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1. Introduction and Statement of Results

Let j(z) be the modular function for SL2(Z) defined by

j(z) =

(
1 + 240

∑∞
n=1

∑
v|n v3qn

)3

q
∏∞

n=1(1− qn)24
= q−1 + 744 + 196884q + 21493760q2 + · · · ,

where q = e2πiz. The values of j(z) at imaginary quadratic arguments in the upper half
of the complex plane are known as singular moduli.

Singular moduli are algebraic integers which play prominent roles in classical and
modern number theory (see [C, BCSH]). For example, Hilbert class fields of imaginary
quadratic fields are generated by singular moduli. Furthermore, isomorphism classes of
elliptic curves with complex multiplication are distinguished by singular moduli.

Throughout, let d ≡ 0, 3 (mod 4) be a positive integer (so that −d is the discriminant
of an order in an imaginary quadratic field), and let H(d) be the Hurwitz-Kronecker
class number for the discriminant −d. Let Qd be the set of positive definite integral
binary quadratic forms (note. including imprimitive forms, if there are any)

Q(x, y) = ax2 + bxy + cy2

with discriminant −d = b2 − 4ac. For each Q, let τQ be the unique complex number in
the upper half-plane which is a root of Q(x, 1) = 0. The singular modulus j(τQ) depends
only on the equivalence class of Q under the action of Γ = PSL2(Z).

Define ωQ ∈ {1, 2, 3} by

(1.1) ωQ =


2 if Q ∼Γ [a, 0, a],

3 if Q ∼Γ [a, a, a],

1 otherwise.
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Following Zagier, define the trace of the singular moduli of discriminant −d by

(1.2) Tr(d) =
∑

Q∈Qd/Γ

(j(τQ)− 744)

ωQ

.

It is natural to seek formulas for Tr(d), and to investigate its asymptotic behavior.
Indeed, the question of asymptotics is closely related to the classical observation that

(1.3) eπ
√

163 = 262537412640768743.9999999999992 . . .

is nearly an integer. To make this precise, we recall some classical facts. A primitive
positive definite binary quadratic form Q is reduced if |B| ≤ A ≤ C, and B ≥ 0 if either
|B| = A or A = C. If −d < −4 is a fundamental discriminant (i.e. the discriminant of
an imaginary quadratic field), then there are H(d) reduced forms with discriminant −d.
The set of such reduced forms, say Qred

d , constitutes a complete set of representatives for

Qd/Γ. Moreover, each such reduced form has 1 ≤ A ≤
√

d/3 (see page 29 of [C]), and
has the property that τQ lies in the usual fundamental domain for the action of SL2(Z)

(1.4) F =

{
−1

2
≤ Re(z) <

1

2
and |z| > 1

}
∪
{
−1

2
≤ Re(z) ≤ 0 and |z| = 1

}
.

Since J1(z) = j(z)− 744 = q−1 +196884q + · · · , it follows that if Gred(d) is defined by

(1.5) Gred(d) =
∑

Q=(A,B,C)∈Qred
d

eπBi/A · eπ
√

d/A,

then Tr(d)−Gred(d) is “small.” This is illustrated by (1.3) where H(163) = 1.
In general, it is natural to study the average value

Tr(d)−Gred(d)

H(d)
.

If d = 1931, 2028 and 2111, then we have

Tr(d)−Gred(d)

H(d)
=


11.981 . . . if d = 1931,

−24.483 . . . if d = 2028,

−13.935 . . . if d = 2111.

Although these examples do not suggest a uniform behavior, a clearer picture emerges
when one includes some non-reduced quadratic forms which slightly perturb these values.
For each positive integer A, let Qold

A,d denote the set

(1.6) Qold
A,d = {Q = (A, B, C) : non-reduced with DQ = −d and |B| ≤ A}.

Define Gold(d) by

(1.7) Gold(d) =
∑

√
d/2≤A≤

√
d/3

Q∈Qold
A,d

eπBi/A · eπ
√

d/A.



HILBERT CLASS POLYNOMIALS AND SINGULAR MODULI 3

The non-reduced forms Q contributing to Gold(d) are those primitive discriminant −d
forms for which τQ is in the bounded region obtained by connecting the two endpoints
of the lower boundary of F with a horizontal line.

Direct calculation provides the following suggestive data

Tr(d)−Gred(d)−Gold(d)

H(d)
=


−24.672 . . . if d = 1931,

−24.483 . . . if d = 2028,

−23.458 . . . if d = 2111.

As −d → −∞, these values appear to converge to the constant −24. We informed Duke
of these observations, and he has recently proved [D2] a reformulation which implies the
following theorem.

Theorem 1.1. As −d ranges over negative fundamental discriminants, we have

lim
−d→−∞

Tr(d)−Gred(d)−Gold(d)

H(d)
= −24.

Duke proves this theorem using methods he developed in [D1] concerning the distribution
of CM points. He obtains the constant −24 by characterizing limits of this type in terms
of values of Atkin’s inner product, which may be directly evaluated.

We obtain an exact formula for Tr(d) in terms of Kloosterman sums and −24H(d),
thereby providing a natural explanation for Theorem 1.1. We shall see that Theorem 1.1
is equivalent to bounds for certain specific sums of Kloosterman sums. Our formula for
Tr(d) is the m = 1 case of a general family of formulas for “traces” of singular moduli.

