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Abstract

We compute minimal degeneration singularities in the affine Grassmannian for PGL2 over Z. This generalises
results from [MOV05, Lemma 5.1] in characteristic 0, [Mül09], and [HLRed] in the case of quasi-minuscule
Schubert varieties. In particular, in characteristic 2 these are not normal. We deduce these results from the
GL2 case.
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1. Introduction

To begin, we fix some notation. We let GrG denote the affine Grassmannian for a groupG. Let µ be a dominant
cocharacter for the diagonal torus in G. Then we let

• Λµ denote the corresponding point in GrG, and
• GrG,≤µ denote the corresponding Schubert variety in GrG.

We compute minimal degeneration singularities in Schubert varieties inside GrPGL2 over Z.
We identify the dominant cocharacters for PGL2 with Z≥0. Then for r ∈ Z≥2, the pair (r − 2, r) is a minimal
degeneration of dominant cocharacters for PGL2. The corresponding minimal degeneration singularity is
defined by

L−−PGL2 · Λr−2 ∩ GrPGL2,≤r. (1.1)

where
L−−PGL2 · Λr−2

is a locally closed ind-subscheme of GrPGL2 .
Then (1.1) is an affine scheme, i.e. it is equal to Spec Br where Br is some ring. Our main result describes
these rings.

Theorem 1.1. (cf. Theorem 4.1) In the situation above, the ringBr is isomorphic to the subring of Z[w, x, y]/(wr+
xy) generated by x, y, wx,wy, 2w,w2.

For the remainder of this section we denote Ar := Z[w, x, y]/(wr + xy).
Note that over Z[12 ] we have that Br ⊗ Z[12 ] ∼= Ar ⊗ Z[12 ]; this also applies to any Z[12 ]-algebra R. For R = k
a field with char(k) = 0 this was first shown in [MOV05], and generalised to any field with char(k) ̸= 2
in [Mül09]. The minimal degeneration singularity in the quasi-minuscule case r = 2 was first discussed in
[HLRed].
In order to arrive at our main result, we adapt the methodology of [Mül09, Theorem 9.2] to compute the
minimal degeneration singularities in the affine Grassmannian for GL2.

Theorem 1.2. (cf. Theorem 3.6) Let µ = (m1,m2) ∈ Z2 be a dominant cocharacter for GL2, i.e. such that
m1 ≥ m2, and let λ = (m1+1,m2− 1). Then the pair (µ, λ) is a minimal degeneration of dominant cocharacters
for GL2. For such a pair, we set r := m1 −m2 + 2. Then there is an isomorphism of schemes

L−−GL2 · Λµ ∩ GrGL2,≤λ
∼= Spec Ar.

To deduce the result in the PGL2 case we make use of the fact that GL2 ↠ PGL2 induces a scheme-theoretic
surjection of reduced schemes

L−−GL2 · Λµ ∩ GrGL2,≤λ → L−−PGL2 · Λr−2 ∩ GrPGL2,≤r (1.2)
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on minimal degeneration singularities. To identify the subring Br of Ar we use the adjoint representation
GL2 → Aut(gl2) = GL4, generalising the argument in [HLRed, Appendix B].
Finally, we discuss presentations of the reduced rings (Br ⊗ k)red where k is a field such that char(k) = 2,
computed using SageMath (cf. Conjecture 4.5).
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2. Recollections on affine Grassmannians

We begin by presenting some results on affine Grassmannians over Z, following [Ric20, §2–3].

2.1 The affine Grassmannian for general groups

Let R be a ring. Recall that R((z)) and R[[z]] are the rings of formal Laurent series and formal power series in
the variable z respectively. We set DR := Spec R[[z]] and D∗

R := DR\{z = 0} = Spec R((z)).
Let G be a split reductive group over Z.
Let E be a (left) fppf G-torsor over DR, and α ∈ E(D∗

R) a section. We say two pairs (E , α) and (E ′, α′) are
isomorphic if there exists a morphism π : E → E ′ such that π ◦ α = α′. In this case, π is necessarily an
isomorphism of G-torsors.

Definition 2.1. The affine Grassmannian for G is the functor Rings → Sets given by

GrG(R) := {[(E , α)] | E is a (left) fppf G-torsor over DR, α ∈ E(D∗
R) a section}.

In particular, we consider the affine Grassmannians for G = GLn, SLn and PGLn. These are all representable
by ind-projective ind-schemes, as a special case of [Lev13, Theorem 3.3.11]. Then the maps

SLn ↪→ GLn ↠ PGLn

of Z-group schemes induce maps

GrSLn ↪→ GrGLn ↠ GrPGLn

of ind-schemes.

