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1 Introduction

One of the central objects of basic algebraic topology is the topological fundamental group π1(X,x) associated to a

topological space X and a point x ∈ X. It can be defined as the set of homotopy classes of loops in X with base point x,

which becomes a group under composition. A beautiful feature of π1(X,x) is that it classifies covering spaces of X : If X

is sufficiently nice, there is an equivalence of categories

(Covering spaces of X) ∼= (π1(X,x)-Sets), (1)

where the right hand side denotes the category whose objects are sets equipped with a group action by π1(X,x) and

whose morphisms are equivariant maps with respect to that action. The equivalence is realized by the functor sending a

covering space p : Y → X to the fibre p−1(x), on which π1(X,x) acts in a natural way [Hat02, p. 68-72].

In [SGA1, Exposé V], Grothendieck developed an analogous correspondence in the world of schemes. Here, finite étale

morphisms play the role of (finite degree) covering spaces and the topological fundamental group is replaced by the

étale fundamental group. In fact, Grothendieck gave a general framework for capturing correspondences similar to

(1) by introducing Galois categories. If C is a category and F : C → (Finite sets) a functor, the automorphism group

G := Aut(F ) of F becomes a profinite group when endowed with the subspace topology of
∏︁
X∈Ob(C) Aut(F (X)),

where the Aut(F (X)) have the discrete topology. For any object X of C, the set F (X) can be endowed with a natural

continuous group action by G. The pair (C, F ) is a Galois category if and only if F induces an equivalence of categories

C ∼= (G-FSets),

where the right hand side denotes the category whose objects are finite setsE equipped with a continuous group action by

G. Grothendieck proved that ifX is a connected scheme and x̄ a geometric point ofX, i.e., a morphism Spec(k(x̄)) → X,

where k(x̄) is an algebraically closed field, the category FEt(X) of finite étale covers of X together with the fibre functor

Fx̄ := −×X Spec(k(x̄)) is a Galois category, see Theorem 2.22 below. The group π1(X, x̄) := Aut(Fx̄) is called the étale

fundamental group of X, which is independent of x̄ up to non-canonical isomorphism.

Now, let us consider the following question : For the topological fundamental group, it is straightforward to see that

π1(X × Y, (x, y)) ∼= π1(X,x)× π1(Y, y)

for any path-connected topological spaces X,Y and x ∈ X, y ∈ Y , see [Hat02, Proposition 1.12]. A natural question to

ask is when the étale fundamental group of a (fibre) product of two connected schemes is isomorphic to the product

of the individual étale fundamental groups. Of course, this is false in general as the fibre product of two non-empty

connected schemes can be empty. A classical result due to Grothendieck is the following (slightly modified from [SGA1,

Exposé X, Corollaire 1.7]) :
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Proposition 1.1. Let X1, X2 be connected qcqs schemes over an algebraically closed field k such that X1 → k is proper.

Then, X1 ×k X2 is connected and for any geometric point z̄ of X1 ×k X2 (and thus of X1 and X2), the natural map

π1(X1 ×k X2, z̄)
∼−→ π1(X1, z̄)× π1(X2, z̄) (2)

coming from base change along the two projections X1 ×k X2 → X1, X1 ×k X2 → X2 is an isomorphism.

In the following, we will refer to formula (2) as the “Künneth formula” for π1.

In their Berkeley Lectures [SW20, Lemma 16.1.1], Scholze and Weinstein claim that the Künneth formula still holds if

the properness requirement is relaxed :

Proposition 1.2. Let X1, X2 be connected qcqs schemes over an algebraically closed field k such that X1 → k is π1-proper.

Then, X1 ×k X2 is connected and for any geometric point z̄ of X1 ×k X2 (and thus of X1 and X2), the natural map

π1(X1 ×k X2, z̄)
∼−→ π1(X1, z̄)× π1(X2, z̄)

is an isomorphism of topological groups.

Compared to Proposition 1.1, the assumption of properness has been replaced by π1-properness, a non-standard notion

which was introduced by Kedlaya [Ked19, Definition 4.1.12]. A scheme X over an algebraically closed field k is called

π1-proper, if the category FEt(X) of finite étale covers of X is invariant under base extension of algebraically closed

fields k → k′, see Section 3.1 below. It is a non-trivial fact that proper maps are π1-proper [Stacks, Tag 0A49]. Moreover,

any scheme over an algebraically closed field of characteristic zero is π1-proper [SW20, Section 16.1], from which one

deduces

Corollary 1.3. Let X1, X2 be connected qcqs schemes over an algebraically closed field k of characteristic 0. Then, X1×kX2

is connected and the natural map

π1(X1 ×k X2, z̄)
∼−→ π1(X1, z̄)× π1(X2, z̄)

is an isomorphism of topological groups.

In positive characteristic, however, this fails in general, as already the example of the affine line shows, see Example

3.14 below. As a replacement can serve the following result, which we will refer to as Drinfeld’s Lemma :

Theorem 1.4. Let X1, X2 be connected qcqs schemes over Fp. Then, X1 ×Fp
X2 is φ1-connected and for any geometric

point z̄ of X1 ×Fp
X2 (and thus of X1 and X2), the natural map

π1(X1 ×Fp
X2/φ1, z̄)

∼−→ π1(X1, z̄)× π1(X2, z̄)

is an isomorphism of topological groups.

The key innovation here is the group π1(X1 ×Fp
X2/φ1, z̄), which is different from the classical étale fundamental

group of X1 ×Fp
X2. It belongs to the Galois category FEt(X1 ×Fp

X2/φ1), whose objects are finite étale covers of
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X1 ×Fp
X2 equipped with an action compatible with the first partial Frobenius φ1 on X1 ×Fp

X2, or equivalently, an

action compatible with the second partial Frobenius φ2.

While the appearance of Frobenius morphisms might seem surprising at first glance, the example X1 := Spec(Fp2),

X2 := Spec(Fp) for an algebraic closure Fp of Fp already gives some insight. Namely, by the Chinese Remainder Theorem,

we have

Fp2 ⊗Fp
Fp ∼= Fp × Fp, (3)

hence

X1 ×Fp
X2

∼= Spec(Fp)
∐︂

Spec(Fp),

which is disconnected. However, one can show that, under the isomorphism (3), the map F ⊗Fp
id, where F is the

Frobenius map a ↦→ ap on Fp2 , corresponds to the map on Fp × Fp which flips entries. Hence X1 ×Fp
X2 it as least

connected in the sense that Spec(F ⊗Fp
id) acts transitively on it, in the terminology we will introduce later, we say that

X1 ×Fp
X2 is φ1-connected.

Theorem 1.4 dates back to a result by the Ukrainian mathematician Vladimir Drinfeld [Dri80, Theorem 2.1], who

treated the special case of the product of a smooth projective curve over Fp with itself. It attracted attention as Drinfeld

used it in his celebrated proof of the global Langlands conjecture for GL2 over function fields, also see [BKDS+03,

Section 10.4.1]. Since then, different versions and generalizations have been established, see e.g. [Laf97, IV, Theorem

4], [Lau04, Lemma 8.1.1], [Laf18, Lemme 8.2] or [Ked19, Theorem 4.2.12]. The outreach of Drinfeld’s Lemma even

goes beyond the world of schemes : Scholze and Weinstein introduced an analogue for diamonds [SW20, Theorem

16.3.1]. In fact, also our formulation above is due to Scholze and Weinstein [SW20, Theorem 16.2.4], who did not give

a complete proof, but indicated that a proof is possible by the same methods as for their diamond analogue.

Aim and structure

The goal of this thesis is to fill these gaps and give a detailed proof of Theorem 1.4. Besides [SW20, Lecture 16], our

main reference for this are Kedlaya’s notes [Ked19, Sections 4.1,4.2].

Let us give a brief overview of our proof strategy. In fact, our proof will be very much related to the case of characteristic

zero. As described above, Corollary 1.3 can be proven by first showing that any characteristic zero scheme over an

algebraically closed field is π1-proper and then applying Proposition 1.2. Our idea to prove Drinfeld’s Lemma is quite

similar : We show that any scheme over Fp fulfills a condition which can be viewed as a “Drinfeld version” of π1-

properness. From this, we conclude Drinfeld’s Lemma by adapting the proof of Proposition 1.2. Before all this, we will of

course need to introduce some formalism, such as φ-connectedness and the categories FEt(X/φ).

Unfortunately, Scholze and Weinstein neither gave a proof for Proposition 1.2. Hence, a big part of this thesis will

be to establish that statement. Our strategy for this is based on Scholze’s and Weinstein’s diamond analogue [SW20,

Proposition 16.3.3] as well as Kedlaya’s notes [Ked19, Section 4.1] and resembles the original proof of Proposition 1.1.

Namely, Grothendieck deduced the Künneth formula from a “homotopy exact sequence” of étale fundamental groups

that can be associated to any flat proper morphism of finite presentation, see [SGA1, Exposé X.1]. The main ingredient
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for that exact sequence is in turn Stein factorization of proper maps, see [Stacks, Tag 03H2]. Hence, our main challenge

will be to establish an analogue of Stein factorization for π1-proper maps, at least in our very special use case. Luckily,

once Proposition 1.2 is established, the Drinfeld analogue is rather straightforward.

In more detail, this thesis is structured as follows : In Chapter 2, we will present the necessary preliminaries which are

mostly a recollection of Grothendieck’s theory of Galois categories and the étale fundamental group, including some

examples.

Then, in Chapter 3, we will prove Proposition 1.2 : First, in Section 3.1, we will shed more light on the notion of

π1-properness. Then, in Section 3.2, we will, under the assumptions of Proposition 1.2, construct an exact sequence

π1(X1 ×k x̄, z̄) π1(X1 ×k X2, z̄) π1(X2, z̄) 1 (4)

of étale fundamental groups. Note thatX1×k x̄ ∼= (X1×kX2)×X2
x̄ is canonically isomorphic to the fibre ofX1×kX2 →

X2 at the geometric point x̄→ X2. Hence, we may indeed think of the above sequence as a homotopy exact sequence

for the projection X1 ×k X2 → X2. The proof of that sequence will involve a statement similar to Stein factorization of

proper maps, which Section 3.3 is dedicated to. After the proof of Proposition 1.2 is complete, Section 3.4 will review a

standard example for failure of π1-properness in positive characteristic.

In Chapter 4, we will then tackle the proof of Drinfeld’s Lemma. For this, we first review different types of Frobenius

morphisms on schemes over Fp. In Section 4.1, we investigate the notion of φ-connectedness, which generalizes usual

connectedness to also take into account the action of a homeomorphism, and prove that the fibre product X1 ×Fp
X2 of

any two connected schemes over Fp is φ1-connected (or equivalently, φ2-connected), if φ1 and φ2 are the partial Frobenii

on X1 ×Fp
X2. In Section 4.2, we introduce categories FEt(X/φ) for a scheme X and a universal homeomorphism

φ : X → X, which we prove to be a Galois categories if X is φ-connected. As a special case, we will introduce the

abovementioned category FEt(X1 ×Fp
X2/p.Fr.) and its fundamental group.

After these preparations, we will finally start to prove Drinfeld’s Lemma in Section 4.3, where we establish the abo-

vementioned analogue of π1-properness in the Drinfeld setting. From that on, we proceed in analogy to Chapter 3 to

deduce Drinfeld’s Lemma : In Section 4.4, we prove the Drinfeld analogue of the π1-proper Stein factorization from

Section 3.3. In Section 4.5, we construct the Drinfeld analogue of the homotopy exact sequence (4). And finally, in

Section 4.6, we conclude Drinfeld’s Lemma.
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2 Conventions and preliminaries

First, we fix some conventions which hold throughout this thesis :

Conventions 2.1.

• A scheme X is said to be connected if its underlying topological space is connected (in particular, non-empty).

• When we speak of a scheme X over a field k, we actually mean a morphism of schemes X → Spec(k). Sometimes,

for ease of notation, we will denote by X → k the structure morphism X → Spec(k).

• If X1 and X2 are schemes over a field k, we use the notation X1 ×k X2 := X1 ×Spec(k) X2. If X2 = Spec(k′) is the

spectrum of a field extension k → k′, we occasionally use the notation X1,k′ to denote X1 ×k X2.

• Similarly, if f : X1 → Y1 and g : X2 → Y2 are morphisms of schemes over k, we use the notation f ×k g for the

canonical morphism f ×Spec(k) g : X1 ×k X2 → Y1 ×k Y2.

• Similarly, we abuse notation to denote by idR both the identity Spec(R) → Spec(R) and the identity R→ R. We

will do the same for the Frobenius morphism FR : a ↦→ ap on a ring R of characteristic p.

The rest of this chapter consists of a recollection of preliminaries we will need later. We will first review the theory of

Galois categories and the étale fundamental group, which is mostly due to Grothendieck [SGA1, Exposé V]. Besides the

original reference, [MA67], [Len85], [Sza09] or [Stacks, Tag 0BMQ] are detailed introductory texts.

2.1 Galois categories

We will mainly follow [Stacks, Tag 0BMQ]. Note that their axioms of a Galois category are slightly stronger than

Grothendieck’s, but turn out to be equivalent, cf. [Stacks, Remark below Tag 0BMY].

Definition 2.2 ([Stacks, Tag 0BMY]). Let C be a category and let F : C → (Finite Sets) be a functor. The pair (C, F ) is a

Galois category if

1. C has finite limits and finite colimits,

2. every object of C is a finite (possibly empty) coproduct of connected objects,

3. F reflects isomorphisms, i.e., a morphism f : X → Y between X,Y ∈ Ob(C) is an isomorphism if and only if

F (f) : F (X) → F (Y ) is a bijection,

4. F is exact, i.e., it commutes with finite limits and finite colimits.

Here we say X ∈ Ob(C) is connected if it is not initial and for any monomorphism Y → X either Y is initial or Y → X

is an isomorphism. If (C, F ) is a Galois category, we will call the functor F the fundamental functor of C.

We remark that by [Stacks, Tag 0BN5], a fundamental functor of C is uniquely determined up to (non-unique) isomor-

phism. Indeed, Galois categories have a lot of very special properties, a list of which is given in [Stacks, Tag 0BN0].

One of them is that if a, b : X → Y are two morphisms in C with connected source X, then they agree as soon as

F (a), F (b) : F (X) → F (Y ) agree on a single element of F (X). In particular, since any object of C can be written as a

coproduct of connected objects, the fundamental functor is faithful.
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Definition and Remark 2.3. Let (C, F ) be a Galois category and X a connected object of C. Then the group of

automorphisms AutC(X) of X in C naturally acts on F (X) by

AutC(X)× F (X) → F (X)

(a, s) ↦→ F (a)(s).

Using the paragraph preceding this remark, we see that for any s ∈ F (X), the map

AutC(X) → F (X)

a ↦→ F (a)(s)

is injective. If it is also surjective for all s ∈ F (X), we call X a Galois object of C and AutC(X) the Galois group of X.

Observe that the following are equivalent :

(i) X is a Galois object,

(ii) #AutC(X) = #F (X),

(iii) AutC(X) acts transitively on F (X),

(iv) AutC(X) acts simply transitively F (X).

We will need the following extended version of [Stacks, Tag 0BN0 (8)], which states that morphisms in a Galois category

respect connected components :

Lemma 2.4. Let (C, F ) be a Galois category. Let X → Y be a morphism in C. Suppose X =
∐︁n
i=1Xi, Y =

∐︁m
j=1 Yj

are the decompositions of X and Y into connected objects, respectively. Then, for each i ∈ {1, ..., n}, there exists a unique

α(i) ∈ {1, ...,m} such that Xi → X → Y factors through the coprojection Yα(i) → Y . Moreover, for each j ∈ {1, ...,m},

we have an isomorphism X ×Y Yj ∼=
∐︁
i∈α−1({j})Xi.

Proof. First of all, any of the coprojections Yk → Y is a monomorphism, since F sends it to the coprojection F (Yk) →∐︁m
j=1 F (Yj), as F commutes with finite coproducts. In the category of sets, coprojections are injective hence monomor-

phisms. By [Stacks, Tag 08LR] and since F preserves isomorphisms, we conclude that Yk → Y is a monomorphism.

For the moment, fix an index i. For any j, the morphism Xi ×Y Yj → Xi is a monomorphism as a base change of

the monomorphism Yj → Y . Therefore, since Xi is a connected object, Xi ×Y Yj is initial or Xi ×Y Yj → Xi is an

isomorphism. The latter happens for a unique α(i) ∈ {1, ...,m}, as we may compute

F (Xi) ∼= F (Xi×Y Y ) ∼= F (X)×F (Y )F (Y ) ∼= F (Xi)×F (Y )F

⎛⎝ m∐︂
j=1

Yj

⎞⎠ ∼= F (Xi)×F (Y )

⎛⎝ m∐︂
j=1

F (Yj)

⎞⎠ ∼=
m∐︂
j=1

F (Xi×Y Yj),

where we used that F is exact and that in the category of sets, fibre products commute with filtered colimits. Now∐︁m
j=1 F (Xi ×Y Yj) is a disjoint union of sets, so F (Xi ×Y Yj) ∼= F (Xi) for a unique index α(i) := j ∈ {1, ...,m}. As F

reflects isomorphisms, α(i) is the unique index such that Xi ×Y Yj → Xi is an isomorphism.
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Now, if we fix j ∈ {1, ...,m}, a similar calculation as above shows that

X ×Y Yj ∼=
n∐︂
i=1

(Xi ×Y Yj) ∼=
∐︂

i∈α−1({j})

Xi (5)

by definition of α. Now, note that the statement that Xi → X → Y factors through Yj is equivalent to the statement

that Xi → X factors through X ×Y Yj , which, by (5) is possible precisely for j = α(i).

For a moment, let C be any category and F a functor from C to (Finite sets). Note that the automorphism group Aut(F )

of the functor F naturally acts on any set F (X), where X ∈ Ob(C), by

Aut(F )× F (X) → F (X)

((γY )Y ∈Ob(C), s) ↦→ γX(s)

In fact, Aut(F ) can be given the structure of a profinite topological group [Stacks, Tag 0BMR] such that the above action

is continuous if the F (X) are endowed with the discrete topology. Let us denote by (G-FSets) the category of finite sets

(endowed with the discrete topology) together with a continuous group action by G. The above shows that F induces a

functor C → (G-FSets). The distinctive property of Galois categories is that this functor is an equivalence :

Theorem 2.5. Let C be a category and F a functor C → (Finite sets). Put G := Aut(F ). Then, (C, F ) is a Galois category

if and only if F induces an equivalence of categories C ∼= (G-FSets).

Proof. [Stacks, Tag 0BN4]. The converse is straightforward to check, see e.g. [SGA1, Exposé V.4].

In the situation of the above theorem, we call G := Aut(F ) the fundamental group of C.

