisfies µ′(π(C ′)) = µ(C ′) for the natural projec-
tion π, and a compact C ′ ⊂ AK for which π|C′ is injective. Therefore, since
µ′(Y ) ≤ µ′(AK/K) < µ(x−1C0), the quotient map x−1C0 → Y cannot be injective.
As a consequence, there exist y, z ∈ C0 for which x−1y and x−1z have the same
image mod K, i.e. such that u := x−1y − x−1z ∈ K×. Then xu = y − z ∈ C1, and
since x ∈ A1

K , so is xu. This implies xu ∈ C, so we can write x = (xu)u−1 ∈ CK×.
It remains to prove compactness of C. First note that C0 is compact, and C1 is

compact, because it is the image of the continuous map

C0 × C0 → AK
(y, z) 7→ y − z.
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By Lemma 7.40 (2), the subspace A1
K ⊂ AK is closed. Moreover, C1 is compact,

hence closed (as AK is Hausdorff). Therefore C = C1 ∩ A1
K ⊂ C1 is a closed

subspace of a compact space, thus it is compact. □

8. First steps in class field theory

§8.1 Introduction
§8.2 Main statements
§8.3 Quadratic extensions and the Hilbert symbol

8.1. Introduction. This section closely follows notes by Oron Propp for a lecture
by Sam Raskin, see [Ras16]. Class field theory studies abelian extensions of number
fields. Let us give some motivation.

Question 8.1. When can an algebraic number in Q be expressed using any combi-
nation of taking n-th roots, +,−, ·, / on rational numbers? More precisely, given a
separable polynomial f ∈ K[X], K a number field, when can the equation f(x) = 0
be solved by radicals?

The answer is given by Galois theory.

Theorem 8.2 (Galois’ theorem). The polynomial f can be solved by radicals if and
only if the Galois group of its splitting field is solvable.

Recall that a finite group G is solvable if there exists a chain of subgroups

1 ◁ G1 ◁ G2 ◁ ... ◁ Gk = G

such that Gj ⊂ Gj+1 is normal, and the quotient Gj+1/Gj is abelian. A Galois
extension L/K is solvable, if G = Gal(L/K) is solvable, and it is abelian if its
Galois group is. More precisely this means that L/K can be written as a successive
extension of abelian Galois extensions. An example is

Q ⊂ Q(ζ3) ⊂ Q(ζ3,
3
√
2).

Here, Q(ζ3,
3
√
2) is the splitting field of X3 − 2. As such, its Galois group G over

Q is a subgroup of the symmetric group S3, and since the degree of the extension
is 6, we have G = S3. This is non-abelian, but each individual extension above is
abelian (even cyclic). The upshot is that to understand solvability by radicals, we
are reduced to understanding abelian extensions. For general number fields, they
are not completely understood, but for K = Q we have the following.

Theorem 8.3 (Kronecker-Weber). Every abelian extension of Q is contained in a
cyclotomic extension Q(ζn) for some integer n, where ζn is a primitive n-th root of
unity.

Recall here that [Q(ζn) : Q] = φ(n) is Euler’s totient function, and Gal(Q(ζn)/Q) =
(Z/nZ)×. This group acts on roots of unity by m : ζn 7→ ζmn for m ∈ (Z/nZ)×.
In the original sense, class field theory is the search for a generalization of the
Kronecker-Weber theorem to an arbitrary number field. In other words, one wants
to describe all abelian extensions of a number field K in some way.

Abelian extensions are also interesting because they predict identities between
algebraic numbers. For instance we have the following equalities

√
2 = ζ8 + ζ−18 = ζ8 + ζ8 =

1 + i√
2

+
1− i√

2
.
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These identities are perhaps not so surprising once you know the Kronecker-Weber
theorem. Indeed, as Q(

√
2) is abelian, it is contained in a cyclotomic extension

(which in this case turns out to be Q(ζ8)), so necessarily we have to be able to
express

√
2 using algebraic operations on ζ8.

One particular instance of abelian extensions are quadratic extensions, which we
are going to study in more detail. They are related to questions about solvability
of quadratic equations. A classic result is the Hasse-Minkowski theorem.

Theorem 8.4. Let K be a number field, and let q(x1, ..., xn) =
∑
i>j aijxixj +∑n

i=1 aix
2
i be a quadratic form with coefficients aij , ai ∈ K. Then for any y ∈ K,

the equation
q(x1, ..., xn) = y

has a (non-trivial) solution in K if and only if it has a solution in every completion
Kv.

We will introduce a map related to class field theory, which helps us to solve
quadratic equations in non-archimedeanKv, by reducing the question to elementary
congruence problems. Moreover, as an example, consider the case K = Q. Here,
we can reformulate instances of this solvability question to asking whether z ∈ Q
is a norm in a quadratic extension. More explicitly, for the extension Q ⊂ Q(

√
d),

and norm given by N(x+ y
√
d) = x2−dy2, it is clear that this is related to solving

the quadratic equation x21 − dx22 = z.

8.2. Main statements. Note that for any field K with separable closure Ksep and
two abelian Galois extensions Kj ⊃ K with Kj ⊂ Ksep for j = 1, 2, the compositum
of K1 · K2 is a again an abelian extension (because its Galois group over K is a
subgroup of the direct product of Galois groups of K1 and K2).

Definition 8.5. Let K be a field with separable closure Ksep. The maximal abelian
extension Kab/K is the compositum of all abelian extensions of K. The Galois
group Gal(Kab/K) is the abelianization of Gal(Ksep/K).

Recall that GK = Gal(Ksep/K) is a profinite group. This means it is endowed
with a topology making it a topological group which is Hausdorff, compact and
totally disconnected. An equivalent characterization is saying that a topological
group G is profinite if and only if it is an inverse limit of discrete finite groups. In
our situation, GK (resp. Gab

K ) is an inverse limit of Galois groups of finite (abelian)
Galois extensions of K, where the transition maps are the restriction maps. On
the other hand, given any group G, there is a universal way to construct a profinite
group out of it.

Definition 8.6. Let G be a group. Then the topological group

Ĝ := limG/H

with the limit running over finite index normal subgroups H of G is called the
profinite completion of G.

Theorem 8.7 (Local class field theory). Let K/Qp be a finite extension. Then
there is a canonical isomorphism

θK : K̂×
∼−→ Gab

K

of profinite groups called the local reciprocity map.
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Moreover, this isomorphism satisfies a certain compatibility which we describe
in the following. We have a short exact sequence

1→ O×K → K×
v−→ Z→ 0,

where v is the normalized discrete valuation with respect to the maximal ideal pK ⊂
OK . We have seen that O×K ⊂ K× is open. Note that O×K = limnO

×
K/(1 + pnK),

so O×K is profinite. Applying profinite completion, we obtain an exact sequence

1→ O×K → K̂×
v̂−→ Ẑ→ 0.

Note that this is not automatic in general, as profinite completion is only right
exact, but it is true in this situation that injectivity is preserved.

On the other hand, let L/K be a finite Galois extension. We denote by kK and
kL the residue fields, which are finite fields, say kK = Fq and kL = Fqn . Recall that
there is a surjective map Gal(L/K) → Gal(kL/kK) ∼= Z/nZ, and this map is an
isomorphism if and only if L/K is unramified. The group Gal(kL/kK) is generated
by the Frobenius autom orphism Frob : x 7→ xq. We can take an inverse limit over
all finite extensions L/K to obtain a homomorphism

GK → Gal(k/k) = Ẑ.

Since the target Ẑ is abelian, this map factors through a homomorphism Gab
K → Ẑ.

The local reciprocity map makes the diagram

K̂×

θK
��

v̂ // Ẑ

Gab
K

>>

commute.
In the end we will be interested in abelian extension of number fields, meaning

we need a global version of the reciprocity map. This is formulated using adeles.
Recall that the ideles class group of a number field K is the quotient CK = A×K/K×.

Theorem 8.8 (Global class field theory). For any number field K there is a canon-
ical isomorphism

ΘK : ĈK
∼−→ Gab

K

of profinite groups, called the global reciprocity map.

The global reciprocity map is compatible with the local ones at the places v ∈ VK
in the following sense. Let K be an algebraic closure of K. We have a commuting
diagram of embeddings

K //

��

Kv

��
K // Kv,
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and these maps induce injective homomorphisms GKv
→ GK and Gab

Kv
→ Gab

K .
The local and global reciprocity maps make the diagram

K×v //

θKv

��

CK

ΘK

��
Gab
Kv

// Gab
K ,

commute, where the upper horizontal arrow is the map sending x ∈ K×v to the
class of the idele whose v-coordinate is x and whose v′-coordinate is 1 for all places
v′ ̸= v.

