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Organization. Here are the coordinates for the lecture:
• Tuesdays, 9:50–11:20 & Fridays, 11:40–13:20 in Room S215 401 and via

Zoom (Meeting-ID: 654 2542 5948, Password: Largest six digit number
divisible by 3.)

• First lecture: April 16, Last lecture: July 19
• A total of 28 lectures of 90 minutes each.
• Exam either oral or written depending on the number of participants.

Exercises. The exercises will be written in the present manuscript. Also, there
will be exercise sessions that provide room for discussing and solving the exercises
together other participants of the course. These will take place:

• Wednesdays, 11:40–13:20 in Room S215 401
• First session: April 24, Last session: July 17

Literature. The present lecture is based on handwritten notes by Torsten Wed-
horn. The author thanks him heartily for sharing them. Besides, there is a lot
of literature on the subject. Here is a selection that the author used (in part) to
prepare the lecture:

• The book of Kato–Kurokawa–Saito [KKS00] gives a motivated introduction
to elementary number theory with many historical comments. A must read!

• The book of Neukirch [Neu99] belongs to the classics. The content of the
lectures (very) roughly correspond to the material in Chapters I & II in
Neukirch’s book.

• The second book of Kato–Kurokawa–Saito [KKS11] is great as well. The
lectures will work towards the contents of the book, but will probably not
cover much of it. However, the examples, especially in the beginning of the
book, are very instructive.

• Other excellent introductions to the topic include the books of Lang [Lan94],
Zagier [Zag81] and Cassels–Fröhlich [CF86] as well as the course notes of
Milne [Mil].
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Comments. The present manuscript might not cover everything that will be dis-
cussed during the lecture and thus relevant for the final exam. However, it will
probably contain most of it.

Any comments regarding typos, mistakes, presentation of the material etc. are
highly welcome! Please talk to me during the lecture.

1. Introduction

Algebraic number theory, or from the author’s perspective, arithmetic algebraic
geometry is a branch of mathematics that deals with solution spaces of polynomial
equations. Solutions in the integers Z (or, the rational numbers Q) are of particular
interest. Here is a famous problem:

Problem 1.1. Find all x, y, z ∈ Z that satisfy the quadratic equation x2+y2 = z2.

Here are all triples, up to multiples, with 1 ≤ x, y, z ≤ 100:
(3, 4, 5) (5, 12, 13) (8, 15, 17) (7, 24, 25)

(20, 21, 29) (12, 35, 37) (9, 40, 41) (28, 45, 53)

(11, 60, 61) (16, 63, 65) (33, 56, 65) (48, 55, 73)

(13, 84, 85) (36, 77, 85) (39, 80, 89) (65, 72, 97)

For example, 32 + 42 = 52 and 52 + 122 = 132 and so on. Such triples are called
Pythagorean triples. Each corresponds to a right triangle with hypothenuse of
length z and the two other sides of length x and y respectively. We will see soon
that there are infinitely many Pythagorean triples and how to parametrize them.

Geometrically, the problem asks to find all lattice points lying on the yellow conic
depicted below. That is, put the standard lattice Z3 inside R3 and ask yourself at
which points does the yellow conic intersect the lattice points.

Picture of x2 + y2 = z2 in R3.

Before discussing the solution to Prob-
lem 1.1, let us look at another famous problem.
Namely, we enlarge the degree of the variables
in the former equation:

Problem 1.2. Let n ≥ 3. Find all x, y, z ∈ Z
that satisfy the equation xn + yn = zn.

The outcome is completely different: There
are no triples with xyz ̸= 0. Pierre de Fermat
(17th century) wrote in his copy of Diophan-
tus’s arithmetica that he had a proof that was,
however, too large to fit in the margin. Fer-
mat’s notes of the proof were never found. It
took more than 350 years and the work of many
mathematicians until the proof was finally com-
pleted by Andrew Wiles in 1994. That this particular problem, which goes under
the name “Fermat’s last theorem”, is so famous seems rather the result of many
failed attempts to come up with solutions but less the importance of this specific
equation for number theory. However, by trying to solve Problem 1.2 a lot of beau-
tiful mathematics was developed during the past centuries, some of which we will
see during the lectures. Let us now come back to studying quadratic equations in
more detail.
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Conics. Let a, b, c ∈ Z. Consider the following equation:

(1.1) ax2 + by2 = c

Such equations are examples of conics, and you can go to WolframAlpha, for ex-
ample, to draw pictures in R2 for particular choices of a, b and c.

Question 1.3. Are there x, y ∈ Z (or, x, y ∈ Q) such that ax2 + bx2 = c?

Or, even better: Describe the solution sets {(x, y) | ax2 + bx2 = c} with (x, y) in
Z2 and in Q2 respectively. We will see that if a solution exists, then it is not hard
to describe the solution sets. However, the existence of a solution is more involved
as we will see soon. Let us consider the following cases:

(A) Unit circle and other conics with solutions. Assume a = b = c = 1. Then,
Equation (1.1) takes the form

(1.2) x2 + y2 = 1,

which describes the unit circle in R2. Solutions in Z2 are easily determined to be
{(0,±1), (±1, 0)}. Solutions in Q2 are more interesting:(

3

5

)2

+

(
4

5

)2

= 1 ⇐⇒ 32 + 42 = 52

Thus, by clearing denominators in x, y ∈ Q, we see that rational solutions of the
unit circle (1.2) correspond to the Pythagorean triples from Problem 1.1. Now, if
(x, y) ∈ Q2 lies on the unit circle (1.2) and if (x, y) ̸= (−1, 0), then the slope of the
line joining (−1, 0) and (x, y) is y

x+1 .

Exercise 1.4. Show that the map (x, y) 7→ y
x+1 induces a bijection{

(x, y) ∈ Q2 | x2 + y2 = 1
} 1:1−→ Q ∪ {∞}.

More generally, assume that abc ̸= 0 and that ax2 + by2 = c has some solution
P := (x0, y0) ∈ Q2. Then, one has the following bijection:{

Q = (x, y) ∈ Q2 | ax2 + by2 = c
} 1:1−→ (Q ∪ {∞})\{at most 2 elements}
Q 7−→ slope of line PQ joining P and Q

Here, for P = Q, the line PQ is the tangent line to the real conic {(x, y) ∈ R2 | ax2+
by2 = c}, and the slope is ∞ if PQ is parallel to the y-axis (as is the case for
(x, y) = (−1, 0) in Exercise 1.4). The phrase “at most 2 elements” means that we
remove ±

√
−a

b from Q∪{∞} if −a
b is a square of a rational number, otherwise we

remove nothing from Q ∪ {∞}. The reader is referred to [KKS00, Chapter 2] for
more on this subject.

So, we conclude that if a rational solution to (1.1) exists, then there are infinitely
many such solution and we can parametrize them explicitly. However, the existence
of a rational solution is more subtle as we will see now.

(B) Existence of solutions. Here we will only focus on special cases leaving the rest
to the curious reader. In the following, let p be an odd1 prime number.

Proposition 1.5. There exist (x, y) ∈ Z2 satisfying
(1) the equation x2 + y2 = p if and only if p ≡ 1 mod 4,

1We leave it to the reader to adjust the statements in the case p = 2.
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(2) the equation x2 + 2y2 = p if and only if p ≡ 1 or 3 mod 8,
(3) the equation x2 + 3y2 = p if and only if p ≡ 1 mod 3, and
(4) the equation x2 − 2y2 = p if and only if p ≡ 1 or 7 mod 8.