Remark 2.6. Let (C,F ) be a Galois category. The equivalence from Theorem 2.5 restricts to the following bijections :

{Connected objects of C}/∼ ∼= {Transitive finite G-sets}/∼ ∼= {Open subgroups of G}/∼

{Galois objects of C}/∼ ∼= {Finite quotient groups of G}/∼ ∼= {Open normal subgroups of G}

Here, the equivalence relation “∼” on the top right set means “identical up to conjugacy by an element of G”, whereas

in the other cases it denotes isomorphism in the respective categories. For the upper left bijection, see the proof of

[Stacks, Tag 0BN4]. The upper right map sends a transitive finite G-set to the stabilizer of some element, which yields a

well-defined map after taking conjugacy classes. Note that stabilizers of a continuous group action are open. The map is

a bijection by the orbit-stabilizer-theorem. Note that the inverse map is indeed well-defined, since all open subgroups of

a quasi-compact topological group have finite index. For the bottom left bijection, see [Stacks, Tag 03SF]. The bottom

right map sends a finite quotient group to the stabilizer of its neutral element, it is a bijection again by orbit-stabilizer

theorem.

We may use Galois objects and their Galois groups to describe the profinite structure of the fundamental group :
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Lemma 2.7. Let (C, F ) be a Galois category and set G := Aut(F ). Denote by I the set of isomorphism classes of Galois

objects of C and let Xi, i ∈ I, be representatives. We define a partial order on I by defining i ≤ j if and only if Xj dominates

Xi, i.e., there exists a map Xj → Xi in C. Then, we have an isomorphism

G ∼= lim
I

AutC(Xi)

of profinite groups.

Proof. This follows since the fundamental functor F is in fact pro-representable by the inverse limit of the Galois objects

of C (subject to the above relation), see [SGA1, Exposé V.4 h)].

Now, letH : C → C′ be an exact functor (in the sense of Definition 2.2) between two Galois categories (C, F ) and (C′, F ′).

Set G := Aut(F ), G′ := Aut(F ′). Then, by [Stacks, Tag 0BN5], there exists an isomorphism of functors t : F ′ ◦H ∼= F ,

which determines a continuous group homomorphism ht : G′ → G by sending

φ′ = (φ′
X′)X′ ↦→ ht(φ′) := (tX ◦ φH(X) ◦ t−1

X )X

for X ∈ Ob(C), X ′ ∈ Ob(C′). If s : F ′ ◦H ∼= F is another isomorphism, we have hs(φ′) = r ◦ ht(φ′) ◦ r−1 for all φ′ ∈ G,

where r := s ◦ t−1 ∈ G. Hence H determines, up to composition with an inner automorphism of G, a continuous group

homomorphism h : G′ → G. The homomorphism h in turn gives a functor (G-FSets) → (G′-FSets) such that the obvious

diagram involving (G-FSets), (G′-FSets), C and C′ is 2-commutative. Now, let (C′′, F ′′) be a third Galois category and set

G′′ := Aut(F ′′). Let H ′ : C′ → C′′ be an exact functor giving a map h′ : G′′ → G′ as above. The framework presented in

[Stacks, Tag 0BTQ] relates exactness of the sequence

G′′ G′ G 1
h′ h

to properties of H ′ and H ′′.

Lemma 2.8. In the situation of the above paragraph, the following are equivalent :

(i) The map h : G′ → G is surjective,

(ii) H maps connected objects to connected objects, and

(iii) H is fully faithful.

Proof. See [Stacks, Tag 0BN6].
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Lemma 2.9. In the situation of the above paragraph, the following are equivalent :

(i) The kernel ker(h) is the smallest closed normal subgroup containing im(h′), and

(ii) an object X ′ of C′ is in the essential image of H ′ if and only if H(X ′) splits as a coproduct of final objects.

Proof. See [Stacks, Tag 0BS9].

Lemma 2.10. In the situation of the above paragraph, the following are equivalent :

(i) The image of h is normal, and

(ii) for every connected object X of C such that there is a morphism from the final object of C′′ to H(X) we have that H(X)

is isomorphic to a finite coproduct of final objects.

Proof. See [Stacks, Tag 0BTS].

Note that we can combine Lemmas 2.9 and 2.10 in order to show exactness in the usual group-theoretic sense (i.e.,

im(h′) = ker(h)). To see this, observe that im(h′) is closed, since any continuous map between compact Hausdorff spaces

is closed. This is because closed subspaces of compact spaces are quasi-compact, continuous maps preserve compactness

and compact subsets of Hausdorff spaces are closed. Therefore, if im(h′) is normal and ker(h) is the smallest closed

normal subgroup containing im(h′), it follows that im(h′) = ker(h).

2.2 Étale maps and the étale topology

Definition 2.11. A morphism f : Y → X of schemes is called étale, if it is smooth of relative dimension 0 in the sense of

[Stacks, Tag 02G2].

The notion of an étale morphism plays a central role in algebraic geometry and there are many different equivalent

definitions. A comprehensive list of facts about étale maps including some possible characterisations is given in [Stacks,

Tag 03PC].

We explicitly point out the following statement, which Grothendieck called the “fundamental property of étale morphisms”

[SGA1, Exposé I.5] :

Proposition 2.12. Let f : Y → X be a morphism of schemes. Then, f is an open immersion if and only if it is universally

injective and étale. In particular, f is an isomorphism if and only if it is a universal homeomorphism and étale.

Proof. See [Stacks, Tag 025F].

Another important fact is the following :

Lemma 2.13. Let X = Spec(k), where k is a field. Then, a morphism of schemes Y → X is étale if and only if

Y ∼=
∐︁
i∈I Spec(ki) such that for each i ∈ I, the ring ki is a field which is a finite separable extension of k. In particular, if

k is separably closed, Y is isomorphic to a coproduct of copies of Spec(k).

Proof. See [Stacks, Tag 02GL].
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While in this thesis, the property of being étale will be most important in combination with being finite, see Section 2.3

below, we will also need the étale topology of a scheme, which is constructed according to the same standard procedure

as the fpqc topology for example, see [Stacks, Tag 020M].

Definition and Lemma 2.14. An étale covering of a scheme U is a family {fi : Ui → U}i of étale morphisms such that

U =
⋃︁
i fi(Ui). Any Zariski covering is an étale covering and any étale covering is an fpqc covering. Étale coverings

satisfy the conditions of [Stacks, Tag 00VH]. Hence, for a fixed scheme X, the category of étale morphisms U → X

together with the set of étale coverings (over X) forms a site in the sense of [Stacks, Tag 00VH]. It is called the (small)

étale site of X, denoted by Xét. Here, we ignore set-theoretic difficulties and instead refer to [Stacks, Tag 00VI] on how

to resolve them.

Proof. See [Stacks, Tags 0217, 03PH, 02GP].

As for all sites, there is a natural way to define sheaves and cohomology on Xét, see e.g. [Stacks, Tags 03NK, 03NU].

Certain sheaves for the Zariski topology on X can be extended to sheaves on Xét. Among these are quasi-coherent

sheaves and also the structure sheaf OX , by setting OX(U → X) := Γ(U,OU ), see [Stacks, Tags 030G, 0303, 0305].

Definition 2.15. Let X be scheme. A geometric point of X is a morphism x̄ : Spec(k(x̄)) → X of schemes, where k(x̄) is

an algebraically closed field. Often, we will abuse notation and write x̄ = Spec(k(x̄)). An étale neighborhood of x̄ in X is

a pair (f, ū), where f : U → X is étale, and ū is a map Spec(k(x̄)) → U making

U

Spec(k(x̄)) X

f
ū

x̄

commute. A morphism of étale neighborhoods (U, ū) → (U ′, ū′) is a morphism h : U → U ′ of X-schemes such that

h ◦ ū = ū′. For ease of notation, we will usually omit ū and denote an étale neighborhood just by U .

The étale neighborhoods of a geometric point x̄→ X form a cofiltered category [Stacks, Tag 03PQ]. For a sheaf F on

Xét, one may define F x̄ := colim(U,ū) F(U), where (U, ū) run through the étale neighborhoods of x̄. We call F x̄ the

stalk of F at x̄. In case of the structure sheaf, we can relate stalks in the étale topology to stalks in the Zariski topology :

Proposition 2.16. Let x̄→ X be a geometric point of a scheme X with image x ∈ X. Let k(x) → k(x)sep → k(x̄) be the

separable algebraic closure of k(x) in k(x̄), which is a separable algebraic closure of k(x). Denote by OX,x̄ the stalk of the

structure sheaf on Xét at x̄ as constructed above and by OX,x the stalk of OX at x in the Zariski topology. Then, OX,x̄ is

isomorphic to the strict henselisation of OX,x with respect to k(x) → k(x)sep. In particular, the residue field of the local ring

OX,x̄ is isomorphic to k(x)sep.

Proof. See [Stacks, Tag 04HX].

For an overview on henselian rings and (strict) henselisation, see [Stacks, Tags 04GE, 0BSK].
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2.3 Finite étale maps

Definition 2.17. A morphism f : Y → X of schemes is called finite, if it is affine and for all affine opens U ⊆ X, the

ring map f ♭U : OX(U) → OY (f−1(U)) makes OY (f−1(U)) a finite OX(U)-module.

For a summary of properties of finite morphisms, see [Stacks, Tag 01WG]. Useful characterizations of being finite are

being of finite type and integral [Stacks, Tag 01WJ], or being proper and affine [Stacks, Tag 01WN].

Definition 2.18. Let X be scheme. We define FEt(X) to be the full subcategory of (Sch/X) whose objects are finite

étale morphisms Y → X. Often, we will also call these finite étale covers of X.

In this thesis, we will think of finite étale maps as analogues of (finite degree) topological covering spaces. This is justified

by the following key statement :

Proposition 2.19. Let f : Y → X be a finite étale morphism of schemes. For any geometric point x̄→ X, there exists an

étale neighbourhood x̄→ U → X such that Y ×X U is isomorphic to a finite coproduct
∐︁
Vi of schemes over U , where each

Vi → U is an isomorphism.

Proof. See [Stacks, Tag 04HN].

Hence, we might say informally that “in the étale topology, finite étale covers of X locally look like finite coproducts of

copies of X”. An important special case is :

Lemma 2.20. Let X = Spec(k), where k is a field. Then, a morphism of schemes Y → X is finite étale if and only if Y

is isomorphic to a finite coproduct of spectra of finite separable extensions of k. In particular, if k is separably closed, Y is

isomorphic to a finite coproduct of copies of Spec(k).

Proof. This follows from Lemma 2.13.

Definition 2.21. Let X be a connected scheme and x̄→ X a geometric point. Let Fx̄ : FEt(X) → (Finite sets) be the

functor mapping finite étale morphisms Y → X to the underlying topological space of the fibre Y ×X x̄, which is finite

and discrete by Lemma 2.20. We call the group π1(X, x̄) := Aut(Fx̄) the étale fundamental group of X. It comes with a

natural profinite topology, see Section 2.1.

Grothendieck proved in [SGA1, Exposé V.7] under an additional mild assumption on X :

Theorem 2.22. Let X be a connected scheme and x̄→ X a geometric point. Then the category FEt(X) together with the

fibre functor Fx̄, is a Galois category. In particular, Fx̄ induces an equivalence of categories

FEt(X) ∼= (Finite π1(X, x̄)-Sets).

Proof. See [Stacks, Tag 0BNB].

We explicitly point out the following consequence :
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Lemma 2.23. Let X be a connected scheme and f : Y → X a finite étale morphism. If there exists a geometric point x̄ of X

such that Yx̄ consists of only one point, then f is an isomorphism.

Proof. Since f is finite étale, Yx̄ is isomorphic to a finite coproduct of copies of x̄ by Lemma 2.13. Hence the assumption

implies that f is a bijection after basechange to x̄. Since X is connected, FEt(X) is a Galois category and so the fibre

functor Fx̄ reflects isomorphisms. The claim follows after interpreting f : Y → X and id : X → X as finite étale covers

of X and f an X-morphism between Y and X.

It is worthwile to note :

Lemma 2.24. Let X be a connected scheme. The connected objects of FEt(X) are precisely the connected finite étale covers

of X.

Proof. See the proof of [Stacks, Tag 0BNB].

Remark 2.25. Let X → S be a morphism of connected schemes and let s̄→ S and x̄→ X be geometric points.

Denote by
H : FEt(S) −→ FEt(X)

T ↦−→ T ×S X

(g : T → T ′) ↦−→ (g ×S idX : T ×S X → T ′ ×S X)

the base change functor along X → S. As it is an exact functor, it induces a non-canonical homomorphism

π1(X, x̄) → π1(S, s̄)

as described in Section 2.1. However, if we consider x̄ a geometric point of S via the map x̄→ X → S, then H induces a

canonical homomorphism

π1(X, x̄) → π1(S, x̄).

So see this, denote by Gx̄ the geometric fibre functor of FEt(S), i.e., the base change functor along x̄→ X → S, and

denote by Fx̄ the geometric fibre functor on FEt(X). Then, for any finite étale cover T → S, the universal property of

the fibre product gives a canonical isomorphism T ×S x̄ ∼= (T ×S X)×X x̄, functorial in T . This gives an isomorphism of

functors t : Gx̄ ∼= H ◦ Fx̄, inducing a homomorphism of fundamental groups as described in Section 2.1.

2.4 Examples of étale fundamental groups

Example 2.26. Let X := Spec(k) be the spectrum of a field k. Then the étale fundamental group of X is isomorphic to

the absolute Galois group of k. More precisely, any geometric point x̄→ X determines a separable closure ksep of k and

canonical isomorphisms

π1(X, x̄) ∼= lim
k′|k finite Galois

Gal(k′ | k) ∼= Gal(ksep | k) (6)
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of topological groups. To see this, one combines Lemma 2.7 with the observation that the Galois objects of FEt(X) are

precisely the spectra of finite Galois extensions of k. This follows from an argument we will use later in the proof of 4.12.

In particular, π1(X, x̄) is trivial if k is separably closed. Also, if k is a finite field, π1(X, x̄) is isomorphic to the profinite

integers ˆ︁Z = limn Z /nZ ∼=
∏︁
l prime Zl.

Moreover, the fact that the homomorphism π1(X, x̄) → π1(X, x̄
′) for two geometric points x̄, x̄′ of X is not canonical,

see 2.25, corresponds precisely to the fact that k-morphisms between separable closures of k are non-canonical.

Further note that in the situation X = Spec(k), Theorem 2.22, restricted to connected covers, recovers the fundamental

theorem of infinite Galois theory for k → ksep, at least for finite subextensions, cf. [Stacks, Tag 0BML].

Example 2.27. For integral normal schemes X, the étale fundamental group π1(X, x̄) can be expressed as the Galois

group of some Galois extension of the function field K of X, see [Stacks, Tag 0BQM]. After some additional non-trivial

steps, one can deduce that π1(P1
k, x̄)

∼= π1(Spec(k)) for any field k and π1(A1
k, x̄)

∼= π1(Spec(k)) for any field k of

characteristic 0, see [Len85, 6.22,6.23].

We explicitly point out that the latter not true in characteristic p > 0, while there is still a surjective map π1(A1
k, x̄) ↠

π1(Spec(k)). Roughly speaking, the reason for this is the existence of Artin-Schreier coverings of A1
k. Those correspond

to ring maps

R→ R[X]/(Xp −X + f),

whereR = k[T ] and f ∈ R. Note thatR→ R[X]/(Xp−X+f) is indeed an étale ring map since ∂(Xp−X+f)/∂X = −1,

as k has characteristic p. IfR = k is a field of characteristic p, these coverings correspond to Artin-Schreier field extensions

of k. Also see [Len85, 6.23, Ex. 6.28] and Example 3.14 below.

Example 2.28 (cf. [GM22, Corollary (10.37)]). Let X be an abelian variety over an algebraically closed field k. Regard

0 : Spec(k) → X as a geometric point of X. Then, we have a canonical isomorphism

π1(X, 0) ∼= lim
n
X[n](k), (7)

where X[n] denotes the n-torsion of X and X[n](k) its k-valued points. The right hand side of (7) can be further

described (at least in characteristic zero) as the product of the l-adic Tate modules of X. In particular, if char(k) = 0 and

X is an elliptic curve over k, we get π1(X, 0) ∼=
∏︁
lprime(Zl×Zl) ∼= ˆ︁Z× ˆ︁Z.

Example 2.29. Another result worth mentioning is that ifX is a variety over C, its étale fundamental group is isomorphic

to the profinite completion of the topological fundamental group of the analytification of X, see [SGA1, Exposé XII,

Corollaire 5.2]. This also explains why the étale fundamental group of an elliptic curve over C is isomorphic to ˆ︁Z× ˆ︁Z :

The latter is the profinite completion of Z×Z, the topological fundamental group of the torus.

For more examples of étale fundamental groups, we refer to [Len85, Section 6].
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2.5 Extending finite étale covers of geometric points

In this thesis, we will face the problem of “extending” finite étale covers of a geometric point x̄ (hence just some finite set

of copies of x̄) to an étale neighborhood x̄→ U of x̄. For this, we will use the following highly non-trivial statements :

Theorem 2.30. Let g : X → S be a morphism of schemes. In the following cases, base change along g induces an equivalence

of categories FEt(S) ∼= FEt(X) :

(a) g is a universal homeomorphism, or

(b) S = Spec(A), X = Spec(A/I), where (A, I) is a henselian pair, and g comes from the projection A→ A/I.

Proof. For the definition of a henselian pair, see [Stacks, 09XE]. For the proof, see [Stacks, Tags 0BQN, 09ZL].

Almost from the definition of the stalk of the structure sheaf at a geometric point, see Section 2.2, we get :

Lemma 2.31. Let x̄→ X be a geometric point of a scheme X. Then we have an isomorphism of schemes

Spec(OX,x̄) ∼= lim
(U,ū)

U,

where (U, ū) runs through the affine étale neighborhoods of x̄ in X.

Proof. Since we only consider affine étale neighborhoods, the above limit exists in the category of schemes and

lim
(U,ū)

U ∼= Spec(colim(U,ū) Γ(U,OU )) ∼= Spec(OX,x̄),

see [Stacks, Tag 01YW].

Note that any geometric point x̄→ X factors through Spec(OX,x̄) → X and hence by the lemma above, induces a map

x̄→ lim(U,ū) U . It turns out that base change along this map induces an equivalence of categories of finite étale covers.

Lemma 2.32. Let x̄→ X be a geometric point of a scheme X. Base change induces an equivalence of categories

FEt(lim(U,ū)(U)) ∼= FEt(x̄),

where on the right hand side, we use the shorthand notation x̄ = Spec(k(x̄)) and where (U, ū) runs over the affine étale

neighborhoods of x̄ in X.