Zagier defined [Z1] these general traces using a special sequence of monic polynomials
Jm(x) ∈ Z[x] (for their properties, see [AKN, BKO, O]). Their generating function,
which is equivalent to the denominator formula for the Monster Lie algebra, is given by

∞∑
m=0

Jm(x)qm =

(
1 + 240

∑∞
n=1

∑
v|n v3qn

)2 (
1− 504

∑∞
n=1

∑
v|n v5qn

)
q
∏∞

n=1(1− qn)24
· 1

j(z)− x

= 1 + (x− 744)q + (x2 − 1488x + 159768)q2 + · · · .

(1.8)

If m ≥ 1 and Tm is the usual weight zero mth Hecke operator, then Jm(x) is the degree
m polynomial for which

Jm(j(z)) = m(j(z)− 744) | Tm.

Generalizing Tr(d), for every integer m ≥ 0 let

(1.9) Trm(d) =
∑

Q∈Qd/Γ

Jm(j(τQ))

ωQ

.

Observe that Tr0(d) = H(d) and Tr1(d) = Tr(d).
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Zagier introduced these traces in relation to his proof of Borcherds’ theorem (see
[B1, B2]) on the infinite product expansion of modular forms with Heegner divisor. He
proved (see Theorem 5 of [Z1]), for each m ≥ 1, that the generating function for Trm(d)
is a weakly holomorphic modular form of weight 3/2. To derive exact formulas for these
traces, we reformulate Zagier’s generating functions using harmonic Poincaré series with
singularities at cusps.

Remark. Gross and Zagier [GZ] obtained exact formulas of a different type for norms
of differences of suitable singular moduli. Later Dorman [Do1, Do2] obtained further
results in this direction.

To state these formulas, we first fix notation. If v is odd, then define εv by

(1.10) εv =

{
1 if v ≡ 1 (mod 4),

i if v ≡ 3 (mod 4).

Throughout, let e(w) = e2πiw, and for k ∈ 1
2
Z, let Kk(m,n, c) be the generalized Kloost-

erman sum

Kk(m, n, c) =
∑
v (c)∗

(
c

v

)2k

ε2k
v e

(
mv̄ + nv

c

)
.(1.11)

In the sum, v runs through the primitive residue classes modulo c, and v̄ is the multi-
plicative inverse of v modulo c.

Theorem 1.2. If m is a positive integer and −d < 0 is a discriminant, then

Trm(d) = −
∑
n|m

nB(n2, d),

where B(n2, d) is the integer given by

B(n2, d) = 24H(d)− (1 + i)
∑
c>0

c≡0 (4)

(1 + δodd(c/4))
K3/2(−n2, d, c)

n
√

c
sinh

(
4πn

c

√
d

)
.

Here the function δodd is defined by

δodd(v) =

{
1 if v is odd,

0 otherwise.

Remark. If −d < 0 is a discriminant and 0 < c ≡ 0 (mod 4), then it turns out that

(1 + δodd(c/4))(1 + i)K3/2(−1, d, c) =
√

cS(d, c),

where S(d, c) is the simple exponential sum

S(d, c) =
∑

x2≡−d (mod c)

e(2x/c)
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(see Proposition 5 of [D2], and also earlier work of Kohnen in Proposition 5 of [K]).
Therefore if m = 1, then Theorem 1.2 gives

Tr(d) = −24H(d) +
∑
c>0

c≡0 (4)

S(d, c) sinh(4π
√

d/c).

Remark. Theorem 1.2 is analogous to the exact formula for the partition function p(n)
obtained1 by Rademacher using the “circle method” [R]. Rather than employing the
circle method, we directly construct certain harmonic Poincaré series of weight 3/2 with
singularities at cusps. A similar analysis, where the weight is −1/2, provides a direct
proof of Rademacher’s formula for p(n) (for example, see page 655 of [H]), and is, in fact,
a simpler calculation than the one required for Theorem 1.2. To see this, one first notes
that the calculations involved in constructing weight k and weight 2− k Poincaré series
are equally complicated (see Section 3.1). Hence, it suffices to consider those series with
weight k ≥ 1. Moreover, for positive weights k > 2, the calculation is straightforward
thanks to the absolute convergence of the defining series. If k = 2, the situation is nearly
as simple since the Poincaré series may be continued using their Fourier expansions. For
the half-integral weights 1 ≤ k ≤ 3/2, the situation requires spectral theory, and often
gives series which are non-holomorphic in z. In fact, it turns out that the presence of the
24H(d) term in Theorem 1.2 is directly related to such a non-holomorphic contribution.

Remark. Although we do not offer a proof of Theorem 1.1, here we make some straight-
forward comments. Using Theorem 1.2, it is not difficult to show that Theorem 1.1 is
equivalent to the assertion that∑

c>
√

d/3

c≡0 (4)

S(d, c) sinh

(
4π

c

√
d

)
= o (H(d)) .