In each case, if there is no integral solution, then there is no rational solution as
well.

We will focus on Part (1) of the proposition. For a proof of Parts (2), (3)
and (4) the reader is referred to [KKS00, Chapter 4]. The conditions on p for
the existence of solutions are examples of so-called “reciprocity laws”. Arguably,
the most complete picture of such laws we have of today is given by a web of
theorems and conjectures going under the name of Langlands program, named after
the Canadian mathematician Robert Langlands (still alive). We refer to Emerton’s
survey for a great overview [Eme21].

Exercise 1.6. Let x, y ∈ Z. Show that if x2+y2 is an odd integer, then x2+y2 ≡ 1
mod 4, i.e., x2 + y2 = 4k + 1 for some k ∈ N.

The exercise solves the “only if” direction in Part (1). For the converse direction,
we consider the ring Z[i] = {x+iy ∈ C | x, y ∈ Z} where i ∈ C is a fixed square root
of −1. The ring, named after Carl-Friedrich Gauss, is called Gaussian integers. In
this ring, we have a factorization

x2 + y2 = (x+ iy)(x− iy)

for all x, y ∈ Z. Fortunately, factorizations in Z[i] are well-behaved. The follow-
ing lemma implies that Z[i] is a principal ideal domain, in particular, an unique
factorization domain:

Lemma 1.7. The ring Z[i] is euclidean.

Proof. The ring Z[i] is a domain as a subring of C. The square of the complex
absolute value induces a norm map N(−) := | − |2 : Z[i] → N, a + ib 7→ a2 + b2

that makes Z[i] into an euclidean ring: for a, b ∈ Z[i] with b ̸= 0 let q ∈ Z[i] such
that |ab − q| is minimal. Here we think about Z[i] ⊂ C as defining the vertices of
a grid in the complex plane with mesh size 1. Since the mesh size is 1, we have
|ab − q| ≤

√
2
2 = 1√

2
, and so N(ab − q) = |ab − q|2 ≤ 1

2 . This implies

N(a− qb) ≤ N(b)

2
< N(b).

Hence, we reached the desired division with remainder a = qb+r with N(r) < N(b)
for r := a− qb. □

In particular, every element of Z[i] is a product of prime elements. Examples of
such prime factorizations are 5 = 22 + 12 = (2 + i)(2− i) and 13 = 32 + 22 = (3 +
2i)(3−2i). By the general theory of unique factorization domains, the factorizations
are unique up to multiplication by units.

Exercise 1.8. Show that Z[i]× = {±1,±i}. Deduce that an element a ∈ Z[i] is
prime if its norm N(a) is a prime number.

The exercise shows that if p = (x+ iy)(x− iy) for some x, y ∈ Z[i], then x± iy
are the prime factors of p in Z[i], i.e., p is not a prime element in the Gaussian
integers.

Lemma 1.9. Let Fp be the finite field with p elements. The following are equivalent:
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(1) There exist x, y ∈ Z such that p = (x+ iy)(x− iy) in Z[i].
(2) The element p is not prime in Z[i].
(3) The polynomial T 2 + 1 is not irreducible in Fp[T ].
(4) The element −1 is a square in Fp.

Proof. We leave the equivalence of (1) and (2) to the reader (Hint: For the impli-
cation (2) =⇒ (1), consider the prime factorization of p in Z[i] and use the norm
to conclude that p has exactly two prime factors.). For the equivalence of (2) and
(3) we note that there are ring isomorphisms

(1.3) Z[i]/pZ[i] i← [T
= Z[T ]/(T 2 + 1, p) = Fp[T ]/(T

2 + 1).

Thus, p is prime Z[i] if and only if the ideal pZ[i] is a prime ideal if and only if the
ring (1.3) is a domain if and only if T 2 + 1 is irreducible. Finally, condition (3) is
equivalent to (4) because a quadratic polynomial over a field is not irreducible if
and only if it has a zero. □

Thus, we are reduced to studying when −1 is a square in Fp.

Exercise 1.10. Show that the following sequence of abelian groups

1 −→ (F×p )2
inclusion−→ F×p

x 7→x
p−1
2−→ {±1} −→ 1

is exact where (F×p )2 = {x2 | x ∈ Fp}.

For an element x ∈ F×p , the Legendre symbol is defined as

(1.4)
(
x

p

)
:= x

p−1
2

1.10
=

{
1, if x is a square in Fp

−1, else.

Now, a calculation shows that (−1p ) = 1 if and only if p ≡ 1 mod 4, which finishes
the proof Proposition 1.5(1). More generally, the Legendre symbol (xp ) can be
calculated using the quadratic reciprocity law [KKS00, Chapter 2.2, Theorem 2.2]
proved by Gauss in 1796.

Upshot. Given a finite field extension K ⊃ Q, also called a number field, its ring
of integers is defined as

(1.5) OK = {a ∈ K | a integral over Z},

where an element a ∈ K is called integral if there exists a monic (i.e., the leading
coefficient is equal to 1) polynomial f ∈ Z[T ] with f(a) = 0. For example, for
K = Q[i] = {x+ iy | x, y ∈ Q}, one can show that OK = Z[i], which is the ring of
Gaussian integers that popped up while studying Proposition 1.5(1). Likewise, (2),
(3) and (4) in Proposition 1.5 naturally lead to the number fields Q[

√
−2], Q[

√
−3]

and Q[
√
2] respectively.

Thus, a major part of this course will consist in studying prime factorizations
in OK for general number fields K. A problem, to be addressed in the lecture, is
that the ring OK is usually not a unique factorization domain, in particular, not a
principal ideal domain and not euclidean. We have to understand how far OK is
from admitting unique factorizations into primes and develop the necessary theory
in order to deal with such rings.
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2. Dedekind domains

The number rings OK from (1.5) are examples of Dedekind domains, which are
generalizations of principal ideal domains. An important technical observation is
that their localizations at non-zero prime ideals are discrete valuation rings. In the
final subsection, we define the so-called fundamental exact sequence which measures
the failure of OK from being a principal ideal domain:

§2.1 Discrete valuation rings
§2.2 Dedekind domains
§?? Fundamental exact sequence

2.1. Discrete valuation rings. All rings are assumed to be unital and commu-
tative. Recall that every ring R ̸= 0 has a maximal ideal, and that R is called local
if it has exactly one maximal ideal. Further, a ring R is called a domain if (0) is
a prime ideal in R, i.e., ab = 0 implies a = 0 or b = 0 for all a, b ∈ R. Domains
are called principal ideal domains if, in addition, every ideal can be generated by a
single element. We note that a domain with exactly one prime ideal is a field.

Definition 2.1. A discrete valuation ring is a local principal ideal domain that is
not a field.

Remark 2.2. Let R be a discrete valuation ring. Any generator π ∈ R of the
maximal ideal is called a uniformizer. Then, π is, up to multiplication by units,
the unique prime element in R. Every non-zero element a ∈ R can be written in
the form a = uaπ

na for unique elements ua ∈ R× and na ∈ Z≥0. In particular,
we can define a multiplicative map v : R − {0} → Z by v(a) := na. It can be
extended to the fraction field K := Frac(R) by the rule v(ab ) = v(a) − v(b) for
non-zero a, b ∈ R, and then defines a group homomorphism v : K× → Z such that
v(a + b) ≥ min{v(a), v(b)} for all a, b ∈ K with a, b, a + b non-zero. We have
R− {0} = {a ∈ K× | v(a) ≥ 0}.