Proof. By Lemma 2.31, the category on the left hand side is equivalent to FEt(Spec(A)), whereA := OX,x̄. By Proposition

2.16, A is a strictly henselian local ring, in particular (A,m) is a henselian pair, where m is the unique maximal ideal of

A, and the residue field κ := A/m is separably closed. By Theorem 2.30(b), the category FEt(Spec(A)) is equivalent to

FEt(Spec(κ)). Then, since κ is separably closed, FEt(Spec(κ)) is equivalent to the category of finite sets, and the same

holds for FEt(x̄).
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In the above situation, the category FEt(lim(U,ū)(U)) can be further written as a 2-colimit of the finite étale covers of

the individual U . First, we review the definition of a 2-colimit given in [SW20, Remark 7.4.7] :

Definition and Remark 2.33. Let I be a filtered index category, and F a functor from I into the category of small

categories, i.e., for each object i ∈ I, we have a small category F (i) =: Ci, and for each morphism i→ j in I, a functor

F (i→ j) =: Fij : Ci → Cj such that the usual compatability conditions are satisfied. The objects of C := 2-colim Ci are

defined as the disjoint union of all sets of objects Ob(Ci). For two objects Xi, Xj of C belonging to Ob(Ci) and Ob(Cj),

respectively, we define

HomC(Xi, Xj) := colimi,j→k HomCk
(Fik(Xi), Fjk(Xj))

= {fk ∈ HomCk
(Fik(Xi), Fjk(Xj)) | k ∈ Ob(I) such that there exist morphisms i→ k, j → k}/ ∼,

where

fk ∼ fl :⇔ ∃m ∈ Ob(I) and morphisms k → m, l → m such that Fkm(fk) = Flm(fl).

An identity morphism Xi → Xi is defined as the class of the respective identity morphism in Ci and composition of

morphisms is defined as first choosing representatives, passing to a common third index objectm and then composing in

Cm (this is well-defined by the definition of the sets morphisms above). Observe that with these definitions, two objects in

C are isomorphic if and only if there exists an common third index objectm such that the two objects are isomorphic after

passing to Cm, cf. the description of an ”ordinary” filtered colimit of sets. Therefore, the ”inclusion” functors Gi : Ci → C

form a 2-cocone from the diagram F to C, i.e., for any i → j, we have isomorphisms of functors gij : Gj ◦ Fij ∼= Gi.

Further, it can be checked that C has the following universal property : For any 2-cocone ((Hi)i, (hij)i→j) from F to a

category T , there exists a functor K : C → T , unique up to isomorphism of functors, such that for any index i, we have

isomorphisms Hi ∼= K ◦Gi.

Lemma 2.34. Let S = limSi be a limit of schemes with affine transition morphisms. Then, base change induces an

equivalence of categories

FEt(S) ∼= 2-colimi FEt(Si).

Proof. Restrict [Stacks, Tag 0EYL] to finite étale covers.

Combining this with Lemma 2.32, we get an equivalence

2-colim(U,ū) FEt(U) ∼= FEt(x̄).

This equivalence comes from the 2-cocone of base change functors along x̄→ U . So in particular, by essential surjectivity,

we have that for any finite étale Y cover of x̄, there exists an étale neighborhood V of x̄ and a finite étale cover Z → V

such that Y ∼= Z ×V x̄. Fully faithfulness says that if Z → U,Z ′ → U ′ are two finite étale covers of affine étale

neighborhoods U , V of x̄ such that Z ×U x̄ ∼= Z ′ ×U ′ x̄, there exists a third étale neighborhood x̄ → U ′′ → U ×X U ′

such that Z and Z ′ agree after base change to U ′′.
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3 Künneth formula

Let us recall from the introduction the Künneth formula for the étale fundamental group as claimed by Scholze and

Weinstein [SW20, Lemma 16.1.2] :

Proposition 1.2. Let X1, X2 be connected qcqs schemes over an algebraically closed field k such that X1 → k is π1-proper.

Then, X1 ×k X2 is connected and for any geometric point z̄ of X1 ×k X2 (and thus of X1 and X2), the natural map

π1(X1 ×k X2, z̄)
∼−→ π1(X1, z̄)× π1(X2, z̄)

is an isomorphism of topological groups.

In the above Proposition, by the “natural map”, we mean the map induced by the canonical maps π1(X1 ×k X2, z̄) →

π1(X1, z̄) and π1(X1×kX2, z̄) → π1(X2, z̄) induced by the base change functors alongX1×kX2 → X1 andX1×kX2 →

X2 in the sense of Remark 2.25. The goal of this section is now to prove Proposition 1.2. The reason why we are doing

this is that our proof will serve as a blueprint for a large part of the proof of Drinfeld’s Lemma : As we will see in Section

4.3 below, any scheme over Fp satisfies a “Drinfeld analogue” of π1-properness. Then, in Sections 4.4, 4.5 and 4.6, we

will argue analogously as for Proposition 1.2. First, we observe that the statement about connectedness of X1 ×k X2

already follows from well-known facts about geometrically connected schemes :

Lemma 3.1. The fibre product of any two connected schemes over an algebraically closed field is connected.

Proof. A connected scheme over an algebraically closed field is geometrically connected by [Stacks, Tag 0363] and the

product of a geometrically connected scheme with a connected scheme is connected by [Stacks, Tag 0385].

The main challenge in the proof of Proposition 1.2 is of course the Künneth formula. But first, let us introduce the notion

of π1-properness.

3.1 π1-properness

We adopt the following definition from [Ked19, Def. 4.1.12] :

Definition 3.2. Let X → k be a connected scheme over an algebraically closed field k. We say, X is π1-proper if for

any extension of algebraically closed fields k → k′, base change along Spec(k′) → Spec(k) induces an equivalence of

categories

FEt(X) ∼= FEt(Xk′),

where Xk′ := X ×k Spec(k′).

Note that, in the above Definition, Xk′ is also connected by Lemma 3.1, hence both FEt(X) and FEt(Xk′) are Galois

categories. The terminology “π1-properness” is motivated by the highly non-trivial fact that proper maps are π1-proper :
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Proposition 3.3. A connected proper scheme over an algebraically closed field is π1-proper.

Proof. See [Stacks, Tag 0A49].

Also, we mention the following powerful result in case of characteristic 0 :

Proposition 3.4. Any connected scheme over an algebraically closed field of characteristic 0 is π1-proper.

Proof. See [SW20, Section 16.1] or [Ked19, Lemma 4.1.16].

In particular, not any π1-proper morphism is proper.

Remark 3.5. The property of being π1-proper is necessary for the Künneth formula to hold, in the following sense :

Suppose that X1 is a scheme over an algebraically closed field k, such that for any scheme X2 over k, we have

π1(X1×kX2, z̄) ∼= π1(X1, z̄)×π1(X2, z̄), thenX is π1-proper. This follows by applying the assumption toX2 := Spec(k′),

which has a trivial fundamental group and using Theorem 2.5.

The goal of the rest of this section is to show that the following statement still holds if properness is relaxed to

π1-properness :

Lemma 3.6. Let X → S be a proper qcqs morphism of schemes. Then, for any geometric point s̄→ S, base change induces

an equivalence of categories

2-colim(U,ū) FEt(X ×S U) ∼= FEt(X ×S s̄), (8)

where (U, ū) runs over the (affine) étale neighborhoods of s̄ in S.

Proof. Denote by R := Spec(OS,s̄) the strictly henselian local ring at s̄ and by κ. It is a highly non-trivial statement that

the equivalence from Theorem 2.30(b) remains true after proper base change, i.e., base change induces an equivalence

FEt(X ×S Spec(R)) ∼= FEt(X ×S Spec(κ)),

see [Stacks, Tag 0GS2]. From this, one concludes the equivalence (8) by the same arguments as for Lemmas 2.32 and

2.34, noting that

X ×S
(︃
lim
(U,ū)

U

)︃
∼= lim

(U,ū)
(X ×S U),

as base change commutes with limits.

Now, Lemma 3.7 below shows that Lemma 3.6 still holds if X → S is a projection X1 ×k X2 → X2, where X1 → k is

π1-proper :

Lemma 3.7. Let X1 be a connected π1-proper qcqs scheme over an algebraically closed field k. Let X2 be a second scheme

over k and denote by X := X1 ×k X2 → X2 the base change of X1 → Spec(k) along X2 → Spec(k). Let x̄ → X2 be a

geometric point of X2. Then, base change induces an equivalence of categories

2-colim(U,ū) FEt(X ×X2
U) ∼= FEt(X ×X2

x̄), (9)

20

https://stacks.math.columbia.edu/tag/0A49
https://stacks.math.columbia.edu/tag/0GS2


where (U, ū) runs over the (affine) étale neighborhoods of x̄ in X2.

Proof. First of all, by Lemma 2.34 and since base change commute with limits, we have an equivalence

2-colim(U,ū) FEt(X ×X2
U) ∼= FEt(X ×X2

lim(U,ū)U).

Hence, it suffices to show that base change along

X ×X2
x̄→ X ×X2

Z

is an equivalence, whereZ := lim(U,ū)U . For this, we can canonically identifyX×X2
x̄ ∼= X1×k x̄ andX×X2

Z ∼= X1×kZ.

Essential surjectivity : By π1-properness, any finite étale cover Y → X1×k x̄ descends to a finite étale cover of Y ′ → X1.

Then, Y ′ ×k Z is a finite étale cover of X ×X2
Z and its base change along X ×X2

x̄→ X ×X2
Z is isomorphic to Y .

Faithfulness : Note that X1 ×k Z and X1 ×k x̄ are connected by Lemma 3.1. Now, observe that base change of finite

étale covers along any map T → S of connected nonempty schemes is faithful : Choose a geometric point t̄→ T → S,

then FEt(T ) and FEt(S) together with the geometric fibre functors Gt̄, Ft̄, respectively, are Galois categories. Hence Gt̄
and Ft̄ are faithful, see Section 2.1. As Ft̄ factors through base change along T → S, we see that base change along

T → S is faithful.

Fullness : The main challenge turns out to be fullness. We sketch a proof based on answers by Peter Scholze to a question

the author submitted on MathOverflow. 1 First, set R := OX2,x̄ and denote by κ its residue field. By the same arguments

as in the proof of 2.32, fullness boils down to fullness of base change along X1 ×k Spec(κ) → X1 ×k Spec(R).

Now, one uses the fact that finite étale morphisms satisfy v-descent, which can be concluded from [HS21, Theorem 1.5]

by showing that the properties “quasi-compact” and “satisfying the valuative criterion for properness” are v-local on

the target, noting that a morphism is finite étale if and only if it is étale, separated, quasi-compact and satisfying the

valuative criterion for properness. Hence, one can reduce to the case that R is a valuation ring with algebraically closed

fraction field K. In particular, R is a normal integral domain [Stacks, Tag 00IC].

We further use that finite étale morphisms satisfy h-descent, see [Stacks, Tag 02VY] and [SGA1, Théorème IX.4.12], in

order to reduce to the case that X1 is normal and affine. Since k is algebraically closed, X is in fact geometrically normal

by [Stacks, Tag 0380] and hence, both X1 ×k Spec(R) and X1 ×k Spec(K) are normal schemes by [Stacks, Tag 06DG].

Then, one can show by similar arguments as for Lemma 4.39 below that base change

FEt(X1 ×k Spec(R)) → FEt(X1 ×k Spec(K))

is fully faithful. Now, since X → k is π1-proper and K is algebraically closed, base change induces equivalences of

categories

FEt(X1 ×k Spec(κ))) ∼= FEt(X) ∼= FEt(X1 ×k Spec(K)).

1. See https://mathoverflow.net/questions/432160/künneth-formula-for-pi-1-proper-morphisms (last accessed on 2022-10-20)
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Hence we conclude that base change

FEt(X1 ×k Spec(R)) → FEt(X1 ×k Spec(κ))

is fully faithful and in particular full.

3.2 Homotopy exact sequence for X1 ×k X2 → X2

Proposition 3.8. In the situation of Proposition 1.2, for any geometric point x̄ of X2 and any geometric point z̄ of X1 ×k x̄

(and thus also of X1 ×k X2 and X2), base change induces an exact sequence

π1(X1 ×k x̄, z̄) π1(X1 ×k X2, z̄) π1(X2, z̄) 1 (10)

of topological groups.

In analogy to topology, we will call the exact sequence from the above proposition a “homotopy exact sequence” with

respect to X1 ×k X2 → X2. Note that X1 ×k x̄ is canonically isomorphic to the base change of X1 ×k X2 → X2 along

x̄→ X2.

Lemma 3.9. If Proposition 3.8 holds, then also Proposition 1.2.

Proof. Lemma 3.1 implies the first statement of Proposition 1.2. In particular, X1 ×k X2 is connected, such that

π1(X1 ×k X2, z̄) is defined. By Proposition 3.8 and since X1 is π1-proper, we get a commutative diagram

π1(X1 ×k x̄, z̄) π1(X1 ×k X2, z̄) π1(X2, z̄) 1

π1(X1, z̄),

∼=

where the top row is an exact sequence of groups and π1(X1 ×k z̄, z̄) → π1(X1, z̄) is an isomorphism. The triangle

commutes, since all group homomorphisms come from base change and the projection X1 ×k x̄→ X1 factors through

X1 ×k X2 as X1 ×k x̄ is meant with respect to x̄→ X2 → k.

Taking the inverse of π1(X1 ×k x̄, z̄) → π1(X1, z̄), this implies that π1(X1, z̄) → π1(X1 ×k x̄, z̄) → π1(X1 ×k X2, z̄) →

π1(X1, z̄) is the identity. So we get an exact sequence

π1(X1, z̄) π1(X1 ×k X2, z̄) π1(X2, z̄) 1

of groups where π1(X1, z̄) → π1(X1 ×k X2, z̄) → π1(X1, z̄) is the identity. Then the maps from the above sequence

induce an isomorphism of groups π1(X1 ×kX2, z̄) ∼= π1(X1, z̄)×π1(X2, z̄). Note that this map is in fact an isomorphism

of topological groups since any continuous map between quasi-compact Hausdorff spaces is closed, and hence any

bijective continuous map is a homeomorphism.
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To prove Proposition 3.8, we use the material presented in section 2.1. First, we show exactness at π1(X2, z̄).

Lemma 3.10. Under the assumptions of Proposition 1.2, the base change of any connected finite étale cover of X2 to

X1 ×k X2 is connected. In particular, the sequence (10) is exact at π1(X2, z̄).

Proof. Let Y be a connected finite étale cover of X2. There is an isomorphism Y ×X2
(X1 ×k X2) ∼= X1 ×k Y . The latter

scheme is connected by Lemma 3.1. Now, by Lemmas 2.8 and 2.24, the sequence (10) is exact at π1(X2, z̄).

The main challenge of the proof of Proposition 3.8 is exactness at π1(X1 ×k X2, z̄). For that, we will use Lemmas 2.9

and 2.10. In order to apply Lemma 2.9, we need some way to descend finite étale covers of X1 ×k X2 to finite étale

covers of X2. The “right” way to do this is described in the following lemma :

Lemma 3.11. Let X → S be a morphism of connected schemes with geometrically connected fibres such that the base

change of any connected finite étale cover of S along X → S is connected. Assume that for any finite étale Y → X, there

exists a finite étale morphism T → S and a morphism Y → T with geometrically connected fibres such that

Y T

X S

(11)

commutes. Then for any geometric point s̄→ S and any geometric point z̄ → X ×S s̄ (hence also of X and S), the sequence

π1(X ×S s̄, z̄) π1(X, z̄) π1(S, z̄)

induced by base change is exact.

Proof. Our proof is inspired by the proofs of [Stacks, Tag 0BUM] and [MA67, Theorem 6.3.2.1]. By Lemmas 2.9 and

2.10, it suffices to show the following statement for any finite étale cover Y → X :

If the base change Y ×X (X ×S s̄) ∼= Y ×S s̄ has a connected component Z isomorphic to X ×S s̄ (i.e., the map

Z → Y ×S s̄→ X ×S s̄ is an isomorphism), diagram (11) is cartesian.

So let Y → X be a finite étale morphism. Since base change of schemes commutes with finite coproducts, and Y splits

as the finite coproduct of its connected components, we may assume that Y is connected. Choose a finite étale cover

T → S as in the assumptions of the lemma. Since Y → T has geometrically connected (and hence non-empty) fibres, it

is surjective and therefore, also T is connected. Set Y ′ := T ×S X. Let p : Y → Y ′ be the unique morphism making

Y

Y ′ T

X S

p

□

(12)
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commute. We will show that p is an isomorphism. First, observe that p is finite étale as a morphism between finite étale

covers of X, see [Stacks, Tags 035D and 02GW]. By assumption, base changes of connected finite étale covers of S along

X → S are connected. So, since T is connected, also Y ′ is connected. As a finite étale morphism, p is both open and

closed, hence connectedness of Y ′ implies that p is surjective. Now, in light of Lemma 2.23 and since Y ′ is connected, it

suffices to show that there exists some geometric point of Y ′ whose fibre under p consists of a single point. First, we

apply the base change functor −×S s̄ to diagram (12) and get

Ys̄

Y ′
s̄ Ts̄

Xs̄ s̄.

ps̄

□

(13)

It suffices to show that there is a geometric point of Y ′
s̄ whose fibre under ps̄ consists of a single point, since

Ys̄ Y

Y ′
s̄ Y ′

is cartesian. By assumption, there exists a connected component Z of Ys̄ = Y ×X (X×S s̄) such that Z → Ys̄
ps̄→ Y ′

s̄ → Xs̄

is an isomorphism. By Lemma 2.4, there exists a unique connected component Z ′ of Y ′
s̄ such that Z → Ys̄

ps̄→ Y ′
s̄ factors

through Z ′ → Y ′
s̄ , i.e., we have a commutative square :

Z Ys̄

Z ′ Y ′
s̄ .

ps̄ (14)

Next, we show that this square is cartesian. Again by Lemma 2.4, a base change of ps̄ along a connected component

of Y ′
s̄ is isomorphic to a finite coproduct of connected components of Ys̄. Since ps̄ is surjective as a base change of

the surjective map p, none of these coproducts is empty. We will show in the following that Ys̄ and Y ′
s̄ have the same

number of connected components, from which we conclude that each of the coproducts consists of a single component.

In particular, the square (14) is cartesian.

First observe that, since T → S is finite étale, Ts̄ = T ×S s̄ splits as a finite coproduct
∐︁n
i=1 s̄ of copies of s̄. Now, since

base change commutes with finite coproducts, the base change of a finite coproduct
∐︁n
i=1A of copies of a base scheme A

along any morphism B → A of schemes is isomorphic to
∐︁n
i=1B. Therefore, Y ′

s̄ is isomorphic to the coproduct
∐︁n
i=1Xs̄

of n copies of Xs̄. Since by assumption Xs̄ is connected, this is the decomposition of Y ′
s̄ into connected components.

On the other hand, we have an isomorphism Ys̄ = Y ×T (T ×S s̄) and, similarly as above, Ys̄ is isomorphic to the finite

coproduct
∐︁n
i=1(Y ×T s̄). Since Y → T has geometrically connected fibres, Y ×T s̄ is connected. Hence

∐︁n
i=1(Y ×T s̄)

is the decomposition of Y ′
s̄ into connected components. Therefore, both Ys̄ and Y ′

s̄ have n connected components and
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the square (14) is cartesian.