This follows from the fact the sum over c ≤
√

d/3 is essentially Gred(d) + Gold(d). The
sinh factor contributes the size of q−1 in the Fourier expansion of a singular modulus,
and the summands in the Kloosterman sum provides the corresponding “angles”. The
contribution Gold(d) arises from the fact that the Kloosterman sum cannot distinguish

between reduced and non-reduced forms. In view of Siegel’s theorem that H(d) �ε d
1
2
−ε,

Theorem 1.1 would follow from a bound for such sums of the form � d
1
2
−γ, for some

γ > 0. Such bounds are implicit in Duke’s proof of Theorem 1.1. Estimates of this type
have been established for such sums, but are difficult to establish. These bounds are
intimately connected to the problem of bounding coefficients of half-integral weight cusp
forms (for example, see works by Duke and Iwaniec [D1, I1]).

Theorem 1.2 has some number theoretic consequences. For instance, suppose that
−d < 0 is a fundamental discriminant. The singular moduli j(τQ), as Q ranges over Qd,

1This formula perfected earlier work of Hardy and Ramanujan.
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are the roots of the Hilbert class polynomial

(1.12) Hd(x) =
∏

Q∈Qd/Γ

(x− j(τQ)) ∈ Z[x],

an irreducible polynomial which generates the Hilbert class field of Q(
√
−d). These

polynomials are generally quite complicated, and the basic problem of computing them
and their roots has a long history (see [Be, Bi, BCSH, C, Do1, Do2, GZ, KY, Wa, We]).

Theorem 1.2 easily leads to exact formulas for any such Hilbert class polynomial. To
this end, observe that Theorem 1.2 combined with the coefficients of J1(x), . . . , Jh(x),
where h = H(d), are sufficient for computing

Pm(d) =
∑

Q∈Qd/Γ

j(τQ)m,

for 1 ≤ m ≤ h. For these m, let Sm(d) denote the usual mth symmetric function of the
singular moduli in the set {j(τQ) : Q ∈ Qd/Γ}. Obviously, computing the Sm(d) gives
Hd(x). These symmetric functions are easily obtained inductively from the Pm(d) by
the Newton-Girard relations

(−1)mmSm(d) +
m∑

k=1

(−1)k+mPk(d)Sm−k(d) = 0.

Consequently, Theorem 1.2 implies the following corollary.

Corollary 1.3. If −d < 0 is a fundamental discriminant, then we have an exact formula
for Hd(x) in terms of −d and the coefficients of Jm(x), where 1 ≤ m ≤ H(d).

Remark. Care is required when implementing the algorithm justifying Corollary 1.3.
The formulas for the integers B(n2, d) do not converge very rapidly.

It is not difficult to obtain convolution identities for the Trm(d) which are somewhat
similar to those obtained by Cohen [Co] for generalized class numbers. For example, if
σ3(n) =

∑
v|n v3, then we obtain the following amusing identity for Tr(d) = Tr1(d).

Theorem 1.4. If −d < 0 is a fundamental discriminant, then

Tr(d) + 240
∑

1≤k<d/4

σ3(k)Tr(d− 4k) = −264L(−4, χ−d)

+ πd9/4
√

2
∑
c>0

c≡0 (4)

S(d, c)√
c

I9/2

(
4π
√

d

c

)
+

{
−480σ3(d/4) if d ≡ 0 (mod 4),

240σ3

(
d+1
4

)
if d ≡ 3 (mod 4),

where L(s, χ−d) is the Dirichlet L-function for the Kronecker character χ−d, and I9/2(z)
is the index 9/2 I-Bessel function (see [AS]). Moreover, as −d → −∞, we have

Tr(d)+240
∑

1≤k<d/4

σ3(k)Tr(d−4k) ∼ (−1)deπ
√

d

(
d2 − 10d3/2

π
+

45d

π2
− 105

√
d

π3
+

105

π4

)
.
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Remark. The series above is nearly identical to the series for Tr(d)

Tr(d) = −24H(d) + πd1/4
√

2
∑
c>0

c≡0 (4)

S(d, c)√
c

I1/2

(
4π

c

√
d

)
,

which can be obtained from the remark after Theorem 1.2 using the identity I1/2(z) =(
2
πz

)1/2
sinh(z). Apart from the −24H(d) summand, the only major differences are that

d9/4 replaces d1/4, and the I9/2-Bessel function replaces the I1/2-Bessel function. This
convolution is simple to implement numerically for the purpose of recursively computing
the Tr(d). This follows from the fact that the sums appearing here converge rapidly.

In Section 2 we recall Zagier’s description of the generating functions for the Trm(d).
These generating functions are weakly holomorphic modular forms of weight 3/2 in
“Kohnen’s plus-space” on Γ0(4). In Section 3, we describe weakly holomorphic Poincaré
series of half-integral weight on Γ0(4), and we construct their projections to Kohnen’s
plus-space. In the special case of weight 3/2, we relate these projections to Zagier’s
generating functions. These formulas imply Theorem 1.2.

Remark. Using the weakly holomorphic modular forms constructed in Section 3, Duke
obtains a new proof of the modularity of the generating function

q−1 − 2−
∑

0<d≡0,3 (mod 4)

Tr1(d)qd

(see the discussion after Theorem 2 of [D2]). This is the first case of Zagier’s work on
these generating functions, and is the m = 1 case of Theorem 2.1 (1).