Definition 2.3. A valuation (of rank 1) on a field K is a group homomorphism
v : K× → R such that v(a + b) ≥ min{v(a), v(b)} for all a, b ∈ K with a, b, a + b
non-zero. It is discrete if v(K×) = αZ for some non-zero α ∈ R ( ⇐⇒ v(K×) ⊂ R
non-zero, discrete subgroup), and normalized if v(K×) = Z.

We extend the valuation v : K → R∪{∞} by setting v(0) := ∞. By convention,
∞ is bigger than all elements of R.

Proposition 2.4. Let K be a field, and v : K → R ∪ {∞} a valuation. Then,

OK := {a ∈ K | v(a) ≥ 0}

is a local subring with maximal ideal m = {a ∈ K | v(a) > 0} and unit group
O×K = {a ∈ K | v(a) = 0}. Further, for all a ∈ K× either a ∈ OK or a−1 ∈ OK

(or, both). If v is discrete, then OK is a discrete valuation ring.

Proof. Let a, b ∈ OK , i.e., a, b ∈ K and v(a), v(b) ≥ 0. Then, v(ab) = v(a)+v(b) ≥ 0
and v(a+b) ≥ min{v(a), v(b)} ≥ 0, so ab, a+b ∈ OK . As v(1) = v(1·1) = v(1)+v(1)
we see v(1) = 0 and so 1 ∈ OK . This shows that OK is a (necessarily commutative,
unital) subring of K, hence a domain.

The equality O×K = {a ∈ K | v(a) = 0} is checked using v(a−1) = −v(a) for
a ∈ K×. In particular, for every ideal I ⊂ OK , we have either I ⊂ m or I = OK
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(the latter happens if there exists a ∈ I with v(a) = 0, so a ∈ O×K by the description
of units). This shows that m is the unique maximal ideal in OK .

Next, if a ∈ K×, then v(a) ≥ 0 or v(a) ≤ 0. In the latter case, a ̸= 0 and
v(a−1) = −v(a) ≥ 0, i.e., a−1 ∈ OK . We also see K = Frac(OK).

Finally, assume v is discrete and choose α ∈ R>0 with V (K×) = αZ. Since
v(OK\{0}) = αZ≥0, the domain OK is not a field. Choose π ∈ m of minimal
valuation, i.e., v(π) = α. Let I ⊂ OK be an ideal. We claim that I = (πn) where
n ∈ Z≥0 is minimal such that nα ∈ v(I\{0}), the latter regarded as a subset of
αZ≥0. Indeed, if a ∈ I\{0}, then v(aπ−n) = v(a) − v(πn) = v(a) − nα ≥ 0, i.e.,
a = πnb for some b ∈ OK . This shows I ⊂ (πn). If a ∈ I\{0} is of minimal
valuation, then v(a) = nα = v(πn) by construction and so πn = ua for some
u ∈ O×K . This shows πn ∈ I. In particular, OK is a principal ideal domain. □

Example 2.5. (1) For a prime number p ∈ Z, the ring Z(p) = {a
b ∈ Q | a, b ∈

Z, p ∤ b} is a discrete valuation ring with uniformizer p. The associated
valuation vp : Q → Z ∪ {∞} is called the p-adic valuation. We note that
Z(p) is the localization of Z at the prime ideal (p).

(2) Let k be a field. For an irreducible polynomial p ∈ k[T ], the ring k[T ](p) =
{a
b ∈ k(T ) | a, b ∈ k[T ], p ∤ b} is a discrete valuation ring with uniformizer

p. It is the localization of k[T ] at the prime ideal (p).

The following exercise generalizes the examples:

Exercise 2.6. Let R be a principal ideal domain, and p ∈ R a prime element.
Show that R(p) = {a

b ∈ Frac(R) | a, b ∈ R, p ∤ b} is a discrete valuation ring with
uniformizer p. It is the localization of R at the prime ideal (p).

Reminder 2.7. Some of the following properties might be known from algebra
lectures during the past semesters:

(1) A ring R is called noetherian if every ideal is finitely generated.
(2) The (Krull) dimension n ∈ N ∪ {∞} of a ring R is the supremum of the

length of strict chains of prime ideals p0 ⊂ p1 ⊂ . . . ⊂ pn. It is denoted
dim(R) := n.

(3) A domain R is called normal (or, integrally closed) if the inclusion

R ⊂ {a ∈ Frac(R) | ∃f ∈ R[T ] monic: f(a) = 0}
is an equality. A domain R is normal if and only if the localizations Rp are
normal for all prime ideals p ⊂ R if and only if the localizations Rm are
normal for all maximal ideals m ⊂ R, see [Sta18, 030B].

One has the following implications:

DVR =⇒ euclidean =⇒ PID =⇒ UFD =⇒ normal domain =⇒ domain

Here DVR:=“discrete valuation ring”, UFD:=“unique factorization domain” and
PID:=“principal ideal domain”. In addition, every principal ideal domain is noe-
therian of dimension ≤ 1.

Theorem 2.8. For a ring R, the following are equivalent:
(1) The ring R is a discrete valuation ring.
(2) The ring R is a domain, and there exists a discrete valuation v : Frac(R) →

R ∪ {∞} such that

R = {a ∈ Frac(R) | v(a) ≥ 0}.

https://stacks.math.columbia.edu/tag/030B
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(3) The ring R is noetherian, local, has dimension > 0 and its maximal ideal
is principal.

(4) The ring R is a noetherian, local, normal domain of dimension 1.

The proof is given below and uses the following result from commutative algebra.
We apply this result to local rings R, in which case the Jacobson radical Jac(R)
appearing below is the maximal ideal.

Lemma 2.9 (Krull’s intersection theorem). Let R be a noetherian ring and I ⊂
Jac(R). Then, for any finitely generated R-module, one has⋂

n≥1

InM = {0}.

Proof. See [Sta18, 00IP, 00IQ] for details. □

Proof of Theorem 2.8. (1) ⇐⇒ (2): Follows from Remark 2.2 and Proposition 2.4.
(1) =⇒ (3) & (1) =⇒ (4): Follows from Reminder 2.7.
(3) =⇒ (2): Let (π) ⊂ R be the maximal ideal. Then, π is not nilpotent: indeed,

if πn = 0 for some n ∈ Z≥1, then π is contained in every prime ideal and so is the
maximal ideal (π), which contradicts the assumption dim(R) > 0.

Now, for a ∈ R define

v(a) := sup{n ∈ N | a ∈ (πn)} ⊂ N ∪ {∞}.

Lemma 2.9 shows that a = 0 if and only if v(a) = ∞. Also, v(a) = n ∈ N if
and only if a = uπn for some u ∈ R\(π) = R×. Using this, one checks that R
is a domain, v(ab) = v(a) + v(b) and v(a + b) ≥ min{v(a), v(b)}. Then, v can be
extended to the fraction field Frac(R)× by the rule v(ab ) = v(a)− v(b) for non-zero
a, b ∈ R. It defines a discrete valuation such that R = {a ∈ Frac(R) | v(a) ≥ 0}.

