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Abstract. We study special cycles on integral models of Shimura varieties associated

with unitary similitude groups of signature (n− 1, 1). We construct an arithmetic theta

lift from harmonic Maass forms of weight 2 − n to the arithmetic Chow group of the
integral model of a unitary Shimura variety, by associating to a harmonic Maass form

f a linear combination of Kudla-Rapoport divisors, equipped with the Green function
given by the regularized theta lift of f .

Our main result is an equality of two complex numbers: (1) the height pairing of

the arithmetic theta lift of f against a CM cycle, and (2) the central derivative of the
convolution L-function of a weight n cusp form (depending on f) and the theta function

of a positive definite hermitian lattice of rank n−1. When specialized to the case n = 2,

this result can be viewed as a variant of the Gross-Zagier formula for Shimura curves
associated to unitary groups of signature (1, 1). The proof relies on, among other things,

a new method for computing improper arithmetic intersections.
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1. Introduction

Let k ⊂ C be an imaginary quadratic field of odd discriminant dk, and let dk be the
different of k. Let χk be the quadratic Dirichlet character determined by k/Q.

1.1. Motivation: heights of Heegner points. To motivate the results of this paper, we
first recall the famous results of Gross and Zagier [GZ]. Fix a normalized new eigenform

g ∈ S2(Γ0(N)),
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and assume that N and k satisfy the usual Heegner hypothesis: every prime divisor of
N splits in k. This allows us to fix an ideal n ⊂ Ok satisfying Ok/n ∼= Z/NZ. For any
fractional Ok-ideal a, the cyclic N -isogeny of elliptic curves

ya = [C/a→ C/n−1a]

defines a Heegner point on X0(N)(H), where H is the Hilbert class field of k. If we define
a weight 2 cuspform

φHeeg(τ) =
∑
m≥1

Tm(yOk
−∞) · qm

valued in J0(N)(H), where the Tm are Hecke operators, then the Petersson inner product

φHeeg(g) = 〈φHeeg, g〉Pet ∈ J0(N)(H)⊗ C

is essentially the projection of the divisor yOk
− ∞ to the g-isotypic component of the

Jacobian J0(N).
After endowing the fractional ideal a with the self-dual hermitian form 〈x, y〉 = N(a)−1xy,

we may construct the weight one theta series

θa(τ) =
∑
x∈a

q〈x,x〉 ∈M1(Γ0(|dk|), χk).

The Rankin-Selberg convolution L-function L(g, θa, s) satisfies a functional equation forcing
it to vanish at s = 1, and the Gross-Zagier theorem implies[

φHeeg(g) : ya −∞
]
NT

= c · L′(g, θa, 1).

Here c is some explicit nonzero constant, and the pairing on the left is the Néron-Tate
height.

The goal of this paper is to obtain similar results when g is replaced by a cusp form of
weight n ≥ 2, the weight 1 theta series θa is replaced by a weight n−1 theta series determined
by a hermitian lattice of rank n−1, and the Heegner points on modular curves are replaced
by special cycles on Shimura varieties associated to groups of unitary similitudes. There
are earlier results of Zhang [Zh] and Nekovář [Nek] on Gross-Zagier theorems for higher
weight modular forms, but those results differ from ours in two essential ways: (1) those
authors work with height pairings of cycles on Kuga-Sato varieties fibered over modular
curves, while we work with height pairings on unitary Shimura varieties, and (2) they work
with theta series of weight 1, while we work with theta series of weight n− 1.

1.2. Statement of the main result. Our main result will be a Gross-Zagier-type formula
for the central derivative of the convolution L-function of a cusp form of any weight n ≥ 2
with a theta series of weight n− 1. This formula will involve the intersection multiplicities
of special cycles on a unitary Shimura variety. We begin by describing the Shimura variety.

For a pair of nonnegative integers (p, q), denote by M(p,q) the moduli space of principally
polarized abelian varieties A→ S over k-schemes, equipped with an action of Ok satisfying
the signature (p, q) condition: every a ∈ Ok acts on Lie(A) with characteristic polynomial
(T − a)p(T − a)q. We require also that the Rosati involution on End(A) ⊗ Q restrict to
complex conjugation on the image of Ok. The moduli space M(p,q) is a Deligne-Mumford
stack, smooth over k of dimension pq, and is a disjoint union of Shimura varieties associated
to unitary similitude groups.

The theory of integral models of the stacks M(p,q) remains incomplete, but we only need
two special cases:

(1) there is a smooth and proper stack M(p,0) over Ok with generic fiber M(p,0),
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(2) there is a regular and flat stack M(p,1) over Ok with generic fiber M(p,1).

The product

M =M(1,0) ×Ok
M(n−1,1)

is an n-dimensional regular algebraic stack, flat over Ok, and is typically disconnected.
Moreover, M has a canonical toroidal compactification M∗, whose boundary is a smooth
divisor.

Let Λ be a positive definite self-dual hermitian lattice of rank n− 1; that is, a projective
Ok-module of rank n− 1 endowed with a positive definite hermitian form 〈·, ·〉 inducing an
isomorphism Λ ∼= HomOk

(Λ,Ok). The Ok-stack

Y =M(1,0) ×Ok
M(0,1) ×Ok

M(n−1,0)

is smooth and proper of relative dimension 0, and the morphism Y →M defined by

(A0, A1, B) 7→ (A0, A1 ×B)

allows us to view Y as a 1-dimensional cycle onM. To every geometric point (A0, A1, B) of
Y there is an associated self-dual hermitian Ok-module HomOk

(A0, B) of signature (n−1, 0),
whose isomorphism class is constant on each connected component of Y. Let YΛ ⊂ Y be
the union of all connected components on which HomOk

(A0, B) ∼= Λ.
To a hermitian module V over the adele ring Ak there is an associated invariant inv(V) ∈

{±1}, defined as a product of local invariants. If inv(V) = 1 then V is coherent, in the sense
that V arises as the adelization of a hermitian space over k. Otherwise, V is incoherent.

In Section 2.1 we define the notion of a hermitian (kR, Ôk)-module L. Essentially, L is an
integral structure on a hermitian Ak-module. It consists of an archimedean part L∞, which

is a hermitian space over kR = k⊗QR, and a finite part Lf , which is a hermitian Ôk-module.
As explained in Section 3, to each point of the moduli spaceM there is associated an in-

coherent hermitian (kR, Ôk)-module, whose isomorphism class is constant on the connected
components of M. Thus we obtain a decomposition M =

⊔
LML where L runs over all

incoherent self-dual hermitian (kR, Ôk)-modules of signature (n, 0), and similarly for the
compactification

M∗ =
⊔
L
M∗L.

The stack YΛ admits an analogous decomposition

YΛ =
⊔
L0

Y(L0,Λ),

where L0 runs over all incoherent self-dual hermitian (kR, Ôk)-modules of signature (1, 0).
From now on we fix one such L0, and set L = L0 ⊕ Λ; for the meaning of the direct sum,
see Remark 5.1.3. The morphism YΛ →M∗ restricts to a morphism

(1.2.1) Y(L0,Λ) →M∗L,
which allows us to view Y(L0,Λ) as a cycle on M∗L of dimension 1.

Let ĈH
1

C(M∗L) be the codimension one arithmetic Chow group with complex coefficients,
defined, as in the work of Gillet-Soulé [SABK], as the space of rational equivalence classes of
divisors onM∗L endowed with Green functions. In fact, we use the more general arithmetic
Chow groups defined by Burgos-Kramer-Kühn [BKK], which allow for Green functions with
log-log singularities along the boundary. The map (1.2.1) induces a linear functional

ĈH
1

C(M∗L)→ C
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called the arithmetic degree along Y(L0,Λ), and denoted Ẑ 7→ [Ẑ : Y(L0,Λ)].

The hermitian form on the Ôk-module Lf determines a Q/Z-valued quadratic form on

the finite discriminant group d−1
k Lf/Lf . If we denote by SL the (finite dimensional) space

of complex valued functions on this finite quadratic space, there is a Weil representation

ωL : SL2(Z)→ Aut(SL).

Let H2−n(ωL) be the space of harmonic Maass forms for SL2(Z) of weight 2−n with values
in the vector space SL, transforming according to ωL.

As explained in Section 4, there is an arithmetic theta lift of harmonic Maass forms

H2−n(ωL)∆ −→ ĈH
1

C(M∗L),

denoted f 7→ Θ̂L(f), whose definition is roughly as follows. There is a theta lift from
functions on the upper half plane to functions on the Shimura variety ML(C). If one
attempts to lift an element f ∈ H2−n(ωL)∆, the theta integral diverges due to the growth
of f at the cusp. There is a natural way to regularize the divergent integral in order to
obtain a function ΦL(f) on ML(C), but the regularization process introduces singularities
of logarithmic type into the function ΦL(f); see [Bo1] and [BF]. In fact ΦL(f) is a Green
function for a certain divisor ZL(f)(C) on ML(C), which can be written in an explicit way
as a linear combination of the complex Kudla-Rapoport divisors ZL(m, r)(C) introduced in
[KR1] and studied further in [KR2], [Ho2], and [Ho3]. Here r is an Ok-ideal dividing dk,
and m ∈ N(r)−1Z is positive. The complex Kudla-Rapoport divisors are defined in terms
of a moduli problem, and so have natural extensions to the integral model ML. Thus we
obtain an extension of ZL(f)(C) to the integral model as well. The result is a divisor ZL(f)
onML together with a Green function ΦL(f). The arithmetic theta lift of f is then defined
by first adding boundary components with appropriate multiplicities in order to define a
compactified arithmetic divisor

Ẑtotal
L (f) ∈ ĈH

1
(M∗L),

and then adding a certain multiple (depending on the constant term of f) of the metrized

cotautological bundle T̂ ∗L of Section 6.2 to obtain

Θ̂L(f) ∈ ĈH
1
(M∗L).

Remark 1.2.1. One of the minor miracles of the construction of ΦL(f) is that, despite having
a logarithmic singularity along ZL(f), it is defined at every point of the complex Shimura
variety ML(C). Expressed differently, the smooth function ΦL(f), initially defined on the
complement of ZL(f), has a natural discontinuous extension to all points. The behavior of
ΦL(f) at the points of ZL(f), as described in Corollary 4.2.2, plays an essential role in our
calculation of improper intersections.

Remark 1.2.2. The Green functions used here are constructed as regularized theta lifts of
harmonic Maass forms, as in [Br1], [BF], and [BY], and so are different from the Kudla-style
Green functions used in [Ho2] and [Ho3].

Let Sn(ωL) be the space of weight n cusp forms for SL2(Z) with values in SL, transforming
according to the complex conjugate representation ωL. Denote by ∆ the automorphism
group of the finite group d−1

k Lf/Lf with its Q/Z-valued quadratic form. Any ∆-invariant
cusp form

g(τ) =
∑

m∈Q>0

a(m)qm ∈ Sn(ωL)∆
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has Fourier coefficients a(m) ∈ S∆
L . Similarly, the space SΛ of complex valued functions on

d−1
k Λ/Λ has a natural action ωΛ : SL2(Z) → Aut(SΛ), and there is a vector valued theta

series
θΛ(τ) =

∑
m∈Q>0

RΛ(m)qm ∈Mn−1(ω∨Λ)

taking values in the dual space S∨Λ , whose m-th Fourier coefficient RΛ(m) : SΛ → C is the
representation number

RΛ(m,ϕ) =
∑

λ∈d−1
k Λ

〈λ,λ〉=m

ϕ(λ).

We define the Rankin-Selberg convolution L-function

(1.2.2) L(g, θΛ, s) = Γ
(s

2
+ n− 1

) ∑
m∈Q>0

{
a(m), RΛ(m)

}
(4πm)

s
2 +n−1

,

where the pairing {·, ·} is the tautological pairing between SL and S∨L , and RΛ(m) is viewed
as an element of S∨L using the natural surjection SL → SΛ. The L-function (1.2.2) satisfies
a simple functional equation in s 7→ −s, which forces it to vanish at s = 0.

As in [BF], there is a ∆-invariant surjective differential operator

ξ : H2−n(ωL) −→ Sn(ωL)

defined by

ξ(f)(τ) = 2iv2−n ∂f

∂τ
,

where τ = u+ iv is the variable on the upper half-plane.
The following is our main result. It is stated in the text as Theorem 7.1.2.

Theorem A. Fix a g ∈ Sn(ωL)∆, and let f ∈ H2−n(ωL)∆ be any harmonic form satisfying
ξ(f) = g. The arithmetic theta lift of f and the L-function (1.2.2) are related by

(1.2.3) [Θ̂L(f) : Y(L0,Λ)] = − degC Y(L0,Λ) · L′(g, θΛ, 0).

The constant appearing on the right is

degC Y(L0,Λ) =
∑

y∈Y(L0,Λ)(C)

1

|Aut(y)|
.

An explicit formula for this constant is given in Remark 5.3.1.

We prove Theorem A by first verifying (1.2.3) for certain distinguished harmonic Maass
forms f = fm,r satisfying ZL(f) = ZL(m, r). The calculation of the left hand side of (1.2.3)
is seriously complicated by the fact that the cycles ZL(m, r) and Y(L0,Λ) typically intersect
improperly. Calculations of improper intersection have been done in some low-dimensional
situations elsewhere in the literature (for example in [GZ], [KRY2], and [Ho1]), but our
methods are new, and seem considerably more flexible than the laborious calculations of
earlier authors. The idea is to use deformation theory to show that the metrized line bundle

(1.2.4) Ẑ♥L (m, r) = ẐL(fm,r)⊗ T̂ −RΛ(m,r)
L

on ML acquires a canonical nonzero section σm,r when restricted to Y(L0,Λ). To compute
the intersection multiplicity of (1.2.4) with Y(L0,Λ), it suffices to compute the degree of the
0-cycle div(σm,r) on Y(L0,Λ), and the norm ||σm,r||y at each y ∈ Y(L0,Λ)(C). The divisor
div(σm,r) turns out to be exactly the divisor obtained by intersecting ZL(m, r) ∩ Y(L0,Λ)
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and then throwing away all components of the intersection having dimension > 0. In other
words, it is the proper part of the intersection, which can be computed directly using results
of Gross. The norm ||σm,r||y turns out to be the value of the Green function ΦL(fm,r) at
y, even when y lies on ZL(m, r), the singularity of the Green function! Thus we are able
to compute the intersection multiplicity of (1.2.4) with Y(L0,Λ) by computing only proper
intersections and the CM values of Green functions.

1.3. Applications and further directions of study. In the spirt of [Ku4], let us consider
only those Kudla-Rapoport divisors

Ẑtotal
L (m, r) = Ẑtotal

L (fm,r)

with r = Ok, and form the formal generating series

φ̂(τ) = T̂L +
∑
m>0

Ẑtotal
L (m,Ok) · qm ∈ ĈH

1

C(M∗L)[[q]].

When n = 2 there is some mild ambiguity in the choice of harmonic Maass form fm,r, and

hence in the choice of Green function in the arithmetic divisor Ẑtotal
L (m, r). See Lemma

3.3.3 and the remark that follows it. Because of this technical issue, in this subsection we
assume that n > 2.

Conjecture B. The formal generating series φ̂ is a modular form of weight n, level Γ0(|dk|),
and character χnk. In other words

φ̂ ∈ ĈH
1

C(M∗L)⊗Mn(Γ0(|dk|), χnk).

This conjecture should be taken with a small grain of salt: to achieve modularity it may
be necessary to slightly modify the formal generating series by vertical divisors on M∗L
supported at the primes dividing dk. In any case, some form of this conjecture is certainly
true, and is the subject of ongoing investigations of Kudla, Rapoport, and the three authors.
Indeed, if one replaces the unitary Shimura variety by an orthogonal Shimura variety, and
works only in the Chow group of the generic fiber rather than in the arithmetic Chow group
of an integral model, the corresponding modularity result is due to Borcherds [Bo2].

In fact, Theorem A gives evidence for Conjecture B as it is currently stated. Indeed,

the theorem implies that [Θ̂L(f) : Y(L0,Λ)] = 0 for all f ∈ H2−n(ωL)∆ with ξ(f) = 0. The
following corollary of Theorem A can be deduced from this and the modularity criterion
[Bo2] of Borcherds. We omit the details of the proof, as we expect to prove some form
Conjecture B in the near future.

Theorem C. The formal q-expansion

[φ̂(τ) : Y(L0,Λ)] = [T̂L : Y(L0,Λ)] +
∑
m>0

[ẐL(m,Ok) : Y(L0,Λ)] · qm

defines an element of Mn(Γ0(|dk|), χnk).

Suppose that Conjecture B is true. Given a scalar valued form g0 ∈ Sn(Γ0(|dk|), χnk) we
may then imitate [Ku4] and form the Petersson inner product

φ̂(g0) = 〈φ̂, g0〉Pet ∈ ĈH
1

C(M∗L).

The form g0 determines a vector valued form

g(τ) =
∑

γ∈Γ0(D)\ SL2(Z)

(g0|nγ)(τ) · ωL(γ−1)ϕ0 ∈ Sn(ωL)∆,
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where ϕ0 ∈ SL is the characteristic function of 0 ∈ d−1
k Lf/Lf . Now pick any f ∈ Hn−2(ωL)∆

satisfying ξ(f) = g. Using [BF, Theorem 1.1] one can show that Θ̂L(f) = φ̂(g0) and so,
assuming Conjecture B, Theorem A may be restated as

[φ̂(g0) : Y(L0,Λ)] = −degC Y(L0,Λ) · L′(g, θΛ, 0).

Under some mild restrictions (for example, assuming that n is even and that g0 is a newform)
the L-function on the right can be expressed in terms of the classical Rankin-Selberg L-
function of the scalar valued form g0 and the scalar valued theta series∑

λ∈Λ

q〈λ,λ〉 ∈Mn−1(Γ0(|dk|), χn−1
k ).

The statement and the proof of the precise relation between L-functions are slightly involved.
We hope to explore this reformulation of Theorem A in terms of scalar valued holomorphic
forms in a future work, after Conjecture B has been proved.

Apart from providing evidence for Conjecture B, our methods have applications to
Colmez’s conjectural extension [Co] of the Chowla-Selberg formula to CM abelian vari-
eties of arbitrary dimension. Very roughly, the idea is this: after fixing a totally real field
F/Q of degree n, one can replace the cycle Y(L0,Λ) by a cycle YE on M∗L formed from
abelian varieties with complex multiplication by the CM field E = k ⊗Q F . It is expected
that a variant of Theorem A holds for this new cycle YE , and some results in this direction
can be found in [Ho2]. However, the proof of Theorem A uses the Chowla-Selberg formula
in an essential way, and so without a priori knowledge of Colmez’s conjectural extension,
one cannot complete the proof of the desired variant of Theorem A without using some
additional tools. The results of [Ya] suggest that Conjecture B is the new tool needed, and
that a proof of new cases of Colmez’s conjecture can be deduced as a byproduct of the proof
of the variant of Theorem A. In short, once Conjecture B is proved, the methods of this
paper will yield the proof of Colmez’s conjecture for all CM abelian varieties that appear as
points of the moduli space M(n−1,1). Again, this application is being investigated by Kudla,
Rapoport, and the three authors.

1.4. Notation and terminology. We write H for the complex upper half plane. For a
complex number z we put e(z) = e2πiz. As usual, we denote by A the ring of adeles of Q
and write Af for the finite adeles.

The quadratic imaginary field k and its embedding k ↪→ C are fixed throughout the
paper, and dk and dk denote the different and discriminant of k. In Section 4 we make no
restriction on dk, but throughout the rest of the paper we assume that dk is odd. Write Ok,
Ak and Ak,f for the ring of integers, adeles, and finite adeles of k, respectively. The class
number of k is hk, and wk = |µ(k)| is the number of roots of unity in k. Denote by o(dk)
the number of distinct prime divisors of dk, and by

χk : A× −→ {±1}

the quadratic character determined by the extension k/Q. For any m ∈ Q>0 define

(1.4.1) ρ(m) = |{b ⊂ Ok : N(b) = m}|.

Obviously ρ(m) = 0 unless m ∈ Z>0. Abbreviate kR = k⊗Q R. For a positive integer m we
denote by σ1(m) the sum of the positive divisors of m, and set σ1(0) = −1/24.

Acknowledgements. We thank the referee for his/her careful reading of our manuscript
and for the insightful comments.
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2. Hermitian spaces and modular forms.

This section contains some basic definitions and notation concerning hermitian spaces,
theta series, and vector valued modular forms.

2.1. Invariants of hermitian spaces. A hermitian Ok-module is a projective Ok-module
L of finite rank equipped with a hermitian form 〈·, ·〉 : L×L→ Ok. Our convention is that
hermitian forms are Ok-linear in the first variable and Ok-conjugate-linear in the second
variable. All hermitian forms are assumed to be nondegenerate. For an Ok-ideal r | dk,
every vector x ∈ r−1L satisfies

(2.1.1) 〈x, x〉 ∈ N(r)−1Z,
and Q(x) = 〈x, x〉 defines a d−1

k Z/Z-valued quadratic form on d−1
k L/L. A hermitian Ok-

module L is self-dual if it satisfies

L = {x ∈ L⊗Z Q : 〈x, L〉 ⊂ Ok}.

We can similarly talk about self-dual hermitian Ôk-modules, and hermitian spaces over k,
over its completions, and over Ak.

If A0 and A are hermitian Ok-modules with hermitian forms hA0 and hA, the Ok-module

(2.1.2) L(A0,A) = HomOk
(A0,A)

carries a hermitian form 〈·, ·〉 characterized by the relation

〈f, g〉 · hA0
(x, y) = hA(f(x), g(y))

for all x, y ∈ A0. If A0 and A are self-dual then so is L(A0,A). Of course a similar discussion

holds for hermitian Ôk-modules.
A hermitian space V over Ak has an archimedean part V∞ and a nonarchimedean part

Vf =
∏
pVp, which are hermitian spaces over kR and Ak,f , respectively. The archimedean

part is uniquely determined by its signature, while each factor Vp is uniquely determined
by its dimension and the local invariant

invp(V) = χk,p(det(Vp)) ∈ {±1}.
Of course the invariant is also defined for p = ∞, but carries less information than the
signature. The invariant of V is the product of local invariants:

inv(V) =
∏
p≤∞

invp(V).

If inv(V) = 1 then there is a hermitian space V over k, unique up to isomorphism, satisfying
V ∼= V ⊗Q A. In this case we say that V is coherent. If instead inv(V) = −1 then no such
V exists, and we say that V is incoherent.

We will need a notion of a hermitian space over Ak with an integral structure.

Definition 2.1.1. A hermitian (kR, Ôk)-module is a hermitian space V over Ak together

with a finitely generated Ôk-submodule Lf ⊂ Vf of maximal rank on which the hermitian

form is Ôk-valued.

Equivalently, we could define a hermitian (kR, Ôk)-module as a pair L = (L∞,Lf ) in

which L∞ is a hermitian space over kR, and Lf =
∏
p Lp is a hermitian space over Ôk of the

same rank as L∞. One recovers the first definition from the second by setting V∞ = L∞
and Vf = Lf ⊗Ẑ Af . We use the following terminology.

(1) The signature of a hermitian (kR, Ôk)-module L is the signature of L∞,
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(2) L is self-dual if Lf is a self-dual hermitian Ôk-module,
(3) L is coherent (or incoherent) if V is.

Obviously, every hermitian Ok-module L gives rise to a coherent hermitian (kR, Ôk)-

module L determined by L∞ = L ⊗Z R and Lf = L ⊗Z Ẑ. Conversely, for each hermitian

(kR, Ôk)-module L there is a (possibly empty) finite collection of hermitian Ok-modules
that give rise to it. This finite collection is the genus of L, and is denoted

(2.1.3) gen(L) =

{
isomorphism classes of
hermitian Ok-modules L

:
L∞ ∼= L⊗Z R
Lf ∼= L⊗Z Ẑ

}
.

The genus is nonempty if and only if L is coherent, and any two L,L′ ∈ gen(L) satisfy
L⊗Z Q ∼= L′ ⊗Z Q as hermitian spaces over k.

Remark 2.1.2. Given a hermitian space V over Ak and a rational prime p nonsplit in k, there
is a nearby hermitian space V(p) over Ak determined up to isomorphism by the conditions

(1) V(p)` ∼= V` for every place ` 6= p,
(2) V(p)p 6∼= Vp.

In other words, V(p) is obtained from V by changing the local invariant at p, and so

inv(V(p)) = −inv(V).

If instead we take p =∞ then there is no single notion of V(∞). However, in the applications
V will be positive definite, and V(∞) will be obtained from V by switching the signature
from (n, 0) to (n− 1, 1).