2. Zagier’s generating functions

In [B1, B2], Borcherds determined the infinite product expansion of a wide class of
automorphic forms on orthogonal groups. As a special case, his work provides the infinite
product expansions of the modular functions

Hd(j(z)) =
∏

Q∈Qd

(j(z)− j(τQ)).

In a recent paper [Z1], Zagier gave an elementary proof of these cases of Borcherds’
theory using modular forms of half-integral weight. As part of this work, Zagier derives
an explicit description of the traces Trm(d) as Fourier coefficients of certain meromorphic
modular forms of weight 3/2.

Here we briefly recall these functions. For non-negative integers λ, let M !
λ+ 1

2

be the

infinite dimensional complex vector space of weight λ + 1
2

weakly holomorphic modular

forms on Γ0(4) satisfying the “Kohnen plus-space” condition. A weight λ + 1
2

meromor-
phic modular form f(z) on Γ0(4) is in this space provided that its poles (if there are
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any) are supported at the cusps of Γ0(4), and if its Fourier expansion has the form

(2.1) f(z) =
∑

(−1)λn≡0,1 (mod 4)

a(n)qn.

Let Mλ+ 1
2

be the subspace of M !
λ+ 1

2

consisting of those forms f(z) which are holomorphic

modular forms. Zagier constructs two particular sequences of weakly holomorphic forms.
If D ≡ 0, 1 (mod 4) is a positive integer, then let gD(z) denote the unique element of

M !
3/2 whose Fourier expansion has the form

(2.2) gD(z) = q−D + B(D, 0) +
∑

0<d≡0,3 (mod 4)

B(D, d)qd.

(The existence and uniqueness of these forms is discussed in Section 4 of [Z1]).
Similarly, for a non-negative integer d ≡ 0, 3 (mod 4), let fd(z) be the unique form in

M !
1/2 whose expansion has the form

(2.3) fd(z) = q−d +
∑

0<D≡0,1 (mod 4)

A(D, d)qD.

(Existence and uniqueness follow from Lemma 14.2 of [B1]; see also Section 4 of [Z1]).
It turns out that all of the coefficients B(D, d) and A(D, d) of these forms are integers.

If m ≥ 1, 0 < D ≡ 0, 1 (mod 4) and 0 ≤ d ≡ 0, 3 (mod 4), then define integers Am(D, d)
and Bm(D, d), using the half-integral weight Hecke operators on M !

λ+ 1
2

, by

Am(D, d) = the coefficient of qD in fd(z)
∣∣ T 1

2
(m2),

Bm(D, d) = the coefficient of qd in gD(z)
∣∣ T 3

2
(m2).

(2.4)

Theorem 2.1. (Zagier, [Z1]) The following are true.

(1) If m ≥ 1 and −d < 0 is a discriminant, then

Trm(d) = −Bm(1, d).

(2) If m ≥ 1, 0 < D ≡ 0, 1 (mod 4), and 0 ≤ d ≡ 0, 3 (mod 4), then

Am(D, d) = −Bm(D, d).

This theorem describes the Trm(d) as the coefficient of the image of −g1(z) under the
action of the Hecke operator T 3

2
(m2). One may employ the formulas for these Hecke

operators directly, or the relation (see (19) of [Z1])

Am(1, d) =
∑
n|m

nA(n2, d),

to deduce the following corollary from Theorem 2.1.
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Corollary 2.2. If −d < 0 is a discriminant and m ≥ 1, then

Trm(d) = −
∑
n|m

nB(n2, d).

Remark. In recent work [AO], Ahlgren and the third author have used Theorem 2.1 and
Corollary 2.2 to determine “Ramanujan-type” congruences for the Trm(d).

Example. As usual, let η(z) denote Dedekind’s eta-function

η(z) = q
1
24

∞∏
n=1

(1− qn).

It turns out that g1(z) ∈ M !
3/2 is given by

g1(z) =
η(z)2 ·

(
1 + 240

∑∞
n=1

∑
v|n v3q4n

)
η(2z)η(4z)6

= q−1 − 2 + 248q3 − 492q4 + · · · .(2.5)

3. weakly holomorphic Poincaré series

Here we recall and derive results on non-holomorphic Poincaré series of half-integral
weight (see also [F], [H], [Br]). For background on the usual holomorphic Poincaré series
see [I2, I3], and for detailed information on the special functions appearing here, see
references such as [AS] or the Appendix to [I3].

We use these half-integral weight series to construct certain weak Maass forms. Ulti-
mately, we use these forms to describe Zagier’s weakly holomorphic modular forms

gD(z) = q−D + B(D, 0) +
∑

0<d≡0,3 (mod 4)

B(D, d)qd ∈ M !
3
2
.

3.1. Construction of weakly holomorphic Poincaré series. As usual, let H de-
note the complex upper half-plane, and let z be the standard variable on H. The real
(respectively imaginary) part of z shall be denoted by x (respectively y).

We begin by recalling some facts on modular forms of half-integral weight (see [S]).
Let G be the group of pairs (A, φ(z)), where A = ( a b

c d ) ∈ GL+
2 (R) and φ is a holomorphic

function on H satisfying

|φ(z)| = (det A)−1/4|cz + d|1/2.