(4) =⇒ (3): We need to show that the maximal ideal m ⊂ R is principal. Since
R is a domain with dim(R) = 1, the ideals (0) ⊊ m are the only prime ideals in R.
Hence, for any non-zero a ∈ m, we have√

(a) =
⋂
a∈p

p = m

where the intersection runs over all prime ideals p ⊂ R with a ∈ p. Since R is
noetherian, the ideal m is finitely generated. So, there exists n ≥ 1 such that
mn ⊂ (a). Assume n is minimal with the property, i.e., mn−1 ̸⊂ (a). Choose
b ∈ mn−1\(a) and set π := a

b ∈ K := Frac(R). We claim that m = (π). For this,
we observe the following properties:

(1) π−1m = b
am ⊂ 1

am
n ⊂ R

(2) π−1 ̸∈ R (indeed, π−1 = b
a ∈ R =⇒ b ∈ (a) )

(3) π−1m ̸⊂ m (hence, π−1m = R by (1) and so m = (π))

Property (1) follows from the definition and (2) is proven above. For (3), assume
π−1m ⊂ m. Then, we have an endomorphism m → m, x 7→ π−1x. Since m is finitely
generated, we can apply Cayley-Hamiliton. So, there exist r ∈ N and a1, . . . , ar ∈ R
with (π−1)r + a1(π

−1)r−1 + · · · + ar = 0, i.e., π−1 is integral over R. Since R is
assumed to be normal, we get π−1 ∈ R, which contradicts (2). Hence, (3) holds,
which shows the claim and finishes the proof. □

https://stacks.math.columbia.edu/tag/00IP
https://stacks.math.columbia.edu/tag/00IQ
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2.2. Dedekind domains.

Definition 2.10. A noetherian domain R is called Dedekind domain if for every
prime ideal p ̸= (0) the localization Rp is a discrete valuation ring.

Remark 2.11. If R is a Dedekind domain, then dim(R) ≤ 1. In this case,
dim(R) = 0 if and only if R is a field. If dim(R) = 1, then the prime ideals
p ̸= 0 are exactly the maximal ideals of R. Further, Exercise 2.6 shows that all
principal ideal domains are Dedekind domains.

Theorem 2.12. Let R be a Dedekind domain and M a finitely generated R-module.
Then, the following are equivalent:

(1) The module M is torsion free, i.e., for all a ∈ R, 0 ̸= m ∈ M with am = 0
one has a = 0.

(2) The module M is projective.
(3) The localization Mm is a free Rm-module for all maximal ideals m ⊂ R.

In this case, the number rankRm
(Mm) in (3) is independent of m and equal to

dimK(M ⊗R K) where K = Frac(R) is the fraction field.

For the proof we use the following result from commutative algebra:

Lemma 2.13. Let R be a noetherian ring and M a finitely generated R-module.
Then, the following are equivalent:

(1) The R-module M is projective.
(2) The localization Mp is a free Rp-module for all prime ideals p ⊂ R.
(3) The localization Mm is a free Rm-module for all maximal ideals m ⊂ R.

Moreover, if there exists no idempotent e (i.e., e2 = e) with e ̸= 0, 1, then the map
{prime ideals} → N, p 7→ rankRp

(Mp) is constant. It is called the rank of M .

Proof. See [Sta18, 00NX] for details. Note that over noetherian rings any finitely
generated module is finitely presented. So, the conditions in loc. cit. are satisfied.

□

Exercise 2.14. Let R domain, K = Frac(R) and M an R-module. Show the
following statements:

(1) The module M is torsion free if and only if M → M ⊗R K,m 7→ m ⊗ 1 is
injective.

(2) If M torsion free and S ⊂ R\{0} multiplicative subset (i.e., 1 ∈ S and S
closed under multiplication), then M [S−1] is a torsion free R[S−1]-module.

(3) The module M is torsion free if and only if Mp is a torsion free Rp-module
for all prime ideals p ⊂ R.

Proof of Theorem 2.12. The final statement on the rank follows from Lemma 2.13
and the fact that the fraction field K is the localization of R at the prime ideal (0),
i.e., K = R(0).

(2) ⇐⇒ (3): Follows from Lemma 2.13.
(1) ⇐⇒ (3): Using Exercise 2.14, we can pass to Rp for p ⊂ R prime ideal and

assume without loss of generality that R is a principal ideal domain. In this case, M
is torsion free if and only if M is free is well-known from “Introduction to Algebra”,
see also [Sta18, 0AUW] for details. □

Definition 2.15. Let R domain and K := Frac(R).

https://stacks.math.columbia.edu/tag/00NX
https://stacks.math.columbia.edu/tag/0AUW
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(1) A fractional ideal of R is a finitely generated R-submodule I of K such that
I ̸= 0.

(2) For a fractional I of R, set

I−1 = {a ∈ K | aI ⊂ R}.
Then, I is called invertible if I−1I = R.

The name “fractional ideal” is justified by the following observation: For any
fractional ideal I, there exists some x ∈ R such that xI ⊂ R. Indeed, if I generated
by a1

b1
, . . . , an

bn
with ai, bi ∈ R, bi ̸= 0, then we can take x := b1 · . . . · bn. In fact, we

have I = x−1a where a = xI is an ideal in R.

Example 2.16. Let R be a discrete valuation ring and π ∈ R a uniformizer.
Then, the fractional ideals are πnR for n ∈ Z. One has (πnR)−1 = π−nR and
every fractional ideal is invertible.

Exercise 2.17. Let I be an invertible fractional ideal of a noetherian domain R.
Then, I is projective and of rank 1.

Theorem 2.18. Let R domain. Then, the following are equivalent:
(1) The ring R is a Dedekind domain.
(2) The ring R is noetherian, normal and of dimension ≤ 1.
(3) Every fractional ideal is invertible.
(4) Every non-zero ideal of R is a finite product of maximal ideals.

Moreover, the factorization in (4) is unique up to order.

We only use and prove the following impliciations

(2.1) (1) ⇐⇒ (2) =⇒ (3) & (1) =⇒ (4) + uniqueness

For the other implications, the reader is referred to [Mat80, Theorem 11.6].

Proof of (1) ⇐⇒ (2) =⇒ (3). (1) ⇐⇒ (2): Since a domain of dimension 0 is
field, we may assume dim(R) = 1. Then, we can replace R by Rm for a maximal
ideal m (being normal can be tested on localizations by Reminder 2.7(1)). In this
case, the equivalence of (1) and (2) follows from Theorem 2.8.

(2) =⇒ (3): Let I ⊂ R be a fractional ideal. Then, I−1I ⊂ R by definition and
equality can be checked after localization. So, we may assume R to be either a field
or a discrete valuation ring, where the equality is clear. □

To prove “(1) =⇒ (4) + uniqueness”, the following definition is useful:

Definition 2.19. Let R be a Dedekind domain, K := Frac(R) and p ̸= 0 a prime
ideal.

(1) The p-adic valuation vp on K is the normalized valuation defined by the
discrete valuation ring Rp.

(2) For a fractional ideal I on R, one defines

vp(I) := vp(xp) ∈ Z,
where Ip = xpRp for some xp ∈ K×.

Proposition 2.20. Let R be a Dedekind domain . Then, for fractional ideals I, J
and prime ideals p ̸= 0 in R, the following hold:

(1) vp(IJ) = vp(I) + vp(J)
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(2) vp(I + J) ≥ min{vp(I), vp(J)}
(3) vp(xR) = vp(x) for all x ∈ K×

In addition, one has vp(I) ̸= 0 for only finitely many prime ideals p ̸= 0 in R.