Moreover, by the above description of the connected components of Y ′
s̄ , the map Z ′ → Y ′

s̄ → Xs̄ is in fact an isomorphism.

Since also Z → Ys̄
ps̄→ Y ′

s̄ → Xs̄ is an isomorphism by assumption, we conclude that Z → Z ′ is an isomorphism. Now

choose a geometric point z̄ → Z ′. Since being an isomorphism is stable under base change and since (14) is cartesian,

ps̄ is an isomorphism after base change along z̄ → Z ′ → Y ′
s̄ .

In the situation of Lemma 3.11, if we additionally assume that X → S is proper, the factorization which is required in

the lemma can be realized as the Stein factorization of the proper map Y → X → S, see [Stacks, Tag 03H2]. Hence, we

are left to establish a similar statement under the relaxed assumption of π1-properness (or more precisely, if X → S is a

base change of a π1-proper map.)

3.3 Stein factorization

Lemma 3.12. Suppose the assumptions of Proposition 1.2 hold. Set X := X1 ×k X2. For all finite étale Y → X, there

exists a scheme T under Y and over X2, such that

Y T

X X2

(15)

commutes, Y → T has geometrically connected fibres, T → X2 is finite étale and diagram (15) has the following universal

property : For any T ′ under Y and finite étale over X2, such that

Y T ′

X X2

(16)

commutes, there is a unique morphism T → T ′ such that

Y T T ′

X X2

(17)

commutes. In particular, T is unique up to unique isomorphism.

Example 3.13. In the situation of Lemma 3.12, assume that X2 = x̄ is a geometric point.

To see that diagram (15) exists, first note that X = X1 ×k x̄ is connected by assumption, hence FEt(X) is a Galois

category. In particular, Y splits as the coproduct of finitely many connected components. Now, we find T as the coproduct

of copies of x̄, with one copy for each connected component of Y . Then the map Y → T has geometrically connected

fibres and T → X2 is finite étale.

Also the universal property of a diagram (15) is immediate if X2 = x̄ is a geometric point : Each T ′ as in diagram
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(16) splits as a finite coproduct of copies of x̄. Since Y → T has geometrically connected fibres and is open (since T

is discrete), it has to induce a bijection between the connected components of Y and T , which are the copies of x̄.

Meanwhile, being continuous, Y → T ′ has to map connected components to points, while not necessarily inducing a

bijection. So we indeed get a unique morphism T → T ′ over x̄ turning Y → T into Y → T ′ by mapping points to points

in the right way.

Roughly, the proof idea of Lemma 3.12 is to work étale locally on X2 by combining Example 3.13 with Lemmas 2.32

and 3.7. We will first show the universal property, which will enable us to glue.

Proof of Lemma 3.12. Our argument follows [SW20, Prop 16.3.3].

Universal property :

We first prove the second claim, i.e., that a diagram (15) has the desired universal property. Let

Y T ′

X X2

be a commutative square, where T ′ → X2 is finite étale. We want to show that there exists a unique morphism T → T ′

over X2 and under Y making diagram (17) commute.

First, to prove uniqueness, let f : T → T ′ and g : T → T ′ be maps fitting into diagram (17). In particular, f and g are

maps between finite étale covers of X2. By Example 3.13, f and g agree after base change along any geometric point

x̄→ X2. Since the fundamental functor of any Galois category is faithful by [Stacks, Tag 0BN0], f and g are equal.

Next, we prove existence of the morphism T → T ′ making diagram (17) commute. First, from Example 3.13, we also

conclude existence after base change of diagram (17) along any geometric point x̄→ X.

Now by Lemma 2.32, there exist an étale neighborhood x̄→ U → X2 and a morphism T ×X2
U → T ′ ×X2

U over U

which, after base change to x̄ equals T ×X2
x̄→ T ′ ×X2

x̄. As the composition of commutative diagrams,

Y ×X2
U T ×X2

U T ′ ×X2
U

X ×X2
U U

commutes. Also,

Y ×X2
U T ×X2

U T ′ ×X2
U

commutes, since, as described in the above paragraph, equality of Y ×X2
U → T ′ ×X2

U and Y ×X2
U → T ×X2

U →

T ′ ×X2
U can be checked after base change to x̄, where the maps are equal by construction.

In this way, we get an étale covering {Ui → X2}i of X2 together with maps T ×X2
Ui → T ′ ×X2

Ui. Since the properties

of being finite étale and having geometrically connected fibres are both stable under base change and by the uniqueness

above, we have a unique morphism T ×X2
(Ui ×X2

Uj) → T ′ ×X2
(Ui ×X2

Uj) after base change to the “intersections”

Ui ×X2
Uj .
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Meanwhile, by [Stacks, Tag 040L],

U ↦→ HomU (T ×X2
U, T ′ ×X2

U)

satisfies the sheaf condition for the fpqc topology (hence in particular for the étale topology). Therefore, we can glue

the maps T ×X2
Ui → T ′ ×X2

Ui to a unique morphism T → T ′ over X2. The obtained morphism T → T ′ is also a

morphism under Y , by base change to x̄ as before.

Existence of T is étale-local :

Next, we claim that the existence of a diagram (15) with the claimed properties is equivalent to the following statement :

For any geometric point x̄ of X2, there is an étale neighborhood x̄→ U → X2 of x̄ such that there exists a commutative

diagram
Y ×X2

U T

X ×X2
U U

(18)

with the properties stated in the lemma. To see this, first note that the universal property shown above implies that

such T is unique up to unique isomorphism. Now because being finite étale and having geometrically connected fibres

are both stable under base change, for any étale covering {Ui → X2}i, maps Ti → Ui as in (18) canonically give rise

to a descent datum relative to {Ui → X2}i in the sense of [Stacks, Tag 023W]. (For any product Ui ×X2
Uj , there is

a unique isomorphism Ti ×X2
Uj → Ui ×X2

Tj making the obvious diagram commute, and because of uniqueness,

these isomorphisms trivially satisfy the cocycle condition). Now, since any descent datum of schemes finite over an fpqc

covering is effective by [Stacks, Tag 0245], there is a unique T over X2 such that base change to Ui gives Ti. Moreover,

the morphisms Y ×X2
Ui → Ti ∼= T ×X2

Ui uniquely glue to a morphism Y → T again by [Stacks, Tag 040L]. The

glued morphism Y → T has geometrically connected fibres, since a geometric point of T factors through some Ti and

Y ×X2
Ui → Ti has geometrically connected fibres. Because being finite étale is fpqc local on the target, the map T → X2

is finite étale. Now, for the rest of the proof, fix a geometric point x̄→ X2.

Existence of T :

Consider the following diagram :
Y ×X2

x̄ X ×X2
x̄ x̄

Y X X2

X1 k

All squares are cartesian and there is a canonical isomorphism X ×X2
x̄ ∼= X1 ×k x̄ =: X1,x̄. So Y ×X2

x̄→ X1,x̄ is a

finite étale cover of X1,x̄. By π1-properness of X1 → k, there exists a finite étale coverW → X1 such that Y ×X2
x̄ is

isomorphic toW ×k x̄.

By Lemma 3.7, applied to X → X2, there exists an étale neighborhood U of x̄ in X2 such that Y ×X2
U ∼=W ×k U .

Now, letW =
∐︁
Wi be the (finite) decomposition ofW into connected components. Since for schemes, base change

commutes with finite coproducts, we have Y ×X2
U = (

∐︁
Wi) ×k U =

∐︁
(Wi ×k U). Set T :=

∐︁
(U, i), where (U, i)
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denotes the i-th copy of U . Consider the square

∐︁
(Wi ×k U) T

X1 ×k U U

(19)

Here, the map
∐︁
(Wi ×k U) → T =

∐︁
(U, i) denotes the one induced by the projections Wi ×k U → (U, i) composed

with the coprojections (U, i) →
∐︁
(U, i). The map

∐︁
(Wi ×k U) → X1 ×k U means the canonical one induced by the

finite étale coversWi ×k U → X1 ×k U . The map
∐︁
(U, i) → U means the one induced by the identity (U, i) → U .

Diagram (19) commutes, since for all i,
Wi ×k U U

X1 ×k U U

idU

commutes. Diagram (19) also fulfills the claimed properties : First, the map
∐︁
(Wi ×k U) → T has geometrically

connected fibres : Let t̄→ T =
∐︁
(U, i) be a geometric point. Since the underlying topological space of a coproduct of

schemes is the disjoint union of the underlying topological spaces, t̄ maps to a unique copy (U, j) of U . Then the fibre

(
∐︁
(Wi ×k U))t̄ is isomorphic toWj ×k t̄, since in the diagram

Wj ×k t̄ t̄

Wj ×k U (U, j)

∐︁
(Wi ×k U)

∐︁
(U, i),

both squares are cartesian. For the lower square, observe that (U, j) →
∐︁
(U, i) is an open immersion and the base

change of an open subscheme along some map can be identified with the open subscheme defined by the preimage

under that map, see e.g. [Stacks, Tag 01JR]. Now,Wj ×k t̄ is connected by Lemma 3.1. Finally, we have that T → U is

finite étale, since it is a finite coproduct of isomorphisms onto U .

Finally, we may combine Lemmas 3.10, 3.11 and 3.12 to prove Proposition 1.2.

Proof of Proposition 1.2. Lemma 3.10 shows exactness at π1(X2, z̄). Lemma 3.12 and again Lemma 3.10 show that

the projection X := X1 ×k X2 → X2 satisfies the assumptions of Lemma 3.11. Hence we conclude exactness at

π1(X1 ×k X2, z̄).
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3.4 Failure in positive characteristic

In Example 2.27, we already stated that the étale fundamental group of the affine line over any field k of characteristic p

behaves differently than in the case of characteristic 0. More precisely, π1(A1
k, x̄) is “strictly larger” than π1(Spec(k), x̄)

in the sense that the latter is a non-trivial quotient of the former. In fact, the affine line also serves as a counterexample

for π1-properness in characteristic p. In particular, by Remark 3.5, it provides a counterexample for the Künneth formula.

The reason for this is again related to Artin-Schreier theory.

Example 3.14 (cf. [SW20, Example 16.1.1]). One way to examine the étale fundamental group of a connected scheme

X is to relate it to an étale cohomology group of some sheaf on X. More precisely, suppose GX is the constant sheaf on

the étale site Xét of X with values in a finite abelian group G. By [Mil13, Example 11.3], for any geometric point x̄ of

X, there is an isomorphism

Hom(π1(X, x̄), G) ∼= H1
ét(X,GX), (20)

of abelian groups where the left hand side denotes the group of continuous group homomorphisms π1(X, x̄) → G, where

G is given the discrete topology. Now, if X = Spec(R) is a connected affine scheme in characteristic p, we can explicitly

describe H1
ét(X,GX). For this, consider the following exact sequence of sheaves of abelian groups on Xét, which is

referred to as the Artin-Schreier sequence of X, cf. [Mil13, Example 7.9 (b)] :

0 Z /pZ
X

Ga,X Ga,X 0.
F−id

Here, Z /pZ
X

denotes the constant sheaf on Xét with values in Z /pZ, by Ga,X we mean the quasi-coherent sheaf

sending U → X to the additive group of OX(U), see [Stacks, Tag 03P4], and by F the Frobenius map a ↦→ ap. By

[Stacks, Tags 01XB and 03P2], the cohomology groups Hq
ét(X,Ga,X) vanish for q ≥ 2. Therefore, the Artin-Schreier

sequence induces an exact sequence of abelian groups

0 Z /pZ R R H1
ét(X,Z /pZX) 0,

F−id

giving us an isomorphism R/S ∼= H1
ét(X,Z /pZX), where S := im(F − id), which is a subgroup of R. If R = k[T ] for a

field k of characteristic p, we compute

S =

⎧⎨⎩∑︂
i≥0

(api T
ip − aiT

i) | ai ∈ k

⎫⎬⎭ .

From this explicit description, one can deduce that if R′ = k′[T ] for a non-trivial field extension k → k′, the natural map

R→ R′ cannot induce a surjection between R/S and R′/S′. But Xk′ ∼= Spec(k′[T ]), so (20) shows that we cannot have

π1(Xk′ , x̄) ∼= π1(X, x̄) for any geometric point x̄→ Xk′ → X.
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4 Drinfeld’s Lemma

Let us fix a prime number p. The goal of this chapter is to prove the main theorem of this thesis :

Theorem 1.4 (Drinfeld’s Lemma). Let X1, X2 be connected qcqs schemes over Fp. Then, X1 ×Fp
X2 is φ1-connected and

for any geometric point z̄ of X1 ×Fp
X2 (and thus of X1 and X2), the natural map

π1(X1 ×Fp
X2/φ1, z̄)

∼−→ π1(X1, z̄)× π1(X2, z̄) (21)

is an isomorphism of topological groups.

Of course, we have not yet defined what we mean by φ1, the property “φ1-connected” and the group π1(X1×Fp
X2/φ1, z̄),

respectively. These definitions will be made in the course of this chapter. First, let us review Frobenius morphisms of

schemes of positive characteristic and define φ1 :

Definition and Remark 4.1. Let X be a scheme over Fp. Then the identity on topological spaces together with the

assignment OX(U) → OX(U) : a ↦→ ap on structure sheaves defines a map of Fp-schemes X → X, which we call the

absolute Frobenius of X and denote by FX .

Note that for any map Y → X of Fp-schemes,

Y Y

X X

FY

FX

commutes. We call the canonical factorization Y → F ∗
XY := Y ×X,FX

X the relative Frobenius of Y over X and denote

it by FY/X . If X1, X2 are two schemes over Fp, we denote by

φ1 := FX1
×Fp

idX2
: X1 ×Fp

X2 → X1 ×Fp
X2

the first and by

φ2 := idX1
×Fp

FX2
: X1 ×Fp

X2 → X1 ×Fp
X2

the second partial Frobenius of X1 ×Fp
X2.

An important property of all these types of Frobenii is the following :

Proposition 4.2. Absolute, partial and relative Frobenii are universal homeomorphisms.

Proof. See [Stacks, 0CC8] for absolute Frobenii. Partial Frobenii are base changes of absolute Frobenii and hence also

universal homeomorphisms. The relative Frobenius is a factorization of an absolute Frobenius through a partial Frobenius

and hence also a universal homeomorphism.

Now, let us turn to Drinfeld’s Lemma. As indicated in the introduction, we will first introduce the notion ofφ-connectedness

and prove that X1 ×Fp
X2 is φ1-connected. Then, in Section 4.2, we will introduce the categories FEt(X/φ) for X
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a scheme and φ : X → X a universal homeomorphism which we show to be a Galois category if X is φ-connected.

This will allow us to define fundamental groups π1(X/φ, z̄), a special case of which is the group π1(X1 ×Fp
X2/φ1, z̄)

occurring in Drinfeld’s Lemma. In Section 4.3, we show that any scheme over Fp satisfies an analogue of π1-properness,

which will allow us to conclude Drinfeld’s Lemma analogously to the Künneth formula given in Proposition 1.2. These

steps will be carried out in Sections 4.4, 4.5 and 4.6.

4.1 φ-connectedness

Definition 4.3. Let X be a topological space and φ : X → X be a homeomorphism. A subset U ⊆ X is called φ-stable

if φ(U) = U . We say X is φ-connected, if it is non-empty and it has no clopen and φ-stable subsets except ∅ and

X. A φ-stable subset U ⊆ X is called φ-connected if it is φ|U -connected with respect to the subspace topology of U .

A φ-connected component is a maximal φ-connected subset. If X is a scheme and φ a map of schemes, we say X is

φ-connected, if its underlying topological space is φ-connected.

The notion of φ-connectedness behaves the same as the usual connectedness :

Remark 4.4. A topological space X is φ-connected if and only if there are no non-empty open (or, equivalently, closed)

and φ-stable subsets U, V ofX such thatX = U
∐︁
V . Indeed, since φ is bijective, we have φ(X \U) = X \φ(U) = X \U

for any φ-stable U , i.e., the complement of a φ-stable subset is φ-stable. Moreover, φ-connected components of X

are closed, since the closure of a φ-connected subset U is φ-connected : As φ and φ−1 are continuous, we have

φ(U) ⊆ φ(U) = U and φ−1(U) ⊆ φ−1(U) ⊆ U , hence φ(U) = U , i.e., U is φ-stable. Moreover, if U = U1

∐︁
U2, where

U1 and U2 are closed in U and φ-stable, then U ∩ Ui are closed in U and φ-stable and U = (U ∩ U1)
∐︁
(U ∩ U2).

Example 4.5. Let X be a set endowed with the discrete topology and φ : X → X a bijection. Then X is φ-connected

if and only if the group φZ := {φi | i ∈ Z} acts transitively on X. This is because the orbit {φi(x) : i ∈ Z} of any

x ∈ X is a non-empty φ-stable subset of X. More precisely, one can check that the φ-connected components of X are

precisely given by the setX/φZ of orbits of the action of φZ onX. Note that ifX is finite with n elements, then φZ acting

transitively on X is further equivalent to φ being an n-cycle in the symmetric group of X in the sense of [Rot12, Ch. 1].

An important tool will be the following lemma, which slightly generalizes the topological fact that an open map with

connected fibres induces a bijection on connected components, see [Stacks, Tag 0378].

Lemma 4.6. Let X,Y be topological spaces and φ : X → X a homeomorphism. Let f : X → Y be an open continuous

map. If all fibres f−1(y) are φ-stable and φ-connected, we have a bijection

{φ-connected components of X} ∼= {connected components of Y }

U ↦→ f(U)

f−1(V ) ↦→V

Proof. First note that the φ-connectedness condition on the fibres of f implies that they are non-empty, i.e., f is surjective.

Since f is also open, we have that the topology on Y is the quotient topology with respect to f . So a subset of V ⊆ Y is
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clopen if and only if f−1(V ) ⊆ X is clopen.

• Images of φ-connected components are connected : It suffices to show that Y is connected if X is φ-connected.

For this, suppose V ⊆ Y is a non-trivial clopen subset of Y . Then f−1(V ) is clopen in X and also φ-stable, because

all fibres of f are φ-stable and hence also their union f−1(V ). But since f is surjective, f−1(V ) is non-empty. Then,

since X is φ-connected, f−1(V ) = X and since f is surjective, V = f(f−1(V )) = f(X) = Y , contradiction.

• Preimages of connected components are φ-connected : Now, let V be a connected component of Y . In particular,

V and thus f−1(V ) are closed. Suppose f−1(V ) is not φ-connected, then f−1(V ) = U1

∐︁
U2 for non-empty clopen

and φ-stable subsets U1, U2 of f−1(V ). Since f−1(V ) is closed, the Ui are also closed in X. For any v ∈ V , we

have f−1(v) = (U1 ∩ f−1(v))
∐︁
(U2 ∩ f−1(v)). The subsets f−1(v) ∩ Ui are φ-stable and closed in f−1(v). So

f−1(v) ∩ Ui = f−1(v) or f−1(v) ∩ Ui = ∅ and since the Ui are disjoint, f−1(v) is contained in either U1 or U2. In

other words, for Vi := {v ∈ V : f−1(v) ⊆ Ui} it holds that V = V1
∐︁
V2. Since f−1(V ) = U1

∐︁
U2, we actually

have f−1(Vi) = Ui and thus the f−1(Vi) are closed inX. Therefore, we apply that the topology on Y is the quotient

topology with respect to f and conclude that the Vi are closed in Y and therefore also in the subspace topology of

V . This is a contradiction to V being connected.