2.2 The affine Grassmannian for GLn

The affine Grassmannian for GLn admits a more explicit description.

Definition 2.2. Let R be a ring. An R[[z]]-lattice Λ in R((z))n is a finite locally free R[[z]]-submodule of R((z))n

such that
Λ⊗R[[z]] R((z)) = R((z))n .

The following is essentially [Ric20, Rmk 3.3].

Lemma 2.3. The functor GrGLn is isomorphic to the functor Rings → Sets given by:

R ↦→ {R[[z]] –lattices in R((z))n}.
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Proof. In order to see this, first note a GLn-bundle on E → DR is essentially the same as a rank n locally free
R[[z]]-module E. In this setting, α induces an isomorphism (as R[[z]]-modules) E[z−1] ∼= R((z)), under which we
can take the image of E ⊂ E[z−1]; this gives us a lattice Λ = Λ(E,α) which only depends on the class [(E , α)].
The map [(E , α)] ↦→ Λ(E,α) is the required isomorphism.

Proposition 2.4. A lattice Λ ∈ GrGLn(R) is special if its highest exterior power
⋀︁

nΛ = R[[z]] as aR[[z]]-submodule
of R((z)). Then the isomorphism in Lemma 2.3 restricts to an isomorphism between GrSLn and the subfunctor
Rings → Sets given by

R ↦→ {Λ ∈ GrGLn(R) | Λ is special}.

Proof. See the proof of [HLRed, Lemma B.3].

We set Λ0 := Z[[z]]n the base lattice, and more generally for a ring R, Λ0,R := R[[z]]n.

Definition 2.5. An ordered pair (a, b) ∈ Z2, a ≤ b defines a subfunctor of GrGLn given by

Gr[a,b]GLn (R) := {Λ ∈ GrGLn(R) | zbΛ0,R ⊂ Λ ⊂ zaΛ0,R}.

We collect some important facts here.

Lemma 2.6. 1. For any ordered pair (a, b) ∈ Z2, a ≤ b, Gr[a,b]GLn → Spec Z is representable by a proper scheme.
2. The functor GrGLn can be written as the filtered colimit

GrGLn = colima≤bGr
[a,b]
GLn .

Proof. See [Ric20, Theorem 2.2 and preceding discussion].

Definition 2.7. A cocharacter µ for (the diagonal torus in) GLn is a map

µ : z ↦→ diag(zm1 , ..., zmn)

where (m1, ...,mn) ∈ Zn. We identify µ with the tuple (m1, ...,mn). A cocharacter µ is dominant if mi ≥ mi+1.
We denote the set of dominant cocharacters by Zn

+. µ is a cocharacter for SLn if
∑︁n

i=1mi = 0.

Definition 2.8. For µ ∈ Zn we define the diagonal lattices of GrGLn given by

Λµ :=

n⨁︂
i=1

zmiZ[[z]]

where the identification should be taken to mean that the matrix zµ := diag(zm1 , ..., zmn) ∈ GLn(Z((z)))
represents the lattice Λµ with respect to the standard basis (e1, ..., en). We may also use the notation µ(z) to
indicate the same object.

We wish to describe cocharacters for the diagonal torus in PGLn.
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Definition 2.9. Let µ := (m1, ...,mn) and µ′ := (m′
1, ...,m

′
n) ∈ Zn be cocharacters for GLn. We say µ ∼ µ′

if there exists some a ∈ Z such that for all 1 ≤ i ≤ n, m′
i = mi + a. Then ∼ is an equivalence relation, the

classes of which are the cocharacters for PGLn. Any cocharacter for PGLn has a unique representative given by

[(m1, ...,mn)] ↦→ (m1 −mn, ...,mn−1 −mn, 0). (2.1)

Hence we identify the cocharacters for PGLn with Zn−1. A cocharacter for PGLn is dominant if and only if it is
the class of some µ ∈ Zn

+, i.e. if and only if

m1 −mn ≥ m2 −mn ≥ ... ≥ 0.

We identify the dominant cocharacters for PGLn with

Zn−1
+,≥0 := {(m1, ...,mn−1) ∈ Zn−1

+ st. ∀ 1 ≤ i ≤ n− 1, mi ≥ 0}.

Remark 2.10. In general, GrPGLn does not have a similar explicit description cf. Lemma 2.3 and Proposition 2.4.
However, when the Picard group Pic(R) ∼= 0, then

PGLn(R) = GLn(R)/R×.