2.2. Theta functions and vector valued modular forms. Let (M,Q) be an even inte-
gral lattice, that is, a free Z-module of finite rank equipped with a non-degenerate Z-valued
quadratic form Q. For simplicity we assume here that the rank of M is even. We denote
the signature of M by (b+, b−). Let M ′ be the dual lattice of M . The quadratic form Q
induces a Q/Z-valued quadratic form on the discriminant group M ′/M .

Let ω be the restriction to SL2(Z) of the Weil representation of SL2(Q̂) (associated with

the standard additive character of A/Q) on the Schwartz-Bruhat functions on M ⊗Z Q̂. The
restriction of ω to SL2(Z) takes the subspace SM of Schwartz-Bruhat functions which are

supported on M̂ ′ and invariant under translations by M̂ to itself. We obtain a representation
ωM : SL2(Z)→ Aut(SM ). Throughout we identify SM with the space of functions M ′/M →
C. Let S∨M be the dual space of SM , and denote by

{·, ·} : SM × S∨M −→ C
the tautological C-bilinear pairing. The group SL2(Z) acts on S∨M through the dual repre-
sentation ω∨M , given by ω∨M (γ)(f) = f ◦ ωM (γ−1) for f ∈ S∨M . On the space SM we also
have the conjugate representation ωM given by

ωM (γ)(ϕ) = ωM (γ)(ϕ)

for ϕ ∈ SM . Note that ωM is the representation denoted ρM in [Bo1], [Br1], [BF]. The
same construction can also be applied in slightly greater generality. For instance, in later

applications we will use it when M is a quadratic module over Ẑ.
Let Gr(M) be the Grassmannian of negative definite b−-dimensional subspaces of M⊗ZR.

For z ∈ Gr(M) and λ ∈ M ⊗Z R, we denote by λz and λz⊥ the orthogonal projection of λ
to z and z⊥, respectively. If ϕ ∈ SM , and τ ∈ H with v = Im(τ), we let

ΘM (τ, z, ϕ) = vb
−/2

∑
λ∈M ′

ϕ(λ)e
(
Q(λz⊥)τ +Q(λz)τ

)



10 JAN H. BRUINIER, BENJAMIN HOWARD, AND TONGHAI YANG

be the associated Siegel theta function. For γ ∈ SL2(Z) it satisfies the transformation law

ΘM (γτ, z, ϕ) = (cτ + d)
b+−b−

2 ΘM (τ, z, ωM (γ)ϕ).

Following [Ku3], we view the Siegel theta function as a function

H×Gr(M) −→ S∨M , (τ, z) 7→ ΘM (τ, z).

The above transformation law implies that ΘM (τ, z) transforms as a (non-holomorphic)
modular form of weight (b+ − b−)/2 for the group SL2(Z) with values in S∨M .

Let k ∈ Z, and let σ be a finite dimensional representation of SL2(Z) on a complex vector
space Vσ, which factors through a finite quotient of SL2(Z). We denote by Hk(σ) the vector
space of harmonic Maass forms1 of weight k for the group SL2(Z) with representation σ
as in [BY]. We write M !

k(σ), Mk(σ), and Sk(σ) for the subspaces of weakly holomorphic
modular forms, holomorphic modular forms, and cusp forms, respectively. Taking Vσ = M
and σ to be the Weil representation, the natural action of the orthogonal group of M on
SM commutes with the action of SL2(Z), and hence there is an induced action on the above
spaces of SM -valued modular forms.

A harmonic Maass form f ∈ Hk(σ) has a Fourier expansion of the form

f(τ) =
∑
m∈Q

m�−∞

c+(m)qm +
∑
m∈Q
m<0

c−(m)Γ(1− k, 4π|m|v)qm(2.2.1)

with Fourier coefficients c±(m) ∈ Vσ. Here q = e2πiτ , and Γ(s, x) =
∫∞
x
e−tts−1dt denotes

the incomplete gamma function. The coefficients are supported on rational numbers with
uniformly bounded denominators. The first summand on the right hand side of (2.2.1) is
denoted by f+ and is called the holomorphic part of f , the second summand is denoted by
f− and is called the non-holomorphic part.

Recall from [BF] the conjugate-linear differential operator ξk : Hk(ωM ) → S2−k(ωM )
defined by

ξk(f)(τ) = 2ivk
∂f

∂τ
.(2.2.2)

The kernel of ξk is equal to M !
k(ωM ). According to [BF, Corollary 3.8] there is an exact

sequence

0 // M !
k(ωM ) // Hk(ωM )

ξk // S2−k(ωM ) // 0 .

If f ∈ Hk(ωM ) has Fourier coefficients c±(m) ∈ SM as in (2.2.1), we abbreviate c±(m,µ) =
c±(m)(µ) ∈ C for all µ ∈M ′/M .

3. Divisors on unitary Shimura varieties

In this section we introduce the arithmetic Shimura varietyM on which we will be doing
intersection theory, and introduce the Kudla-Rapoport divisors on M. Recall that dk is
odd. This hypothesis will be used in several places, but the primary reason for imposing it
is that without this assumption the integral modelM is not known (or necessarily expected)
to be flat or regular.

1More precisely, these are the harmonic weak Maass forms of [BY]. For simplicity we omit the adjective

‘weak’.
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3.1. The stackM and the Kudla-Rapoport divisors. We first defineOk-stacksM(m,0)

and M(m,1) as moduli spaces of abelian schemes with additional structure.

Definition 3.1.1. LetM(m,0) be the algebraic stack overOk whose functor of points assigns
to an Ok-scheme S the groupoid of triples (A,ψ, i), in which

• A is an abelian scheme over S of relative dimension m,
• ψ : A→ A∨ is a principal polarization,
• i : Ok → End(A) is an action of Ok on A.

We insist that the polarization ψ be Ok-linear, in the sense that ψ ◦ i(x) = i(x)∨ ◦ ψ for
every x ∈ Ok. We further insist that the action of Ok satisfy the signature (m, 0) condition:
the induced action of Ok on the OS-module Lie(A) is through the structure morphism
Ok → OS .

We usually just write A ∈ M(m,0)(S) for an S-valued point, and suppress ψ and i from
the notation. It is proved in [Ho3] that the stack M(m,0) is smooth and proper of relative
dimension 0 over Ok. The stack M(0,m) is defined in the same way, but the signature
condition is replaced by the signature (0,m) condition: the induced action of Ok on Lie(A)
is through the complex conjugate of the structure morphism Ok → OS .

Definition 3.1.2. LetM(m,1) be the algebraic stack overOk whose functor of points assigns
to an Ok-scheme S the groupoid of quadruples (A,ψ, i,F) in which

• A is an abelian scheme over S of relative dimension m+ 1,
• ψ : A→ A∨ is a principal polarization of A,
• i : Ok → End(A) is an action of Ok on A,
• F ⊂ Lie(A) is an Ok-stable OS-submodule, which is locally an OS-module direct

summand of rank m.

We again insist that ψ be Ok-linear, and that the subsheaf F satisfy Krämer’s signature
(m, 1) condition: the action of Ok on F is through the structure morphism Ok → OS ,
while the action of Ok on the line bundle Lie(A)/F is through the complex conjugate of the
structure morphism.

When no confusion will arise, we denote S-valued points simply by A ∈ M(m,1)(S). By
work of Pappas [Pa] and Krämer [Kr], the stackM(m,1) is known to be regular and flat over
Ok of relative dimension m, and to be smooth over Ok[1/dk].

From now on we fix an integer n ≥ 2 and define a regular and flat Ok-stack

M =M(1,0) ×Ok
M(n−1,1)

of dimension n. If S is a connected Ok-scheme and (A0, A) ∈M(S), the Ok-module

L(A0, A) = HomOk
(A0, A)

carries a positive definite hermitian form 〈x, y〉 = ψ−1
0 ◦ y∨ ◦ ψ ◦ x, where the composition

on the right is viewed as an element of Ok ∼= EndOk
(A0).

In the special case where S = Spec(F) for an algebraically closed field F, and ` 6= char(F)
is a prime, the Ok,`-module HomOk,`

(T`(A0), T`(A)) carries a hermitian form defined in a
similar way. Here T` denotes `-adic Tate module.

The following proof is left for the reader; compare with Proposition 2.12(ii) of [KR2].

Proposition 3.1.3. For every algebraically closed field F and every (A0, A) ∈M(F), there

is a unique incoherent self-dual hermitian (kR, Ôk)-module L(A0, A) of signature (n, 0) sat-
isfying

L(A0, A)` ∼= HomOk,`
(T`(A0), T`(A))
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for every prime ` 6= char(F). Furthermore, L(A0, A) depends only on the connected compo-
nent of M containing (A0, A), and not on (A0, A) itself.

From Proposition 3.1.3 we obtain a decomposition

(3.1.1) M =
⊔
L
ML

where L runs over all incoherent self-dual hermitian (kR, Ôk)-modules of signature (n, 0),
andML is the union of those connected components ofM for which L(A0, A) ∼= L at every
geometric point (A0, A).

If (A0, A) ∈M(C) then we may form the Betti homology groups

(3.1.2) A0 = H1(A0(C),Z), A = H1(A(C),Z).

Each is a self-dual hermitian Ok-module. Indeed, the polarization on A0 induces a perfect Z-
valued symplectic form ψ0 on A0, and there is a unique hermitian form hA0 on A0 satisfying

ψ0(x, y) = Trk/QhA0
(δ−1
k x, y),

where δk =
√
dk is the square root lying in the upper half complex plane2. Similarly A is

equipped with a perfect symplectic form ψ, and a hermitian form hA satisfying

(3.1.3) ψ(x, y) = Trk/QhA(δ−1
k x, y).

The hermitian Ok-modules A0 and A have signatures (1, 0) and (n − 1, 1). As in (2.1.2),
the Ok-module

L(A0,A) = HomOk
(A0,A)

carries a self-dual hermitian form of signature (n−1, 1), and the pair (A0, A) lies onML(C)
if and only if

(3.1.4) L̂(A0,A) ∼= Lf .

We now define divisors on M following Kudla-Rapoport [KR2].

Definition 3.1.4. For each positive m ∈ Q and each r | dk, define the Kudla-Rapoport
divisor Z(m, r) as the algebraic stack over Ok whose functor of points assigns to every
connected Ok-scheme S the groupoid of triples (A0, A, λ) in which

• (A0, A) ∈M(S),
• λ ∈ r−1L(A0, A) satisfies 〈λ, λ〉 = m.

We further require that the morphism δkλ : A0 → A induce the trivial map

(3.1.5) δkλ : Lie(A0)→ Lie(A)/F ,

where δk is any Ok-module generator of dk.

Remark 3.1.5. Of course (2.1.1) implies that Z(m, r) = ∅ unless m ∈ N(r)−1Z.

Remark 3.1.6. The vanishing of (3.1.5) is automatic if N(r) ∈ O×S . Indeed, if N(r) ∈ O×S
then any λ ∈ r−1L(A0, A) induces an Ok-linear map λ : Lie(A0) → Lie(A)/F . The action
of Ok on the image of this map is through both the structure map Ok → OS and through
its conjugate, and so the image is annihilated by all α − α with α ∈ Ok. These elements
generate the ideal dk = δkOk.

2More precisely, there is a choice of i =
√
−1 such that ψ0(ix, x) and ψ(ix, x) are positive definite, and

we choose δk to lie in the same connected component of C r R as i
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The forgetful map j : Z(m, r)→M is finite, unramified, and representable, as in [KR2,
Proposition 2.9]. By [Vi, Lemma 1.19], any geometric point ofM admits an étale neighbor-
hood U →M such that Z(m, r)/U → U restricts to a closed immersion of schemes on each
connected component of Z(m, r)/U . Moreover, each of these components is locally defined
by a single equation (when r = Ok this is proved in [Ho3]; the general case is similar), and
so defines a divisor on U . Adding them up defines a divisor Z(m, r)/U on U , which by
étale descent defines a divisor on M. When no confusion is possible we use the same letter
Z(m, r) to denote the stack, the associated divisor, and the associated line bundle. For any
L as in (3.1.1), define ZL(m, r) = Z(m, r)×MML so that

Z(m, r) =
⊔
L
ZL(m, r).

3.2. Complex uniformization. Fix one L as in (3.1.1). Here we recall the uniformization
of the smooth complex orbifold ML(C) and its Kudla-Rapoport divisors. The complex
uniformization is explained in [KR2] and [Ho2], and so we only sketch the main ideas.

Recalling that L has signature (n, 0), let L(∞) be the coherent hermitian (kR, Ôk)-module
with archimedean component of signature (n− 1, 1), but with the same finite part as L. To
each point (A0, A) ∈ ML(C) there is an associated pair (A0,A) of self-dual hermitian Ok-
modules as in (3.1.2), and a self-dual hermitian Ok-module L(A0,A) of signature (n− 1, 1).
In the notation of (2.1.3), the isomorphism (3.1.4) is equivalent to

L(A0,A) ∈ gen(L(∞)).

The pair (A0,A) depends on the connected component of ML(C) containing (A0, A), but
not on (A0, A) itself, and the formation of (A0,A) from (A0, A) establishes a bijection from
the set of connected components ofML(C) to the set of isomorphism classes of pairs (A0,A)
in which

• A0 is a self-dual hermitian Ok-module of signature (1, 0),
• A is a self-dual hermitian Ok-module of signature (n− 1, 1),
• L(A0,A) ∈ gen(L(∞)).

We now give an explicit parametrization of the connected component ofML(C) indexed
by one pair (A0,A). Let D(A0,A) be the space of negative kR-lines in L(A0,A)R. The group

Γ(A0,A) = Aut(A0)×Aut(A)

sits in a short exact sequence

1→ µ(k)→ Γ(A0,A) → Aut(L(A0,A))→ 1

in which the arrow µ(k)→ Γ(A0,A) is the diagonal inclusion, and Γ(A0,A) → Aut(L(A0,A))

sends (γ0, γ) to the automorphism λ 7→ γ ◦ λ ◦ γ−1
0 .

There is a morphism of complex orbifolds

Γ(A0,A)\D(A0,A) →ML(C)

defined by sending the negative line z ∈ D(A0,A) to the pair (A0, Az), where A0(C) = A0R/A0

and Az(C) = AR/A as real Lie groups with Ok-actions. The complex structure on A0(C) is
defined by the natural action of kR ∼= C on A0R, but the complex structure on Az(C) depends
on z. A choice of nonzero vector a0 ∈ A0 determines an isomorphism L(A0,A)R → AR by
λ 7→ λ(a0). The image of z under this isomorphism is a negative line z ⊂ AR, which does not
depend on the choice of a0. Of course AR inherits a complex structure from its Ok-action



14 JAN H. BRUINIER, BENJAMIN HOWARD, AND TONGHAI YANG

and the isomorphism kR ∼= C, but this does not define the complex structure on Az(C).
Instead, define an R-linear endomorphism Iz of AR by

Iz(a) =

{
i · a if a ∈ z⊥

−i · a if a ∈ z

and use this new complex structure Iz to make Az(C) into a complex Lie group. The
symplectic form ψ on A defined by (3.1.3) defines a polarization on Az(C), and the subspace

z⊥ ⊂ AR ∼= Lie(Az)

satisfies Krämer’s signature (n − 1, 1) condition. From the discussion above we find the
complex uniformization

(3.2.1) ML(C) ∼=
⊔

(A0,A)

Γ(A0,A)\D(A0,A).

Remark 3.2.1. Assume that either n > 2, or that L(∞) contains, everywhere locally, a
nonzero isotropic vector. The strong approximation theorem implies that

|gen(L(∞))| = 21−o(dk)hk.

For each L ∈ gen(L(∞)) there are exactly hk pairs (A0,A) satisfying L(A0,A) ∼= L, and
hence ML(C) has 21−o(dk)h2

k components.

Now we turn to the complex uniformization of the Kudla-Rapoport divisors. For any m ∈
Q>0 and any r | dk, the algebraic stack of Definition 3.1.4 admits a complex uniformization

(3.2.2) ZL(m, r)(C) ∼=
⊔

(A0,A)

(
Γ(A0,A)\

⊔
λ∈r−1L(A0,A)
〈λ,λ〉=m

D(A0,A)(λ)
)
,

in which D(A0,A)(λ) ⊂ D(A0,A) is the space of negative lines orthogonal to λ. The essential
point is that D(A0,A)(λ) is precisely the locus of points z ∈ D(A0,A) for which the R-linear
map λ : A0R → AR is C-linear relative to the complex structure Iz.

3.3. Divisors attached to harmonic Maass forms. Fix an L as in (3.1.1). The hermit-

ian form 〈·, ·〉 on Lf defines a Ẑ-valued quadratic form Q(λ) = 〈λ, λ〉. The dual lattice is

d−1
k Lf , and there is an induced d−1

k Z/Z-valued quadratic form Q on the discriminant group

d−1
k Lf/Lf . Let ∆ denote the automorphism group of d−1

k Lf/Lf with its quadratic form.

The group ∆ acts on the space SL of complex-valued functions on d−1
k Lf/Lf , and commutes

with the Weil representation

ωL : SL2(Z)→ Aut(SL).

To every ∆-invariant harmonic Maass form f ∈ H2−n(ωL) we will construct a divisor ZL(f)
on ML as a linear combination of Kudla-Rapoport divisors.

Definition 3.3.1. We will say that d−1
k Lf/Lf is isotropic if d−1

k Lp/Lp represents 0 non-
trivially for every prime p dividing dk. This condition is equivalent to the existence of an
isotropic element of order |dk| in d−1

k Lf/Lf .

Remark 3.3.2. If n > 2 then d−1
k Lf/Lf is always isotropic. If n = 2 then d−1

k Lf/Lf is
isotropic if and only if Lf represents 0 nontrivially everywhere locally; this is equivalent to
all connected components of ML being noncompact.
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For every m ∈ Q/Z and every r | dk, define a ∆-invariant function ϕm,r ∈ SL as the
characteristic function of the subset

{λ ∈ r−1Lf/Lf : Q(λ) = m} ⊂ d−1
k Lf/Lf .

Using [Se73, Chapter IV.1.7], it is easy to check that ϕm,r 6= 0 if and only if m ∈ N(r)−1Z/Z.
By Witt’s theorem the finitely many nonzero ϕm,r’s form a basis of S∆

L .

Lemma 3.3.3. For any m ∈ Q>0 and any r | dk, there is an fm,r ∈ H2−n(ωL)∆ with
holomorphic part of the form

f+
m,r(τ) = ϕm,r · q−m +

∑
k∈Q≥0

c+m,r(k) · qk,

for some c+m,r(k) ∈ SL. Furthermore

(1) if n > 2, then fm,r is unique;

(2) if n = 2 and d−1
k Lf/Lf is not isotropic, then fm,r is again unique;

(3) if n = 2 and d−1
k Lf/Lf is isotropic, then any two such fm,r differ by a constant,

and fm,r is uniquely determined if we impose the further condition that c+m,r(0) ∈ SL

vanishes at the trivial coset of d−1
k Lf/Lf . That is to say, c+m,r(0, 0) = 0.

Remark 3.3.4. In order to make the notation fm,r unambiguous, when n = 2 and d−1
k Lf/Lf

is isotropic we always choose fm,r so that c+m,r(0, 0) = 0.

Proof. The existence statement follows from [BF, Proposition 3.11]. To prove the unique-
ness statement when n > 2, we note that a harmonic Maass form f ∈ Hk(ωL) with vanishing
principal part is automatically holomorphic [BF, Proposition 3.5]. Since the weight is neg-
ative, it vanishes identically. Now suppose that n = 2. Using the same argument as for
n > 2, we see that any two fm,r differ by an element of M0(ωL)∆, that is, by an element of
SL which is invariant under the action of the group SL2(Z)×∆.

If d−1
k Lf/Lf is not isotropic then it is easily seen that M0(ωL)∆ = 0. If d−1

k Lf/Lf is
isotropic then it follows from [Sch, Theorem 5.4] that the space of invariants M0(ωL)∆ has
dimension 1, and that the map M0(ωL)∆ → C given by evaluation of the constant term at
the trivial coset of d−1

k Lf/Lf is an isomorphism. �

Fix f ∈ H2−n(ωL)∆. An argument similar to the uniqueness part of Lemma 3.3.3 shows
that f may be decomposed as a C-linear combination

(3.3.1) f(τ) = const +
∑

m∈Q>0

r|dk

αm,r · fm,r(τ)

where “const” is a constant form in M2−n(ωL)∆. This constant form is necessarily 0, except
when n = 2 and d−1

k Lf/Lf is isotropic. Define a divisor on ML with complex coefficients

(3.3.2) ZL(f) =
∑

m∈Q>0

r|dk

αm,r · ZL(m, r).

Obviously ZL(fm,r) = ZL(m, r).

Remark 3.3.5. Although the decomposition of (3.3.1) is not unique, the divisor (3.3.2) does
not depend on the choice of decomposition. This amounts to verifying that ZL(m, r) = 0
whenever fm,r = 0, which is clear: if fm,r = 0 then ϕm,r = 0, which implies that m 6∈
N(r)−1Z. Thus ZL(m, r) = 0 by Remark 3.1.5.
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3.4. Compactification. The moduli spaceM(n−1,1) defined in Section 3.1 admits a canon-
ical toroidal compactification

M(n−1,1) ↪→M∗(n−1,1).

Over Ok[1/dk] the construction is found in [Lan]; the extension to Ok is in [Ho3]. The
Ok-stack

M∗ =M(1,0) ×M∗(n−1,1)

is regular, proper and flat over Ok of relative dimension n− 1, and smooth over Ok[1/dk].
It contains M as a dense open substack, and the boundary M∗ rM, when endowed with
its reduced substack structure, is proper and smooth over Ok of relative dimension n − 2.
Exactly as in (3.1.1), there is a decompositionM∗ =

⊔
LM∗L in whichM∗L is, by definition,

the Zariski closure of ML in M∗.
Fix a ∆-invariant f ∈ H2−n(ωL) with holomorphic part

f+(τ) =
∑
m∈Q

m�−∞

c+(m)qm,

so that c+(m) ∈ SL. We will define a divisor BL(f) on M∗L, supported on the boundary
∂ML = M∗L rML. Start with a component B of the geometric fiber ∂ML/kalg . This
component lies on some connected component ofM∗L/kalg , which, as in Section 3.2, is indexed

by a pair (A0,A). As in [Ho3], the component B corresponds to the Γ(A0,A)-orbit of an
isotropic Ok-direct summand a ⊂ L(A0,A) of rank one, and by [Ho3, Proposition 2.6.3]
there is a decomposition

L(A0,A) = E ⊕ a⊕ b

in which b is an isotropic Ok-submodule of rank one, and a⊥ = a ⊕ E. Under any such
decomposition, E is a self-dual hermitian Ok-module of signature (n− 2, 0).

The multiplicity of B with respect to f is defined as follows. Regard c+(m) as a function
on

d−1
k Lf/Lf ∼= d−1

k E/E ⊕ d−1
k a/a⊕ d−1

k b/b.

If n > 2 then

multB(f) =
∑

m∈Q>0

m

n− 2

∑
λ∈d−1

k E
〈λ,λ〉=m

∑
µ∈d−1

k a/a

c+(−m,λ+ µ).

When f = fm,r this simplifies to

multB(fm,r) =
mN(r)

n− 2
· |{λ ∈ r−1E : 〈λ, λ〉 = m}|.

If n = 2 then E = 0, and we instead define

multB(f) = −2
∑

m∈Z≥0

∑
µ∈d−1

k a/a

c+(−m,µ)σ1(m).

In the next section (see Remark 4.5.3 and Corollary 4.5.4) we will show that the above
multiplicities of the boundary components with respect to f are given by regularized theta
lifts of f to positive definite hermitian spaces of signature (n− 2, 0).

Exactly as in [Ho3, Section 3.7], the isomorphism class of the hermitian module E is
constant on the Gal(kalg/k)-orbit of B, and so summing over all geometric components B
yields a divisor

BL(f) =
∑
B

multB(f) · B
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on M∗L/kalg which descends to M∗L/k. Denote in the same way the divisor on M∗L obtained

by taking the Zariski closure.

Definition 3.4.1. Let Z∗L(f) be the Zariski closure in M∗L of the Kudla-Rapoport divisor
ZL(f), and define the total Kudla-Rapoport divisor on M∗L by

Ztotal
L (f) = Z∗L(f) + BL(f).

Let ĈH
1

R(M∗L) be the arithmetic Chow group with real coefficients and log-log growth
along the boundary in the sense of Burgos-Kramer-Kühn [BKK, BBK] (see also [Ho3] for a
rapid review of the essentials), and set

ĈH
1

C(M∗L) = ĈH
1

R(M∗L)⊗R C.

In the next section (see especially Section 4.7) we will construct a Green function ΦL(f),
which will allow us to define an arithmetic cycle class

Ẑtotal
L (f) =

(
Ztotal

L (f),ΦL(f)
)
∈ ĈH

1

C(M∗L).