• Images of φ-connected components are connected components : Let U be a φ-connected component of X. By

the above, f(U) is connected. So there exists a connected component V of Y with f(U) ⊆ V , i.e., U ⊆ f−1(V ).

Since f−1(V ) is φ-connected by the above and by maximality of U , U = f−1(V ) and by surjectivity of f , f(U) = V .

• Preimages of connected components are φ-connected components : If V is a component of Y , then f−1(V ) is φ-

connected by the above and thus contained in a component U ofX. By the surjectivity of f , V = f(f−1(V )) ⊆ f(U).

But f(U) is connected and by maximality of V , V = f(U). Then, f−1(V ) ⊆ U implies U = f−1(V ), so f−1(V ) is

in fact a connected component.

• Bijectivity : Let U be a component of X. U is contained in f−1(f(U)), which, by the above, is φ-connected. By

maximality, U = f−1(f(U)). Surjectivity of f implies V = f(f−1(V )) for any V ⊆ Y .

Remark 4.7. Let X be a topological space and φ : X → X a homeomorphism. Let X/φZ be the set of orbits of the

action of the group φZ on X. For any x ∈ X, denote by [x] its orbit. We may endow X/φZ with the quotient topology.

Then, in fact, the quotient map p : X → X/φZ is open : Let U ⊆ X be open, then

p−1(p(U)) = p−1({[u] | u ∈ U}) = {x ∈ X | ∃u ∈ U : [x] = [u]} =
⋃︂
u∈U

[u] =
⋃︂
i∈Z

φi(U)

is open, as φ is open. So, applying Lemma 4.6 to the open map X → X/φZ gives us that the φ-connected components of

X are precisely the connected components of the topological space X/φZ. Observe that this generalizes the situation

when X has the discrete topology, see Example 4.5.
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Lemma 4.8. Let X,Y be topological spaces and φX : X → X, φY : Y → Y homeomorphisms. Let f : X → Y be an open

continuous map such that f ◦ φX = φY ◦ f . If all fibres of f are connected, we have a bijection

{φX -connected components of X} ∼= {φY -connected components of Y }

U ↦→ f(U)

f−1(V ) ↦→V

Proof. The compatability condition f ◦ φX = φY ◦ f implies that f induces an (open) map X/φZ
X → Y/φZ

Y . To that

map we may apply the already mentioned classical fact from topology that an open map with connected fibres induces a

bijection of connected components, see [Stacks, Tag 0378]. Then Remark 4.7 implies the claim.

The following is the analogue of [Stacks, Tag 07VB] :

Lemma 4.9. Let X,Y be nonempty topological spaces and φX : X → X, φY : Y → Y homeomorphisms. Let f : X → Y

be a clopen continuous map such that f ◦ φX = φY ◦ f . Suppose Y is φY -connected and there exists y ∈ Y such that

#f−1(y) is finite. Then X has at most f−1(y) many φX -connected components.

Proof. Denote by n ∈ N∪{∞} the number of φX -connected components of X. Choose y as in the assumptions of the

lemma. We show that for any N ∈ N with N ≤ n, we have N ≤ #f−1(y). Namely, given such N , by induction, we can

write X as the disjoint union of N clopen and φX -stable subsets Xi. Since f is clopen and f ◦ φX = φY ◦ f , each f(Xi)

is clopen and φY -stable. Since Y is φY -connected, f(Xi) = Y for all i = 1, ..., N . In particular, f−1(y) meets any Xi,

hence N ≤ #f−1(y).

In the following, we will use the notion of φ-connectedness in the situation when X is a scheme over Fp and φ the

absolute Frobenius of X or, if X = X1 ×Fp
X2, a partial Frobenius. Note that the formalism indeed applies because of

Proposition 4.2. The goal of the rest of this section is to give a proof of the following claim by Kedlaya [Ked19, Lemma

4.2.11] :

Proposition 4.10. If X1 and X2 are connected schemes over Fp, then X1 ×Fp
X2 is φ1- and φ2-connected.

First, let us remark :

Remark 4.11. For any product of schemes over Fp, connectedness with respect to one partial Frobenius is equivalent

to connectedness with respect to the other. This is because their composition is the absolute Frobenius, which is the

identity on topological spaces.

The key algebraic input for Proposition 4.10 is the lemma below. To simplify notation, for the rest of this section, we set

k := Fp and fix an algebraic closure k → k̄. Also, we denote by Fk̄ : a ↦→ ap the Frobenius map on k̄.

Lemma 4.12. Let k → ˜︁k be an algebraically closed extension of k. Then, there exists a (non-canonical) homeomorphism

between Spec(˜︁k⊗k k̄) and the absolute Galois groupGal(k̄|k) of k. Under that homeomorphism, the second partial Frobenius

φ2 = id˜︁k ×kFk̄ : Spec(˜︁k ⊗k k̄) → Spec(˜︁k ⊗k k̄) corresponds to the map Fk̄ ◦ − : Gal(k̄|k) → Gal(k̄|k).
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Proof. We have that k̄ ∼= colimk′|k finite k
′ and so

Spec(˜︁k ⊗k k̄) ∼= lim
k′|k finite

Spec(˜︁k ⊗k k′). (22)

as topological spaces by [Stacks, Tags 00DD, 01YW and 0CUF]. On the other hand,

Gal(k̄|k) ∼= lim
k′|k finite

Gal(k′|k) (23)

as topological groups, see e.g. [Stacks, Tag 0BU2]. Therefore, it suffices to show the above proposition after replacing k̄

with some finite extension k′ of k. So, fix some finite extension k′ = Fpn of k. We can write k′ = k[T ]/(f), where f ∈ k[T ]

is an irreducible polynomial of degree n. Since ˜︁k is algebraically closed, we can choose an embedding k̄ → ˜︁k. Since the

field extension k → k′ is separable, f splits over k̄, and hence over ˜︁k, into n distinct linear factors, corresponding to the

roots a1, ..., an of f in k̄. By the Chinese Remainder Theorem, we have

˜︁k ⊗k k′ ∼= ˜︁k[T ]/(f) ∼= ˜︁k[T ]/(T − a1)× · · · × ˜︁k[T ]/(T − an) ∼= ˜︁kn, (24)

where the isomorphism ˜︁k ⊗k k′ ∼= ˜︁kn is given by

b⊗ ḡ ↦→ (bg(a1), · · · , bg(an)), (25)

where we identified k′ ∼= k[T ]/(f). Hence Spec(˜︁k ⊗k k′) ∼= Spec(˜︁kn) ∼=∐︁Spec(˜︁k) is a discrete topological space whose

points are in bijection with the set of roots {a1, ..., an}.

Now, by Galois theory, the group Gal(k′|k) acts simply transitively on the set of roots {a1, ..., an}. More precisely,

after suitably reordering the ai, the Frobenius Fk′ , which generates Gal(k′|k), maps ai to a(i+1) mod n. Put differently,

Gal(k′|k) is in bijection with {a1, ..., an} and under that bijection, the map F ′
k ◦ − on Gal(k′|k) corresponds to the map

ai ↦→ a(i+1) mod n.

Combined with the above, this implies that we get a bijection Spec(˜︁k⊗kk′) ∼= Gal(k′|k). Moreover, under the isomorphism

(25), id˜︁k ⊗Fk′ corresponds to the map on ˜︁kn which shifts entries by one position, since Fk′(g(ai)) = g(Fk′(ai)) =

g(a(i+1) mod n), as g ∈ k[T ]. On {a1, ..., an}, this corresponds to ai ↦→ a(i+1) mod n, which is the same map as for

Fk̄ ◦ − : Gal(k′|k) → Gal(k′|k).

Corollary 4.13. In the situation of Lemma 4.12, the scheme Spec(˜︁k ⊗k k̄) is φ2-connected.

Proof. Let U be a non-empty clopen and id˜︁k ×kFk̄-stable subset of Spec(˜︁k⊗k k̄). Fix a homeomorphism Spec(˜︁k⊗k k̄) ∼=
Gal(k̄|k) as obtained from Lemma 4.12. Under this homeomorphism, U corresponds to a subset V of Gal(k̄|k) with

Fk̄ ◦ V = V . In particular, Fm
k̄

◦ V = V , where Fm
k̄

denotes the m-fold composition of Fk̄ with itself, and so V must

contain a coset of the subgroup generated by Fk̄.

Now, a fact from Galois theory is that Gal(k̄|k) is topologically generated by Fk̄, i.e., the subgroup generated by Fk̄ and

thus all its cosets are dense in Gal(k̄|k). Since U is closed, it therefore contains all of Spec(˜︁k ⊗k k̄).
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The rest of Proposition 4.10 can be concluded by merely topological arguments.

Lemma 4.14. For any connected scheme X over k, the base change Xk̄ = X ×k Spec(k̄) is φ2-connected.

Proof. Let X be a connected scheme over k. Let x ∈ X be a point. Choose an algebraic closure k(x̄) of the residue field

k(x) and consider the following diagram :

Spec(k(x̄)⊗k k̄) Spec(k(x)⊗k k̄) Xk̄ Spec(k̄)

Spec(k(x̄)) Spec(k(x)) X Spec(k)

j×kidk̄ i×kidk̄

p

j i

Note that each square is cartesian, see [GW10, Prop. 4.16]. On each scheme in the top row, we have the action of the

respective base change of Fk̄, which are all compatible along the maps in the top row. We check compatability by the

example of the top-left map j ×k idk̄ : Here we indeed have

(j ×k idk̄) ◦ (idk(x̄) ×kFk̄) = j ×k Fk̄ = (idk(x̄) ×kFk̄) ◦ (j ×k idk̄).

Now, by Corollary 4.13, Spec(k(x̄)×kk̄) is idk(x̄) ×kFk̄-connected. The idea is now to conclude the idX ×kFk̄-connectedness

ofXk̄ from Lemma 4.6. Therefore, we first show that Spec(k(x)⊗k k̄) is idk(x̄) ×kFk̄-connected. For this, observe that the

map j×k idk̄ : Spec(k(x̄)⊗k k̄)) → Spec(k(x)⊗k k̄) is surjective as the base change of a surjective map. Moreover, j×k idk̄
is compatible with the respective base changes of the Frobenius Fk̄, see above. But then, idk(x̄) ×kFk̄-connectedness of

Spec(k(x̄)×k k̄) implies idk(x) ×kFk̄-connectedness of Spec(k(x)⊗k k̄).

Next, we know that Spec(k(x)⊗k k̄) is canonically isomorphic to the scheme-theoretic fibre of the projection Xk̄ → X at

x (which is homemorphic to the set-theoretic fibre) and i×Fp idk̄ is a homeomorphism on the set-theoretic fibre p−1(x).

Moreover, the projection p : Xk̄ → X is open and surjective by [Stacks, Tags 0383 and 01S1]. As above, we see that the

morphism i×k idk̄ is compatible with the respective base changes of Fk̄. Note that x was an arbitrary point of X, so

indeed all fibres Xk(x) of p are idk(x) ×kFk̄-connected. So we may apply Lemma 4.6 to p with φXk̄
= idX ×kFk̄, get a

bijection

{(idX ×kFk̄)-connected components of Xk̄} ∼= {connected components of X}

Since X is connected by assumption, the claim follows.

Now, in order to conclude Proposition 4.10, we proceed in analogy to the following “classical” statement :

Lemma 4.15. Let X1, X2 be schemes over some field l. Suppose that X2 is connected and the base change of X1 to a

separable algebraic closure l̄ of l is connected. Then X1 ×l X2 is connected.

This of course implies Lemma 3.1. A proof of Lemma 4.15 goes as follows :

1. Any connected scheme X over a separably closed field ˜︁l is geometrically connected, i.e., for any field extension˜︁l → l′, the base change Xl′ is connected. This is shown in [Stacks, Tag 0363]. Thus, in the situation of the Lemma,

X1,l̄ is geometrically connected over l̄.
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2. If X1,l̄ is geometrically connected over l̄, then also X1 is geometrically connected over l since for any extension

l → l′, there exists a common extension l̄′ of l̄ and l′. Then X1,l̄
′ is connected by hypothesis and since X1,l̄

′ → X1,l′

is surjective, also X1,l′ is connected, cf. [Stacks, Tag 0387].

3. For any field l, the fibre product of a geometrically connected scheme X1 over l with a connected X2 scheme over l

is connected, see [Stacks, Tag 0385].

In the following, we will promote these steps to the setting of φ-connectedness.

Definition 4.16. Let X be a scheme over a field l and φ an l-linear universal homeomorphism of X. We say X is

geometrically φ-connected, if for all field extensions l → l′, Xl′ is φ×l idl′ -connected.

Now, the first proof step translates to :

Lemma 4.17. Let X be a scheme over a separably closed field ˜︁l and φ : X → X a ˜︁l-linear universal homeomorphism of X.

Then if X is φ-connected, it is geometrically φ-connected.

Proof. Let ˜︁l → l′ be any field extension of ˜︁l and let x ∈ X be a point. Consider the diagram

Spec(k(x)⊗˜︁l l′) Xl′ Spec(l′)

Spec(k(x)) X Spec(˜︁l),

i×˜︁lidl′

p

i

where both squares are cartesian. As in the proof of Lemma 4.14, we see that i×˜︁l idl′ is a homeomorphism between

Spec(k(x) ⊗˜︁l l′) and the set-theoretic fibre p−1(x). Now, since ˜︁l is separably closed, the map Spec(l′) → Spec(˜︁l) is
geometrically connected, see [Stacks, Tags 037U and 0386]. Therefore, Spec(k(x)⊗˜︁l l′) is connected. Then we apply

Corollary 4.8 to p with φXl′ := φ×˜︁l idl′ and φX := φ and get that Xl′ is φXl′ -connected.

The second step translates to :

Lemma 4.18. Let X be a scheme over a field l, φ : X → X a l-linear universal homeomorphism and l → ˜︁l a field extension.

If X˜︁l is geometrically (φ×l id˜︁l)-connected, then X is geometrically φ-connected.

Proof. Let l → l′ be any field extension. There exists a field extension l → ˜︁l′ containing both ˜︁l and l′. Note that

p : X˜︁l′ → X factors through both Xl′ and X˜︁l. Since X˜︁l is geometrically φ×l id˜︁l-connected, X˜︁l′ is φ×l id˜︁l′ -connected.
On the other hand, the map X˜︁l′ → Xl′ is surjective and compatible with the respective base changes of φ. Therefore,

Xl′ is φ×l idl′ -connected.

The third step is just a special case of Lemma 4.6 :

Lemma 4.19. Let X1, X2 be schemes over some field l, φ be a l-linear universal homeomorphism of X1 and let X1 be

geometrically φ-connected. Then, the projection X1 ×l X2 → X2 induces a bijection

{φ×l idX2
-connected components of X1 ×l X2} ∼= {connected components of X2}.
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Proof. Denote by p : X1 ×l X2 → X2 the projection to X2. The fibres of p are canonically isomorphic to base changes

X1,l′ , which by assumption are φ×l idl′ -connected. Under the mentioned isomorphism, φ×l idl′ agrees with φ×l idX2
,

which means that the fibres of p are φ ×l idX2
-connected. By [Stacks, Tag 0383], p is open. So applying Lemma 4.6

again to p with φX1×lX2
:= φ×l idX2

yields the claim.

Now, finally, we are able to prove Proposition 4.10 :

Proof of Proposition 4.10. Let X1, X2 be connected schemes over k = Fp. By Lemma 4.14, X1 ×k k̄ is φ2-connected.

Then it is also φ1-connected by Remark 4.11. Now, by Lemmas 4.17 and 4.18, X1 is geometrically FX1
-connected. Then,

since X2 is connected, X1 ×k X2 is φ1-connected by Lemma 4.19.

4.2 The Galois category FEt(X/φ)

Our next step towards Drinfeld’s Lemma is to introduce a fundamental group π1(X1×Fp
X2/φ1, z̄). For this, we construct

a category FEt(X1 ×Fp
X2/φ1), which we prove to be a Galois category. In turns out that this is just a special case of a

more general construction which works for any scheme X and universal homeomorphism φ : X → X such that X is

φ-connected. The reason for this is that universal homeomorphisms interplay well with étale morphisms, as we saw in

Proposition 2.12.

Remark 4.20. Suppose X is a scheme, φ : X → X is a universal homeomorphism and f : Y → X is finite étale.

Consider a commutative square
Y Y

X X,

φY

f f

φ

where φY : Y → Y is a universal homeomorphism. We claim that any such square is already cartesian. To see this,

denote by φ∗X := Y ×X,φ X the base change of Y → X along φ and consider the following commutative diagram :

Y

φ∗Y Y

X X.

f∗φ◦β

f

β

f∗φ

□φ∗f f

φ

The canonical factorization β : Y → φ∗Y coming from the universal property of the fibre product is itself a universal

homeomorphism as φY = f∗φ ◦ p and both φY and f∗φ are universal homeomorphisms. On the other hand, β is étale

as a map between étale X-schemes. But an étale universal homeomorphism is an isomorphism by Proposition 2.12.

Hence, it is equivalent to give the following data :

• A pair (f : Y → X,φY ), where f is finite étale and φY : Y → Y is a universal homeomorphism with φ◦f = f ◦φY ,
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• a pair (f : Y → X,φY ), where f is finite étale and φY : Y → Y is some morphism of schemes such that the square

Y Y

X X

φY

□f f

φ

is cartesian,

• a pair (f : Y → X,β), where f is finite étale and β : Y → φ∗Y is an isomorphism.

So, let us make the following definition :

Definition 4.21. Let X be a scheme and φ : X → X a universal homeomorphism. We define a category FEt(X/φ) with

objects

{(f : Y → X,φY ) : f is finite étale, φY is a universal homeomorphism with φ ◦ f = f ◦ φY }

and morphisms

Mor((Y, φY ), (Y
′, φY ′)) := {X-morphisms g : Y → Y ′ with g ◦ φY = φY ′ ◦ g}.

In light of Remark 4.20, we have another two equivalent descriptions of objects of FEt(X/φ) : Firstly, as pairs (Y, φY )

such that the square
Y Y

X X,

φY

f □ f

φ

is cartesian, or secondly, as pairs (Y, β), where β : Y → φ∗Y is the unique isomorphism fitting into the obvious diagram.

We will also call an X-morphism g : Y → Y ′ with g ◦ φY = φY ′ ◦ g equivariant.

Lemma 4.22. The connected objects of FEt(X/φ) are precisely those pairs (Y, φY ), where Y is φY -connected in the sense

of Definition 4.3.