If we additionally have that Pic(R((z))) = 0 and that R is reduced and connected, the cocharacters for PGLn
may be treated as isomorphism classes on (matrix representations of) lattices via the identification using the
standard basis outlined above. More specifically, for Λ ∈ GrGLn(R), let

[Λ] := {Λ′ | ∃ a ∈ Z st. Λ = zaΛ′}.

Then
GrPGLn(R) = {[Λ] | Λ ∈ GrGLn(R)}.

Example 2.11. Let n = 2, and let µ = (3,−3) be a dominant cocharacter for SL2 (and for GL2). Under the
map induced by (2.1), the matrix representative of Λµ ∈ GrSL2 is sent to(︃

z3 0
0 z−3

)︃
↦→

[︃(︃
z6 0
0 1

)︃]︃
i.e. Λ(3,−3) ↦→ Λ6.

The following is from [Ric20, §2.3].

Definition 2.12. The determinant induces a morphism GrGLn → GrGL1 given on R-points by

Λ ↦→ detR[[z]](Λ).

For d ∈ Z, let
Σd(R) := {Λ ∈ GrGLn(R) | detR[[z]](Λ) = d}.

Then Σd is a connected component and GrGLn can be decomposed into the disjoint union

GrGLn =
∐︂
d∈Z

Σd.
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2.3 Loop groups

Definition 2.13. For a split reductive group G over Z we define the following functors from Rings → Groups:
1. LG(R) := G(R((z))), the loop group of G,
2. L+G(R) := G(R[[z]]), the positive loop group of G,

3. L−−G(R) := ker

(︃
G(R[z−1])

z−1 ↦→0
−−−−−−−−→ G(R)

)︃
, the strictly negative loop group of G.

In particular, we will consider these functors for G = GLn, SLn, and PGLn.

Lemma 2.14. Let G be a split reductive group over Z. Then
1. LG is representable by an ind-affine ind-scheme.
2. L+G is representable by an affine scheme.
3. L−−G is representable by an ind-affine ind-scheme.

Proof. For (1) and (2) see [HR20, Lemma 3.2]. (3) follows from [HR20, Lemma 3.14] and the fact that
L−−G is closed inside L−G.

Proposition 2.15. If G is a split reductive group over Z, then the map LG → GrG, g ↦→ g · e = [(E0, g)] induces
an isomorphism of étale sheaves

(LG/L+G)ét ∼= GrG.

Proof. See [Ric20, Proposition 3.18].

2.4 Schubert varieties

Definition 2.16. Let µ ∈ Z2
+. We define the Schubert variety GrGL2,≤µ ⊂ GrGL2 to be the scheme-theoretic

image of the map

L+GL2 → GrGL2
g ↦→ g · Λµ.

The Schubert varieties for GrSL2 are indexed by the cocharacters for SL2 i.e. µ = (m,−m) with m ∈ Z≥0.
For GrPGL2 , the dominant cocharacters are indexed by Z≥0. We define the Schubert variety GrPGL2,≤r in an
analogous manner.

Lemma 2.17. Let µ = (m1,m2) ∈ Z2
+. Then GrGL2,≤µ is a closed subscheme of Gr[m2,m1]

GL2 .

Proof. This follows from the definition, since Λµ ∈ Gr[m2,m1]
GL2 which is stable under the action of L+G. In

particular, the scheme-theoretic image of a map is the smallest closed subscheme through which the map
factors.

Definition 2.18. Let µ = (m1,m2) ∈ Z2. Then λ = λ(µ) := (m1+1,m2− 1) ∈ Z2 is the immediate neighbour
of µ. Note that λ is dominant if and only if µ is. In this case, we call the pair (µ, λ) a minimal degeneration of
dominant cocharacters for GL2.
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Note that for such a pair (µ, λ), |λ| = |µ|, so the corresponding Schubert varieties are contained in the same
connected component Σ|µ|. In particular, GrGL2,≤µ ⊂ GrGL2,≤λ and this inclusion is minimal, i.e. there is no λ′

such that GrGL2,≤µ ⊊ Gr≤λ′ ⊊ GrGL2,≤λ.

Definition 2.19. For µ a cocharacter of GL2, let zµ := diag(zm1 , zm2) ∈ GL2(Z((z))). For a ring R, we denote
Λ−
µ,R := zµ · (z−1R[z−1]2). Then we define

Uµ(R) := {Λ ∈ GrGL2(R) | Λ−
µ,R ⊕ Λ ∼= R((z))2 as R-modules}.

In particular, U0 contains Λ0.