4. Green functions for divisors

Here we consider the analytic theory of Shimura varieties associated to hermitian spaces of
signature (n−1, 1) over imaginary quadratic fields. We also study their special divisors and
define automorphic Green functions for special divisors as regularized theta lifts of harmonic
Maass forms. In Section 4.5 we study these Green functions on toroidal compactifications,
and show that they are log-log Green functions in the sense of [BKK] for linear combinations
of special divisors and boundary divisors. We prove that the multiplicities of the boundary
divisors are given by regularized theta lifts of harmonic Maass forms to hermitian spaces of
signature (n− 2, 0). To this end we compute Fourier-Jacobi expansions of Green functions
and analyze the different terms at the boundary. We use these results to construct Green
functions for Kudla-Rapoport divisors on the complex orbifoldM∗L(C) studied in Section 3.

Since it does not cause any extra work, and for future reference, we make no restriction
on dk in the present section and allow it to be even. Moreover, we work with Shimura
varieties of arbitrary level structure.

Let V be a hermitian space over k equipped with a hermitian form 〈·, ·〉. Throughout
we let VR = V ⊗Q R and assume that the signature of V is (n − 1, 1). We write 〈·, ·〉Q for
the symmetric bilinear form 〈x, y〉Q = trk/Q〈x, y〉. The associated quadratic form over Q is

Q(x) = 1
2 〈x, x〉Q = 〈x, x〉. Note that the Weil representations of SL2 ⊂ U(1, 1) associated

to the quadratic form over Q and the hermitian form are the same.

4.1. Hermitian spaces and unitary Shimura varieties. We realize the hermitian sym-
metric space associated to the unitary group U(V ) as the Grassmannian D of negative
kR-lines in VR. It can be viewed as an open subset of the projective space P(VR) of the
complex vector space VR. The domain D is not a tube domain unless n = 2, in which case it
is isomorphic to the complex upper half plane H. In general, D has a realization as a Siegel
domain as follows.

Let ` ∈ V be a nonzero isotropic vector and let ˜̀∈ V be isotropic such that 〈`, ˜̀〉 = 1.
The orthogonal complement

W = `⊥ ∩ ˜̀⊥
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is a positive definite hermitian space over k of dimension n−2, and we have V = W⊕k`⊕k˜̀.
If z ∈ D, then 〈z, `〉 6= 0. Hence z has a unique basis vector of the form

z + τ
√
dk`+ ˜̀

with z ∈ WR and τ ∈ C. We denote this vector by the pair (z, τ). The condition that the
restriction of the hermitian form to z is negative definite is equivalent to requiring that

N(z, τ) = −〈(z, τ), (z, τ)〉 = 2
√
|dk| Im(τ)− 〈z, z〉

is positive. Consequently, D is isomorphic to

H`,˜̀ = {(z, τ) ∈WR ×H : 2
√
|dk| Im(τ) > 〈z, z〉}.

For z ∈ D and λ ∈ VR we let λz⊥ and λz be the orthogonal projections of λ to z⊥ and z,
respectively. Then the majorant

〈λ, µ〉z = 〈λz⊥ , µz⊥〉 − 〈λz, µz〉

associated to z defines a positive definite hermitian form on VR. If 0 6= z0 ∈ z, we have

〈λ, λ〉z = 〈λ, λ〉+ 2
|〈λ, z0〉|2

|〈z0, z0〉|
.

The hermitian domain D carries over it a tautological bundle, whose fiber at the point
z ∈ D is the negative line z. The hermitian form on VR induces a hermitian metric on
the tautological bundle, whose first Chern form Ω is U(V )(R)-invariant and positive. It
corresponds to an invariant Kähler metric on D and gives rise to an invariant volume form
dµ(z) = Ωn−1. In the coordinates of H`,˜̀ we have

Ω = −ddc log N(z, τ).

Let L ⊂ V be an Ok-lattice, that is, a finitely generated Ok-submodule such that V =
L ⊗Z Q and such that the restriction of 〈·, ·〉 to L takes values in d−1

k . With the quadratic
form Q(x) = 〈x, x〉, we may also view L as a lattice over Z. Throughout we assume that L
is even as a lattice over Z, that is, 〈x, x〉 ∈ Z for all x ∈ L. This condition is automatically
fulfilled if the hermitian form on L takes values in Ok. Let

L′ = {x ∈ V : 〈x, y〉Q ∈ Z for all y ∈ L},
L′Ok

= {x ∈ V : 〈x, y〉 ∈ Ok for all y ∈ L}

be the Z-dual and the Ok-dual of L, respectively, so that L′ = d−1
k L′Ok

⊃ L.
Let Γ be a finite index subgroup of the unitary group U(L) of L. The quotient

XΓ = Γ\D.

is a complex orbifold of dimension n − 1. It is compact if and only if V is anisotropic. In
particular, if n > 2, then XΓ is non-compact. We define the volume of XΓ by vol(XΓ) =∫
XΓ

Ωn−1 and the degree of a divisor Z on XΓ by

deg(Z) =

∫
Z

Ωn−2.
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4.1.1. Special divisors. For any vector λ ∈ V of positive norm we put

D(λ) = {z ∈ D : 〈z, λ〉 = 0}.
Let SL be the complex vector space of functions L′/L → C. In the spirit of [Ku2], for
ϕ ∈ SL and m ∈ Q>0 we define the special divisor

Z(m,ϕ) =
∑
λ∈L′
〈λ,λ〉=m

ϕ(λ)D(λ).

We write Z(m) for the element of

HomC(SL,DivC(D)) ∼= DivC(D)⊗C S
∨
L

given by ϕ 7→ Z(m,ϕ). If ϕ is invariant under Γ, then Z(m,ϕ) is a Γ-invariant divisor and
descends to a divisor on the quotient XΓ, which we will also denote by Z(m,ϕ).

4.2. Regularized theta lifts. In this subsection we define automorphic Green functions
for special divisors as regularized theta lifts of harmonic Maass forms. These Green functions
turn out to be harmonic if the degree of the corresponding divisor vanishes.

Let τ = u+ iv be the variable in the upper half plane H. The Ok-lattice L together with
the symmetric bilinear form 〈·, ·〉Q is an even Z-lattice of signature (2n − 2, 2). Let ωL be
the corresponding Weil representation on SL as in Section 2. For z ∈ D fixed, the Siegel
theta function ΘL(τ, z) is a non-holomorphic modular form of weight n− 2 for SL2(Z) with
representation ω∨L.

Let f ∈ H2−n(ωL), and denote its Fourier coefficients by c±(m) ∈ SL as in (2.2.1). Note
that c±(m,µ) = c±(m,−µ) for µ ∈ L′/L, by [BF, Section 3]. The pairing {f,ΘL(τ, z)} is a
function on H, which is invariant under SL2(Z). Following [Bo1] and [BF], we consider the
regularized theta lift

Φ(z, f) =

∫ reg

SL2(Z)\H
{f,ΘL(τ, z)}dµ(τ)(4.2.1)

of f , where dµ(τ) = du dv
v2 is the invariant measure. The integral is regularized by taking

the constant term in the Laurent expansion at s = 0 of the meromorphic continuation of

Φ(z, f, s) = lim
T→∞

∫
FT
{f,ΘL(τ, z)}v−sdµ(τ).

Here FT denotes the standard fundamental domain for SL2(Z) truncated at height T . If
Re(s) > 0, the limit exists and defines a smooth function in z on all of D, which is invariant
under the action of Γ if f is invariant under Γ. It has a meromorphic continuation in s to
C; see [Bo1] or [BF]. The function Φ(z, f) is defined on all (!) of D, but it is only smooth
on the complement of the divisor

Z(f) =
∑
m>0

{c+(−m), Z(m)}.

To describe the behavior near this divisor, we extend the incomplete Gamma function
Γ(0, t) =

∫∞
t
e−v dvv to a function on R≥0 by defining it as the constant term in the Laurent

expansion at s = 0 of the meromorphic continuation of
∫∞

1
e−tvv−s dvv . Hence we have

Γ̃(0, t) =

{
Γ(0, t), if t > 0,

0, if t = 0.

The following result is a slight strengthening of [Bo1, Theorem 6.2] in our setting.
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Theorem 4.2.1. For any z0 ∈ D there exists a neighborhood U ⊂ D such that the function

Φ(z, f)−
∑

λ∈L′∩z⊥0

c+(−〈λ, λ〉, λ)Γ̃(0, 4π|〈λz, λz〉|)

is smooth on U . Here c+(m,λ) stands for the value c+(m)(λ) of c+(m) at λ+ L.

Proof. We begin by noticing that L′ ∩ z⊥0 is a positive definite Ok-module of rank ≤ n− 1.
Hence the sum on the right hand side is finite.

Arguing as in the proof of [Bo1, Theorem 6.2] (see also [Br1, Theorem 2.12]), we see that
there exists a small neighborhood U ⊂ D of z0 on which the function

Φ(z, f)−
∑

λ∈L′∩z⊥0

c+(−〈λ, λ〉, λ) CTs=0

[ ∫ ∞
v=1

e4π〈λz,λz〉vv−s−1 dv

]
is smooth. Here CTs=0[·] denotes the constant term in the Laurent expansion in s at 0.

Inserting the definition of Γ̃(0, t) we obtain the assertion. �

Corollary 4.2.2. For any z0 ∈ D we have

Φ(z0, f) = lim
z→z0
z/∈Z(f)

[
Φ(z, f) +

∑
λ∈L′∩z⊥0
λ 6=0

c+(−〈λ, λ〉, λ)(log(4π|〈λz, λz〉|)− Γ′(1))

]
.

Proof. Using the fact that Γ(0, t) = − log(t) + Γ′(1) + o(t) as t → 0, the corollary follows
from Theorem 4.2.1. �

By a Green function for a divisor D on a complex manifold X we mean a smooth function
G on XrD with the property that for every point z0 ∈ X there is a neighborhood U and a
local equation φ = 0 for D on U such that G+ log |φ|2 extends to a smooth function on all
of U . Using this definition, we may rephrase Theorem 4.2.1 and the corollary by saying that
Φ(z, f) is a Green function for Z(f). In fact, the difference of log |〈λz, λz〉| and log |φλ|2 for
any local equation φλ = 0 of D(λ) extends to a smooth function. In the next subsection we
will study the growth of Φ(z, f) at the boundary of a toroidal compactifaction of XΓ and
show that it can also be considered as a Green function for a suitably ‘compactified’ divisor
there.

Remark 4.2.3. Corollary 4.2.2, together with Theorem 5.3.6, will be used in Section 7.4
to compute the height pairing of a hermitian line bundle corresponding to an arithmetic
Kudla-Rapoport divisor with a CM cycle.

Proposition 4.2.4. Let ∆D be the U(V )(R)-invariant Laplacian on D. There exists a
non-zero real constant c (which only depends on the normalization of ∆D and which is
independent of f), such that

∆DΦ(z, f) = c · degZ(f)

on the complement of the divisor Z(f).

Proof. This can be proved in the same way as [Br1, Theorem 4.7]. �

Proposition 4.2.5. Let f ∈ H2−n(ωL) be Γ-invariant.

(1) If n > 2, then the Green function Φ(z, f) belongs to Lp(XΓ,Ω
n−1) for every p < 2.

(2) If n > 3, then Φ(z, f) belongs to L2(XΓ,Ω
n−1).

We will prove this Proposition at the end of Section 4.5.
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Theorem 4.2.6. Assume that n > 2 and that f ∈ H2−n(ωL) is Γ-invariant. Let G be a
smooth real valued function on XΓ r Z(f) with the properties:

(1) G is a Green function for Z(f),
(2) ∆DG = constant,
(3) G ∈ L1+ε(XΓ,Ω

n−1) for some ε > 0.

Then G(z) differs from Φ(z, f) by a constant.

Proof. The difference G(z) − Φ(z, f) is a smooth subharmonic function on the complete
Riemann manifold XΓ which is contained in L1+ε(XΓ,Ω

n−1). By a result of Yau, such a
function must be constant (see e.g. [Br1, Corollary 4.22]). �

For n = 2 one can obtain a similar characterization by also requiring growth conditions
at the cusps of XΓ (if there are any).

4.3. The toroidal compactification. The orbifold XΓ = Γ\D can be compactified as
follows. Let Iso(V ) be the set of isotropic one-dimensional subspaces I ⊂ V . The group
Γ acts on Iso(V ) with finitely many orbits. The rational boundary point corresponding to
I ∈ Iso(V ) is the point IR = I ⊗Q R ∈ P(VR). It lies in the closure of D in P(VR). The
Baily-Borel compactification of XΓ is obtained by equipping the quotient

Γ\
(
D ∪ {IR : I ∈ Iso(V )}

)
with the Baily-Borel topology and complex structure. The boundary points of this com-
pactification are usually singular. In contrast, here we work with a canonical toroidal com-
pactification of XΓ, which we now describe; see also [Hof, Chapter 1.1.5] and [Ho3, Section
3.3]. It can be viewed as a resolution of the singularities at the boundary points of the
Baily-Borel compactification.

Let I ∈ Iso(V ) be a one-dimensional isotropic subspace. Let ` ∈ I be a generator, and

let ˜̀∈ V be isotropic such that 〈`, ˜̀〉 = 1. For ε > 0 we put

Uε(`) =

{
z ∈ D : − 〈z, z〉

|〈z, `〉|2
>

1

ε

}
.

In the coordinates of H`,˜̀ we have

Uε(`) ∼= {(z, τ) ∈ H`,˜̀ : N(z, τ) > 1/ε}.

The stabilizer U(V )` of ` acts on this subset. Let Γ` = Γ ∩U(V )`. If ε is sufficiently small,
then

Γ`\Uε(`) −→ XΓ(4.3.1)

is an open immersion. The center of U(V )` is given by the subgroup of translations Ta for
a ∈ Q, where

Ta(λ) = λ+ a〈λ, `〉
√
dk`

for λ ∈ V . It is isomorphic to the additive group over Q. The action of the translations on
H`,˜̀ is given by Ta(z, τ) = (z, τ + a). The center of Γ` is of the form

Γ`,T = {Ta : a ∈ rZ}
for a unique r ∈ Q>0, which is sometimes called the width of the cusp IR. If we put
qr = e2πiτ/r, then (z, τ) 7→ (z, qr) defines an isomorphism from Γ`,T \Uε(`) to

Vε(`) =

{
(z, qr) ∈ Cn−2 × C : 0 < |qr| < exp

(
− π

r
√
|dk|

(〈z, z〉+ 1/ε)

)}
.
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Hence Γ`,T \Uε(`) can be viewed as a punctured disc bundle over Cn−2. Adding the origin
to every disc gives the disc bundle

Ṽε(`) =

{
(z, qr) ∈ Cn−2 × C : |qr| < exp

(
− π

r
√
|dk|

(〈z, z〉+ 1/ε)

)}
.

The action of Γ` on Vε(`) extends to an action on Ṽε(`), which leaves the boundary divisor
qr = 0 invariant, and which is free if Γ is sufficiently small. We obtain an open immersion
of orbifolds

Γ`\Uε(`) −→ (Γ`/Γ`,T ) \Ṽε(`).(4.3.2)

It can be used to glue the right hand side to XΓ to obtain a partial compactification, which

is smooth if Γ is sufficiently small. For a point (z0, 0) ∈ Ṽε(`) and δ > 0, we put

Bδ(z0, 0) =
{

(z, qr) ∈ Ṽε(`) : 〈z− z0, z− z0〉 < δ, |qr| < δ
}
.(4.3.3)

The images of the Bδ(z0, 0) for δ > 0 under the natural map to (Γ`/Γ`,T ) \Ṽε(`) define a
basis of open neighborhoods of the boundary point given by (z0, 0).

We let X∗Γ be the compactification of XΓ obtained by gluing the right hand side of
(4.3.2) to XΓ for every Γ-class of Iso(V ). We denote by BI the boundary divisor of X∗Γ
corresponding to I ∈ Iso(V ).

The behavior of the special divisor Z(m,ϕ) near the boundary can be described as follows.
Let I ∈ Iso(V ) and let ` ∈ I be a generator. Let 0 < ε < 1

2m be small enough so that (4.3.1)
defines an open immersion. Then Lemma 4.3.1 below implies that the pullback of Z(m,ϕ)
to Uε(`) is given by the local special divisor

Z`(m,ϕ) =
∑

λ∈L′∩`⊥
〈λ,λ〉=m

ϕ(λ)D(λ).

Lemma 4.3.1. If z0 is a generator of z ∈ D and λ ∈ V ⊗Q R, we have

〈λ, λ〉z ≥
|〈λ, `〉|2|〈z0, z0〉|

2|〈z0, `〉|2
.

Proof. The right hand side is independent of the choice of the generator z0, and so we may
assume 〈z0, `〉 = 1. Moreover, both sides of the inequality remain unchanged if we act on
λ and z0 by elements of the stabilizer of ` in U(V )(R). Using this observation, one may

reduce to the case z0 = τ
√
dk`+ ˜̀. The remaining computation we leave to the reader. �

4.4. Regularized integrals. Let k ∈ Z≥0, and let (M,Q) be an even integral lattice as
in Section 2. Following [Bo1], for f ∈ H−k(ωM ) and g ∈ Mk(ω∨M ) we define a regularized
Petersson pairing by

(f, g)reg =

∫ reg

SL2(Z)\H
{f(τ), g(τ)}dµ(τ)(4.4.1)

= lim
T→∞

∫
FT
{f(τ), g(τ)}dµ(τ).

In Section 4.5 such integrals will occur as multiplicities of the boundary components, where
g will be the theta function of a positive definite hermitian lattice given by a quotient of L.
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In the special case when k = 0 and g is constant, this integral is evaluated in [Bo1,
Theorem 9.1]. Here we describe how the integral can be computed when k > 0. We denote
the Fourier expansion of g by

g(τ) =
∑
m≥0

b(m)qm,

with coefficients b(m) ∈ S∨M . We let ϑ = q ddq be the Ramanujan theta operator on q-series.

Recall that the image under ϑ of a holomorphic modular form g of weight k is in general
not a modular form. However, the function

ϑ̃(g) = ϑ(g)− k

12
gE2

is a holomorphic modular form of weight k + 2. Here

E2(τ) = −24
∑
m≥0

σ1(m)qm

denotes the non-modular Eisenstein series of weight 2 for SL2(Z). If Rk = 2i ∂∂τ + k
v denotes

the Maass raising operator and E∗2 (τ) = E2(τ) − 3
πv the non-holomorphic (but modular)

Eisenstein series of weight 2, we also have

ϑ̃(g) = − 1

4π
Rk(g)− k

12
gE∗2 .(4.4.2)

If h(q) ∈ C((q)) is a (formal) Laurent series in q, we denote by CT[h] its constant term.

Theorem 4.4.1. Let f ∈ H−k(ωM ) and g ∈Mk(ω∨M ) be as above.

(1) If k > 0, then

(f, g)reg =
4π

k
CT[{f+, ϑ(g)}] =

4π

k

∑
m>0

m · {c+(−m), b(m)}.

(2) If k = 0 (so that g is constant), then

(f, g)reg =
π

3
CT[{f+, gE2)}] = −8π

∑
m≥0

σ1(m) · {c+(−m), g}.

Proof. (1) We use the identity ∂(E∗2dτ) = − 3
πdµ(τ) to obtain

(f, g)reg = −π
3

∫ reg

SL2(Z)\H
{f(τ), ∂(gE∗2dτ)}.(4.4.3)

In view of (4.4.2), we have

∂(gE∗2dτ) = − 3

kπ
∂(Rk(g)dτ).

Putting this into (4.4.3), we get

(f, g)reg =
1

k

∫ reg

SL2(Z)\H
{f(τ), ∂(Rk(g)dτ)}

=
1

k
lim
T→∞

∫
FT

d{f(τ), Rk(g)dτ} − 1

k

∫
SL2(Z)\H

{(∂f), Rk(g)dτ}

= −1

k
lim
T→∞

∫ 1

0

{f(u+ Ti), Rk(g)(u+ Ti)}du

+
1

k

∫
SL2(Z)\H

{ξ−k(f), Rk(g)}vk+2dµ(τ).
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The second summand on the right hand side is a Petersson scalar product which is easily
seen to vanish. The first summand is equal to 4π

k CT[{f+, ϑ(g)}]. This concludes the proof
of the k > 0 case.

(2) If k = 0, and f ∈ M !
0(ωL), the assertion follows from [Bo1, Theorem 9.2]. If f ∈

H0(ωL) it can be proved in the same way. �

4.5. Automorphic Green functions at the boundary. Let I ∈ Iso(V ) be an isotropic
k-line. Then a = I ∩ L is a projective Ok-module of rank 1. The Ok-module

D = (L ∩ a⊥)/a

is positive definite of rank n − 2. Let ` ∈ a be a primitive (that is, Q` ∩ a = Z`) isotropic

vector. We write a = a0` with a fractional ideal a0 ⊂ k, and we let ˜̀∈ V be isotropic such

that 〈˜̀, `〉 = 1.
The lattice D can be realized as a sublattice of L as follows. The lattice a∗ = L′Ok

∩ I⊥
is a projective Ok-module of rank n− 1. The quotient L′Ok

/a∗ is an Ok-module of rank 1,
which is projective since it is torsion free. Hence there is a projective Ok-module b ⊂ L′Ok

of rank 1 such that L′Ok
= a∗ ⊕ b. We have 〈a, L′Ok

〉 = 〈a, b〉 = Ok and 〈b, L〉 = Ok. We
put

E = L ∩ a⊥ ∩ b⊥.

Lemma 4.5.1. With a and b defined as above,

(1) L ∩ a⊥ = E ⊕ a and D ∼= E;
(2) if L is Ok-self-dual then L = E ⊕ a⊕ b;
(3) if L is Ok-self-dual and dk is odd then in (2) we may chose b to be isotropic.

Let f ∈ H2−n(ωL). By analogy with [Bo1, Theorem 5.3], the harmonic Maass form f
induces an SD-valued harmonic Maass form fD ∈ H2−n(ωD). It is characterized by its
values on ν ∈ D′/D as follows:

fD(τ)(ν) =
∑

µ∈L′/L
µ|L∩a⊥=ν

f(τ)(µ).(4.5.1)

Here µ | L∩ a⊥ denotes the restriction of µ ∈ Hom(L,Z) to L∩ a⊥, and we consider ν ∈ D′
as an element of Hom(L ∩ a⊥,Z) via the quotient map L ∩ a⊥ → D.

Let ε > 0 such that (4.3.1) is an open immersion. For a boundary point (z0, 0) ∈ Ṽε(`)
and δ > 0, we consider the Green function Φ(z, f) in the open neighborhood Bδ(z0, 0)
defined in (4.3.3). The pullback of the special divisor Z(f) to Bδ(z0, 0) is given by the linear
combination of local special divisors

Z`(f) =
∑
m>0

{
c+(−m), Z`(m)

}
.

Note that Z`(m) is invariant under the subgroup of translations Γ`,T ⊂ Γ`. The support of

Z`(m) on Ṽε(`) is the union of the sets {(z, qr) : 〈z + ˜̀, λ〉 = 0} for λ ∈ (L′ ∩ `⊥)/Γ`,T with
〈λ, λ〉 = m.

Theorem 4.5.2. Let f ∈ H2−n(ωL) and denote its Fourier coefficients by c±(m). Let

(z0, 0) ∈ Ṽε(`) be a boundary point. The set

Sf = {λ ∈ L′ ∩ `⊥ : 〈λ, λ〉 > 0, c+(−〈λ, λ〉, λ) 6= 0 and 〈z0 + ˜̀, λ〉 = 0}
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is finite. If δ > 0 is sufficiently small, then the function

Φ(z, f) +
rΦD(fD)

2πN(a0)
log |qr|+ c+(0, 0) log |log |qr||+ 2

∑
λ∈Sf

c+(−〈λ, λ〉, λ) log |〈z + ˜̀, λ〉|
has a continuation to a continuous function on Bδ(z0, 0). It is smooth on the complement
of the boundary divisor qr = 0, and its images under the differentials ∂, ∂, ∂∂ have log-log
growth along the divisor qr = 0 in the sense of [BBK, Definition 1.2]. Here

ΦD(fD) = (fD,ΘD)reg

is the regularized Petersson pairing of fD and the theta function ΘD as defined in (4.4.1).

We postpone the proof of the theorem to Section 4.6.

Remark 4.5.3. Let c±D(m) ∈ SD be the coefficients of fD, and write ΘD(τ) =
∑
m≥0RD(m)qm,

where the representation numbers RD(m) ∈ S∨D are given by

RD(m,ϕ) =
∑
λ∈D′

Q(λ)=m

ϕ(λ)

for ϕ ∈ SD. If n > 2, then according to Theorem 4.4.1 we have

ΦD(fD) =
4π

n− 2
CT[{f+

D , ϑ(ΘD)}] =
4π

n− 2

∑
m>0

m · {c+D(−m), RD(m)}.