The proof of local and even more of global class field theory is out of the scope
of this lecture. We remark though that class field theory can be understood as the
simplest instance of the Langlands correspondence. This correspondence relates
automorphic representations for GLn(AK) and Galois representations of GK of
rank n. For GL1, an automorphic representation is a continuous character

χ : K× \A×K → C×.

On the other hand, a Galois representation of GK of rank 1 is a continuous character

ρ : Gab
K → C×.

Note that because C× is abelian, ρ factors through Gab
K . The global reciprocity map

induces an isomorphism only after profinite completion, and the character χ only
extends to ĈK if it has finite image. Indeed, if χ : CK → C× has finite image, then
its kernel N ′ is a closed and normal subgroup of finite index. Moreover, χ factors
through CK/N

′. Thus, the natural map ĈK = limCK/N → CK/N
′ induces a

character χ : ĈK → C× by composition. Vice versa, we have the following result.

Proposition 8.9. Let G be a profinite group and χ : Gab → C× a continuous
character. Then the image of χ is finite.

Proof. There is an open neighborhood U ⊂ C× of 1 not containing any non-trivial
subgroup of C×. To see this, let W be a bounded convex neighborhood of 0 ∈ C
such that exp : W → exp(W ) is a diffeomorphism. Let W1 = 1

2W , and assume
H ⊂ exp(W1) is a subgroup. Let y ∈ H and write y = exp(x), where we assume
x ̸= 0. Since W is bounded, there exists a maximal k ∈ Z≥0 with kx ∈ W1.
Then yk+1 = exp((k + 1)x) ∈ H ⊂ exp(W1). This implies there is x′ ∈ W1 with
exp(x′) = exp((k+1)x) by convexity. Note that k+1

2 ≤ k, so (k+1)x ∈ 2W1 =W .
Since exp is injective on W , we conclude that x′ = (k+1)x ∈W1, which contradicts
the maximality of k. This implies that x = 0, so y = 1 and H has to be trivial.

Back to χ, the preimage of χ−1(U) is an open neighborhood of the neutral
element e ∈ Gab, so there is an open subgroup e ∈ V ⊂ χ−1(U). The image χ(V )
is a subgroup of C× contained in U , so it is trivial. This implies V ⊂ ker(χ), so
χ descends to a map χ : Gab/U → C×. Since U is open, the quotient Gab/U is
finite. □

In this way, the global reciprocity map induces a correspondence between char-
acters ρ : Gab

K → C× and characters χ : K×\A×K → C× with finite image.
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8.3. Quadratic extensions and the Hilbert symbol. From now on, we will
focus on quadratic extensions, and explain how in this case the reciprocity map can
be constructed explicitly using the so-called Hilbert symbol. Until the end of this
chapter, if it is not explicitly said otherwise, by a local field we mean a local field of
characteristic not equal to 2. Note that this includes in particular every completion
of a number field.

First off, let K be a field with char(K) ̸= 2, and let GK be the absolute Galois
group of K. Let GK,2 = GK/⟨σ2 | σ ∈ GK⟩, i.e. it is the maximal quotient of GK
in which σ2 = 1 for all σ ∈ GK . It is necessarily abelian, because xy = (xy)−1 =
y−1x−1 for all x, y ∈ GK . Therefore it is a Z/2-module, i.e. an F2-vector space.
Moreover, denote by (K×)2 the subgroup of squares of K×. Then K×/(K×)2 is
an abelian 2-torsion group, so also an F2-vector space. Denote its dual space by
(K×/(K×)2)∨ = Hom(K×/(K×)2),F2)

Proposition 8.10. There is a canonical isomorphism

GK,2
∼−→ (K×/(K×)2)∨

of F2-vector spaces.

Proof. Given σ ∈ GK,2 we define χσ : K×/(K×)2 → F2 by

χσ(d) =

{
0, if σ(

√
d) =

√
d

1, if σ(
√
d) = −

√
d

Let us check that this defines a group homomorphism. We need to see that for
σ1, σ2 ∈ G2,K we have χσ1σ2 = χσ1 + χσ2 . This is clear since (σ1σ2)(

√
d ) =

(−1)χσ1 (−1)χσ2

√
d = (−1)χσ1

+χσ2

√
d.

Since both groups are profinite 2-torsion groups, it suffices to prove that both
groups are isomorphic after taking continuous duals. We have

Homcts((K
×/(K×)2)∨,F2) = K×/(K×)2.

Moreover, a continuous map GK,2 → F2 is the same as a quadratic extension of
K. Indeed, given a quadratic extension Ksep ⊃ L ⊃ K, we obtain a normal
subgroup Gal(Ksep/L) ⊂ GK with image GL,2 in GK,2, and satisfying GK/GL =
GK,2/GL,2 = Gal(L/K) = F2. The map GK,2 → F2 is the projection. Vice versa,
by Galois theory the kernel of a map GK,2 → F2 comes as a quotient from the
Galois group of a quadratic extension. A quadratic extension is necessarily of the
form K(

√
d), and d ∈ K× is unique up to multiplying by a square. □

Example 8.11. For K = Q, the above proposition tells us that

Q×/(Q×)2 ∼= Z/2Z⊕
⊕
p

Z/2Z

On the other hand, global class field theory predicts that we can compare this to

(Q×\A×Q/(A
×
Q )

2)∧.

The local reciprocity map induces an isomorphism K×/(K×)2
∼−→ GK,2 and

hence it predicts the existence of a non-degenerate pairing

(·, ·) : K×/(K×)2 ×K×/(K×)2 → F2 = {±1}.

We will construct it in the following.
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Definition 8.12. The pairing

(·, ·) : K×/(K×)2 ×K×/(K×)2 → {±1}

(a, b) =

{
1, if there exist x, y ∈ K with ax2 + by2 = 1

−1, else

is called the Hilbert symbol.

Remark 8.13. The Hilbert symbol is well-defined. If a = a′d2, then ax2+ by2 = 1
if and only if a′(dx)2+by2 = 1, and similarly for b. Moreover it is clearly symmetric.

Proposition 8.14. The Hilbert symbol is
(1) bimultiplicative, i.e. for all a, b, c ∈ K× we have

(a, bc) = (a, b)(a, c), and

(2) non-degenerate, i.e. for all a ∈ K×, if (a, b) = 1 for all b ∈ K×, then a is
a square.

Here, note that bimultiplicativity says the following. The equation ax2+bcy2 = 1
has a solution if and only if ax2 + by2 = 1 and ax2 + cy2 = 1 both have a solution
or if both cannot be solved. It is not clear at all that this is true, and in fact in
general this holds only for local fields.

Example 8.15. Let’s check that the proposition holds for K = R. In this case the
equation ax2+ by2 = 1 is not solvable only if a < 0 and b < 0. Indeed, if say a > 0,
then x = 1/

√
a and y = 0 is a solution. From this description it is easy to see that

bimultiplicativity holds. Moreover, the squares in R× are precisely the positive real
numbers R>0, so that R×/(R×)2 = R×/R>0 = {±1}. Therefore, if (a, b) = 1 for
all b, we can pick b < 0, implying that a > 0, hence a is a square. If you identify
F2 = {±1} the pairing becomes the natural multiplication pairing

F2 × F2 → F2

(x, y) 7→ xy.

To better understand the Hilbert symbol we need to understand squares in K×.
We have seen K = R above, and when K = C, every element has a square root.

Lemma 8.16. Let K be non-archimedean, with ring of integers OK , maximal ideal
p ⊂ OK and residue field k = OK/p. Assume that char(k) is odd. Let x ∈ K× and
write x = πv(x)y where π is a uniformizer and y ∈ O×K . Then the following are
equivalent:

(1) x is a square,
(2) v(x) is even and y is a square,
(3) v(x) is even y is a square mod p.

Proof. The only thing which is not immediately clear is that (3) implies (1). We
can reduce to x ∈ O×K . Assume x mod p is a square, i.e. x = u2, where x denotes
the image in k = OK/p. This is equivalent to saying that f = T 2 − x ∈ OK [T ]
has a root u mod p. We can apply Hensel’s lemma provided we can show that this
root occurs with multiplicity 1. For that we need to show that f

′
(u) ̸= 0, but this

is clear since f ′ = 2T and u is non-zero (as x ∈ O×K we have x ̸= 0). □

Corollary 8.17. In the above situation, we have K×/(K×)2 ∼= Z/2Z× Z/2Z.
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Proof. We have K× = O×K × Z. By the Lemma, (K×)2 = (O×K)2 × 2Z. Moreover,
the reduction map O×K → k× induces an isomorphism O×K/(O

×
K)2 → k×/(k×)2.