Proof. Parts (1), (2) and (3) are left to the reader. For the final statement, write
I = x−1a for some x ∈ R and some ideal a ⊂ R. Using (1) and (3), we may assume
that I is an ideal in R. The proposition follows from Lemma 2.21 below. □

Lemma 2.21. Let R be a Dedekind domain, and 0 ̸= a ⊂ R an ideal. Then, there
exist only finitely many prime ideals containing a.

Proof. The map I 7→ I−1 induces a bijection

{I ⊂ R ideal | a ⊂ R} 1:1−→ {I fractional ideal of R | R ⊂ I ⊂ a−1}.

Since a−1 is a noetherian R-module and the bijection reverses inclusions, every
descending chain of ideals of R containing a becomes stationary. Now assume
a ⊂ p1, p2, . . . for pairwise distinct prime ideals 0 ̸= pi ⊂ R. Then, the sequence

p1 ⊃ p1 · p2 ⊃ . . . ⊃ p1 · . . . · pr ⊃ . . .

becomes stationary, i.e., for r >> 0 we have pr+1 ⊃ p1 · . . . · pr. Since all pi are
prime ideals, there exists some j ∈ {1, . . . , r} such that pj ⊂ pr+1. As dim(R) = 1
and both ideals are ̸= 0, they must be maximal and hence, pj = pr+1 . □

The next result finishes the proof of (2.1). It is a generalization of the funda-
mental theorem of arithmetic (i.e., every number can be written as a product of
prime numbers) to Dedekind domains:

Corollary 2.22. Let R be a Dedekind domain. Every fractional I of R can be
written uniquely in the form

I =
∏
p̸=0

pvp(I)

where the product runs over non-zero prime ideals in R.

Proof. First off, the product is finite by Proposition 2.20. So, I ′ :=
∏

p̸=0 p
vp(I) is a

well-defined fractional ideal. Since Ip = I ′p for all prime ideals p ⊂ R by construc-
tion, we have I = I ′. (Hint: (I + I ′)/I is an R-module all whose localizations are
zero, so it is zero [Sta18, 00HN].) □

Appendix A. Commutative algebra

The amount of commutative algebra used during the lectures roughly corre-
sponds to [AM69, Chapters 1–3], which some readers might know from past lec-
tures or past seminars in algebra. The author highly recommends reading these
chapters. Here we collect some important properties, but do not give full details or
references:

§A.1 Spectrum of a ring
§A.2 Radical of ideals
§A.3 Cayley–Hamilton
§A.4 Nakayama’s lemma
§A.5 Tensor products
§A.6 Base change

https://stacks.math.columbia.edu/tag/00HN
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A great source to look up specific definitions, properties and proofs is also the
Stacks Project [Sta18] - just google some keywords and add the words “stacks
project”. Further results from commutative algebra will be discussed during the
lectures whenever needed.

A.1. Spectrum of a ring. All rings are assumed to be unital and commutative.
Let A be a ring. Recall that an ideal p ⊂ A is called prime if A/p is a domain, i.e.,
p ̸= A and if a, b ∈ A with ab ∈ p, then a ∈ p or b ∈ p (or both). An ideal m ⊂ A
is called maximal if A/m is a field ( =⇒ m is prime), i.e., m ̸= A and for any ideal
I in A containing m one has I = m or I = A. Recall that every ring A ̸= 0 has a
maximal ideal, and that A is called local if it has exactly one maximal ideal.

Definition A.1. The spectrum of A is the set

Spec(A) = {p ⊂ A prime ideal}.

By the discussion above, Spec(A) is empty if and only if A is the zero ring.

Exercise A.2. Show the following statements:
(1) Let φ : A → B be a ring homomorphism. Then, taking the preimage q 7→

φ−1(q) induces a map of sets Spec(φ) : Spec(B) → Spec(A).
(2) Let A be a ring and I an ideal in A. Then, the map φ : A → A/I, a 7→ a

mod I induces an injection

Spec(φ) : Spec(A/I) ↪→ Spec(A),

whose image consists of all prime ideals p ⊂ A that contain I.

For every p ∈ Spec(A), the localization Ap := A[(A\p)−1] is a local ring with
maximal ideal pAp. It is called the local ring of A at p.

Exercise A.3. Show that the map A → Ap, a 7→ a
1 induces an injection Spec(Ap) ↪→

Spec(A) with image the prime ideals p′ ⊂ A with p′ ⊂ p.

Definition A.4. The field

κ(p) = Ap/pAp = Frac(A/p)

is called the residue field of A at p.

This allows to establish a (very rough) dictionary

(A.1) (elements of A) ↔ (functions on Spec(A))

as follows: For an element f ∈ A and some p ∈ Spec(A), we denote by

f(p) := f mod p ∈ κ(p)

the value of f at p. Note that the residue fields κ(p) for varying p are not isomorphic,
so the definition comes at the expense of allowing the “target of the function” to
vary. Making (A.1) precise is the content of Algebraic Geometry. Here we only
point out the following property:

Exercise A.5. Let A be a ring and f ∈ A. Show that f ∈ A× if and only if
f(p) ̸= 0 for all p ∈ Spec(A). (Hint: Consider Spec(A/fA).)

Example A.6. One has Spec(Z) = {(p) | p prime number} ∪ {(0)}. The localiza-
tions at (p) and (0) are Z(p) = {a

b ∈ Q | p ∤ b} and Q respectively. The residue
fields are Fp and Q respectively.
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Exercise A.7. Let k be a field and denote by k[T ] the polynomial ring in an
indeterminate T . Describe the spectrum, the localizations and the residue fields
for analogously as in Example A.6 for k[T ]. Also, study how this simplifies if k is
algebraically closed. (Hint: Use that k[T ] is a principal ideal domain.)

For an A-module M and p ∈ Spec(A), we extend the above notation by defining
Mp := M [(A\p)−1] to be the localization of M at the multiplicative subset A\p.

Definition A.8. The support of an A-module M is the set

supp(M) = {p ∈ Spec(A) | Mp ̸= 0}.

Example A.9. Let n ∈ Z, n ̸= 0. Then, we have

supp(Z/nZ) = {(p) | p prime number dividing n}.

A.2. Radical of ideals. Let A be a ring.

Definition A.10. For an ideal I ⊂ A, the set
√
I = {a ∈ A | ∃n ≥ 1 : an ∈ I}

is called the radical of I. The radical of I = (0) is also called the Nilradical of A.

We leave it to the reader to check that
√
I defines an ideal in A. One always

has I ⊂
√
I with equality if and only if 0 is the only nilpotent element in A/I.

However, if I = p is a prime ideal, then
√
p = p.

Exercise A.11. Show the following statements:
(1) Let A be a principal ideal domain and a ∈ A non-zero. Let a = u·pe11 ·. . .·perr

with r ∈ Z≥0, u ∈ A×, pi pairwise non-associated prime elements in A and
ei ∈ Z≥1 for i = 1, . . . , r. Then, one has

√
(a) = (p1 · . . . · pr).

(2) Let A be a Noetherian ring and I an ideal in A. Then, there exists some
m ∈ Z≥1 such that (

√
I)m ⊂ I.

Proposition A.12. Let A be a ring and I an ideal in A. Then, one has

(A.2)
√
I =

⋂
I⊂p

p,

where the intersection runs over all prime ideals p ⊂ A that contain I. In particular,
one has

(A.3)
√
0 =

⋂
p

p,

where the intersection runs over all prime ideals p ⊂ A.