If n = 2, then D is trivial, and we have

ΦD(fD) =
π

3
CT[f+

D · E2] = −8π
∑
m≥0

c+D(−m)σ1(m).

We now associate a boundary divisor to the harmonic Maass form f ∈ H2−n(ωL). We
define the multiplicity of the boundary divisor BI with respect to f by

multBI (f) =
rΦD(fD)

4πN(a0)
.

If the principal part of f has rational coefficients, then according to Remark 4.5.3, this
multiplicity is rational. In the special case that dk is odd, L is Ok-self-dual, and Γ = U(L),
we have in view of Lemma 4.5.1 that r = N(a0), and therefore multBI (f) = 1

4πΦD(fD). We
define the boundary divisor associated with f by

B(f) =
∑

I∈Iso(V )/Γ

multBI (f) ·BI .

Theorem 4.5.2 implies the following corollary.

Corollary 4.5.4. The function Φ(z, f) is a logarithmic Green function on X∗Γ for the divisor
Z(f) +B(f) with possible additional log-log growth along the boundary divisors BI .

4.6. The Fourier-Jacobi expansion. Here we compute the Fourier-Jacobi expansion of
the automorphic Green function Φ(z, f) using [Hof], [Bo1] and [Br1], and we provide the
proofs of Theorem 4.5.2 and Proposition 4.2.5.

The natural embedding of D into the Grassmannian of negative definite 2-dimensional
oriented real subspaces of VR is compatible with the actions of the unitary group U(V, 〈·, ·〉)
and the orthogonal group O(V, 〈·, ·〉Q). We may calculate the theta lift of f ∈ H2−n(ωL)
to XΓ by lifting to the orthogonal group O(V, 〈·, ·〉Q) and then pulling back to the unitary
group.
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We continue to use the setup of Section 4.5. In addition we introduce the following
notation. We fix `′ ∈ L′ such that 〈`′, `〉Q = 1. We denote by N the positive integer which
generates the ideal 〈L, `〉Q ⊂ Z. We write `⊥,Q for the orthogonal complement of ` with
respect to the bilinear form 〈·, ·〉Q, and put K = (L ∩ `⊥,Q)/Z`. Then K is an even lattice
over Z of signature (2n− 3, 1).

For x ∈ VR we put x2 = 〈x, x〉Q and |x| =
√
|x2|. Let (z, τ) ∈ H`,˜̀ and let z be the

corresponding point in D. We have

`2z = − 2

N(z, τ)
,

where the quantity N(z, τ) = −〈(z, τ), (z, τ)〉 is positive. We also view z as a two-dimensional
(oriented) real subspace of VR. The vector `z spans a one-dimensional real subspace of z,
whose orthogonal complement in z with respect to 〈·, ·〉Q we denote by w, so that z = w⊕R`z.
The real line w is generated by the vector w0(z) = −i(z, τ) = −i(z + τ

√
dk`+ ˜̀), which we

use to define an orientation on w. Hence we obtain a map

D −→ Gr+(K)(4.6.1)

to the Grassmannian Gr+(K) of oriented negative lines in K ⊗Z R. If λ ∈ K ⊗Z R, we have
〈−i(z, τ), λ〉Q = 2 Im〈(z, τ), λ〉. The orthogonal projection of λ to w is given by

|λw|
|`z|

= | Im〈(z, τ), λ〉|.

We also define the vector

µ = −`′ + `z
2`2z

+
`z⊥

2`2
z⊥

in L ∩ `⊥,Q. It is easily checked that

〈µ, λ〉Q = Re〈(z, τ), λ〉.
For w ∈ Gr+(K) and λ ∈ K ⊗Z R, we write 〈w, λ〉Q > 0 if 〈w0, λ〉Q > 0 for a vector w0 ∈ w
defining the orientation.

Let f ∈ H2−n(ωL). Similarly as in (4.5.1), according to [Bo1, Theorem 5.3], the har-
monic Maass form f induces an SK-valued harmonic Maass form fK ∈ H2−n(ωK). It is
characterized by its values on ν ∈ K ′/K as follows:

fK(τ)(ν) =
∑

µ∈L′/L
µ|L∩`⊥,Q=ν

f(τ)(µ).

Here µ | L ∩ `⊥,Q denotes the restriction of µ ∈ Hom(L,Z) to L ∩ `⊥,Q, and we consider
ν ∈ K ′ as an element of Hom(L ∩ `⊥,Q,Z) via the quotient map L ∩ `⊥,Q → K.

Finally, following [Br1, (3.25)], we define a special function for A,B ∈ R by

Vn(A,B) =

∞∫
0

Γ(n− 1, A2y)e−B
2y−1/yy−3/2 dy.

According to [Br1, p. 74] we have

Vn(A,B) = 2(n− 2)!

n−2∑
r=0

A2r

r!
(A2 +B2)1/4−r/2Kr−1/2(2

√
A2 +B2).

The following result is now an immediate consequence of [Br1, Theorem 3.9].
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Theorem 4.6.1. Let f ∈ H2−n(ωL) and denote its Fourier coefficients by c±(m) ∈ SL. Let
z ∈ D r Z(f) with |`2z| < 1

2m0
, where m0 = max{m ∈ Q : c+(−m) 6= 0}. Then the Green

function Φ(z, f) is equal to

1√
2|`z|

ΦK(w, fK) + Cf + c+(0, 0) log |`2z|

− 2
∑

λ∈K′r{0}

∑
ν∈L′/L

ν|L∩`⊥,Q=λ

c+(−〈λ, λ〉, ν) log
(
1− e

(
〈ν, `′〉Q + 〈λ, µ〉Q + i|λw|/|`z|

))

+
2√
π

∑
λ∈K′
〈λ,λ〉>0

∑
ν∈L′/L

ν|L∩`⊥,Q=λ

c−(−〈λ, λ〉, ν)
∑
j≥1

1

j
e
(
j〈ν, `′〉Q + j〈λ, µ〉Q

)
Vn
(
πj|λ|
|`z|

,
πj|λw|
|`z|

)
,

where

Cf = −c+(0, 0) (log(2π) + Γ′(1))− 2
∑

a∈Z/NZ
a 66=0

c+(0, a`/N) log |1− e(a/N)|.

Here ΦK(w, fK) denotes the function on Gr+(K) given by the regularized theta lift of fK
for the orthogonal group of K as in [Br1, Chapter 3.1]. We view it as a function on D via
the map (4.6.1). Finally, log(z) stands for the principle branch of the complex logarithm. �

Remark 4.6.2. If f ∈ M !
2−n(ωL) is weakly holomorphic and has integral principal part,

then according to [Hof, Theorem 4.2.1] there exists a meromorphic modular form Ψ(z, f)
of weight c+(0, 0)/2 for the group Γ (with a multiplier system of finite order) such that
−2 log ‖Ψ(z, f)‖2 = Φ(z, f) and div(Ψ(z, f)) = 1

2Z(f). Here ‖ · ‖ denotes the suitably
normalized Petersson metric. The above Fourier expansion of Φ(z, f) leads to the Borcherds
product expansion

Ψ(z, f) = e
(
〈(z, τ), %W 〉

) ∏
λ∈K′
〈W,λ〉Q>0

∏
ν∈L′/L

ν|L∩`⊥,Q=λ

(
1− e(〈ν, `′〉Q + 〈(z, τ), λ〉)

)c+(−〈λ,λ〉,ν)
,

which converges for N(z, τ) > 4m0. Here W ⊂ Gr+(K) denotes a Weyl chamber corre-
sponding to f (that is, a connected component of the complement of the singular locus of
ΦK(w, f)), and %W ⊂ K⊗ZQ denotes the corresponding Weyl vector. Moreover 〈W,λ〉Q > 0
means that 〈w, λ〉Q > 0 for w ∈W , see [Hof, Section 4.1.2].

We now turn to the proof of Theorem 4.5.2. We begin with two technical lemmas. The
first one gives an estimate for the majorant of the lattice K. For 0 < C < 1 we define

SC = {(z, τ) ∈ H`,˜̀ : C · 2
√
|dk| Im(τ) > 〈z, z〉}.

For λ ∈ K ⊗Z R and (z, τ) ∈ H`,˜̀ we define

h((z, τ), λ) = N(z, τ)〈λ, λ〉+ 2(Im〈(z, τ), λ〉)2.

Lemma 4.6.3. Let 0 < C < 1. There exists an ε > 0 such that for any (z, τ) ∈ SC and

any λ = λD − a
√
dk`− b√

dk
˜̀∈ K ⊗Z R (where λD ∈ D ⊗Z R and a, b ∈ R), we have

h((z, τ), λ) ≥ ε
(
a2|dk|+ b2 Im(τ)2 + N(z, τ)〈λD, λD〉

)
.
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Proof. This result can be viewed as a lower bound for the majorant 〈λw⊥ , λw⊥〉Q−〈λw, λw〉Q
associated to the negative line w = Rw0(z) ∈ Gr+(K). It directly follows from [Br1, Lemma
4.13]. Note that in the proof of this lemma, of the equalities defining Rt we only need that

|q(YD)| < By1y2 with B = t4

t4+1 and t > 0. �

Corollary 4.6.4. Let 0 < C < 1. There exists an ε > 0 such that for any (z, τ) ∈ SC and

any λ = λD − a
√
dk`− b√

dk
˜̀∈ K ⊗Z R (where λD ∈ D ⊗Z R and a, b ∈ R) with 〈λ, λ〉 ≤ 0,

we have

(Im〈(z, τ), λ〉)2 ≥ ε
(
a2|dk|+ b2 Im(τ)2 + N(z, τ)〈λD, λD〉

)
.

The following lemma is a useful variant of the corollary.

Lemma 4.6.5. Let A ≥ 0 and 0 ≤ B < 1. Assume that Im(τ) > (|z|+2A)2

4|dk|(1−B)2 . Then we

have

Im〈(z, τ), λ〉 −A|λ| ≥ B (a|dk|+ b Im(τ))

for all λ = λD − a
√
dk`− b√

dk
˜̀∈ K ⊗Z R with b ≥ 0 and 〈λ, λ〉 ≤ 0.

Proof. We have

Im〈(z, τ), λ〉 = Im〈z, λD〉+ a
√
|dk|+ b Im(τ)

≥ − 1

2
|λD| · |z|+ a

√
|dk|+ b Im(τ).

Since 0 ≥ 〈λ, λ〉 = 〈λD, λD〉 − 2ab, we also have |λ|2 ≤ 4ab and |λD|2 ≤ 4ab. Consequently,

Im〈(z, τ), λ〉 −A|λ| ≥ a
√
|dk|+ b Im(τ)−

√
ab · (|z|+ 2A)

≥ B (a|dk|+ b Im(τ))

+ (1−B) (a|dk|+ b Im(τ))−
√
ab · (|z|+ 2A).

The quantity in the latter line can be interpreted as a binary quadratic form in
√
a and

√
b,

which is positive definite if Im(τ) > (|z|+2A)2

4|dk|(1−B)2 . This implies the assertion. �

Proof of Theorem 4.5.2. It is easily seen that Sf is finite. To obtain the claimed analytic
properties of Φ(z, f) on Bδ(z0, 0), we consider the different terms of the Fourier expansion
given in Theorem 4.6.1.

Step 1. We begin with the term∑
λ∈K′
〈λ,λ〉>0

∑
ν∈L′/L

ν|L∩`⊥,Q=λ

c−(−〈λ, λ〉, ν)
∑
j≥1

1

j
e
(
j〈ν, `′〉Q + j〈λ, µ〉Q

)
Vn
(
πj|λ|
|`z|

,
πj|λw|
|`z|

)
.

According to [Br1, equality (3.26)], the function Vn(A,B) is bounded by a constant multiple

of e−
√
A2+B2

. Moreover, for λ ∈ K ′ with 〈λ, λ〉 > 0 we have

2
λ2

|`2z|
+ 2
|λ2
w|
|`2z|

>
λ2

|`2z|
+ 2
|λ2
w|
|`2z|

= h((z, τ), λ).

If we write λ = λD − a
√
dk` − b√

dk
˜̀ (where λD ∈ D ⊗Z Q and a, b ∈ Q), then in view of

Lemma 4.6.3 there exists an ε′ > 0 such that

Vn
(
πj|λ|
|`z|

,
πj|λw|
|`z|

)
� exp

(
−ε′j

√
a2|dk|+ b2 Im(τ)2 + N(z, τ)〈λD, λD〉

)
.
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Since the coefficients c−(m,µ) have only polynomial growth as m→ −∞, we find that the
above sum over λ ∈ K ′ converges uniformly on Bδ(z0, 0) to a function which is bounded

by O(exp(−ε′′
√
− log |qr|)) as qr → 0 for some ε′′ > 0. Hence this sum converges to

a continuous function on Bδ(z0, 0) which vanishes along the divisor qr = 0. Analogous
estimates hold for all iterated partial derivatives with respect to (z, τ). Using the fact that

dτ = r
2πi

dqr
qr

, we obtain that the differentials ∂, ∂, ∂∂ of this function have log-log growth

along qr = 0.
Step 2. For the term c+(0, 0) log |`2z|, we notice that

log |`2z| = − log(N(z, τ)/2)

= − log
(√
|dk| Im(τ)− 〈z, z〉/2

)
= − log (− log |qr|)− log

(
r
√
|dk|

2π
+
〈z, z〉

2 log |qr|

)
.

The second summand on the right hand side extends to a continuous function on Bδ(z0, 0)
whose differentials have log-log growth along the boundary divisor qr = 0.

Step 3. Next, we consider the term∑
λ∈K′r{0}

∑
ν∈L′/L

ν|L∩`⊥,Q=λ

c+(−〈λ, λ〉, ν) log
(
1− e

(
〈ν, `′〉Q + 〈λ, µ〉Q + i|λw|/|`z|

))

=
∑

λ∈K′r{0}

∑
ν∈L′/L

ν|L∩`⊥,Q=λ

c+(−〈λ, λ〉, ν) log
(
1− e

(
〈ν, `′〉Q + Re〈(z, τ), λ〉+ i| Im〈(z, τ), λ〉|

))
.

There exists a constant C > 0 such that c+(m, ν) = O(eC
√
m) for m→∞. Hence it follows

from Corollary 4.6.4 and Lemma 4.6.5, that the sum over λ ∈ K ′ with 〈λ, λ〉 < 0 converges

uniformly on Bδ(z0, 0) to a function which is bounded by O(exp(−ε′′
√
− log |qr|)) as qr → 0

for some ε′′ > 0. Observe that 〈λ, λ〉 < 0 implies that 〈λ, `〉 6= 0.
Moreover, Lemma 4.6.3 implies that, if δ is sufficiently small, the sum over λ ∈ K ′ with

〈λ, λ〉 ≥ 0 and 〈λ, `〉 6= 0 converges uniformly on Bδ(z0, 0) to a function which is bounded

by O(exp(−ε′′
√
− log |qr|)) as qr → 0 for some ε′′ > 0. Analogous estimates hold for all

iterated partial derivatives with respect to (z, τ). Hence, up to a continuous function with
log-log growth differentials, the above sum is equal to∑

λ∈K′r{0}
〈λ,`〉=0

∑
ν∈L′/L

ν|L∩`⊥,Q=λ

c+(−〈λ, λ〉, ν) log
(
1− e

(
〈ν, `′〉Q + 〈λ, µ〉Q + i|λw|/|`z|

))
(4.6.2)

=
∑

λ∈L′∩`⊥/Z`
λ6=0

c+(−〈λ, λ〉, λ) log
(

1− e
(

Re〈z + ˜̀, λ〉+ i| Im〈z + ˜̀, λ〉|)) .
Notice that the this sum does not depend on τ . We let Tf be the finite set

Tf = {λ ∈ L′ ∩ `⊥/Z` : 〈λ, λ〉 > 0, c+(−〈λ, λ〉, λ) 6= 0 and Im〈z0 + ˜̀, λ〉 = 0}.

It is an analogue for the integral lattice K of the set Sf defined in Theorem 4.5.2. Let T̃f
be a fixed system of representatives for Tf/{±1}. If δ is sufficiently small, then on the the
right hand side of (4.6.2), the sum over those λ which do not belong to Tf defines a smooth
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function on Bδ(z0, 0). Hence, up to a smooth function, (4.6.2) is equal to∑
λ∈Tf

c+(−〈λ, λ〉, λ) log
(

1− e
(

Re〈z + ˜̀, λ〉+ i| Im〈z + ˜̀, λ〉|))
=
∑
λ∈T̃f

c+(−〈λ, λ〉, λ) log
∣∣∣1− e(〈z + ˜̀, λ〉)∣∣∣2 + 4π

∑
λ∈T̃f

Im〈z+˜̀,λ〉<0

c+(−〈λ, λ〉, λ) Im〈z + ˜̀, λ〉.
We find that (4.6.2) is the sum of a smooth function on Bδ(z0, 0) and∑

λ∈Sf

c+(−〈λ, λ〉, λ) log |〈z + ˜̀, λ〉|+ 4π
∑
λ∈T̃f

Im〈z+˜̀,λ〉<0

c+(−〈λ, λ〉, λ) Im〈z + ˜̀, λ〉.(4.6.3)

Step 4. It remains to consider the quantity 1√
2|`z|

ΦK(w, fK). Let `K ∈ (k`∩L)/Z` = a/Z`
be a primitive vector. Then a = Z`K +Z`. If we write `K = a` with a ∈ k, we have a = a0`
with a0 = Za+ Z ⊂ k and

2 Im(a)√
|dk|

= N(a0).(4.6.4)

The positive definite lattice (K ∩ `⊥,QK )/Z`K is isomorphic to the Ok-lattice D = L ∩ a⊥/a.
We use the Fourier expansion given in [Br1, Chapter 3.1] with respect to the primitive
isotropic vector `K , to describe the behavior on Bδ(z0, 0). The vector

w1 = −i (z, τ)√
2 N(z, τ)

is the unique positively oriented vector in the real line w of length −1. For λ ∈ D ⊗Z R we
have

〈w1, λ〉Q =

√
2 Im〈z, λ〉√

N(z, τ)
,

〈w1, `K〉Q =

√
2 Im(a)√
N(z, τ)

.

Let `′K ∈ K ′ such that 〈`′K , `K〉Q = 1. According to [Br1, p. 68], we have in our present
notation that

ΦK(w1, fK) =
1√

2〈w1, `K〉Q
ΦD(fD)

+ 4
√

2π〈w1, `K〉Q
∑
λ∈D′

∑
ν∈L′/L
ν|L∩`⊥=λ

c+(−〈λ, λ〉, ν)B2

(
〈w1, λ〉Q
〈w1, `K〉Q

+ 〈ν, `′K〉Q
)

+ 4
√

2

(
π

〈w1, `K〉Q

)n−2 ∑
λ∈D′r{0}

∑
ν∈L′/L
ν|L∩`⊥=λ

c−(−〈λ, λ〉, ν)|λ|n−1

×
∑
j≥1

jn−3e

(
j
〈w1, λ〉Q
〈w1, `K〉Q

+ j〈ν, `′K〉Q
)
Kn−1

(
2πj|λ|
〈w1, `K〉Q

)
.
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Here B2(x) denotes the 1-periodic function on R which agrees on 0 ≤ x < 1 with the second
Bernoulli polynomial B2(x) = x2 − x + 1/6, and Kν(x) denotes the K-Bessel function.
Because of the exponential decay of the K-Bessel function, we find that

1√
2|`z|

ΦK(w, fK) =

√
N(z, τ)

2
ΦK(w, fK)

=
N(z, τ)

4 Im(a)
ΦD(fD) + 4π Im(a)

∑
λ∈L′∩a⊥/a

c+(−〈λ, λ〉, λ)B2

(
Im〈z + ˜̀, λ〉

Im(a)

)
+ s(z, τ),

where s(z, τ) is a continuous function on Bδ(z0, 0) with log-log growth differentials. If δ is
sufficiently small, then the second summand on the right hand side is the sum of a smooth
function on Bδ(z0, 0) and

8π
∑
λ∈T̃f

Im〈z+˜̀,λ〉<0

c+(−〈λ, λ〉, λ) Im〈z + ˜̀, λ〉.
Note that this term is the negative of the contribution coming from the second quantity
in (4.6.3). We obtain that up to a continuous function on Bδ(z0, 0) with log-log growth
differentials, the term 1√

2|`z|
ΦK(w, fK) is equal to

−rΦ
D(fD)

2πN(a0)
log |qr|+ 8π

∑
λ∈T̃f

Im〈z+˜̀,λ〉<0

c+(−〈λ, λ〉, λ) Im〈z + ˜̀, λ〉.
Here we have also used (4.6.4).

Step 5. Adding together all the contributions, we find that if δ is sufficiently small, then

Φ(z, f) +
rΦD(fD)

2πN(a0)
log |qr|+ c+(0, 0) log |log |qr||+ 2

∑
λ∈Sf

c+(−〈λ, λ〉, λ) log |〈z + ˜̀, λ〉|
has a continuation to a continuous function on Bδ(z0, 0). It is smooth on the complement
of the boundary divisor qr = 0, and its images under the differentials ∂, ∂, ∂∂ have log-log
growth along the divisor qr = 0. �

Proof of Proposition 4.2.5. We only prove that for n > 3 the Green function Φ(z, f) belongs
to L2(X∗Γ,Ω

n−1) = L2(XΓ,Ω
n−1). The other assertion can be proved analogously. Since

X∗Γ is compact, it suffices to show this locally for a small neighborhood of any point of X∗Γ.
Since Φ(z, f) has only logarithmic singularities outside the boundary, and since Ωn−1 is
smooth outside the boundary, this is clear outside the boundary points.

Therefore it suffices to show that for any primitive isotropic vector ` ∈ L and any bound-

ary point (z0, 0) ∈ Ṽε(`) the function Φ(z, f) is square integrable with respect to the measure
Ωn−1 in a small neighborhood Bδ(z0, 0).

It is easily seen that there exists a non-zero constant c such that

Ωn−1 = c ·N(z, τ)−ndz dz dτ dτ

= − r
2c

4π2
·

(√
|dk|r
π

log |qr| − 〈z, z〉

)−n
dz dz

dqr dqr
|qr|2

.
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Here we have put dz = dz1 · · · dzn−2. Hence, according to Theorem 4.5.2, it suffices to show
that log |qr| is square integrable on Bδ(z0, 0) with respect to the measure Ωn−1. Since n > 3,
this is now easily seen. �

4.7. Automorphic Green functions for Kudla-Rapoport divisors. Fix L and f ∈
H2−n(ωL)∆ as in Section 3.4. We will construct a Green function for the total Kudla-
Rapoport divisor of Definition 3.4.1.

Using the uniformization (3.2.1), fix a connected component Γ(A0,A)\D(A0,A) of ML(C).
In particular,

L̂(A0,A) ∼= Lf
as hermitian Ôk-modules. Exactly as with Lf , the Z-module d−1

k L(A0,A)/L(A0,A) is

equipped with a d−1
k Z/Z-valued quadratic form whose automorphism group we again denote

by ∆, and there is an isomorphism of quadratic spaces

(4.7.1) d−1
k L(A0,A)/L(A0,A) ∼= d−1

k Lf/Lf .
Such an isomorphism identifies SL with the space SL(A0,A) of complex valued functions on
the left hand side of (4.7.1). This identification depends on the choice of (4.7.1), but the
restriction

(4.7.2) S∆
L(A0,A)

∼= S∆
L

to ∆-invariants is independent of the choice. This allows us to view the function f as a ∆-
invariant SL(A0,A)-valued harmonic Maass form. The construction (4.2.1) defines a function
ΦL(A0,A)(f) on Γ(A0,A)\D(A0,A) with logarithmic singularities along the divisor ZL(f)(C).

By repeating the above construction on every connected component ofML(C) we obtain
a Green function ΦL(f) for the divisor ZL(f) on ML. By Corollary 4.5.4, the pair

(4.7.3) Ẑtotal
L (f) =

(
Ztotal

L (f),ΦL(f)
)

defines a class in ĈH
1

C(M∗L).

5. Complex multiplication cycles

In this section we study a 1-dimensional cycle Y →M of complex multiplication points,
and begin the calculation of its intersection with the Kudla-Rapoport divisors.

5.1. Definition of the CM cycle. For an Ok-scheme S, an S-valued point

(A1, B) ∈ (M(0,1) ×Ok
M(n−1,0))(S)

determines an S-valued point A1 × B ∈ M(n−1,1)(S), where A1 × B is implicitly endowed
with the product polarization, the product action of Ok, and the Ok-stable OS-submodule
Lie(B) ⊂ Lie(A1 × B) satisfying Krämer’s signature (n − 1, 1) condition. In other words,
the construction (A1, B) 7→ A1 ×B defines a morphism

M(0,1) ×Ok
M(n−1,0) →M(n−1,1).