Indeed, the map O×K → k×/(k×)2 is clearly surjective, so it suffices to show that
its kernel is (O×K)2. This is precisely (3) in the Lemma. For a finite field, it is easy
to see that (k×)2 has index 2 in k×. Either use the fact that k× is cyclic, or check
that the kernel of the squaring map is {±1}. □

8.4. Relation to norms. Assume a ∈ K× is not a square, so that K(
√
a) ⊃ K is

an extension of degree 2.

Lemma 8.18. For b ∈ K× we have (a, b) = 1 if and only if b is a norm for the
extension K(

√
a) ⊃ K.

Proof. Assume b is a norm, so there exists α, β ∈ K with

b = N(α+ β
√
a) = α2 − β2a.

Note that this implies α2 = aβ2 + b. If α ̸= 0, we see that

1 = a
β2

α2
+ b

1

α2
,

so we have found a solution. If α = 0, then b + β2a = 0. You can check that
x = 1

2 (1 +
1
a ) and y = 1

2β (1 −
1
a ) is a solution in this case. The other implication

follows from reversing the above argument. □

Our next goal will be to prove the following main result on the Hilbert symbol.

Theorem 8.19. Let K be a local field, and L ⊃ K a quadratic extension. Then,
the norm N : L× → K× is a homomorphism, and N(K×) ⊂ L× is a subgroup of
index 2.

Assuming this theorem, we get the desired properties for the Hilbert symbol.

Lemma 8.20. The Hilbert symbol for K is bimultiplicative and non-degenerate
if and only if for all quadratic extensions L of K the image N(K×) ⊂ L× is a
subgroup of index 2.

Proof. Assume that N(K×) ⊂ L× is a subgroup of index 2 for all quadratic ex-
tension L. Let a ∈ K×. By symmetric, bimultiplicativity of the Hilbert symbol is
equivalent to (a,−) : K× → {±1} being a homomorphism. So this is what we have
to show.

If a is a square, then ax2 + by2 = 1 is solvable for any b (e.g. by ( 1√
a
, 0)), so the

map b 7→ (a, b) is the trivial homomorphism.
If a is not a square, we let L = K(

√
a). By Lemma 8.18 we know that (a, b) = 1

if and only if b ∈ N(L×). This implies that we have a factorization (as maps)

K×

��

(a,−) // {±1}.

K×/N(L×)

88

Indeed, if b, c ∈ K× mapping to the same class in K×/N(L×), then b = cd for some
d ∈ N(L×). Note that (a, b) = 1 if and only if b is a norm, and this is now true if
and only if c is a norm, which in turn holds if and only if (a, c) = 1.
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The projectionK× → K×/N(L×) is trivially a homomorphism, and sinceN(L×)
is an order 2 subgroup, the map K×/N(L×)→ {±1} is necessarily an isomorphism
of groups (since 1 is mapped to 1).

We now show non-degeneracy by proving the contrapositive. Let a /∈ (K×)2,
and let L = K(

√
a). Then since N(L×) ⊂ K× is a proper subgroup, there exists a

b ∈ K× which is not a norm for L. This is true if and only if (a, b) = −1, proving
non-degeneracy.

For the converse, note that for a non-square a ∈ K×, the map (a,−) : K× →
{±1} is surjective by non-degeneracy, and a homomorphism by bimultiplicativity.
Therefore we have an isomorphism K×/N(K(

√
a)×) ∼= {±1}, because N(K(

√
a)×)

is the kernel of (a,−). This implies that is has index 2. □

Example 8.21. When K = R, there is a unique quadratic extension L = C. The
norm is N(x+ iy) = x2 + y2, so we have N(C×) = R>0 = (R×)2.

Assuming Theorem 8.19, we obtain the following.

Corollary 8.22. The Hilbert symbol is bimultiplicative and non-degenerate.

We omit the proof of Theorem 8.19. Instead, we give some ideas on the global
situation.

Exercise 8.23. (1) Give an explicit description of the Hilbert symbol for Q
using the Hasse-Minkowski theorem.

(2) Use the first part to find a1, a2 ∈ Q× such that (a1a2, b) ̸= (a1, b)(a2, b).

8.5. Global class field theory and quadratic reciprocity. Recall that for a
number field K, global class field theory predicts an isomorphism

ΘK : ĈK
∼−→ Gab

K ,

where CK = A×K /K×. We will focus on the case K = Q. Recall that we have the
following identification

Gab
Q /⟨σ2 ⟩ ∼= Hom(Q×/(Q×)2, {±1}) ∼= Hom(Q×, {±1})

Combining these facts, we expect that Hom(Q×, {±1}) ∼= Q×\A×Q/(A
×
Q )

2. This
predicts a pairing which factors as follows:

A×Q ×Q×

��

// {±1}

Q×\A×Q/(A
×
Q )

2 ×Q×/(Q×)2

66

The pairing should be non-degenerate in the sense that it induces the isomorphism

Hom(Q×/(Q×)2, {±1}) ∼= Q×\A×Q/(A
×
Q )

2

above.

Definition 8.24. Let V = VQ be the set of places of Q. We define the following
pairing

A×Q ×Q× → {±1}

((xp), z) 7→
∏
p∈V

(xp, z)p,
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where we consider y ∈ Q× ⊂ A×Q , and (−,−)p denotes the Hilbert pairing on Qp
and on R (if p =∞).

Proposition 8.25. We have (xp, z) = 1 for all but finitely many p ∈ V , so the
above product is well-defined.

Proof. The set of finite places for which xp /∈ Z×p is finite, and so is the set of finite
places for which z /∈ Zp. Thus it suffices to show that when p ̸= 2, and xp ∈ Zp
and z ∈ Zp, then (xp, z) = 1. This will follow from the lemma below. □

Lemma 8.26. Let p be an odd prime, and let a, b, c ∈ Z×p . Then there exist
x, y ∈ Zp such that

ax2 + by2 = c.

Proof. First off, we show that we can solve ax2+ by2 = c mod p. Including 0, there
are (p+ 1)/2 squares in Z/pZ. This means ax2 takes (p+ 1)/2 values mod p, and
so does c− by2. Since (p+1)/2+ (p+1)/2 = p+1 > p, there has to be a common
value. This implies there are x, y ∈ Z/pZ with ax2 + by2 = c mod p and not both
0 (because c ̸= 0).

Without loss of generality assume x ̸= 0 mod p. Then (c− by2)/a = x2 mod p,
and using Hensel’s lemma we can lift this root of (c − by2)/a mod p to a root in
Zp. □

Note that ((xp), z) 7→
∏
p∈V (xp, z)p is clearly bimultiplicative, and factors through

(A×Q )2. However, we need to show that it factors through the diagonally embedded
Q×. This amounts to proving the following Proposition, which we will see to be
essentially equivalent to the quadratic reciprocity law.

Proposition 8.27. For all x, y ∈ Q we have
∏
p(x, y)p = 1.

Proof. Since the pairing is invariant under multiplication by squares, we can assume
x = ±p1 · · · pr and y = ±q1 · · · qs for prime numbers pi and qj . Moreover, by
bimultiplicativity, we may assume x ∈ {−1, 2, p} and y ∈ {−1, 2, q} for two distinct
odd primes p and q.

Let’s consider the case (p, q). We need to show that

(p, q)∞ ·
∏
ℓ

(p, q)ℓ = 1.

Here (p, q)∞ = 1 because p, q > 0 (actually p > 0 or q > 0 would suffice). Moreover,
for any odd prime ℓ′ ̸= p, q we have that p and q are ℓ′-adic units, so the Hilbert
symbol is trivial there. It remains to show that

(p, q)2(p, q)p(p, q)q = 1.

Recall that for n prime to p, the Legendre symbol is(
n

p

)
=

{
1, n is a square mod p
−1, else.

Exercise 8.28. Let p be an odd prime, and a, b ∈ Qp. Write a = pαu, b = pβv
with u, v ∈ Z×p . Let ε : Z×2 → Z/2Z be defined by ε(z) = (z − 1)/2 mod 2. Show
that

(a, b)p = (−1)αβε(p)
(
u

p

)β (
v

p

)α
.
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From the exercise, it follows that (p, q)p = ( qp ) and (p, q)q = (pq ). Moreover, for

p = 2 we freely use the fact that (p, q)2 = (−1)ε(p)ε(q) = (−1)
p−1
2 ·

q−1
2 . For a proof

(which is similar to p ̸= 2, but more tedious), we refer to [Ser78, Chapter III]. This is
equal to 1 unless p ≡ q ≡ 3 mod 4. Now the product formula (p, q)2(p, q)p(p, q)q = 1
is equivalent to (

p

q

)(
q

p

)
= (−1)

p−1
2 ·

q−1
2 ,

which is precisely the quadratic reciprocity law.
From the remaining cases, we only check that

∏
p(2, ℓ)p = 1 and omit the rest

(which can be tedious). We also omit some detail, for which we refer to [Ser78,
Chapter III, Theorem 3]. As before we have (2, ℓ)p = 1 for p ̸= 2, ℓ, and

(2, ℓ)ℓ =

(
2

ℓ

)
We again freely use a fact about the p = 2 case, namely (2, ℓ)2 = (−1)θ(ℓ) where

(−1)θ(ℓ) =

{
1, ℓ ≡ 1,−1 mod 8

−1, ℓ ≡ 3,−3 mod 8.