Proof. Taking the preimage of subsets along the map A → A/I, a 7→ a mod I
induces a bijection between prime ideals in A/I and prime ideals in A that contain
I, see Exercise A.2(2). So, replacing A by A/I it suffices to prove (A.3). We
leave the inclusion “⊂” to the reader and prove “⊃”. Let x ∈ A be not nilpotent.
We need to show that there exists a prime ideal p ⊂ A with x ̸∈ p. Set Σ :=
{a ⊂ A ideal | ∀n ∈ N : xn ̸∈ a}. Since x is not nilpotent, we have (0) ∈ Σ and so
Σ ̸= ∅. We define a partial order on Σ by the inclusion of ideals. One checks that
every chain has an upper bound given by the set theoretic union (check that this
is an ideal). By Zorn’s lemma, Σ has a maximal element p. We claim that p is a
prime ideal. Let f, g ∈ A\p. Then, (f) + p, (g) + p ̸∈ Σ by maximality of p. So,
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there exists m,n ∈ N with xm ∈ (f) + p and xn ∈ (g) + p, hence xn+m ∈ (fg) + p.
This shows that (fg) + p ̸∈ Σ, i.e., fg ̸∈ p. □

Corollary A.13. Let A be a ring and I ⊂ A be an ideal. Then, the map A/I →
A/

√
I, a mod I 7→ a mod

√
I induces a bijection

Spec(A/
√
I)

1:1−→ Spec(A/I).

Proof. This follows from A.2 and Exercise A.2(2). □

A.3. Cayley–Hamilton. Let A be a ring. Let u : M → N be a map of A-modules.
Assume that M,N are finitely generated. Let (m1, . . . ,mr) and (n1, . . . , ns) be
systems of generators for M and N respectively. Then, for all j = 1, . . . , r, there
exist t1j , . . . , tsj ∈ A such that

(A.4) u(mj) =

s∑
i=1

tijni.

This defines a matrix T = (tij) ∈ Mats×r(A).

Remark A.14. (1) The matrix T is not uniquely determined by u, only if
(n1, . . . , ns) is a basis of N .

(2) Not every matrix in Mats×r(A) defines a linear map u by (A.4), only if
(m1, . . . ,mr) is a basis of M .

Theorem A.15 (Cayley–Hamilton). Let M be a finitely generated A-module with
generators (m1, . . . ,mr). Let u : M → M be an A-linear map and T ∈ Matr×r(A)
the matrix of u with respect to (m1, . . . ,mr). Denote by χT := det(XIr−T ) ∈ A[X]
the characteristic polynomial of T , and write

χT = Xr + a1X
r−1 + . . .+ ar−1X + ar.

Then, one has

χT (u) = ur + a1u
r−1 + . . .+ ar−1u+ arIr = 0 ∈ EndA(M).

Moreover, if I ⊂ A is an ideal with u(M) ⊂ IM , then one can choose T such that
ai ∈ Ii for all i = 1, . . . , r.

Remark A.16. It is also possible to give a proof by reduction to the case where
A is a field, see [Sta18, 05G6]. Here we give a direct proof.

Reminder A.17. Let r ∈ N, T ∈ Matr×r(A). Then, there exists S ∈ Matr×r(A)
with

ST = TS = det(T )Ir,

where Ir ∈ Matr×r(A) denotes the identity matrix. Namely, take S = (sij) with
sij = det(Tji) where Tji ∈ Mat(r−1)×(r−1)(A) arises from T by deleting the j-th
row and the i-th column. The matrix S is called the adjoint of T .

Proof of Theorem A.15. If u(M) ⊂ IM , then we can choose the entries of T in
(A.4) to lie in I. Since ai is a sum of i-fold products of the entries, it is contained
in Ii.

Next, let us write tT = (tij) for the transposed of T . So, we have u(mj) =∑r
i=1 tjimi and thus

(A.5)
r∑

i=1

(uδji − tji)mi = 0.

https://stacks.math.columbia.edu/tag/05G6
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Consider the matrix C(X) := (Xδji − tji) = XIr − tT ∈ Matr×r(A[X]). Let
D(X) = (dkj(X)) be the adjoint of C, hence

(A.6) D(X)C(X) = χT (X)Ir

using that χT = χtT . The map f 7→ f(u) induces a homomorphism of commutative
A-algebras

A[X] → A[u] := {f(u) ∈ EndA(M) | f ∈ A[X]}.
Thus, we get C(u), D(u) ∈ Matr×r(A[u]). Multiplying (A.5) with dkj(u) and ap-
plying

∑
j gives

0 =
∑
i

∑
j

dkj(u)(uδji − tji)mi = χT (u)mk

for all k = 1, . . . , r by using (A.6) for the second equality. Since the mk generate
M , this shows χT (u) = 0 ∈ EndA(M). □

Corollary A.18. Let A be a ring and M a finitely generated A-module. Let I ⊂ A
be an ideal such that M = IM . Then, there exists some f ∈ 1 + I with fM = 0.

Proof. Apply Theorem A.15 to u = idM to get f ·idM = 0 with f := 1+a1+. . .+ar
and ai ∈ Ii ⊂ I. This shows fM = 0. □

Exercise A.19. Let A be a ring and M a finitely generated A-module. Let u : M →
M be an A-linear endomorphism. Assume that u is surjective. Show that u is an
isomorphism. (Hint: Consider M as an A[X]-module via X · m := u(m) for all
m ∈ M .)

Is every injective endomorphism of a finitely generated module an automor-
phism?

A.4. Nakayama’s lemma.

Definition A.20. Let A be a ring. Then, the ideal

Jac(A) =
⋂

m ⊂ A maximal ideal

m

is called the Jacobson radical of A.

Proposition A.21. Let A be a ring and I be an ideal in A. Then, one has
I ⊂ Jac(A) if and only if 1 + I ⊂ A×.

Proof. First, let I ⊂ Jac(A). We argue by contraction. So, assume there exists an
x ∈ I such that 1+ x ̸∈ A×. Then, A/(1 + x) ̸= 0 and there exists a maximal ideal
m ⊂ A with 1 + x ∈ m. Since x ∈ Jac(A) ⊂ m, it follows 1 ∈ m  .

Conversely, let 1 + I ⊂ A×. Assume I ̸⊂ Jac(A). Then, there exists x ∈ I and
a maximal ideal m with x ̸∈ m. Thus, (x) +m = A, i.e., there exists y ∈ A, v ∈ m
such that xy+v = 1. This implies 1+(−xy) ∈ m and −xy ∈ I, so 1+I ̸⊂ A× . □

Exercise A.22. Let A be a ring and I an ideal in A with I ⊂ Jac(A). Consider
the map φ : A → A/I, a 7→ a mod I. Show that an element a ∈ A is a unit if and
only if φ(a) is a unit in A/I. Deduce that for a local ring A with maximal ideal m
one has A× = A\m.

Exercise A.23. Let φ : A → B be a ring map such that the induced map Spec(B) →
Spec(A) is surjective. Then, an element f ∈ A is a unit if and only if φ(f) ∈ B is
a unit. (Hint: Use Exercise A.23.)
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Lemma A.24 (Nakayama’s lemma). Let A be a ring and u : N → M be a map
of A-modules. Let I ⊂ A be an ideal with I ⊂ Jac(A). Assume that M is finitely
generated. Then, the map u : N → M is surjective if and only if the induced map

ū : N/IN → M/IM, n mod IN 7→ u(n) mod IM

is surjective.