The group law is given by

(A1, φ1(z))(A2, φ2(z)) = (A1A2, φ1(A2z)φ2(z)).

Throughout, suppose that k ∈ 1
2
Z. The group G acts on functions f : H → C by

(f |k (A, φ))(z) = φ(z)−2kf(Az).
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For γ = ( a b
c d ) ∈ Γ0(4), let

j(γ, z) =

(
c

d

)
ε−1

d

√
cz + d

be the automorphy factor for the classical Jacobi theta function θ(z) =
∑∞

n=−∞ qn2
. Here√

z is the principal branch of the holomorphic square root, and εd is given by (1.10).
The map

γ 7→ γ̃ = (γ, j(γ, z))

defines a group homomorphism Γ0(4) → G. For convenience, if γ ∈ Γ0(4), we write
f |k γ instead of f |k γ̃.

Let m ∈ Z and ϕ0 : R>0 → C be a function satisfying

ϕ0(y) = O(yα), y → 0,(3.1)

for some α ∈ R. Then ϕ(z) = ϕ0(y)e(mx) is a function on H, which is invariant under
the action of the subgroup Γ∞ = {( 1 n

0 1 ) ; n ∈ Z} of Γ0(4). We consider the Poincaré
series (at the cusp ∞ of weight k for the group Γ0(4))

F (z, ϕ) =
1

2

∑
γ∈Γ∞\Γ0(4)

(ϕ |k γ)(z).(3.2)

By comparing with an Eisenstein series, one shows that this series converges locally
uniformly absolutely for k > 2− 2α. Hence, it is a Γ0(4)-invariant function on H.

Let c ∈ P 1(Q) be a cusp, and suppose that (A, φ) ∈ G is chosen so that A ∈ SL2(Z)
and A∞ = c. As usual, we say that a function f(z) has moderate growth at c if there is
a C ∈ R for which, as y →∞, we have

(f |k (A, φ)) (z) = O(yC).

Proposition 3.1. Let ϕ be as above and assume that k > 2 − 2α. Near the cusp at
∞, the function F (z, ϕ)− ϕ(z) has moderate growth. Near the other cusps, F (z, ϕ) has
moderate growth. If F (z, ϕ) is twice continuously differentiable, then it has the locally
uniformly absolutely convergent Fourier expansion

F (z, ϕ) = ϕ(z) +
∑
n∈Z

a(n, y)e(nx),

where

a(n, y) =
∞∑

c>0
c≡0 (4)

c−kKk(m,n, c)

∫ ∞

−∞
z−kϕ0

(
y

c2|z|2

)
e

(
− mx

c2|z|2
− nx

)
dx.(3.3)

Remark. By the Weil bound for Kloosterman sums (for example, see Lemma 3.2 of [Bre]
or Section 4.3 of [I2]), the series (3.3) actually converges absolutely for k > 3/2− 2α.
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Proof of Proposition 3.1. The assertion is obtained by standard arguments. For com-
pleteness, we sketch how the Fourier expansion is calculated. By definition, we have

a(n, y) =

∫ 1

0

(F (z, ϕ)− ϕ(z)) e(−nx) dx.

Inserting the definition of F (z, ϕ) and applying Poisson summation, we obtain

a(n, y) =
∑

γ∈Γ∞\Γ0(4)/Γ∞
c(γ)>0

∫ ∞

−∞
(ϕ |k γ)(z)e(−nx) dx.

Using ( a b
c d ) z = a

c
− 1

c2(z+d/c)
and ϕ(z) = ϕ0(y)e(mx), we find that a(n, y) is equal to

∑
γ∈Γ∞\Γ0(4)/Γ∞

c(γ)>0

(
c

d

)2k

ε2k
d c−k

∞∫
−∞

(z + d/c)−kϕ

(
a

c
− 1

c2(z + d/c)

)
e(−nx)dx

=
∑
c>0

∑
d (c)∗

(
c

d

)2k

ε2k
d e

(
md̄ + nd

c

)
c−k

∞∫
−∞

z−kϕ0

(
y

c2|z|2

)
e

(
− mx

c2|z|2
− nx

)
dx.

This yields the assertion. �

Particularly important Poincaré series are obtained by letting ϕ0 be certain Whittaker
functions. Let Mν, µ(z) and Wν, µ(z) be the usual Whittaker functions as defined on page
190 of Chapter 13 in [AS]. Following [Br] Chapter 1.3, for s ∈ C and y ∈ R − {0} we
define

Ms(y) = |y|−k/2Mk/2 sgn(y), s−1/2(|y|),(3.4)

Ws(y) = |y|−k/2Wk/2 sgn(y), s−1/2(|y|).(3.5)

The functions Ms(y) and Ws(y) are holomorphic in s. Later we will be interested in
certain special s-values. For y > 0, we have

Mk/2(−y) = y−k/2M−k/2, k/2−1/2(y) = ey/2,(3.6)

W1−k/2(y) = y−k/2Wk/2, 1/2−k/2(y) = e−y/2.(3.7)

If m is a non-zero integer, then the function

ϕm,s(z) = Ms(4πmy)e(mx)

is an eigenfunction of the weight k hyperbolic Laplacian

(3.8) ∆k = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
,
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and has eigenvalue s(1− s) + (k2 − 2k)/4. It satisfies ϕm,s(z) = O(yRe(s)−k/2) as y → 0.
Consequently, the corresponding Poincaré series

Fm(z, s) = F (z, ϕm,s)(3.9)

converges for Re(s) > 1, and it defines a Γ0(4)-invariant eigenfunction of the Laplacian.
In particular Fm(z, s) is real analytic.