Thus we need to show that (
2

ℓ

)
= (−1)θ(ℓ),

i.e. we need to understand when 2 is a square mod ℓ. Recall that
√
2 = ζ8 + ζ−18 ,

where ζ8 = exp(πi/4) is a primitive 8-th root of unity. Here is a short proof of this
fact. We have

(ζ8 + ζ−18 )2 = ζ28 + 2 + ζ−28 = ζ4 + 2 + ζ−14 .

Since ζ4 = i, the latter is equal to 2, implying the desired identity. Therefore,
Q(
√
2) ⊂ Q(ζ8), and the restriction map Gal(Q(ζ8)/Q) → Gal(Q(

√
2)/Q) gives a

character
χ : (Z/8Z)× → {±1},

by identifying (Z/8Z)× ∼= Gal(Q(ζ8)/Q) and Gal(Q(
√
2)/Q) ∼= {±1}. Here, an

element n ∈ (Z/8Z)× acts via ζ8 7→ ζn8 . The claim now is that(
2

n

)
= χ(n) = (−1)θ(n)

for n ∈ (Z/8Z)×. By definition, we have ker((−1)θ(−)) = {±1}, and an element
n ∈ (Z/8Z)× is in ker(χ) if and only if it fixes

√
2 = ζ8 + ζ−18 . This in turn is

equivalent to
ζn8 + ζ−n8 = ζ8 + ζ−18 .

This happens if and only if n = 1,−1 (either both summands are fixed, or they are
switched). This implies that the kernel of all maps agree, which implies that they
are the same (the target has just two elements). □

The only thing that remains to check is non-degeneracy. This is the content of
the next result.
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Proposition 8.29. The map

χ : Q×\A×Q/(A
×
Q )

2 → Hom(Q×, {±1}) ∼= GQ,2

induced by the pairing

A×Q ×Q× → {±1}

((xp), z) 7→
∏
p∈V

(xp, z)p

is an isomorphism. Note that Hom(Q×, {±1}) = Hom(Q×/(Q×)2, {±1}).

Proof. First, note that Q×p = ⟨p⟩×Z×p via p-adic valuation. Identifying Z ∼= ⟨p⟩ we
have

A×Q ∼= R× ×
∏′

p
Q×p ∼= {±1} × R>0 ×

∏
p

Z×p ×
⊕
p

Z

Now, the diagonally embedded Q× can be canonically identified with {±1}×
⊕

p Z
via the composition

Q× ↪→ A×Q → {±1} ×
⊕
p

Z,

where the latter map is the projection. This implies that we obtain an identification

Q×\A×Q/(A
×
Q )

2 ∼=
∏
p

Z×p /(Z×p )2.

We have seen that for odd primes p, the quotient Z×p /(Z×p )2 has order two, and
is generated by any quadratic non-residue. One can show moreover (cf. [Ser78,
Chapter II]) that

Z×2 /(Z×2 )
2 ∼= (Z/8Z)×,

which is of order 4 and generated by the classes of −1 and 5 (this implies that
(Z/8Z)× ∼= Z/2Z× Z/2Z as abelian groups). Therefore we have

Q×\A×Q/(A
×
Q )

2 ∼= Z/2Z× Z/2Z×
∏
p ̸=2

Z/2Z.

On the other hand, recall that

Q×/(Q×)2 = Z/2Z ×
⊕
p

Z/2Z,

where the first copy of Z/2Z corresponds to the sign. The goal now is to show that
after dualizing, the copies of Z/2Z occurring in the source and target of χ match
up (dualizing turns direct sums into products). For that, consider the following
commutative diagram:

0 // Z/2Z×
∏
p ̸=2 Z/2Z //

��

Q×\A×Q/(A
×
Q )

2 //

��

Z/2Z //

��

0

0 // ker(ev−1) // Hom(Q×, {±1})
ev−1 // Z/2Z // 0

The first copy of Z/2Z comes from p = 2 and is generated by the adele (5, 1, ..., 1).
The rightmost copy of Z/2Z is generated by (−1, 1, ..., 1). The other copies corre-
sponding to odd primes are generated by any quadratic non-residue r mod p. The
rows are exact, and the left two vertical arrows are given by χ, whereas the right-
most vertical arrow is the induced map on the quotient. The map ev−1 is defined
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by ev−1(φ) = φ(−1). We want to show that χ is an isomorphism. By exactness it
suffices to prove that the two outer vertical arrows are isomorphisms.

Let p be an odd prime. One checks by computation that for a quadratic non-
residue r mod p, we have

(χ(r)(±q))p =

{
1, q ̸= p

−1, q = p,

where (−)p denotes restriction to the p-factor in Q×\A×Q/(A
×
Q )

2. Moreover χ(r)(−1) =
1. A similar computation at p = 2 shows that

χ(5, 1, ..., 1)(q) = 1, χ(5, 1, ..., 1)(−1) = 1, and χ(5, 1, ..., 1)(2) = −1.
This shows that the left vertical arrow is well-defined and injective. On the other
hand, a map φ : Q× → {±1} is determined by its restriction to each summand
in Q×/(Q×)2 = Z/2Z ×

⊕
p Z/2Z, and by the above calculation we can choose

an element in Z/2Z ×
∏
p ̸=2 Z/2Z accordingly. This shows surjectivity. Moreover,

since χ(−1, 1, 1, ...) = −1, the rightmost map is non-trivial, hence an isomorphism.
This proves the claim.

□

Appendix A. Commutative algebra

The amount of commutative algebra used during the lectures roughly corre-
sponds to [AM69, Chapters 1–3], which some readers might know from past lec-
tures or past seminars in algebra. The author highly recommends reading these
chapters. Here we collect some important properties, but do not give full details or
references:

§A.1 Spectrum of a ring
§A.2 Radical of ideals
§A.3 Cayley–Hamilton
§A.4 Nakayama’s lemma
§A.5 Tensor products
§A.6 Base change
A great source to look up specific definitions, properties and proofs is also the

Stacks Project [Sta18] - just google some keywords and add the words “stacks
project”. Further results from commutative algebra will be discussed during the
lectures whenever needed.

A.1. Spectrum of a ring. All rings are assumed to be unital and commutative.
Let A be a ring. Recall that an ideal p ⊂ A is called prime if A/p is a domain, i.e.,
p ̸= A and if a, b ∈ A with ab ∈ p, then a ∈ p or b ∈ p (or both). An ideal m ⊂ A
is called maximal if A/m is a field ( =⇒ m is prime), i.e., m ̸= A and for any ideal
I in A containing m one has I = m or I = A. Recall that every ring A ̸= 0 has a
maximal ideal, and that A is called local if it has exactly one maximal ideal.

Definition A.1. The spectrum of A is the set

Spec(A) = {p ⊂ A prime ideal}.

By the discussion above, Spec(A) is empty if and only if A is the zero ring.

Exercise A.2. Show the following statements:
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(1) Let φ : A → B be a ring homomorphism. Then, taking the preimage q 7→
φ−1(q) induces a map of sets Spec(φ) : Spec(B)→ Spec(A).

(2) Let A be a ring and I an ideal in A. Then, the map φ : A → A/I, a 7→ a
mod I induces an injection

Spec(φ) : Spec(A/I) ↪→ Spec(A),

whose image consists of all prime ideals p ⊂ A that contain I.

For every p ∈ Spec(A), the localization Ap := A[(A\p)−1] is a local ring with
maximal ideal pAp. It is called the local ring of A at p.

Exercise A.3. Show that the mapA→ Ap, a 7→ a
1 induces an injection Spec(Ap) ↪→

Spec(A) with image the prime ideals p′ ⊂ A with p′ ⊂ p.

Definition A.4. The field

κ(p) = Ap/pAp = Frac(A/p)

is called the residue field of A at p.

This allows to establish a (very rough) dictionary

(A.1) (elements of A) ↔ (functions on Spec(A))

as follows: For an element f ∈ A and some p ∈ Spec(A), we denote by

f(p) := f mod p ∈ κ(p)

the value of f at p. Note that the residue fields κ(p) for varying p are not isomorphic,
so the definition comes at the expense of allowing the “target of the function” to
vary. Making (A.1) precise is the content of Algebraic Geometry. Here we only
point out the following property:

Exercise A.5. Let A be a ring and f ∈ A. Show that f ∈ A× if and only if
f(p) ̸= 0 for all p ∈ Spec(A). (Hint: Consider Spec(A/fA).)