Note that for any µ ∈ Z2, Uµ is the zµ-translate of U0 under the action of GL2(R((z))) on GrGL2 .

Proposition 2.20.
GrGL2 =

⋃︂
µ∈Z2

Uµ (2.2)

is an ind-affine open covering. In particular, any Uµ is an ind-affine ind-scheme, and the inclusion into GrGL2 is
representable by a quasi-compact open immersion.

Proof. Follows from the discussion in §2.5 and §2.6 below (see [Ric20, Proposition 2.4]).

Proposition 2.21. Under the natural transformation L−−GLn → GrGLn , g ↦→ g · Λ0 we have

L−−GL2 ∼= U0.

Proof. See [Ric20, Lem 2.7].

Identifying L−−GL2 with its image gives

L−−GL2 · Λµ
∼= Uµ. (2.3)

2.5 The classical Grassmannian

Definition 2.22. Let M be a finite locally free Z-module. The classical Grassmannian of M is the functor
Rings → Sets given by

Grass(M)(R) := {N ⊂ M ⊗Z R | (M ⊗Z R)/N finite locally free R-module}.

Lemma 2.23. Grass(M) is representable by a projective scheme.

Proof. See [GW10, Proposition 8.14]

Let a ≤ b ∈ Z. We define M[a,b] := zaΛ0/z
bΛ0

∼= Z2(b−a). Then M[a,b] has the natural ordered Z-basis

B = (zae1, ..., z
b−1e1, z

ae2, ..., z
b−1e2).
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Definition 2.24. The subfunctor of z-stable subspaces is given by

Grassz(M[a,b])(R) := {N ∈ Grass(M[a,b])(R) | z ·N ⊂ N}.

This is a closed subscheme of Grass(M[a,b]) [Ric20, Proof of Theorem 2.2].

Remark 2.25. Here we consider z as a Z-linear nilpotent operator, thus the characteristic polynomial of z as
an endomorphism is traceless.

Lemma 2.26. Let a ≤ b ∈ Z. There is an isomorphism

GrGL2,[a,b]
∼−−→ Grassz(M[a,b])

Λ ↦−−→ Λ/zbΛ0.

Proof. See the proof of Theorem 2.2 in [Ric20].

2.6 The standard open cover

Definition 2.27. Let J ⊂ B, then we denote by ⟨J⟩ the free Z-submodule generated by the basis vectors in J .
Note that J inherits a natural order from B. Then the subfunctor

VJ := {N ∈ Grass(M[a,b]) | N ⊕ ⟨J⟩ = M[a,b]}

defines an affine open subscheme of a connected component of Grass(M[a,b]).

Lemma 2.28. Let s := |B| and r := |Jc| where Jc := B\J . Then

VJ
∼= Ar(s−r).

In particular, it is representable.

Proof. See [GW10, Lemma 8.13(2)].

In particular, let µ ∈ Z2 such that a ≤ m1,m2 ≤ b, then we let

J(µ) := (zae1, ..., z
m1−1e1, z

ae2, ..., z
m2−1e2).

Then the isomorphism in Lemma 2.26 restricts to

Uµ ∩ Gr[a,b]GL2
∼−−→ VJ(µ) ∩ Grassz(M[a,b]). (2.4)

Consider a module N ∈ VJ(R) in the target of the above map. Locally this is prescribed by the vectors in
Jc. As above, we let s := |B| and r := |Jc|. As B is an R-basis of Grassz(M[a,b])(R), N is represented by an
R-matrix MN of dimension (s× r), whose columns represent the basis vectors in Jc.
There is a natural order on Jc, inherited from the one on B. Let ρi be the index in B of the ith element of Jc,
which is represented by the column κi. Via the ordering, we know that ρ1 < ... < ρr. Then the ρith row of
MN is given by (0, ..., 0, 1, 0, ..., 0), with the 1 in the ith place.
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Lemma 2.29. Let (µ, λ) be a minimal degeneration of dominant cocharacters for GL2, with µ = (m1,m2), and
let r := m1 −m2 + 2. Then N ∈ VJ(µ) ∩ Grassz(M[m2−1,m1+1])(R) corresponds to an R-matrix of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 a1,2 a1,3 . . . a1,r
a2,1 a2,2 a2,3 . . . a2,r
...

...
... . . . ...

ar−1,1 ar−1,2 ar−1,3 . . . ar−1,r

1 0 0 . . . 0

c1 c2 c3 . . . cr
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.5)

Proof. Here we have

J(µ) = (zm2−1e1, ..., z
m1−1e1, z

m2−1e2)

and Jc(µ) = (zm1e1, z
m2e2, ..., z

m1e2).