Proposition 3.2. If m is a negative integer, then the Poincaré series Fm(z, s) has the
Fourier expansion

Fm(z, s) = Ms(4πmy)e(mx) +
∑
n∈Z

c(n, y, s)e(nx),

where the coefficients c(n, y, s) are given by

2πi−kΓ(2s)

Γ(s− k/2)

∣∣∣ n
m

∣∣∣ k−1
2
∑
c>0

c≡0 (4)

Kk(m, n, c)

c
J2s−1

(
4π

c

√
|mn|

)
Ws(4πny), n < 0,

2πi−kΓ(2s)

Γ(s + k/2)

∣∣∣ n
m

∣∣∣ k−1
2
∑
c>0

c≡0 (4)

Kk(m, n, c)

c
I2s−1

(
4π

c

√
|mn|

)
Ws(4πny), n > 0,

41−k/2π1+s−k/2i−k|m|s−k/2y1−s−k/2Γ(2s− 1)

Γ(s + k/2)Γ(s− k/2)

∑
c>0

c≡0 (4)

Kk(m, 0, c)

c2s
, n = 0.

Here Jν(z) and Iν(z) denote the usual Bessel functions as defined in Chapter 9 of [AS].
The Fourier expansion defines an analytic continuation of Fm(z, s) to Re(s) > 3/4.

Proof. In view of Proposition 3.1, it suffices to compute the integral∫ ∞

−∞
z−kMs

(
4πm

y

c2|z|2

)
e

(
− mx

c2|z|2
− nx

)
dx

= (4π|m|y)−k/2cki−k

×
∫ ∞

−∞

(
y − ix

y + ix

)−k/2

M−k/2, s−1/2

(
4π|m|y

c2(x2 + y2)

)
e

(
− mx

c2(x2 + y2)
− nx

)
dx.

The latter integral equals the integral I in [Br] (1.40). It is evaluated on [Br] p. 33, and
inserting it above yields the asserted formula for c(n, y, s). �

By noticing that the Poincaré series Fm(z, s) occur as the Fourier coefficients of the
automorphic resolvent kernel (also referred to as automorphic Green function) for Γ0(4)
(see [H] and [F] §3), and by using the spectral expansion of the automorphic resolvent
kernel, one finds that Fm(z, s) has a meromorphic continuation in s to the whole complex
plane. For Re(s) > 1/2, it has simple poles at points of the discrete spectrum of ∆k (see
[F] Corollary 3.6).
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For the special s-values k/2 and 1− k/2, the function Fm(z, s) is annihilated by ∆k.
As we will see below, it is actually often holomorphic in z. Consequently, these special
values are of particular interest.

If k ≤ 1/2 then Fm(z, s) is holomorphic in s near s = 1 − k/2, and one can consider
Fm(z, 1 − k/2). For instance, this was done in [Br] Chapter 1.3 in a slightly different
setting. However, here we are mainly interested in the case that k ≥ 3/2 (later in
particular in k = 3/2). Then Fm(z, s) is holomorphic in s near s = k/2.

A weak Maass form of weight k for the group Γ0(4) is a smooth function f : H → C
such that

f |k γ = f,

for all γ ∈ Γ0(4), and ∆kf = 0, with at most linear exponential growth at all cusps
(see [BF] Section 3). If such an f is actually holomorphic on H, it is called a weakly
holomorphic modular form. It is then meromorphic at the cusps.

Theorem 3.3. Assume the notation above.

(1) If k ≥ 2, then Fm(z, k/2) is a weakly holomorphic modular form of weight k for
the group Γ0(4). The Fourier expansion at the cusp ∞ is given by

Fm(z, k/2) = e(mz) +
∑
n>0

c(n, y, k/2)e(nx),

where for n > 0 we have

(3.10) c(n, y, k/2) = 2πi−k
∣∣∣ n
m

∣∣∣ k−1
2
∑
c>0

c≡0 (4)

Kk(m, n, c)

c
Ik−1

(
4π

c

√
|mn|

)
e−2πny.

At the other cusps, Fm(z, k/2) is holomorphic (and actually vanishes).

(2) If k = 3/2, then Fm(z, k/2) is a weak Maass form of weight k for the group
Γ0(4). The Fourier coefficients c(n, y, k/2) with positive index n are still given
by (3.10). Near the cusp ∞ the function Fm(z, k/2) − e(mz) is bounded. Near
the other cusps the function Fm(z, k/2) is bounded.

Proof. If k ≥ 2, the assertion immediately follows from Propositions 3.1 and 3.2. For
the computation of the Fourier expansion, we notice that the sums over c in the formula
of Proposition 3.2 converge absolutely by the Weil bound for Kloosterman sums. (For
k > 2, one can actually argue more directly by noticing that Fm(z, k/2) = F (z, e(mz))
converges absolutely.)