Example A.6. One has Spec(Z) = {(p) | p prime number} ∪ {(0)}. The localiza-
tions at (p) and (0) are Z(p) = {ab ∈ Q | p ∤ b} and Q respectively. The residue
fields are Fp and Q respectively.

Exercise A.7. Let k be a field and denote by k[T ] the polynomial ring in an
indeterminate T . Describe the spectrum, the localizations and the residue fields
for analogously as in Example A.6 for k[T ]. Also, study how this simplifies if k is
algebraically closed. (Hint: Use that k[T ] is a principal ideal domain.)

For an A-module M and p ∈ Spec(A), we extend the above notation by defining
Mp :=M [(A\p)−1] to be the localization of M at the multiplicative subset A\p.

Definition A.8. The support of an A-module M is the set

supp(M) = {p ∈ Spec(A) |Mp ̸= 0}.

Example A.9. Let n ∈ Z, n ̸= 0. Then, we have

supp(Z/nZ) = {(p) | p prime number dividing n}.
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A.2. Radical of ideals. Let A be a ring.

Definition A.10. For an ideal I ⊂ A, the set
√
I = {a ∈ A | ∃n ≥ 1 : an ∈ I}

is called the radical of I. The radical of I = (0) is also called the Nilradical of A.

We leave it to the reader to check that
√
I defines an ideal in A. One always

has I ⊂
√
I with equality if and only if 0 is the only nilpotent element in A/I.

However, if I = p is a prime ideal, then
√
p = p.

Exercise A.11. Show the following statements:

(1) Let A be a principal ideal domain and a ∈ A non-zero. Let a = u·pe11 ·. . .·perr
with r ∈ Z≥0, u ∈ A×, pi pairwise non-associated prime elements in A and
ei ∈ Z≥1 for i = 1, . . . , r. Then, one has

√
(a) = (p1 · . . . · pr).

(2) Let A be a Noetherian ring and I an ideal in A. Then, there exists some
m ∈ Z≥1 such that (

√
I)m ⊂ I.

Proposition A.12. Let A be a ring and I an ideal in A. Then, one has

(A.2)
√
I =

⋂
I⊂p

p,

where the intersection runs over all prime ideals p ⊂ A that contain I. In particular,
one has

(A.3)
√
0 =

⋂
p

p,

where the intersection runs over all prime ideals p ⊂ A.

Proof. Taking the preimage of subsets along the map A → A/I, a 7→ a mod I
induces a bijection between prime ideals in A/I and prime ideals in A that contain
I, see Exercise A.2(2). So, replacing A by A/I it suffices to prove (A.3). We
leave the inclusion “⊂” to the reader and prove “⊃”. Let x ∈ A be not nilpotent.
We need to show that there exists a prime ideal p ⊂ A with x ̸∈ p. Set Σ :=
{a ⊂ A ideal | ∀n ∈ N : xn ̸∈ a}. Since x is not nilpotent, we have (0) ∈ Σ and so
Σ ̸= ∅. We define a partial order on Σ by the inclusion of ideals. One checks that
every chain has an upper bound given by the set theoretic union (check that this
is an ideal). By Zorn’s lemma, Σ has a maximal element p. We claim that p is a
prime ideal. Let f, g ∈ A\p. Then, (f) + p, (g) + p ̸∈ Σ by maximality of p. So,
there exists m,n ∈ N with xm ∈ (f) + p and xn ∈ (g) + p, hence xn+m ∈ (fg) + p.
This shows that (fg) + p ̸∈ Σ, i.e., fg ̸∈ p. □

Corollary A.13. Let A be a ring and I ⊂ A be an ideal. Then, the map A/I →
A/
√
I, a mod I 7→ a mod

√
I induces a bijection

Spec(A/
√
I)

1:1−→ Spec(A/I).

Proof. This follows from A.2 and Exercise A.2(2). □
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A.3. Cayley–Hamilton. Let A be a ring. Let u : M → N be a map of A-modules.
Assume that M,N are finitely generated. Let (m1, . . . ,mr) and (n1, . . . , ns) be
systems of generators for M and N respectively. Then, for all j = 1, . . . , r, there
exist t1j , . . . , tsj ∈ A such that

(A.4) u(mj) =

s∑
i=1

tijni.

This defines a matrix T = (tij) ∈ Mats×r(A).

Remark A.14. (1) The matrix T is not uniquely determined by u, only if
(n1, . . . , ns) is a basis of N .

(2) Not every matrix in Mats×r(A) defines a linear map u by (A.4), only if
(m1, . . . ,mr) is a basis of M .

Theorem A.15 (Cayley–Hamilton). Let M be a finitely generated A-module with
generators (m1, . . . ,mr). Let u : M → M be an A-linear map and T ∈ Matr×r(A)
the matrix of u with respect to (m1, . . . ,mr). Denote by χT := det(XIr−T ) ∈ A[X]
the characteristic polynomial of T , and write

χT = Xr + a1X
r−1 + . . .+ ar−1X + ar.

Then, one has

χT (u) = ur + a1u
r−1 + . . .+ ar−1u+ arIr = 0 ∈ EndA(M).

Moreover, if I ⊂ A is an ideal with u(M) ⊂ IM , then one can choose T such that
ai ∈ Ii for all i = 1, . . . , r.

Remark A.16. It is also possible to give a proof by reduction to the case where
A is a field, see [Sta18, 05G6]. Here we give a direct proof.

Reminder A.17. Let r ∈ N, T ∈ Matr×r(A). Then, there exists S ∈ Matr×r(A)
with

ST = TS = det(T )Ir,

where Ir ∈ Matr×r(A) denotes the identity matrix. Namely, take S = (sij) with
sij = det(Tji) where Tji ∈ Mat(r−1)×(r−1)(A) arises from T by deleting the j-th
row and the i-th column. The matrix S is called the adjoint of T .

Proof of Theorem A.15. If u(M) ⊂ IM , then we can choose the entries of T in
(A.4) to lie in I. Since ai is a sum of i-fold products of the entries, it is contained
in Ii.

Next, let us write tT = (tij) for the transposed of T . So, we have u(mj) =∑r
i=1 tjimi and thus

(A.5)
r∑
i=1

(uδji − tji)mi = 0.

Consider the matrix C(X) := (Xδji − tji) = XIr − tT ∈ Matr×r(A[X]). Let
D(X) = (dkj(X)) be the adjoint of C, hence

(A.6) D(X)C(X) = χT (X)Ir

using that χT = χtT . The map f 7→ f(u) induces a homomorphism of commutative
A-algebras

A[X]→ A[u] := {f(u) ∈ EndA(M) | f ∈ A[X]}.

https://stacks.math.columbia.edu/tag/05G6


78

Thus, we get C(u), D(u) ∈ Matr×r(A[u]). Multiplying (A.5) with dkj(u) and ap-
plying

∑
j gives

0 =
∑
i

∑
j

dkj(u)(uδji − tji)mi = χT (u)mk

for all k = 1, . . . , r by using (A.6) for the second equality. Since the mk generate
M , this shows χT (u) = 0 ∈ EndA(M). □

Corollary A.18. Let A be a ring and M a finitely generated A-module. Let I ⊂ A
be an ideal such that M = IM . Then, there exists some f ∈ 1 + I with fM = 0.

Proof. Apply Theorem A.15 to u = idM to get f ·idM = 0 with f := 1+a1+. . .+ar
and ai ∈ Ii ⊂ I. This shows fM = 0. □

Exercise A.19. Let A be a ring andM a finitely generated A-module. Let u : M →
M be an A-linear endomorphism. Assume that u is surjective. Show that u is an
isomorphism. (Hint: Consider M as an A[X]-module via X · m := u(m) for all
m ∈M .)

Is every injective endomorphism of a finitely generated module an automor-
phism?

A.4. Nakayama’s lemma.

Definition A.20. Let A be a ring. Then, the ideal

Jac(A) =
⋂

m ⊂ A maximal ideal

m

is called the Jacobson radical of A.

Proposition A.21. Let A be a ring and I be an ideal in A. Then, one has
I ⊂ Jac(A) if and only if 1 + I ⊂ A×.

Proof. First, let I ⊂ Jac(A). We argue by contraction. So, assume there exists an
x ∈ I such that 1+ x ̸∈ A×. Then, A/(1 + x) ̸= 0 and there exists a maximal ideal
m ⊂ A with 1 + x ∈ m. Since x ∈ Jac(A) ⊂ m, it follows 1 ∈ m  .