The algebraic stack
Y =M(1,0) ×Ok

M(0,1) ×Ok
M(n−1,0)

is smooth and proper of relative dimension 0 over Ok, and admits a finite and unramified
morphism Y →M defined by (A0, A1, B) 7→ (A0, A1 × B). The algebraic stack Y is a CM
cycle, in the sense that for any triple (A0, A1, B) ∈ Y(S) the entries A0 and A1 are elliptic
curves with complex multiplication, while B is isogenous to a product of elliptic curves with
complex multiplication.
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For any S-valued point (A0, A1, B) ∈ Y(S) there is an orthogonal decomposition

(5.1.1) L(A0, A1 ×B) ∼= L(A0, A1)⊕ L(A0, B),

where L(A0, A1) = HomOk
(A0, A1) and L(A0, B) = HomOk

(A0, B).

Theorem 5.1.1 (Canonical lifting theorem). Let S̃ be an Ok-scheme, and let S ↪→ S̃ be a
closed subscheme defined by a nilpotent ideal sheaf. Suppose k and ` are positive integers.
Every pair

(B1, B2) ∈
(
M(k,0) ×Ok

M(`,0)

)
(S)

admits a unique deformation to an S̃-valued point

(B̃1, B̃2) ∈
(
M(k,0) ×Ok

M(`,0)

)
(S̃),

and the restriction map HomOk
(B̃1, B̃2)→ HomOk

(B1, B2) is an isomorphism.

Proof. The analogous statement for p-divisible groups, proved using Grothendieck-Messing
theory and assuming that p is locally nilpotent on S, is [Ho2, Proposition 2.4.1]. To prove
the lemma, combine the argument of [loc. cit.] with the proof of [Ho3, Proposition 2.1.2],
which is based instead on algebraic de Rham cohomology, and so is valid for abelian schemes
over an arbitrary base. �

Proposition 3.1.3 has the following analogue, whose proof we again leave to the reader.

Proposition 5.1.2. Let S = Spec(F) be the spectrum of an algebraically closed field, and
suppose (A0, A1, B) ∈ Y(F).

(1) There is a unique incoherent self-dual hermitian (kR, Ôk)-module L0(A0, A1) of sig-
nature (1, 0) satisfying

L0(A0, A1)` ∼= HomOk,`
(T`(A0), T`(A1))

for every prime ` 6= char(F).
(2) The hermitian Ok-module L(A0, B) is self-dual of signature (n− 1, 0).

Moreover, the modules L0(A0, A1) and L(A0, B) depend only the connected component of Y
containing (A0, A1, B), and not on the point (A0, A1, B) itself.

From Proposition 5.1.2 we have a decomposition

(5.1.2) Y =
⊔

(L0,Λ)

Y(L0,Λ),

where the disjoint union is over the isomorphism classes of pairs (L0,Λ) consisting of

• an incoherent self-dual hermitian (kR, Ôk)-module L0 of signature (1, 0),
• a self-dual hermitian Ok-module Λ of signature (n− 1, 0).

The stack Y(L0,Λ) is the union of those connected components of Y along which L0(A0, A1) ∼=
L0 and L(A0, B) ∼= Λ.

Remark 5.1.3. Each pair (L0,Λ) as above determines an incoherent self-dual (kR, Ôk)-
module L0 ⊕ Λ of signature (n, 0), whose archimedean and finite parts are, by definition,

(L0 ⊕ Λ)∞ = L0,∞ ⊕ (Λ⊗Z R)

(L0 ⊕ Λ)f = L0,f ⊕ (Λ⊗Z Ẑ).

For the rest of Section 5, fix one pair (L0,Λ) as in (5.1.2), and set L = L0 ⊕ Λ. The
morphism Y →M restricts to a morphism Y(L0,Λ) →ML.
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5.2. Decomposition of the intersection. There is a cartesian diagram (this is the defi-
nition of the upper left corner)

ZL(m, r) ∩ Y(L0,Λ)
//

��

Y(L0,Λ)

��
ZL(m, r) //ML,

and our goal is to decompose the intersection ZL(m, r)∩Y(L0,Λ) into smaller, more manage-
able substacks.

Given m1,m2 ∈ Q≥0 and r | dk, denote by X(L0,Λ)(m1,m2, r) the algebraic stack over
Ok whose functor of points assigns to a connected Ok-scheme S the groupoid of tuples
(A0, A1, B, λ1, λ2) in which

• (A0, A1, B) ∈ Y(L0,Λ)(S),

• λ1 ∈ r−1L(A0, A1) satisfies 〈λ1, λ1〉 = m1,
• λ2 ∈ r−1L(A0, B) satisfies 〈λ2, λ2〉 = m2,

and the map δkλ1 : A0 → A1 induces the trivial map

(5.2.1) δkλ1 : Lie(A0)→ Lie(A1)

for any generator δk ∈ dk. As in Remark 3.1.6, vanishing of (5.2.1) is automatic if N(r) ∈ O×S .

Proposition 5.2.1. For every m ∈ Q>0 and every r | dk, there is an isomorphism of
Ok-stacks

(5.2.2) ZL(m, r) ∩ Y(L0,Λ)
∼=

⊔
m1,m2∈Q≥0

m1+m2=m

X(L0,Λ)(m1,m2, r).

Proof. Suppose S is a connected Ok-scheme. An S-valued point on the left hand side of
(5.2.2) consists of a pair of triples

(A0, A, λ) ∈ ZL(m, r)(S) (A0, A1, B) ∈ Y(L0,Λ)(S)

together with an isomorphism A ∼= A1×B identifying Lie(B) with the subsheaf F ⊂ Lie(A).
Under the orthogonal decomposition (5.1.1), λ ∈ r−1L(A0, A) decomposes as

λ = λ1 + λ2 ∈ r−1L(A0, A1)⊕ r−1L(A0, B)

in such a way that 〈λ, λ〉 = 〈λ1, λ1〉 + 〈λ2, λ2〉. If we set m1 = 〈λ1, λ1〉 and m2 = 〈λ2, λ2〉
then the quintuple (A0, A1, B, λ1, λ2) defines an S-valued point of X(L0,Λ)(m1,m2, r). This
defines the desired isomorphism. �

Now we completely determine the structure of the stacks appearing in the right hand side
of (5.2.2). We will see momentarily that each has dimension 0 or 1, depending on whether
m1 > 0 or m1 = 0. For any m ∈ Q≥0 and any r | dk, define the representation number

(5.2.3) RΛ(m, r) =
∣∣{λ ∈ r−1Λ : 〈λ, λ〉 = m}

∣∣.
For m ∈ Q>0 define a finite set of odd cardinality

(5.2.4) DiffL0
(m) = {primes p of Q : m is not represented by L0,p ⊗Zp Qp}.

Note that every p ∈ DiffL0(m) is nonsplit in k.

Theorem 5.2.2. Fix m1,m2 ∈ Q≥0 with m1 > 0, and r | dk. Abbreviate

X = X(L0,Λ)(m1,m2, r).
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(1) If |DiffL0(m1)| > 1, then X = ∅.
(2) If DiffL0(m1) = {p}, then X has dimension 0 and is supported in characteristic p.

Furthermore, the étale local ring of every geometric point of X has length

νp(m1) = ordp(pm1) ·

{
1/2 if p is inert in k,

1 if p is ramified in k,

and the number of geometric points of X (counted with multiplicities) is

(5.2.5)
∑

z∈X (Falg
p )

1

|Aut(z)|
=
hk
wk
· RΛ(m2, r)

|Aut(Λ)|
· ρ
(
m1N(s)

pε

)

where p is the unique prime of k above p, Falg
p is an algebraic closure of its residue

field, ρ is defined by (1.4.1), s = r/(r + p) is the prime-to-p part of r, and

(5.2.6) ε =

{
1 if p is inert in k,

0 if p is ramified in k.

Proof. If X 6= ∅ then there is some point (A0, A1, B, λ1, λ2) ∈ X (F), where F is either C or
Falg
p for some prime p. Let A1 be the elliptic curve A1, but with the action of Ok replaced

by its complex conjugate. Thus λ1 : A0 → A1 is an Ok-conjugate-linear degree m1 quasi-
isogeny between elliptic curves with complex multiplication, and Ok acts on the Lie algebras
of A0 and A1 through the same homomorphism Ok → F. The only way such a conjugate
linear quasi-isogeny can exist is if F has nonzero characteristic, p is nonsplit in k, and A0

and A1 are supersingular elliptic curves. In particular

HomZ`(T`(A0), T`(A1)) ∼= Hom(A0, A1)⊗Z Z`
for every prime ` 6= p, and hence also

L0,`
∼= L0(A0, A1)` ∼= HomOk,`

(T`(A0), T`(A1)) ∼= L(A0, A1)⊗Z Z`
as hermitian Ok,`-modules. As 〈λ1, λ1〉 = m1 by definition of the moduli space X , we
have now shown that L0,` represents m1 for all finite primes ` 6= p. Therefore DiffL0

(m1)
contains at most one prime, p. We have already remarked that this set has odd cardinality,
and therefore DiffL0(m1) = {p}.

Next we compute the lengths of the local rings.

Lemma 5.2.3. The étale local ring of X at every point

(A0, A1, B, λ1, λ2) ∈ X (Falg
p )

is Artinian of length νp(m1).

Proof. We reduce the proof to calculations of Gross [Gr]. The tuple (A0, A1, B, λ1, λ2)

corresponds to a morphism z : Spec(Falg
p )→ X , and by composing with the structure mor-

phism we obtain a geometric point Spec(Falg
p ) → Spec(Ok). Let W be the completion of

the étale local ring of Spec(Ok) at this point. Let R be the completed étale local ring
of X at (A0, A1, B, λ1, λ2). This ring pro-represents the deformation functor of the tuple

(A0, A1, B, λ1, λ2) to Artinian local W -algebras with residue field Falg
p . Theorem 5.1.1 im-

plies that (A0, B, λ2) admits a unique lift to any such W -algebra. Thus the data of B and λ2

can be ignored in the deformation problem, and R pro-represents the deformation functor
of (A0, A1, λ1). Equivalently, R pro-represents the deformation functor of (A0, A1, λ1).
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By the Serre-Tate theorem we may replace A0 and A1 in the above deformation problem
by their p-divisible groups, which are Ok,p-linearly isomorphic. Call the common p-divisible
group G, so that

λ1 ∈ r−1 End(G)

is Ok,p-conjugate-linear, δkλ1 : G→ G induces the trivial map on Lie algebras, and

ordp(Nrd(λ1)) = ordp(m1)

where Nrd is the reduced norm on the quaternion order End(G). The ring R pro-represents

the functor of deformations (G̃, λ̃1) of (G,λ1) with λ̃1 ∈ r−1 End(G̃) and

(5.2.7) δkλ̃1 : Lie(G̃)→ Lie(G̃)

equal to zero.
Suppose first that N(r) ∈ Z×p . Then λ1 ∈ End(G), and Remark 3.1.6 implies that the

vanishing of (5.2.7) is automatically satisfied for any deformation. In this case, Gross’s
results immediately imply that R is Artinian of length νp(m1).

Now suppose N(r) /∈ Z×p , so that rOk,p = dkOk,p. If we set y = δkλ1 ∈ End(G), then

the ring R pro-represents the functor of defomations (G̃, ỹ) of (G, y) with ỹ ∈ End(G̃) and

ỹ : Lie(G̃)→ Lie(G̃) equal to zero. Let R′ be the ring pro-representing the same deformation

problem, but without the condition that ỹ : Lie(G̃) → Lie(G̃) vanish. By Gross’s results
R′ ∼= W/pk+1, where

k = ordp(Nrd(y)) = νp(m1).

Let (Gk+1, yk+1) be the universal deformation of (G, y) to W/pk+1, and let (Gk, yk) be its
reduction to W/pk. To show that R ∼= W/pk it suffices to prove that

(5.2.8) yk+1 : Lie(Gk+1)→ Lie(Gk+1)

is nonzero, but that

(5.2.9) yk : Lie(Gk)→ Lie(Gk)

vanishes.
For any `, let G` denote the canonical lift3 of G to R` = W/p`, and let D(G`) be the

Grothendieck-Messing crystal of G` evaluated at R`. Thus D(G`) is a free Ok⊗ZR`-module
of rank one, and sits in an exact sequence free R`-modules

0→ Fil(D(G`))→ D(G`)→ Lie(G`)→ 0.

Fix any Π ∈ Ok such that Ok = Z[Π]. The proof of [Ho2, Proposition 2.1.2] shows that

Fil(D(G`)) = JD(G`),

where

J = Π⊗ 1− 1⊗Π ∈ Ok ⊗Z R`

generates (as an R`-module), the kernel of the natural map Ok ⊗Z R` → R`. Note that the
image of

J = Π⊗ 1− 1⊗Π ∈ Ok ⊗Z R`

in R` is Π−Π, which generates the maximal ideal pR`.

3in the sense of [Gr], so G` is the unique defomation of G, with its action of Ok,p, to R`
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Suppose we are given an Ok-conjugate-linear endomorphism y`−1 ∈ End(G`−1). By
Grothendieck-Messing theory, such an endomorphism induces an endomorphism ỹ`−1 of
D(G`), and y`−1 lifts to End(G`) if and only if the composition

Fil(D(G`))→ D(G`)
ỹ`−1−−−→ D(G`)→ Lie(G`)

is trivial. It is now easy to see that each of the following statements is equivalent to the
next one:

(1) y`−1 lifts to End(G`),
(2) the image of ỹ`−1(JD(G`)) = Jy`(D(G`)) in Lie(G`) is trivial,
(3) the image of ỹ`−1(D(G`)) in Lie(G`) lies in p`−1Lie(G`),
(4) the composition

D(G`)
ỹ`−1−−−→ D(G`)→ Lie(G`)→ Lie(G`−1)

vanishes,
(5) the composition

D(G`−1)
y`−1−−−→ D(G`−1)→ Lie(G`−1)

vanishes,
(6) y`−1 : Lie(G`−1)→ Lie(G`−1) is trivial.

Thus y`−1 lifts to End(G`) if and only if it induces the zero endomorphism of Lie(G`−1),
and the nonvanishing of (5.2.8) and vanishing of (5.2.9) follow immediately. �

To complete the proof of Theorem 5.2.2, it only remains to prove (5.2.5). We do this
through a sequence of lemmas.

Lemma 5.2.4. Abbreviating Y = Y(L0,Λ), we have

(5.2.10)
∑

z∈X (Falg
p )

1

|Aut(z)|
=
∑
L0

∑
(A0,A1,B)∈Y(Falg

p )

L(A0,A1)∼=L0

RL0
(m1, s)RΛ(m2, r)

|Aut(A0, A1, B)|
,

where the outer sum on the right is over all hermitian Ok-modules L0 of rank one, and the
representation number RL0

(m1, s) is defined in the same way as (5.2.3).

Proof. Directly from the definitions, we have∑
z∈X (Falg

p )

1

|Aut(z)|
=

∑
(A0,A1,B)∈Y(Falg

p )

∑
λ1∈r−1L(A0,A1)
〈λ1,λ1〉=m1

Lie(δkλ1)=0

∑
λ2∈r−1L(A0,B)
〈λ2,λ2〉=m2

1

|Aut(A0, A1, B)|
,

where the condition Lie(δkλ1) = 0 refers to the vanishing of (5.2.1).
We claim that

{λ ∈ r−1L(A0, A1) : Lie(δkλ) = 0} = s−1L(A0, A1)

for all A0 ∈M(1,0)(Falg
p ) and A1 ∈M(0,1)(Falg

p ). If λ ∈ s−1L(A0, A1) then, as s is prime to
p, λ induces a morphism of Lie algebras λ : Lie(A0)→ Lie(A1). By the argument of Remark
3.1.6, the image of this map is annihilated by δk, and so Lie(δkλ) = 0. Conversely, suppose
we start with λ ∈ r−1L(A0, A1) satisfying Lie(δkλ) = 0. Let G be the connected p-divisible

group over Falg
p of height 2 and dimension 1, and set OB = End(G). Thus OB is the maximal

order in a quaternion division algebra over Qp. We may fix an embedding Ok,p → End(G)
and isomorphisms A0[p∞] ∼= G ∼= A1[p∞] in such a way that the first is Ok,p-linear, and the
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second is Ok,p-conjugate-linear. The hypothesis λ ∈ r−1L(A0, A1) implies that δkλ ∈ OB ,
but we cannot have δkλ ∈ O×B (for then δkλ, and also Lie(δkλ), would be an isomorphism).
Therefore δkλ lies in the unique maximal ideal of OB , and hence

λ ∈ OB ∼= Hom(A0[p∞], A1[p∞]).

This implies that

λ ∈ r−1L(A0, A1) ∩Hom(A0[p∞], A1[p∞]) = s−1L(A0, A1)

as desired.
We have now shown that∑
z∈X (Falg

p )

1

|Aut(z)|
=

∑
(A0,A1,B)∈Y(Falg

p )

∑
λ1∈s−1L(A0,A1)
〈λ1,λ1〉=m1

∑
λ2∈r−1L(A0,B)
〈λ2,λ2〉=m2

1

|Aut(A0, A1, B)|
.

On the right hand side, each L(A0, A1) is a hermitian Ok-module of rank one, while
L(A0, B) ∼= Λ. The lemma follows immediately. �

Let V0 be the incoherent hermitian space over Ak determined by L0, and recall from
Remark 2.1.2 that for every prime p nonsplit in k there is a unique coherent hermitian
space V0(p) that is isomorphic to V0 everywhere locally away from p. We now repeat this

construction on the level of (kR, Ôk)-modules. Define a new hermitian (kR, Ôk)-module
L0(p) by setting L0(p)` = L0,` for every place ` 6= p. For the p-component L0(p)p, take the
same underlying Ok,p-module as L0,p, but replace the hermitian form 〈·, ·〉L0,p

on L0,p with
the hermitian form

〈·, ·〉L0(p)p = cp〈·, ·〉L0,p
,

where

cp =

{
any uniformizing parameter of Zp, if p is inert in k,

any element of Z×p that is not a norm from O×k,p, if p is ramified in k.

The resulting coherent (kR, Ôk)-module L0(p) has V0(p) as its associated hermitian Ak-
module. Note that if p is inert in k then L0(p) is not self-dual.

Lemma 5.2.5. Any triple (A0, A1, B) appearing in the final sum of (5.2.10) satisfies

L(A0, A1) ∈ gen(L0(p)).

Proof. It is easy to see that

L0(p)` ∼= L0,`
∼= L0(A0, A1)` ∼= HomOk,`

(T`(A0), T`(A1)) ∼= L(A0, A1)⊗Z Z`
for all primes ` 6= p, and that

L0(p)∞ ∼= L(A0, A1)⊗Z R,
as both sides are positive definite. In particular the coherent Ak-hermitian spaces V0(p)
and L(A0, A1)⊗Z A are isomorphic at all places away from p, and by comparing invariants
we see that

(5.2.11) V0(p)p ∼= L(A0, A1)⊗Z Qp
as kp-hermitian spaces. In order to strengthen (5.2.11) to an isomorphism

(5.2.12) L0(p)p ∼= L(A0, A1)⊗Z Zp,
fix Ok,p-module generators x and y of the left hand side and right hand side, respectively,
of (5.2.12), and define p-adic integers α = 〈x, x〉 and β = 〈y, y〉.
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Let G be the unique connected p-divisible group of height 2 and dimension 1 over Falg
p ,

and fix an action of Ok,p on G in such a way that the induced action on Lie(G) is through

the structure map Ok,p → Falg
p . There is an Ok,p-linear isomorphism G ∼= A0[p∞], and

an Ok,p-conjugate-linear isomorphism G ∼= A1[p∞]. These choices identify L(A0, A1)⊗Z Zp
with the submodule of Ok,p-conjugate-linear endomorphisms

EndOk,p
(G) ⊂ End(G),

and identify the quadratic form 〈·, ·〉 on L(A0, A1)⊗ZZp with a Z×p -multiple of the restriction
to EndOk,p

(G) of the reduced norm on the quaternionic order End(G). A routine calculation

with quaternion algebras, as in [KRY1, pp. 376–378], now implies that

ordp(β) =

{
1 if p is inert in k,

0 if p is ramified in k.

Comparing with the definition of L0(p) then shows that ordp(α) = ordp(β). The isomor-
phism (5.2.11) implies that χk,p(α) = χk,p(β), and this information is enough to guaran-
tee that α/β is a norm from O×k,p. This proves (5.2.12), and completes the proof of the
lemma. �

Lemma 5.2.6. For each L0 ∈ gen(L0(p)) there are hk isomorphism classes of triples

(A0, A1, B) ∈ Y(Falg
p ) such that L(A0, A1) ∼= L0. Any such triple satisfies

|Aut(A0, A1, B)| = w2
k · |Aut(Λ)|.

Proof. Let R be any complete local Noetherian ring with residue Falg
p . Using Theorem 5.1.1

and Grothendieck’s formal existence theorem [FGA, Section 8.4.4], the triple (A0, A1, B)
lifts uniquely to R, as do all of its automorphisms. Using this, we are easily reduced to the
corresponding counting problem in characteristic 0, which is easily solved using the linear
algebraic description of Y(C) found in Section 5.3 below. �

Lemma 5.2.7. Still assuming that DiffL0(m1) = {p}, we have

1

wk

∑
L0∈gen(L0(p))

RL0(m1, s) = ρ

(
m1N(s)

pε

)
.

Proof. As V0(p) is coherent, we may fix a hermitian space V0 over k such that

V0 ⊗Q A ∼= V0(p).

Note that DiffL0
(m1) = {p} implies that V0 represents m1. Pick one vector λ0 ∈ V0 such

that 〈λ0, λ0〉 = m1, and an Ok-lattice L0 ⊂ V0 such that L0 ∈ gen(L0(p)).

Let k̂1 denote the group of norm one elements in k̂×, and define Ô1
k in the same way. As

h varies over k̂1/Ô1
k, the lattices h · L0 ⊂ V0, with the hermitian forms restricted from V0,

vary over gen(L0(p)). Thus

1

wk

∑
L0∈gen(L0(p))

RL0
(m1, s) =

∑
h∈k̂1/Ô1

k

1hs−1L0
(λ0),

where 1 denotes characteristic function. If we fix any Ôk-linear isomorphism Ôk ∼= L̂0, the

hermitian form on L0 is identified with 〈x, y〉 = xypεu for some u ∈ Ô×k , and now

1

wk

∑
L0∈gen(L0(p))

RL0
(m1, s) =

∑
h∈k̂1/Ô1

k

1Ôk
(h−1sλ0)
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where λ0 ∈ k̂× satisfies uN(λ0) = m1/p
ε, and s ∈ k̂× satisfies sÔk = ŝ. The equality∑

h∈k̂1/Ô1
k

1Ôk
(h−1sλ0) = ρ

(
m1N(s)

pε

)
is easily checked, as both sides admit a factorization over the prime numbers, and the
prime-by-prime comparison is elementary. �

Combining (5.2.10) and the four lemmas shows that∑
z∈X (Falg

p )

1

|Aut(z)|
=

∑
L0∈gen(L0(p))

∑
(A0,A1,B)∈Y(Falg

p )

L(A0,A1)∼=L0

RL0
(m1, s)RΛ(m2, r)

|Aut(A0, A1, B)|

=
hk
w2
k

∑
L0∈gen(L0(p))

RL0(m1, s)RΛ(m2, r)

|Aut(Λ)|

=
hk
wk
· RΛ(m2, r)

|Aut(Λ)|
· ρ
(
m1N(s)

pε

)
,

and completes the proof of Theorem 5.2.2. �

Theorem 5.2.2 implies that X(L0,Λ)(m1,m2, r) has dimension 0 whenever m1 > 0. Now
we turn to the case of m1 = 0.

Proposition 5.2.8. Fix a positive m ∈ Q and r | dk.

(1) If RΛ(m, r) = 0 then X(L0,Λ)(0,m, r) = ∅.
(2) If RΛ(m, r) 6= 0 then X(L0,Λ)(0,m, r) is nonempty, and is smooth of relative dimen-

sion 0 over Ok. In particular, it is a regular stack of dimension 1.

Proof. The morphism Y(L0,Λ) → Spec(Ok) is smooth of relative dimension 0, and Theorem
5.1.1 implies that the map X(L0,Λ)(0,m, r)→ Y(L0,Λ) defined by

(A0, A1, B, 0, λ2) 7→ (A0, A1, B)

is formally étale. Hence the composition X(L0,Λ)(0,m, r) → Spec(Ok) is smooth of relative
dimension 0.

It only remains to show that X(L0,Λ)(0,m, r) is nonempty if and only if RΛ(m, r) 6= 0. If
X(L0,Λ)(0,m, r) is nonempty then we may pick any geometric point

(A0, A1, B, λ1, λ2) ∈ X(L0,Λ)(0,m, r)(F).