Since |J(µ)| = |Jc(µ)| = m1 −m2 + 2 := r, we have |B| = 2r. Following the above discussion, a module in
the target of the restricted isomorphism corresponds to a (2r × r) matrix of the form in the equation whose
entries are in R.

Remark 2.30. In (2.5), the horizontal line separates the (r × r)-block corresponding to the basis vector e1
above, from the block corresponding to e2 below.

Remark 2.31. In particular, Λµ is represented by the matrix of the form in (2.5) with ai,j = cj = 0 for all
1 ≤ i ≤ r − 1, 1 ≤ j ≤ r.
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3. Minimal degeneration singularities over GL2

3.1 Loop rotation over Z

Denote by Gm the multiplicative group, which we consider as a group scheme over Z. Note that Gm
∼= A1\{0}.

Definition 3.1. Let s ∈ Gm(R). We define the map

s−1 : R((z)) → R((z))

z ↦→ s−1z.

This map induces a Gm-action on LGL2, which descends to a Gm-action on GrGL2 via the quotient description
in Proposition 2.15.

Definition 3.2. For a ring R and a point Λ ∈ GrGL2(R), the orbit map is given by

fΛ : Gm ⊗Z R → GrGL2
s ↦→ s−1Λ.

We say lims→0 s
−1Λ exists if there exists a (necessarily unique) map f̃Λ : A1

R → GrGL2 such that f̃Λ

⃓⃓⃓
Gm⊗ZR

= fΛ.
Then we set

lim
s→0

s−1Λ := f̃Λ(0) ∈ GrGL2(R).

We will apply this to Λ ∈ L−−GL2 · Λµ, where µ is a cocharacter for GL2.

Proposition 3.3. LetR be a ring, and let µ be a cocharacter for GL2. The orbit map is constant on Λµ ∈ GrGL2(R).

Proof. Recall that GrGL2 ∼= (LGL2/L+GL2)ét, and let s ∈ Gm(R). Now s−1Λµ is represented by µ(zs−1) ∈
LGL2(R). But

µ(zs−1) = µ(z)µ(s−1)

and µ(s−1) ∈ L+GL2(R).
Hence the orbit map is constant on Λµ, and so lims→0 s

−1Λµ = Λµ.

Proposition 3.4. Let R be a ring and let Λ ∈ U0(R). Then

lim
s→0

s−1Λ = Λ0.
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Proof. Such a lattice Λ corresponds to a matrix g ∈ GL2(R[z−1]) given by(︃
a1 a2
a3 a4

)︃
where ai =

∑︁
j=0 ai,jz

−j ∈ R[z−1] such that under the reduction map z−1 ↦→ 0, g ↦→ 12×2. This corresponds
to the conditions

a1,0 = a4,0 = 1 and a2,0 = a3,0 = 0.

Under the orbit map, s−1Λ is thus represented by the matrix with entries a′i =
∑︁

j=0 ai,jz
−jsj . Since all

powers of s are nonnegative, we may thus naively take the limit from which we recover 12×2.

Lemma 3.5. Let R be a ring and let Λ ∈ L−−GL2 · Λµ(R). Then

lim
s→0

s−1Λ = Λµ.

Proof. We have that Λ = g · Λµ, where g ∈ L−−GL2(R). Then

lim
s→0

s−1Λ = lim
s→0

s−1g · lim
s→0

s−1Λµ = 12×2 · Λµ = Λµ

as required.

3.2 Minimal degeneration singularities over GL2

We adapt the argument of [Mül09, Theorem 9.2] to compute minimal degeneration singularities in the affine
Grassmannian for GL2.

Theorem 3.6. Let (µ, λ) be a minimal degeneration of dominant cocharacters for GL2 with µ = (m1,m2), and
let r := m1 −m2 + 2. Then

L−−GL2 · Λµ ∩ GrGL2,≤λ
∼= Spec Z[w, x, y]/(wr + xy).

Proof. Let Λ ∈ (L−−GL2 · Λµ ∩ GrGL2,≤λ)(R). We identify Λ with its image in (2.5):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 a1,2 a1,3 . . . a1,r
a2,1 a2,2 a2,3 . . . a2,r
...