Conversely, let 1 + I ⊂ A×. Assume I ̸⊂ Jac(A). Then, there exists x ∈ I and
a maximal ideal m with x ̸∈ m. Thus, (x) +m = A, i.e., there exists y ∈ A, v ∈ m
such that xy+v = 1. This implies 1+(−xy) ∈ m and −xy ∈ I, so 1+I ̸⊂ A× . □

Exercise A.22. Let A be a ring and I an ideal in A with I ⊂ Jac(A). Consider
the map φ : A→ A/I, a 7→ a mod I. Show that an element a ∈ A is a unit if and
only if φ(a) is a unit in A/I. Deduce that for a local ring A with maximal ideal m
one has A× = A\m.

Exercise A.23. Let φ : A→ B be a ring map such that the induced map Spec(B)→
Spec(A) is surjective. Then, an element f ∈ A is a unit if and only if φ(f) ∈ B is
a unit. (Hint: Use Exercise A.23.)

Lemma A.24 (Nakayama’s lemma). Let A be a ring and u : N → M be a map
of A-modules. Let I ⊂ A be an ideal with I ⊂ Jac(A). Assume that M is finitely
generated. Then, the map u : N →M is surjective if and only if the induced map

ū : N/IN →M/IM, n mod IN 7→ u(n) mod IM

is surjective.
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Proof. If u is surjective, so is ū as one checks readily (without assuming that M is
finitely generated). Conversely, assume that ū is surjective. Then, one has

0 = coker(ū) = coker(u)/Icoker(u),

i.e., coker(u) = Icoker(u). Since M is finitely generated, so is coker(u). Hence,
Corollary A.18 shows that f · coker(u) = 0 for some f ∈ 1 + I. Since 1 + I ⊂ A×

by Proposition A.21, the element f is invertible and we get coker(u) = 0, i.e., u is
surjective. □

Exercise A.25. Let A be a ring and M a finitely generated A-module. Let I be
an ideal in A with I ⊂ Jac(A). If M = IM , then M = 0.

Corollary A.26. For every finitely generated A-module and prime ideal p ∈ Spec(A),
one has Mp = 0 if and only if Mp/pMp = 0.

Proof. This follows from Exercise A.25 applied to the finitely generated module Mp

over the local ring Ap and its Jacobson radical I = pAp. □

A.5. Tensor products. Let A be a ring and M,N,P be A-modules. Recall that a
map β : M ×N → P is called A-bilinear if for all m ∈M , n ∈ N the maps β(m,−)
and β(−, n) are A-linear.

Definition A.27. Let M,N be A-modules. A tensor product of M and N is an
A-module M⊗AN together with a A-bilinear map τ : M×N →M⊗AN, (m,n) 7→
m⊗n such that the following universal property holds: For every A-module P and
every A-bilinear map β : M ×N → P there exists a unique map σ : M ⊗A N → P
such that β = σ ◦ τ , i.e., the following diagram commutes:

M ×N P

M ⊗A N

β

τ ∃!σ

Properties A.28. For the following basic properties, the reader is referred to
[AM69, Proposition 2.12ff.]:

(1) The pair (M ⊗AN, τ) exists and is unique up to unique isomorphism. One
puts

M ⊗A N := FreeA{m⊗ n | m ∈M,n ∈ N}/SpanA{(3a)–(3c)},

where m⊗ n are formal symbols, FreeA{−} is the free A-module generated
on these symbols and SpanA{−} denotes its submodule generated by the
relations (3a)–(3c) below. The map τ : M ×N →M ⊗AN, (m,n) 7→ m⊗n
is given by τ(m,n) = m⊗ n.

(2) If (mi)i∈I and (nj)j∈J is a generating system of M and N respectively,
then (mi ⊗ nj)i∈I,j∈J is a generating system of M ⊗A N . Note that an
arbitrary element in M ⊗A N is a finite sum of the form

∑
i,j aijmi ⊗ nj

for some aij ∈ A.
(3) The bilinearity of τ means that for all m,m′ ∈M , n, n′ ∈ N and a ∈ A:

(a) (m+m′)⊗ n = m⊗ n+m′ ⊗ n
(b) m⊗ (n+ n′) = m⊗ n+m⊗ n′
(c) (am)⊗ n = a(m⊗ n) = m⊗ (an)
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Lemma A.29. Let u : M → M ′ and v : N → N ′ be maps of A-modules. Then,
there exists a unique map of A-modules

u⊗ v : M ⊗A N →M ′ ⊗A N ′

with (u⊗ v)(m⊗ n) = u(m)⊗ v(n) for all m ∈M , n ∈ N .

Proof. Consider the following diagram:

M ×N M ′ ×N ′

M ⊗A N M ′ ⊗A N ′

u×v

τ τ ′

∃!u⊗v

Since the composition τ ◦ (u×v) is A-bilinear, we get the existence of a unique map
u⊗ v as indicated. □

Lemma A.30. Let M,N,P be A-modules.
(1) There exists a unique isomorphism

(M ⊗A N)⊗A P ∼=M ⊗A (N ⊗A P )
such that (m⊗ n)⊗ p 7→ m⊗ (n⊗ p) for all m ∈M , n ∈ N , p ∈ P .

(2) There exists a unique isomorphism

M ⊗A N ∼= N ⊗AM
such that m⊗ n 7→ n⊗m for all m ∈M , n ∈ N .

(3) One has M ⊗A A ∼=M given by m⊗ a 7→ am for all m ∈M , a ∈ A.

Proof. (1): This is left to the reader.
(2): We consider the following diagram:

M ×N N ×M

M ⊗A N N ⊗AM

φ : (m,n) 7→(n,m)

∼=
τ τ ′

∃!σ

∃!ρ

Since τ ′◦φ and τ ◦φ−1 are A-bilinear, there exist unique maps σ and ρ respectively.
One necessarily has ρ ◦ σ = id and σ ◦ ρ = id.

(3): The inverse map is given by m 7→ m⊗ 1. □

Remark A.31. The functor (−)⊗A N is left adjoint to the functor HomA(N,−),
both viewed as endofunctors on the category of A-modules. More precisely, for all
A-modules M,N,P , there are bijections

(A.7)
HomA(M ⊗A N,P )

u7→u◦τ
= {β : M ×N → P A-bilinear maps}

β 7→
(
m 7→(n 7→β(m,n))

)
= HomA(M,HomA(N,P ))

that are functorial in M,N and P . Functorial in N means that a map v : N → N ′

of A-modules induces a diagram

HomA(M ⊗A N,P ) HomA(M,HomA(N,P ))

HomA(M ⊗A N ′, P ) HomA(M,HomA(N
′, P ))

∼=
(A.7)

u′ 7→u′◦(idM⊗v)
∼=

(A.7)

w 7→(m7→w(m)◦v)
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that commutes as one verifies. We leave it to the reader to spell out the functori-
ality in M and P , which requires writing down similar diagram and checking their
commutativity.

Corollary A.32. Let N be an A-module. Then, the functor (−)⊗A N : ModA →
ModA commutes with colimits. In particular, the following hold:

(1) If (Mi)i∈I is a family of A-modules, then the canonical map(⊕
i∈I

Mi

)
⊗A N

∼=−→
⊕
i∈I

(Mi ⊗A N)

is an isomorphism. In other words, the functor (−) ⊗A N commutes with
direct sums (=coproducts in ModA).

(2) If M ′ u→ M
v→ M ′′ → 0 is an exact sequence of A-modules, then the

sequence

M ′ ⊗A N
u⊗idN−→ M ⊗A N

v⊗idN−→ M ′′ ⊗A N −→ 0

is exact. In other words, the functor (−)⊗AN commutes with finite colimits
(and ModA is an abelian category).

Proof. This follows from Remark A.31 because left adjoint functors commute with
colimits (and the category of A-modules admits all colimits). □

Example A.33. For 0 ̸= n ∈ Z, we consider the exact sequence of Z-modules

0 −→ Z n·−→ Z −→ Z/nZ −→ 0.

Tensoring with (−)⊗Z Z/nZ induces the sequence

0 −→ Z/nZ n=0−→ Z/nZ id−→ Z/nZ −→ 0.

In particular, we see that tensoring does not preserve injective maps in general, i.e.,
if u : M → M ′ is injective, then u⊗ idN : M ⊗A N → M ′ ⊗A N is not injective in
general.

Exercise A.34. Show the following statements:
(1) Let u : M → M ′, v : N → N ′ be surjective maps of A-modules. Then, the

map u⊗ v : M ⊗A N →M ′ ⊗A N ′ is surjective with kernel

ker(u⊗ v) = SpanA{m⊗ n | m ∈ ker(u) or n ∈ ker(v)},

where SpanA{−} denotes the A-submodule generated by (−). Deduce that
for an ideal I ⊂ A one has M ⊗A A/I =M/IM .