Using L(A0, B) ∼= Λ, the homomorphism λ2 defines an element of Λ satisfying 〈λ2, λ2〉 = m,
and in particular RΛ(m, r) 6= 0. Conversely, if RΛ(m, r) 6= 0 then pick some λ2 ∈ Λ satisfying
〈λ2, λ2〉 = m. It follows from the uniformization (5.3.1) below that Y(L0,Λ)(C) 6= ∅, and for
any choice of (A0, A1, B) ∈ Y(L0,Λ)(C) the vector λ2 defines an element of Λ ∼= L(A0, B).
Setting λ1 = 0, the tuple (A0, A1, B, λ1, λ2) defines a complex point of X(L0,Λ)(0,m, r). �

Remark 5.2.9. It follows from (5.2.2) and Theorem 5.2.2 that if RΛ(m, r) = 0, the intersec-
tion Z(m, r) ∩ Y(L0,Λ) is isomorphic to the zero dimensional stack

(5.2.13)
⊔

m1∈Q>0

m2∈Q≥0

m1+m2=m

X(L0,Λ)(m1,m2, r).

On the other hand, if RΛ(m, r) 6= 0 then Z(m, r) ∩ Y(L0,Λ) is the disjoint union of the zero
dimensional stack (5.2.13) with the one dimensional stack X(L0,Λ)(0,m, r).
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5.3. The CM value formula. Let L(∞) be obtained from L by changing the signature at
the archimedean place from (n, 0) to (n − 1, 1). Similarly, let L0(∞) be obtained from L0

by switching the signature at the archimedean place from (1, 0) to (0, 1).
As in Section 3.3, the finite Z-module d−1

k Lf/Lf is equipped with a d−1
k Z/Z-valued

quadratic form, and we denote by ∆ its automorphism group as a finite quadratic space.
The space SL of complex valued functions on d−1

k Lf/Lf is equipped with an action of ∆ and
a commuting action ωL of SL2(Z) defined by the Weil representation. In exactly the same
way, the finite Z-modules d−1

k L0,f/L0,f and d−1
k Λ/Λ are equipped with quadratic forms (still

denoted Q), and the spaces SL0 and SΛ are equipped with actions ωL0 and ωΛ of SL2(Z).
Moreover, the obvious isomorphism

SL ∼= SL0 ⊗C SΛ

is SL2(Z)-equivariant. Fix a ∆-invariant harmonic form f ∈ H2−n(ωL). In this subsection
we compute the value of the Green function ΦL(f) at the points of Y(L0,Λ)(C).

First we must describe the complex uniformization of the CM cycle Y(L0,Λ). Fix a triple
(A0,A1,B) in which

• A0 and A1 are self-dual hermitian Ok-modules of signatures (1, 0) and (0, 1), respec-
tively, satisfying L(A0,A1) ∈ gen(L0(∞)),

• B is a self-dual hermitian Ok-module of signature (n−1, 0) satisfying L(A0,B) ∼= Λ.

We attach to this triple the point (A0, A1, B) ∈ Y(L0,Λ)(C), where

A0(C) = A0R/A0

A1(C) = A1R/A1

B(C) = BR/B

as real Lie groups with Ok-actions. The complex structure on A0(C) is given by the natural
action of kR ∼= C on A0R, and similarly for the complex structure on B(C). The complex
structure on A1(C) is given by the complex conjugate of the natural action of kR ∼= C on A1R.
The elliptic curves A0 and A1 are endowed with their unique principal polarizations, while B
is endowed with the polarization determined by the symplectic form ψB on B ∼= H1(B(C),Z)
defined as in (3.1.3).

The construction (A0,A1,B) 7→ (A0, A1, B) establishes a bijection from the set of isomor-
phism classes of all such triples to the set of isomorphism classes of the category Y(L0,Λ)(C),
and defines an isomorphism of 0-dimensional complex orbifolds

(5.3.1) Y(L0,Λ)(C) ∼=
⊔

(A0,A1,B)

Γ(A0,A1,B)\{y(A0,A1,B)},

where y(A0,A1,B) is a single point on which

Γ(A0,A1,B) = Aut(A0,A1,B)

acts trivially. The morphism Y(L0,Λ)(C) → ML(C) is easy to describe in terms of (5.3.1)
and (3.2.1). For each triple (A0,A1,B) we set A = A1 ⊕B, and send the point y(A0,A1,B)

to the point of D(A0,A) defined by the negative kR-line L(A0,A1)R ⊂ L(A0,A)R.

Remark 5.3.1. The uniformization (5.3.1) implies that Y(L0,Λ)(C) has 21−o(dk)h2
k points,

each with w2
k · |Aut(Λ)| automorphisms. Thus the rational number

degC Y(L0,Λ) =
∑

y∈Y(L0,Λ)(C)

1

|Aut(y)|
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is given by the explicit formula

degC Y(L0,Λ) =
h2
k

w2
k

· 21−o(dk)

|Aut(Λ)|
.

Moreover, we have the following proposition.

Proposition 5.3.2. Assume that either n > 2, or n = 2 and L(∞) contains, everywhere
locally, a nonzero isotropic vector.

(1) The rule L0 7→ L0 ⊕ Λ establishes a bijection

gen(L0(∞))→ gen(L(∞)).

(2) The set Y(L0,Λ)(C) has exactly one point on every connected component of ML(C).

Proof. (1) Since both sets have 21−o(dk)hk elements (see Remark 3.2.1), it suffices to show
that the map is injective. For any hermitian Ok-modules L0, L

′
0 ∈ gen(L0(∞)) there are

fractional ideals b and b′ such that b ∼= L0 and b′ ∼= L′0, where the hermitian forms on b
and b′ are defined by −xy. If L0 ⊕ Λ ∼= L′0 ⊕ Λ, then taking top exterior powers (in the
category of Ok-modules) shows that L0

∼= L′0 as Ok-modules. But this implies that b and
b′ lie in the same ideal class, and hence are isomorphic as hermitian Ok-modules. Therefore
L0
∼= L′0 as hermitian Ok-modules. Claim (2) is an easy consequence of (1). �

Let P ⊂ SL2(Z) be the subgroup of upper triangular matrices. For each ϕ ∈ SL0
, define

an incoherent Eisenstein series of weight 1

(5.3.2) EL0
(τ, s, ϕ) =

∑
γ∈P\ SL2(Z)

ωL0
(γ)ϕ(0) · (cτ + d)−1 · Im(γτ)

s
2 .

Here γ =
(
a b
c d

)
, τ = u+ iv ∈ H, and s is a complex variable with Re(s)� 0. The Eisenstein

series has meromorphic continuation to all s, and is holomorphic at s = 0. As (5.3.2) is
linear in ϕ, it may be viewed as a function EL0

(τ, s) taking values in the dual space S∨L0
.

This particular Eisenstein series was studied in [Scho] and [BY, Section 2]. Indeed, if we
pick any L0 ∈ gen(L0(∞)) then (5.3.2) is precisely the Eisenstein series denoted EL0(τ, s, 1)
in [BY], and depends only on the genus of L0, not on L0 itself.

By [BY, Proposition 2.5], the completed Eisenstein series

E∗L0
(τ, s, ϕ) = Λ(χk, s+ 1) · EL0(τ, s, ϕ)

satisfies the functional equation E∗L0
(τ,−s, ϕ) = −E∗L0

(τ, s, ϕ), where

Λ(χk, s) = |dk|
s
2π−

s+1
2 Γ
(s+ 1

2

)
L(χk, s).

In particular EL0
(τ, 0) = 0. The central derivative E′L0

(τ, 0) at s = 0 is a harmonic Maass
form of weight 1 with representation ω∨L0

, whose holomorphic part we denote (as in [BY,
(2.26)]) by

(5.3.3) EL0
(τ) =

∑
m�−∞

a+
L0

(m) · qm.

Up to a change of notation, the following proposition is due to Schofer [Scho]; see also
[BY, Theorem 2.6]. Be warned that both references contain minor misstatements. The
formula of part (4) is misstated in [Scho], but the error is corrected in [BY]. The formula
of (2) is correct in [Scho], but is misstated in [BY].
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Proposition 5.3.3. Recall the finite set DiffL0(m) of odd cardinality from (5.2.4), and the
function ρ of (1.4.1). The coefficients a+

L0
(m) ∈ S∨L0

are given by the following formulas.

(1) If m < 0 then a+
L0

(m) = 0.
(2) The constant term is

a+
L0

(0, ϕ) = ϕ(0) ·
(
γ + log

∣∣∣∣4πdk
∣∣∣∣− 2

L′(χk, 0)

L(χk, 0)

)
for every ϕ ∈ SL0

. Here γ = −Γ′(1) is Euler’s constant.
(3) If m > 0 and |DiffL0(m)| > 1, then a+

L0
(m) = 0.

(4) If m > 0 and DiffL0
(m) = {p} for a single prime p, then

a+
L0

(m,ϕ) = − wk
2hk
· ρ
(
m|dk|
pε

)
· ordp(pm) · log(p)

∑
µ∈d−1

k L0,f/L0,f

Q(µ)=m

2s(µ)ϕ(µ).

On the right hand side, s(µ) is the number of primes q | dk such that µq = 0, ε is
defined by (5.2.6), and Q(µ) = m is understood as an equality in Q/Z.

Define a coherent Eisenstein series of weight −1 associated to L0(∞) by

(5.3.4) EL0(∞)(τ, s, ϕ) =
∑

γ∈P\ SL2(Z)

ωL0(γ)ϕ(0) · (cτ + d) · Im(γτ)
s
2 +1.

This is the Eisenstein series denoted EL0(τ, s,−1) in [BY, Section 2], for any choice of L0 ∈
gen(L0(∞)). The following relationship between the coherent and incoherent Eisenstein
series was first observed by Kudla [Ku3, (2.17)], and is a special case of [BY, Lemma 2.3].

Proposition 5.3.4. For any ϕ ∈ SL0 the Eisenstein series (5.3.2) and (5.3.2) are related
by the equality

−2 · ∂(E′L0
(τ, 0, ϕ)dτ) = EL0(∞)(τ, 0, ϕ) · v−2du ∧ dv

of smooth 2-forms on H.

Suppose L0 ∈ gen(L0(∞)). Exactly as in (4.7.2), there is an SL2(Z)-equivariant isomor-

phism S∆0

L0

∼= S∆0

L0
, which allows us to define a non-holomorphic theta series θL0 : H →

(S∨L0
)∆0 by

θL0
(τ, ϕ) = v

∑
λ∈d−1

k L0

ϕ(λ)e2πi〈λ,λ〉τ .

for any ϕ ∈ S∆0

L0
. The following proposition follows from [BY, Proposition 2.2].

Proposition 5.3.5 (Siegel-Weil formula). The coherent Eisenstein series (5.3.4) is related
to the above theta series by

2o(dk)

hk

∑
L0∈gen(L0(∞))

θL0
(τ) = EL0(∞)(τ, 0).

For each ϕ ∈ SΛ define

RΛ(m,ϕ) =
∑

λ∈d−1
k Λ

〈λ,λ〉=m

ϕ(λ).
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These representation numbers are the Fourier coefficients of a holomorphic S∨Λ-valued mod-
ular form

θΛ(τ, ϕ) =
∑
m∈Q

RΛ(m,ϕ) · qm ∈Mn−1(ω∨Λ).

Given any F ∈ Sn(ωL) with Fourier expansion

F (τ) =
∑

m∈Q≥0

b(m) · qm,

define the Rankin-Selberg convolution L-function

(5.3.5) L(F, θΛ, s) = Γ
(s

2
+ n− 1

) ∑
m∈Q>0

{
b(m), RΛ(m)

}
(4πm)

s
2 +n−1

.

On the right hand side the pairing is the tautological pairing between SL and its dual. The
inclusion d−1

k Λ/Λ → d−1
k Lf/Lf determines a canonical surjection SL → SΛ, and hence an

injection on dual spaces. In particular, this allows us to view RΛ(m) as an element of S∨L .
The usual unfolding method shows that

L(F, θΛ, s) =

∫
SL2(Z)\H

{
F (τ), EL0

(τ, s)⊗ θΛ(τ)
}
vn−2 du dv,

where τ = u + iv and EL0
(τ, s) is the incoherent Eisenstein series of (5.3.2). On the right

hand side we are using the canonical isomorphism S∨L
∼= S∨L0

⊗S∨Λ to view EL0
(τ, s)⊗ θΛ(τ)

as an S∨L -valued function. Of course L(F, θΛ, 0) = 0, as the Eisenstein series vanishes at
s = 0.

Theorem 5.3.6. For every f ∈ H2−n(ωL)∆ the CM value

ΦL(Y(L0,Λ), f) =
∑

y∈Y(L0,Λ)(C)

ΦL(y, f)

|Aut(y)|

satisfies

1

degC Y(L0,Λ)
· ΦL(Y(L0,Λ), f) = −L′

(
ξ(f), θΛ, 0

)
+ CT

[
{f+, EL0

⊗ θΛ}
]
.

Here the differential operator

ξ : H2−n(ωL)→ Sn(ωL)

is defined by (2.2.2), and CT[{f+, EL0
⊗ θΛ}] is the constant term of the q-expansion of

{f+, EL0 ⊗ θΛ}.

Proof. This is really a special case of [BY, Theorem 4.7], but beware that the statement
of [loc. cit.] contains a sign error. We sketch the main ideas for the convenience of the
reader. Recall from Section 3.2 that the complex points of Y(L0,Λ) are indexed by triples
(A0,A1,B). If we fix such a point y(A0,A1,B) ∈ Y(L0,Λ)(C) and abbreviate L0 = L(A0,A1)
and L = Λ⊕L0, then the theta function ΘL(τ, z) appearing in (4.2.1) admits a factorization

ΘL(τ, y(A0,A1,B)) = θΛ(τ)⊗ θL0
(τ)

at z = y(A0,A1,B). Hence

ΦL(y(A0,A1,B), f) =

∫ reg

SL2(Z)\H
{f, θΛ ⊗ θL0} dµ(τ).
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Summing over all complex points of Y(L0,Λ) yields

ΦL(Y(L0,Λ), f) =
∑

(A0,A1,B)
L(A0,A1)∈L0(∞)
L(A0,B)∼=Λ

1

|Aut(A0,A1,B)|

∫ reg

SL2(Z)\H

{
f, θΛ ⊗ θL(A0,A1)

}
dµ(τ)

=
hk

w2
k|Aut(Λ)|

∑
L0∈gen(L0(∞))

∫ reg

SL2(Z)\H
{f, θΛ ⊗ θL0} dµ(τ)

=
degC Y(L0,Λ)

2

∫ reg

SL2(Z)\H
{f(τ), θΛ(τ)⊗ EL0(∞)(τ, 0)} dµ(τ)

by the Siegel-Weil formula (Proposition 5.3.5) and Remark 5.3.1. Applying Proposition
5.3.4 and Stokes’ theorem, a simple calculation, as in the proof of [BY, Theorem 4.7], shows
that

1

degC Y(L0,Λ)
· ΦL(Y(L0,Λ), f)

= −
∫ reg

SL2(Z)\H
{f, θΛ ⊗ ∂E′L0

(τ, 0) dτ}

= −
∫ reg

SL2(Z)\H
d{f, θΛ ⊗ E′L0

(τ, 0) dτ} −
∫

SL2(Z)\H
{ξ(f), θΛ ⊗ E′L0

(τ, 0)}vn dµ(τ)

= CT[{f+(τ), θΛ(τ)EL0
(τ)}]− L′(ξ(f), θΛ, 0),

as claimed. �

Remark 5.3.7. Let ϕr ∈ SL be the characteristic function of

r−1Lf/Lf ⊂ d−1
k Lf/Lf .

By abuse of notation we denote again by ϕr the similarly defined elements of SL0 and SΛ.
If A is an element of S∨L , S∨L0

, or S∨Λ abbreviate A(r) = A(ϕr). For example

RΛ(m, r) = RΛ(m,ϕr) =
∑

λ∈r−1Λ
〈λ,λ〉=m

1.

The following is a restatement of Theorem 5.3.6 in the case f = fm,r.

Corollary 5.3.8. The harmonic form fm,r of Lemma 3.3.3 satisfies

1

degC Y(L0,Λ)
· ΦL(Y(L0,Λ), fm,r) = −L′(ξ(fm,r), θΛ, 0) + c+m,r(0, 0) · a+

L0
(0, r) ·RΛ(0, r)

+
∑

m1,m2∈Q≥0

m1+m2=m

a+
L0

(m1, r) ·RΛ(m2, r).

6. The metrized cotautological bundle

In this section we recall some generalities on metrized line bundles, and introduce the
metrized cotautological bundle. Fix a pair (L0,Λ) as in (5.1.2), and let L = L0 ⊕ Λ as in
Remark 5.1.3.
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6.1. Metrized line bundles. As in [Ho3], the canonical map Y(L0,Λ) → ML induces a
linear functional

(6.1.1) ĈH
1

C(M∗L)→ C

called the arithmetic degree along Y(L0,Λ), and denoted Ẑ 7→ [Ẑ : Y(L0,Λ)]. Because Y(L0,Λ)

is proper over Ok, it does not meet the boundary ofM∗L. Thus the arithmetic degree along
Y(L0,Λ) can be defined and computed entirely on the open Shimura variety ML. This is
most easily done using the language of metrized line bundles, which provides a rudimentary
intersection theory on ML.

A metrized line bundle L̂ = (L, || · ||) on ML consists of a line bundle L and a hermitian
metric || · || on the complex points L(C). The isomorphism classes of metrized line bundles

form a group P̂ic(ML) under tensor product. An arithmetic divisor Ẑ = (Z,Φ) is a pair
consisting of a divisor (with integral coefficients) Z onML and a Green function onML(C)

for the complex fiber Z(C). The arithmetic divisors form a group D̂iv(ML) under addition.

If we start with an arithmetic divisor Ẑ, the constant function 1 on ML defines a rational
section s of the line bundle L = O(Z) associated to Z, and there is a unique metric || · || on
L satisfying − log ||s||2z = Φ(z). This establishes a surjection

D̂iv(ML)→ P̂ic(ML).

A similar discussion holds with ML replaced by Y(L0,Λ), and the morphism Y(L0,Λ) →ML
induces a pullback homomorphism

P̂ic(ML)→ P̂ic(Y(L0,Λ)).

As in [KRY2, Chapter 2.1] there is a linear functional, called the arithmetic degree,

d̂eg : P̂ic(Y(L0,Λ))→ R.
The composition

(6.1.2) P̂ic(ML)→ P̂ic(Y(L0,Λ))
d̂eg−−→ R,

is again denoted [ · : Y(L0,Λ)]. Taking f = fm,r in (4.7.3) and restricting to the open Shimura
variety ML defines an arithmetic divisor

ẐL(fm,r) =
(
ZL(fm,r),ΦL(fm,r)

)
∈ D̂iv(ML)

satisfying

[ẐL(fm,r) : Y(L0,Λ)] = [Ẑtotal
L (fm,r) : Y(L0,Λ)].

The pairing on the left is (6.1.2), while the pairing on the right is (6.1.1). If the intersection
X = ZL(m, r) ∩ Y(L0,Λ) has dimension 0, we have the explicit formula

[ẐL(fm,r) : Y(L0,Λ)] = I(ZL(m, r) : Y(L0,Λ)) + ΦL(Y(L0,Λ), fm,r)

where the first term is the finite intersection multiplicity4

I(ZL(m, r) : Y(L0,Λ)) =
∑
p⊂Ok

log(N(p))
∑

y∈X (Falg
p )

lengthOX ,y (OX ,y)

|Aut(y)|
,

and the second term is defined as in Theorem 5.3.6.

4As both Z and Y are Cohen-Macaulay, the finite intersection multiplicity agrees with the more natural
Serre intersection multiplicity defined as in [SABK, p. 11] or [Ho3, Section 3.1]. This follows from [Se00,

p. 111].
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6.2. The cotautological bundle. Let S be a scheme and π : A → S an abelian scheme.
As in [Lan, Section 2.1.6], define a coherent OS-module, the algebraic de Rham cohomology
of A, as the hypercohomology Hi

dR(A) = Riπ∗(Ω•A/S) of the de Rham complex

0→ OA → Ω1
A/S → Ω2

A/S → · · · .

The algebraic de Rham homology HdR
1 (A) = HomOS (H1

dR(A),OS) sits in an exact sequence

0→ Fil(A)→ HdR
1 (A)→ Lie(A)→ 0,

and Fil(A) is canonically isomorphic to the OS-dual of Lie(A∨). Let (Auniv
0 , Auniv) denote

the universal object over M, and recall that Auniv is endowed with an Ok-stable OM-
submodule Funiv ⊂ Lie(Auniv) such that the quotient Lie(Auniv)/Funiv is locally free of
rank one.

Definition 6.2.1. The cotautological bundle on M is the line bundle

T = HomOM(Fil(Auniv
0 ),Lie(Auniv)/Funiv).

Denote by TL the restriction of T to ML.

The universal abelian scheme Auniv →M(n−1,1) extends to a semi-abelian scheme A∗ →
M∗(n−1,1), and the universal subsheaf Funiv ⊂ Lie(Auniv) extends canonically to a subsheaf

F∗ ⊂ Lie(A∗) by [Ho3, Theorem 2.5.2]. The cotautological bundle T therefore extends to a
line bundle

T ∗ = HomOM∗ (Fil(Auniv
0 ),Lie(A∗)/F∗)

on M∗, and the restriction of T ∗ to M∗L is denoted T ∗L .
Recall from Section 3.2 that each connected component of ML(C) admits a uniformiza-

tion D(A0,A) → ML(C), where D(A0,A) is the space of negative kR-lines in L(A0,A). The
hermitian symmetric domain D(A0,A) carries a tautological bundle whose fiber at a point z
is the line z, made into a complex vector space using the fixed isomorphism kR ∼= C. The
following proposition explains the connection between this bundle and the cotautological
bundle.

Proposition 6.2.2. At any point z ∈ D(A0,A) there is a canonical complex-linear isomor-
phism

β∨z : TL,z ∼= HomC(z,C).

Proof. Identify k ⊗Q C ∼= C× C in such a way that x⊗ 1 7→ (x, x), and define idempotents
e = (1, 0) and e = (0, 1). If X is any complex vector space with a commuting action of
k, then k acts on eX through the fixed embedding k → C, and acts on eX through the
conjugate embedding.

Let (A0, Az) ∈ML(C) be the image of z under D(A0,A) →ML(C). The map

A0C ∼= HdR
1 (A0)

e−→ eHdR
1 (A0) ∼= Fil(A0)

restricts to a kR-linear isomorphism A0R ∼= Fil(A0), while the quotient map

AC ∼= HdR
1 (Az)→ Lie(Az)

restricts to a kR-linear isomorphism AR ∼= Lie(Az). Thus we obtain isomorphisms

L(A0,A)R ∼= HomkR(A0R,AR) ∼= HomkR(Fil(A0),Lie(A)z),

and tracing through the constructions of Section 3.2 shows that their composition identifies
z⊥ with HomkR(Fil(A0),Fz). The surjection

L(A0,A)R → HomkR(Fil(A0),Lie(Az)/Fz)
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therefore has kernel z⊥, and identifies z ∼= HomkR(Fil(A0),Lie(Az)/Fz). The inverse of this
map is a kR-linear isomorphism

(6.2.1) βz : TL,z → z

which is not C-linear. The point is that the signature conditions imposed on Lie(Auniv
0 )

and Lie(Auniv)/Funiv imply that the action of kR on the fiber TL,z is through the complex
conjugate of the fixed isomorphism kR ∼= C. Thus βz complex-conjugate-linear. The map

β∨z : TL,z ∼= HomC(z,C)

defined by β∨z (s) = 〈·, βz(s)〉 defines the desired complex-linear isomorphism. �

We use (6.2.1) to metrize the cotautological bundle TL: the norm of a section s is

(6.2.2) ||s||2z = −4πeγ · 〈βz(s), βz(s)〉,
where γ = −Γ′(1) is Euler’s constant. The cotautological bundle endowed with the above
metric is denoted

T̂L ∈ P̂ic(ML).

Proposition 6.2.3. For any nonzero rational section s of T ∗L , the arithmetic divisor

d̂iv(s) = (div(s),− log ||s||2)

defines a class

(6.2.3) T̂ ∗L ∈ ĈH
1

R(M∗L),

which does not depend on the choice of s.

Proof. The only thing to check is that the Green function − log ||s||2 has at worst the log-log
error terms at the boundary allowed in the Burgos-Kramer-Kühn theory [BKK, BBK].