If k = 3/2, then Proposition 3.1 and the discussion preceding the theorem imply
that Fm(z, k/2) is a weak Maass form and has the claimed growth near the cusps. The
formula for the Fourier coefficients with positive index follows by analytic continuation
using the fact that (3.10) converges. Convergence of such series is well known if one
replaces the I1/2-Bessel function by the J1/2-Bessel function (for example, see [D1, I1]).
Since J1/2(1/x) ∼ I1/2(1/x) as x → +∞, the convergence of (3.10) follows. �
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Remark. Notice that if k = 3/2, m = −a2, and n = −b2, where a, b ∈ Z\{0}, then the
series over c occurring in the formula for c(n, y, s) in Proposition 3.2 diverges at s = k/2.
The corresponding singularity cancels with the zero of Γ(s− k/2)−1.

There is an anti-linear differential operator ξk that takes weak Maass forms of weight
k to weakly holomorphic modular forms of weight 2− k (see Proposition 3.2 of [BF]). If
f(z) is a weak Maass form of weight k, then by definition

ξk(f)(z) = 2iyk ∂
∂z̄

f(z).(3.11)

In addition, this operator has the property that ker(ξk) is the subset of weight k weak
Maass forms which are weakly holomorphic modular forms (see Proposition 3.2 of [BF]).
Consequently, if k ≥ 2, then Theorem 3.3 implies that ξk(Fm(z, k/2)) = 0. However, the
situation is quite different when k = 3/2.

Proposition 3.4. If k = 3/2 and c(0) is chosen so that the constant coefficient of the
Poincaré series Fm(z, k/2) is given by

c(0, y, k/2) = c(0)y1−k,

then

ξk(Fm(z, k/2)) =
1

2
c(0)θ(z).

Proof. The assertion of Theorem 3.3 on the growth at the cusps of Fm(z, k/2) implies
that ξk(Fm(z, k/2)) is actually a holomorphic modular form of weight 2 − k = 1/2 for
the group Γ0(4). Hence it has to be a multiple of θ(z). By comparing the constant terms
one obtains the factor of proportionality. �

3.2. Projection to Kohnen’s plus-space. It is our aim to relate the generating func-
tions for Zagier’s traces of singular moduli (see Section 2) to the Poincaré series of weight
k = 3/2. More generally, we shall describe all of Zagier’s function gD(z) ∈ M !

3/2 in terms

of the Poincaré series F−D(z, k/2).
One easily checks that gD(z) has, in general, poles at all cusps of Γ0(4), while the

singularities of Fm(z, k/2) are supported at the cusp infinity. Consequently, we also
have to consider Poincaré series at the other cusps of Γ0(4) and take suitable linear
combinations. This can be done in a quite conceptual (and automatic) way by applying
a projection operator to the Kohnen plus-space.

Throughout this subsection, assume that k ∈ Z+1
2
, k ≥ 3/2, and let λ = k−1

2
. Kohnen

(see p. 250 of [K]) constructed a projection operator pr from the space of modular forms
of weight k for Γ0(4) to the subspace of those forms satisfying the plus-space condition.
It is defined by

(3.12) f |k pr =
1

3
f + (−1)[(λ+1)/2] 1

3
√

2

∑
ν (4)

f |k BÃν ,
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where

B =

((
4 1
0 4

)
, e(2λ+1)πi/4

)
, Aν =

(
1 0
4ν 1

)
,

and
[r] = max{n ∈ Z : n ≤ r}.

It is normalized such that pr2 = pr. Although the fact that pr is the projection to
the plus-space is only proved for holomorphic modular forms in Kohnen’s paper, his
argument follows mutatis mutandis for non-holomorphic forms.

We define the Poincaré series of weight k and index m for Γ0(4) by

F+
m(z) =

3

2
Fm(z, k/2) |k pr,(3.13)

where Fm(z, k/2) is the special value at s = k/2 of the weight k series defined in (3.9).

Theorem 3.5. Assume that m is a negative integer and (−1)λm ≡ 0, 1 (mod 4). The
Poincaré series F+

m(z) is a weak Maass form of weight k for the group Γ0(4) satisfying
the plus-space condition.

(1) If k > 3/2, then F+
m(z) ∈ M !

λ+ 1
2

, and it has a Fourier expansion of the form

F+
m(z) = qm +

∑
n>0

(−1)λn≡0,1 (mod 4)

c+(n)qn,

where

c+(n) = (−1)[(λ+1)/2](1− (−1)λi)π
√

2
∣∣∣ n
m

∣∣∣λ/2−1/4

(3.14)

×
∑
c>0

c≡0 (4)

(1 + δodd(c/4))
Kk(m, n, c)

c
Iλ−1/2

(
4π

c

√
|mn|

)
,

for n > 0. At the other cusps, F+
m(z) is holomorphic (and actually vanishes).

Here δodd is as defined in Theorem 1.2.

(2) If k = 3/2, then the Fourier coefficients c+(n) with positive index n are still given
by (3.14). Near the cusp at ∞, the function F+

m(z)−e(mz) decays as y1−k. Near
the other cusps the function F+

m(z) decays as y1−k.