(2) Let I, J be ideals in a ring A. Then, there is a canonical isomorphism

A/I ⊗A A/J ∼= A/(I + J).

Deduce that for m,n ∈ Z one has Z/mZ ⊗Z Z/nZ = 0 if and only if m,n
are prime to each other. Note that this is equivalent to supp(Z/mZ) ∩
supp(Z/nZ) = ∅, see Example A.9.

Reminder A.35. Let M be an A-module. Then, M is called
(1) free if M ∼= ⊕i∈IA =: A(I) for some set I. In this case, the cardinality

rankA(M) := #I depends only on I and is called the rank of M .
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(2) projective if M is a direct summand of a free A-module, i.e., there exists a
free A-module E such that M⊕N ≃ E for some A-module N . Equivalently,
for every short exact sequence of A-modules

0 −→ K
i−→ N

p−→M −→ 0

there exists s : M → N such that p ◦ s = idM . In this case, K ⊕M ≃
N, (k,m) 7→ i(k) + s(m).

Exercise A.36. Let M,N be A-modules. Show the following properties:
(1) If M is free of rank r and N is free of rank s, then M ⊗A N is free of rank

rs.
(2) If M,N are projective, then so is M ⊗A N .
(3) If M,N are finitely generated, then so is M ⊗A N . (Hint: An A-module

M is finitely generated if and if there exists a surjection Ar →M for some
r ∈ N.)

A.6. Base change. Let ρ : A → B be a map of rings. We also say that B is a
(commutative) A-algebra with structure map ρ. If ρ is understood, then we simply
say that B is an A-algebra. Equivalently, B is an A-module together with an
A-bilinear, commutative, unital map B ×B → B.

Remark A.37. The base change of an module or algebra is defined as follows:
(1) Let M be an A-module. Then, B ⊗A M becomes a B-module by scalar

multiplication on the first factor:
B × (B ⊗AM)→ B ⊗AM,

(b, b′ ⊗m) 7→ bb′ ⊗m

(2) Let C be an A-algebra. Then, B⊗A C becomes a B-algebra with multipli-
cation

B ⊗A C ×B ⊗A C → B ⊗A C,
(b1 ⊗ c1, b2 ⊗ c2) 7→ b1b1 ⊗ c1c2

and structure map B → B ⊗A C, b 7→ b ⊗ 1. Note that the situation is
symmetric in B and C, i.e., B ⊗A C is also a C-algebra.

We call B⊗AM and B⊗AC the base change of the A-module M and the A-algebra
C respectively.

Properties A.38. Let ρ : A→ B be a ring map. The following are important:
(1) The map

B ⊗A A[T1, . . . , Tn]
∼=−→ B[T1, . . . , Tn]

b⊗
∑

i1,...,in≥0

ai1...inT
i1
1 · · ·T inn 7→

∑
i1,...,in≥0

bρ(ai1...in)T
i1
1 · · ·T inn

is an isomorphism of B-algebras for all n ∈ N. An analogous statement
holds for polynomial rings in infinitely many variables.

(2) Let I be an ideal in A and consider the projection A→ A/I, a 7→ a mod I.
Then, the map B = B ⊗A A → B ⊗A A/I induces an isomorphism of
B-algebras

B/IB ∼= B ⊗A A/I,
where IB is the ideal in B generated by ρ(I).
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Properties A.38 (1) and (2) allow for a description in the general case: Let C be
an A-algebra. Choose generators (cλ)λ∈Λ of C as an A-algebra. We get a surjective
homomorphisms of A-algebra

π : A[(Tλ)λ∈Λ]→ C, Tλ 7→ cλ.

Set I := ker(π), so C ∼= A[(Tλ)λ∈Λ]/I. Then, we compute:

B ⊗A C ∼=
(
B ⊗A A[(Tλ)λ∈Λ]

)
⊗A[(Tλ)λ∈Λ] A[(Tλ)λ∈Λ]/I

(1)∼= B[(Tλ)λ∈Λ]⊗A[(Tλ)λ∈Λ] A[(Tλ)λ∈Λ]/I

(2)∼= B[(Tλ)λ∈Λ]/IB[(Tλ)λ∈Λ]

Example A.39. Let ρ : A→ B be a ring map. Let C := A[T1, . . . , Tn]/(f1, . . . , fr)
for some n ∈ N and f1, . . . , fr ∈ A[T1, . . . , Tn]. Then, we have

B ⊗A C ∼= B[T1, . . . , Tn]/(ρ(f1), . . . , ρ(fr)),

where for f =
∑
i1,...,in≥0 ai1...inT

i1
1 · · ·T inn ∈ A[T1, . . . , Tn] we write

ρ(f) :=
∑

i1,...,in≥0

ρ(ai1...in)T
i1
1 · · ·T inn ∈ B[T1, . . . , Tn].

As concrete examples, we consider the following special cases:
(1) Let ρ : A := Z→ Fp =: B and C := Z[i]. Then, Z[T ]/(T 2+1) ∼= Z[i], T 7→ i

induces an isomorphism of Fp-algebras

Fp ⊗Z Z[i] ∼= Fp[T ]/(T 2 + 1),

compare also the computation (1.3) in the proof of Lemma 1.9.
(2) Let ρ : A := R→ C =: B and C := C = R[i] = R[T ]/(T 2 + 1). Then,

C⊗R C = C[T ]/(T 2 + 1) = C[T ]/(T + i)× C[T ]/(T − i) ∼= C× C,

where we use the Chinese remainder theorem for the 2nd identification.

Exercise A.40. Let d ∈ Z be not a square. Show the following properties:
(1) One has Q⊗Z Z[

√
d] ∼= Q[

√
d] as Q-algebras.

(2) For any prime number p, one has an isomorphism of Fp-algebras

Fp ⊗Z Z[
√
d] ∼= Fp[T ]/(T 2 − d̄),

where d̄ ≡ d mod p. Is this always a field?

The following lemma gives some permanence properties for the base change of
modules:

Lemma A.41. Let M be an A-module, B an A-algebra and κ some cardinal. If M
is a free of rank κ (respectively finitely generated, respectively projective) A-module,
then so is the B-module B ⊗AM .

Proof. First, assume M ∼= A(I) := ⊕i∈IA for some set I with #I = κ. Then,
B⊗AM = ⊕i∈I(B⊗AA) = B(I) by Corollary A.32(1) and Lemma A.30(3). Hence,
B ⊗AM is free of rank κ.

Next, assume M is finitely generated and pick a surjection Ar → M for some
r ∈ N. Then, the induced map Br = B ⊗A Ar → B ⊗AM is surjective as well by
Corollary A.32(2). Hence, B ⊗AM is a finitely generated B-module.
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Finally, assume M is projective and pick some free A-module E with M⊕N ∼= E
for some A-module N . Since direct sums commute with tensor products, one gets
as A-modules (

B ⊗AM
)
⊕
(
B ⊗A N

)
= B ⊗A E

which is checked to be B-linear. As B⊗AE is a free B-module, we see that B⊗AM
is projective. □

Appendix B. Solutions to some exercises

Exercise 1.4. The inverse is given by ∞ 7→ (−1, 0) and Q ∋ t 7→ ( 1−t
2

1+t2 ,
2t

1+t2 ).

Exercise 1.6. If x2+y2 odd, then either x2 or y2 is odd and the other one is even.
So, without loss of generality x2 is even and y2 is odd, which implies x = 2x′ and
y = 2y′ + 1 for some x′, y′ ∈ Z. We get x2 + y2 = 4x′2 + 4y′2 + 4y′ + 1 ≡ 1 mod 4.

Exercise 1.8. An element x ∈ Z[i] is invertible if and only if |x| = 1. This leads
to the four cases x = ±1,±i. Now, let a ∈ Z[i] such that |a| is prime. If a = bc for
some b, c ∈ Z[i], then either |b| = 1 or |c| = 1, i.e., either b or c is a unit and so a is
prime.

Exercise 1.10. Follows from the fact that the group F×p is cyclic of order p − 1,
which is an even number by our assumption on p being odd.

Exercise 2.6. The ring R(p) is a domain as a subring of Frac(R). By construction,
it is local with maximal ideal pR(p).

Exercise 2.14. (1): The map identifies with the localization M →M [(R\{0})−1].
For m ∈M , one has m

1 = 0 if and only if there exists some r ∈ R\{0} with rm = 0.
(2): Omitted.
(3): The “if” directions follow from (2). The final direction is [Sta18, 0AUT].