Using the complex coordinates of Section 4.3, it suffices to show that for any primitive

isotropic vector ` ∈ L(A0,A) and any boundary point (z0, 0) ∈ Ṽε(`) the function

log |`2z| = − log(N(z, τ)/2)

determining the metric and its differentials have log-log growth along qr = 0 on the neigh-
borhood Bδ(z0, 0) for some δ > 0. This is done in Step 2 of the proof of Theorem 4.5.2. �

6.3. The Chowla-Selberg formula. This section is devoted to studying the image of T̂L
under the arithmetic intersection

[ · : Y(L0,Λ)] : P̂ic(ML)→ R

of Section 6.1. The main result is the following theorem, whose proof ultimately rests on
the Chowla-Selberg formula.

Theorem 6.3.1. For any ϕ ∈ SL0 , the metrized cotautological bundle satisfies

ϕ(0) · [T̂L : Y(L0,Λ)] = −degC Y(L0,Λ) · a+
L0

(0, ϕ),

where a+
L0

(0) ∈ S∨L0
is defined by (5.3.3), and degC Y(L0,Λ) is defined in Remark 5.3.1.

If we take ϕ to be the characteristic function of r−1L0,f/L0,f , as in Remark 5.3.7, this
formula reduces to

[T̂ ⊗RΛ(m,r)
L : Y(L0,Λ)] = −degC Y(L0,Λ) · a+

L0
(0, r) ·RΛ(m, r)

for all m ∈ Q≥0 and r | dk.



HEIGHTS OF KUDLA-RAPOPORT DIVISORS 49

The proof requires some preparation. First we state the Chowla-Selberg formula in a form
suited to our purposes. Suppose E is an elliptic curve over C with complex multiplication
by Ok. Fix a model of E over a finite extension K/Q contained in C and large enough that
E has everywhere good reduction, and let π : E → Spec(OK) be the Néron model of E over
OK . Let ω be a nonzero rational section of the line bundle π∗Ω

1
E/OK on Spec(OK) with

divisor
div(ω) =

∑
q

m(q) · q,

where the sum is over the closed points q ∈ Spec(OK). The Faltings height of E is defined
as

hFalt(E) =
1

[K : Q]

(∑
q

log(N(q)) ·m(q)− 1

2

∑
τ :K→C

log

∣∣∣∣∣
∫
Eτ (C)

ωτ ∧ ωτ
∣∣∣∣∣
)
.

It is independent of the choice of K, the model of E over K, and the section ω. The
Chowla-Selberg formula implies [Co] that

(6.3.1) −2hFalt(E) = log(2π) +
1

2
log |dk|+

L′(χk, 0)

L(χk, 0)
.

Recall that Y(L0,Λ) carries over it a universal triple of abelian schemes (Auniv
0 , Auniv

1 , Buniv).
Define a line bundle

coLie(Auniv
0 ) = π∗Ω

1
Auniv

0 /Y(L0,Λ)

on Y(L0,Λ), where π : Auniv
0 → Y(L0,Λ) is the structure morphism. A vector ω ∈ coLie(Auniv

0,y )

in the fiber at a complex point y ∈ Y(L0,Λ)(C) is a global holomorphic 1-form on Auniv
0,y (C),

and we denote by

ĉoLie(Auniv
0 ) ∈ P̂ic(Y(L0,Λ))

the line bundle coLie(Auniv
0 ) endowed with the metric

(6.3.2) ||ω||2y =

∣∣∣∣∣
∫
Auniv

0,y (C)

ω ∧ ω

∣∣∣∣∣ .
With this definition,

(6.3.3) d̂eg ĉoLie(Auniv
0 ) =

∑
(A0,A1,B)∈Y(L0,Λ)(C)

2hFalt(A0)

|Aut(A0, A1, B)|
.

Of course Lie(Auniv
0 ) is isomorphic to the dual of coLie(Auniv

0 ). Denote by

(6.3.4) L̂ie(Auniv
0 ) ∈ P̂ic(Y(L0,Λ))

the line bundle Lie(Auniv
0 ) with the metric dual to (6.3.2). More explicitly, if we endow

A0 = H1(Auniv
0,y (C),Z) with its hermitian form hA0 as in Section 3.1, then Lie(Auniv

0,y ) ∼= A0R

as real vector spaces, and ||v||2y = |dk|−
1
2hA0(v, v) for any v ∈ Lie(Auniv

0,y ).

Lemma 6.3.2. The metrized line bundle L̂ie(Auniv
0 ) satisfies

1

degC Y(L0,Λ)
· d̂eg L̂ie(Auniv

0 ) = log(2π) +
1

2
log |dk|+

L′(χk, 0)

L(χk, 0)
.

Of course we may define L̂ie(Auniv
1 ) in the same manner as (6.3.4), and the stated equality

holds with Auniv
0 replaced by Auniv

1 .

Proof. Combine (6.3.3) and the Chowla-Selberg formula (6.3.1). �
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For any positive c ∈ R, define the twisted trivial bundle

1̂(c) ∈ P̂ic(Y(L0,Λ))

as the structure sheaf OY(L0,Λ)
endowed with the metric ||f ||2y = c · |f(y)|2. It is clear from

the definitions that

(6.3.5) d̂eg 1̂(c) = − log(c) · degC Y(L0,Λ).

Lemma 6.3.3. There is an isomorphism

T̂L|Y(L0,Λ)
∼= L̂ie(Auniv

0 )⊗ L̂ie(Auniv
1 )⊗ 1̂

(
16π3eγ

)
of metrized line bundles on Y(L0,Λ).

Proof. Recall that ML carries a universal pair of abelian schemes (Auniv
0 , Auniv), and that

Auniv comes with a universal OML-submodule Funiv ⊂ Lie(Auniv). By definition of the
morphism Y(L0,Λ) →ML, the universal objects over ML and Y(L0,Λ) are related5 by

(Auniv
0 , Auniv)/Y(L0,Λ)

∼= (Auniv
0 , Auniv

1 ×Buniv),

and the isomorphism
Lie(Auniv)|Y(L0,Λ)

∼= Lie(Auniv
1 ×Buniv)

identifies Funiv|Y(L0,Λ)
∼= Lie(Buniv). In particular there is a canonical isomorphism

TL|Y(L0,Λ)
∼= Hom(Fil(Auniv

0 ),Lie(Auniv
1 )).

For any elliptic curve A0 → Spec(R) over a ring, the short exact sequence

0→ Fil(A0)→ HdR
1 (A0)→ Lie(A0)→ 0

of R-modules is dual to

0→ H0(A0,Ω
1
A0/R

)→ H1
dR(A0)→ H1(A0,OA0

)→ 0,

and there is a canonical identification H1(A0,OA0) ∼= Lie(A∨0 ). In particular there is canon-
ical perfect pairing Lie(A∨0 ) ⊗R Fil(A0) → OS , and identifying Lie(A0) ∼= Lie(A∨0 ) via the
unique principal polarization, we obtain a perfect pairing

(6.3.6) Lie(A0)⊗R Fil(A0)→ R.

Applying this with A0 = Auniv
0 yields the second isomorphism in

TL|Y(L0,Λ)
∼= Hom(Fil(Auniv

0 ),Lie(Auniv
1 )) ∼= Lie(Auniv

0 )⊗ Lie(Auniv
1 ).

All that remains is to keep track of the metrics under this isomorphism. This is routine,
once one knows an explicit formula for the pairing (6.3.6) when A0 ∈ M(1,0)(C) is the
complex elliptic curve with homology A0 = H1(A0(C),Z), as in the discussion surrounding
(3.1.2). Taking e and e as in the proof of Proposition 6.2.2, the compositions

A0R → A0C ∼= HdR
1 (A0)

e−→ eHdR
1 (A0) ∼= Lie(A0)

and

A0R → A0C ∼= HdR
1 (A0)

e−→ eHdR
1 (A0) ∼= Fil(A0)

are kR-linear isomorphisms. Thus the pairing (6.3.6) corresponds to a pairing

A0R × A0R → C,

5There is a mild abuse of notation: we are using Auniv
0 to denote both the universal elliptic curve over

ML, and the universal elliptic curve over Y(L0,Λ).
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which is hermitian with respect to the action of kR ∼= C. Using the proof of [Ho1, Proposition
4.4], one can show that this pairing is 2π|dk|−1/2 · hA0

. The rest of the proof is elementary
linear algebra, and is left to the reader. �

Proof of Theorem 6.3.1. Combining Lemmas 6.3.2 and 6.3.3 with (6.3.5) shows that

[T̂L : Y(L0,Λ)] = d̂eg L̂ie(Auniv
0 ) + d̂eg L̂ie(Auniv

1 ) + d̂eg 1̂
(
16π3eγ

)
= degC Y(L0,Λ)

(
2
L′(χk, 0)

L(χk, 0)
+ log

∣∣∣∣dk4π

∣∣∣∣− γ) ,
and comparing with Proposition 5.3.3 completes the proof. �

7. The intersection formula

Again, fix a pair (L0,Λ) as in (5.1.2), and set L = L0⊕Λ as in Remark 5.1.3. Recall from
Section 3.3 the finite dimensional C-vector space SL endowed with the Weil representation
ωL : SL2(Z)→ Aut(SL), and a commuting action of a finite group ∆.

7.1. The main result. Let f ∈ H2−n(ωL) be a ∆-invariant harmonic Maass form with
holomorphic part

f+(τ) =
∑
m∈Q

m�−∞

c+(m) · qm.

Let c+(0, 0) denote the value of c+(0) ∈ SL at the trivial coset in d−1
k Lf/Lf . Attached to

this f we have, from Sections 3.4 and 4.7, an arithmetic divisor

Ẑtotal
L (f) ∈ ĈH

1

C(M∗L).

Definition 7.1.1. The arithmetic theta lift of f is the class

Θ̂L(f) = Ẑtotal
L (f) + c+(0, 0) · T̂ ∗L ∈ ĈH

1

C(M∗L),

where T̂ ∗L is the metrized cotautological bundle (6.2.3).

The main result of this paper is the following formula, which relates an arithmetic inter-
section multiplicity to the derivative of an L-function. The proof will occupy the remainder
of Section 7.

Theorem 7.1.2. The arithmetic theta lift satisfies

[Θ̂L(f) : Y(L0,Λ)] = −degC Y(L0,Λ) · L′(ξ(f), θΛ, 0),

where ξ : H2−n(ωL) → Sn(ωL) is the complex-conjugate-linear homomorphism of (2.2.2),
and the L-function on the right is (5.3.5).

7.2. A special case. We will prove Theorem 7.1.2 by first verifying it for the forms fm,r
of Lemma 3.3.3, in which case the claim is that

(7.2.1) [ẐL(fm,r) : Y(L0,Λ)] + c+m,r(0, 0) · [T̂L : Y(L0,Λ)] = −degC Y(L0,Λ) · L′
(
ξ(fm,r), θΛ, 0

)
.

We have enough information now to prove this equality under some restrictive hypotheses.
Fix m1,m2 ∈ Q≥0. In Section 5.2 we defined an Ok-stack X(L0,Λ)(m1,m2, r) equipped

with a finite, unramified, and representable morphism

X(L0,Λ)(m1,m2, r)→ Y(L0,Λ).
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If m1 > 0, then X(L0,Λ)(m1,m2, r) has dimension zero, and defines a divisor on Y(L0,Λ),
necessarily supported in nonzero characteristic. By endowing this divisor with the trivial
Green function, we obtain an arithmetic divisor

(7.2.2) X̂(L0,Λ)(m1,m2, r) ∈ D̂iv(Y(L0,Λ)).

Proposition 7.2.1. Suppose m = m1 +m2 with m1 ∈ Q>0 and m2 ∈ Q≥0. The arithmetic
divisor (7.2.2) satisfies

d̂eg X̂(L0,Λ)(m1,m2, r) = −degC Y(L0,Λ) · a+
L0

(m1, r) ·RΛ(m2, r).

Proof. This follows by comparing Theorem 5.2.2 with Proposition 5.3.3. Abbreviate

X = X(L0,Λ)(m1,m2, r).

If |DiffL0(m1)| > 1 then both sides of the desired equality are 0, so assume DiffL0(m1) = {p}
for a prime p, necessarily nonsplit in k, and let p be the prime of k above p. Theorem 5.2.2
implies

d̂eg X̂(L0,Λ)(m1,m2, r) = log(N(p))
∑

x∈X (Falg
p )

length(OX ,x)

|Aut(x)|

=
hk log(p)

wk|Aut(Λ)|
· ordp(pm1) ·RΛ(m2, r) · ρ

(
m1N(s)

pε

)
,

where s is the prime-to-p part of r, and ε is defined by (5.2.6). On the other hand, Proposition
5.3.3 tells us that

a+
L0

(m1, r) = −wk log(p)

2hk
· ordp(pm1) · ρ

(
m1|dk|
pε

) ∑
µ∈d−1

k L0,f/L0,f

Q(µ)=m1

2s(µ)ϕr(µ),

where ϕr is the characteristic function of r−1L0,f/L0,f ⊂ d−1
k L0,f/L0,f .

The proposition follows from the above equalities and Remark 5.3.1, once we prove

ρ

(
m1|dk|
pε

) ∑
µ∈d−1

k L0,f/L0,f

Q(µ)=m1

2s(µ)ϕr(µ) = 2o(dk)ρ

(
m1N(s)

pε

)
.

Both sides factor as a product of local terms, and the equality of local terms for primes not
dividing dk is obvious. It therefore suffices to prove, for every prime ` | dk, the relation

(7.2.3) ρ`(m1|dk|)
∑

µ∈d−1
k L0,`/L0,`

Q(µ)=m1

2s`(µ)ϕr,`(µ) = 2ρ`(m1N(s)),

where ρ`(k) is the number of ideals in Ok,` of norm kZ`,

s`(µ) =

{
1 if µ = 0

0 otherwise,

and ϕr,` is the characteristic function of r−1L0,`/L0,` ⊂ d−1
k L0,`/L0,`.

Case 1: If ord`(m1) ≥ 0, then only the term µ = 0 contributes to the left hand side of
(7.2.3), both sides of the equality are equal to 2, and we are done.

Case 2: If ord`(m1) < −1, then ρ`(m1|dk|) = ρ`(m1N(s)) = 0, and we are done.
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Case 3: If ord`(m1) = −1 and ` - N(r), then ρ`(m1N(s)) = 0. On the left hand side of
(7.2.3), the assumption ord`(m1) = −1 implies that any µ appearing in the sum
must be nonzero, and hence ϕr,`(µ) = 0. Thus in this case both sides of (7.2.3)
vanish.

Case 4: If ord`(m1) = −1 and ` | N(s), then ρ`(m1|dk|) = ρ`(m1N(s)) = 1. Let l ⊂ Ok be
the prime determined by `Ok = l2. As ` 6∈ DiffL0(m1), the rank one kl-hermitian
space L0,`⊗Z` Q` represents m1. It follows from the self-duality of L0,` that d−1

k L0,`

represents m1, and from this it is easy to see that the rank one Ok/l-quadratic space
d−1
k L0,`/L0,` has two distinct nonzero solutions to Q(µ) = m1. Thus∑

µ∈d−1
k L0,`/L0,`

Q(µ)=m1

2s`(µ) = 2

and again (7.2.3) holds.
Case 5: If ord`(m1) = −1 and ` = p, then ρ`(m1N(s)) = 0. On the left hand side of (7.2.3),

the sum over µ is empty: any µ ∈ d−1
k L0,p/L0,p representing m1 ∈ Qp/Zp could be

lifted to µ ∈ d−1
k L0,p representing m1 ∈ Qp, contradicting p ∈ DiffL0(m1). Thus

both sides of (7.2.3) vanish.

This exhausts all cases, and completes the proof. �

We can now prove (7.2.1) under the simplifying hypothesis RΛ(m, r) = 0. Recall from
Remark 5.2.9 that under this hypothesis

ZL(m, r) ∩ Y(L0,Λ)
∼=

⊔
m1∈Q>0

m2∈Q≥0

m1+m2=m

X(L0,Λ)(m1,m2, r),

and each stack appearing on the right has dimension zero. Proposition 7.2.1 shows that

1

degC Y(L0,Λ)
· I(ZL(m, r) : Y(L0,Λ)) =

1

degC Y(L0,Λ)

∑
m1∈Q>0

m2∈Q≥0

m1+m2=m

d̂eg X̂(L0,Λ)(m1,m2, r)

= −
∑

m1∈Q>0

m2∈Q≥0

m1+m2=m

a+
L0

(m1, r) ·RΛ(m2, r),

while Corollary 5.3.8 shows that

1

degC Y(L0,Λ)
· ΦL(Y(L0,Λ), fm,r) = −L′

(
ξ(fm,r), θΛ, 0

)
+ c+m,r(0, 0) · a+

L0
(0, r) ·RΛ(0, r)

+
∑

m1∈Q>0

m2∈Q≥0

m1+m2=m

a+
L0

(m1, r) ·RΛ(m2, r).

Adding these together gives

1

degC Y(L0,Λ)
· [ẐL(fm,r) : Y(L0,Λ)] = c+m,r(0, 0) · a+

L0
(0, r) ·RΛ(0, r)− L′

(
ξ(fm,r), θΛ, 0

)
,

and an application of Theorem 6.3.1 completes the proof. Proving (7.2.1) in general requires
treating improper intersections, and requires a bit more work.
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7.3. The adjunction formula. The proof of (7.2.1) in full generality revolves around the
study of a canonical section

(7.3.1) σm,r ∈ Γ
(
Z♥L (m, r)|Y(L0,Λ)

)
of the line bundle

(7.3.2) Z♥L (m, r) = ZL(m, r)⊗ T ⊗−RΛ(m,r)
L

restricted to Y(L0,Λ). This subsection is devoted to the construction of (7.3.1), and the
calculation of its divisor, which the reader may find in Proposition 7.3.8 below.

Because of the minor nuisance that the natural maps Y →M and Z(m, r)→M are not
closed immersions, the section (7.3.1) will be constructed by patching together sections on
an étale open cover. Accordingly, we define a sufficiently small étale open subscheme ofML
to be a scheme U together with an étale morphism U →ML such that

(1) on each connected component Z ⊂ ZL(m, r)/U the natural map Z → U is a closed
immersion,

(2) on each connected component Y ⊂ Y(L0,Λ)/U the natural map Y → U is a closed
immersion, and the universal object (A0, A1, B) over Y satisfies L(A0, B) ∼= Λ.

As in the discussion following Definition 3.1.4, the stack ML admits a finite cover by suffi-
ciently small étale open subschemes.

Fix a sufficiently small étale open subscheme U →ML, and connected components

Z ⊂ ZL(m, r)/U(7.3.3)

Y ⊂ Y(L0,Λ)/U .

The smoothness of Y(L0,Λ) over Ok, together with our hypotheses on U , imply that Y is
a reduced and irreducible one-dimensional closed subscheme of U . The closed subscheme
Z ⊂ U is perhaps neither reduced nor irreducible, but an easy deformation theory argument
shows that the generic fiber of ZL(m, r) is smooth, and hence Z/k is a smooth variety of
dimension n− 1. The intersection Z ∩ Y = Z ×U Y is a closed subscheme of Y , and hence
is either all of Y or is of dimension 0.

Definition 7.3.1. Given connected components (7.3.3), we say that

(1) Z is Y -proper if Z ∩ Y has dimension 0,
(2) Z is Y -improper if Z ∩ Y = Y .

Proposition 7.3.2. The number of Y -improper components Z ⊂ ZL(m, r)/U is RΛ(m, r).

Proof. Let η ∈ Y be the generic point, so that k(η) is a finite extension of k, and let η → η
be the geometric generic point above η. Denote by (A0,η, A1,η, Bη) and (A0,η, A1,η, Bη) the
pullbacks to η and η of the universal object over Y(L0,Λ). The fiber

ZL(m, r)η = ZL(m, r)/U ×U η
is a disjoint union of copies of η, one for every

λ ∈ r−1L(A0,η, A1,η ×Bη)

satisfying 〈λ, λ〉 = m. Under the decomposition 5.1.1, any such λ takes the form λ = λ1+λ2.
The map λ1 : A0,η → A1,η must vanish because of signature considerations, and so all such
λ lie in

r−1L(A0,η, Bη) ∼= r−1Λ.

It follows that ZL(m, r)η is a disjoint union of RΛ(m, r) copies of η. Moreover, our definition
of a sufficiently small étale open guarantees that r−1L(A0,η, Bη) ∼= r−1Λ, and so all such λ
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are already defined over η. In other words, ZL(m, r)η is a disjoint union of RΛ(m, r) copies
of η, and the claim follows easily. �

As in the proof of Lemma 5.2.3, write Ok = Z[Π] and define elements of Ok ⊗Z OU by

J = Π⊗ 1− 1⊗Π, J = Π⊗ 1− 1⊗Π.

An elementary calculation shows that the sequence

· · · J−→ Ok ⊗Z OU
J−→ Ok ⊗Z OU

J−→ Ok ⊗Z OU
J−→ · · · .

is exact.

Lemma 7.3.3. Every geometric point y → Y admits an affine étale neighborhood Spec(R)→
U with the following property: letting A denote the pullback to R of the universal object via
U →M→M(n−1,1), the R-module Lie(A) is free, and admits a basis ε1, . . . , εn such that

(1) ε1, . . . , εn−1 is a basis for the universal subsheaf F ⊂ Lie(A),
(2) the operator J ∈ Ok ⊗Z R on Lie(A) has the form

(7.3.4) J =

0 · · · 0 j1
...

. . .
...

...
0 · · · 0 jn

 ∈Mn(R)

for some j1, . . . , jn ∈ R satisfying (j1, . . . , jn) = (jn) = dkR,
(3) there is unique J0 ∈ R× such that J = δk ◦ J0 as endomorphisms of Lie(A)/F ,

where δk ∈ Ok is any generator of dk.

Proof. Certainly there is an affine étale neighborhood over which

0→ Fil(A)→ HdR
1 (A)→ Lie(A)→ 0

is an exact sequence of free R-modules. If ε1 . . . , εn is any basis of HdR
1 (A) such that

ε1 . . . , εn−1 generates F , then the matrix of J is (7.3.4) for some j1, . . . , jn ∈ R, simply
because JF = 0. Futhermore, J acts on the quotient Lie(A)/F through the complex
conjugate of the structure map Ok → R, and so jn = Π − Π. It is easy to check that
(Π−Π)Ok = dk, and so (jn) = dkR.

To prove that (j1, . . . , jn) = dkR, after possibly shrinking the étale neighborhood Spec(R),
it suffices to prove this equality after replacing R by the completion of the étale local ring
at y. The proof of [Ho3, Proposition 3.2.3] shows that the ideal (j1, . . . , jn) is principal.
Everything we have said so far holds for any geometric point of U . Now we exploit the
hypothesis that y is a geometric point of Y . Let I ⊂ R be the ideal defining the closed
subscheme Y ×U Spec(R) ⊂ Spec(R), and let A′ be the reduction of A to R/I. By definition
of the morphism Y →M, the abelian scheme A′ comes with a decomposition A′ ∼= A1×B,
and the subsheaf F ′ ⊂ Lie(A′) is F ′ = Lie(B). In particular, F ′ admits the Ok-stable,
and hence J-stable, OY -direct summand Lie(A0). Thus there is some basis of Lie(A′) with
respect to which

J =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 jn

 ∈Mn(R/I).

As the ideal of R/I generated by the entries of J is independent of the choice of basis, we
see that (j1, . . . , jn) = (jn) = (δk) in R/I. Now pick a generator γ ∈ R of the principal
ideal (j1, . . . , jn). We have shown that (δk) ⊂ (γ), with equality after reducing modulo I.
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Furthermore, R/I is an integral domain of characteristic 0, as Y is reduced, irreducible, and
flat over Ok. It follows that if we write δk = uγ with u ∈ R, then u is a unit in R/I, and
hence is also a unit in the local ring R. This shows that (j1, . . . , jn) = (δk) in R.

For the existence and uniqueness of the unit J0 ∈ R× note that M, hence also R, is flat
over Ok, and so δk ∈ R is not a zero divisor. Thus jn is uniquely divisible by the image of
δk under Ok → EndR(Lie(A)/F)) = R. Dividing jn by this image defines the desired unit
J0. �

Keeping Z and Y as in (7.3.3), denote by IZ ⊂ OU the ideal sheaf defining the closed
subscheme Z ↪→ U , and by O(Z) = I−1

Z the line bundle on U determined by the divisor
Z. Let IY ⊂ OU be the ideal sheaf defining the closed subscheme Y ↪→ U . The first order

infinitesimal neighborhood of Y is the closed subscheme Ỹ ↪→ U defined by the ideal sheaf
I2
Y ⊂ OU . The picture is

Z

��????????