Proof. The proof easily carries over from the classical setting, cf. [Stacks, Tag 0BNB]. We have the following chain of

equivalences :

(Y, φY ) is a connected object of FEt(X/φ)

⇔ For any monomorphism g : (Y ′, φY ′) → (Y, φY ) in FEt(X/φ), (Y ′, φY ′) is initial or g is an isomorphism
(1)⇔ For any equivariant closed-open immersion g : Y ′ → Y over X, either Y ′ = ∅ or g is an isomorphism
(2)⇔ For any clopen and φY -stable subset U of Y , either U = Y or U = ∅

⇔ Y is φY -connected

For (1) : Monomorphisms in the category FEt(X/φ) are monomorphisms of schemes Y ′ → Y over X which are

equivariant in the sense of Definition 4.21. Any map Y ′ → Y of schemes étale over X is étale. The fundamental property
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of étale maps ([Stacks, Tag 025G]) implies that the monomorphisms of schemes between Y ′ → Y over X are precisely

the open immersions Y ′ → Y over X. Also any Y ′ → Y over X is finite, hence closed. Hence the monomorphisms in

FEt(X/φ) are precisely the equivariant clopen immersions.

For (2) : Any clopen φY -stable subset is the image of a clopen equivariant immersion, hence (LHS) ⇒ (RHS). An open

immersion is an isomorphism if and only if it is surjective, hence (RHS) ⇒ (LHS).

Lemma 4.23. Let X,Y be schemes and φ : X → X, φY : Y → Y universal homeomorphisms. Let f : Y → X be a finite

étale morphism such that f ◦ φY = φ ◦ f . Suppose X is φ-connected. Then f is an isomorphism if and only if there exists a

geometric point x̄→ X such that #|Yx̄| = 1.

Proof. If f is an isomorphism, then also after base change along x̄→ X. For the other implication, let x ∈ X be the image

of x̄ in X. By surjectivity of the map Yx̄ → Yx, the set-theoretic fibre f−1(x) consists of a single point. The condition

f ◦ φY = φ ◦ f implies that f−1(φn(x)) consists of a single point for all n ∈ Z. Therefore, on topological spaces, f is

bijective and open (being étale), hence a homeomorphism. We are left to show that it is an isomorphism on structure

sheaves. For this, we show that the degree of f (in the sense of [GW10, Section (12.6)]) is constant on X and equals 1.

First observe that x̄ : Spec(k(x̄)) → X factors through the spectrum of the residue field k(x), and hence we may compute

deg(f)(x) = dimk(x)((f∗OY )x ⊗OX,x
k(x)) = (dimk(x̄)(f∗OY )x ⊗OX,x

k(x̄)) = dimk(x̄)

(︄
m∏︂
i=1

k(x̄)

)︄
= m,

wherem equals the number of copies of Spec(k(x̄)) in the base change of f to x̄, i.e.,m = #|Yx̄|. In the above calculation,

we used that the rank of a module is preserved under base change and that (f∗OY )x is a finite étale OX,x-algebra

and hence after base change to the algebraically closed field k(x̄) splits into a finite product of copies of k(x̄). So, by

assumption, deg(f)(x) = #|Yx̄| = 1. As the degree is locally constant, deg(f) equals 1 on the connected component of

x. We are left to show that it equals 1 everywhere. By Remark 4.20,

Y Y

X X

φY

□
φ

is cartesian. Now note that the degree of a finite locally free morphism is preserved under base change (as locally on

the target, such a morphism corresponds to an algebra over a ring A which is finite as an A-module, and the rank of

an A-module is stable under change of base rings). Applied to the above square, we conclude that deg(f)(φn(x)) =

deg(f)(x) = 1 for all n ∈ Z. But since by assumption, X is φ-connected, for each connected component T of X, there

exists nT ∈ Z such that φnT (x) ∈ T . Hence, deg(f) is equal to 1 on each connected component of X, which implies that

f is an isomorphism.

Proposition 4.24. If X is φ-connected, then FEt(X/φ), together with a fibre functor Fx̄ to a geometric point, is a Galois

category.
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Proof. In this proof, we will use the alternative description of objects of FEt(X/φ) as pairs (Y, β), where β : Y → φ∗Y

is an isomorphism, see Definition 4.21. We show that FEt(X/φ) satisfies the axioms of Definition 4.21. For that, we

proceed in analogy to the proof in the classical setting, cf. [Stacks, Tags 0BN9,0BNB]. First, we note that the functor Fx̄
maps into the category of finite sets by 2.20.

• Existence of finite limits : We show the existence of a final object and fibre products. First observe that

X X

X X

φ

□id id

φ

is cartesian, hence there exists a canonical isomorphism β : X → φ∗X, which makes (X,β) a final object by

definition of objects of FEt(X/φ). Moreover, let (Y, β), (Y ′, β′) be objects of FEt(X/φ), then Y ×X Y ′ → Y → X

is again finite étale over X as the composition of the base change of a finite étale morphism with a finite étale

morphism. Moreover, since base change (here, along φ : X → X) preserves fibre products, we have a canonical

isomorphism (φ∗Y ×X φ∗Y ′) ∼= φ∗(Y ×X Y ′). Therefore, the isomorphism β ×X β′ : Y ×X Y ′ → φ∗Y ×X φ∗Y ′

gives rise to an isomorphism Y ×X Y ′ → φ∗(Y ×X Y ′).

• Existence of finite colimits : We show the existence of finite coproducts and coequalizers. Both exist in FEt(X)

since it is a Galois category. As used in the proof of [Stacks, 0BN9], base change of schemes (here, along φ : X → X),

commutes with (finite) coproducts and coequalizers. Therefore, similar to above, isomorphisms Yi → φ∗Yi for each

summand Yi give rise to an isomorphism between the respective colimit and its φ-pullback. By the example of the

coproduct, isomorphisms βi : Yi → φ∗Yi induce an isomorphism
∐︁
Yi →

∐︁
φ∗Yi → φ∗(

∐︁
Yi).

• Any object splits into a finite coproduct of connected objects : Let (f : Y → X,β) be an object of FEt(X/φ).

Since f is finite étale, it is clopen and has finite fibres [Stacks, Tag 02NH]. Hence we may apply Lemma 4.9 to f ,

φY := f∗φ ◦ β and φX := φ to get that the underlying topological space of Y =
⋃︁
Yi is a finite disjoint union of

φY -connected components Yi. Since the Yi are closed by Remark 4.4 and there are only finitely many of them,

they are also open. Hence the Yi define clopen subschemes and since OY is a sheaf, Y is isomorphic to
∐︁
Yi as

schemes. Proposition 4.22 shows that the Yi, together with the respective restrictions of β, are in fact connected

objects of FEt(X/φ).

• Fibre functor is conservative : Suppose there exists a morphism g between objects (Y, β), (Y ′, β′) in FEt(X/φ)

such that g ×X idx̄ : Yx̄ → Y ′
x̄ is a bijection. Since both Yx̄ and Y ′

x̄ are isomorphic to coproducts of copies of x̄,

this implies that g ×X idx̄ is in fact an isomorphism, in particular it is an isomorphism after base change along a

geometric point ȳ′ → Y ′
x̄. Therefore, g is an isomorphism after base change along ȳ′ → Y ′

x̄ → Y ′. Then Lemma

4.23 shows that g is an isomorphism.

• Exactness of Fx̄ : By the above, the underlying schemes of finite limits and colimits in FEt(X/φ) are the same as

the finite limits and colimits of the underlying schemes. Since Fx̄ is only applied to the underlying schemes (and

the isomorphism β is ignored), we conclude exactness of Fx̄ from the fact that FEt(X) together with Fx̄ is a Galois

category.
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Definition 4.25. In the situation of Proposition 4.24, we define

π1(X/φ, x̄) := Aut(Fx̄)

and conclude from Theorem 2.5 an equivalence of categories between FEt(X/φ) and the category of finite π1(X/φ, x̄)-

sets.

Definition 4.26. Let X → S be a morphism of schemes and φS : S → S a universal homeomorphism. Let φX : X → X

be a morphism of schemes fitting into a cartesian diagram

X X

S S,

φX

□
φS

in particular, φX is a universal homeomorphism. We call the following functor the base change functor from FEt(S/φS)

to FEt(X/φX) :

FEt(S/φS) → FEt(X/φX)

(T, φT ) ↦→ (T ×S X,φT ×S idX)

(f : T → T ′) ↦→ (f ×S idX : T ×S X → T ′ ×S X)

This is a well-defined functor since if
T T

S S,

φT

□
φS

is cartesian, this remains true after applying the base change functor −×S X. Similarly, f ×S idX is equivariant with

respect to φT ×S idX , φT ′ ×S idX if f is equivariant with respect to φT and φT ′ .

Remark 4.27. In the situation of Definition 4.26, let x̄→ X be a geometric point of X, which is a geometric point of S

via x̄→ X → S. Then, base change as defined above, induces a canonical homomorphism

π1(X/φX , x̄) → π1(S/φS , x̄)

of fundamental groups. The construction is analogous to Remark 2.25.

Lemma 4.28. In the situation of Definition 4.26, suppose that base change alongX → S induces an equivalence of categories

FEt(S) ∼= FEt(X). Then base change in the sense of Definition 4.26 induces an equivalence FEt(S/φS) ∼= FEt(X/φX).

Proof. Denote by F the base change functor FEt(S) → FEt(X) and by G the base change functor FEt(S/φS) →

FEt(X/φX) from Definition 4.26. The fact that G is faithful directly follows from faithfulness of F . To see that G is full,

let (T, φT ), (T ′, φT ′) be objects in FEt(S/φS). Then, since F is full, any morphism g : Y := T ×S X → Y ′ := T ′ ×S X
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in FEt(X/φX) compatible with φY , φY ′ descends to some morphism f : T → T ′ in FEt(S). That morphism has to be

compatible with φT , φT ′ , since the morphisms f ◦ φT and φT ′ ◦ f are equal after base change to X, since φY , φY ′ are

base changes of φT , φT ′ , respectively, and F is faithful. Essential surjectivity follows from essential surjectivity of F

since base change commutes with fibre products, i.e., if Y descends to T , then φ∗
XY descends to φ∗

ST .

For the rest of this chapter, we will consider the situation X = X1 ×Fp
X2 for two connected schemes X1, X2 over Fp

and φ = φ1 or φ2, the first or second partial Frobenius on X.

Definition and Remark 4.29. Let X1, X2 be connected schemes over Fp and set X := X1 ×Fp
X2. By Proposition

4.10, X is φ1- and φ2-connected. Hence FEt(X/φ1) and FEt(X/φ2) are Galois categories. Scholze-Weinstein and

Kedlaya introduce a third category FEt(X/pFr.), see [SW20, Definition 16.2.1], [Ked19, Definition 4.2.12]. Its objects

are given by triples (Y, β1, β2), where Y → X is a finite étale cover and β1 : Y → φ∗
1Y , β2 : Y → φ∗

2Y are isomorphisms

such that φ∗
2β1 ◦ β2 = φ∗

1β2 ◦ β1 = FY/X , the relative Frobenius of Y over X. As usual, by Remark 4.20, we could

equivalently describe the objects of FEt(X/pFr.) as triples (Y, φY,1, φY,2), where φY,1 and φY,2 are cartesian over φ1

and φ2, respectively, and φY,1 ◦ φY,2 = φY,2 ◦ φY,1 = FY , the absolute Frobenius of Y . Since by the product relation,

one of β1, β2 is determined by the other and we have natural equivalences of categories

FEt(X/φ1) ∼= FEt(X/pFr.) ∼= FEt(X/φ2),

also see [SW20, Remark 16.2.3].

4.3 π1-properness modulo a partial Frobenius

In this section, we will apply the formalism introduced in Section 4.2 and prove :

Proposition 4.30. Let X be a scheme over Fp and Fp → k an algebraically closed field extension. Denote Xk := X ×Fp

Spec(k). Then, base change

FEt(X) → FEt(Xk/φ2)

Y ↦→ (Yk, idY ×Fp
Fk)

(g : Y → Y ′) ↦→ (f ×Fp
idk : Yk → Y ′

k)

is an equivalence of categories.

Observe how the property described in Proposition 4.30 is the Drinfeld analogue of π1-properness as introduced in

Definition 3.2.

Our proof of Proposition 4.30 closely follows the proof sketches provided by Scholze-Weinstein and Kedlaya, see [SW20,

Lemma 16.2.6] and [Ked19, Lemmas 4.2.2, 4.2.5 and 4.2.6].

Definition 4.31. Let k be a field of characteristic p > 0 and V a k-vector space. A map φ : V → V is called p-linear if it

is additive and for all a ∈ k, v ∈ V , we have φ(av) = apφ(v). If V is a k-algebra, we require that φ is also multiplicative.
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A key algebraic input is the following result proved in [SGA7, Exposé XXII, Proposition 1.1].

Proposition 4.32. Let Fp → k a separably closed field extension, V a finite dimensional k-vector space and φ : V → V a

p-linear map such that φ(V ) generates V . Then V has a k-basis consisting of fixed points of φ.

Proof. For the following, we choose a basis of V and an isomorphism V ∼= kn mapping that basis to the standard basis

E = (e1|...|en) of kn. Accordingly, we consider φ as a p-linear map kn → kn. Set A := φ(E), i.e., φ applied to each

column of E. For any v ∈ kn, we have

φ(v) = AFk(v), (26)

where Fk(v) denotes the application of the Frobenius endomorphism Fk : k → k to each entry of v. Since by assumption,

the image of φ generates kn, the matrix A has to be invertible. Our strategy is to find an invertible matrixM ∈ kn×n,

such that

M = A · Fk(M), (27)

since then its columns form a basis of fixed points of φ. For this, we need to solve n2 + 1 polynomial equations in n2 + 1

variables. Namely, there is a bijection between GL(n, k) and the set of k-rational points of the affine scheme Spec(R),

where

R := k[{Uij}i,j=1,...,n][T ]/(d · T − 1)

and d ∈ k[{Uij}i,j ] denotes the determinant of the matrix (Uij)i,j . The condition (27) translates to n2 equations

fij := Uij −
∑︂

l=1,...,n

ailU
p
lj = 0

where the ars denote the coefficients of the matrix A. The subset of thoseM ∈ GL(n, k) satisfying equation (27) is in

bijection with the k-rational points of Spec(S), where

S := R/({fij}i,j) ∼= k[{Uij}i,j , T ]/({fij}i,j , d · T − 1).

Now, since k has characteristic p, we calculate

∂fij
∂Urs

=

⎧⎪⎨⎪⎩1 if (i, j) = (r, s)

0 else
,
∂fij
∂T

= 0.

and
∂(d · T − 1)

∂Urs
= 0,

∂(d · T − 1)

∂T
= d,

where r, s run through 1, ..., n. Therefore, the determinant of the Jacobian w.r.t. to the fij and d · T − 1 is equal to d,

which is invertible in S. Hence, the ring map k → S is standard smooth of relative dimension 0 in the sense of [Stacks,

Tag 00T6], and thus étale by [Stacks, Tag 02GU]. Then, since k is separably closed, S is isomorphic to a finite product of

copies of k by [Stacks, Tag 00U3]. In particular, there exists a ring map S → k, i.e., a k-rational point of Spec(S).
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In the following, assume that k is algebraically closed. Note that in this case and with notation as in 4.32, the condition

that φ(V ) generates V is equivalent to φ being bijective. Injectivity follows from equation (26) and surjectivity follows

from the fact that k contains the p-th roots of all its elements. The following corollary promotes Proposition 4.32 to the

case that V is an algebra over k.

Corollary 4.33. Let Fp → k be an algebraically closed field extension, ψ : k → B a k-algebra which is finite dimensional as

a k-vector space, and φ : B → B a p-linear ring isomorphism. Denote by Bφ ↪→ B the subring of fixed points of φ. Then the

restriction of ψ to Fp factors through Bφ, turning it into an Fp-algebra, and both squares of the diagram

B B Bφ

k k Fp

φ ι

ψ

Fk

ψ

τ

(28)

are cocartesian. In particular, φ = β ◦ (idBφ ⊗Fp
Fk) ◦ β−1, where β is the unique ring isomorphism making

B

Bφ ⊗Fp
k Bφ

k Fp .

β

ι

ψ

τ

commute.

Proof. The condition that φ is p-linear means that the left square of diagram (28) commutes. This implies that for any

a ∈ Fp, we have φ(ψ(a)) = ψ(ap) = ψ(a), i.e., ψ(a) ∈ Bφ. Hence ψ ◦ τ factors through Bφ and the right square of

(28) commutes. Therefore, the abovementioned ring map β exists by the universal property of the tensor product. By

Proposition 4.32, B has a k-basis consisting of elements b1, ..., bn ∈ Bφ. By construction, β(bi ⊗ 1) = bi, in particular, β

maps a k-basis of Bφ ⊗Fp
k to a k-basis of B. Also, β is k-linear by construction, hence β is an isomorphism of k-vector

spaces, and since it is a ring homomorphism, also of k-algebras. Note that φ ◦ ι = ι by construction of Bφ and Fk ◦ τ = τ ,

hence also the composed diagram (28) is cocartesian with the same unique isomorphism β. Therefore also the left

square of diagram (28) is cocartesian, see [GW10, Prop. 4.16], and the claimed equality holds.

Remark 4.34. Let k,B be as in Corollary 4.33. By Corollary 4.33, for any p-linear isomorphism φB : B → B, the square

B B

k k

φB

ψ

Fk

ψ

is cocartesian. Let us define a category (F. d. k-algebras/Fk) with objects (B,φB), where B is a k-algebra finite-

dimensional as a k-vector space and φB : B → B is a ring homomorphism fitting into a cocartesian square over Fk as

above. Morphisms between (B,φB) and (B′, φB′) are given by morphisms B → B′ of k-algebras which are compatible

44



with the corresponding φB and φB′ . As usual, we may equivalently describe and object (B,φB) as a pair (B, β), where

β : F ∗
kB → B an isomorphism for F ∗

kB := B ⊗k,Fk
k. There is a natural “base change” functor

(F. d. Fp-algebras) → (F. d. k-algebras/Fk)

A ↦→ (A⊗Fp
k, idA⊗Fp

Fk),

(α : A→ A′) ↦→ α⊗Fp
idk .

By Corollary 4.33, this functor is essentially surjective (note that the corollary also states that the isomorphism β : BφB⊗Fp

k → B is compatible with idBφB ⊗Fp
Fk and φB , hence indeed an isomorphism in the category (F. d. k-algebras/Fk)).

In fact, it is an equivalence of categories. We postpone fully faithfulness to the more general Lemma 4.36 below.

The next step is to promote Corollary 4.33 to coherent algebras over projective schemes over Fp.

Definition and Remark 4.35. Let Fp → k be an algebraically closed field extension and X a noetherian scheme over Fp.