Proof. If u is surjective, so is ū as one checks readily (without assuming that M is
finitely generated). Conversely, assume that ū is surjective. Then, one has

0 = coker(ū) = coker(u)/Icoker(u),

i.e., coker(u) = Icoker(u). Since M is finitely generated, so is coker(u). Hence,
Corollary A.18 shows that f · coker(u) = 0 for some f ∈ 1 + I. Since 1 + I ⊂ A×

by Proposition A.21, the element f is invertible and we get coker(u) = 0, i.e., u is
surjective. □

Exercise A.25. Let A be a ring and M a finitely generated A-module. Let I be
an ideal in A with I ⊂ Jac(A). If M = IM , then M = 0.

Corollary A.26. For every finitely generated A-module and prime ideal p ∈ Spec(A),
one has Mp = 0 if and only if Mp/pMp = 0.

Proof. This follows from Exercise A.25 applied to the finitely generated module Mp

over the local ring Ap and its Jacobson radical I = pAp. □

A.5. Tensor products. Let A be a ring and M,N,P be A-modules. Recall that a
map β : M ×N → P is called A-bilinear if for all m ∈ M , n ∈ N the maps β(m,−)
and β(−, n) are A-linear.

Definition A.27. Let M,N be A-modules. A tensor product of M and N is an
A-module M⊗AN together with a A-bilinear map τ : M×N → M⊗AN, (m,n) 7→
m⊗n such that the following universal property holds: For every A-module P and
every A-bilinear map β : M ×N → P there exists a unique map σ : M ⊗A N → P
such that β = σ ◦ τ , i.e., the following diagram commutes:

M ×N P

M ⊗A N

β

τ ∃!σ

Properties A.28. For the following basic properties, the reader is referred to
[AM69, Proposition 2.12ff.]:

(1) The pair (M ⊗A N, τ) exists and is unique up to unique isomorphism. One
puts

M ⊗A N := FreeA{m⊗ n | m ∈ M,n ∈ N}/SpanA{(3a)–(3c)},
where m⊗ n are formal symbols, FreeA{−} is the free A-module generated
on these symbols and SpanA{−} denotes its submodule generated by the
relations (3a)–(3c) below. The map τ : M ×N → M ⊗AN, (m,n) 7→ m⊗n
is given by τ(m,n) = m⊗ n.

(2) If (mi)i∈I and (nj)j∈J is a generating system of M and N respectively,
then (mi ⊗ nj)i∈I,j∈J is a generating system of M ⊗A N . Note that an
arbitrary element in M ⊗A N is a finite sum of the form

∑
i,j aijmi ⊗ nj

for some aij ∈ A.
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(3) The bilinearity of τ means that for all m,m′ ∈ M , n, n′ ∈ N and a ∈ A:
(a) (m+m′)⊗ n = m⊗ n+m′ ⊗ n
(b) m⊗ (n+ n′) = m⊗ n+m⊗ n′

(c) (am)⊗ n = a(m⊗ n) = m⊗ (an)

Lemma A.29. Let u : M → M ′ and v : N → N ′ be maps of A-modules. Then,
there exists a unique map of A-modules

u⊗ v : M ⊗A N → M ′ ⊗A N ′

with (u⊗ v)(m⊗ n) = u(m)⊗ v(n) for all m ∈ M , n ∈ N .

Proof. Consider the following diagram:

M ×N M ′ ×N ′

M ⊗A N M ′ ⊗A N ′

u×v

τ τ ′

∃!u⊗v

Since the composition τ ◦ (u×v) is A-bilinear, we get the existence of a unique map
u⊗ v as indicated. □

Lemma A.30. Let M,N,P be A-modules.
(1) There exists a unique isomorphism

(M ⊗A N)⊗A P ∼= M ⊗A (N ⊗A P )

such that (m⊗ n)⊗ p 7→ m⊗ (n⊗ p) for all m ∈ M , n ∈ N , p ∈ P .
(2) There exists a unique isomorphism

M ⊗A N ∼= N ⊗A M

such that m⊗ n 7→ n⊗m for all m ∈ M , n ∈ N .
(3) One has M ⊗A A ∼= M given by m⊗ a 7→ am for all m ∈ M , a ∈ A.

Proof. (1): This is left to the reader.
(2): We consider the following diagram:

M ×N N ×M

M ⊗A N N ⊗A M

φ : (m,n) 7→(n,m)

∼=
τ τ ′

∃!σ

∃!ρ

Since τ ′◦φ and τ ◦φ−1 are A-bilinear, there exist unique maps σ and ρ respectively.
One necessarily has ρ ◦ σ = id and σ ◦ ρ = id.

(3): The inverse map is given by m 7→ m⊗ 1. □

Remark A.31. The functor (−)⊗A N is left adjoint to the functor HomA(N,−),
both viewed as endofunctors on the category of A-modules. More precisely, for all
A-modules M,N,P , there are bijections

(A.7)
HomA(M ⊗A N,P )

u7→u◦τ
= {β : M ×N → P A-bilinear maps}

β 7→
(
m 7→(n 7→β(m,n))

)
= HomA(M,HomA(N,P ))
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that are functorial in M,N and P . Functorial in N means that a map v : N → N ′

of A-modules induces a diagram

HomA(M ⊗A N,P ) HomA(M,HomA(N,P ))

HomA(M ⊗A N ′, P ) HomA(M,HomA(N
′, P ))

∼=
(A.7)

u′ 7→u′◦(idM⊗v)
∼=

(A.7)

w 7→(m7→w(m)◦v)

that commutes as one verifies. We leave it to the reader to spell out the functori-
ality in M and P , which requires writing down similar diagram and checking their
commutativity.

Corollary A.32. Let N be an A-module. Then, the functor (−)⊗A N : ModA →
ModA commutes with colimits. In particular, the following hold:

(1) If (Mi)i∈I is a family of A-modules, then the canonical map(⊕
i∈I

Mi

)
⊗A N

∼=−→
⊕
i∈I

(Mi ⊗A N)

is an isomorphism. In other words, the functor (−) ⊗A N commutes with
direct sums (=coproducts in ModA).

(2) If M ′
u→ M

v→ M ′′ → 0 is an exact sequence of A-modules, then the
sequence

M ′ ⊗A N
u⊗idN−→ M ⊗A N

v⊗idN−→ M ′′ ⊗A N −→ 0

is exact. In other words, the functor (−)⊗AN commutes with finite colimits
(and ModA is an abelian category).

Proof. This follows from Remark A.31 because left adjoint functors commute with
colimits (and the category of A-modules admits all colimits). □

Example A.33. For 0 ̸= n ∈ Z, we consider the exact sequence of Z-modules

0 −→ Z n·−→ Z −→ Z/nZ −→ 0.

Tensoring with (−)⊗Z Z/nZ induces the sequence

0 −→ Z/nZ n=0−→ Z/nZ id−→ Z/nZ −→ 0.

In particular, we see that tensoring does not preserve injective maps in general, i.e.,
if u : M → M ′ is injective, then u⊗ idN : M ⊗A N → M ′ ⊗A N is not injective in
general.