Exercise 2.17. Replace R by Rp for p ⊂ R prime ideal. So, we can assume R to
be local. We claim I = Ry for some y ∈ K := Frac(R). Since I−1I = R there exist
xi ∈ I−1, yi ∈ I with

∑
xiyi = 1. Note xiyi ∈ R for all i by definition of being

invertible. At least one summand, say xy, does not belong to the maximal of R
and hence u := xy ∈ R×. Replacing y by u−1y we obtain xy = 1 with x ∈ I−1,
y ∈ I. Then, I = Ry since for z ∈ I one has z = (zx)y and zx ∈ R as x ∈ I−1.

Exercise 3.40. By Exercise 3.14 we have B = Z[
√
d], which is a free Z-module

with basis 1,
√
d. The associated trace matrix is given by(

2 0
0 2d

)
.

Thus, ∆(1,
√
d) = 4d and ∆B/Z = (4d).

Exercise 3.41. Let n ∈ N be the Z-rank of B. The base change matrix between
two Z-bases of B is some invertible matrix A ∈ Matn×n(Z). Hence, we have
det(A) ∈ Z× = {±1}. We conclude det(A)2 = 1 and the exercise follows from
Remark 3.38(2).

Exercise 3.57.

https://stacks.math.columbia.edu/tag/0AUT
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Exercise 3.58. By Exercises 3.14 and 3.40 we have B = Z[
√
d] and ∆B/Z = (4d).

Thus, p is unramified in L = Q[
√
d] if and only if p ∤ 4d. Since Gal(L/K) ∼= Z/2 is

abelian, the element Frobp ∈ Gal(L/K) is defined for all odd primes p with p ∤ d.
In this case, we have Frobp = 1 if and only if p is completely decomposed in L if
and only if T 2 − d̄ ∈ Fp[T ] has a zero if and only if d̄ ∈ Fp is a square if and only if
d

p−1
2 ≡ 1 mod p.

Exercise 4.14. One has(
7600

4049

)
=

(
7600− 4049

4049

)
=

(
3551

4049

)
=

(
53

4049

)(
67

4049

)
.

As 4049 ≡ 1 mod 4 this is the same as(
4049

53

)(
4049

67

)
=

(
21

53

)(
29

67

)
=

(
3

53

)(
7

53

)(
29

67

)
.

Using again quadratic reciprocity(
53

3

)(
53

7

)(
67

29

)
=

(
2

3

)(
4

7

)(
9

29

)
= −1,

since 4 and 9 are square modulo 7 and 29, but 2 modulo 3 is not.

Exercise A.2. (1): Preimages of ideals under ring maps are ideals and so is φ−1(q).
Let a, b ∈ A with ab ∈ φ−1(q). Then, φ(ab) = φ(a)φ(b) ∈ q and so φ(a) ∈ q or
φ(b) ∈ q (or both) using that q is a prime ideal. This shows a ∈ φ−1(q) or
b ∈ φ−1(q).

(2): Since φ is surjective, we have φ(φ−1(q)) = q for all subsets q ⊂ A/I. This
implies injectivity. The description of the image of Spec(φ) is left to the reader.

Exercise A.3. For a prime ideal q ⊂ Ap, we have q = (q ∩ A)Ap where q ∩ A
denotes the preimage of q under A→ Ap. This implies injectivity. The description
of the image is left to the reader.

Exercise A.5. One has f ∈ A× if and only ifA/fA = 0 if and only if Spec(A/fA) =
∅ if and only if f ̸∈ p for all p ∈ Spec(A) if and only if f(p) ̸= 0 for all p ∈ Spec(A).

Exercise A.7. One has Spec(k[T ]) = {(f) | f ∈ k[T ]\k irreducible, normed} ∪
{(0)}. The localizations at (f) and (0) are k[T ](f) = {ab ∈ k(T ) | f ∤ b} and k(T )
respectively. The residue fields are finite extensions of k and k(T ) respectively. If
k is algebraically closed, all normed and irreducible polynomials of degree ≥ 1 are
of the form T − λ for λ ∈ k. All residue fields are isomorphic to k in this case.

Exercise A.11. (1): Let e = max{ei | i = 1, . . . , r} and q := p1 · . . . · pr. Then,
qe ∈ (a) and hence q ∈

√
(a), i.e., (q) ⊂

√
(a). On the other hand,

√
(a) = (q′)

for some q′ ∈ A because A is a principal ideal domain. By definition, there exists
e′ ≥ 1 such that (q′)e

′ ∈ (a). Since all ei ≥ 1 we get pi | (q′)e
′

and so pi | q′ using
that all pi are prime. This shows q | q′, and so (q) ⊃ (q′) =

√
(a) holds as well.

(2): Since A is noetherian, we have
√
I = (f1, . . . , fr) for some fi ∈ A. Let

mi ≥ 1 with fmi
i ∈ I and put m := r ·max{mi}. Then, (

√
I)m ⊂ I.
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Exercise A.19. For I = (X) one has M = u(M) = XM = IM where the first
equality holds because u is surjective. By Corollary A.18, there exists some f ∈ 1+I
with fM = 0. Writing f = 1+(−X ·g) for some g ∈ A[X] we see that u is invertible
with inverse g(u).

The final question has a negative answer: for all n ∈ Z\{0,±1}, the map Z →
Z,m 7→ n ·m is an injective Z-module endomorphism but not surjective.

Exercise A.22. The image of a unit under any ring map is a unit. Conversely,
assume that φ(a) = a mod I is a unit in A/I. Then, there exists b ∈ A such that
ab ≡ 1 mod I, i.e., ab ∈ 1 + I. By Proposition A.21, the element ab is a unit in A
and so must be a.

If A is local, then m = Jac(A) and (A/m)× = (A/m)\{0}. Using the above with
I = m, we get

A× = φ−1
(
(A/m)\{0}

)
.

The latter set is equal to A\m by an elementary calculation.

Exercise A.23. Assume φ(f) is a unit. Then, φ(f) ̸∈ p for all p ∈ Spec(B), so
f ̸∈ p for all p ∈ Spec(B) Since Spec(B)→ Spec(A) is surjective, this implies f ̸∈

Let φ : A → B be a ring map such that the induced map Spec(B) → Spec(A)
is surjective. Then, an element f ∈ A is a unit if and only if φ(f) ∈ B is a unit.
(Hint: Use Exercise A.23.)

Exercise A.25. Apply Lemma A.24 to the unique map 0 = N →M from the zero
module.

Exercise A.34. (1): One has u⊗v = (u⊗ idN )◦(idM ′⊗v), which is a composition
of surjective maps by Corollary A.32(2). The description of the kernel follows from
the same corollary. The final statement is the special case where u = idM is the
identity on a module M and v : A→ A/I, a 7→ a mod I.

(2): Consider the exact sequence 0→ I → A→ A/I → 0 and apply (−)⊗AA/J .
By Corollary A.32(1) and Lemma A.30(3), we get an exact sequence

I ⊗A A/J → A/J
π→ A/I ⊗A A/J → 0.

By (1), ker(π) is the submodule of A/J generated by the image of I ⊂ A → A/J .
Hence, A/(I + J) = (A/J)/ ker(π) = A/I ⊗A A/J .

In the example, we compute Z/mZ⊗Z Z/nZ = Z/gcd(m,n)Z since mZ+ nZ =
gcd(m,n)Z as ideals in Z. Hence, this ring is zero if and only if gcd(m,n)Z = Z if
and only if m,n are coprime.

Exercise A.36. (1): Choose isomorphisms M = ⊕i∈IA and N = ⊕j∈JA. Then,
one has A(I) ⊗A A(J) := (⊕i∈IA) ⊗A (⊕j∈JA) = ⊕i∈I,j∈J(A ⊗A A) = A(I×J) by
Corollary A.32(1) and Lemma A.30(3). In particular, if r = #I and s = #J are
finite, then Ar ⊗A As = Ars.

(2): IfM andN are direct summands of the free A-modules E and F respectively,
then M ⊗A N is a direct summand of the A-module E ⊗A F , which is free by the
proof of (1).

(3): Choose surjections Ar → M and As → N for some r, s ∈ N. Then,
the induced map Ar ⊗A As → M ⊗A N is surjective by Exercise A.34(1) and
Ar ⊗A As ∼= Ars is free by (1).
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Exercise A.40. One has Z[T ]/(T 2 − d) ∼= Z[
√
d], T 7→

√
d as rings.

(1): Applying Q ⊗Z (−), we get Q[T ]/(T 2 − d) ∼= Q ⊗Z Z[
√
d], which is a field

since T 2 − d ∈ Q[T ] is irreducible (because it is quadratic and has no root in Q).
(2): Applying Fp ⊗Z (−), we get Fp[T ]/(T 2 − d̄) ∼= Fp ⊗Z Z[

√
d]. This is a field

if and only if d̄ is not a square in Fp.
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