Denote by Xk := X ×Fp
Spec(k) its base change to k. For any coherent OXk

-algebra E , denote by φ∗
2 E the pullback of E

along φ2 : Xk → Xk, i.e., φ∗
2 E is given as the tensor product φ−1

2 E ⊗φ−1
2 OXk

OXk
in the category of φ−1

2 OXk
-algebras.

Similar as in Remark 4.34, we may define a category CohAlg(OXk
/φ2) with objects (E , φE), where E is a coherent

OXk
-algebra and φE : φ−1

2 E → φ∗
2 E a map of sheaves of rings on Xk fitting into a cocartesian diagram

φ∗
2 E φ−1

2 E

OXk
φ−1
2 OXk

.

φE

φ#
2

(29)

Morphisms between (E , β) and (E ′, β′) are given by morphisms of OXk
-algebras which are compatible with the corres-

ponding φE and φE ′ . Further, if q : Xk → X denotes the canonical projection, there is a natural functor

CohAlg(OX) → CohAlg(OXk
/φ2)

F ↦→ (q∗ F , the structure map φ−1
2 q∗F → φ∗

2q
∗ F)

(ψ : F → F ′) ↦→ q∗ψ,

which can be viewed as “base change” from CohAlg(OX) to CohAlg(OXk
/φ2).

Now, let us further generalize Corollary 4.33. In fact, the following statement is already referred to as “Drinfeld’s Lemma”

by some authors, cf. [Lau04, Lemma 8.1.1], [Laf18, Lemme 8.2].

Lemma 4.36. Let Fp → k be algebraically closed and X a projective scheme over Fp. The natural functor

CohAlg(OX) → CohAlg(OXk
/φ2)

from Remark 4.35 is an equivalence of categories.
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Proof. Before proving the above equivalence, we note some general observations in the situation of the lemma.

The first important ingredient is the fact that the global sections (in fact, all cohomology groups) of a coherent sheaf M

on a projective scheme S over a field l form a finite dimensional l-vector space. This is a consequence of the fundamental

fact that (under mild additional assumptions), higher direct images of a coherent sheaf along a proper morphism are

again coherent, see [Stacks, Tag 0205]. More precisely, as closed immersions are proper and Pnl → l is proper, also

t : S ↪→ Pnl → l is proper, hence t∗M is coherent on Spec(l), hence Γ(Spec(l), t∗M) is a finite dimensional l-vector

space. On the other hand, we have an isomorphism Γ(S,M) ∼= Γ(Spec(l), t∗M) by [Stacks, Tag 01XK]. Also see [Stacks,

Tag 0206]. In particular, in the situation of the lemma above, for any coherent OXk
-module M, the global sections

Γ(Xk,M) form a finite dimensional k-vector space.

Secondly, observe that since the projection q : Xk → X is flat as a base change of the flat morphism Spec(k) → Spec(Fp)

and X → Fp is qcqs as it is projective, for any quasi-coherent OX -module H, we have an isomorphism

Γ(Xk, q
∗H) ∼= Γ(X,H)⊗Fp

k (30)

by flat base change [Stacks, Tag 02KH].

Thirdly, we may express X (resp. Xk) as the projective spectrum of a graded Fp-algebra (resp. k-algebra). For this, fix a

projective embedding X ↪→ PnFp
and the corresponding projective embedding Xk ↪→ Pnk . By [GW10, Summary 13.71],

there exists a graded Fp-algebra R :=
⨁︁

nRn such that X ∼= Proj(R) over Fp, where R is finitely generated in degree 1,

i.e., R is generated as an R0-algebra by finitely many elements of R1. Similarly, Xk ∼= Proj(S), for a graded k-algebra

S :=
⨁︁

n Sn which is finitely generated in degree 1. Note that the Rn (resp. Sn) arise as global sections of the n-th twist

of a very ample invertible OX -module (resp. OXk
-module) by [GW10, Corollary 13.75], so we may apply (30) to see

that S ∼= R ⊗Fp
k as graded k-algebras. Note that as projective, hence finite type schemes over a noetherian base, X

and Xk are noetherian, hence R and S are noetherian rings. In particular, we may apply [Stacks, Tag 0BXD] to relate

coherent OX -algebras (resp. OXk
-algebras) to finite graded R-algebras (resp. S-algebras).

For a summary of definitions related to graded algebras and the Proj functor, we refer to [GW10, Sections (13.1), (13.2),

(13.7)]. We now turn to the proof of the lemma.

• Essential surjectivity :

Let (E , φE) be an object of CohAlg(Xk/φ2). Set B :=
⨁︁

nBn, where Bn := Γ(Xk, E(n)). Here, the E(n) are meant

with respect to the projective embedding fixed above. By the abovementioned description of coherent modules

on projective schemes [Stacks, Tag 0BXD], E is isomorphic to ˜︁B and B is a finite graded S-algebra. Moreover, φE

comes from a p-linear map φ : B → B of graded rings (i.e., φ is a p-linear ring map with φ(Bn) ⊆ Bn for all n).

We need to show that B is the base change of a finite graded R-algebra A and φ corresponds to idA⊗RFS .

As described above, each Bn is a finite dimensional k-vector space via the identification

Γ(Xk, E(n)) ∼= Γ(Spec(k), t∗ E(n))

from [Stacks, Tag 01XK], where t : Xk ↪→ Pnk → k. Therefore, setting An := Bφn , we get isomorphisms of k-vector
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spaces Bn ∼= An⊗Fp
k by Proposition 4.32. Set A :=

⨁︁
An. Since φ is a map of graded rings, i.e., φ(Bn) ⊆ Bn, we

have the equality of sets Bφ =
⨁︁

(Bφn ) = A. Note that A is in fact a subring of B, as φ is a ring homomorphism.

Since φ is even a map of graded rings, the grading A =
⨁︁

nAn makes A a graded ring. In fact, B is a k-algebra

(via k → R⊗Fp
k → B), A is an Fp-algebra (via Fp → R→ A) and B ∼= A⊗Fp

k as k-algebras by Corollary 4.33.

Hence we get the following cocartesian diagram of (graded) rings

B A

R⊗Fp
k R

k Fp

In particular, the upper square is cocartesian. Now note that the map R→ R⊗Fp
k is an fpqc morphism as a base

change of the fpqc morphism Fp → k. Now, by assumption, B is a finite R⊗Fp
k-module. Since being finite is fpqc

local on the target, see [Stacks, Tag 02LA], this implies that A is finite as an R-module. In summary, we see that A

is a graded R-algebra which is finitely generated as an R-module with A⊗R (R⊗Fp
k) ∼= B as R⊗Fp

k-algebras.

Hence, A gives rise to a coherent OX -algebra ˜︁A whose image under the functor from the lemma is isomorphic to

(E , φE).

• Fully faithfulness : Fully faithfulness is a direct consequence of (30). Namely, for any two coherent OX -algebras

F ,F ′, consider the internal Hom G := HomOX
(F ,F ′), which is itself a coherent OX -algebra, cf. [Stacks, Tag

01CM]. Applying (30) above to H := G, we get

HomOX
(F ,F ′)⊗Fp

k = Γ(X,HomOX
(F ,F ′))⊗Fp

k ∼= Γ(Xk, q
∗(HomOX

(F ,F ′))) ∼= HomOXk
(q∗ F , q∗ F ′),

see [Stacks, Tag 0C6I]. Since the category CohAlg(Xk/φ2) precisely contains those OXk
-homomorphisms between

q∗ F and q∗ F ′ which are compatible with idX ⊗Fp
Fk, we conclude from this that the functor from the lemma is

fully faithful.

Lemma 4.36 now allows us to conclude Proposition 4.30. In rough terms, the idea is to embed X into a projective

scheme X ′, and correspondingly Xk into X ′
k. Due to some reductions, we will be able make use of relative normalization

in order to switch between finite étale covers of X and certain normal finite covers of X ′ and similarly for Xk ↪→ X ′
k.

Over the projective schemes X ′ (resp. X ′
k), we will interpret finite covers as coherent OX′ -algebras (resp. OX′

k
-algebras).

Then, we apply Lemma 4.36. But first, let us carry out some reduction steps :

Lemma 4.37. If Proposition 4.30 holds under the additional assumptions that X is affine, normal, connected and of finite

type over Fp, then it holds as stated.
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Proof. • Reduction to X affine : Suppose we have shown the equivalence claimed in Proposition 4.30 for all affine

schemes over Fp. Then, if X is an arbitrary scheme over Fp, we might choose an affine open covering X =
⋃︁
Ui of

X giving also an affine open covering Xk =
⋃︁
Ui,k, where Ui,k := Ui×Fp

Spec(k). Note that base change along the

Ui → X induces an equivalence between the category of schemes over X and the category of descent data relative

to the covering {Ui → X}i by [Stacks, Tag 02VY]. This equivalence restricts to finite étale covers of X, since being

finite étale is stable under base change and Zariski local on the target and finite étale covers of X form a full

subcategory of (Sch/X). The analogous equivalence holds relative to the affine open covering {Ui ×X Xk → Xk}i
and after quotienting by Frobenius, which can be shown using the same arguments as for Lemma 4.28.

Therefore it suffices to show the equivalence of descent data relative to {Ui → X}i and {Ui ×X Xk → Xk}i.

For this however, it suffices to show FEt(Ui) ∼= FEt(Ui,k/φ2), FEt(Uij)(Uij,k/φ2) and FEt(Uijl)(Uijl,k/φ2) for

all “intersections” Uij := Ui ×X Uj and Uijl := Ui ×X Uj ×X Ul. Here, the notation Uij,k and Uijl,k means the

base changes of Uij , Uijl along Xk → X, respectively. Since the Ui are affine, FEt(Ui) ∼= FEt(Ui,k/φ2) holds by

assumption. For the Uij and Uijl, observe that they embed as open subschemes into in the affine scheme Ui, hence

Uij and Uijl are separated. Therefore, intersections of affine opens of Uij (resp. Uijl) are affine schemes. Therefore,

in order to prove FEt(Uij)(Uij,k/φ2) and FEt(Uijl)(Uijl,k/φ2) for all i, j, l, we may repeat the same argument

once again, i.e., we may cover the Uij and Uijl by affine opens, respectively, whose intersections are now affine.

So, here we may apply the hypothesis that the claim is shown for all affine schemes. From this, we conclude the

equivalences FEt(Uij) ∼= FEt(Uij,k/φ2) and FEt(Uijl)(Uijl,k/φ2). See also the proof of [Stacks, Tag 0BQB].

• Reduction to X of finite type : Suppose we have shown the claim for all affine schemes of finite type over

Fp. By the above paragraph, it suffices to show the claim for all affine schemes over Fp. Now, if X = Spec(A)

is affine over Fp, we may write A ∼= colimiAi as a colimit of finite type Fp-algebras by [Stacks, Tag 00QN].

By [Stacks, Tag 0EYL] restricted to finite étale covers as described in [Ked19, Definition 4.1.1(a)], we have an

equivalence of categories 2- colimFEt(Spec(Ai)) ∼= FEt(Spec(A)). By the same arguments as for Lemma 4.28, we

have an equivalence 2- colimFEt(Spec(Ai,k/φ2) ∼= FEt(Spec(Ak))/φ2). Hence it suffices to show the equivalences

FEt(Spec(Ai)) ∼= FEt(Spec(Ai,k)/φ2), which follow from our assumption.

• Reduction to X normal : Suppose we have shown the claim for all normal and affine schemes of finite type over

Fp. By the above reductions, it suffices to show the claim for all affine schemes of finite type over Fp. So let X be

such a scheme. Since X is of finite type over a field, it is noetherian, hence the absolute normalization ν : X ′ → X

is defined, see [Stacks, Tag 035N]. The morphism ν is surjective by [Stacks, Tag 035Q] and finite by [Stacks, Tags

035B, 035S], hence in particular proper. Since X is noetherian, ν is also of finite presentation [Stacks, Tag 01TX].

Now, proper surjective morphisms of finite presentation are coverings in the h-topology and finite étale morphisms

satisfy h-descent, i.e., U ↦→ FEt(U) is a 2-sheaf on the h-site of X, see [Ryd10, Sections 5,8]. In particular, we

may apply the 2-sheaf axioms to the h-cover ν : X ′ → X. Note that we can also cover the “intersections” X ′ ×X X ′

and X ′ ×X X ′ ×X X ′ by their normalization. From this, one can deduce that if the claim is shown under the

assumptions from the beginning of this paragraph, it also holds for X.

• Reduction to X connected : Now, finally, let X be a normal affine scheme of finite type over Fp. In particular, X

48

https://stacks.math.columbia.edu/tag/02VY
https://stacks.math.columbia.edu/tag/0BQB
https://stacks.math.columbia.edu/tag/00QN
https://stacks.math.columbia.edu/tag/0EYL
https://stacks.math.columbia.edu/tag/035N
https://stacks.math.columbia.edu/tag/035Q
https://stacks.math.columbia.edu/tag/035B
https://stacks.math.columbia.edu/tag/035S
https://stacks.math.columbia.edu/tag/01TX


is noetherian. As noetherian normal schemes split as coproducts of their connected components by [Stacks, Tag

035Q], it suffices to show the claim for each connected component of X. Hence, the claim on X follows if we have

shown it for all connected, normal, affine schemes of finite type over Fp.

The next step is to embed X (and, correspondingly Xk) into a projective scheme over Fp (resp. k).

Lemma 4.38. After the reductions from Lemma 4.37, there exists a quasi-compact open immersionX ↪→ X ′ into a projective

normal Fp-scheme.

Proof. Being affine and of finite type over Fp, the scheme X is isomorphic to a closed subscheme of AnFp
for some

n. By composing with an open immersion AnFp
↪→ PnFp

, we get an immersion X ↪→ PnFp
, i.e., X is quasi-projective.

This immersion is in fact quasi-compact, as X is noetherian and any subspace of a noetherian topological space is

quasi-compact. By [GW10, Remark 10.31], or [Stacks, Tag 01RG], the immersionX ↪→ PnFp
factors as an open immersion

followed by a closed immersion, i.e., there exists an open immersion X ↪→ X ′′, where X ′′ is a projective Fp-scheme.

Now let X ′ be the absolute normalization of X ′′, which is still projective over Fp by [Stacks, Tags 01WC, 0GK4].

We are left to construct an open immersion X ↪→ X ′. Let X ′ ×X′′ X → X be the base change of the normalization

morphism X ′ → X ′′ along X ↪→ X ′′. Since X ↪→ X ′′ is an open immersion, we conclude from [Stacks, Tag 035K] that

X ′ ×X′′ X is isomorphic to the normalization of X. Since X is already normal, X ′ ×X′′ X → X is an isomorphism.

Therefore composing its inverse with the open immersion X ′ ×X′′ X ↪→ X ′ gives an open immersion X ↪→ X ′.

Next, we relate finite étale covers of X to certain covers of X ′ :

Lemma 4.39. After the reductions from Lemma 4.37 and with X ′ as in Lemma 4.38, we have an equivalence of categories

FEt(X) ∼= (finite morphisms Y ′ → X ′, where Y ′ is normal and Y ′ ×X′ X → X is étale)

Φ : Y ↦→ normalization of X ′ in Y

Y ′ ×X′ X ↦→Y ′ : Ψ

Here, the right hand side is meant as a full subcategory of (Sch/X ′).

Proof. • Φ is well-defined : First note that relative normalization is functorial by [Stacks, Tag 035J], i.e., the above

assignment also yields a map between sets of morphisms. Now, let Y be finite étale over X. Denote by Y ′ the

normalization of X ′ in Y with respect to the morphism Y → X ↪→ X ′. We first show that the normalization

morphism Y ′ → X ′ is finite. This follows from [Stacks, Tag 03GR]. Indeed, since X ′ is a projective scheme over a

field, it is Nagata by [Stacks, Tag 035B]. Moreover, the morphism Y → X ↪→ X ′ is of finite type as the composition

of the finite morphism Y → X with X ↪→ X ′, which is a quasi-compact immersion by [Stacks, Tag 01OX] and

hence of finite type by [Stacks, Tag 01T5]. Furthermore, Y is normal, since it is étale over a normal scheme [Stacks,

Tag 033C]. In particular, Y is reduced. To see that Y ′ is indeed normal, note that Y is noetherian, being of finite

type over a field. Since Y is also normal, Y ′ is normal by [Stacks, Tag 035L]. Below, we will show that Y ′ ×X′ X is

isomorphic to Y , therefore, Y ′ ×X′ X is étale over X.
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• Ψ is well-defined : Clear.

• Ψ ◦Φ ∼= id : Let Y be finite étale over X. Denote by Y ′ the normalization of X ′ in Y , with respect to the morphism

Y → X ↪→ X ′. By [Stacks, Tag 035K], Y ′ ×X′ X is isomorphic to the normalization Y 0 of X in Y . Since Y → X

is finite, hence integral, Y 0 is further isomorphic to Y by [Stacks, Tag 03GP].

• Φ ◦Ψ ∼= id : Let Y ′ be a normal scheme which is finite over X ′ such that Y ′ ×X′ X is étale over X.

Since both Ψ and Φ commute with finite coproducts (for the latter see [Stacks, Tag 03GO]), we may assume that

Y ′ is connected.

Denote by Y ′′ the normalization ofX ′ in Y ′×X′X. Since Y ′ → X ′ is finite, hence integral, the map Y ′×X′X → Y ′

factors through an integral morphism h : Y ′′ → Y ′ by [Stacks, Tag 035I]. Its base change Y ′′ ×X′ X → Y ′ ×X′ X

is an isomorphism, since Y ′′ ×X′ X is isomorphic to the normalization of X in Y ′ ×X′ X, which is isomorphic

to Y ′ ×X′ X, since Y ′ ×X′ X → X is integral. Further, Y ′ is normal, connected and noetherian being finite over

the noetherian scheme X ′, therefore it is integral and in particular irreducible. Then by the above, and since

Y ′ ×X′ X → Y ′ is an open immersion, we conclude that h : Y ′′ → Y ′ is birational. Since h is also integral, we may

conclude from [Stacks, Tag 0AB1] that h is even an isomorphism.

We can establish an analogue of 4.39 after base change to k and quotienting by φ2 :

Lemma 4.40. After the reductions from Lemma 4.37 and with X ′ as in Lemma 4.38, we have an equivalence of categories

FEt(Xk/φ2) ∼= (Finite morphisms Y ′ → X ′
k, where Y ′ is normal and Y ′ ×X′

k
Xk → Xk is étale,

equipped with morphisms φY ′ : Y ′ → Y ′ cartesian over φ2)

(Y, φY ) ↦→ (Y 0, φ0
Y )

(Y ′ ×X′
k
Xk, φY ′ ×X′

k
Xk) ↦→(Y ′, φY ′)

Here, the right hand side is meant as a subcategory of (Sch/X ′
k), where morphisms should be equivariant in the sense of

Definition 4.21. By Y 0, we mean the normalization of X ′
k in Y and by φ0

Y , we mean the map Y 0 → Y 0 obtained from φY

by [Stacks, Tag 035J].