...
... . . . ...

ar−1,1 ar−1,2 ar−1,3 . . . ar−1,r

1 0 0 . . . 0

c1 c2 c3 . . . cr
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We know from Lemma 3.5 that

Λ ∈ L−−GL2 · Λµ(R) =⇒ lim
s→0

s−1Λ = Λµ.
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Now

lim
s→0

s−1Λ = lim
s→0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1−m2a1,1 s1−m2a1,2 s1−m2a1,3 . . . s1−m2a1,r
s−m2a2,1 s−m2a2,2 s−m2a2,3 . . . s−m2a2,r

...
...

... . . . ...
s1−m1ar−1,1 s1−m1ar−1,2 s1−m1ar−1,3 . . . s1−m1ar−1,r

s−m1 0 0 . . . 0

s1−m2c1 s1−m2c2 s1−m2c3 . . . s1−m2cr
0 s−m2 0 . . . 0
0 0 s−m2−1 . . . 0
...

...
... . . . ...

0 0 0 . . . s−m1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡ lim
s→0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sr−1a1,1 sa1,2 s2a1,3 . . . sr−1a1,r
sr−2a2,1 a2,2 sa2,3 . . . sr−2a2,r

...
... . . . . . . ...

sar−1,1 s3−rar−1,2 . . . ar−1,r−1 sar−1,r

1 0 0 . . . 0

sr−1c1 sc2 s2c3 . . . sr−1cr
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since this must evaluate to Λµ (cf. Remark 2.31), all entries with sα such that α ≤ 0 must be 0. Thus Λ is of
the form: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 a1,2 a1,3 . . . a1,r
a2,1 0 a2,3 . . . a2,r
...

... . . . . . . ...
ar−1,1 0 . . . 0 ar−1,r

1 0 . . . . . . 0

c1 c2 c3 . . . cr
0 1 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 1 0
0 . . . . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Under our identification in Lemma 2.26, this represents a z-stable subspace. This corresponds to the condition
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z · Λ = Λ ·X ⊂ Λ where X ∈ GLr(R). More precisely:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . . . . 0
a1,1 a1,2 a1,3 . . . a1,r
a2,1 0 a2,3 . . . a2,r
...

... . . . . . . ...
ar−1,1 0 . . . 0 ar−1,r

0 . . . . . . . . . 0
c1 c2 c3 . . . cr
0 1 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 a1,2 a1,3 . . . a1,r
a2,1 0 a2,3 . . . a2,r
...

... . . . . . . ...
ar−1,1 0 . . . 0 ar−1,r

1 0 . . . . . . 0

c1 c2 c3 . . . cr
0 1 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 1 0
0 . . . . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·X (3.1)

so we may use the rows in the submatrix given by deleting all rows containing entries labelled ai,j or cj to
recover

X =

⎛⎜⎜⎜⎜⎜⎝
ar−1,1 0 . . . 0 ar−1,r

c1 c2 c3 . . . cr
0 1 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎠ .

Comparing rows on the left and right hand sides of (3.1), we have a recursive relation: for 2 ≤ i ≤ r − 1

(ai−1,1, ..., ai−1,r) = (ai,1, ..., ai,r) ·X
= (ar−1,1, ..., ar−1,r) ·Xi−2.

Thus all ai,j are entirely determined by ar−1,1 and ar−1,r. We set w := ar−1,1 and x := ar−1,r . Then the
(r − 1)-th row is (w, 0, ..., 0, x). At the same time, we have

(c1, ..., cr) ·X = (0, ..., 0),

i.e. for 2 ≤ i ≤ r

ci = c2(−c2)
i−2.

We set y := c1 and t := c2. Thus X becomes⎛⎜⎜⎜⎜⎜⎝
w 0 . . . 0 x
y t −t2 . . . t(−t)r−2

0 1 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎠ .

Since X represents z as an endomorphism, its trace is zero, as noted in Remark 2.25, hence

t = −w.
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Thus

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wr−1 x wx . . . wr−2x
wr−2 0 x . . . wr−3x
...

...
... . . . ...

w 0 0 . . . x
1 0 0 . . . 0

y −w −w2 . . . −wr−1

0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.2)

Finally, since
(wr−1, x, wx, . . . , wr−2x) ·X = (0, ..., 0),

the only remaining relation is
wr + xy = 0.

Thus, (3.2) gives a point in the intersection L−−GL2 · Λµ ∩ GrGL2,≤λ, from which we see that

L−−GL2 · Λµ ∩ GrGL2,≤λ = Spec Z[w, x, y]/(wr + xy).

We consider the preimage of (3.2) under (2.4). Let κi be the ith column of (3.2). It is easy to see that, for
i ≥ 2,

κi+1 = (z + w)κi.