Y

22

,,

// Ỹ ∩ Z

<<yyyyyyyy

""DDDDDDDDD U //ML

Ỹ

@@��������

where Ỹ ∩ Z = Ỹ ×U Z. Let (A0, A, λ) be the pullback to Y of the universal object over

ZL(m, r). Of course the pair (A0, A) has a canonical extension (Ã0, Ã) to Ỹ , obtained by

pulling back the universal pair over M via Ỹ → U → M, but there is no such canonical

extension of λ to Ỹ . Indeed, Ỹ ∩ Z is the maximal closed subscheme of Ỹ over which λ

extends to an element of r−1L(Ã0, Ã) satisfying the vanishing condition of (3.1.5).

Recall that, by virtue of the moduli problem defining M(n−1,1), the OỸ -module Lie(Ã)

comes equipped with a corank one submodule F̃ . We will now construct a canonical OỸ -
module map

obst(λ) : Fil(Ã0)→ Lie(Ã)/F̃ ,

the obstruction to deforming λ, whose zero locus subscheme is Ỹ ∩ Z. The scheme U may
be covered by open subschemes {Ui} with the property that on each Ui either N(r) ∈ O×Ui
or rOUi = dkOUi . In the construction of obst(λ) we are free to assume that U itself satisfies
one of these two properties.

First assume N(r) ∈ O×U . Under this hypothesis, λ determines an Ok-linear map λ :
HdR

1 (A0)→ HdR
1 (A) of OY -modules, which, by the deformation theory of [Lan, Proposition

2.1.6.4] extends canonically to an Ok-linear map λ̃ : HdR
1 (Ã0) → HdR

1 (Ã) of OỸ -modules.
Define obst(λ) as the composition

(7.3.5) Fil(Ã0)→ HdR
1 (Ã0)

λ̃−→ HdR
1 (Ã)→ Lie(Ã)/F̃ .

Now assume rOU = dkOU . As above, by deformation theory the map δkλ : A0 → A
induces a map

δ̃kλ : HdR
1 (Ã0)→ HdR

1 (Ã).
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Once again using Fil(Ã0) = JHdR
1 (Ã0), as in the proof of [Ho2, Proposition 2.1.2], define

obst(λ) as the composition

(7.3.6) Fil(Ã0) = JHdR
1 (Ã0)

Js 7→δ̃kλ(s)−−−−−−−→ HdR
1 (Ã)→ Lie(Ã)/F̃ J0−→ Lie(Ã)/F̃ ,

where J0 ∈ O×U is as in Lemma 7.3.3.

Remark 7.3.4. To see that (7.3.6) is well-defined, suppose Js1 = Js2. This implies that

s1 − s2 ∈ JHdR
1 (Ã0). The signature condition on F̃ implies that J annihilates Lie(Ã)/F̃ ,

and therefore δ̃kλ(s1) = δ̃kλ(s2) in Lie(Ã)/F̃ .

Remark 7.3.5. If both conditions N(r) ∈ O×U and rOU = dkOU are satisfied then δk ∈ O×U ,
and the relation J = δk ◦ J0 guarantees that the compositions (7.3.5) and (7.3.6) agree.

Lemma 7.3.6. The zero locus subscheme of obst(λ) is Ỹ ∩ Z.

Proof. First assume that N(r) ∈ O×U . Using the notation of (7.3.5), denote by obst∗(λ) the
composition

Fil(Ã0)→ HdR
1 (Ã0)

λ̃−→ HdR
1 (Ã)→ Lie(Ã),

so that obst(λ) is the composition

Fil(Ã0)
obst∗(λ)−−−−−−→ Lie(Ã)→ Lie(Ã)/F̃ .

By deformation theory, the zero locus subscheme of obst∗(λ) is the maximal closed sub-

scheme of Ỹ over which λ extends to an element of r−1L(Ã0, Ã). For this extension the
vanishing of (3.1.5) is automatic by Remark 3.1.6, and the hermitian norm of the extension
is equal to the hermitian norm of λ. It follows that the zero locus subscheme of obst∗(λ) is

Ỹ ∩ Z. Thus we are reduced proving that obst∗(λ) and obst(λ) have the same zero locus
subscheme.

If dk ∈ O×U the argument is simple, and exploits the splitting

Ok ⊗Z OỸ ∼= OỸ ×OỸ .
The orthogonal idempotents on the right hand side induce a splitting N = eN ⊕ eN of any
Ok ⊗Z OỸ -module N , in which eN is the maximal submodule on which Ok acts through
the structure map Ok → OỸ , and eN is the maximal submodule on which Ok acts through

the complex conjugate. Krämer’s signature condition on F̃ implies that F̃ = eLie(Ã),

and so F̃ admits a canonical complementary summand eLie(Ã) on which Ok acts through
the complex conjugate of the structure morphism. The image of obst∗(λ) is contained in

eLie(Ã) ∼= Lie(Ã)/F̃ . Thus obst∗(λ) vanishes if and only if obst(λ) vanishes, as desired.
Returning to the general case (but still assuming N(r) ∈ O×U ), fix a geometric point

y ∈ Ỹ (F) and let R be the étale local ring of Ỹ at y. Denote by (A0,A) the pullback of

(Ã0, Ã) through Spec(R)→ V → Ỹ , and similarly denote by

λ̃ : HdR
1 (A0)→ HdR

1 (A)

the pullback of λ̃ : HdR
1 (Ã0)→ HdR

1 (Ã). Using Lemma 7.3.3, there is an R-basis ε1, . . . , εn
of Lie(A) such that ε1, . . . , εn−1 generates the corank one R-submodule FA ⊂ Lie(A), and
J acts on Lie(A) as

J =

0 · · · 0 j1
...

. . .
...

...
0 · · · 0 jn

 ∈Mn(R),
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where j1, . . . , jn ∈ R satisfy (j1, . . . , jn) = (jn). Fix an Ok ⊗Z R-module generator σ ∈
HdR

1 (A0), and write

λ̃(σ) = λ1ε1 + · · ·+ λnεn ∈ Lie(A)

with λi ∈ R. Using
Fil(A0) = JHdR

1 (A0) = Jσ,

the image of obst(λ)|R is generated by

λ̃(Jσ) = λnjnεn ∈ Lie(A)/FA,
while the image of obst∗(λ)|R is generated by

λ̃(Jσ) = J · λ̃(σ) = λn(j1ε1 + · · ·+ jnεn) ∈ Lie(A).

As λn(j1, . . . , jn) = λn(jn), the maximal quotient of R in which obst(λ)|R vanishes is the
same as the maximal quotient in which obst∗(λ)|R vanishes.

Now assume that rOU = dkOU . The zero locus subscheme of obst∗(λ) is the maximal

closed subscheme of Ỹ over which λ extends to an element of r−1L(Ã0, Ã) satisfying the van-
ishing of (3.1.5). By deformation theory, this is the same as the maximal closed subscheme
over which the compositions

Fil(Ã0)→ HdR
1 (Ã0)

δ̃kλ−−→ HdR
1 (Ã)→ Lie(Ã)

and

HdR
1 (Ã0)

δ̃kλ−−→ HdR
1 (Ã)→ Lie(Ã)→ Lie(Ã)/F̃

vanish. Using JF̃ = 0 and Fil(Ã0) = JHdR
1 (Ã0), one easily checks that the vanishing of

the second composition implies the vanishing of the first. As J0 ∈ R×, the vanishing of the
second composition is equivalent to the vanishing of obst(λ). Thus obst(λ) and obst∗(λ)
have the same zero locus subscheme. �

The following result is reminiscent of the classical adjunction isomorphism as in [Liu,
Lemma 9.1.36], however our result is particular to the moduli space M. Indeed, it is
a statement about the cotautological bundle T , which we have defined using the moduli
interpretation of M.

Theorem 7.3.7 (Adjunction). Assuming that Z is Y -improper, there is a canonical iso-
morphism

(7.3.7) O(Z)|Y ∼= TL|Y
of line bundles on Y .

Proof. View the obstruction

obst(λ) : Fil(Ã0)→ Lie(Ã)/F̃

as a section obst(λ) ∈ Γ(TL|Ỹ ) with zero locus subscheme Ỹ ∩ Z. Under the inclusion
OU ⊂ O(Z) of OU -modules, the constant function 1 on U defines a section s ∈ Γ(O(Z))
with zero locus subscheme Z. Hence the restriction s|Ỹ ∈ Γ(O(Z)|Ỹ ) also has zero locus

subscheme Ỹ ∩ Z.
After passing to a Zariski open cover of U , we are free to assume that U = Spec(R) is

affine, and that the line bundles O(Z) and TL|U are trivial. Fix isomorphisms of R-modules
Γ(O(Z)) ∼= R and Γ(TL|U ) ∼= R, and let I ⊂ R be the ideal defining the closed subscheme
Y ⊂ U . Note that R/I ∼= OY is an integral domain of characteristic 0, and hence I is
prime. Let f, g ∈ R/I2 be the elements corresponding to the sections obst(λ) and s|Ỹ . As
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these sections have the same zero locus subscheme, (f) = (g) and we may write f = vg and
g = uf for some u, v ∈ R/I2. In particular g · (1− uv) = 0.

We claim that if x ∈ R/I2 satisfies gx = 0, then x ∈ I/I2. Suppose not. The element
g ∈ R/I2 comes with a lift to R, defined by s, and we fix any lift of x to R, necessarily with
x 6∈ I. In particular x is a unit in the localization RI . Therefore g ∈ I2RI and the natural
surjection RI → RI/(g) induces an isomorphism on tangent spaces. This is a contradiction,
as we know from the smoothness of the generic fibers of U and Z that RI and RI/(g) are
smooth k-algebras of dimensions n− 1 and n− 2, respectively.

If we apply the above to x = 1− uv we see that 1 = uv in R/I. Therefore the map

Γ(TL|Ỹ ) ∼= R/I2 u−→ R/I2 ∼= Γ(O(Z)|Ỹ ),

which takes obst(λ) 7→ s|Ỹ , becomes an isomorphism after tensoring with R/I ∼= OY .
Although g = uf does not determine u uniquely, any other such u has the same image in
R/I. In view of the discussion above, the desired isomorphism (7.3.7) may be defined as

follows: Zariski locally on Ỹ there is a homomorphism

TL|Ỹ → O(Z)|Ỹ
satisfying obst(λ) 7→ s|Ỹ . Such a homomorphism is not unique, but any two have the same
restriction to Y . This restriction is an isomorphism, and these isomorphisms patch together
over a Zariski cover. �

At last we construct the promised section (7.3.1). Fix one connected component Y ⊂
Y(L0,Λ)/U , and regard ZL(m, r) as a line bundle on ML. Its pullback to a line bundle on U
satisfies

ZL(m, r)|U ∼=
⊗
Z

O(Z),

where the tensor product is over all connected components Z ⊂ ZL(m, r)/U . Combining the
adjunction isomorphism (7.3.7) with Proposition 7.3.2 yields an isomorphism

T RΛ(m,r)
L |Y ∼=

⊗
Y -improper Z

O(Z)|Y ,

and hence an isomorphism

ZL(m, r)|Y ∼= T RΛ(m,r)
L |Y ⊗

⊗
Y -proper Z

O(Z)|Y ,

which we rewrite as

(7.3.8) Z♥L (m, r)|Y ∼=
⊗

Y -proper Z

O(Z)|Y .

Each line bundle O(Z) ⊃ OU on U has a canonical section s ∈ Γ(O(Z)), corresponding to
the constant function 1 in OU , satisfying

div(s|Y ) = div(s) ∩ Y = Z ∩ Y

as divisors on Y . Therefore (7.3.8) determines a section

σm,r|Y ∈ Γ(Z♥L (m, r)|Y )

corresponding to the section ⊗s|Y on the right hand side of (7.3.8), and this section satisfies

(7.3.9) div(σm,r|Y ) =
∑

Y -proper Z

(Z ∩ Y ).
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Note that each s|Y appearing in the tensor product is nonvanishing at the generic point of
Y , precisely because the tensor product is over only the Y -proper Z’s. In particular σm,r|Y
is nonzero.

By repeating the above construction on each connected component Y of Y(L0,Λ)/U we

obtain a section of the pullback of Z♥L (m, r) to Y(L0,Λ)/U . As U varies over a cover of ML
by sufficiently small étale opens, these sections (being truly canonical) agree on the overlaps,
and the desired section (7.3.1) is defined by patching them together.

Proposition 7.3.8. As divisors on Y(L0,Λ), we have

div(σm,r) =
∑

m1∈Q>0

m2∈Q≥0

m1+m2=m

X(L0,Λ)(m1,m2, r).

Proof. As in the construction of σm,r, fix a sufficiently small étale open subscheme U →
ML and a connected component Y ⊂ Y(L0,Λ)/U . It follows from (5.2.2) that there is an
isomorphism of Y -schemes⊔

Z

(Z ∩ Y ) ∼=
⊔

m1,m2∈Q≥0

m1+m2=m

X(L0,Λ)(m1,m2, r)/Y

where the disjoint union on the left is over all connected components Z ⊂ ZL(m, r)/U . Each
side of this isomorphism has a well-defined 0-dimensional part: the disjoint union of all its
0-dimensional connected components. Taking the 0-dimensional parts, using Theorem 5.2.2
and Proposition 5.2.8 for the right hand side, and then viewing the 0-dimension parts as
divisors on Y , we find ∑

Y -proper Z

(Z ∩ Y ) =
∑

m1∈Q>0

m2∈Q≥0

m1+m2=m

X(L0,Λ)(m1,m2, r)/Y .

Combining this with (7.3.9) shows that

div(σm,r)/Y =
∑

m1∈Q>0

m2∈Q≥0

m1+m2=m

X(L0,Λ)(m1,m2, r)/Y ,

and the claim follows immediately. �

7.4. Adjunction in the complex fiber. Fix one point y ∈ Y(L0,Λ)(C). We will give
a purely analytic construction of the fiber of σm,r at y using the complex uniformization
(3.2.1). Recall from Section 3.2 that to the point y there is associated a triple (A0,A1,B)
of hermitian Ok-modules such that L(A0,B) ∼= Λ and

L(A0,A1) ∈ gen(L0(∞)).

Set A = A1 ⊕B so that L(A0,A) ∈ gen(L(∞)) and

L(A0,A) ∼= L(A0,A1)⊕ Λ.

Recall that the connected component ofML(C) containing y admits an orbifold presentation

Γ\D →ML(C)

in which D is the space of negative lines in L(A0,A)R, and that under this presentation the
point y corresponds to the negative line L(A0,A1)R ⊂ L(A0,A)R.
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Denote by Z(m, r) the pullback to D of the divisor ZL(m, r). By (3.2.2) the corresponding
line bundle is

(7.4.1) Z(m, r) ∼=
⊗

λ∈r−1L(A0,A)
〈λ,λ〉=m

O(λ).

On the right hand side O(λ) is the line bundle on D defined by the divisor D(λ) of negative
lines orthogonal to λ. We must explain the meaning of the infinite tensor product on the
right. Denote by s(λ) the constant function 1 on D, viewed as a section of O(λ). For
any open set U ⊂ D with compact closure there are only finitely many λ ∈ r−1L(A0,A)
satisfying 〈λ, λ〉 = m for which D(λ)∩U 6= ∅. For λ not in this finite set the section s(λ) is
nonvanishing on U , and defines a trivialization of O(λ). Thus, after restricting to any such
U all but finitely many of the factors of (7.4.1) are trivialized, and the meaning of (7.4.1) is
clear. The line bundle (7.4.1) has a canonical section

sm,r =
⊗

λ∈r−1L(A0,A)
〈λ,λ〉=m

s(λ)

corresponding to the constant function 1 in OD ⊂ Z(m, r).
Let T denote the pullback of the cotautological bundle TL to D. The irreducible compo-

nents of the divisor Z(m, r) passing through y are indexed by the set

(7.4.2) {λ ∈ r−1Λ : 〈λ, λ〉 = m} ⊂ L(A0,A).

Recall from Proposition 6.2.2 that at every point z ∈ D there is a canonical isomorphism

Tz ∼= HomC(z,C),

which was called β∨z , but which we now suppress from the notation. For each z ∈ D and
each λ in (7.4.2), denote by λz the orthogonal projection of λ to z. There is a unique
holomorphic section obstan(λ) ∈ Γ(D, T ) whose fiber at every point z satisfies

obstan
z (λ) = 〈·, λz〉.

Of course the zero locus of obstan(λ) is the divisor D(λ), and hence there is a unique
isomorphism of line bundles O(λ) ∼= T satisfying s(λ) 7→ obstan(λ). This isomorphism is
the analytic analogue of the adjunction isomorphism of Theorem 7.3.7.

Define a holomorphic section

obstan
m,r =

⊗
λ∈r−1Λ
〈λ,λ〉=m

obstan(λ)

of

TRΛ(m,r) =
⊗

λ∈r−1Λ
〈λ,λ〉=m

T.

The pullback of (7.3.2) to D is

(7.4.3) Z♥(m, r) ∼= Z(m, r)⊗ T⊗−RΛ(m,r),

which has the holomorphic section sm,r ⊗ (obstan
m,r)

−1.

Lemma 7.4.1. The fiber at y of sm,r⊗ (obstan
m,r)

−1 agrees with the fiber at y of the section
σm,r.
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Proof. The main thing to explain is the relation between the analytically constructed section
obstan(λ) and the algebraically constructed section obst(λ) of the previous subsection. We
will express both constructions in terms of parallel transport with respect to the Gauss-

Manin connection. Let R = ÔD,y be the completion of the ring of germs of holomorphic
functions at y. Equivalently, R is the completed étale local ring of ML/C at y, a power
series ring over C in n − 1 variables. Let (A0, A) ∈ ML(C) be the pair represented by the
point y, and let (A0,A) be the universal deformation of (A0, A) over R. If m ⊂ R is the

maximal ideal, set R̃ = R/m2. Thus Spec(R̃) is the first order infinitesimal neighborhood

of y. Denote by (Ã0, Ã) the reduction of (A0,A) to R̃. Let

T = HomR(Fil(A0),Lie(A)/FA)

be the pullback to R of the cotautological bundle, and let T̃ be its reduction to R̃.
Each λ in the set (7.4.2) determines a C-linear map λ : HdR

1 (A0) → HdR
1 (A), which,

using the Gauss-Manin connection, has a canonical deformation

λ : HdR
1 (A0)→ HdR

1 (A)

defined by parallel transport. See [Lan] and [Vo] for the Gauss-Manin connection, and
[BeOg] for the algebraic theory of parallel transport. The composition

Fil(A0)→ HdR
1 (A0)

λ−→ HdR
1 (A)→ Lie(A)/FA,

viewed as an element of T , is precisely the pullback of obstan(λ) to T . On the other hand,

the reduction of λ to R̃ is precisely the map

λ̃ : HdR
1 (Ã0)→ HdR

1 (Ã)

appearing in (7.3.5). Thus the reduction map T → T̃ sends obstan(λ) 7→ obst(λ). With
this in mind, the rest of the proof follows by tracing through the definitions of the two
sections in question. �

Define a metrized line bundle on ML by

(7.4.4) Ẑ♥L (fm,r) = ẐL(fm,r)⊗ T̂ ⊗−RΛ(m,r)
L .

Proposition 7.4.2. For any point y ∈ Y(L0,Λ)(C), the section σm,r constructed in Section
7.3 satisfies

− log ||σm,r||2y = ΦL(y, fm,r)

with respect to the metric on Z♥L (fm,r)|y determined by (7.4.4).

Proof. The metrized line bundle (7.4.4) pulls back to a metrized line bundle on D, whose
underlying line bundle is (7.4.3). It is easy to compute the norm of the section sm,r ⊗
(obstan

m,r)
−1 with respect to this metric. For any z ∈ D not contained in the support of

Z(m, r), the section sm,r satisfies

− log ||sm,r||2z = ΦL(z, fm,r),

by definition of the metric on ẐL(fm,r), while

log ||obstan
m,r||2z =

∑
λ∈r−1Λ
〈λ,λ〉=m

log ||obstan(λ)||2z =
∑

λ∈r−1Λ
〈λ,λ〉=m

(
log |〈λz, λz〉|+ log(4π) + γ

)
,
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by definition (6.2.2) of the metric on T̂L. It follows that

− log ||σm,r||2y = lim
z→y

(
− log ||sm,r||2z + log ||obstan

m,r||2z
)

= lim
z→y

(
ΦL(z, fm,r) +

∑
λ∈r−1Λ
〈λ,λ〉=m

(
log |〈λz, λz〉|+ log(4π) + γ

))
.

By Corollary 4.2.2, this is the value at y of the (discontinuous) function ΦL(z, fm,r). �

7.5. Completion of the proof. Again we consider the metrized line bundle

Ẑ♥L (fm,r) = ẐL(fm,r)⊗ T̂ ⊗−RΛ(m,r)
L

on ML. Its restriction to Y(L0,Λ) has a canonical nonzero section (7.3.1), which determines
an arithmetic divisor

d̂iv(σm,r) = (div(σm,r),− log ||σm,r||2) ∈ D̂iv(Y(L0,Λ))

satisfying

[Ẑ♥L (fm,r) : YL0,Λ] = d̂eg d̂iv(σm,r).

Proposition 7.3.8 implies that the arithmetic divisor

d̂ivfin(σm,r) = (div(σm,r), 0)

satisfies

(7.5.1) d̂eg d̂ivfin(σm,r) =
∑

m1∈Q>0

m2∈Q≥0

m1+m2=m

d̂eg X̂(L0,Λ)(m1,m2, r).

On the other hand, it is immediate from Proposition 7.4.2 that the arithmetic divisor

d̂iv∞(σm,r) = (0,− log ||σm,r||2)

satisfies

(7.5.2) d̂eg d̂iv∞(σm,r) = ΦL(Y(L0,Λ), fm,r).

At last we have all the necessary ingredients to prove the main result.

Proof of Theorem 7.1.2. First we treat the case f = fm,r. Combining (7.5.1) with Proposi-
tion 7.2.1 shows that

d̂eg d̂ivfin(σm,r) = −degC Y(L0,Λ)

∑
m1∈Q>0

m2∈Q≥0

m1+m2=m

a+
L0

(m1, r) ·RΛ(m2, r).

The m1 = 0 term absent from the right hand side instead appears in the equality

[T̂ ⊗RΛ(m,r)
L : Y(L0,Λ)] = −degC Y(L0,Λ) · a+

L0
(0, r) ·RΛ(m, r)

of Theorem 6.3.1, and combining all of this with (7.5.2) gives the final equality in

[ẐL(fm,r) : Y(L0,Λ)] = [T̂ ⊗RΛ(m,r)
L : Y(L0,Λ)] + [Ẑ♥L (fm,r) : Y(L0,Λ)]

= [T̂ ⊗RΛ(m,r)
L : Y(L0,Λ)] + d̂eg d̂ivfin(σm,r) + d̂eg d̂iv∞(σm,r)

= ΦL(Y(L0,Λ), fm,r)− degC Y(L0,Λ)

∑
m1,m2∈Q≥0

m1+m2=m

a+
L0

(m1, r) ·RΛ(m2, r).
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Corollary 5.3.8 shows that

1

degC Y(L0,Λ)
· ΦL(Y(L0,Λ), fm,r) = −L′

(
ξ(fm,r), θΛ, 0

)
+ c+m,r(0, 0) · a+

L0
(0, r) ·RΛ(0, r)

+
∑

m1,m2∈Q≥0

m1+m2=m

a+
L0

(m1, r) ·RΛ(m2, r),

and hence
1

degC Y(L0,Λ)
· [ẐL(fm,r) : Y(L0,Λ)] = −L′

(
ξ(fm,r), θΛ, 0

)
+ c+m,r(0, 0) · a+

L0
(0, r) ·RΛ(0, r).

Another application of Theorem 6.3.1 then shows that

[ẐL(fm,r) : Y(L0,Λ)] = −degC Y(L0,Λ) · L′
(
ξ(fm,r), θΛ, 0

)
− c+m,r(0, 0) · [T̂L : Y(L0,Λ)].

This completes the proof of (7.2.1), and hence the proof of Theorem 7.1.2 when f = fm,r.
If f = c+(0) is a constant function (this can only happen when n = 2) then ZL(f) = 0

and Theorems 5.3.6 and 6.3.1 imply

[Θ̂L(f) : Y(L0,Λ)] = ΦL(Y(L0,Λ), f) + c+(0, 0) · [T̂L : Y(L0,Λ)]

= − degC Y(L0,Λ) · L′(ξ(f), θΛ, 0)

+ degC Y(L0,Λ) · {c+(0), EL0
⊗ θΛ}+ c+(0, 0) · [T̂L : Y(L0,Λ)]

= − degC Y(L0,Λ) · L′(ξ(f), θΛ, 0).

Thus Theorem 7.1.2 also holds for constant forms. The decomposition (3.3.1) implies that
the space H2−n(ωL)∆ is spanned by the constant forms and the fm,r’s, and so the desired
equality follows by linearity. �
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