Proof. Using Theorem 3.3, the projection of Fm(z, k/2) to the plus-space can be calcu-
lated in exactly the same way as the projection of the usual holomorphic Poincaré series
(see Proposition 4 of [K]). �

To obtain the Fourier expansion completely for k = 3/2, we need to compute ξk(F
+
m).

This can be done most easily by comparing the non-holomorphic part of F+
m with the

non-holomorphic part of Zagier’s Eisenstein series G(z) of weight 3/2 (see [Z2]). This
Eisenstein series can be constructed by taking the special value at s = k/2 of the
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Eisenstein series E(z, s) = F (z, ys−k/2) of weight 3/2 for Γ0(4), and by computing its
projection to the plus-space. So we have that

G(z) =
3

2
E(z, k/2) |k pr .

The Fourier expansion of G(z) was determined by Zagier, and it is given by

(3.15) G(z) =
∞∑

n=0

H(n)qn +
1

16π
√

y

∞∑
n=−∞

β(4πn2y)q−n2

,

where H(0) = ζ(−1) = − 1
12

, and β(s) =
∫∞

1
t−3/2e−stdt.

Proposition 3.6. If k = 3/2 and m is a negative integer with −m ≡ 0, 1 (mod 4), then
the following are true.

(1) If −m is the square of a non-zero integer, then

F+
m(z) + 24G(z) ∈ M !

3/2.

(2) If −m is not a square, then F+
m(z) ∈ M !

3/2.

Proof. Clearly, the assertion of Proposition 3.4 also holds for F+
m . The function ξ3/2(F

+
m)

is a multiple of θ. On the other hand, direct computation reveals that

ξ3/2(G(z)) = − 1

16π
θ(z).

Hence there is a constant r such that f = F+
m +rG is annihilated by ξ3/2. For this choice

of r, we have that f ∈ M !
3/2.

To determine r, we use the remark at the end of §5 of [Z1]. As a consequence of the
residue theorem on compact Riemann surfaces, the constant term in the q-expansion of
fg has to vanish for any g ∈ M !

1/2. We apply this for g = θ. Since f = qm+rH(0)+O(q),
we obtain the assertion. �

3.3. Reformulation of Zagier’s functions and the proof of Theorem 1.2. Here
we derive exact formulas for the coefficients of weakly holomorphic modular forms in
gD(z) ∈ M !

3/2. For every positive integer D with D ≡ 0, 1 (mod 4), let gD(z) ∈ M !
3/2 be

the modular form defined by (2.2). Recall that its Fourier expansion is given by

gD(z) = q−D + B(D, 0) +
∑

0<n≡0,3 (mod 4)

B(D, n)qn.

Using Proposition 3.6, we obtain the following formula for the coefficients of each gD(z).

Theorem 3.7. Let D be a positive integer with D ≡ 0, 1 (mod 4). Then the Fourier
coefficient B(D, n) with positive index n, where n ≡ 0, 3 (mod 4), is given by

B(D, n) = 24δ�,DH(n)− (1 + i)
∑
c>0

c≡0 (4)

(1 + δodd(c/4))
K3/2(−D, n, c)√

cD
sinh

(
4π

c

√
Dn

)
.
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Here δ�,D = 1 if D is a square, and δ�,D = 0 otherwise.

Proof. In view of Proposition 3.6, we obviously have that

gD(z) = F+
−D(z) + 24δ�,DG(z).

The assertion follows from Theorem 3.5, and the fact that I1/2(z) =
(

2
πz

)1/2
sinh(z) (see

[AS] formula (10.2.13)). �

Proof of Theorem 1.2. By letting D = n2 in Theorem 3.7, we find that

B(n2, d) = 24H(d)− (1 + i)
∑
c>0

c≡0 (4)

(1 + δodd(c/4))
K3/2(−n2, d, c)

n
√

c
sinh

(
4πn

c

√
d

)
.

Theorem 1.2 follows immediately from Corollary 2.2. �

3.4. Proof of Theorem 1.4. Let F+
−1(z) ∈ M !

11/2 be the m = −1 Poincaré series in
Theorem 3.5

F+
−1(z) = q−1 + 312q3 − 1632q4 + · · · .

Furthermore, let H5(z) ∈ M+
11/2 be the weight 11/2 Cohen-Eisenstein series

H5(z) =
∞∑

n=0

h5(n)qn = − 1

132

(
1− 88q3 − 330q4 + · · ·

)
.

If −d < 0 is fundamental, then Cohen proved [Co] that h5(d) = L(−4, χ−d).
If E4(z) = 1 + 240

∑∞
n=1 σ3(n)qn is the usual weight 4 Eisenstein series on SL2(Z),

then it turns out that
g1(z)E4(4z) = F+

−1(z) + 264H5(z).

By the remark after Theorem 1.2, and the fact that K3/2(−1, d, c) = K11/2(−1, d, c) for
every 0 < c ≡ 0 (mod 4), the claimed identity follows from Theorems 2.1 and 3.5.

The claimed asymptotic follows easily from the c = 4 summand after rewriting the
I9/2-Bessel function in terms of sinh and cosh.
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E-mail address: bruinier@math.uni-koeln.de

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
E-mail address: pjenkins@math.wisc.edu

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
E-mail address: ono@math.wisc.edu