Then we only have two linearly independent columns, κ1 and κ2, and we restrict our attention to these. This
gives us our preimage in the following way: recall that the horizontal line separates the e1-entries from the
e2-entries. Each entry of the 2× 2 matrix is given by summing all entries of a fixed basis vector inside a fixed
column. In particular, the preimage of the above matrix is

M := zm2−1

(︃∑︁r−1
k=0w

r−1−kzk x
y z − w

)︃
(3.3)
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4. Minimal degeneration singularities over PGL2

We recall that the stated goal of [Mül09, Theorem 9.2] was to investigate minimal degeneration singularities
in the affine Grassmannian for PGL2 over a field k.
To summarise, the proof makes use of the morphism GrSL2 → GrPGL2 in order to take advantage of the concrete
description of lattices in terms of the classical Grassmannian for SL2. The problem is that the morphism

GrSL2,≤(m,−m) → GrPGL2,≤2m

is not étale over characteristic 2.
In order to compute minimal degeneration singularities in the affine Grassmannian for PGL2, we instead
consider the scheme-theoretic surjection

Spec Ar := L−−GL2 · Λµ ∩ GrGL2,≤λ −→ L−−PGL2 · Λr−2 ∩ GrPGL2,≤r =: Spec Br (4.1)

induced by GL2 ↠ PGL2, where (µ, λ) and r are as in the setting of Theorem 3.6, and generalise the argument
in [HLRed, Appendix B] to identify Br as a subring of Ar.

4.1 The adjoint representation of GL2

As groups, we have
GL2 Aut(gl2) = GL4

PGL2

Ad

Under the ordered basis
(︃
1 0
0 1

)︃
,
(︃
1 0
0 −1

)︃
,
(︃
0 1
0 0

)︃
,
(︃
0 0
1 0

)︃
of gl2 the map Ad is represented by the matrix

ad :
(︃
a b
c d

)︃
↦→ 1

ad− bc

⎛⎜⎜⎝
ad− bc 0 0 0

0 ad+ bc −ac bd
0 −2ab a2 −b2

0 2cd −c2 d2

⎞⎟⎟⎠ . (4.2)

This induces a closed immersion PGL2 ↪→ GL4 which further induces a closed immersion GrPGL2 ↪→ GrGL4
[Ric20, Proposition 3.6]. Via the categorical antiequivalence between rings and affine schemes [GW10,
Theorem 2.35], we see that L−−PGL2 · Λr−2 ∩ GrPGL2,≤r is the spectrum of some subalgebra of Ar. This leads
to our main result.

Theorem 4.1. Let (µ, λ) and r be as in the statement of Theorem 3.6. Then the minimal degeneration singularity
over PGL2 is an affine scheme

L−−PGL2 · Λr−2 ∩ GrPGL2,≤r
∼= Spec Br

18



where Br is the subalgebra of Ar = Z[w, x, y]/(wr + xy) generated by x, y, wx,wy,w2, 2w.

Proof. Let Br be the subalgebra corresponding to L−−PGL2 · Λr−2 ∩ GrPGL2,≤r. In order to describe Br as
a subring of Ar, we take the image of M in (3.3) under the map in (4.2), then investigate the entries as
polynomials in z, z−1 with coefficients in Z[w, x, y]. Having identified the minimal generating set Γ of these
coefficients, we have that Br = Z[Γ] as a subalgebra of Ar.
Cancelling out the common factor of z2m−2, the image of M under the adjoint map is

1

zr

⎛⎜⎜⎜⎜⎝
zr 0 0 0

0 zr + 2xy −y
(︂∑︁j

k=0w
j−kzk

)︂
x(z − w)

0 −2x
(︂∑︁j

k=0w
j−kzk

)︂ ∑︁j
k=0w

2(j−k)z2k + 2
∑︁j

0≤k<l≤j w
2j−k−lzk+l −x2

0 2y(z − w) −y2 z2 − 2zw + w2

⎞⎟⎟⎟⎟⎠
where we let j := r − 1 for convenience. By inspection it is clear that Br is generated by the elements
x, y, wx,wy,w2, 2w.

Remark 4.2. In the case where r = 2, we have that w2 = xy, and we recover [HLRed, Proposition B.1];
namely, B2 is the subalgebra of A2 = Z[w, x, y]/(w2 + xy) generated by x, y, wx,wy, 2w.

We also generalise [HLRed, Corollary B.2].

Corollary 4.3. 1. The ring Br ⊗ F2 is not reduced. Its reduction (Br ⊗ F2)red is isomorphic to the subring of
Ar ⊗ F2

∼= F2[w, x, y]/(w
r + xy) generated by x, y, wx,wy, and w2.