Exercise A.34. Show the following statements:
(1) Let u : M → M ′, v : N → N ′ be surjective maps of A-modules. Then, the

map u⊗ v : M ⊗A N → M ′ ⊗A N ′ is surjective with kernel

ker(u⊗ v) = SpanA{m⊗ n | m ∈ ker(u) or n ∈ ker(v)},

where SpanA{−} denotes the A-submodule generated by (−). Deduce that
for an ideal I ⊂ A one has M ⊗A A/I = M/IM .

(2) Let I, J be ideals in a ring A. Then, there is a canonical isomorphism

A/I ⊗A A/J ∼= A/(I + J).
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Deduce that for m,n ∈ Z one has Z/mZ ⊗Z Z/nZ = 0 if and only if m,n
are prime to each other. Note that this is equivalent to supp(Z/mZ) ∩
supp(Z/nZ) = ∅, see Example A.9.

Reminder A.35. Let M be an A-module. Then, M is called
(1) free if M ∼= ⊕i∈IA =: A(I) for some set I. In this case, the cardinality

rankA(M) := #I depends only on I and is called the rank of M .
(2) projective if M is a direct summand of a free A-module, i.e., there exists a

free A-module E such that M⊕N ≃ E for some A-module N . Equivalently,
for every short exact sequence of A-modules

0 −→ K
i−→ N

p−→ M −→ 0

there exists s : M → N such that p ◦ s = idM . In this case, K ⊕ M ≃
N, (k,m) 7→ i(k) + s(m).

Exercise A.36. Let M,N be A-modules. Show the following properties:
(1) If M is free of rank r and N is free of rank s, then M ⊗A N is free of rank

rs.
(2) If M,N are projective, then so is M ⊗A N .
(3) If M,N are finitely generated, then so is M ⊗A N . (Hint: An A-module

M is finitely generated if and if there exists a surjection Ar → M for some
r ∈ N.)

A.6. Base change. Let ρ : A → B be a map of rings. We also say that B is a
(commutative) A-algebra with structure map ρ. If ρ is understood, then we simply
say that B is an A-algebra. Equivalently, B is an A-module together with an
A-bilinear, commutative, unital map B ×B → B.

Remark A.37. The base change of an module or algebra is defined as follows:
(1) Let M be an A-module. Then, B ⊗A M becomes a B-module by scalar

multiplication on the first factor:

B × (B ⊗A M) → B ⊗A M,

(b, b′ ⊗m) 7→ bb′ ⊗m

(2) Let C be an A-algebra. Then, B⊗A C becomes a B-algebra with multipli-
cation

B ⊗A C ×B ⊗A C → B ⊗A C,

(b1 ⊗ c1, b2 ⊗ c2) 7→ b1b1 ⊗ c1c2

and structure map B → B ⊗A C, b 7→ b ⊗ 1. Note that the situation is
symmetric in B and C, i.e., B ⊗A C is also a C-algebra.

We call B⊗AM and B⊗AC the base change of the A-module M and the A-algebra
C respectively.

Properties A.38. Let ρ : A → B be a ring map. The following are important:
(1) The map

B ⊗A A[T1, . . . , Tn]
∼=−→ B[T1, . . . , Tn]

b⊗
∑

i1,...,in≥0

ai1...inT
i1
1 · · ·T in

n 7→
∑

i1,...,in≥0

bρ(ai1...in)T
i1
1 · · ·T in

n
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is an isomorphism of B-algebras for all n ∈ N. An analogous statement
holds for polynomial rings in infinitely many variables.

(2) Let I be an ideal in A and consider the projection A → A/I, a 7→ a mod I.
Then, the map B = B ⊗A A → B ⊗A A/I induces an isomorphism of
B-algebras

B/IB ∼= B ⊗A A/I,

where IB is the ideal in B generated by ρ(I).

Properties A.38 (1) and (2) allow for a description in the general case: Let C be
an A-algebra. Choose generators (cλ)λ∈Λ of C as an A-algebra. We get a surjective
homomorphisms of A-algebra

π : A[(Tλ)λ∈Λ] → C, Tλ 7→ cλ.

Set I := ker(π), so C ∼= A[(Tλ)λ∈Λ]/I. Then, we compute:

B ⊗A C ∼=
(
B ⊗A A[(Tλ)λ∈Λ]

)
⊗A[(Tλ)λ∈Λ] A[(Tλ)λ∈Λ]/I

(1)∼= B[(Tλ)λ∈Λ]⊗A[(Tλ)λ∈Λ] A[(Tλ)λ∈Λ]/I

(2)∼= B[(Tλ)λ∈Λ]/IB[(Tλ)λ∈Λ]

Example A.39. Let ρ : A → B be a ring map. Let C := A[T1, . . . , Tn]/(f1, . . . , fr)
for some n ∈ N and f1, . . . , fr ∈ A[T1, . . . , Tn]. Then, we have

B ⊗A C ∼= B[T1, . . . , Tn]/(ρ(f1), . . . , ρ(fr)),

where for f =
∑

i1,...,in≥0 ai1...inT
i1
1 · · ·T in

n ∈ A[T1, . . . , Tn] we write

ρ(f) :=
∑

i1,...,in≥0

ρ(ai1...in)T
i1
1 · · ·T in

n ∈ B[T1, . . . , Tn].

As concrete examples, we consider the following special cases:
(1) Let ρ : A := Z → Fp =: B and C := Z[i]. Then, Z[T ]/(T 2+1) ∼= Z[i], T 7→ i

induces an isomorphism of Fp-algebras

Fp ⊗Z Z[i] ∼= Fp[T ]/(T
2 + 1),

compare also the computation (1.3) in the proof of Lemma 1.9.
(2) Let ρ : A := R → C =: B and C := C = R[i] = R[T ]/(T 2 + 1). Then,

C⊗R C = C[T ]/(T 2 + 1) = C[T ]/(T + i)× C[T ]/(T − i) ∼= C× C,
where we use the Chinese remainder theorem for the 2nd identification.

Exercise A.40. Let d ∈ Z be not a square. Show the following properties:
(1) One has Q⊗Z Z[

√
d] ∼= Q[

√
d] as Q-algebras.

(2) For any prime number p, one has an isomorphism of Fp-algebras

Fp ⊗Z Z[
√
d] ∼= Fp[T ]/(T

2 − d̄),

where d̄ ≡ d mod p. Is this always a field?

The following lemma gives some permanence properties for the base change of
modules:

Lemma A.41. Let M be an A-module, B an A-algebra and κ some cardinal. If M
is a free of rank κ (respectively finitely generated, respectively projective) A-module,
then so is the B-module B ⊗A M .
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Proof. First, assume M ∼= A(I) := ⊕i∈IA for some set I with #I = κ. Then,
B⊗AM = ⊕i∈I(B⊗AA) = B(I) by Corollary A.32(1) and Lemma A.30(3). Hence,
B ⊗A M is free of rank κ.

Next, assume M is finitely generated and pick a surjection Ar → M for some
r ∈ N. Then, the induced map Br = B ⊗A Ar → B ⊗A M is surjective as well by
Corollary A.32(2). Hence, B ⊗A M is a finitely generated B-module.

Finally, assume M is projective and pick some free A-module E with M⊕N ∼= E
for some A-module N . Since direct sums commute with tensor products, one gets
as A-modules (

B ⊗A M
)
⊕

(
B ⊗A N

)
= B ⊗A E

which is checked to be B-linear. As B⊗AE is a free B-module, we see that B⊗AM
is projective. □
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