Proof. The base change Xk is still an affine scheme of finite type over k. Moreover, since Fp is perfect, we may apply

[Stacks, Tag 0380] to see that Xk is again normal. Similarly, X ′
k is again normal and projective and Xk ↪→ X ′

k is still a

quasi-compact open immersion. Note that since Xk is in particular noetherian, it is a (finite) coproduct of connected

normal schemes [Stacks, Tag 0357] and similarly for X ′
k. Therefore, we may apply Lemma 4.39 to each connected

component of Xk to conclude the equivalence

(finite étale Y → Xk) ∼= (finite normal schemes Y ′ → X ′
k such that Y ′ ×X′

k
Xk → Xk is étale).

Then, note that X ′
k
∼= X ′ ×X (X ×Fp

Spec(k)), so we have idX′ ×X(idX ×Fp
Fk) = idX′ ×Fp

Fk (up to conjugation with

a unique isomorphism), i.e., the partial Frobenius on X ′
k is a base change of the partial Frobenius on Xk. Therefore, we

conclude the claim from Lemma 4.28.
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The heart of the proof of Proposition 4.30 is the following step, where Lemma 4.36 comes in.

Lemma 4.41. After the reductions from Lemma 4.37 and with X ′ as in Lemma 4.38, base change induces an equivalence

(Finite morphisms Y ′ → X ′, where Y ′ is normal and Y ′ ×X′ X → X is étale)

∼= (Finite morphisms Y ′ → X ′
k, where Y ′ is normal and Y ′ ×X′

k
Xk → Xk is étale,

equipped with morphisms φY ′ : Y ′ → Y ′ cartesian over φ2).

Proof. Note that for noetherian schemes S, formation of the relative spectrum gives an equivalence between coherent

OS-algebras and finite schemes over S, cf. [GW10, Remark 12.10]. Since projective schemes over a field are noetherian,

and by Lemma 4.36, we thus have the following chain of equivalences :

(Finite morphisms Y ′ → X ′)

∼= CohAlg(OX′)

4.36∼= CohAlg(OX′
k
/φ2)

∼= (Finite morphisms Y ′ → X ′
k, equipped with morphisms φY ′ : Y ′ → Y ′ cartesian over φ2)

That equivalence restricts to the claimed equivalence.

Finally, we conclude Proposition 4.30 :

Proof of Proposition 4.30. Do the reductions of Lemma 4.37 and choose an open immersion X ↪→ X ′ as in Lemma 4.38.

Then we have equivalences

FEt(X)
4.39
= (finite morphisms Y ′ → X ′, where Y ′ is normal and Y ′ ×X′ X → X is étale)
4.41
= (finite morphisms Y ′ → X ′

k, where Y ′ is normal and Y ′ ×X′
k
Xk → Xk is étale,

equipped with morphisms Y ′ → Y ′ cartesian over φ2)

4.40
= FEt(Xk/φ2).

Note that all equivalences are induced by base change.

Remark 4.42. Observe that by Remark 4.29, we also conclude from Proposition 4.30 that FEt(X) ∼= FEt(Xk/φ1) by

the “base change” functor

FEt(X) → FEt(Xk/φ1)

Y ↦→ (Yk, FY ×Fp
idk)

(g : Y → Y ′) ↦→ (g ×Fp
idk : Yk → Y ′

k).
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Note that this is indeed a well-defined functor, since any morphism of schemes in characteristic p commutes with absolute

Frobenii. In particular,
Y Y

X X

FY

FX

commutes and for any map g : Y → Y ′ of finite étale covers,

Y Y

Y ′ Y ′

FY

g g

FY ′

commutes. Of course, both squares still commute after applying the base change functor − ×Fp
Spec(k). Also see

Definition 4.26.

4.4 Stein factorization in the Drinfeld setting

Proposition 4.30 showed that any scheme X over Fp satisfies a “Drinfeld analogue” of π1-properness as introduced in

Definition 3.2. So from now on, we proceed as for the proof of Proposition 1.2. First, we establish an analogue of Lemma

3.12 in the Drinfeld setting.

Lemma 4.43. Let X1 and X2 be connected qcqs schemes over Fp. Set X := X1 ×Fp
X2. Then, for any object (Y, φY ) of

FEt(X/φ1), there exists a scheme T under Y and over X2, such that

Y T

X X2

(31)

commutes, T → X2 is finite étale, φY : Y → Y is a T -morphism, the geometric fibres Yt̄ of Y → T are φY,t̄ := (φY ×T idt̄)-

connected and such that diagram (31) has the following universal property : For any T ′ under Y and finite étale over X2,

such that
Y T ′

X X2

(32)

commutes, there is a unique morphism T → T ′ such that

Y T T ′

X X2

commutes. In particular, T is unique up to unique isomorphism.
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Here comes the analogue of Example 3.13 :

Example 4.44. In the situation of Lemma 4.43, assume that X2 = x̄ is a geometric point. Let (Y, φY ) be an object of

FEt(X/φ1). By Proposition 4.30 and after switching to the first partial Frobenius, FEt(X1 ×Fp
x̄/φ1) ∼= FEt(X1), so

there exists a finite étale cover W → X1 such that Y ∼= W ×Fp
x̄ and φY = FW ×Fp

idx̄, up to composition with the

canonical isomorphism Y ∼=W ×Fp
x̄.

IfW =
∐︁
Wi is the decomposition ofW into finitely many connected components, Y ∼= (

∐︁
Wi)×Fp

x̄ ∼=
∐︁
(Wi×Fp

x̄) is

the decomposition of Y into φY -connected components. Now, we find T as a coproduct of copies of x̄, one for each i. As

the map Y → T , we take the coproduct of the projection mapsWi ×Fp
x̄→ x̄. Then each geometric fibre Yt̄ of Y → T is

isomorphic toWj ×Fp
t̄ for the index j corresponding to the copy of x̄ met by t̄. Note that we can write FW =

∐︁
FWi

,

by definition of the absolute Frobenius of a scheme and because of the trivial fact that the Frobenius on a product of

rings is the product of the Frobenii on its factors. Therefore, φY = FW ×Fp
idx̄ =

∐︁
(FWi

×Fp
idx̄). So φY is indeed a

T -morphism and each fibreWi ×Fp
t̄ is φY,t̄ = FWi

×Fp
idt̄-connected by Proposition 4.10.

Also the universal property of a diagram (31) is immediate, if X2 = x̄ is a geometric point : Each T ′ as in diagram (32)

splits as a finite coproduct of copies of x̄. Since Y → T has φY,t̄-connected geometric fibres,

Y ∼= Y ×T T ∼= Y ×T
(︂∐︂

x̄
)︂
∼=
∐︂

(Y ×T x̄)

is the decomposition of Y into φY -connected components, hence Y → T induces a bijection between the φY -connected

components of Y and the connected components of T , which are the copies of x̄. Meanwhile, Y → T ′ has to map

φY -connected components to points, while not necessarily inducing a bijection. So we indeed get a unique morphism

T → T ′ over x̄ turning Y → T into Y → T ′ by mapping points to points in the right way.

As for Lemma 3.12, the proof strategy for Proposition 4.43 is to globalize Example 4.44. For that, we will use the

following analogue of Lemma 3.7 :

Lemma 4.45. Let X1, X2 → Fp connected qcqs schemes over Fp. Denote X := X1 ×Fp
X2. Let x̄ → X2 be a geometric

point of X2. Then, base change induces an equivalence of categories

2-colim(U,ū) FEt(X ×X2
U/φ1)

∼→ FEt(X ×X2
x̄/φ1) (33)

where (U, ū) runs through the (affine) étale neighborhoods of x̄ in X2.

Proof. The proof is analogous to Lemma 3.7. Note that fullness again relies on the suggestions by Scholze 2. We sketch

why they also apply in the Drinfeld situation. Let us denote Z := lim(U,ū)U . It suffices to show that base change induces

an equivalence

FEt(X ×X2
x̄/φ1) → FEt(X ×X2

Z/φ1).

Further, observe the canonical isomorphisms X ×X2
Z ∼= X1 ×Fp

Z and X ×X2
x̄ ∼= X1 ×Fp

x̄.

2. See https://mathoverflow.net/questions/432160/künneth-formula-for-pi-1-proper-morphisms (last accessed on 2022-10-20)
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• Essential surjectivity : By Proposition 4.30, base change is an equivalence FEt(X) ∼= FEt(X ×Fp
x̄/φ1). This

functor factors through base change FEt(X) → FEt(X ×Fp
Z/φ1). So, any object of FEt(X ×Fp

x̄/φ1) descends

to an object of FEt(X), which we can base change to FEt(X) → FEt(X ×Fp
Z/φ1) in order to get a preimage.

• Faithfulness : This follows from the same arguments as for Lemma 3.7, sinceFEt(X×Fp
Z/φ1) andFEt(X×X2

x̄/φ1)

together with fibre functors to a common geometric point are Galois categories by Proposition 4.10.

• Fullness : Set R := OX2,x̄ and denote by κ its residue field. By v-descent and h-descent, we can do the same

reductions as for Lemma 3.7, i.e. reduce to the case that R is a normal integral domain with algebraically closed

fraction fieldK and to the case thatX1 is normal. As Fp is perfect,X1 is geometrically normal, henceX1×Fp
Spec(R)

and X1 ×Fp
Spec(K) are normal. Then we can argue as for Lemma 3.7.

Proof of Lemma 4.43. The proof is completely analogous to Lemma 3.12. Hence this proof will be kept brief.

• Universal property : The universal property of diagram (31) follows by the same arguments as in the proof

of Lemma 3.12 : Uniqueness of the map T → T ′ follows from faithfulness of the fibre functor on FEt(X2) and

Example 4.44. Existence of the map T → T ′ is shown in an étale neighborhood of any geometric point of X2 by

first applying Example 4.44 and then Lemma 2.32. By uniqueness and the sheaf property of morphisms over X2,

we can glue to get the factorization T → T ′ globally.

• Existence of T is étale-local : As in the proof of Lemma 4.43, it suffices to show existence of T in an étale

neighborhood of any geometric point x̄ of X2 since by the universal property shown before, any family of locally

existent covers gives rise to a descent datum and finite étale morphisms satisfy fpqc (in particular, étale) descent.

• Existence of T : Fix a geometric point x̄→ X2 and base change the composed morphism Y → X → X2 as well as

φ1 and φY to x̄. We have a canonical isomorphism X ×X2
x̄ ∼= X1 ×Fp

x̄ under which φ1 ×X2
idx̄ corresponds to

FX1
×Fp

idx̄. Proposition 4.30 tells us (after switching to the first partial Frobenius) that there exists a finite étale

cover W → X1 and an isomorphism Y ×X2
x̄ ∼= W ×Fp

x̄ under which φY ×X2
idx̄ corresponds to FW ×Fp

idx̄.

Lemma 4.45 implies the existence of an étale neighborhood x̄ → U → X2 such that Y ×X2
U ∼= W ×Fp

U

and φY ×X2
idU corresponds to FW ×Fp

idU . Then we might argue as in the proof of Lemma 3.12 by writing

W =
∐︁
i=1,..,nWi as the finite coproduct of its connected components and defining T as the n-fold coproduct of

copies of U .
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4.5 Homotopy exact sequence in the Drinfeld setting

The goal of this section is to show

Proposition 4.46. Let X1, X2 be connected qcqs schemes over Fp and set X := X1 ×Fp
X2. Then, for any geometric point x̄

of X2 and any geometric point z̄ of X1 ×Fp
x̄ (and thus also of X1 ×Fp

X2 and X2), base change induces an exact sequence

of topological groups

π1(X1 ×Fp
x̄/φ1, z̄) π1(X1 ×Fp

X2/φ1, z̄) π1(X2, z̄) 1. (34)

In the above Proposition, we abused notation and denoted by φ1 both the first partial Frobenius on X1 ×Fp
x̄ and on

X1 ×Fp
X2, respectively. By the base change functor FEt(X1 ×Fp

x̄/φ1) → FEt(X1 ×Fp
X2/φ1), we mean the one from

Definition 4.26. By the base change functor FEt(X2) → FEt(X1 ×Fp
X2/φ1), we mean a functor as in Remark 4.42.

Here comes the analogue of Lemma 3.10 :

Lemma 4.47. Under the assumptions of Proposition 4.46, the base change of any connected finite étale cover of X2 to

X1 ×Fp
X2 is φ1-connected. In particular, the sequence (34) is exact at π1(X2, z̄).

Proof. Let Y2 → X2 be finite étale with Y2 connected. Base change sends Y2 to (X1 ×Fp
Y2, FX1

×Fp
idY2

) and X1 ×Fp
Y2

is (FX1
×Fp

idY2
)-connected by Proposition 4.10. Then by Lemma 4.22, (X1 ×Fp

Y2, FX1
×Fp

idY2
) is a connected object

of FEt(X1 ×Fp
X2/φ1). Hence we have shown that base change sends connected objects to connected objects, which

implies that the sequence (34) is exact at π1(X2, z̄) by Lemma 2.8.

This is the analogue of Lemma 3.11 :

Lemma 4.48. Let X → S be a morphism of schemes. Let φ : X → X be a universal homeomorphism over S such that the

geometric fibres of X → S are (φ×S ids̄)-connected. Suppose that for any finite étale morphism T → S the base change

X ×S T → X is (φ×S idT )-connected. Further assume that for any object (Y, φY ) of FEt(X/φ), there exists a finite étale

morphism T → S and a morphism Y → T with (φY ×T t̄)-connected geometric fibres such that

Y T

X S

(35)

commutes. Then, for any geometric point s̄→ S and any geometric point z̄ → X ×S s̄ (hence also of X and S), the sequence

π1(X ×S s̄, z̄) π1(X, z̄) π1(S, z̄)

induced by base change is exact.

Proof. The proof works in total analogy to Lemma 3.11. So, as before, we will be brief and refer the reader to the proof

of Lemma 3.11. By Lemmas 2.9 and 2.10, it suffices to show the following statement :
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If the base change Y ×X (X ×S s̄) ∼= Y ×S s̄ has a (φY ×S s̄)-connected component Z isomorphic to X ×S s̄ (i.e., the map

Z → Y ×S s̄→ X ×S s̄ is an isomorphism), then diagram (35) is cartesian.

As in the proof of Lemma 3.11, we first may assume that Y is φY -connected. Choose a finite étale cover T → S as in

the assumptions of the lemma. Since Y → T has geometrically (φY ×T t̄)-connected (and hence non-empty) fibres,

it is surjective and therefore, T is connected. Set Y ′ := T ×S X and φY ′ := idT ×S φ. Let p : Y → Y ′ be the unique

morphism making
Y

Y ′ T

X S

p

□

(36)

commute. We show that p is an isomorphism. First, observe that p is finite étale as a morphism between finite étale

covers of X, see [Stacks, Tags 035D and 02GW]. Since T is connected, Y ′ is φY ′ -connected by assumption. Observe

that, since φY and φ are compatible along Y → X, also φY and φY ′ are compatible along p. Therefore, p indeed defines

a morphism in FEt(X/φ).

Now, by Lemma 4.23, it suffices to show that there exists some geometric point of Y ′ whose fibre under p consists of

a single point. For this, as for Lemma 3.11, we apply the base change functor − ×S s̄ to diagram (36) and consider

the base change ps̄ := p×S ids̄ : X ×S s̄→ Y ′ ×S s̄. By assumption, there exists a φY ×S s̄-connected component Z of

Ys̄ = Y ×X (X ×S s̄) such that Z → Ys̄
ps̄→ Y ′

s̄ → Xs̄ is an isomorphism.

By Lemma 2.4 (and the description of connected objects in FEt(Xs̄/φ ×S ids̄)), there exists a unique (φY ′ ×S ids̄)-

connected component Z ′ of Y ′
s̄ such that Z → Ys̄

ps̄→ Y ′
s̄ factors through Z ′ → Y ′

s̄ . Moreover, Z → Z ′ is an isomorphism

by the assumption on Z. Now, in analogy to the proof of Lemma 3.11, we observe that Ys̄ and Y ′
s̄ have the same number

of components, which is where the assumption that Y → T has (φY ×T t̄)-connected geometric fibres comes in. Then,

by Lemma 2.4, the square
Z Ys̄

Z ′ Y ′
s̄

∼= ps̄

is cartesian. Since Z → Z ′ is an isomorphism, ps̄ and hence also p is an isomorphism after base change to a geometric

point.

Hence, as in the classical setting, we conclude Proposition 4.46 from Lemmas 4.47, 4.48 and 4.43.

56

https://stacks.math.columbia.edu/tag/035D
https://stacks.math.columbia.edu/tag/02GW


4.6 Conclusion of Drinfeld’s Lemma

Proof of Theorem 1.4. Propositions 4.30 and 4.46 give us a commutative diagram

π1(X1 ×Fp
x̄/φ1, z̄) π1(X1 ×Fp

X2/φ1, z̄) π1(X2, z̄) 1

π1(X1, z̄),

∼=

where the top row is exact and π1(X1 ×Fp
x̄/φ1, z̄) → π1(X1, z̄) is an isomorphism. From that on, the same arguments

as for Lemma 3.9 show the claim : We get an exact sequence

π1(X1, z̄) π1(X1 ×Fp
X2/φ1, z̄) π1(X2, z̄) 1

of groups where π1(X1, z̄) → π1(X1 ×Fp
X2/φ1, z̄) → π1(X1, z̄) is the identity, i.e., the sequence splits. Hence the maps

from the above sequence induce an isomorphism of groups π1(X1 ×Fp
X2/φ1, z̄) ∼= π1(X1, z̄)× π1(X2, z̄). This map is

in fact an isomorphism of topological groups since any continuous map between compact Hausdorff spaces is closed and

hence any bijective continuous map is a homeomorphism.

Remark 4.49. By Remark 4.29, Theorem 1.4 also implies

π1(X/pFr, z̄) ∼= π1(X/φ2, z̄) ∼= π1(X1, z̄)× π1(X2, z̄).

Remark 4.50. By induction, one can generalize Theorem 1.4 to higher products with higher partial Frobenii. More

precisely, if X := X1 ×Fp
· · · ×Fp

Xn is the fibre product of n connected qcqs schemes over Fp, we may denote by

φi := idX1
×Fp

· · · ×Fp
FXi

×Fp
· · · ×Fp

idXn
,

the i-th partial Frobenius of X. Then, we may define a category FEt(X/pFr.) analogously to Remark 4.29 and Theorem

1.4 generalizes to

π1(X/pFr, z̄) ∼=
∏︂
i

π1(Xi, z̄),

for any geometric point z̄ of X (and hence of all Xi). See also [Ked19, 4.2.10, 4.2.12].

Example 4.51. Let X be a connected scheme over Fp and FX its absolute Frobenius. Drinfeld’s Lemma states that

for any connected scheme X over Fp, the group π1(X/FX) is related to the “usual” étale fundamental group of X as

follows :

π1(X/FX , z̄) ∼= π1(X ×Fp
Spec(Fp)/φ1, z̄) ∼= π1(X, z̄)× π1(Spec(Fp), z̄) ∼= π1(X, z̄)× ˆ︁Z.
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