2. The ring (Br ⊗ F2)red is neither normal nor seminormal. Further, Ar ⊗ F2 is both its normalisation and its
seminormalisation.

Proof. 1. We repeat the proof here, now for all r.
First, note that w ̸∈ Br, so 2w ̸= 0 in Br ⊗ F2. On the other hand, w2 ∈ Br (via xy = w2 for the case
r = 2 or otherwise directly) so (2w)2 = 4w2 = 0. Hence Br ⊗ F2 is not reduced.
The image of (Br ⊗ F2)red in Ar ⊗ F2

∼= F2[w, x, y]/(w
r + xy) is the subring generated by the elements

listed above. The kernel of the map is nilpotent as the spectra of both rings are irreducible of Krull
dimension 2. Hence (Br ⊗ F2)red identifies with the stated subring.

2. That Ar ⊗ F2 is normal follows from [Mül09, §6.6–6.8]. In particular, the Schubert variety GrGL2,≤λ is
normal, hence so is L−−GL2 · Λµ ∩ GrGL2,≤λ.
That (Br⊗F2)red is not seminormal (hence not normal) follows from [LV81, Lemma 1.4(3)]. Let r ∈ Z≥2.
Then wr = xy, wr+1 = (wx)y ∈ (Br ⊗ F2)red but w ̸∈ (Br ⊗ F2)red.
The same argument shows that the seminormalisationC of (Br⊗F2)red must containw henceC ⊃ Ar⊗F2,
and since Ar ⊗ F2 is seminormal and normal, C = Ar ⊗ F2. Hence Ar ⊗ F2 is both the normalisation
and the seminormalisation of (Br ⊗ F2)red.

4.2 Presentations of the subrings Br over a field of characteristic 2

Here we fix a field k of characteristic 2. Following Corollary 4.3, wewish to compute a presentation of (Br⊗k)red.
The essential idea is to compute a minimal generating set of the kernel of the map k[x, y, a, b, c] → Ar ⊗ k
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given by:

x ↦→ x

y ↦→ y

a ↦→ wx

b ↦→ wy

c ↦→ w2

Our starting point is the following lemma.

Lemma 4.4. The k-algebra (B2 ⊗ F2)red has the following presentation

k[x, y, a, b]/(ya+ xb, xy3 + b2, x2y2 + ab, x3y + a2).

Proof. See [HLRed, §1].

For general r > 2, we work with SageMath using the interface to Singular to compute a Gröbner basis of
the kernel, from which we extract a minimal generating set (see Appendix A for the code). Testing numerous
cases has led us to the following conjecture.

Conjecture 4.5. Let r > 2. The k-algebra (Br ⊗ F2)red has the following presentation:
1. If r is even, then:

(Br ⊗ F2)red ∼= k[x, y, a, b, c]/(ya+ xb, y2c+ b2, xyc+ ab, x2c+ a2, c
r
2 + xy).

2. If r is odd, then:

(Br ⊗ F2)red ∼= k[x, y, a, b, c]/(ya+ xb, y2c+ b2, xyc+ ab, x2c+ a2, c
r+1
2 + xb, bc

r−1
2 + xy2, ac

r−1
2 + x2y).
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A.

F = GF(2)
var("m1", "m2", "r")
def Basis(m1, m2):

r = m1 - m2 + 2
if r < 2:

return "Invalid input"
#Special case: if r = 2, we only need 4 variables
elif r == 2:

ret = singular.eval(’ring R = 2, (x,y,a,b), dp’)
ret = singular.eval(’ring S = 2, (x,y,w), dp’)
ret = singular.eval(’ideal I = w^(’+str(r)+’) + x*y’)
ret = singular.eval(’qring Q = std(I);’)
ret = singular.eval(’map phi = R, x,y,w*x,w*y;’)
ret = singular.eval(’setring R;’)
B = singular.eval(’mstd(kernel(Q, phi))[2];’)

else:
ret = singular.eval(’ring R = 2, (x,y,a,b,c), dp’)
ret = singular.eval(’ring S = 2, (x,y,w), dp’)
ret = singular.eval(’ideal I = w^(’+str(r)+’) + x*y’)
ret = singular.eval(’qring Q = std(I);’)
ret = singular.eval(’map phi = R, x,y,w*x,w*y,w^2;’)
ret = singular.eval(’setring R;’)
B = singular.eval(’mstd(kernel(Q, phi))[2];’)

print("r is "+str(r))
print("The basis is")
print(B)

This is also available as a SageMath cell here.
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